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Abstract 

Growing population and unregulated access to forest land have exerted 

high pressure on the land and water resources of the Upper Mara basin, 

leading to changes in land and water use patterns in the basin. This study 

considers the interactions among climate change and variability, land 

surface, hydrology, and human systems, including societal adaptations to 

changing environmental conditions.  

The Upper Mara River catchment forms the recharge area for the Mara 

River basin, a key transboundary river, and one of the permanent rivers 

feeding into Lake Victoria. The area is drained by two main rivers: the 

Amala and the Nyangores which merge at the middle reaches (1°2'15.2"S, 

35°14'31.7"E) to form the Mara River. The study aims to assess how 

changes in climate, land use and management practices have impacted on 

the water resources of the Upper Mara basin.  

The objectives of the study are: to assess the trends in changes in the 

climatic, land cover/land use, water quality and vegetation variables; to 

build and evaluate a hydrological model capable of simulating the 

response of watershed processes to changing climatic, land use, and 

management conditions under past, present conditions; and predict 

potential impacts of the changes in climate, land use and management 

practices, and contribute in advising policy in the formulation and 

development of strategies aimed at the sustainable management of water 

resources in the Mara River Basin.  

Historical data including data for rainfall, temperature and streamflow; 

field collected data; and satellite remote sensing data is used in the study. 

The Soil and Water Assessment Tool (SWAT) is used to evaluate the 

impacts of the changes in climatic, landcover and management inputs. 

Changes are made to both the model crop database and management files 

to make it adaptable to tropical conditions. The model is calibrated using 

streamflow data, and validated using both streamflow and distributed 

data. The performance of the model is statistically assessed to be “good” 

and “satisfactory” for the percent bias and Nash Sutcliffe respectively. The 

water balance fractions are within typical hydrological ranges and 

significantly similar to the observed fractions. Distributed validation using 

remote sensed leaf area index (RS_LAI), shows that the timing of the 

start of the growing season match well with SWAT simulated LAI. 
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Trend analysis is performed using the Mann-Kendall and Sen Statistics for 

rainfall and temperature variables. Rainfall data (1962-2009) from six 

stations located within the basin while temperature data (1992-2009) 

from three meteorological stations surrounding the study area is used. 

There is a general decreasing trend of upto 18mm/yr in the annual 

rainfall. 50% of the stations analyzed experienced significant decline (at α 

= 0.1) in annual Rainfall in the last 50 yrs. While the minimum 

temperatures have significantly increased by between 0.02 and 0.04 
0C/yr; there has been an upward but insignificant change in the maximum 

temperatures. Changes in the vegetation indices are analyzed using the 

normalized difference vegetation index (NDVI) data (1998-2010) from the 

Satellite Pour l’Observation de la Terre- VEGETATION (SPOT_VGT) sensor. 

All indices including, the integral NDVI, the vegetation condition index 

(VCI), the standardized vegetation index (SVI) and the vegetation 

productivity index (VPI) have a better than average vegetation health for 

different vegetation types showing an increasing trend in vegetation 

biomass.  

Land cover change analysis using post classification methods, show that 

between 1976 and 2006, agriculture coverage increased by 109%, while 

forest, shrubs, and grassland decreased by 31%, 34%, and 4% 

respectively. Land change evolution using the three date 

(1986,1995,2006) NDVI-RGB method show that the highest loss in 

vegetation biomass was experienced in the 1990s. The biggest loser was 

the encroachment  and degradation of the Mau forest areas. 

Future management scenarios simulating the application of fertilizer at a 

typical rate of 100kg/Ha lead to significant increase in crop yields for all 

but two of the soil classes. The two soil classes have no marked 

improvement in yields even with high fertilizer application. The re-

afforestation scenario to pre-1976 forest coverage results in reduction of 

streamflow and increase in evapotranspiration. In the irrigation scenario 

crop yields increase two to three fold even without fertilizer application. 

The replacement of the lowland cereal crops with grain sorghum led to 

higher water yields in the stream. Sorghum yield were comparable to the 

maize yields and the water stress days were halved in the sorghum 

scenario. 

Sensitivity analysis of the climatic variables with SWAT indicate that on 

one hand, higher watershed evapotranspiration (ET) will result from 

higher rainfall and temperatures, with higher CO2 leading to decline in ET. 
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On the other hand higher rainfall and higher CO2 will also lead to high 

water yields, but higher temperature will lead to a drop in the water yield. 

The Long Ashton Research Station Weather Generator (LARS-WG) is used 

in the weather perturbations, and the construction of the GCM climate 

change scenarios. The projection of climate change with ensemble mean 

for 16 GCMs in the 2020s and 2050s show increase precipitation amounts 

compared to 1990s baseline. The 2050s will have higher projected rainfall 

than 2020s, while higher rainfall is projected under B1 than A1B IPCC 

climate scenarios. As a consequence, higher streamflow is expected for all 

future time periods. The return level at the outlet of the basin for a 

presumed 30, 50 and 100 yr flood was determined to increase by 11% in 

the 2020s to 19% in the 2050s. Bias corrected GCM outputs however 

indicate marginal increases in the different return levels (3% for 100yr 

flood) but more severe extreme low flows. 

Whereas the historical trends depict a tendency towards a drier 

watershed, the uncorrected climate models predict a wetter future. This 

inconsistencies present a challenge in planning for future management of 

water resources at the Mara basin. Bias corrected climate projections 

indicate a trend which was more constistent with historical records. As an 

adaptation measure, the conservation of the flood water even at current 

flow levels can go a long way in alleviating water stress in the dry months. 

In the short term the adoption of better farm management practices 

including appropriate use of fertilizers and introduction of drought tolerant 

grain crops like sorghum should be encouraged. 
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1.  General introduction  

1.1 Introduction 

Multiple stresses and the low adaptive capacity has led to high 

vulnerability of the African content to changes and variability in climate. 

(Boko et al., 2007). Over reliance of rainfed agriculture compounded by 

the extreme levels of poverty and disasters have all contributed to the 

scenario of Africa’s high vulnerability. Due to climate change, agricultural 

losses are shown to be possibly severe for several areas, where yields 

from rain-fed agriculture could be reduced by up to 50% by the year 

2020. Some assessments by the Intergovernmental Panel on Climate 

Change (IPCC) project that, by 2020 between 75 and 250 million people 

will be exposed to increased water stress due to climate change (Parry et 

al., 2007).  

According to the IPCC, the arid and semi-arid areas are most susceptible 

to changes in climate which could worsen the water scarcity problem in 

these areas. Climate change influences the timing and magnitude of runoff 

and sediment yield. Changes in variability of flows and pollutant loading 

that are induced by climate change have important implications on water 

supplies, water quality, and aquatic ecosystems of a Watershed 

(Prathumratana et al., 2008). Lack of access to safe water, arising from 

multiple factors, is a key vulnerability in many parts of Africa. 

In Kenya, “Climate models predict an increase in climate variability, 

indicating that Kenya’s vulnerability is set to get worse. Agriculture, 

tourism, health, energy, transport and infrastructure, water supply and 

sanitation are the sectors expected to be those most severely affected by 

climate change in the long term” (Downing et al., 2008). Growing 

population exerts high pressure on the limited land and water resources in 

the Mara basin, leading to changes in land and water use patterns in the 

basin. Vörösmarty, et al., 2000 noted that ,"to secure a more complete 

picture of future water vulnerabilities, it will be necessary to consider 

interactions among climate change and variability, land surface and 

groundwater hydrology, water engineering, and human systems, including 

societal adaptations to water scarcity".  

According to Urama et al., 2008, "the current lack of any explicit policy 

instruments that take a holistic approach for the whole of the Mara River 

ecosystem highlights the urgent need for the integration of the social, 

economic and ecological aspects of water management in a single, trans-

boundary resource management policy". Urama and Davidson (2008) 

noted that “there is still much work ahead for a sustainable integrated 

http://www.sciencedirect.com/science/article/pii/S0160412007002024
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trans-boundary river management policy to be developed for the Mara 

River”.  

Several strategic documents have been adopted by the Lake Victoria Basin 

Commission (LVBC) of the East African Community (EAC) within its 

activities to promote regional coordination in trans-boundary water 

resources management (Onyando et al., 2013). These include: the 

Environment Flow Assessment (EFA) for the Mara River (LVBC & WWF-

ESARPO, 2010a), the Biodiversity Strategy and Action Plan (BSAP, LVBC & 

WWF-ESARPO, 2010b), the Strategic Environment Assessment (SEA) for 

the Mara River Basin (LVBC et al., 2012), and Payment for Ecosystem 

Service (PES, Bhat et al., 2009) policy guide for the transboundary Mara 

River Basin.  

The Trans-boundary Water Resources Users Forum (TWRUF) was created 

in an attempt to promote regional policies on trans-boundary natural 

resources management within the EAC (Onyando et al., 2013). Successful 

integrated water resources management (IWRM) implementation requires 

good water governance supported by institutions that can administer WRM 

effectively at all levels. The water sector reforms in Kenya and Tanzania 

stipulate the formation of water institutions at all levels. Examples include 

Water Resources Management Authority (WRMA) and Water resources 

Users Associations (WRUAs) in Kenya, the Lake Victoria Basin Water Office 

(LVBWO) and Water Users Association (WUAs) in Tanzania. The water 

sector reforms together with successful lobbying of key stakeholders to 

endorse grassroot water resource management institutions 

(WRUAs/WUAs) through memoranda of understanding (MoUs) are key 

steps towards building their legal, technical and financial sustainability in 

water governance (Onyando et al., 2013). 

Despite these developments, there are knowledge and institutional gaps 

that still need to be addressed specific to the Upper Mara and in general 

for the entire Mara basin. For example, literature searches reveal that 

there is no coordinated water quality monitoring scheme for the Mara 

River Basin. Gann (2006), while addressing the data scarcity problem in 

the study area characterized data as "non-existence, non accessible, 

limited accessible, with gaps, not very accurate, and in different formats 

and no standards". Extensive efforts have been made in this study to 

improve on the usability of the available data sets for modeling purposes 

and explore the use of alternative data sources for both trend analysis and 

model validation. 
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1.2 Justification and significance of the research 

In the absence of good data (quantity and quality), conventional methods 

of studying an area using only standard observed hydro-meteorological 

data may not yield the desired results. This study therefore explores the 

use of modeling tools, field studies and satellite remote sensed data to 

study the hydrological processes of the Upper Mara basin. The findings of 

this research will make a contribution towards the sustainable 

management of the Mara river basin by providing additional information, 

insights and perspective. The Kenya strategic development blueprint 

“Vision 2030”, identifies several flagship projects in the Water and 

Sanitation sector (GOK, 2007). Amongst these projects the rehabilitation 

the hydro-metrological network, the construction of multi-purpose dams 

with storage capacity of 2.4 billion m3 along rivers Nzoia and Nyando, and 

the construction of medium-sized multi-purpose dams with a total 

capacity of 2 billion m3 to supply water for domestic, livestock and 

irrigation use in the arid and semi-arid lands (ASAL) areas have a direct 

bearing on the Upper Mara region and the Lake Victoria basin as a whole.  

Planned research questions will seek to investigate the impacts of some of 

these projects on the water resources and economic productivity in the 

study area. In addition to the scientific output the study will strive to 

make its contributions towards the realization of the development of a 

holistic management strategy and policy for the Mara River basin.  

1.3 Objectives and research questions 

The study aims specifically to: 

1. Assess the trends in the changes in climate, land cover/land 

use and vegetation variables in the Mara River Basin 

2. Adapt a process based hydrological model to evaluate and 

predict the response of hydrological processes to changing 

climatic, land use and water management conditions under 

past, present and future conditions 

3. Assess the impacts of climate, land use and water 

management changes on the sustainable management of 

water resources in the Mara River basin. 

In order to meet the set objectives, several research questions were 

formulated to guide in attaining the expected outputs of the PhD study. 

The study is therefore based on the following research questions: 

1. Has there been a significant variation in monthly, seasonal and 

annual precipitation amounts and frequency in the last 50 years?  
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2. Have the minimum and maximum temperatures changed 

significantly over the last 20 years?. 

3. Has the health of the vegetation significantly changed over 12 year 

period?  

4. Is the SWAT hydrological model adequately suited to simulate 

hydrological processes in tropical African catchments like the Upper 

Mara basin?. 

5. Has the conversion of land from one land cover and use to another 

affected the local water quality, hydrological and climate regimes?. 

6. How are projected changes in climate likely to affect the 

hydrological regime of the Upper Mara river basin?. 

7. What are the potential adaptation strategies towards the established 

change, for both the preservation of the ecosystem and for the 

improvement of livelihoods?. 

8. Which best management practices are effective for the Mara basin 

considering the projected global changes?. 

The PhD is structured into five building blocks:  

 the introduction part;  

 the data analysis part; 

 the hydrological modeling part;  

 the scenarios management part, and 

 Conclusions 

While each block addresses a specific objective, the components build 

stepwise on each other to produce a coherently flowing storyline, 

conclusive at each stage and hence minimizing redundancy and 

repetitiveness. 

1.4 Overview of the structure of the thesis 

There are twelve chapters in the five building blocks. The first block 

consists of an introduction and a review of the relevant literature 

pertaining to climate and land use change as well as a review of 

hydrological models for application in tropical climates. Also, previous 

applications of the Soil and Water Assessment Tool (SWAT) simulator –the 

hydrologic simulator that will be used in our study- in the lake region and 

the larger Nile basin are reviewed.  

The second part describes the study area and the historical trends that 

have characterized the physical, social and economic environments of the 

study area. The data sections look at the available quality and quantity of 
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data and explore the use of alternative sources of data to compensate for 

the missing data. Next, the interpretative, processing and manipulation 

procedures that were applied in order to make the data usable for the 

various applications in this study are discussed.  

The hydrological modeling part involves the set-up of the SWAT model, 

the adaptation of the model to suit tropical African catchments and the 

calibration and validation of the model.  

Once the model was deemed satisfactory and adequate for application in 

the watershed, future climate, water management and land cover change 

scenarios were used on the model to assess their impact on the river flow 

and the hydrology of the Upper Mara river basin. The results of the 

modeling of future scenarios are used to discuss potential strategies which 

might inform policy on the Mara river water resources management.  

The concluding chapter looks at the key findings from the study, the 

shortcomings and challenges experienced in trying to achieve the 

objectives. The limitations of both the adapted model and the study 

findings are also discusssed. The study offers some recommendations 

going forward for better modeling results in similar catchments and data 

situation. 
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2. Climate and land use change studies 

2.1 Climate change 

There are differing definitions of the term climate change. On the one 

hand, the IPCC, 2001 defines climate as "a statistically significant 

variation in either the mean state of the climate or in its variability, 

persisting for an extended period, typically decades or longer". Climate 

change may be due to natural internal processes or external forcings, or 

to persistent anthropogenic changes in the composition of the atmosphere 

or in land use. The United Nations Framework Convention on Climate 

Change (UNFCCC), on the other hand, defines climate change as “a 

change of climate which is attributed directly or indirectly to human 

activity that alters the composition of the global atmosphere and which is 

in addition to natural climate variability observed over comparable time 

periods”. The UNFCCC, therefore, uses the term Climate Change to 

indicate only those changes brought about by anthropogenic causes.  

There is a growing consensus among scientific and political leaders that 

climate change is the biggest environmental threat modern society faces. 

According to the scientific opinion, there has been a sustained increase in 

global average temperatures that began to have an effect on the earth’s 

climate. According to the IPCC, 2001, the average temperature of the 

earth's surface has risen by 0.6°C since the late 1800s. It is expected to 

increase by another 1.4 to 5.8°C by the year 2100. Some investigators 

have come to the conclusion that even if the minimum predicted increase 

takes place, it will be larger than any century-long trend in the last 10,000 

years (IPCC, 2001). The growing concentration of greenhouse gases 

causes a gradual rise in temperature, and for many areas in the world, 

impacts on precipitation (rain and snow) patterns, and on the frequency of 

extreme events, such as extreme temperature, rain storms, droughts, and 

consequently also on the risk of flooding and low flow effects (IPCC, 

2001). The average sea level rose by 10 to 20 cm during the 20th century 

(Wood et al., 2004), and an additional increase of 9 to 88 cm is expected 

by the year 2100 (IPCC, 2007). 

According to IPCC (2007), the fourth assessment report (AR4) found that 

"warming of the climate system is unequivocal based on an increasing 

body of evidence showing discernible physically consistent changes. These 

include: increases in global average surface air temperature; atmospheric 

temperatures above the surface, surface and sub-surface ocean water 

temperature; widespread melting of snow; decreases in Arctic sea-ice 

extent and thickness; decreases in glacier and small ice cap extent and 

mass; and rising global mean sea level. The observed surface warming at 
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global and continental scales is also consistent with reduced duration of 

freeze seasons; increased heat waves; increased atmospheric water vapor 

content and heavier precipitation events; changes in patterns of 

precipitation; increased drought; increases in intensity of hurricane 

activity, and changes in atmospheric winds". These changes will translate 

into changes in the hydrological cycle which will show different regimes 

totally depending on the climate behaviour.  

The most comprehensive way to infer future climatic change associated 

with the perturbation of atmospheric composition is by means of three-

dimensional General Circulation Models (GCM) (Cess et al., 1990). The 

GCMs have been developed to simulate the present climate and have been 

used to predict future climatic change (Xu, 1999). The GCM are restricted 

in their usefulness for many subgrid scale applications by their coarse 

spatial and temporal resolution (Wilby and Wigley, 1997; Lettenmaier et 

al., 1999, Wood et al., 2002, and Wilby et al., 2000). While GCMs have a 

resolution of 150-300 km by 150-300 km, many impact models require 

information at scales of 50 km or less. Some method is therefore needed 

to estimate the smaller-scale information.  

Errors in the parameterizations of both GCMs and hydrological models 

affecting both the temporal and spatial dimensions occur on the scale(s) 

at which climate and terrestrial impact models interface. These errors are 

a key source of uncertainties and have important implications for the 

credence of impact studies derived by the output of models of climate 

change, especially due to the fact that research into potential human-

induced modifications to hydrological and ecological cycles is assuming 

increasing significance (Montanari, 2007). To address this challenges, 

tools for generating the high-resolution meteorological inputs required for 

modeling ecohydrological processes are needed.  

Downscaling approaches can be used to relate large-scale atmospheric 

predictor variables to local or station-scale meteorological series. 

"Downscaling is the process of deriving finer resolution information from 

larger scale weather and climate model output for use in hydrologic 

modeling and water resources management applications" (Georgakakos et 

al., 2006). Downscaling methods are classified as either statistical or 

dynamical. There are three categories of Statistical downscaling (SD) 

techniques: transfer functions, weather typings and weather generators 

(Chen et al., 2011). In the transfer function approach, statistical linear or 

nonlinear relationships between observed local climatic variables 

(predictands) and large-scale GCM outputs (predictors) are established. 
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They are relatively easy to apply, but their main drawback is the probable 

lack of a stable relationship between predictors and predictands.  

Weather typing schemes involve grouping local meteorological variables in 

relation to different classes of atmospheric circulation. The main 

advantage is that local variables are closely linked to global circulation. 

However, its reliability depends on a stationary relationship between 

large-scale circulation and local climate. Especially for precipitation, there 

is frequently no strong correlation between daily precipitation and large-

scale circulation. The weather generator (WG) method is based on the 

perturbation of it's parameters according to the changes projected by 

climate models. The appealing property is its ability to rapidly produce 

sets of climate scenarios for studying the impacts of rare climate events 

and investigating natural variability. 

Dynamical downscaling methods involve dynamical models of the 

atmosphere nested within the grids of the large scale forecast models. 

One way nested limited area weather or regional climate models are 

implemented to produce finer resolution gridded information for 

applications, with coarse resolution models providing initial and lateral 

boundary conditions. Murphy (1998), in his study of downscaling 

estimates for 976 European stations from June 1983 to February 1994, 

concluded that the dynamical and statistical methods perform with similar 

skill in downscaling observed monthly mean anomalies. According to Xu, 

1999, recent higher-resolution regional climate models provide better 

agreement with observations on synoptic and regional scales and on 

monthly, seasonal and inter annual timescales. Examples include 

statistical downscaling approaches that link GCMs to meteorological and 

hydrologic models resolved at finer scales.  

2.2 Land use and Land cover changes 

Although the terms “Land use” and “Land cover” are often used 

interchangeably, each term has a very specific meaning with some 

fundamental differences. Landcover on the one hand denotes the 

biophysical cover over the surface including such features as vegetation, 

urban infrastructure, water, bare soil or other. It does not describe the 

use of land, which may be different for lands with the same cover type. 

On the other hand, land use refers to the purpose the land serves, and 

describes human influence of the land, or immediate actions modifying or 

converting land cover (De Sherbinin, 2002, Ellis, 2009). Land cover 

therefore, is the "physical state of the earth's surface and immediate 

subsurface, while land use involves both the manner in which the 
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biophysical attributes of the land are manipulated and the intent 

underlying that manipulation" (Turner et al., 1995).  

Distinction may also be made between changes in land cover and changes 

in land use. Changes in land cover leads to change in cover type (forest to 

pasture, cropland to woodland, agriculture to urban), and change in cover 

characteristics (structure, field size, degradation, productivity). Changes in 

land use mean change in land management practices or ownership, 

intensification, mechanization, irrigation, abandonment, cropping system. 

According to Ellis (2010), land-use and land-cover change (LULCC) is a 

general term for the human modification of the earth's terrestrial surface. 

LULCC modifies surface albedo and thus surface-atmospheric energy 

exchanges, which have an impact on the regional climate. Since terrestrial 

ecosystems are sources and sinks of carbon, any change in land-

use/cover impact the global climate via the carbon cycle. The contribution 

of local evapotranspiration to the water cycle (precipitation recycling) as a 

function of landcover also impacts the climate at a local to regional scale 

(Lambin et al., 2003). According to Lambin et al. (2003), LULCC is driven 

by a combination of fundamental high-level causes: a) resource scarcity 

leading to an increase in the pressure of production on resources, b) 

changing opportunities created by markets, c) outside policy intervention, 

d) loss of adaptive capacity and increased vulnerability, and e) changes in 

social organization, in resource access, and in attitudes.  

Changes in the Land-use and land-cover have serious and far reaching 

consequences including altering the earth system functioning. According 

to Lambin et al., 2001, these changes directly impact biotic diversity 

worldwide, contribute to local and regional climate change as well as to 

global climate warming, are the primary source of soil degradation, and by 

altering ecosystem services affect the ability of biological systems to 

support human needs. Estimates of the areal extent, spatial expression or 

likewise quantitative estimate of the impact of land change more or less 

converge, while estimates driven by notions are larger and dramatic 

(Lambin and Geist, 2006). In order to assist in analysis and understanding 

of  land use dynamics, several types of Land use change models have 

been developed. Land use change does not occur evenly, neither 

temporarily nor spatial. Estimates over the last 300 years approximate 

losses of 10-30% of forests and woodlands, 1% of grasslands and 

grasslands pastures, while cropland areas increased by 466% (Richard, 

1990, Kees, 2001). 

