Skip to main content
dPanther Home
|
Sea Level Rise
mydPanther Home
The Greenland Ice Sheet's surface mass balance in a seasonally sea ice-free Arctic
Item menu
Print
Send
Add
Share
Description
Standard View
MARC View
Metadata
Usage Statistics
PDF
Downloads
STANDARD VIEW
MARC VIEW
METADATA
USAGE STATISTICS
Permanent Link:
http://dpanther.fiu.edu/dpService/dpPurlService/purl/FI15062154/00001
Material Information
Title:
The Greenland Ice Sheet's surface mass balance in a seasonally sea ice-free Arctic
Series Title:
Journal of Geophysical Research Volume 118 Earth Surface
Creator:
Day, J.J.
Bamber, J.L.
Valdes, P.J.
Publisher:
American Geophysical Union
Publication Date:
2013
Language:
English
Subjects
Subjects / Keywords:
Climate Change
( lcsh )
Ice Sheets
( lcsh )
Greenland
( lcsh )
Notes
Abstract:
General circulation models predict a rapid decrease in sea ice extent with concurrent increases in near-surface air temperature and precipitation in the Arctic over the 21st century. This has led to suggestions that some Arctic land ice masses may experience an increase in accumulation due to enhanced evaporation from a seasonally sea ice-free Arctic Ocean. To investigate the impact of this phenomenon on Greenland Ice Sheet climate and surface mass balance (SMB), a regional climate model, HadRM3, was used to force an insolation-temperature melt SMB model. A set of experiments designed to investigate the role of sea ice independently from sea surface temperature (SST) forcing are described. In the warmer and wetter SI + SST simulation, Greenland experiences a 23% increase in winter SMB but 65% reduced summer SMB, resulting in a net decrease in the annual value. This study shows that sea ice decline contributes to the increased winter balance, causing 25% of the increase in winter accumulation; this is largest in eastern Greenland as the result of increased evaporation in the Greenland Sea. These results indicate that the seasonal cycle of Greenland’s SMB will increase dramatically as global temperatures increase, with the largest changes in temperature and precipitation occurring in winter. This demonstrates that the accurate prediction of changes in sea ice cover is important for predicting Greenland SMB and ice sheet evolution. ( English )
Record Information
Source Institution:
Florida International University
Rights Management:
Please contact the owning institution for licensing and permissions. It is the user's responsibility to ensure use does not violate any third party rights.
dpSobek Membership
Aggregations:
Sea Level Rise
***This is default web skin for this SobekCM digital library.
Developed for the
University of Florida Digital Collections
For any questions about this system, email
Mark.V.Sullivan@gmail.com
Last updated January 2012 -
4.10.1