Skip to main content
dPanther Home
|
Sea Level Rise
mydPanther Home
Modelling sea level rise impacts on storm surges along US coasts
Item menu
Print
Send
Add
Share
Description
Standard View
MARC View
Metadata
Usage Statistics
PDF
Downloads
STANDARD VIEW
MARC VIEW
METADATA
USAGE STATISTICS
Permanent Link:
http://dpanther.fiu.edu/dpService/dpPurlService/purl/FI15060966/00001
Material Information
Title:
Modelling sea level rise impacts on storm surges along US coasts
Series Title:
Environmental Research Letters Volume 7
Creator:
Claudia Tebaldi
Benjamin H. Strauss
Chris E. Zervas
Affiliation:
Climate Central
Climate Central
National Oceanic and Atmospheric Administration
Publisher:
Institute of Physics Publishing
Publication Date:
2012
Language:
English
Subjects
Subjects / Keywords:
Climate change
Sea level rise
Coastal management
Storm surges
Extreme value theory
Notes
Abstract:
Sound policies for protecting coastal communities and assets require good information about vulnerability to flooding. Here, we investigate the influence of sea level rise on expected storm surge-driven water levels and their frequencies along the contiguous United States. We use model output for global temperature changes, a semi-empirical model of global sea level rise, and long-term records from 55 nationally distributed tidal gauges to develop sea level rise projections at each gauge location. We employ more detailed records over the period 1979–2008 from the same gauges to elicit historic patterns of extreme high water events, and combine these statistics with anticipated relative sea level rise to project changing local extremes through 2050. We find that substantial changes in the frequency of what are now considered extreme water levels may occur even at locations with relatively slow local sea level rise, when the difference in height between presently common and rare water levels is small. We estimate that, by mid-century, some locations may experience high water levels annually that would qualify today as ‘century’ (i.e., having a chance of occurrence of 1% annually) extremes. Today’s century levels become ‘decade’ (having a chance of 10% annually) or more frequent events at about a third of the study gauges, and the majority of locations see substantially higher frequency of previously rare storm-driven water heights in the future. These results add support to the need for policy approaches that consider the non-stationarity of extreme events when evaluating risks of adverse climate impacts.
Record Information
Source Institution:
Florida International University
Rights Management:
Please contact the owning institution for licensing and permissions. It is the user's responsibility to ensure use does not violate any third party rights.
dpSobek Membership
Aggregations:
Sea Level Rise
***This is default web skin for this SobekCM digital library.
Developed for the
University of Florida Digital Collections
For any questions about this system, email
Mark.V.Sullivan@gmail.com
Last updated January 2012 -
4.10.1