The best area-efficient method for studying land cover and land cover 

changes is remote sensing. The combination of remote sensing 
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information with other available enabling technologies including the global 

positioning system (GPS) and the geographic information system (GIS), 

maybe used as relatively inexpensive tools to assist in planning and 

decision making (Franklin et al., 2001, Rogan and Chen, 2004). Advances 

in remote sensing data acquisition and interpretation techniques has 

contributed to the knowledge base on land cover changes. Freely available 

global earth observation products have provided ways to achieve rapid 

assessment and monitoring of land change hotspots at the landscape 

scale.  

Lepers et al. (2005) synthesized 49 data sets available in early 2003 at 

the national and global scale to identify locations of rapid land-cover 

change. Some of these data sets identified hotspots of land-cover change, 

and others provided estimates of rates of change. For the estimates of 

rates of change areas, the highest change rates were identified by 

applying a threshold percentile value. Threshold values were determined 

for each of these data sets to identify the areas having a high percentile in 

terms of rates of change. The study established that deforestation is the 

most measured process of land-cover change at a regional scale. During 

the 1990s, forest-cover changes were much more frequent in the tropics 

than in the other parts of the world.  

The main areas of recent cropland increase are spread across all 

continents. Some areas of decrease in cropland extent are located in the 

other continents, except for Africa, where no decrease in cropland area 

was identified (Lepers et al., 2005). The region of the great lakes of 

eastern Africa is one of the principal locations where cropland expansion 

has taken place (Leper et al., 2005). Maitima, 2009 noted that "Land use 

changes in East Africa have transformed land cover to farmlands, grazing 

lands, human settlements and urban centers at the expense of natural 

vegetation. These changes are associated with deforestation, biodiversity 

loss and land degradation". 

The Mara River basin has also experienced considerable vegetation 

changes. For instance,according Seernel et al., 2001, the ecosystem in the 

south-eastern part of the Kenyan side of the basin (present day Narok 

south district) has passed through successive stages of transformation as 

the result of the interaction between four distinct, and probably cyclical, 

processes of change: i) change in vegetation, ii) change in climate, iii) 

tsetsefly and tick infection and iv) pastoral occupation and management. 

Land cover change analyses have been undertaken in the Mara River basin 

using diverse sources of satellite remote sense data and change analysis 
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techniques by Serneels et al. (2001). Mati et al. (2008), and Mundia et al. 

(2009).  

Table 2-1 summarizes the temporal coverage, the datasets and the key 

findings of these landcover change studies. In all these studies as is 

consistent with others in the region, the area under cropland has steadily 

increased at the expense of other land cover types, especially forest and 

grassland. 

Table 2-1: Previous land change analysis by different authors in the Mara river basin.  

Author(s) Period Dataset used 

Change detection 

method. Key findings 

Seernels 
1975 
to  AVHRR GAC Image differencing and  

1. 3 times more vegetation 

loss in 1985-1995 than 1975-

1985 

 et al.,  1995  MSS (29-07-1975) 
change vector Magnitude 
CVM) 2. Landcover change caused by 

2001 
 

 TM (09-01- 1985) 
 

expansion of large scale 

  
 TM (21-01- 1995) 

 
wheat cultivation 

          
Mati  

1973 
to  MSS 1973 and Post classification Agriculture increased by 50% 

et al.,  2000  TM 1986,   
 

Rangelands decreased by 27% 
2008    ETM  2000   Forest decreased by 32% 

Mundia 
1975 
to  MSS 11-02-1975,   Post classification Agriculture expansion by 12% 

 et al., 
2009 1986 TM 17-10-1986 

 

Forest decreased from 11 to 
9%  

 
  AVNIR/ALOS     

 

2.3. Conclusion 

There is overwhelming scientific evidence that the global climate is 

changing. The changes are however not even across the globe. The 

impacts of these changes in the global climate on the hydrology of a river 

catchment can only be made possible with downscaled data. The use of 

statistical downscaling tools including weather generators will provide the 

much needed climate projection data  

Land use change has been greatly driven by the need to produce more for 

the ever increasing population and changing lifestyle needs. Recent 

development in social and environmental awareness in the developed 

nations has seen a reversal of this trend. However in the developing 

countries and especially those in Africa and Asia, natural vegetation is still 

being lost to agriculture. The global trend has been repeated in the Mara 
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River basin with significant area under forest and grassland being 

converted to subsistence and commercial farming. Natural wildlife habitats 

have also been taken up by herding communities restricting the wildlife 

movement to the nature reserves only. There is a need to further explore 

on the changes taking place in the Mau water towers, the source of the 

Mara River basin which has been addressed only in limited previous 

studies. 
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3.  SWAT hydrologic modeling in the larger Lake Victoria 

region 

3.1 Introduction 

The SWAT simulator (Arnold et al., 1998) has been used extensively in 

Africa for a variety of applications. Van Griensven et al. (2011) reviewed 

36 journal papers touching on SWAT in Africa, 60% of these were from 

the Nile basin region, with very little work in West Africa region. The 

applications of SWAT on the African continent include: the model 

performance analysis (calibration, validation, uncertainty analysis and 

SWAT model development), land management impacts, erosion and 

sediment yield analysis, water quality analysis and the assessment of the 

impacts of climate change and land use / land cover change (LULCC) 

impacts on the hydrology and the water balance. Other crosscutting 

applications include the assessment of economic productivity tradeoffs. 

Ndomba and Birhanu (2008) reviewed the complexity and challenges of 

SWAT modelling in Eastern Africa and found that SWAT satisfactorily 

simulates river flows in study catchments with limited data availability and 

where global spatial data are appropriate. 

3.2 Hydrologic modelling 

Jayakrishnan et al. (2005) modelled the hydrology of the 3050km2 Sondu 

river basin with limited data on land use, soil and elevation, with the aim 

of assessing the impacts of land use changes as a result of changes of 

intensive dairy farming. The model performance with a Nash-Sutcliffe 

efficiency (NSE) of <0.1 was attributed to inadequate rainfall and other 

model input data. They concluded that "use of one rain gauge station 

situated at the upper end of the catchment was not representative of the 

basin".  

Mulungu and Munishi (2007) calibrated a SWAT model for the 11000 km2 

Simiyu catchment using improved spatial inputs for land use and soil. The 

study used a land use map developed from Landsat thematic mapper (TM) 

images. Local soil and geological maps were used to augment the SOTER 

1:2000000 global databases. Although the resulting water yield and the 

surface runoff fraction of the water balance were within ±1% of the 

observed flow, the base flow fraction was off target by 50%. According to 

the authors, improvements of the spatial resolution of the soil and land 

use inputs did little to improve the model performance. The results 

indicate that the SWAT model maybe more sensitive to climatic inputs that 

other spatial inputs.  
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In modeling the hydrology of the Mitano river basin in Uganda, Kingston 

and Taylor (2010) used the gridded 0.5° CRUTS3.0 database as the 

climatic input. They found a good agreement between observed and 

simulated monthly means and flow duration curves, though the model 

performance after calibration was poor with an NSE of -0.09. The poor 

performance of the model was attributed to "model-observation 

divergences with the calibration period simply too large to be resolved by 

an autocalibration routine". The gridded 0.5° CRUTS3.0 database used as 

model input for the hydrological modeling was referred to by the authors 

as "of questionable accuracy over the Mitano basin". The use of global 

coarse resolution databases for the hydrological modeling of catchments in 

the region has also been questioned by other authors including Jacobs and 

Srinivasan (2005) for the Upper Tana basin in Kenya and Haguma (2007) 

for the Kagera basin.  

3.3 Modeling of land use and land cover changes 

Githui et al. (2009a) analysed the impacts of land cover change on the 

runoff for the Nzoia basin in Kenya. The emphasis was on “reforestation 

and sustainable agriculture” as a best-case scenario, and “deforestation 

and expansion of unsustainable agriculture” as a worst-case scenario. The 

worst case scenario yielded more runoff, baseflow and streamflow, while 

the best case yielded reduced amounts of the same variables. The 

increase in streamflow was attributed to decreased evapotransipration and 

increased surface runoff. They concluded that the increase in runoff potent 

a higher likelihood of flood-like events. 

Mango et al. (2011) used three hypothetical scenarios: partial 

deforestation, complete deforestation to grassland and complete 

deforestation to agriculture, to analyse the sensitivity of the model 

outputs to land use change for the Nyangores (700km2), a tributary of the 

Mara river basin in Kenya. Simulations under all land use change 

scenarios indicated a reduced baseflow and average flow.  

3.4 Modeling of climate change impacts 

Kingston and Taylor (2010) explored the impacts of projected climate 

changes on the water resources of the Upper Nile basin and on the 2098 

km2 Matano basin in Uganda. The assessment included the evaluation of 

the range of uncertainty due to climate sensitivity, choice of General 

Circulation Models (GCMs) and hydrological model parameterization. 

Results of the uncertainty analysis indicated that model parameterization 

generally imparts little uncertainty to the climate change projections 

compared to the GCM structure. The authors found an overwhelming 
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dependence upon the GCM used for climate projections and showed that 

single-GCM evaluations of climate change impacts are likely to be 

completely inadequate and potentially misleading as a basis for the 

analysis of climate change impacts on freshwater resources. On the 

hydrology, the study found that the proportion of precipitation that 

contributes to the Mitano river discharge via groundwater will decrease as 

a result of increasing temperature. The increasing evapotranspiration due 

to increasing global temperatures limits the amount of water penetrating 

the soil profile and replenishing the shallow groundwater store during the 

wet season rather than reduced precipitation.  

Githui et al. (2009b) used monthly change fields of rainfall and 

temperature instead of mean annual perturbations to the historical time 

series or hypothetical scenarios for the 12700 km2 Nzoia basin in Kenya. 

Scenarios of future climate were obtained by adjusting the baseline 

observations by the difference for temperature or percentage change for 

rainfall between period-averaged results for the GCM experiments (30-

year period) and the simulated baseline period (1981–2000). The A2 

scenario gave more increases in rainfall than B2 in each time period. 

According to these scenarios, more rainfall will be experienced in the 

2050s than in the 2020s, the seasonality of rainfall will still be maintained 

even though the total amounts vary. All the scenarios indicated that 

temperature would increase in this region, with the 2050s experiencing 

much higher increases than the 2020s. The models were consistent with 

respect to changes in both runoff and baseflow, with average streamflow 

observed to increase with rainfall increase, relatively higher amounts were 

observed in the 2050s than in 2020s. All scenarios indicated higher 

probabilities to exceed the bankfull discharge than the observed time 

series. The A2 scenario projected a higher number of flood-like events 

than B2. 

Mango et al. (2011) developed regional temperature and precipitation 

projections from a set of 21 global models in the MMD for the A1B 

scenario for East Africa. The hydrological model was run for minimum, 

median and maximum change scenarios. Notable is the nonlinear 

response, with large stream flow changes occasioned by only small 

changes in precipitation. A combined decrease in precipitation and an 

increase in temperature led to increased evapotranspiration and reduced 

runoff. 

Dessu and Melesse (2012) evaluated sixteen GCMs to assess the impact 

and uncertainty of climate change on the hydrology of the Mara River 

basin and further selected five of them for the assessment of future 
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climate scenarios in the basin. On the basis of the observed seasonal 

variation, the raw GCMs outputs showed inferior skill to capture the 

bimodal tropical rainfall pattern. The average flow hydrograph of five 

selected GCMs showed an increase in the flow volume of the Mara River 

both in the 2050s and the 2080s. Compared with the control period, the 

hydrologic regime may experience a tremendous pressure due to extreme 

high and low flows where the wet seasons become wetter and the dry 

seasons might probably become drier. 

Whereas Githui et al. (2009) argues that stream flow response was not 

sensitive to changes in temperature, Kingston and Taylor (2010) and 

Mango et al. (2011) argue that increases in temperature will lead to an 

increase in evaporation and hence a change in the water balance, 

reducing the stream flow. It should be noted that, both Kingston and 

Taylor (2010) and Mango et al., (2011) used satellite derived climatic data 

as their input into the hydrological model and baseline, while Githui et al. 

(2009) built their model on observed climatic data. The conflicting results 

imply high sensitivity of hydrological processes to climate variable 

characteristics and make a case for improving the quality of the observed 

rainfall data rather than using satellite rainfall. The gridded satelite rainfall 

data is based on global databases on a relatively coarse resolution. 

Another difference between the two approaches is the size of the 

catchments under consideration. Whereas all hydrological processes may 

not have been closed in the small sized catchments  of the Mitano and 

Nyangores (<2100 km2), the large sized catchment (Nzoia >12000 km2) 

enables the completion and closing of all hydrological processes. 

3.5 Cross-cutting applications 

Swallow et al. (2009) used the SWAT model to estimate sediment yields 

for two basins draining into the Lake Victoria from the Mau region in 

Kenya. Each sub-basin was then identified as belonging to one of the four 

categories. The authors noted "the inability of the SWAT model to consider 

gully in the Modified Unified Soil Loss Equation as a potential cause of 

underestimation of sediment yield especially for soil prone to gully 

erosion". 

3.6 Conclusion 

The use of hydrological models to assess the impacts of climate may be 

impaired by the choice of input data. Ecosystem respond differently to the 

commonly use climatic variables in climate change studies. There is no 

agreement in the reponse of hydrological proceesses with observed and 

gridded data. The SWAT model is more sensitive to climate inputs than 
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other spatial inputs. Also the sensitivity of the model to the temperature 

and rainfall variations due to climate change need to be established in 

order to make sense of results derived from climate change studies. The 

size of the watershed also seems to play a role in the closing of water 

balance within the watershed.  
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4. The study area 

4.1 Description of the study area 

The Upper Mara basin is located 250 km South West of Nairobi, covers an 

area of approximately 2900 km2, and lies between  34°59′E and 35°52′E 

and 0°22′S and 1°13′S (Fig 4-1). The study area falls within the three 

counties of Nakuru, Bomet and Narok in the Rift Valley province. There 

are 22 divisions and 55 administrative locations in the study area (KNBS, 

2009)  

4.1.1 Physiography of the region 

The Upper Mara River basin forms the recharge area for the Mara River 

basin, a key transboundary river between Kenya and Tanzania, and one of 

the permanent rivers feeding into Lake Victoria. The area is drained by 

two main rivers: the Amala and the Nyangores River which merge at the 

midsection to form the Mara River. The Nyangores River is the longer of 

the two tributaries, and has two main branches: the main Nyangores 

branch originates from the Mau escarpment, while the Ngetunyek branch 

originates from the Mau Forest. The Amala River has its origin in the 

Naipuipui swamp at the top of the escarpments.  

According to Krhoda (2001), in this upper part of the basin the stream 

network are parallel pinnate, linear with numerous first order streams 

(106 and 102 for Nyangores and Amala respectively based on the 

Strahler’s method of stream ordering), reflecting long parallel ridges. The 

streams trend in a northeast to southwest direction following the general 

slope of lava flow and reflect the youthful nature of the landscape. Parallel 

pinnate river networks are found mainly on recently formed volcanic 

areas. The short tributaries drain the flanks of the ridges while the long 

segments drain the troughs between (Krhoda, 2001).  

The study area constitutes only 25% of the entire Mara River basin but is 

responsible for almost all the recharge and permanent flow into the 

14000km2 river basin which traverses both Kenya and Tanzania. It is 

delimited by the Mau escarpments to the north, and the protected 

reserves of the Maasai Mara/Serengeti ecosystem to the south. The area 

is characterized by bimodal rainfall ranging from 700 mm in the lower 

areas to 1800 mm in the mid and upper sections. The elevation changes 

from the flat tropical savanna plains at 1500 m above sea level to the high 

montane Mau escarpments at 3000m. 
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Figure 4-1: Study area as part of the larger transboundary Mara River basin. 
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The main soil types are loams and clay loams (Andosols). The area is 

underlain by undifferentiated pyroclastic materials consisting mainly of 

poorly consolidated volcanic tuffs and volcanic ashes, which are 

widespread in the area and are frequently altered into clay in the upper 

Mau area. The most southern part of the area consists of a plain formed 

by deposition of subaerial volcanic ashes and later slightly dissected by 

shallow water courses (Mbuvi and Njeru, 1977).  

According to Krhoda (2001), the local geology, topography and rainfall 

determine the types and distribution of soils for the Mara River Basin. The 

soils fit into three broad categories, namely, the mountains, plains and 

swamps. The mountains have rich volcanic soils suitable for intensive 

agricultural production including wheat, barley and zero grazing. The soils 

include the shallow but well-drained dark-brown volcanic soils (ando-

calcaric and eutric Regosols) found on mountains and escarpments. On 

the hills and minor escarpments, shallow and excessively drained dark-

reddish brown soils (Lithosols, mollic Andosols) are found. These soils are 

prone to sheet erosion and mass wasting processes and have never been 

cultivated before. The imperfectly drained grey-brown to dark-brown soils 

are found on the plateaus and high level plains. These plateaux and high 

plains are imperfectly drained and conducive for grass and sorghum 

(Krhoda (2001) The deep, dark-greyish soils (verto-eutric and Planosols) 

are mainly found on the Kapkimolwa plains, Shartuka and Maasai Mara 

National Reserve. The soils found in the study fall under "very suitable" or 

"suitable" classes in the suitability for agriculture nomenclature developed 

by Jaetzold et al. (2006). 

4.1.2 Environmental status (water quality) 

A number of water quality studies have been undertaken in the Mara River 

basin under the auspices of various actors including the Ministry of Water 

(Kenya), the World Wildlife Fund (WWF), the Lake Victoria Environment 

Management Program (LVEMP), the Nile Equatorial Lakes Subsidiary 

Action Plan (NELSAP) and the Global Water for Sustainability (GLOWS). A 

water quality assessment by GLOWS examined the quality of surface 

waters in the basin during May-2005, May-2006, and June-2007 with the 

goal of identifying the water quality issues and informing future 

monitoring and management actions (GLOWS, 2007). The assessment 

noted that "there is little systematic monitoring of the water quality in the 

basin". GLOWS also conducted three surveys of water quality at sampling 

stations spread across the basin from its source on the Mau Escarpment to 

its outlet at Lake Victoria. 
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Figure 4-2: Soil map of the study area with the revised FAO 1988 naming code (adapted 
from Batjes and Gicheru, 2004) 

The study concluded that, although no parameters were detected in 

excess of recognized standards, high nutrient loads and detectable 

amounts of mercury, pesticides, and PCBs may be impairing water quality. 

In recent times, courtesy of an initiative by the Lake Victoria Basin 

Commision (LVBC), there has been an upsurge in the number of studies 

aimed at understanding the spatial and temporal trends of the water 

quality and of the biological communities in the Mara River and its 

tributaries (Labatt et al., 2012; Gichana et al., 2012; Riungu et al., 2012; 

Mbao et al., 2012; Anyona et al., 2012 and Matano et al., 2012). Although 

some of these findings are preliminary and the studies are mainly focusing 

at the agricultural areas and are also limited in spatial coverage 

(<500km2), it is emerging that the catchment land use has a significant 

influence on the water quality and on the general functioning of the river. 

The catchment land use has a significant influence on the functional 

organization of macroinvertebrate communities with shredder diversity 

and higher abundance in forest streams (Masese et al., 2012). 

Changes in some water quality parameters between land uses, especially 

nitrate, chloride and sulphate, also influence macro-invertebrates, 

although near-stream and in-stream disturbances also play a major role 

(Minaya et al., 2013). Threats to the water quality in the river basin 



22 
 

include unsewered wastewater and riparian encroachment. Stakeholders 

and sectors of the Mara River basin include urban settlements and 

villages, subsistence and large-scale agriculture, livestock, fisheries, 

tourism, conservation areas and biodiversity, mining and industries.  

Bomet with a population of more than 80,000 inhabitants, and the other 

urban centres including Mulot, Olenguruone, Silibwet, and Sigor have 

experienced rapid population growth characterized by poor urban 

planning, informal settlements, limited amenities, and no wastewater 

treatment plants (Anyona et al., 2012). Also, there exists no formal waste 

handling system in the urban areas, resulting in the wanton dumping of 

domestic wastes along streets, in side-ditches, on river banks and into the 

river channel. Other potential sources of pollution include direct fetching of 

water in the river using donkeys and donkey drawn carts, and the direct 

use of river water by cattle. The use of the riparian areas for the intensive 

cultivation of vegetables, which requires high fertilization rates, constant 

irrigation and frequent chemical spraying, impacts negatively on the water 

quality and the ecosystem functions.  

4.1.3 Demography of the region 

According to the 2009 Population and Housing Census (KNBS, 2011), the 

population living in the three counties in which the study area lies was 

3346080 persons. The study area marks the intersection of these three 

counties and represents only a fraction of the population. The population 

density is highest amongst the subsistence farming communities of the 

Bomet county and lowest in the herding communities of the Narok county. 

Bomet Township with a population of 83,729 is the largest urban centre. 

Other major urban centres include Olenguruone, Mulot, Siongiroi, 

Chebunyo and Sigor. The area is inhabited by three main ethnic groups: 

the livestock herding Maasai  in the lowland plains of the Narok county; 

the Kalenjin in both Bomet county Nakuru county, and the Kikuyu in the 

upstream areas in Nakuru county.  

4.1.4 Socio-economics of the region 

The study area falls in the Rift Valley province, the breadbasket of Kenya 

and home to the world reknown Maasai Mara game reserve. The Mau 

forest complex with the Southwest Mau forest block forming the 

headwaters of the basin is one of the water towers in Kenya. The main 

economic activities in the study area include agricultural farming, livestock 

herding, forest products harvesting, and tourism. Hoffmann (2007), in a 

study mapping water demand and use found the largest water-use factor 

within the MRB to be large-scale irrigation with an annual water demand 

of 12,323,400 m³, followed by the human population (4,820,336 m³), 
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livestock populations (4,054,566 m³), wildlife populations (1,836,711 

m³), large-scale mining (624,807 m³), and lodges and tent camps 

(152,634 m³). 

4.1.4.1 Agriculture 

There are two main types of agriculture that take place within the basin: 

smallholder mixed farming and large-scale commercial farming. The main 

cash crops grown in the area include Tea and Pyrethrum. Tea farming is 

carried out at large scale on tea plantations with the privately owned 

Kiptagich Tea factory located in the study area. Small scale tea and 

pyrethrum farmers with farm sizes of about two to five hectares with food 

crops including maize, wheat, beans and vegetables. Maize farming is 

spread all-over the study area, vegetable farming is restricted to the 

wetter upper and mid sections of the study area while wheat is 

predominantly grown in the drier south eastern regions of the catchment.  

Due to population pressure, there is increasing encroachment of the 

forested areas. This has led to the excision of forest land for settlement. 

The agricultural expansion has also been extended to the marginal areas 

outside the Agro-Ecological zoning (AEZ). According to George and Petri, 

(2006), AEZ provides a standardized framework for characterizing 3 major 

resources relevant to agricultural production, namely the prevailing 

climate (temperature, water and solar radiation), soil (texture, drainage, 

depth and stoniness) and terrain conditions (slope, aspect, configuration, 

micro-relief). The methodology identifies the suitability of specified land 

uses under assumed levels of inputs and management conditions. A 

comparison of a suitability map developed from the AEZ maps for Kenya 

(Jaetzold et al., 2003; Jaetzold et al., 2006) with the FAO landcover map 

of  Kenya (Fig. 4-3) shows the cultivation of crops in areas previously 

defined as unsuitable for their cultivation. 

