Skip to main content
dPanther Home
|
Sea Level Rise
mydPanther Home
Increased future ice discharge from Antarctica owing to higher snowfall
Item menu
Print
Send
Add
Share
Description
Standard View
MARC View
Metadata
Usage Statistics
STANDARD VIEW
MARC VIEW
METADATA
USAGE STATISTICS
Permanent Link:
http://dpanther.fiu.edu/dpService/dpPurlService/purl/FI15062064/00001
Material Information
Title:
Increased future ice discharge from Antarctica owing to higher snowfall
Series Title:
Nature Magazine Volume 492
Creator:
Winkelmann, R.
Levermann, A.
Martin, M.A.
Frieler, K.
Publisher:
Macmillan Publishers Limited
Publication Date:
2012-12-13
Language:
English
Subjects
Subjects / Keywords:
Climate Change
( lcsh )
Snowfall
( lcsh )
Antarctica
( lcsh )
Sea Level Rise
( lcsh )
Notes
Review:
Anthropogenic climate change is likely to cause continuing global sea level rise1, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss2,3 and ocean expansion4. Uncertainties exist in modelled snowfall5, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica1,6 and thus in the ultimate fate of the precipitationdeposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model7 forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet. ( English )
Record Information
Source Institution:
Florida International University
Rights Management:
Please contact the owning institution for licensing and permissions. It is the user's responsibility to ensure use does not violate any third party rights.
Related Items
Host material:
FULL TEXT- Increased future ice discharge from Antarctica owing to higher snowfall
dpSobek Membership
Aggregations:
Sea Level Rise
***This is default web skin for this SobekCM digital library.
Developed for the
University of Florida Digital Collections
For any questions about this system, email
Mark.V.Sullivan@gmail.com
Last updated January 2012 -
4.10.1