Integrated carbon budget models for the Everglades terrestrial-coastal-oceanic gradient: current status and needs for inter-site comparisons

Material Information

Title:
Integrated carbon budget models for the Everglades terrestrial-coastal-oceanic gradient: current status and needs for inter-site comparisons
Series Title:
Oceanography
Creator:
Troxler, Tiffany G.
Gaiser, Evelyn E.
Barr, Jordan
Fuentes, Joseph D.
Jaffe, Rudolf
Publisher:
The Oceanography Society
Publication Date:
Language:
English

Subjects

Subjects / Keywords:
Coastal ecology -- Florida -- Everglades
Sea level -- Florida -- Everglades
Carbon -- Florida -- Everglades
Periphyton -- Florida -- Everglades
Genre:
article
serial ( sobekcm )
Spatial Coverage:
Everglades (Fla.)
Coordinates:
25.750537 x -80.558111

Notes

Abstract:
Recent studies suggest that coastal ecosystems can bury significantly more C than tropical forests, indicating that continued coastal development and exposure to sea level rise and storms will have global biogeochemical consequences. The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site provides an excellent subtropical system for examining carbon (C) balance because of its exposure to historical changes in freshwater distribution and sea level rise and its history of significant long-term carbon-cycling studies. FCE LTER scientists used net ecosystem C balance and net ecosystem exchange data to estimate C budgets for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights into the magnitude of C accumulation and lateral aquatic C transport. Rates of net C production in the riverine mangrove forest exceeded those reported for many tropical systems, including terrestrial forests, but there are considerable uncertainties around those estimates due to the high potential for gain and loss of C through aquatic fluxes. C production was approximately balanced between gain and loss in Everglades marshes; however, the contribution of periphyton increases uncertainty in these estimates. Moreover, while the approaches used for these initial estimates were informative, a resolved approach for addressing areas of uncertainty is critically needed for coastal wetland ecosystems. Once resolved, these C balance estimates, in conjunction with an understanding of drivers and key ecosystem feedbacks, can inform cross-system studies of ecosystem response to long-term changes in climate, hydrologic management, and other land use along coastlines.
Citation/Reference:
Troxler, T.G., E. Gaiser, J. Barr, J.D. Fuentes, R. Jaffé, D.L. Childers, L. Collado-Vides, V.H. Rivera-Monroy, E. Castañeda-Moya, W. Anderson, R. Chambers, M. Chen, C. Coronado-Molina, S.E. Davis, V. Engel, C. Fitz, J. Fourqurean, T. Frankovich, J. Kominoski, C. Madden, S.L. Malone, S.F. Oberbauer, P. Olivas, J. Richards, C. Saunders, J. Schedlbauer, L.J. Scinto, F. Sklar, T. Smith, J.M. Smoak, G. Starr, R.R. Twilley, and K. Whelan. 2013. Integrated carbon budget models for the Everglades terrestrial-coastal-oceanic gradient: Current status and needs for inter-site comparisons. Oceanography 26(3):98–107, http://dx.doi.org/10.5670/oceanog.2013.51.

Record Information

Source Institution:
Florida International University
Rights Management:
This article has been published in Oceanography, Volume 26, Number 3, a quarterly journal of The Oceanography Society. Copyright 2013 by The Oceanography Society. All rights reserved. Permission is granted to copy this article for use in teaching and research. Republication, systematic reproduction, or collective redistribution of any portion of this article by photocopy machine, reposting, or other means is permitted only with the approval of The Oceanography Society. Send all correspondence to: info@tos.org or The Oceanography Society, PO Box 1931,Rockville, MD 20849-1931, USA.
Resource Identifier:
FI14082514
10.5670/oceanog.2013.51 ( doi )