4.1.4.2 Forest 

The four forest blocks making up the Mau forest complex from the west 

are; the Western Mau, the Southwest Mau, the East Mau and the Maasai 

Mau which are significant due to their role as water catchment. Southwest 

Mau forest, being at 3000m above mean sea level, constitutes the 

uppermost part of the Mara River Basin. The Southwest Mau Forest cover 

helps infiltration and percolation of rainwater into the ground, and is 

therefore the source of Mara’s main tributaries Nyangores and Amala 

(Krhoda, 2001). According to Kinyanjui, the afromontane mixed forest the 

varies in species composition and experiences varying levels of human 

degradation. 
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Figure 4-3: Landcover classifications in the study area (Di Gregorio and Jansen, 2000) and suitability zonations for different crops 

(Jaetzold et al., 2006). 
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The forests on the windward side of Lake Victoria are mainly moist mixed 

forests dominated by Tabernamontana – Allophylus – Drypetes forest 

formations while the Eastern Mau is dominated by a dry upland conifer 

forest dominated by Juniperus procera (Hochst.ex Endl.) and Podocarpus 

latifolius (Thunb. Mirb). Primary colonizers like Neoboutonia macrocalyx 

(Pax), Macaranga kilimandischarica (Pax) and Dombeya torrida (J.F. 

Gmel.) are characteristic for degraded forests (Kinyanjui, 2010). The 

forest provides honey, fuelwood, medicinal herbs, forest employment and 

forest farming. The greatest threat of the forest is both legal and illegal 

excisions and over-exploitation. Illegal logging in the forest, charcoal 

burning and uncontrolled livestock herding in the forest pose an 

immediate threat to the forest ecosystem. 

4.1.4.3 Tourism 

The Mara River, transboundary between Kenya and Tanzania, plays a 

major role in the tourism industry by being the only water source for the 

Maasai Mara Game Reserve (Kenya) and the upper parts of the Serengeti 

National Park (Tanzania) during the dry season. The Maasai Mara National 

Reserve covering over 1,500 km2 and an extension of Tanzania's 

Serengeti National Park reserve are gazetted consrvation areas, with land 

use restricted only to wildlife viewing tourism. In 2006, it was voted as 

one of the 7 natural wonders of the world and is one of the most famous 

and most visited tourist sites in Kenya.  

The land sorrounding the Mara Reserve is managed by groups of 

pastoralists pooled together under umbrella organisations known as co-

operative group ranching schemes. These areas contain year-round 

communities of resident wildlife, but migratory wildlife also spill out onto 

them during the dry season (Seernel and Lambin, 2001).  

4. 2 Data used for the research 

Different data sets, accessed from various sources (local, regional and 

global) have been used through this study. The data used for the research 

included historical observation data for climatic and streamflow variables, 

data collected through field surveys, and satellite remote sensing data. In 

order to make the data useable in the various applications in the study, 

several interpretations, processing and manipulation procedures were 

performed using simple and/or complex algorithms. Both open source and 

proprietary softwares and tools were deployed. A brief description of the 

open/freeware tools used is given in Annex 1. 
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4.2.1 Hydrometeorologic data 

Generally hydro-climatic data for the Mara river region is both scarce and 

scanty. Officially rainfall data is available from the Kenya Meteorological 

department, although also private concerns (including hotels, lodges, and 

tea estates) have been known to collect and keep especially rainfall and 

temperature data. The data scarcity problem in the study area has been 

characterized by Gann (2006): "data are non-existence, non accessible, 

limited accessible, with gaps, not very accurate, and in different formats 

and no standards". The problem is not limited to the Mara basin only, but 

is widespread across the Lake Victoria region and the African continent as 

a whole (Ndomba et al., 2008; Kingston and Taylor, 2010). To improve on 

the data quality, and to overcome some of the challenges in the wider 

Lake Victoria region, various researchers have used different 

manipulations techniques. Mati et al., (2008) e.g. used the inverse 

distance weighting (IDW) technique for rainfall and the long term daily 

mean for the flow. Ndomba et al. (2008) also used the long term daily 

mean for the flow. Others, including Kingston and Taylor (2010) and 

Mango et al. (2011), have resorted to using remotely sensed satellite 

climatic data. The replacement of locally observed data with global 

databases has some shortcomings. Koutsouris et al. (2010) in a study of a 

small catchment near Lake Victoria found clear disparity between 

discharge observations at the considered regional and local scales, leading 

to different hydrological trend assessments based on the data from the 

different scales. 

4.2.1.1 Rainfall data 

Three air masses influence the rainfall regime of the Mara River Basin. The 

apparent movement of the Inter-Tropical Convergence Zone (ITCZ) 

determines the seasons (Krhoda, 2001). The catchment is dominated by 

dry northeasterly winds from the Sahara Desert from November through 

March causing little rainfall. Short rains are experienced from November to 

December. The Southeast Trade winds from the Indian Ocean influence 

the rainfall pattern of the region between March and June, weakening 

considerably between June and October. Compared to August and 

September, the less dry months are January and February. The southwest 

trade winds, or sometimes known as the Congo air mass, bring rain from 

the west in July with storms and hailstorms (Krhoda, 2001). Three climatic 

zones, namely semi arid, sub humid and humid are defined. Southwards 

the humid zone two rainfall peaks occur between March and May and 

another peak between July and September. The sub-humid zone also has 

two rainfall peaks, March-May and July-September. In the semi arid zone, 
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the rainfall has a monomodal pattern with a dry season in the months of 

June to November. These rainfall patterns are demonstrated in Fig. 4-4 for 

the Baraget, Koiwa, and Kabason stations representing respectively, the 

humid, sub-humid and semi-arid regions.  

 

Figure 4-4:Typical annual rainfall patterns for humid (Baraget), sub-humid (Koiwa) and 

semi-arid (Kabason) climatic zones in the region 

Comparison of the rainfall volumes for the upstream and downstream 

parts of the basins has shown that the mountainous and high elevation 
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areas of the upstream watersheds receive more rainfall than the lower 

portion of the basin, with inter-stations variability (Melesse, 2008). There 

are eighteen (18) rain gauging stations within the study area (Fig. 4-5). 

The length of observations and the percentage of data availability over 

that period (% filled) for the rainfall gaging stations is given in table 4.1. 

None of these is a World Meteorological Organization (WMO) climatic 

station, although three WMO stations are available within a radius of 100 

km from the basin. Rainfall, temperature, wind speed, relative humidity 

and solar radiation were available from two additional synoptic stations 

situated in the vicinity of the study area, and managed by the Kenya 

Meteorology department. Global climatic databases including the 

University of East Anglia, the CRU2.0 database (New et al. 2002), and the 

FAO AQUASTAT database (FAO, 2005) have also been used for 

evapotranspiration and other meteorological data. 

Tabel 4-1. Rainfall gauging stations within the Upper Mara River basin 

 

ID Name Lat. Long. Elevation Start End % 
filled 

9035079 Tenwek 

Hospital -0.750 35.333 2012 

1960 2002 91 

9035085 Olenguruone 
DO -0.583 35.683 2743 

1960 2004 80 

9035126* PBK Bomet -0.783 35.333 1981    

9035227 Bomet DC -0.783 35.333 1951 1960 1992 94 

9035228 Kiptunga forest -0.450 35.800 1829 1961 2009 94 

9035241 Baraget forest -0.417 35.733 2865 1961 1999 93 

9035265 Bomet water -0.783 35.350 1920 1967 2009 88 

9035324 Keringet forest -0.483 35.633 2560    

9035284 Mulot police -0.933 35.433  1973 1997 96 

9035302 Nyangores 
forest -0.700 35.433 

2219 1980 2009 96 

9035339* Kiptagich farm -0.567 35.667 2341    

9135001 Narok -1.13 35.83 1890 1960 2010 99 

9135008 Kabason AGC -1.000 35.233 1646 1960 1986 92 

9135010 Aitong -1.183 35.250 1829 1960 1992 54 

9135019 Lemek maasai -1.100   35.38   1829 1966 1993 71 

9035260 Koiwa estate -0.817 35.350 1916    

9035312* Merigi chiefs 

centre -0.783 35.400 

2134    

9135027* Emarti Health 

centre -1.017 35.200 

1768    

9035334* Sogoo health 

centre -0.833 35.600 

2134    

* Stations either under private ownership or newly established 
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4.2.1.2 Streamflow data 

River flow data is collected and managed by the Water Resources 

Management Authority (WRMA), and its parent Ministry of Water and 

Irrigation. There are three established river gauging stations (RGS) in the 

upper Mara basin. 1LA03, situated on the Nyangores tributary, 1LB02, on 

the Amala, and RGS 1LA04 situated downstream of the confluence 

between the Amala and the Nyangores (Fig 4-5). 1LB02 is located along a 

bridge abutment at Kapkimolwa, hence the cross-sectional area is stable. 

1LA03 is located at Bomet, on a section that is prone to bank erosion and 

sedimentation. The original 1LA4 manual staff gauge was located on a 

hippotamus prone area making maintenance impossible. The 1LA04 has 

since 2010 been replaced with an automatic river gauging station (Khisa, 

2012). Because of the source the Nyangores and Amala rivers is in the 

forest region, they experience low evaporation loss and high rainfall 

contributing to the normal discharges of the Mara River. The details of the 

flow gauging stations are provided in Table 4-2, while the flow 

characteristics for the period 1970-1977 is given by the single mass 

curves (Fig 4-6)  

 

Tabel 4-2. River gauging stations on the entire Mara River 

 

ID Code River Location Lat. Long. Start End % 

filled 

 1LA01 Nyangores Nyangores -0.072 35.358 No records available 

for these river 
gauging stations 

 1LA02 Nyangores Keringet  -0.265 35.688 

 1LB01 Amala Awaja -0.280 35.416 

107052 1LB02 Amala 

Kapkimolwa 

Bridge -0.897 35.438 

1955 1995  

107032 1LA03 Nyangores 
Bomet 
bridge -0.786 35..255 

1963 1992 87 

107062 1LB04 Mara 

Lalgorian 

Narok Rd -1.267 35.017 

1970 1992  

 1LA05 Mara Serena      

107072 Located 
in 

Tanzania 

Mara Mara Mines -1.65 34.564 1970 1977 76 

107081 Mara Mara Ferry -1.524 33.975 1970 1978 - 

109012 Mara Mara mines -1.769 33.683 1970 1992 - 
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Figure 4-5: Location of rainfall and river gauging stations in the river basin 

 
 
Figure 4-6. Single mass curves for discharge at different flow gauging stations along the 
Mara River.  
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4.2.2 Global databases 

4.2.2.1 The digital elevation model (DEM) 

Burrough, and McDonnell, 1998 defined digital elevation model (DEM) as 

"any digital representation of the continuous variation of relief over 

space". It is a regular two dimensional array of heights sampled above 

some datum that describes a surface, and contains elevation information 

with the addition of some explicit coding of the surface characteristics 

such as breaks in slope or drainage divides (Wood, 1996). 

The two sets of DEM databases with a 80% world coverage are commonly 

used: the Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) DEM and the Shuttle radar topography mission 

(SRTM) (Gesch, 2012). AsterDEM has a finer resolution of 15-30m while 

the SRTM has a 30-90m resolution. Comparative studies conducted by 

Nikolakopoulos et al. (2006) showed a strong correlation between the two 

datasets. While comparing the effect of DEM resolution on hydrological 

modeling, Tulu (2005) found no significant difference in the monthly 

runoff when the AsterDEM is replaced with the SRTM DEM.  

The 3 arc sec horizontal resolution SRTM DEM (Farr and kobrick, 2000) 

was used in this study. The key characteristics of the SRTM DEM include: 

16-bit signed integer data in a simple binary raster, data provided with  

no embedded header or trailer and stored in row major order,  elevations 

referenced to the WGS84/EGM96 geoid and  range from -32767 to 32767 

meters, Motorola "big-endian" byte order standard with the most 

significant byte first used.  The SRTM3 DEM's have a resolution of 3 arc 

second (90m) at the equator, and are provided in mosaiced 5 deg x 5 

degree tiles for ease of download and use. Digital elevation models (DEM) 

tiles for the Mara river basin (S01E034, S02E034, S01E035, and 

S02E035) were downloaded from the USGS server 

http://dds.cr.usgs.gov/srtm/version2_1/SRTM3/Africa/.  

The SRTM files are accessed in the Geoid Height File (hgt) format, and 

were converted to Geographic Tagged Image File Format (Geotiff) using 

the 3DEM software (Horne, 2009). Swapping of the bytes from the most 

significant byte first ("big endian’’) to the least significant byte first ("little 

endian") was performed using the VT builder software (Discoe, 2009). The 

DEM was also visualized to ascertain that data properties that might 

otherwise render the data unsuitable for the planned application are 

fulfilled including the effect of swapping byte order. 
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4.2.2.2 Soil data 

The KenSOTER database (Batjes and Gicheru, 2004) was used for the soil 

information. According to Batjes and Gicheru, (2004), the land surface of 

the Republic of Kenya excluding lakes and towns has been characterized 

using 397 unique SOTER units corresponding with 623 soil components. 

The major soils have been described using 495 profiles, which include 178 

synthetic profiles, selected by national soil experts as being representative 

for these units. The associated soil analytical data have been derived from 

soil survey reports and expert knowledge. Gaps in the measured soil 

profile data have been filled using a step-wise procedure which includes 

three main stages: (1) collate additional measured soil data where 

available; (2) fill gaps using expert knowledge and common sense;and (3) 

fill the remaining gaps using a scheme of taxotransfer rules.  

Twenty one (21) soil classes were identified to belong to the study area 

and reclassified to the revised FAO (1988) and the Kenya soil survey 

(KSS) legends. The KSS legend was adopted for SWAT because unlike the 

FAO legend, there were no overlaps in the soil names. The proportions of 

the soil type in the study area and the corresponding FAO and KSS labels 

are given in Annex 2. 

4.2.2.3 Landsat images 

Landsat images for the area of interest (0°-1°S, 35°-37°E) were obtained 

from Global Land Cover Facility (http://glcfapp.umiacs.umd. edu:8080 

/esdi/index.jsp) and USGS Global Visualization (http://glovis.usgs.gov/). 

For imagery to be used in the land use change analysis, in order to allow 

for consistency in the classification process, images of the same season of 

the year, also referred to as "anniversary dates" (late January- early 

February) were used (Table 4-1). In addition, Landsat images of February 

and October 2006 were also used for additional information on the 

development of a landcover map. The anniversary datasets served as the 

primary Landsat dataset while the additional images were used as 

supplimentary data. 

  

http://glovis.usgs.gov/
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Table 4-1: Landsat imagery used for land use mapping and landcover change analysis. 

Year 

Landsat Instrument 

Image 

tile 

Acquisition  

date 
1976 Multispectral Scanner System 181/60 12/02/1976 
 (MSS) 181/61 12/02/1976 
 

 
182/60 13/02/1976 

  
 

182/61 13/02/1976 
1986 Thematic Mapper (TM) 169/60 28/01/1986 
 Thematic Mapper (TM) 169/61 28/01/1986 
1995 Thematic Mapper (TM) 169/60 06/02/1995 
  Thematic Mapper (TM) 169/61 06/02/1995 
2006 Enhanced Thematic Mapper Plus 169/60 27/01/2006 
  (ETM+) 169/61 27/01/2006 

4.2.2.4 Normalized Difference Vegetation Index (NDVI) images 

The NDVI, first proposed by Rouse et al. (1973), is the most commonly 

used and readily available vegetation index with long term archives. NDVI 

measures the amount of energy absorbed by leaf pigments such as 

chlorophyll, and is closely correlated with the fraction of photosynthetically 

active radiation (fPAR) absorbed by plant canopies and therefore leaf area, 

leaf biomass, and potential photosynthesis. 

     
      

      
 -------------------------------------------------4-1 

Where: NIR and IR are spectral reflectance measurements acquired in the 

near-infrared and visible (red) regions 

Different preprocessed NDVI datasets having different spatial and 

temporal resolutions, and with different temporal coverage are available 

from different sensors. The main characteristics of commonly used, freely 

available NDVI datasets are given in Table 4-2.  

Table 4-2: The different NDVI datasets (Pettorelli et al 2005). 

Dataset Satelite Instrument Temporal Temp Missing Range 

   
span resol. data 

 
PAL NOAA AVHRR 

July 1981-
Sep2001 1 day, 10-day sep 1994-jan 1995 8km 

GVI NOAA AVHRR 
may 1982-
present weeklymonthly sep 1994-jan 1995 16km 

GIMMS NOAA AVHRR July 1981-presdt bi-montly None 8 km 

MOD1 TERRA MODIS 
Feb 2000-
present 16 days None 

250-
1km 

 
TM/ETM Landsat 1984-present 16 days None 

<10-
30m 

 
VGT SPOT 

April 1988- 
present 10 day None 1km 

 

The Satellite Pour l’Observation de la Terre-VEGETATION 

(SPOT_VEGETATION, abbreviated as SPOT_VGT) database was used in 
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this study. According to Toukiloglou (2007) in a study to compare between 

the Moderate Resolution Imaging Spectroradiometer (MODIS1), Advanced 

Very High Resolution Radiometer (AVHRR) and VEGETATION datasets, the 

VEGETATION datasets have produced significantly more accurate land 

cover maps in most of the cases (five out of eight). They attributed the 

better performance of the VEGETATION datasets over MODIS1 to the 

additional spectral bands they contained. The datasets of VEGETATION 

had a lower spatial and radiometric resolution than MODIS1 as well as 

wider spectral bands. The need to link recent  NDVI archives (MODIS, 

SPOT) to the longer series AVHRR in order to have longer and more 

reliable time series have been made difficult by the coarse resolution (8 

km) AVHRR data that has been shown to miss broad scale changes in 

vegetation cover (Yin et al., 2012).  

The NDVI data from SPOT-VGT (‘‘VGT-S10’’ product) were downloaded 

from VITO (Flemish Institute for Technological Research; VITO 2006). 

VGT-S10 ten day maximum value composite (MVC) synthesis data are a 

series of data segments  that have been acquired in a ten days period. To 

ensure good quality of the MVC data pixel by pixel comparisons are 

performed on the segments of the period of interest. MVC syntheses 

having a spatial resolution of 1km*1km for 13 yrs (04/1998- 05/2011) 

were accessed. MVC provides a method for improving the accuracy of 

green vegetation monitoring with NDVI. By combining daily reflectance 

images over a specific time period into a single NDVI image, MVC 

minimizes cloud effects, reduces view angle effects and mitigates 

atmospheric water-vapor and aerosol contamination, thus separating the 

green vegetation land cover from various other components. 

The intensity of a pixel is digitised and recorded as a digital number. Due 

to the finite storage capacity, a digital number is stored with a finite 

number of bits (binary digits). The number of bits determines the 

radiometric resolution of the image. (i.e 8-bit digital number ranges from 

0 to 255, while an 11-bit digital number ranges from 0 to 2047). 

The digital number (DN) is calculate from the real NDVI using the 

expression: 

                 ---------------------------------------------------4.2 

Where: a and b are coefficients;  

4.2.2.5 Leaf Area Index (LAI) images 

The leaf area index (LAI) is the one sided area of green elements (defined 

by a chlorophyll content higher than 15µg.cm-²) per unit leaf horizontal 

soil, and is strongly non linearly related to reflectance. The LAI represents 

http://www.crisp.nus.edu.sg/~research/tutorial/image.htm#radiometric_resolution
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the quantity of foliage in the pixel area. Basically, LAI=0 corresponds to 

bare soil; LAI=5 or 6 characterizes a dense canopy (Baret et al. 2004). It 

can be related to processes such as photosynthesis, evaporation and 

transpiration, rainfall interception and carbon flux. Long-term monitoring 

of LAI can provide an understanding of dynamic changes in productivity 

and climate impacts on forest ecosystems (Zheng and Moskal 2009). 

Further, since LAI remains consistent while the spatial resolution changes, 

estimating LAI from remote sensing allows for a meaningful biophysical 

parameter, and a convenient and ecologically-relevant variable for multi-

scale multi-temporal research that ranges from leaf, to landscape, to 

regional scales.   

According to Zheng and Moskal (2009), there are two types of methods 

for the estimation of LAI: either employing the “direct” measures involving 

destructive sampling, litter fall collection, or point quadrat sampling 

“indirect” methods involving optical instruments and radiative transfer 

models. The dynamic, rapid and large spatial coverage advantages of 

remote sensing techniques, which overcome the labor-intensive and time-

consuming defect of direct ground-based field measurements, allow 

remotely sensed imagery to successfully estimate biophysical and 

structural information of forest ecosystems. Ground-based measurements 

have no standards as several methods, like harvesting methods, 

hemispherical photography or light transmission through canopies, can be 

used. LAI maps generated at various spatial resolutions from a daily to 

monthly period over the globe using optical space borne sensors can 

therefore be used to complement ground LAI. Freely available LAI 

products have been developed including: Advanced Very High Resolution 

Radiometer (NOAA-AVHRR), Moderate Resolution Imaging 

Spectroradiometer (MODIS), Spinning Enhanced Visible and Infrared 

Imager (SEVIRI) and Satellite Pour l’Observation de la Terre-VEGETATION 

(SPOT-VGT) data. 

The effective LAI derived from the SPOT-VGT Carbon Cycle and Change in 

Land Observational Products from an Ensemble of Satellites (CYCLOPES) 

processing chains at a 10-day temporal frequency supplied by the 

VGT4Africa project (Baret et al., 2006) was used in this study. The 

CYCLOPES LAI time series used in this study is based on daily 

observations of the SPOT-VGT sensor (Gessner et al. 2013). Preprocessing 

of VGT data includes radiometric calibration, cloud screening, atmospheric 

correction and BRDF normalization. CYCLOPES LAI data is available at a 

spatial resolution of 1 km. According to Gessner et al., 2013, the SPOT-

VGT was chosen over the MODIS dataset since MOD15A2 shows deficits 

with regards to the smoothness of temporal profiles in the more humid 
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zones, and that the SPOT-VGT has superior ability to reproduce vegetation 

phenology. Further, frequent residual cloud contamination in the study 

area seems to be a particular problem of the MODIS dataset. 

 

4.3 Conclusion 

 

Although rainfall data is the only recorded hydrometeorological parameter 

within the station, there is data available from other sources within and 

outside the Lake region. Global databases  have been accessed from and 

courtesy of various  sources. All the global databases used were freely 

available for download either directly or through a registration process.
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5. Remote sensing data analysis 

5.1 Introduction 

Campell, 2002 defined remote sensing as "the practice of deriving 

information about the earth’s land and water surfaces using images 

acquired from an overhead perspective, using electromagnetic radiation in 

one or more regions of the electromagnetic spectrum, reflected or emitted 

from the earth’s surface". Remote sensors can be deployed on satellites, 

airplanes, balloons, or remote-controlled vehicles. Satellite images offer 

unique advantages over other sources of spatial-temporal information. 

