Skip to main content
dPanther Home
|
Everglades Digital Library
|
FCE LTER
mydPanther Home
Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh
Item menu
Print
Send
Add
Share
Description
Standard View
MARC View
Metadata
Usage Statistics
PDF
Downloads
STANDARD VIEW
MARC VIEW
METADATA
USAGE STATISTICS
Permanent Link:
http://dpanther.fiu.edu/dpService/dpPurlService/purl/FI14082530/00001
Material Information
Title:
Controls on sensible heat and latent energy fluxes from a short-hydroperiod Florida Everglades marsh
Creator:
Schedlbauer, Jessica L.
Oberbauer, Steven F.
Starr, Gregory
Jimenez, Kristine L.
Publisher:
Elsevier
Publication Date:
2011
Language:
English
Subjects
Subjects / Keywords:
Bioenergetics -- Florida -- Everglades
Biotic communities -- Florida -- Everglades
Wetland ecology -- Florida -- Everglades
Eddy covariance
Latent energy
Sensible heat
Water management
Genre:
article
serial
( sobekcm )
Notes
Abstract:
Little is known of energy balance in low latitude wetlands where there is a year-round growing season and a climate best defined by wet and dry seasons. The Florida Everglades is a highly managed and extensive subtropical wetland that exerts a substantial influence on the hydrology and climate of the south Florida region. However, the effects of seasonality and active water management on energy balance in the Everglades ecosystem are poorly understood. An eddy covariance and micrometeorological tower was established in a short-hydroperiod Everglades marsh to examine the dominant environmental controls on sensible heat (H) and latent energy (LE) fluxes, as well as the effects of seasonality on these parameters. Seasonality differentially affected H and LE fluxes in this marsh, such that H was principally dominant in the dry season and LE was strongly dominant in the wet season. The Bowen ratio was high for much of the dry season (1.5–2.4), but relatively low (H and LE fluxes across nearly all seasons and years (). However, the 2009 dry season LE data were not consistent with this relationship () because of low seasonal variation in LE following a prolonged end to the previous wet season. In addition to net radiation, H and LE fluxes were significantly related to soil volumetric water content (VWC), water depth, air temperature, and occasionally vapor pressure deficit. Given that VWC and water depth were determined in part by water management decisions, it is clear that human actions have the ability to influence the mode of energy dissipation from this ecosystem. Impending modifications to water management under the Comprehensive Everglades Restoration Plan may shift the dominant turbulent flux from this ecosystem further toward LE, and this change will likely affect local hydrology and climate.
Record Information
Source Institution:
Florida International University
Rights Management:
Please contact the owning institution for licensing and permissions. It is the users responsibility to ensure use does not violate any third party rights.
Resource Identifier:
FI14082530
dpSobek Membership
Aggregations:
Everglades Digital Library: Reclaiming the Everglades
Florida Coastal Everglades Long Term Ecological Research Network
***This is default web skin for this SobekCM digital library.
Developed for the
University of Florida Digital Collections
For any questions about this system, email
Mark.V.Sullivan@gmail.com
Last updated January 2012 -
4.10.1