LDR   02882nam^^22003133a^4500
001        FI15061036_00001
005        20171020111638.0
006        m^^^^^o^^d^^^^^^^^
007        cr^^n^---ma^mp
008        150612n^^^^^^^^xx^||||^o^^^^^|||^u^eng^d
245 00 |a Ocean Acidification |h [electronic resource] |b Present Conditions and Future Changes in a High-CO2 World.
260        |a [S.l.] : |b The Oceanography Society, |c 2009.
490        |a Oceanography Volume 22 Number 4.
506        |a Please contact the owning institution for licensing and permissions. It is the user's responsibility to ensure use does not violate any third party rights.
520 3    |a The uptake of anthropogenic CO2 by the global ocean induces fundamental changes in seawater chemistry that could have dramatic impacts on biological ecosystems in the upper ocean. Estimates based on the Intergovernmental Panel on Climate Change (IPCC) business-as-usual emission scenarios suggest that atmospheric CO2 levels could approach 800 ppm near the end of the century. Corresponding biogeochemical models for the ocean indicate that surface water pH will drop from a pre-industrial value of about 8.2 to about 7.8 in the IPCC A2 scenario by the end of this century, increasing the ocean’s acidity by about 150% relative to the beginning of the industrial era. In contemporary ocean water, elevated CO2 will also cause substantial reductions in surface water carbonate ion concentrations, in terms of either absolute changes or fractional changes relative to pre-industrial levels. For most open-ocean surface waters, aragonite undersaturation occurs when carbonate ion concentrations drop below approximately 66 μmol kg-1. The model projections indicate that aragonite undersaturation will start to occur by about 2020 in the Arctic Ocean and 2050 in the Southern Ocean. By 2050, all of the Arctic will be undersaturated with respect to aragonite, and by 2095, all of the Southern Ocean and parts of the North Pacific will be undersaturated. For calcite, undersaturation occurs when carbonate ion concentration drops below 42 μmol kg-1. By 2095, most of the Arctic and some parts of the Bering and Chukchi seas will be undersaturated with respect to calcite. However, in most of the other ocean basins, the surface waters will still be saturated with respect to calcite, but at a level greatly reduced from the present.
533        |a Electronic reproduction. |c Florida International University, |d 2015. |f (dpSobek) |n Mode of access: World Wide Web. |n System requirements: Internet connectivity; Web browser software.
650        |a climate change.
650        |a ocean acidification.
650        |a biogeochemistry.
650        |a ocean water.
700        |a Richard A. Feely.
700        |a Scott C. Doney.
700        |a Sarah R. Cooley.
830    0 |a dpSobek.
830    0 |a Sea Level Rise.
852        |a dpSobek |c Sea Level Rise
856 40 |u http://dpanther.fiu.edu/dpService/dpPurlService/purl/FI15061036/00001 |y Click here for full text
992 04 |a http://dpanther.fiu.edu/sobek/content/FI/15/06/10/36/00001/FI15061036_thm.jpg
997        |a Sea Level Rise


The record above was auto-generated from the METS file.