These include: large area coverage, cost effectiveness, time efficient, 

multi-temporal, multi-sensor multi-spectral and overcomes inaccessibility 

and allows faster extraction of GIS-ready data.  

Remote sensing offers unique advantages to other sources of data. These 

include; provision of map-like representation of the Earth’s surface that is 

spatially continuous and highly consistent, repetitive data acquisition, 

availability at different ranges of spatial and temporal scales, digital 

formats (Lu et al., 2001; Foody, 2002). The main shortcomings of satellite 

images include the need for both ground-truthing and for an expert 

system to extract data. In order to make the output of this study 

applicable to a wide audience, and encourage reproducibility of results, 

freely available and easily downloadable satellite images of varying 

resolutions were used to achieve the set goals.  

There are numerous classification algorithms and approaches which may 

be broadly categorized as manual, automated and hybrid. Manual 

classification relies on the interpreter to employ visual cues such as tone, 

texture, shape, pattern and relationship to other objects to identify the 

different land cover classes and is effective when the analyst is familiar 

with the area being classified (Horning et al., 2010). The manual 

classification is limited to only colour images, comprising red, green and 

blue bands, and does not take the advantages presented by multi-spectral 

images into account. It is tedious, time consuming and subjective.  

Automated classification uses an algorithm to generate and apply specific 

rules to assign pixels to one class or another. Automated algorithms 

incorporate hyperspectral as well as hypertemporal layers of satellite data, 

along with assorted ancillary data layers. Pixel procedures analyze the 

spectral properties of every pixel within the area of interest, without 

taking into account the spatial or contextual information related to the 

pixel of interest. Pixel based methods rely either on supervised 
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classification, on unsupervised classification or on a combination of both. 

In supervised classification, sample pixels (known as signatures or training 

sites) are identified and used as representative examples for a particular 

land cover category and the sample pixels are then used to train the 

algorithm to locate and classify similar pixels in the image.  

In the unsupervised classification, the algorithm groups pixels together 

into unlabeled clusters and then have the analyst label the clusters with 

the appropriate land cover category. The difference between the different 

types of supervised classification algorithms is how they determine 

statistical similarity between pixels (Horning et al., 2010). Common 

supervised statistical classification algorithms include; minimum distance, 

mahalanobis distance, maximum likelihood and parallelepiped methods 

(Jensen, 2005). Other algorithms include artificial neural networks (ANN) 

which mimic the human learning process or the binary decision trees that 

use a set of binary rules.  

The biggest setback with per pixel classification is the salt and pepper 

effect (Jensen 2005). The salt and pepper noise (SPN) contains random 

occurrences of both black and white intensity values, and is often caused 

by the threshold of noise in an image (Al-amri, 2010), where many single 

pixels of a particular class exist that are interspersed with contiguous 

areas of other classes (Knight and Lunetta, 2003). To address this 

challenge, object-based sub-pixel classification procedures have been 

developed. These packages analyze both the spectral and 

spatial/contextual properties of pixels and use a segmentation process and 

iterative learning algorithm to achieve a semi-automatic classification 

procedure that promises to be more accurate than traditional pixel-based 

methods (Riggan and Weih , 2009). Object orientation or segmentation 

involves the comparison of a pixel's value with values of the neighboring 

pixels. If neighboring pixels are similar, they are added to the contiguous 

group and if they are not, then another segment is started.  

For this study, automated statistical classification methods were used on 

low resolution (1km to 10 km SPOT data) to medium resolution (10-100 

m Landsat images) data. All the satellite images used in this study were 

freely available for download by the public courtesy of the custodians from 

their respective repositories. Landsat data included multispectral images 

from the multispectral scanner (MSS), Thematic Mapper (TM) and 

Enhanced Thematic Mapper Plus (ETM+) instruments. They were accessed 

from the Glovis webpage (http://glovis.usgs.gov/). The 

SPOT_VEGETATION (SPOT-VGT) sensor onboard the SPOT 4/5 instrument 

was used for multitemporal data on Normalized Difference Vegetation 

http://glovis.usgs.gov/
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Index (NDVI) and Leaf area index (LAI) data, and was accessed from the 

Flemish Institute for Technological Research 

(VITO)(http://free.vgt.vito.be). Both multi-temporal and multispectral 

satellite images were used to develop classified land use/land cover maps, 

while only multi-spectral images were used to analyse historical long-term 

land cover change dynamics.  

5.2 The development of classified landcover maps based on 

Landsat images 

To adequately cover the entire study area, four scenes for the 

multispectral scanner (MSS), and two for the TM and ETM+ Landsat 

sensors were used. Table 4-1 summarizes the characteristics of the 

Landsat images used in this study. The images were pre-processed, 

processed, and post-processed to obtain the classified map. Pre-

processesing included geo-referencing of images, layerstacking of bands, 

mosaicking of tiles, and subsetting of the region of interest. Processing 

steps included both unsupervised and supervised classification. Post 

classification processes included accuracy assessment and majority 

filtering.  

The proprietary ERDAS IMAGINE 9.2 (Leica geosystems) image processing 

software was used in the classification process. The Anderson system 

(1976) and the FAO/UNEP Land Cover Classification System (LCCS) FAO, 

(2005) were adopted for the classification schemes.  The purpose of such 

schemes is to provide a framework for organizing and categorizing the 

information that can be extracted from the data,  since the proper 

classification scheme includes classes that are both important to the study 

and discernible from the data on hand. 

5.2.1 Preprocessing 

In order to analyse remotely sensed images, the different images 

representing different bands must be stacked.  This allows for different 

combinations of Red Green Blue (RGB) to be shown in the view. Landsat 

images from MSS are in 6 bands, while those from TM and ETM+ are in 8 

bands. Layerstacking was performed to combine all the image bands 

minus the thermal bands. The study area spanned several image files.  

Image mosaicking which involved the combination of the two TM/ETM+ 

and four MSS images was performed to create one large file.  

An Arcview shapefile for the watershed, geo-referenced to the same 

coordinate system as the mosaiced image, was used to get a subset of the 

images for the catchment. Sub-setting not only eliminates the extraneous 

data in the file, but it speeds up processing due to the smaller amount of 
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data to process, which is important when dealing with multiband data 

ERDAS, (2005). The extracted subset (Fig. 5-1) was used in the 

classification procedures of the images. Unsupervised classification 

followed by supervised classification was used. According to ERDAS 

(2005), combining supervised and unsupervised classification may yield 

optimum results, especially with large data sets. 

 

Figure 5-1. Coverage range of mosaiced tiles of the TM and ETM+ Landsat sensor 

5.2.2 Unsupervised classification 

The Iterative Self-Organizing Data Analysis Technique (ISODATA) 

clustering method was used for unsupervised classification (Tou and 

Gonzalez, 1974). ISODATA uses spectral distance, but iteratively classifies 

the pixels, redefines the criteria for each class, and classifies again, so 

that the spectral distance patterns in the data gradually emerge. It uses 

minimum spectral distance to assign a cluster for each candidate pixel. 

The process begins with a specified number of arbitrary cluster means or 

the means of existing signatures, and then it processes repetitively, so 

that those means shift to the means of the clusters in the data (ERDAS, 

2005).  
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To perform ISODATA clustering, the following parameters were specified: 

the maximum number of clusters to be considered was set at 20; a 95% 

convergence threshold, and the maximum number of iterations to be 

performed was set to 100. Due to the coarseness of the images (30m x 

30m resolution) and the limitation of extensive field data, a generalised 

hierarchical classification scheme system was used in this study. The 

terminology used for the classes was consistent with the one used in the 

FAO/UNEP international Land Cover Classification System (LCCS) standard 

(FAO, 2005). The unsupervised classes were further recoded to six (6) 

clusters including: closed to open trees, trees or shrubs, closed to open 

shrubs, herbaceous crop, grassland and mixed vegetation cover. During 

the recoding of the ISODATA clusters, new signatures were generated. 

These signatures were used in the supervised classification. 

5.2.3 Supervised classification 

Remote sensing data acquired in the dry season has a less spectral 

response from the vegetation in the agricultural area as most of the area 

is bare. This situation makes it easy to separate natural vegetation from 

managed cultivated area by use of the dry period Landsat image of 

Jan/Feb period. Due to the difficulty in differentiating cropped area and 

areas under grass (which also show poor reflectance in the dry season), 

two more Landsat images for June and October were used to generate 

additional signatures. June represents the peak growing season for all 

vegetation in the study area, whereas in October, grass with a shorter 

growing period will have dried out (green off) leaving the crops still 

growing (green on).  

The signatures from the six classes developed during the unsupervised 

classification (§5.2.2) were used with the Minimum-Distance to the Mean 

classifier method to perform the initial supervised classification. The 

second stage of the supervised classification was conducted using the 

parallelepiped classifier method with the aid of training sites acquired on 

known land cover types. Training sites used were those of known land 

cover types like tea plantations, irrigated agricultural fields and forest. The 

known spatial information of the selected sites was used to generate non-

parametric signatures. Parametric training sites were also generated by 

use of spectral reference points at specific geographical location. Ground 

truth for these training sites was acquired through field transect surveys, 

analysis of aerial photography, secondary maps and local expert 

knowledge.  

Level-1 land cover maps, as recommended for Landsat images in the 

Anderson Classification system (Anderson, 1976), featuring four Land 



42 
 

Cover classes were developed. The Class definitions used included: forest 

(closed to open trees), shrubland (trees or shrubland, closed to open 

shrubland), cropland (herbaceous crop) and grassland (savanna grassland 

and scattered grass/bareland areas). As is often characteristic of pixel-by-

pixel classifiers, the map suffered from the "salt and pepper effect" 

(Lillesand and Kiefer, 1987). According to Blaschke, 2000, in the per-pixel 

characterization of land cover a substantial proportion of the signal 

apparently coming from the land area represented by a pixel comes from 

the surrounding pixels. This is the consequence of many factors, including 

the optics of the instrument, the detector and the electronics, as well as 

atmospheric effects. 

5.2.4 Post classification 

To reduce the "salt and pepper effect” and minimize registration problems, 

a majority filter with a 3 x 3 pixel square was used. A single pixel is a poor 

sample unit since it is an arbitrary delineation of the land cover and may 

have little relation to the actual land cover delineation. Further, it is nearly 

impossible to align one pixel in an image to the exact same area in the 

reference data. In many cases involving single pixel accuracy assessment, 

the positional accuracy of the data dictates a very low thematic accuracy 

(Congalton, 2005). Figure 5-2 presents the thematic land cover 

maps.obtained from the classification process. 

5.3 The development of classified landuse map based on 

SPOT-VGT NDVI  

A total of 474 S10 NDVI images were extracted with a polygon within the 

bounds 0° to 2° south, and 34° to 36° east from the NDVI_ AFRICA 

region, using the VGTExtract tool provided by VITO. The extracted images 

were layered together to make 4 single images, each covering 3 years 

(thus 04/1998-03/2001, 04/2001-03/2004, 04/2004-03/2007, 04/2007-

03/2010). The subsets covering only the study area were derived from the 

single image with 108 decades (i.e. a total 1095 days). The layer-stacking 

and sub-setting was performed using the ERDAS Imagine 9.2 image 

processing software. The series between 04/2004 and 03/2007 was used 

for the classification, this was to enable the use of the Landsat images of 

2006 which had the lowest cloud cover noise interference. The resulting 

Landsat derived map served as a baseline map for the NDVI mapping to 

provide a mask for the naturally vegetated areas. 
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Figure 5-2: The land cover maps based on Landsat images (MSS for 1976, TM for 1986 & 
1995 and ETM+ for 2006) 

 

The ISODATA technique was used to perform unsupervised classification 

of the NDVI data. The algorithm splits and merges clusters, in which 

cluster centers are randomly placed and pixels are assigned based on the 

shortest distance to the center method. The program runs the algorithm 

through many iterations until the user defined convergence threshold or 

the specified number of iteration runs is reached. The optimum number of 

clusters was determined by examining the separability of the clusters.  

Choosing between 10 and 50 clusters, the ISODATA algorithm was ran 

repeatedly for each cluster number for 100 iterations and divergent 

convergence threshold of 1.0. The best number of classes to be chosen 

was based on the maximum values of the average and minimum 

divergence statistics with a clear and distinct peak in the separability 

values of divergence. A total of 30 clusters were chosen for this study. The 

classes were further refined by the use of the transformed divergence 

measure.  
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In the transformed divergence separability the range of divergence varies 

between 0 and 2000, with 0 indicating complete overlap between the 

signatures of two classes, and 2000 indicates a complete separation 

between the two classes.The larger the separability values are, the more 

likely the final classification results will be good. Swain and Davis (1978) 

defined values greater than 1900 as separable, 1700-1900 as weak 

separable and <1700 as inseparable. Using this rule, the classes were 

merged from the initial 30 classes to 23 classes. Once the final classes 

where identified, the time series of the NDVI data were extracted. The 

108 decades represent a continuous stream of phenological information 

spanning over 3 years. 

Changes in NDVI time-series indicate changes in vegetation conditions 

proportional to the absorption of photosynthetically active radiation (PAR). 

However, there are nearly always disturbances in these time series, 

caused by cloud contamination, atmospheric variability, and bi-directional 

effects. These disturbances greatly affect the monitoring of land cover and 

terrestrial ecosystems and show up as undesirable noise (Chen et al., 

2004). The most widely used techniques developed to eliminate noise in 

NDVI time series caused by clouds, ozone, dust, as well as off-nadir 

viewing and low sun zenith angles include: Best Index Slope Extraction 

(BISE), Fourier based filtering, Savitzky-Golay, asymmetric Gaussian, and 

logistic function filters (Yin et al., 2012).  

The NDVI curves were smoothened with the fitting algorithms in the 

TIMESAT tool (Eklundh and Jönsson, 2010), a software package for 

analyzing time-series of satellite sensor data. Output from the TIMESAT 

program is a set of files containing seasonality parameters; beginning of 

season, end of season, amplitude, integrated values, derivatives, etc., as 

well as fitted function files containing smooth renditions of the original 

series (Eklundh and Jönsson, 2010). The Savitzky–Golay filter (Savitzky 

and Golay, 1964) was used for single season profiles, while the Gaussian 

or logistic filters were used for the multi-season profiles. Seasonality 

parameters, including the beginning of the season, the end of the season, 

the length of the growing period and the amplitude were also extracted.  

Three categories of land cover classes were identified, namely those with 

distinct flat/plateau profiles, those with clear sinusoidal phenological 

profiles and those with mixed patterns. Using the land cover map obtained 

from the Landsat imagery (§5.2), the areas under perennial land cover 

were masked out. The phenological profiles in the masked area (Fig. 5-3a) 

have plateau shaped vegetation cycles and NDVI values that remain 

relatively high (~200) over extended periods of time. These represent 
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areas with a more permanent cover of natural vegetation like forests, tree 

plantations and shrub crops. The remaining two categories are affected by 

climatic conditions, they exhibit a rainfall mediated NDVI cycle with a 

Gaussian distribution shape. Degraded areas, represented by herbaceous 

vegetation like annually cropped areas and grass cover areas, exhibit a 

distinct seasonal response driven by rainfall incidences and reduced NDVI 

values, especially during the established dry period (December-February) 

(Fig. 5-3b). The rest of the areas have no proper rainfall seasonal pattern 

but exhibit clear minima and maxima that allow separation of phenometric 

parameters, representing poorly managed or naturally growing-rainfall 

limited mixed vegetation classes (Fig 5-3c). 
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Figure 5-3: Phenological profiles from the ISODATA clusters featuring profiles with no 
distinct cycles (A), with clearly defined cycles (B) and mixed cycles (C) 
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The growing season in the Mara basin is rainfall dependent and the basin 

experiences a high temporal variability of the rainfall (Melesse et al., 

2008). It is therefore more plausible to use a cropping calendar in close 

consultation with the actual seasonality data extracted from the time 

series for a particular spot within the class. Using this approach, several 

classes with similar profiles were merged together to form clusters (Fig. 5-

4).  

 

 
Figure 5-4: Average annual profiles of combined clustered land use classes and their 
spatial location 

 

The clusters were defined in accordance with the FAO land classification 

system (LCCS) (Di Gregorio and Jansen, 2000), which is based on 

classifiers.  According to  Di Gregorio and Jansen, 1997 classifiers are "a 
set of pre-selected independent diagnostic attributes defining  any land 

cover class, regardless of its type and geographic location"  

Based on local expert knowledge and other available data, notably maps 

from Google Earth®, the classifiers of the three major land use types 

present in that cluster were identified. Based on these clusters, a land 

cover map featuring the main crop/land use types was developed.  
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The changes in landcover captured by the Landsat images allows for 

comparison of a specific site to identify changes that "occur slowly and 

subtly, or quickly and devastatingly"(USGS, 2012). In the humid region, 

high rainfall amounts lead to healthy vegetation and hence to a saturation 

of NDVI values which minimise the differences between the different land 

cover types. Based on local expertise and other available databases, 

notably maps from Google earth®, the classifiers were identified up to the 

three major land use types present in that cluster. Based on these 

clusters, a land cover map featuring the main crop/land use types was 

developed. 

A threshold rule was used to identify the areas with staple crop (maize) 

and separate them from the other crops. Maize growing in the humid zone 

(class p15) takes longer to mature compared to that growing in the sub-

humid and semi-arid zones (class p6) (Fig. 5-5). The two Landsat images 

for 2006, representing the green off period in February and green-on 

period in October were converted to NDVI values and a simple algebraic 

transformation was used to detect the image difference between them. 

The image differencing for change detection algorithm which takes two 

sequence images as input and generate a binary image that identifies 

changed regions was used.  

The separation algorithm subtracts the first date image from the second 

date image, pixel by pixel. Any class, where the vegetation type was 

either already growing or not growing at all during the period of the two 

images will show no change in the differencing map, only vegetation that 

was not growing at date 1 and still growing at date 2 will show in the 

binary map. The optimum threshold for change detection of 35% was 

chosen as the point of intersection for the two cyclic curves. The landuse 

map at crop level which was driven by the land cover types is given in Fig. 

5-6. In order to allow for transferability and consistency, the FAO 

AFRICOVER legend (Di Gregorio and Jansen, 2000) for land use class 

naming was adopted. 
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Figure 5-5: Identification of the same crop under different climate zones with phenological 

profiles (left), and 2-date Landsat image differencing map (right). 

 

 
Figure 5-6: NDVI derived crop level land use map 

5.4 Accuracy of classification 

The quality of thematic maps derived from remotely sensed data should 

be assessed and expressed in a meaningful way. This is important not 

only in providing a guide to the quality of a map and its fitness for a 



50 
 

particular purpose, but also in understanding the error and its likely 

implications, especially if allowed to propagate through analyses linking 

the map to other datasets (Foody, 2002). In thematic mapping from 

remotely sensed data, classification accuracy is typically taken to average 

the degree to which the derived image classification agrees with reality or 

conforms to the ‘truth’, while, a classification error is some discrepancy 

between the situation depicted on the thematic map and the reality. 

Various sources of error including sensor issues, geometric registration, 

errors introduced by the classification process, assumptions made in the 

accuracy assessment, and limitations in the map output, accumulate from 

the beginning of a mapping project through to the end (Lunetta et al., 

1991, Congalton, 2005).  

The accuracy of the classified maps was determined by use of the error 

matrix (Congalton, 1991) and by the Kappa coefficient (Congalton and 

Green, 1993). The kappa value indicates how accurate the classification 

output is after this chance, or random portion has been accounted for.  

 

    
     

 
             

 
    

            
 
    

-----------------------------------------------------------5.1 

where r is the number of rows in the matrix, xii is the number of 

observations in row i and column i, xi+ and x+i are the marginal totals of 

row i and column i, respectively, and N is the total number of 

observations.   

Different ground truthing information was used in the accuracy 

assessment of the classified thematic maps. These included:   

 The survey of Kenya’s topographic sheets of 1978 was used to assess 

the 1976 and 1986 maps (Annex 3a). 

 The Kenya - Spatially Aggregated Multipurpose Landcover database 

(FAO Africover, 1999) was used to assess the  1995 map; and 

 Field transects conducted in 2010, with secondary data from local 

offices, were used to assess the 2006 map (Annex 3b). 

 The  FAO cover map with the LCCS clusters was used for the NDVI map 

The LCCS method was used to develop the FAO Africover map. LCCS is a 

hierarchical, "a priori"" method, where at each level the defined classes 

are mutually exclusive. At the higher levels of the classification system 

few diagnostic criteria are used, whereas at the lower levels the number of 

diagnostic criteria increases. Criteria used at one level of the classification 

should not be repeated at another. The lowest hierarchy representing the 

land use was used to assess the NDVI map, while higher hierarchy was 
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used for the landcover Landsat maps. The FAO Africover map was used as 

a reference map in the error matrix, to assess the image classification 

accuracy of the NDVI based land use map, while ground truth data was 

used on the Landsat based land cover maps. The developed NDVI based 

land use map had an overall accuracy of 83% and a Kappa of 0.79, while 

the Landsat based land cover map had an overall accuracy of 81% and a 

Kappa of 0.76. The NDVI map represents larger sampling units leading 

higher accuracy of the land cover map. This may be attributed to the 

lumping of land use classes.  

Land cover maps are more generic and accommodate a wide scope of land 

uses under the same land cover. Also, the classes as proposed by the 

Africover map do not represent pure classes but are in reality a mix of 

land cover types (Wischut, 2010). According to Kiage et al. (2007) in the 

absence of aerial photographs, familiarity with the study area and 

topographic maps proved very helpful for assessing the accuracy of the 

classification. This line of thought was used for the 1976 and 1986 cover 

maps, although afew changes might have taken place especially by the 

1986.   

5.5 Creation of Leaf Area Index (LAI) maps 

The LAI can be used for detection of change and for providing information 

on shifting trends or trajectories in land use and cover change. LAI could 

be used to validate canopy photosynthesizes models which simulate 

growth and canopy development based on climate and environmental 

factors. It is also a sensitive parameter for the control of 

evapotranspiration in Soil-Vegetation-Atmosphere-Transfer schemes 

within the context of General Circulation Models (GCMs). The LAI, and 

ancillary information contained in a single hdf file were downloaded from 

the  VITO webpage. The time series for the LAI were extracted using the 

in-built smoothening filter in the TIMESAT tool (Jönsson and Eklundh, 

2002). Three filters available in the TIMESAT tool where tested for their 

suitability in mimicking the profile of the LAI time series (Fig 5-7). 

Compared to the Gaussian and Logistic filters, the Savitsky-Golay filter, 

(Savitsky and Golay, 1964) smoothens the time series without 

substantially changing the amplitude or frequency of the series. The 

Gaussian and Logistic filters are best suited for extraction of seasonality 

parameters as they approximated better the coarse seasonality. In order 

to better reflect the phenology and reduce noise, the Savitsky-Golay filter 

was used for the LAI filtering in this study. To get the physical LAI values 

the extracted product's digital number was divided by 30, thus; 

    
      

  
--------------------------------------------------5.2 
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Where; LAI = physical value (0 to 8.5), LAI_DN= digital number (0 to 

255) 

The steps involved in the generation of time series profiles for the LAI 

involved the identification of the land cover type of interest in the 

thematic map, the overlaying of the classified land use map on the co-

registered LAI map and the extraction of LAI information from that point 

using the TIMESAT tool. Timesat can process data for separate land cover 

classes. An image file that assigned a code representing a land cover class 

(0–255) to each pixel needs to be present. By defining an area under a 

given land use class, all pixels in that land use class were extracted and 

an ensemble mean calculated. Figure 5-8 shows the process followed in 

extracting LAI profiles and the resultant time series for the different land 

use classes. 

 

 

Figure 5-7: The effect of filter algorithms on the characteristic of a time series profile 
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Figure 5-8: The extraction protocol for remotely sensed LAI data A: location , B: overlay 
of the land use map with classes, 1= tree plantation, 2= upland maize, 3= herbacious 
crop, 4 = rainfed herbaciuos crop, 5= rainfed tea crop, 6 = Forest, 7 = rainfed shrub 
crop, 8 = small cereal fields, 9 = small cereal fields with tea, 10 = rainfed wheat fields, 

11 = lowland maize, 12 = low open shrubs, 13= trees and shrub savanna, and C: 
extraction of the  different land use classes using TIMESAT tool. 

5.6. Conclusion 

Different types of public access remotely sensed data were used to create 

thematic maps for the study area. The landsat 30 x 30m maps were used 

to generate land cover maps while the SPOT-VGT images were used for 

the land use maps. LAI maps were also prepared using remotely sensed 

Leaf area index data. The data output maps were tested for accuracy and 

the performance assessed as satisfactory.  
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6. Soil, Crop yield and Water Quality analysis 

6.1 Introduction 

The Food and Agriculture Organization (FAO) classifies the principal 

farming systems in Africa either as maize-mixed, cereal-root crop mixed 

or root crops. These three systems support 41% of the population. Further 

small holder farmers in Africa maybe categorised based on three criteria: 

(i) the agro-ecological zones in which they operate; (ii) the type and 

composition of their farm portfolio and landholding; or (iii) on the basis of 

annual revenue they generate from farming activities (Dixon et al., 2001). 

The sizes of the landholding differs depending on the population densities 

ranging form less than an acres to 10 Ha. It's difficult to estimate crop 

yields in Africa due to the complex production and land tenure systems. 

More important is non-uniformity of cultivated plots, failure to harvest all 

planted areas and enormous post-harvest losses.  

In line with integrated water resources management (IWRM), there is an 

increasing need for the stakeholders to better manage sources of pollution 

in the river basins. This is especially the case in catchments with changing 

land use practices and with changing climatic conditions. Excessive 

loading of organic matter and nutrients into water resources is of a major 

concern to water resources managers. 

6.2 Soil fertility analysis 

Soil samples were collected from selected representative farm sites across 

the basin (Fig. 6-1). Every sample consisted of between 20 - 30 cores 

taken from the sampling site in a zig zag random sampling pattern (Carter 

and Gregorich, 2006), air dried and homogenised (Ryan et al., 2001). 

Atypical areas such as eroded areas, fence lines, roadways, water 

channels, manure piles, and field edges were avoided during sampling 

(Carter and Gregorich, 2006). A representative 2 kg composite sample 

was collected from the homogenized soil. The comparatively inexpensive, 

composite sampling provides no assessment of field variability and relies 

on the ability of the farm operator to identify portions of the field that may 

have inherently different nutrient levels. 

The results of the analysis for parameters considered as critical and the 

optimal ranges for maize cultivation are given in Table 6-1. Results from 

the soil samples indicated that some soil parameters were outside the FAO 

(1998) recommended ranges for agricultural crops (maize) production. 

The soils are also varying from one location to another. Catchment-wide 

the pH, phosphorous, copper and boron levels are below the 

recommended ranges for maize production. Other elements like calcium, 
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magnesium, sulphur and aluminum were below the recommended range 

in at least three of the sampled locations. Generally, the soils in the 

middle section locations (K1, K4) are better suited for maize cultivation 

than those in the upstream section (K5, K6) and the downstream sections 

(K2, K3). 

6.3 Crop yield studies  

6.3.1 Study design for crop yields survey 

A stratified multistage cluster design was adopted for the selection of the 

survey sites with respect to the crop yields in this study (Fig 6-1). This 

involved a 3-tier selection process for eligible locations to be included in 

the survey. All the three counties namely Nakuru, Bomet, Narok were 

included. All the 22 divisions in the study area were also included. By 

assigning numbers 1 to 55 for all the 55 locations, a random table 

generator was used to pick 17 completely randomised numbers. There are 

three reasons for this; 

- the use of multistage design controls the cost of data collection, 

- the absence or poor quality of listings of households or addresses 

makes it  necessary to first select a sample of geographical units, 

and  then to construct lists of households or addresses only within 

those selected units.  

- The study area exhibits extreme variations in environmental 

conditions, making it imperative to have samples from all the 

counties (level 3) and divisions (level 4) to be included.  

The study was conducted in the months of July and August 2011. 

Groundwork and preparation of the study materials, including 

questionnaires (Annex 4) and soil sampling protocols and gear, was done 

in July while the actual administering of the questionnaires was 

undertaken in August. A total of 102 farmers spread over 17 

administrative locations in the three counties were interviewed. The 

design frame involves the selection of at least 5 farmers from each of the 

17 pre-selected locations. The choice of farmers depended on the area of 

the location. Prior to administering the interviews, some ethical issues 

were addressed.  
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Figure 6-1: Locations of sampled administrative units in the study area 

Respondents’ anonymity and confidentiality was assured with inclusion of 

the "informed consent clause" in the questionnaire, the nature of the 

interview clearly explained and permission requested. Since the 

interviewer is of a different ethnic group, the responses could have been 

affected, especially when informants are of low-income status (Schuman 

and Converse, 1971). Local people were therefore trained to assist in 

conducting interviews in order to address this issue. This study used the 

farmer estimation methods (both recall and prediction) as opposed to crop 

cuts for the determination of farm yields. Estimating crop production 

through farmer interviews involves asking farmers to estimate for an 

individual plot, field or farm what quantity they did harvest or what 

quantity they expect to harvest. As harvest quantities are farmer 

estimations, they are generally expressed in local harvest units (e.g. 

sacks, debes,or gorogoros) instead of kg or tonnes. To convert harvest 

quantities to standard units, conversion factors are required (Table 6-2). 

To estimate crop yield, production data obtained from farmer recall 

requires division by the plot area from which the crop was harvested. In 

order to calibrate farmers’ estimation methods, the calibration of their 

instruments of weighing was done using calibrated weighing scales.  
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Table 6-1: Results of soil analysis in selected sites in the Upper Mara basin. 

  

 Soil Sampling sites 

  

  

Recommended  

range (FAO, 
1998) Midsection 

Downstream 
section 

Upstream 
section 

parameter units  K1 K4 K2 K3 K5 K6 

pH 

 

6.00 - 6.80 5.8 5.85 5.81 6.88 4.99 5.7 

Phosphorous ppm 30 - 100  3 2 13 10 2 11 

Potassium ppm 246 - 656 485 503 542 596 341 1565 
Calcium ppm 2524 - 2944 2205 2189 5785 4648 803 864 

Magnesium ppm 252 - 404 355 278 410 257 120 414 

Manganese ppm 100 - 300 207 190 147 198 164 50 

Sulphur ppm 20 - 200 11 11 15 14 16 32 
Copper ppm 2.00 - 10.00 0.59 0.56 1.31 1.01 0.39 0.52 

Boron ppm 0.80 - 2.00 0.6 0.46 0.6 0.61 0.59 0.5 

Zinc ppm 4.00 - 20.00 19.32 6.02 3.97 3.3 20.41 9.22 

Sodium ppm <242 34 40 112 124 30 55 
Iron ppm 80 - 300 137 136 125 85 169 99 

CEC meq/100g 15.00 - 30.00  21.03 19.66 46.58 29.28 12.72 17.15 

Aluminium ppm <1200 1219 1038 605 500 1402 1454 

EC us/cm <800 59 133 126 362 66 200 

Org.matter % 2.50 - 8.00 6.86 4.01 7.28 3.75 6.34 8.45 
Nitrogen    - 0.19 0.26 0.12 0.22 0.41 
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Table 6-2: Conversion of local units into international standard units. 

 Commonly used units SI unit SI equivalent 

1.  Acres Hectares  

2. Potato bag Kgs 110kgs 

3. Maize Bag Kgs 90kgs 

4. Debe Kgs 15kgs 

5. Gorogoro tins Kgs 2.5kgs 

6.3.2 Production systems 

The estimation of crop yield thus involves both estimation of the crop area 

and estimation of the quantity of product obtained from that area: 

             Tons/ha    
                     

                
 --------------------------6-1 

The study found that different food crops are grown in the various 

locations. Maize was the most commonly grown crop, being cultivated 

across all locations. Vegetables are grown in the higher altitudes with high 

precipitation, upper and mid-section areas grow sweet potatoes and wheat 

is the common complementary crop in the lower semi-arid areas. Some 

areas have more than four different crops whereas in others only two crop 

types are grown. The extent in diversification in production systems for 

the different locations and the average yields for the various crops grown 

in the locations are given in.Fig. 6-2. The spatial variation in the different 

crop yields are given inFigure 6-3. The diversification of cropping is a 

function of the rainfall pattern. In the upper sections, where there is 

rainfall almost year round, there are more crops grown than in the semi-

arid regions. Also, the cropping patterns in the Bomet District are closely 

intertwined with the rainfall patterns. During the long season (November – 

May) almost 100% of the farm families perform cropping as compared to 

50% - 60% of farm families who undertake cropping during the short 

season (June – October).  

6.3.3 Maize production 

Maize growing was carried out in all the selected households. The mean 

yields varied widely amongst the farmers within a location and amongst 

the locations. The productivity was the highest in the plain areas of 

Olulunga and Melelo. Coincidentally these areas neighbour the large scale 

commercial farms and the average family land holding is higher. The use 

of mechanized production systems, including plowing with tractors, 

harvesting with combined harvesters, and application of fertilizers are 

practised.  
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Figure 6-2: Crop diversification in the upper Mara catchment 

 

Figure 6-3: Spatial distribution of crop yields for the main crops grown in the study area 
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The variability in these high producing areas is also very high, indicating 

differences in the management practices of the farmers. The study area 

average maize production of 2.65 mton/ha (SD 1.08) is above the 

national average of 1.6 mton/ha (GOK, 2007) and slightly below the world 

average (Salami et al., 2010) (Fig. 6-4). Only four administrative 

locations, all located in the semi-arid regions, had maize yields lower than 

the national average (Nyoro, 2002). 

 

Figure 6-4: Comparison of average maize production in the study with national and 

global averages 

6.3.4 Fertilizer use 

The results of the survey show that the use of fertilizer in the study area 

varies widely. In the highland areas of the upper and midsections of the 

catchment, there is important use of fertilizers, especially where there is 

both the intensive production of vegetables and the growing of tea. 

Farmers having experienced the benefits of using fertilizers on their tea 

farms embraced the idea of using fertilizers in food production. Tea 

factories usually supply farmers with fertilizers at subsidized prices or on 

credit (DAO, verbal communication). The use of fertilizers is also common 

in the relatively large scale commercial maize and wheat growing areas. 

According to NEMA (2009) the average level of the use of fertilizers in the 

Bomet district is low due to the economics and low levels of awareness 

with regard to the optimum fertilizer levels required for various types of 

soils. Major fertilizers used are super ammonium phosphates, di-

ammonium phosphate (DAP: 20-20-00 and 18-46-00) mainly during the 
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maize planting season of February–March, and calcium ammonium nitrate 

(CAN) and urea for top-dressing in maize cultivation. 

6.4 Water quality investigations 

6.4.1 The study design for  water quality  

Sampling sites were selected in the downstream section, based on the 

level of human interference (low vs high human impact) and on the 

availability of historical records from previous water quality studies, to 

allow for a comparative evaluation of long term temporal change. Bi-

weekly monitoring was done in the months of February, March and April, 

2011 for 6 primary sites while grab monitoring was carried out in 

secondary sites spread out in the study area (Fig. 6-5). The primary sites 

included three sites each from the Nyangores River (Bomet, Silibwet, 

Masese) and the Amala river (Mulot, Kapkimolwa and Matecha) 

tributaries.  

Sixteen (16) out of the sampled 36 sites, labelled K1-K18 and described in 

annex (Labels K4 & K5 were erroneously skipped during initial coding) 

were used to perform a detailed physico-chemical and biological 

monitoring. For nutrient monitoring, a total of 22 (Annex 5) sites, 

including the 16 above, were sampled at least once. In situ 

determinations were performed for pH (WTW pH330i), electrical 

conductivity (WTW 314i), dissolved oxygen (WTW Oxical), and turbidity 

(HACH DR890 colorimeter). Samples for physico-chemical analysis were 

collected using HDPE bottles and transported in cooler boxes to the 

laboratory where they were stored in a freezer at -18°C, without adding 

chemical preservatives, until analysis.  

Physico-chemical parameters and major ions, including pH, alkalinity, total 

dissolved solids, free carbon dioxide, total hardness, calcium, sodium, 

magnesium, potassium, sulphates, carbonates, bicarbonates and chloride, 

were determined following standard methods of analysis (APHA-AWWA-

WPCF, 1985). The following standard  procedures  were used  for  the  

physical-chemical determinations using volumetric (titrimetric), 

colorimetric, and instrument methods.  

Free CO2: Titrimetric method - 50 ml are titrated using 0.0227M NaOH 

and phenolphthalein indicator.    

                                       ---------------------------------6-2  

Nitrates: 1ml of H2SO4 amide was added to 50 ml  sample and a blank 

and let to stand for 7 minutes. 1  ml NED (N-(1-Naphthyl) ethylene  

diamine dihydrochloride)  was then added to the  sample and blank and 
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let to stand for another 5 minutes. The colour change  to pink was 

determined using a photometer.  

Fluoride: Ion-selective electrode method  

Standards of 1, 5 and 10 ppm were prepared from stock solution of 100 

ppm. 25ml of each was taken and 25 ml of Tisab buffer added. The 

fluoride meter was standardized. 25ml of buffer was added to 25ml of the 

sample and the readings read off the meter. The standard readings were 

used to plot a graph which was used to determine the fluoride 

concentration. 

20 min Pmv (Dissolved oxygen)  

10 ml each of sample and blank were taken and 0.5ml of 4M H2SO4 and 

2ml of 0.002M KMnO4 were added to both. The sample and blank were 

then transferred to a water bath and boiled for 20 minutes, and cooled to 

room temperature. 1ml KI was added and then titrated against 0.01M 

Na2S2O3 with starch indicator changing colour from blue to colourless.  

                –                      =       –               -------------------6-3  

Turbidity  

Standards of 5, 10, and 20 ppm were prepared and the meter 

standardized. Sample was put into a cuvet and the reading taken from the 

meter.  

Sulphate: Turbidimetric method  

Standards of 5, 10, and 20 ppm were prepared and the meter 

standardized. 2.5 ml of sulphate buffer were added to 50 ml sample, then 

a spatula full of  barium chloride. The sample was stirred for 1 minute 

transferred to a cuvet and reading taken(X).  

            
   

   
----------------------------------------------6-4 

Total Iron: Phenanthroline method  

2ml conc. HCl and 1ml Hydroxyl amide (NH2OH.HCl) were added each to 

50 ml of sample and blank and shaken. It was boiled to 20 ml, let to cool, 

and then transferred to 50 ml volumetric flask. 10 ml Ammonium acetate 

(NH4C2H3O2) buffer and 4 ml phenanthroline  solution were added and let 

to stand for 10 minutes. Concentration read off at 540 nm  

                                ----------------------------------6-5 

Chloride: Argentometric method  

2 drops of Dichromate chloride indicator were added to 50 ml sample and 

blank, which was titrated against 0.014N AgNO3   
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                              -------------------------------------------------6-6 

pH: Electrometric method  

The pH  meter was calibrated using buffers of 4, 7 and 9. The pH 

electrode was inserted into 50 ml sample, and the pH read-off after meter 

stabilized   

Alkalinity: titration method  

50 ml of the sample was measured into a flask, a magnet rod dropped in, 

and the flask placed on a magnetic stirrer. 0.02N H2SO4 acid was titrated 

to pH 4.5, when there was colour change.  

            
           

          
-------------------------------------------6-7 

Where: A = ml standard acid used , and N = Normality of Acid  

Total hardness: EDTA titrimetric method  

1ml total hardness buffer and half full spatula of Eriochrome black T dye 

were added to 50 ml of sample, and titrated to blue colour using EDTA 

(ethylenediaminetetraacetic acid).  

Calcium: EDTA titrimetric method  

1ml NaOH and half full spatula of murexide (Ammonium purpurate) 

indicator were added to 50 ml sample, and titrated to purple endpoint.  

                      --------------------------------------------------6-8 

Sodium and Potassium: Flame atomic absorption spectrometric method  

Sodium standard were nebulized such that 3 ppm read 60, 5 ppm read 

100 and 2ppm read 40.  The filter was used at 589 nm.  

           
                  

                    
-----------------------------------6-9 

Potassium standard were nebulized such that; 5 ppm read 50 and 2 ppm 

read 20.   The samples were then nebulized 

         
                  

                    
  ----------------------------------6-10 

Manganese: persulphate method  

5ml of mixed reagents were added to 100 ml of sample and added to 90  

ml. Ammonium persulphate was added, boiled for 1 minute and cooled in 

running tap for 1minute. It was then transferred to digestive tubes, 

topped to the mark and transferred again to standard tubes. The colour 

was compared to standard charts.  

 Electrical conductivity and TDS  
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These were determined using the conductivity meter; the electrode was  

inserted  into the sample. The conductivity was read off first, a selector 

knob was used to switch over and the TDS read off. 

To minimize the error due to the removal and transformations, total 

phosphorus was determined by the ascorbic acid method on an unfiltered 

samples. The advantages of the ascorbic acid method is that it produces 

colour development which is more stable and the reaction using ascorbic 

acid is independent of temperature and salt concentrations (Jarviel et al., 

2002).  

The determination of the total nitrogen was based on the persulfate 

digestion method. Digestion with persulfate oxidizes all forms of nitrogen 

to nitrate. Nitrate is reduced to nitrite when passed through a copperised 

cadmium reduction column. 

 

Figure 6-5: Locations of the water quality sampling sites for the different tributaries 

The build-up of suspended matter in the reduction column restricts sample 

flow. The column was flushed regularly to clear the build up of the 

suspended material. Sample turbidity may also cause interference. 

Suspended matter was removed by filtration (thus reducing turbidity) of 

the digested solution through a 0.45 µm pore diameter membrane filter 

prior to analysis. The persulfate digestion method produces low toxicity 

waste and is less cumbersome than the classical total Kjeldahl Nitrogen 
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(TKN) methods, but is still sensitive and reliable for extremely 

unproductive lake and stream samples (Ameel et al., 1993). The detection 

limit for the analysis of TN and TP was 0.01 mg N/L and 0.001 mg P/L 

respectively. 

6.4.2 Hydro-geochemical classification 

The Gibbs' diagram method (Gibbs, 1970) was used to determine the 

major natural mechanisms controlling the water chemistry. The diagram 

shows the weight ratio Na+/Na++Ca2+ on the x-axis and the total salinity 

on the y-axis. According to the diagram, the general environmental origin 

of the chemicals of the river water in the Upper Mara is mostly (81%) of 

rock weathering dominance (Fig.6-6). All sites in the Mara mainstream are 

rock weathering, while 86% and 71% of the sites in the Amala and 

Nyangores respectively have a rock weathering dominance. The remaining 

sites are in the atmospheric precipitation dominance zone.  

The major cations that characterize the end-members of the world’s 

surface waters are Ca2+ for freshwater bodies and Na+ for high-saline 

water bodies. The sites are more skewed towards the precipitation than 

the evaporation dominance. This implies that the study area lies in a 

recharge area with light mineralization and strong geological influence on 

the water chemistry. When classified in accordance with the Trilinear 

diagram method (Piper, 1944), the river water is of the 

sodium/bicarbonate type, with Na+ as the dominant cation, while HCO3
- is 

the dominant anion. The hydrochemical characteristic of the study area is 

attributed to the (hydro) geological formation of the area, the rocks in the 

study area form a wider East African alkaline suite where strongly alkaline 

series are recognized and characterized by a dominance of sodium over 

potassium ( Saggerson, 1991). The statistical parameters of the measured 

variables are given in Table 6-3. 

At average concentrations, most of the parameters are within the World 

Health Organization (WHO, 2008) guideline levels for drinking water. Of 

the parameters measured, only some sites (30%) had levels of iron and 

manganese even higher than the maximum allowable values. The high 

manganese levels in the Amala and Mara sub-basins are due to natural 

sources compounded by low oxidation conditions, and not to 

anthropogenic contamination, since the area has no known industrial and 

mining activities.   
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Figure 6-6: Geochemical classification of the river water according to Gibb's (left) and 
Piper (right) diagrams 

The high standard deviation of most variables indicates a strong (spatial) 

variability in chemical composition among the samples. There is a clear 

upstream-downstream trend in the pH and electrical conductivity for both 

the Nyangores and the Amala tributaries. The pH decreases, while the EC 

increases in the downstream direction for both rivers. The Amala River has 

higher values than Nyangores for both parameters. The EC for the wet 

season is lower than during the dry season due to the dilution effect. The 

pH and EC are consistently changing downstream, even where there is a 

change in the land use type, indicating that they are less sensitive to the 

land management process and driven more by the natural conditions. The 

changes in geological conditions, since the rock composition determines 

the chemistry of the soil in the watershed and ultimately the river water, 

are the key determinants of the hydrochemistry in the study area. 

6.4.3 Spatial variation of the nutrients (TN and TP) 

The variation of nutrient loading in the river water is driven by both 

natural and human activities. The total nitrogen concentration in samples 

downstream of the urban centers of Bomet, Silibwet, Longisa and Mulot 

was higher (>1mg/l) than the rest of the sampled sites. Tenwek hospital, 

whose wastewater treatment plant is the only known source of point 

pollution, is located in this region. This indicates that there is potential risk 

of nitrogen from the numerous onsite waste disposal systems, including 

pit latrines (Fig. 6-7). The diversification of the agriculture practices in the 

area, involving the intensive use of fertilizers on both cash crops (tea) and 

food crops (carrots, cabbages, maize, onions) (§6.3) is also a potential 

source of high nitrogen concentrations. The low nitrogen loading on the 
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Amala and Lower Mara subbasins may be attributed to deforestation and 

sparse population density. The spatial distribution of the total phosphorus 

(TP) is biased to the type of agricultural activities. There is a high TP 

concentration at the confluence of the Nyangores and Amala rivers and 

also in the Upper Amala regions. These are areas with large-scale 

mechanised farming. At the confluence, there are large scale commercial 

farms under irrigation (Hoffman, 2007). The Upper Amala regions are also 

characterized by large wheat/barley cultivation where large quantities of 

commercial fertilizers are potentially used (Fig. 6-7). Phosphorus is 

usually the limiting nutrient for eutrophication. Soil analysis in the study 

area have shown that all the sites that were sampled in the mixed farming 

zones are deficient in phosphates (see §6.2)  
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Table 6-3: Mean (±SD) physico-chemical water quality parameters for the major sites sampled on the Mara, and its Nyangores and Amala 

tributaries. 

 

     Sampling sites 

         
Parameter K1 K2 K3 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 

pH 8.31 7.78 7.67 7.8± 

0.33 

7.52 7.5± 

0.4 

7.8± 

0.37 

7.4± 

0.21 

7.49 7.97 7.5± 

0.3 

7.4± 

0.18 

7.64 7.46 7.32 7.81 

EC 
(µS/cm) 

417 114.8 86.7 78.7 84.8 54 ±  
4.6 

87 ±  11.6 74±  
6.8 

42.4 166.7 154± 
29 

66± 
13 

154 131±30 105.3 96.4 

TN (mg/l) 

0.65± 

0.81 

0.48± 

0.15 

0.32 1.1± 

1.3 

0.08 0.29± 

0.32 

0.46± 

0.33 

0.70±0.

53 

  0.6± 

0.58 

0.64±0.

23 

0.06±0.

05 

0.51±0.

26 

 0.28±0.

23 

TP (mg/l) 0.45± 
0.56 

0.56±0.
76 

0.03 0.53± 
0.52 

0.21± 
0.03 

0.28± 
0.50 

0.23± 
0.39 

0.37±0.
42 

0.13  0.42± 
0.6 

0.26±0.
37 

0.28±0.
11 

0.31±0.
36 

 0.32±0.
24 

Colour 150 < 5 < 5 < 5 < 5 < 5 10 10 < 5 < 5 150 < 5 50 1050 < 5 < 5 

Turbidity 

(NTU) 

104 6 9 53 12 36 51 63  14 1435 41 1690 1970 5 10 

Pmv mgO2/l 79 1.9 1.58 2.7 1.9 2.7 3.1 9.1 1.9 1.9 91 3.9 94 9.1 1.58 2.7 

Fe (mg/l) 3.2 0.26 0.21 0.64 0.78 0.54 1.6 2.6 0.8 0.71 16 2.1 18.3 15.9 0.63 0.6 

Mn (mg/l) 0.2 0.06 < 0.01 0.06 0.07 0.64 0.18 0.32 0.24 1 1.8 0.28 1.2 1.6 0.08 0.24 

Ca (mg/l) 22.4 4.8 6.4 5.6 4.8 6.4 7.2 7.2 0.8 11.2 3.2 6.4 12.8 9.6 6.4 4 

Mg (mg/l) 5.4 0.49 0.98 0.49 0.49 0.98 0.49 0.49 1.46 3.4 2.43 1.95 5.84 1.46 1.95 2.43 

Na (mg/l) 59 19.5 10.4 10.5 12.8 10.5 11.52 12 5.8 18.4 6.2 9.4 8.9 12 12.7 12.6 

K (mg/l) 1.4 0.8 0.6 0.6 0.4 0.8 0.6 0.6 0.4 1 0.6 0.6 1.1 1 0.8 0.6 

Hardness 

(mgCaCO3/l) 

78 14 20 16 14 20 20 20 8 42 18 24 56 30 24 20 

Alk 122 46 36 38 30 36 32 40 20 72 40 34 12 42 42 42 

Cl
-
 (mg/l) 36 4 4 1 3 3 4 4 0 7 11 3 14 6 4 3 

F (mg/l) 1.4 0.38 0.3 0.31 0.5 0.42 0.28 0.33 0.28 0.35 0.98 0.3 1 1.3 0.38 0.24 

NO3
-
 (mg/l) 2 0.98 0.21 0.35 1.8 1.3 2.3 0.21 0.21 0.18 2 1.8 2.7 0.98 0.8 0.36 

SO4
2-

 (mg/l) 23.4 0.86 1.43 < 0.3 1.7 < 0.3 < 0.3 < 0.3 0.86 < 0.3 < 0.3 < 0.3 31.4 < 3.0 2.28 <0.3 

F CO2 Nil 4 4 4 4 4 4 4 4 8 4 4 4 8 12 4 

TDS (mg/l) 259 71 54 49 53 54 57 58 26 103 40 56 96 71 65 60 



69 
 

 

Figure 6-7: Spatial distribution of Total Nitrogen (above) and Total Phosphorus (below) 
loading on rivers in the Upper Mara basin  
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6.4.4 Temporal variation of the water quality  

There is seasonal (rainy/dry) variation in the physico-chemical quality of 

the river. The electrical conductivity was generally lower in the wet rainy 

season for the primary sites due to the effects of dilution. The nutrient 

concentration levels are very precipitation sensitive with the lowest 

records corresponding with the dry days and the highest with the wet 

days. The total nitrogen (TN) and total phosphorus (TP) concentrations 

ranged from 0.04 mg/l to 2.02 mg/l, and 0.01 to 3.4 mg/l respectively. 

The level of variability over time and space is best represented by 

comparing the different sites downstream by use of a box plot (95% 

confidence interval) (Fig. 6-8). The sites of Masese and Matecha, located 

close to the forested area, have the lowest temporal variation, while the 

stations located downstream in the agricultural and densely populated 

areas have not only the highest variability ranges but also the higher 

recorded concentrations for both TP and TN. Over the study period, the TN 

was more variable than TP for all the sites investigated. In the forested 

areas, there are stable and small fluctuations in the nutrient level. 

 

 

Figure 6-8: Spatial (downstream from right ) and temporal (box-height) variation in total 
phosphorus (TP) and total nitrogen (TN) for three key sites on the Nyangores (left) and 

Amala (right) tributaries 

The high variability of TN at Matecha -located in the forested area- is 

caused by the presence of large amounts of animals that drink directly in 

the river, as well as by irrigated vegetable farms in the vicinity. These 

man-made activities may have contributed to the increased pulses in TP 

concentrations. The effects of the rainfall on the nutrient concentration 

were assessed at the Masese monitoring station over a period spanning 
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both the dry and the wet seasons. Both nutrients (TP and TN) show the 

highest concentrations at the onset of the rainy season in March and April. 

In February, the driest month, the nutrient concentrations are low.  

The highest determined TP levels, on 24th of March 2011, happened one to 

two days after a storm during which more than 40mm of rainfall fell down 

within 24 hrs. Similar events were experienced at Bomet on and around 

the 21st of April 2011. The inability to exactly capture the peak nutrient 

fluxes is due to the manual sampling equipment used. Since limitations in 

the knowledge of temporal lags in chemical transport and their causes 

create uncertainties in the periods over which steady-state conditions 

apply (Schwarz et al., 2006), an automatic sampling protocol should be 

used to reduce these uncertainties. 

6.5 Conclusion 

The soil in the Upper Mara basin are generally of good quality, although 

they are deficient in  phosphorous, a key limiting nutrient. Crop yields in 

the basin are above the national levels. There is considerable use of 

fertilizers especially in the upper reaches of the basin. Although the 

concentration for both total phosphorous and total nitrogen remain low (< 

1 mg/l), the concentrations during the wet season are beyond the levels 

for natural systems, suggesting the influence of anthropogenic 

interference in agricultural streams. At the current levels of the nutrient 

concentrations and compared with similar landcover types especially in 

the developed countries, the adverse impacts of land-use and 

management practices on the water quality status of the river are 

minimal. 
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7. Trend Analysis for Assessment of Climate Variability 

 7.1 Introduction 

According to Osima et al., "In order to detect climate change at a place, 

rigorous statistical analysis and tests should be performed on 

climatological variables. Such analysis should include: trends, long term 

mean change in a climatic variables, changes in frequency and severity of 

extreme events, temporal distribution of climatic events like rainfall onset 

and cessation dates, including shifts in seasons".  

A trend is a significant change over time exhibited by a random variable, 

detectable by statistical parametric and non-parametric procedures, 

(Longobardi and Villani, 2010). According to Sonali and Kumar (2013), 

there are two common statistical approaches for trend detection in 

climatic variables. The slope based tests, including least squares linear 

regression and Sen’s robust slope estimator, need to satisfy both 

distributional and independent assumptions. Rank-based tests, including 

Mann–Kendall and Spearman rank correlation are nonparametric and need 

to satisfy independent assumptions only. In case of violations of the 

assumptions of independence of observations, the serial correlation can be 

removed by pre-whitening the series or pruning the data set to form a 

subset of the observations that are sufficiently separated temporally to 

reduce the autocorrelation (Burn and Elnuur, 2002). Statistical approaches 

which consider the effect of serial correlation include: the pre-whitening, 

trend-free pre-whitening, variance correction approaches (Hamed and 

Rao, 1998), modified Mann-Kendall (Yue and Wang, 2004), and block 

resampling techniques.  

For trend analysis in the study, six rainfall gauging stations situated within 

the study area and which have longer term data (>30 yrs) were used. 

Since no temperature measurements were available within the basin, 

three meteorological stations which sandwich the study area between 

them were used for the temperature trends analysis. For the vegetative 

trends analysis, NDVI data from the SPOT-VEGETATION sensor was used. 

A summary of the trends analysis details is given in Table 7-1. While the 

locations of the stations and the characteristic of the data used are given 

in Fig 7-1. 
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Table 7-1: Variables and methods were used for the trend analysis. 

  Variable Data range Method(s)  used  

 Climatic variables 
  1 Rainfall 1962 - 2008 Mann-Kendall 

 

  
Sen's Slope  

2 Temperature 1993 - 2009 Mann-Kendall 

 

  
Sen's Slope  

 Vegetation variables 

  3 NDVI 1999  -2010 Seasonal NDVI 
 

  

Integrated NDVI 

 

  
Vegetation condition index 

 

  

Standard condition index 

 

  

Vegetation productivity 

indicator 
4 Landcover change 

   Landsat 

MSS/TM/ETM+ 1976 - 2006 Post classification 

      Three date NDVI-RGB 

7.2 Trend analysis using climatic variables 

Kenya experiences a bimodal rainfall distribution with long rains in March, 

April, May (MAM), and short rains in October, November, December 

(OND). The major systems that influence the climate include the 

InterTropical Convergence Zone (ITCZ), Sub Tropical High Pressure 

systems (STHP), El Niño/Southern Oscillations (ENSO), Monsoon winds, 

tropical cyclones, the Indian Ocean, Lake Victoria circulation and the 

regional topography. 

Trend analysis for climatic variables was based on the nonparametric 

Mann-Kendall test for the trend and the nonparametric Sen’s method for 

estimation of the magnitude of the trend. According to Salmi et al. (2002), 

in the Mann-Kendall test, missing values are allowed and the data do not 

need to conform to any particular distribution. The Sen’s method is not 

greatly affected by gross data errors or outliers, and can be computed 

when data are missing. The mann-Kendall test is used specifically to 

determine the central value or median changes over time (Helsel and 

Hirsch, 2002), and the statistic Z (or S if sample size, n<10) is given by: 
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Figure 7-1: Location of the gauging stations and the range in the datasets used in the trend analysis 
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   --------------------------------------------7.1 

Where:  

            
  
  
   

 
     
     
     

----------------------------------------------7.2 

For a time series xk, k = 1, 2… n.  

When n ≥ 10, S becomes approximately normally distributed with mean = 

0 and variance as: 

  
   

                           

  
---------------------------------------7.3 

Where: t is the extent (number of x involved) of any given tie and ∑ 

denotes the summation over all ties. Then Zc follows the standard normal 

distribution where:  

    

 
 

 
     

  
    

     
     

  
   

 -------------------------------------------------7.4 

The null hypothesis that there is no trend is rejected when: 

          
 
----------------------------------------------------------7.5 

Where, Z is the standard normal variate and α is the level of significance 

for the test. At certain probability level H0 is rejected in favour of H1 if the 

absolute value of S equals or exceeds a specified value Sα/2, where Sα/2 is 

the smallest S which has the probability less than α/2 to appear in case of 

no trend. A positive (negative) value of S indicates an upward (downward) 

trend. 

The Sen’s method uses a linear model for the trend. The magnitude of 

trend is predicted by the Sen’s estimator. The slope (Ti) of all data pairs is 

computed as 

    
     

   
 ------------------------------------------------------7.6 

For i = 1, 2… N. 

Where: xj and xk are considered as data values at time j and k (j>k), 

correspondingly. 

The median of these N values of Ti is represented as Sen’s estimator of 

slope which is given as: 
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 --------------------------------------7.7 

A positive value of β indicates an increasing trend whereas a negative 

value indicates a decreasing trend.   

According to Hamed and Rao (1998) and Yue et al. (2002), trend 

detection in a series is largely affected by the presence of autocorrelation. 

Autocorrelation is either positive or negative, and is the correlation of a 

time series with its own past and future values. A positive autocorrelation 

is a specific form of “persistence”, a tendency for a system to remain in 

the same state from one observation to the next. With a positive 

autocorrelation in the series, the possibility for a series to be detected as 

having a trend is higher; this may not always be true. With a negative 

autocorrelation, the possibility of a series to be detected is less, hence an 

existing trend maybe missed.  

The graphic method(s) and the Durbin Watson (DW) statistic (Durbin and 

Watson, 1951) are the commonly applied methods to test for serial 

correlations in a time series. The graphic methods for assessing the 

autocorrelation of a time series are: the time series plot, the lagged 

scatterplot, and the autocorrelation function. The autocorrelation function 

was carried out on evenly sampled temporal/stratigraphic data. The lag 

times τ up to n/2, where n is the number of values in the vector, are 

shown along the x axis, the autocorrelation function is symmetrical around 

zero (Davis, 1986). 

In the DW method, the statistic d provides a test of the null hypothesis 

Ho: ρ =0 in the following specification for the error terms, µi= ρµi-1+ εt. If 

the test is rejected, there is evidence for first-order serial correlation. By 

checking the DW table for critical values, the above hypothesis can be 

tested.  

   
          

 

   
 ------------------------------------------------------7.8 

ρ   
          

   
 --------------------------------------------------------7.9 

Where: ρ= estimated serial correlation coefficient, and d= 2(1-ρ), If there 

is no serial correlation, ρ=0, then d=2, If there is positive serial 

correlation, ρ>0, then d<2, If there is negative serial correlation, ρ<0, 

then d>2. 

In order to test for the serial correction; 
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Test :oH  =0 against : 0AH    and :oH  =0 against : 0AH    for positive 

and negative serial correlation, respectively. The critical values, Ld  and ud  

at  of 1%, 5% or 10%, and note k  is the number of coefficients in the 

regression excluding the constant.   

For the positive correlation, the null is rejected if Ld d , if Ud d , the null is 

not rejected, if L Ud d d  , the test is inconclusive, while for negative 

correlation, the 4-d is computed and the null is rejected if; 4 Ld d  . If 

4 Ud d  , the null is not rejected, if 4L Ud d d   , the test is inconclusive. 

The decision zones for the DW test are summarized in Fig 7-4.  

 

7.2.1 Rainfall trend analysis 

Trend analysis for rainfall data was performed for 6 stations namely: 

Baraget, Kiptunga, Olenguruone, Tenwek, Bomet and Narok, which have 

relatively long term data records. The analysis was done for monthly, 

seasonal and annual rainfall. Trend analysis was performed for the wet 

seasons of October, November and December (OND) and March, April and 

May (MAM), as well as the dry seasons December, JanuaryandFebruary 

(DJF) and June Julyand August (JJA). The summary of the results of the 

mann-Kendall trends (Z) and the Sen Estimator (Q) are given in Table 7-

2. 

Rainfall gauging stations Baraget and Olenguruone in the upper part of 

the catchment have significant of decreasing trend in rainfall at both the 

95 and 99% confidence levels. Olenguruone has significant decreasing 

trend at three months in a year. The dry seasons of DJF and JJA have a 

significant decreasing trend in rainfall at 95 and 99% confidence level 

respectively. The other station experiencing a decreasing trend is the 

Baraget station. In contrast to Olenguruone the station has a significant 

trend (95% and 90) in the wet MAM and OND season respectively. 

Elsewhere, stations in the midsections of the basin namely Bomet and 

Tenwek have not changed significantly even at the 90% confidence level. 

In the semiarid regions, the Narok station has had significant decreasing 

trends in annual rainfall at 90% confidence level. All stations have a 

decreasing trend for the MAM rainfall season. Only Bomet station has an 

increasing trend for the DJF, which is however insignificant. The overall 

annual outlook for the basin is a decline in rainfall with the Sen's 

estimator for the true slope of the linear trend (change per unit time 

period) indicating a rate of 3mm/yr to as high as 18mm/yr (Fig 7-2).  
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The decreasing trend is consistent with the analysis performed by Funk et 

al. (2010) for the MAMJ period for 1970-2009 over the entire maize 

surplus region in Kenya, which also include the study area. They linked 

the decline in rainfall amounts to the warming of the Indian Ocean. Kizza 

et al. (2009) in a study of trends in the lake Victoria regions found Sotik 

and Kericho stations located in close proximity (ca. 50km) to the study 

area to have experience mixed trends over a time from 1925. In the 

periods 1941-1980, 1961-1990 there was no change in the trends. There 

was, however, a negative change (decline) in rainfall in the period 1971 – 

2005. Mote and Kasser (2007) blamed human activities for being the main 

cause of deforestation, and relate the decrease in rainfall to deforestation 

around the Kilimanjaro mountain.  

According to Bruijnzeel and Proctor (1995), in tropical montane forests the 

trees intercept mist and this source of moisture is lost after logging. The 

“mist harvesting” effect amounts to between 5 and 20 percent of total 

precipitation. By pumping enormous amounts of atmospheric moisture 

from the ocean, a forest regulates precipitation to be spatially uniform 

over the entire catchment; moisture is then returned to the ocean in the 

liquid state as runoff. Forest climate control by precipitation prevents 

moisture shortage and droughts, as well as excessive precipitation and 

floods (Makarieva and Gorshkov, 2010). Water vapour emitted from the 

trees through evapotranspiration stimulates rainfall whilst the roots 

reduce the risks of floods and drought by storing water and binding 

topsoil. Deforestation disrupts this cycle, leading to a reduction in regional 

rainfall. 

The Mau forest areas have behaved in the same manner as analysed by 

Makarieva and Gorshkov, 2010. There is reduction in the amount of 

rainfall  of upto 18mm/yr (translating to a high of 900mm in 50 yrs). The 

high drop in the rainfall may be attributed to both the actual decline in 

precipitation amount or to a lesser extent the quality of available data 

including missing data. During the generation of annual rainfall, years with 

more than 15 consecutive days of missing data were skipped.Locals living 

within the Mau forest area attest to witnessing declining  rainfall amounts 

but their claims could not independently verified. 

http://www.scidev.net/en/agriculture-and-environment/deforestation/news/deforestation-reduces-rainfall-in-tropics-says-study.html
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Table 7-2: Mann-Kendall (Z) and Sen estimator (Q) results for selected rainfall gauging stations (****trend at α = 0.001 level of 

significance, *** trend at α = 0.01 level of significance, ** trend at α = 0.05 level of significance, and * trend at α = 0.1 level of 
significance). 

      
Gauging stations 

     Month Narok   Tenwek   Bomet   Kiptunga   BARGET   Olenguruone   

   Z Q  Z Q  Z Q  Z Q  Z Q  Z Q 

Jan -0.31 -0.19 0.99 0.87 0.84 0.67 0.13 0.04 -0.77 -0.49 -0.72 -0.30 

Feb -0.41 -0.26 0.19 0.35 0.71 0.58 -1.11 -0.37 0.46 0.19 0.04 0.05 

Mar -0.01 0.00 0.26 0.30 -0.48 -0.44 -0.66 -0.33 -0.60 -0.35 -0.48 -0.35 

Apr -0.98 -0.64 -0.41 -0.52 -1.30 -1.47 -1.43 -1.46 -1.05 -1.39 -0.80 -1.17 

May -0.65 -0.44 -1.21 -1.19 1.58 1.60 -0.77 -0.51 -2.2** -2.21 -2.68*** -3.44 

Jun -1.51 -0.27 1.28 0.66 -1.95* -0.97 -0.57 -0.32 1.29 0.88 -1.19 -0.62 

Jul -0.22 -0.02 -0.15 -0.12 -1.03 -0.48 0.62 0.38 -0.07 -0.04 -2.27** -1.73 

Aug 0.73 0.14 1.74* 1.05 0.73 0.56 -0.03 -0.03 -1.10 -0.95 -1.96* -1.91 

Sep -0.78 -0.14 0.11 0.09 0.69 0.31 -1.18 -0.68 -0.83 -0.63 -1.54 -1.46 

Oct -1.10 -0.19 0.53 0.29 -1.27 -0.83 0.19 0.07 -1.08 -0.65 -0.30 -0.25 

Nov -0.54 -0.23 0.76 0.92 1.21 1.44 0.03 0.01 -1.10 -0.74 -0.81 -0.55 

Dec -0.97 -0.51 -0.79 -0.72 0.06 0.09 -0.35 -0.19 -0.40 -0.23 -0.86 -0.50 

Seasons 
            DJF -1.13 -1.35 -0.13 -0.33 -0.27 -0.56 -0.30 -0.43 -1.54 -3.00 -2.50** -4.74 

MAM -0.60 -0.90 -0.73 -1.54 0.27 0.77 -1.59 -2.56 
-

2.47** -4.73 -1.51 -3.05 

JJA -1.03 -0.33 0.55 0.62 -0.51 -0.76 0.71 1.12 -0.06 -0.14 -3.58**** -8.18 

OND -1.40 -1.21 0.40 0.87 0.74 1.43 -0.30 -0.43 -1.81* -2.00 -1.39 -2.63 

Annual -1.72* -3.19 -0.69 -1.96 0.31 0.95 -1.38 -4.85 
-
2.36** -9.19 -3.06*** -18.34 
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Figure 7-2: The Sen slope (line) for the observed rainfall data in stations within the Upper Mara basin. 
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7.2.2 Autocorrelation test 

The graphical autocorrelation test (Fig. 7-3) indicates that the data from 

all the stations is symmetrical around zero at a 95% significance. A 

predominantly zero autocorrelation signifies random data and non serial 

correlation. 

 

Figure 7-3: Graphical method for positive autocorrelation test of  annual rainfall 

 

 

Figure 7-4: Decision chart for the Durbin Watson statistic analysis of autocorrelation 

The results of the autocorrelation as determined by the DW statistics 

indicate that the rainfall is not serially correlated. The statistic tested the 

violation of an assumption of Ordinary Least Squares (OLS) regression for 

residuals in the data. Five of the six stations have d-values very close to 

the zero autocorrelation value of d=2, as shown in Table 7-3. These five 

stations have d-values either greater than dupper for those with d<2, or 

less than 4-dupper for those with d>2. This implies that the stations have 

time series data which satisfy the condition for a zero autocorrelation at 

95% confidence level. For the Bomet station, d>4-dLower, hence the time 

series has a clear negative autocorrelation at 95% confidence level. 

Although the Mann-Kendall trend test indicated that Bomet has a non 

significant increasing trend even at 10% significance level, this trend may 

have been missed due to the negative autocorrelation of the data series.  
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Table 7-3: Autocorrelation analysis with the Durbin Watson statistics. 

 

calculated 

Positive 

autocorrelation 

Negative 

autocorrelation 

Station d- value dLower dupper  4-dupper  4-dLower 

Barget 2.052 

  

2.481 2.598 

Kiptunga 1.839 1.475 1.566 

  Olenguruone 1.679 1.442 1.544 

  Tenwek 2.288 

  

2.456 2.558 

*Bomet 2.679 

  

2.456 2.558 

Narok 1.589 1.503 1.585     

 

7.2.3 Temperature trend analysis 

To determine the trend in minimum and maximum temperatures, the 

average monthly and annual temperatures were established for Kisii, 

Kericho and Narok stations, which though not located within the study 

area, are strategically located round the basin, and are the only station 

with long term temperature data (1992-2009). The trend analysis and the 

estimated quantity of the change are given in Table 7-4. The Mann-

Kendall trend indicates that the annual minimum temperatures have 

increased significantly with 95%  significant level for Kisii and Kericho 

stations and 99% for the Narok station (Fig 7-5).  

The significant increases in the minimum temperatures have been 

observed between the months of July and November for all the stations. 

There is no significant change in the maximum temperature over the 

study period. The Mann-Kendall statistic has a Z~0 for Kisii and Narok 

indicating there is no direction in the trend. Kericho has a positive 

increasing trend although insignificant even at 90% significance level. The 

month of April has experienced a negative Z score in the monthly 

maximum temperatures for two of the three stations with the decline in 

Narok being significant at α = 0.1  
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Figure 7-5: Mann – Kendall trend analysis for mean annual minimum and maximum 
temperatures 
 

The rate of change in minimum temperature ranged between 0.02 to 

0.040C (Fig 7.6), while the maximum temperature changed between 0.01 

to 0.02. Hulme et al., 2001 have shown that Africa has experienced an 

increase in temperature of 0,05°C per decade in the 20th century. While 

the changing climate may be responsible for the rise in temperature, 

anthropogenic causes may also be playing a significant role. The increase 

in temperatures may be partly explained by the increase conversion of 

landcover type from permanent cover types like forest and shrubs to 

cultivated fields. According to Pokorný, 2010, "transforming landscapes 

from forest to field has at least as big an impact on regional climate as 

greenhouse gas–induced global warming". 

Hesslerova and  Pokorny, 2010, Pokorný, 2010, compared the surface 

temperature of tea plantations, rain forest; and farmland. Despite having 

the highest amount of chlorophyll (being the greenest), the temperature 

of tea plantations ranges between 30 –35 °C, that is more than in case of 

forest. The highest temperature is characteristic for the crops (35 –45°C), 

depending on the crop cover, type, wetness, and other factors. This shows 

that the surface temperature depends on the type of land cover and 

confirms forests as the coldest landscape segments. 
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Figure 7-6: The increment in minimum temperature (line) for the stations located around the Upper Mara basin. 
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7.2.4 Spatial distribution of the climate change 

The spatial extend of the trends in the temperature and rainfall was 

assessed by ploting the quantity of change in the climatic variables given 

by the Sen’s slope in the trend analysis on the basin map. The rainfall 

decreases outwards from the Olenguruone station which has the highest 

decrease to Bomet where a slightly positive trend  is observed (Fig 7.7). 

The  Colonial Government’s setting up of the Olenguruone Settlement 

Scheme in 1941 for the resettlement of natives displaced by the white 

settlers in the tea growing zones in Kericho/Tinet area (Kimaiyo, 2004). 

The land resettlement exercise intensified between 1969-1991 with more 

conversion of forest to agricultural land (Jama 1991).  

 

Figure 7-7: Spatial variability of the changes in rainfall for stations within the Upper Mara 
basin (1962-2008 
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Table 7-4: Mann-Kendall (Z) and Sen estimator (Q) results for selected temperature gauging stations (****trend at α = 0.001 level of 

significance, *** trend at α = 0.01 level of significance,** trend at α = 0.05 level of significance, and * trend at α = 0.1 level of 
significance). 

Gauging stations 

Month 

 

 Kisii 

   

 Kericho 

   

Narok 

  

 

 Zmin_temp Q min_temp  Zmax_temp Q max_temp  Zmin_temp Q min_temp  Zmax_temp Q max_temp  Zmin_temp Q min_temp  Zmax_temp Q max_temp 

Jan 1,22 0,037 1,22 0,095 0,68 0,021 -0,37 -0,030 0,62 0,064 -0,29 -0,015 

Feb 1,13 0,022 0,68 0,048 0,83 0,053 0,29 0,026 0,50 0,026 0,14 0,023 

Mar 0,68 0,015 -0,59 -0,033 0,23 0,015 -0,23 -0,010 1,28 0,076 -0,87 -0,047 

Apr 1,40 0,027 0,05 0,005 0,76 0,027 -0,53 -0,022 0,12 0,007 -1,77* -0,071 

May 0,77 0,012 1,31 0,050 1,44 0,036 -0,12 -0,004 0,41 0,021 0,50 0,012 

Jun 0,90 0,012 1,08 0,041 -0,19 -0,005 0,45 0,019 -0,70 -0,044 -0,78 -0,021 

Jul 3,20*** 0,039 -0,05 -0,005 0,68 0,023 2,18** 0,047 0,29 0,015 0,62 0,014 

Aug 2,48** 0,047 -0,30 -0,019  1,06 0,021 0,70 0,032 2,43** 0,085 0,37 0,016 

Sep 0,99 0,019 0,20 0,010 2,12** 0,058 0,12 0,001 3,17*** 0,166 -0,37 -0,012 

Oct 2,03** 0,029 0,23 0,041 0,45 0,016 0,23 0,008 2,48** 0,143 -1,29 -0,028 

Nov 2,21** 0,030 0,14 0,013 -0,23 -0,003 0,68 0,031 0,37 0,060 1,40 0,060 

Dec 0,44 0,020 -0,59 -0,043 0,98 0,025 0,45 0,027 0,30 0,034 0,99 0,099 

Annual 1,85* 0,022 0,68 0,012 1,89* 0,029 1,44 0,020 2,18** 0,037 0,00 -0,001 
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7.3 Trend analysis using vegetation indices 

Vegetation indices are quantitative measurements indicating the vigour of 

vegetation. They show a better sensitivity than individual spectral bands 

for the detection of biomass. Satellite sensor derived NDVI and other 

related remote sensing data have been successfully used to identify and 

monitor areas affected by drought at regional and local scales (Bayarjargal 

et al., 2006). The use of satellite data has become a common process in 

the quantitative description of vegetation. 

The interest of these indices lies in their usefulness in the interpretation of 

remote sensing images. They constitute notably a method for the 

detection of land use changes (multitemporal data), the evaluation of 

vegetative cover density, crop discrimination and crop prediction. An 

earlier comprehensive review of vegetative indices was performed by 

Bannari et al. (1995) with Pettorelli et al. (2005) reviewing their usage in 

assessing environmental conditions.  

The NDVI can be used for accurate descriptions of the continental land 

cover, vegetation  classification and vegetation phenology and for the 

effective monitoring of rainfall and drought, the estimation of net primary 

production of vegetation, crop growth conditions and crop yields, for 

detecting weather impacts and other events important for agriculture, 

ecology and economics. A time series of NDVI images shows the temporal 

behaviour of the vegetation performance, the vegetation dynamics which 

can be quantified by applying a rendering analysis to the time series of 

the NDVI images. The coupling of the NDVI time series to climate 

parameters, establishes a relationship between the vegetation dynamics 

and climate simultaneously in spatial and temporal scales (Roerink et al., 

2003).  

Roerink et al. (2003) used the NOAA AVHRR NDVI for two regions in 

Europe (1995-1997) and the Sahel (1992-1993) to quantify the spatial 

and temporal relationships between climate variability and vegetation 

dynamics. They used the HANTS algorithm (Verhoef, 1996) to derive time 

series of NDVI images with the number of frequencies set at 3; the mean 

NDVI (frequency=0), the yearly amplitude (frequency=1), and the 

amplitude over 6 months (frequency=2), a climate indicator (CI) has been 

formulated from meteorological data (precipitation over net radiation). A 

strong correlation was found between the NDVI Fourier components (FC) 

of the vegetation dynamics and the CI. Zhou et al. (2003) used a 

statistical analysis to estimate the relation between the NDVI and climate 

by land cover type in order to quantify the effects of the climate and other 

variables on the inter-annual variations in satellite measures of vegetation 
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at the regional scale. The results indicated that temperature changes 

between the early 1980s and the late 1990s are linked with much of the 

observed increase in satellite measures of northern forest greenness. They 

argued that a statistical meaningful relation does not imply causation. 

Indeed, physical theory indicates that two directions of causality are 

possible.  

There are ecological and physical mechanisms by which climate can affect 

plant growth and there are physical and ecological mechanisms by which 

plant growth can affect climate. Davenport and Nicholson (1990) 

investigated the relation between NDVI and rainfall in East Africa. It was 

observed that the best relationship is obtained with multi-month rainfall 

totals and with NDVI lagging rainfall, the highest correlation being with 

rainfall plus two previous months (Davenport and Nicholson 1990). 

Kinyanjui (2010) observed rainfall to be very variable in Kenya and to 

have a major impact on the vegetation status, leading to large changes in 

NDVI from year to year, and making it quite difficult to identify trends. 

The study recommended obtaining rainfall data and examining the 

relationship between NDVI and rainfall.  

7.3.1 NDVI and Rainfall 

Rainfall data from four stations (Narok, Nyangores, Kiptunga and Bomet) 

having a good data range for the period (1999-2010) and the NDVI data 

obtained from SPOT-VEGETATION sensor (§4.2.3.2.1) at the location of 

the rainfall station, were used to relate NDVI and rainfall. The dekadal 

composites for the rainfall stations were generated by accumulating the 

daily rainfall amount in the dekad. The relation between the dekadal 

rainfall and the NDVI composites is shown in Fig 7-8. There is a weak 

relation between the dekadal rainfall and the NDVI, in which the scatter 

plot shows a log-linear response. To improve the relationship between 

NDVI and rainfall, various studies have processed the daily rainfall into a 

series of monthly combination. The monthly rainfall has been used in the 

concurrent month (lag 0, one month earlier (lag 1), two months earlier 

(lag 2), and three months earlier (lag 3). Combination of (Lag0+lag1, 

lag0+lag1+lag2, lag0+lag1+lag2+lag3, lag1+lag2+lag3) leading to multi-

monthly series have also been used. 
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Figure 7-8: Dekadal rainfall and NDVI for the growing period 1999-2008 

Davenport and Nicholson (1990) found a high correlation between rainfall 

and ten different vegetation types in East Africa. The best correlation was 

in two to three multimonths preceding rainfall in the semi-arid regions of 

eastern Africa. Hashemi (2011) studied NDVI and rainfall correlation in 

Azerbaijan. In addition to the monthly and multimonth lagging, he also 

used the logarithm of multi-monthly rainfall for previous months. The 

correlation between rainfall and NDVI of different landcover types 

increased marginal from 0.68 using the preceding two month multimonth 

data to 0.71 with the logarithm series of the same two-month multi-

month. Richards and Poccard (1998) in southern Africa indicated that the 

accumulation of rainfall (multimonth rainfall) for upto three months gives 

a high correlation (R2=0.82). In the Upper Mara basin, both the single one 

to three months (lag0 –lag3) method, and the accumulation of rainfall 

(multi-months) method were used to assess the correlation between NDVI 

and rainfall. All months (lag 0 - lag 3) gives poor correlation between the 

rainfall and the NDVI (Table 7-5). The best correlation (r=0.4) between 

the two variables was obtained for three months preceeding the current 

month in grass landcover type and the Bomet station. The corrrelation 

between the NDVI and the preceeding rainfall for the different lag 

combinations is given in Table 7-5. This apparent poor correlation 

between rainfall and NDVI in the study area indicates the existence of a 
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more complex relationship that may not be explained by simple linear 

regressions. The average rainfall in the study area is 1200mm, with some 

stations averaging as high as 1800mm. This high average annual rainfall 

in the study area is outside the margins set out by previous studies.  

According to Davenport and Nicholson (1990), strong similarity between 

temporal and spatial patterns of NDVI exists when the annual rainfall is 

below 1000mm and the monthly rainfall does not exceed 200mm. Above 

this threshold value, saturation occurs. In a study in southern Africa 

(south of 15oS) by Richards and Poccard (2010), weak correlations in 

areas experiencing annual rainfall above 900mm were also reported. 

According to Davenport and Nicholson, (1990), the saturation response 

has two interpretations: 1) the constancy of NDVI above this saturation 

threshold means that at high canopy densities, additional growth has a 

diminishing influence of photosynthetic activity (assessed directly by 

NDVI). 2) the saturation response indicates that growth limitations are 

imposed by other factors rather than rainfall. The NDVI information in this 

study was generated for the vegetation type at the location of the 

stations. Due to the considerable impact of human influence on the 

vegetation and the relatively small sizes of the land holding, the NDVI 

signal may not be a true representation of either pure land cover type or 

natural vegetation cover.  

7.3.2. Seasonal variation in NDVI (1999-2010) 

The study area is generally characterized by bimodal rainfall, with MAM 

and OND being the wet periods, and JJAS as the long dry period. The MAM 

rain period shows a fairly stable vegetation response for all the vegetation 

types. The same stability is also witnessed in the JJA seasons. The OND 

season has a strong variability for all the vegetation types. A main dip of 

the NDVI in OND was experienced in 2002, with no noticeable variability 

in the MAM and JJA periods (Fig 7-9). The NDVI values were higher in 

MAM than the other periods, surprisingly, and more so for the annual 

vegetation types, in some years the supposedly dry season JJA has higher 

NDVI values than even the wet OND season. Trends analysis of the 

seasonal NDVI shows that all the vegetations types had an upward trend 

in the accumulated seasonal NDVI (Fig 7-10). Forest and crop cover types 

had a significant (α = 0.05) increase in seasonal NDVI in the MAM and 

OND seasons respectively. 
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Figure 7-9: Seasonal variation in NDVI for the different vegetation types 

 

Figure 7-10: Trend analysis for the accumulated seasonal NDVI (1999-2010). 
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Table 7-5: NDVI and rainfall correlation at different lag periods. 

Stations 

Landcover Narok Kiptunga Bomet 

type L0 L1 L2 L3 L0 L1 L2 L3 L0 L1 L2 L3 
NDVI_fores

t 0.1 0.0 -0.1 0.1 0.2 0.1 -0.1 -0.1 0.1 0.0 -0.1 0.0 
NDVI_conif

er 0.0 0.0 0.0 0.1 0.1 -0.1 -0.2 -0.2 0.0 0.0 0.0 0.2 

NDVI_crop -0.3 -0.3 -0.2 0.2 0.3 0.3 0.2 0.1 -0.2 -0.2 -0.1 0.3 
NDVI_gras

s -0.4 -0.2 0.0 0.4 0.3 0.2 0.1 0.1 -0.2 -0.1 0.1 0.4 
NDVI_shru
b -0.3 -0.2 -0.1 0.2 0.3 0.3 0.1 0.0 -0.2 -0.1 0.0 0.3 

 

Narok Kiptunga Bomet 

 

L0+L
1 

L0+L1+
L2 

L1+L2+
L3 

L0+L1+L2+
L3 

L0+L
1 

L0+L1+
L2 

L1+L2+
L3 

L0+L1+L2+
L3 

L0+L
1 

L0+L1+
L2 

L1+L2+
L3 

L0+L1+L2+
L3 

NDVI_fores
t 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.1 0.0 0.0 0.0 0.0 
NDVI_conif

er 0.0 0.0 0.1 0.0 0.0 -0.1 -0.2 -0.1 0.0 0.0 0.1 0.1 

NDVI_crop -0.3 -0.3 -0.1 -0.2 0.3 0.3 0.3 0.3 -0.2 -0.2 0.0 0.0 
NDVI_gras

s -0.3 -0.2 0.2 0.0 0.3 0.2 0.2 0.3 -0.1 0.0 0.3 0.2 
NDVI_shru

b -0.3 -0.3 0.0 -0.1 0.3 0.3 0.2 0.2 -0.1 -0.1 0.2 0.1 
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7.3.3 Weather and ecological components of NDVI 

To assess the environmental variability of the NDVI in plant productivity, 

the ecological component was separated from the weather effect by 

extracting the minimum and maximum NDVI values for each pixel and 

dekad. The capacity for plant communities to produce relatively high 

biomass amounts depends more on the total availability of heat and 

moisture over the same year, than on the conditions during one month of 

that year, or the anomalous conditions of the previous year. Several 

annual based indicators have been used to test this hypothesis and the 

results presented in Table 7-6. 

The NDVI annual integral (NDVI-I) is the annual integral of the NDVI 

calculated by summing up the products of the historical longterm mean 

NDVI for each period and the proportions of the year represented by that 

date Guerschman et al., (2003). The NDVI-I is a good estimator of the 

fraction of the photosynthetic active radiation absorbed by the canopy 

                      
  -------------------------------------7-1 

Where; n is the total number of composites per year, NDVIi is the ith 

composite and Ti is the proportion of the year covered by the ith 

composite.  

This is differentiated from the integrated NDVI (iNDVI) which is  the sum 

of positive NDVI values over a given period mostly annual, which is 

assumed to be a good indicator for the general land performance  (Klien 

and Roehring, 2008). 

                  
 ---------------------------------------------7-2 

The iNDVI values obtained for the study area are relatively high for all the 

land use types. This implies a healthy ecosystem which has generally little 

environmental stresses. Klein and Rohlinger (2003) found comparable, 

albeit lower iNDVI values for similar vegetation types in the transition 

zone from the semi-humid to the semi-arid climate of the Laikipia plains in 

Northen Kenya (Table 7-6). The higher iNDVI values in the Mara are due 

to the high rainfall experienced in the humid climatic zone. However, the 

grass land in the Mara study area is located in the semi-arid regions and 

thus the iNDVI for grassland is lower than that of the transition region in 

Laikipia. The relative range of the NDVI (RREL) proposed by Guerschman 

et al. (2003) corresponds to the difference between the maximum and 

minimum NDVI recorded in the year divided by the NDVI-I. Subtracting 

the minimum NDVI from the maximum is important since it allows for the 

separation of the variability of the NDVI related from the contribution of 
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background noise caused by bare soil or geographic resources in the 

estimation of weather induced impacts (Singh, 2003).  

        
               

      
    ------------------------------------7-3 

The higher RREL for grass shows a big difference between the maximum 

and minimum NDVI. During the wet season, the grass has full vegetative 

health and therefore high NDVI. In contrast, during the dry season, the 

grass dries out, leading to very a low NDVI. The integral NDVI is also low 

compared with the other land use types. 

Table 7-6: Selected indicators for annual NDVI analysis 

  

  

Indicators 

  Landuse 

type iNDVI Mara 

iNDVI 

Laikipia* NDVI-I RREL 

 

Mean SD Mean SD Mean SD Mean SD 

Forest 29.93 1.11 26.2 4.6 8.31 0.31 1.57 1.91 

Conifer 25.09 1.80 - - 6.97 0.50 2.17 1.71 

Crop 24.83 1.56 20.8 11.1 6.90 0.43 1.74 1.15 

Grass 20.33 2.84 21.6 8.3 5.65 0.79 5.74 2.44 

Shrub 26.13 1.60 18.7 15.5 7.26 0.44 0.88 0.59 

*(Klein and Rohlinger, 2003) 

Over the 12 years between 1999 and 2010, the general tendency for all 

the vegetation types is an upward trend, leading to an increase in the 

annual NDVI (Fig 7-11a). Although the duration under consideration is not 

long enough to draw a firm conclusion on the trend analysis, the general 

tendency is that the vegetation is growing healthier (Fig 7-11b). This may 

be due to increased carbon input leading to more photosynthesis in the 

natural vegetation or the introduction of better farming husbandry in the 

agricultural area, leading to more biomass production in crop vegetation 

types. The increase in the minimum temperatures to near required base 

temperatures for most vegetation types, especially in the upstream 

sections of the basin, indicates the increased potential for plant to grow all 

year round. 
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Figure 7-11: Time series  (A) and trends (B) in the annual accumulated vegetation health 
for different land cover classes over a 12 yrs period, crop and forest landcover types 
significant change ( α = 0.05 level of significance) 

 

 

15 

17 

19 

21 

23 

25 

27 

29 

31 

33 

19
99

 

20
00

 

20
01

 

20
02

 

20
03

 

20
04

 

20
05

 

20
06

 

20
07

 

20
08

 

20
09

 

20
10

 

In
te

rg
at

ed
 N

D
V

I/
yr

 

Years of observations 

A. iNDVI 

forest crop grass shrub 

0.00 

0.50 

1.00 

1.50 

2.00 

2.50 

iN
D

V
I_

fr
st

 

iN
D

V
I_

C
o

n
f 

iN
D

V
I_

cr
o

p
 

iN
D

V
I_

gr
as

s 

iN
D

V
I_

sh
ru

b
 

Z 
st

at
is

ti
c 

Landcover type 

B. Kendall statistic for integrated NDVI  
(1999-2010) 



96 
 

The success of using NDVI to identify stressed and unhealthy or damaged 

crops and pastures maybe be replicated in non-homogenous  areas where 

differences between the level of vegetation can be related to differences in 

environmental resources (Singh et al., 2003). In vegetated regions there 
is difficulty in detecting weather related NDVI fluctuations, since 

integrated area of the weather component is smaller than the ecosystem 

component. There is therefore, need to separate the weather from the 

ecosystem components of the vegetation. Commonly used indices that 
may perform the component separation include the Vegetation Condition 

Index (VCI), the Standard Vegetation Index (SVI) and the Vegetation 

Productivity Indicator (VPI). 

7.3.4 Vegetation condition index (VCI). 

The VCI is a normalization of the NDVI for each pixel based on minimum 
and maximum NDVI values overtime Kogan (1990, 1995).   

       
             

                  
    -------------------------------7-4 

Where: VCI is the modified NDVI (expressed in %); NDVI is the smoothed 

dekadal composite Normalized Difference Vegetation Index; minNDVI and 

maxNDVI are absolute minimum and maximum, respectively, of the 

smoothed dekadal composite NDVI defined from historical data; i and j 

define dekad and location, respectively. 

In order to analyse the VCI, the greenest month in the year was found by 

using monthly averages for the 12 years under consideration. For the 

selected vegetation types, the month of May was found to have the 

highest NDVI for all except one of the vegetation types (Fig 7-12). Since 

the VCI is a measure of the vegetation condition, selecting the wettest 

month (best case scenario) ensures that all other dekads are always 

below this condition and therefore effectively indicates vegetation stress 

caused by weather variables, notably precipitation and temperature. The 

VCI calculations were performed by use of a tool in ERDAS to identify 

minimum and maximum NDVI in a composite file containing the daily 

NDVI in a given year (Annex 6a). 
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Figure 7-12: Long term monthly NDVI averages for different vegetation types 

The results are presented in five classes:  0-20% very poor, 20-40% poor, 

40-60% average, 60-80% good and 80-100% very good. The last MVC for 

the dekad in May (denoted 21/05) for every year was analysed with the 

VCI formula using the ERDAS tool. The spatial representation of the 

calculated VCI for the 3rd dekad in May is given in (Fig. 7-13). From the 

VCI diagrams, 2000 was the driest year in the period 1999 to 2010; this is 

confirmed in the MAM seasonal NDVI diagrams where 2000 shows a sharp 

drop in the NDVI. A look in the seasonal rainfall pattern for the 

overlapping period (1999-2010) shows that the lowest annual rainfall was 

recorded in 2000 in all the rainfall stations within the study area(Fig.7-

14). This implies that the VCI has successfully managed to separate the 

ecosystem noise from the weather input signal.  

7.3.5 Standard Vegetation Index 

The standard Vegetation Index (SVI) was proposed by (Peters et al., 

2002) and is relies on the understanding that vegetation conditions are 

closely linked to the weather conditions in the atmosphere closest to the 

ground. It shows the effects of climate on vegetation over short-time 

periods. The SVI is based on calculation of a z score (for normally 

distributed parameter), otherwise a t-score for each NDVI pixel location in 

the study area. The z (or t) score is a deviation from the mean in units of 

the standard deviation, calculated from the NDVI values for each pixel 

location for each dekad for each year, during the years 1999-2010: 

     
                  

   
 -------------------------------------------7-5 
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Figure 7-13: VCI (0= very poor and 100= very good) for the 3
rd

 dekad in May (21/05). 
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Figure 7-14: Seasonal rainfall for three rainfall stations in the Upper mara basin 

   

Where:      is the z-value for pixel i during Dekad j for year k,         is 

the Dekad NDVI value for pixel i during Dekad j for year k,            is 

the mean NDVI for pixel i during Dekad j over n years,     is the standard 

deviation of pixel i during Dekad j over n years. 

The      was assumed to fit a standard normal distribution, with mean of 

zero and standard deviation of 1, denoted as     - N(0,l). The probability 

density function of      is given by:  

                 , V) ------------------------------------------- 7.6 

Where: ν = n-1 (degrees of freedom) 

If SVI=0; a pixel NDVI value is lower than all possible NDVI values for a 

pixel for a dekad in all other years of this study and for SVI =1; the pixel 

NDVI value for the respective dekad is higher than all the NDVI values of 

the same dekad in the other years.  

The assumption of normality was tested using Shapiro and Wilk's W-test, 

Royston (1995) at a random sample of pixel locations and found the data 

to be normal 91% of the time at α = 0.01. The monthly p-values were 

then calculated for the selected vegetation types. For mapping purposes, 

the SVI values are grouped into 5 classes, with the ranges defined by 

(Peters et al., 2002). Each of these classes comprises a different and 

consecutive range of values: 0.0 - 0.05 very poor; 0.05 - 0.25 poor; 0.25 

- 0.75 average; 0.75 - 0.95 good; and 0.95 - 1.0 very good. According to 

Peters et al (2002), the results obtained from a study applied to the great 

Plain of the US, showed that SVI is a good indicator of the vegetation 

response to short term weather conditions and can be used for near-real 

time evaluation of onset, extent, intensity and duration of vegetation 

stress. The mean and standard deviation functions in modelmaker were 

scripted to calculate the mean NDVI and the standard deviation for each 
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dekad in the time series (Annex 6b). As per the SVI formula, the z score 

was calculated by subtracting the mean from the current NDVI and 

dividing the result by the standard deviation.  

The z scores obtained from the formula as given by  Peters et al. (2002) 

were converted to P-values (SVI) assuming normal distribution with a 

mean of zero and a standard deviation of one, the results were grouped 

into the five groups: very poor, poor, average, good, very good. The 

distribution of vegetation conditions into these classes was intended to 

mimic a normal probability density function. For instance, a pixel that is 

classified  as "very poor" indicates that its NDVl value  is  lower  than the 

average during  the same week of the year relative to that in other years 

of the  study.  

A pixel classified as very good indicates that its NDVI value is higher than 

average, or that vegetation is in very good relative condition. For all the 

vegetation types, most of the data values lay in the average class. The 

forest vegetation type has the narrowest normal distribution fit with most 

of the dekads in the average class and none in the extreme very poor or 

very good classes. This indicates minimal variability over the entire study 

period. For all the vegetation classes, the tendency is skewness in 

distribution towards the good and very good classes. The vegetation 

health has experienced a relative better than average condition (Fig 7-

15).  

Several shortcomings were identified in the VCI and SVI methods. VCI 

assumes that the current range represents a maximum possible variation 

and that all values of NDVI within the range occur with an unrealistic 

samilar frequency (Sannier et al., 1998). SVI assumes normal distribution 

of the NDVI series. However, the true parameters of the NDVI population 

is unknown given the short duration of the available data. This uncertainty 

has been accounted for by using the students-t distribution that has a 

wider "spread" than the normal distribution. 

7.3.6 Vegetation productivity indicator (VPI) 

Developed by Sannier (1998), the method empirically estimates the 

statistical distribution of NDVI from the available data without any 

assumption and is sensitive to the background vegetation type. All pixels 

in the time series are ranked from the lowest to the highest. The 

probability of occurrence over the time period is given by: 

    
 

   
 ------------------------------------------------------7-6 

Where: m = the rank position, and n = the number of years 
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Figure 7-15: SVI classes distributions for vegetation types in the Upper Mara basin with 

enveloping of the distribution 

A low P indicates that it is unlikely to get a lower NDVI value and thus 

corresponds to poor conditions; a high P indicates better than norm 

conditions. 

The Vegetation Productivity Indicator (VPI) is used to assess the overall 

vegetation condition and is a categorical type of the difference vegetation 

index, whereby the actual NDVI is referenced against the NDVI percentiles 

of the historical year. The VPI is classified in 5 groups: 0-20% is very low, 

21-40% as low, 41-60% average, 61-80% as high, and 80-100% as very 

high (Fig 7-16). The health of the vegetation has been considerably good 

over the study period.  
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Figure 7-16: VPI classes for the different vegetation types in the Upper Mara. 

7.4 Relating trends in vegetation and climatic variables 

The weak correlation between the rainfall and the NDVI has indicated that 

primary productivity in the study area is not very sensitive to the rainfall 

variability. The area recieves rainfall amounts way beyond the threshold 

levels. The trend analysis indicates declining tendency in rainfall amounts 

over most of the stations in the study area (see § 7.2.1). At the average 

decline rate in annual rainfall of 6mm/yr, it will take more than 30yrs for 

the rain average basin rainfall to fall to the threshold annual value of 

900mm. This is without considering climate change effects, many GCMs 

predict a wet climate in this eastern African highland area (IPCC, 2007). 

The minimum temperature has significantly increased in the last 20 yrs.  

This increase in minimum temperature has a positive effect on the 

vegetation. Temperatures govern annual productivity in various ways that 

do not result from temperature dependence of the photosynthetic process 

(Lieth, 1973). The optimum temperature for productivity, in the range of 

15-25oC, agrees with the optimum temperature range for photosynthesis. 

Photosynthetic productions follow the van't Hoff equation, with 

productivity doubling every 10oC between the temperatures of-10 and 

20oC. The increase in minimum temperature leads to higher primary 

production and therefore vegetation health. The sustained increasing 

trend in the vegetation as indicated by all the vegetation indices is 

consistent with expectations under the minimum temperatures which are 

trending towards optimal ranges. Since the vegetation is not water 
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stressed, low temperatures, nutrients and diseases are the only 

impediment to good vegetation health. 

7.5. Analysis of the land use change 

Lu et al., 2004 defined Change detection as "the process of identifying 

differences in the state of an object or phenomenon by observing it at 

different times, and  involves the application of multi-temporal data sets 

to quantitatively analyse the temporal effects of the phenomenon". 

According to Lambin and Strahler (1994), several natural and 

anthropogenic factors influence  changes in the  land cover. Natural 

factors include changes and variability in climatic conditions, ecological,  

and geomorphological processes, while anthropogenic  factors include 

deforestation, land degradation and human related greenhouse gas 

emissions. The  main characteristics of a good change detection study 

should include and not limited to: areal and rate of change analysis, 

spatial extent of change analysis, trajectories in the changed cover types 

and an analysis of the change detection accuracy ( Lu et al. (2004).  

For successful implementation of the change detection, remote sensed  

data should be consistent. This may be achieved by using same sensor, 

same radiomentric  resolution, same spatial extent at anniversary or close 

to anniversary acquisition dates. This consistency  minimises the effects of 

errors due to sun angle and phenological differences caused by seasonal 

changes (Jensen,  1996). Though the images used in this study were not 

from the same sensor, there are little differences between the MSS, the 

TM and the ETM+ sensors. All the images utilised in this study were 

acquired dated late January to early February (quasi-anniversary).  

The 1976 MSS image with 80 m pixel resolution were resampled to 30 m 

to match the spatial resolution of the optical bands of the TM and ETM+ 

data. Three methods were used to analyze the evolution of land changes 

in the study area. Firstly, an indirect quantitative postclassification method 

which involved the calculation of the area covered under different land 

cover types and comparing with the corresponding landcover type from 

one time period to another. This method is independent of any change 

detection algorithm and accuracy of the change detection is only subject 

to the quality of the classified thematic map.  

Secondly, the digital change detection of change/non-change information 

based on the image differencing method which is a binary method where 

registered images acquired at different times are subtracted to produce a 

residual image which represents the change between the two dates at a 

preset threshold value (Jensen, 1986). The critical aspects are both the 

selection of suitable image bands and the selection of suitable thresholds 
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to identify the changed areas. Thirdly, a RGB-NDVI change-detection 

method involving the vegetation index differencing, with combinations of 

the primary (RGB) or complimentary (yellow, magenta, cyan) colors 

(Sader et al., 2001).  

7.5.1 Postclassification method of change detection 

In this method, multi-temporal images are separately classified into 

thematic maps, then a comparison of the classified images, pixel by pixel 

is performed. The main advantages of the method are: it minimizes 

impacts of atmospheric, sensor and environmental differences between 

multi-temporal images,  and it provides a complete matrix of change 

information. The disadvantages are: it requires a great amount of time 

and expertise to create classification products, and that inaccuracies in 

two date classifications can be multiplicative (the final accuracy depends 

on the quality of the classified image of each date) (Singh, 1989; Lu et al., 

2004). Also, the method does not allow for normalizing differences 

between multi-temporal data (Muchoney and Haack, 1994).  

The area in the thematic maps under the various land cover classes was 

determined by use of geo-spatial tools. The earlier of the two years under 

consideration was used as a reference and the latter year is the year upto 

which the change occurs. The change in one landcover over a period was 

calculated by substracting the value in the reference year from the final 

year. Fig. 7-17 presents the results of the change detection over the three 

decades. Overall, in the three decades (1976-2006), only the area under 

crop cover increased in size (109%), while the other cover types all 

declined at varying degrees. Forest cover decreased by 27720 Ha, shrub 

cover by 24508 Ha, and grassland by 5000 Ha, representing a change rate 

of 34%, 31% and 4%, respectively.  

The different cover types experienced rapid changes in their cover at 

different decades. The changed area and the spatial extend of the changes 

are presented in Fig. 7-18. The 70s (1976-86) saw the rapid decline in 

grass cover as people settled on the flat plains. At the same time there 

was the expansion of privately and government owned plantation forests 

in the upper parts of the basin.  
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Figure 7-17: Changes in the landcover over three (3) decades (1976 to 2006). 

The destruction of shrubs and trees in the lower areas for firewood, 

charcoal and construction material led to the significant decline of the 

shrubland cover in the 80s (1986-1995). The excision of forested land for 

farming and the introduction of the tea growing and forest agriculture in 

the 90s (1995-2006) saw a decline in the forest cover. According to Obare 

and Wangwe (1998), “In the 1990s the Forest Department (FD) 

introduced the Non-Resident Cultivation (NRC) for the establishment of 

plantation forests”. In the 1940s, the Shamba system was introduced to 

facilitate plantation establishment. It was prompted by the acute land 

shortage faced by communities after colonization, a need to reduce 

plantation establishment costs by the Forest Department, and to provide 

food security to those who practiced it.  

Under the Shamba system, the cultivators were incorporated into the FD 

through employment and were permitted to clear and cultivate cut over 

indigenous bush cover from a specified land area; usually between 0.4-0.8 

ha per year. This is done with the agreement that tree seedlings are 

planted on this land, and subsequently tended through weeding, pruning 

and safeguarding against game damage. In return, the FD provided the 

resident cultivator with employment, social amenities and land for the 

cultivation of annual crops such as maize, potatoes, beans, peas and other 

vegetables. Cultivation proceeded until a time when tree seedlings were 

large enough to shade, and thus inhibit the growth of annual plant crops; 

usually a period of 3-5 years (Obare and Wangwe, 1998). 

The NRC was therefore a modification of the Shamba system that 

attempts to reduce the risk of cultivators claiming squatter rights on forest 

land. Besides the officially degazetted forest, encroachment is a major 

problem in the Mau forest area (Table 7-7) The introduction of extensive 
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production of grass crops (wheat and barley) has lead to the increased 

grass coverage in the decade investigated (1995-2006) 

 

Figure 7-18: Decadal change analysis based on classified images. The area lost or gained 
by the different land types (A) in each of the three decades, and the spatial extent of the 
loss/gain in the Upper Mara basin(B). 
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Table 7-7: Causes of encroachment in East African forest landscapes ( Banana et al., 
2010). 

 Cause Description 

1.  Fertile forest 

soils 

The relatively rich and virgin forest soils attract 

encroachers because they employ poor farming 

methods and seriously degrade and exhaust soils 

outside forest reserves. However, this soil also gets 
leached much faster when exposed to high 

temperatures and heavy tropical rainfall, and is 

quickly exhausted. This forces encroachers to open 

up new land annually and hence to clear more 

forests. 

2.  Breakdown in 

law 

enforcement 

For a long time, the Forest Department (FD) staff in 

the region has not been able to enforce the law. 

Patrols have been intermittent and at large intervals, 

which enables encroachers to settle unchallenged in 
forest lands. 

3.  Unclear forest 

boundaries 

Many local communities that are adjacent to forests 

have crossed the boundaries, knowingly or 

unknowingly, since the boundaries are unclear. 

Many boundary marker shave been destroyed and 
the positions of others altered by encroachers to 

obfuscate where the boundary is. 

4.  Corrupt 

government 

officials 

Some corrupt forest officials, in connivance with 

other relevant officials, encourage encroachment 

5.  Breakdown in 

monitoring 

permits 

Forest officials allow some activities, like grazing and 

construction of temporary structures in central forest 

reserves (CFRs), on renewable permit terms. Over 

time, many of these people fail to renew their 
permits but continue with their activities. 

6.  Apparent 

shortage of 

land outside 

CFRs. 

In some cases, local population pressure has pushed 

people into adjacent CFRs. 

 

7.  Encroachment 

in CFRs 

Often, encroachment in CFRs has the backing of 

politicians, who usually trade CFR land for votes. 

Very often, local leaders are themselves encroachers 

and, when faced with eviction, tend to exaggerate 

the number of encroachers to enhance their stakes 
and win the sympathy of the public/government. 

8.  Lack of 

awareness of 

government 
policies and 

laws 

Quite often, encroachers are not aware of the 

policies and laws on forestry. 
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7.5.2 Change detection by image differencing 

Image differencing is an algebraic method   based on selecting thresholds 

to determine the changed areas, but do not provide complete matrices of 

change information. One or more wavebands from two, co-registered 

images are subtracted to produce a residual image indicating the relative 

change in reflectance between the two dates. The approach detects all 

changes greater than the pre-set thresholds and provides detailed change 

information. The challenge is in the criteria to be used  to select suitable 

thresholds to identify the changed areas, which is subjectively left to the 

devices of the analyst (Lu et al., 2004). Despite the analysis of three or 

more dates of imagery allowing for trends to be examined at more than 

one interval of time, the common practice is for digital change detection is 

to be performed stepwise using only two dates of satellite imagery at each 

step.  

Fig 7-19 shows the differences in the two sets of satellite images and the 

highlighted differences using a ±10% threshold. During the 1986-1995 

decade, there are lots of changes in the vegetation, both in terms of 

vegetation gain and vegetation loss. The vegetation gain is the transition 

from a vegetation type with a lower greenness to one with a higher one. 

The change from grass to crops like tea will mean there is higher NDVI 

capture. The conversion of fallow grassland to agricultural land with 

periods of bare land during field preparation (as is the case in February) 

will leave land surface bare and exposed. This will be reflected in the 

image difference as a vegetation loss. Similarly the cutting down of 

perennial landcover types like shrub through activities like charcoal 

burning leaves the ground bare with minimal NDVI and will thus appear as 

a vegetation loss in the image difference. 

Although care has been taken in the acquisition of the satellite images 

used to develop NDVI by using near anniversary dates images, other 

unmitigated natural occurrences do affect the outcome. The seasonal 

variability in climate and especially precipitation amounts and timing may 

have significant impact on the derived NDVI.The visual RGB-NDVI method 

involves creation of color composite images and utilization of the additive 

color theory, where each NDVI from three dates is combined with the red, 

green, and blue color write functions of the computer monitor (Sader and 

Winne, 1992, Sader et al., 2001, Sader et al., 2003). To automate the 

change detection and turn the three-layer NDVI stack into a thematic 

map, an unsupervised classification (ISODATA clustering) is performed on 

each NDVI stack (i.e 1976-1986-1995 and 1986-1995-2006). 
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The RGB-NDVI change-detection method was found by Hayes and Sader 

(2001) to be the most accurate and efficient for a tropical forest study site 

when compared to the image differencing, and the principal component 

analysis methods. When determining change, RGB-NDVI incorporated 

three dates at one time as opposed to two-date stepwise sequences using 

image differencing methods. This is particularly advantageous when 

several image dates are analyzed in a sequence to detect change. The 

RGB - NDVI unsupervised classification avoided analyst subjectivity in 

selecting appropriate histogram thresholds for several stepwise sequences 

and was more straight-forward and time efficient. Interpretation of change 

over time was intuitive and logical using additive color theory. Finally, the 

interpretation of the clusters and their multivariate statistics facilitated 

identification of forest clearing, no change, and regrowth classes in a 

time-series. 

The RGB-NDVI method was used to make two groups of three dates at a 

time (1976 to 1995; 1986 to 2006). By simultaneously projecting each of 

the three NDVI dates through the red, green, and blue (RGB) computer 

display write functions, major changes in NDVI between dates will appear 

in combinations of the primary (RGB) or complimentary (yellow, magenta, 

cyan) colors. In Fig 7-20, the three layers comprising the three dates that 

need to be compared are stack together. Sequentially the oldest to the 

most recent dates are used as band red, green and blue respectively.  

The magnitude and direction of vegetation cover can visually be 

interpreted by knowing which date of NDVI is coupled with each display 

color. Changes in the study area over the three dates automated 

classification was performed on three or more dates of NDVI by the 

ISODATA unsupervised cluster analysis technique.  

Change and no change categories are labeled and dated by analysis of the 

cluster statistical data and guided by visual interpretation of RGB-NDVI 

color composites. Table 7-8 shows the interpretation of the additive 

colours in the three dates RGB-NDVI. Cluster busting using a 7 x 7 

majority window was performed to segment clusters between change and 

no change and then re-clustered to reduce confusion and to better 

distinguish between vegetation gains and vegetation loss areas (Fig. 7-

21).  

The extent of the gain/loss in each decade is given in Table 7-9. In the 

first decade (1986-1995), the amount of vegetation cover lost was slightly 

lower than that gained. However, in the 1995-2006 decade large areas 

under vegetation cover were lost. This was especially experienced in the 

areas around the forest areas where large biomass vegetation like trees 
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and forest cover were replaced with annual crops which exposed the bare 

ground in the dry months of January/february. In the lower areas of the 

catchment, the loss of savanna grassland by both overgrazing and 

subsistence cultivation led to a high loss of vegetation cover. 

 

 

Figure 7-19: Binary image differences for a 10% threshold (left) and the highlights of the 
dfferences (right) in the NDVI images for 1986-1995 (top) and 1995-2006 (bottom). 



111 
 

 

Figure 7-20: RGB-NDVI  images for two time  periods, 1976, 1986, 1995 (left) and 1986, 
1995, 2006 (right). 

 

Table 7-8: Interpretation of RGB-NDVI image (modified after Sader and Winnie, 1992). 

    NDVI  date     

Display color  Gun RED GREEN  BLUE 

Interpretation of vegetation 

change 

Image color NDVI 1986 NDVI 1995 NDVI 2006 

 Red High Low Low Vegetation loss, 1986-1995 

Green Low High Low Vegetation gain, 1986-1995 

Blue Low High High Vegetation gain, 1995-2006 

Yellow High High Low Vegetation loss,  1995-2006 

Grey Low low Low No change, low biomass 

Grey High High  High No change, high biomas 

 

Table 7-9: Vegetation trajectories based on the RGB-NDVI method 

  Trajectory Area (Ha) 

1 Vegetation loss 1986-1995 51059 

2 Vegetation gain 1986-1995 87751 

3 Vegetation gain  1995-2006 1944 

4 Vegetation loss 1995-2006 109848 

5 No change 45070 
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Figure 7-21: Vegetation change trajectories for two decades 1986-2006 using the three 
date RGB-NDVI. 

The trajectories of the landcover change for the two independent methods 

point to consistent conclusion in the way land cover changes have taken 

place in the study area. The decades have been characterized by different 

changes occurring at different specific regions within the study area.  

These changes have been driven by both policy changes in the 

administration of the natural resources as well as demographic and 

economic pressures. The uncertainties in the methods are from different 

sources. In the post classification methods, errors are subjective due to 

modeler’s shortcomings. In the image differencing, raw satellite images 

are used, objective errors due to sensors inadequacies are experienced. 

7.6 Conclusion 

Generally the rainfall in the Upper Mara basin has a decreasing trend. 

While  five of the six stations have a negative trend  only one station has 

a positive trend. The  magnitude of the decrease in rainfall is highest 

closer to the forest area. This indicates a relation between the forest 

degradation and deforestation and loss of precipitation. The forested areas 

have suffered  a 34% loss in coverage between 1976 and 2006. 

Temperature rise  has been experinced in all the stations used in the 

study. The highest rise in temperature was  noted in the Narok station 
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which has a grassland/agriculture cover type. The magnitude of change in 

temperature of 0.04oC was consistent with the projected increases for 

Africa for the last century. The increase of agricultural land (109%) and 

marginal decrease (4%) in grassland areas, which have the highest land 

surface temperatures might have contributed to the higher increase in the 

temperature for this station. The other stations have also been affected by 

changes land cover especially the introduction of tea farming in the 

Kericho area and the  opulation explosion in the Kisii county.  
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8. Hydrological modeling 

8.1 Introduction to hydrological modeling 

A hydrological model is typically a process-based, continuous, dynamic 

simulator that is based on mathematical descriptions of physical, 

biogeochemical and hydro-chemical processes by combining elements of 

both physical and conceptual, semi-empirical nature and includes a 

reasonable spatial disaggregation scheme (Krysanova et al., 2008). The 

two main objectives of model applications are: (i) understanding 

processes and (ii) scenario analysis. Understanding processes is the basis 

for model software development. In order to build modeling software, the 

modeler must have a clear picture on how processes in the real world 

function and how these processes can be mimicked in the model code. 

The main challenge is not in trying to build-in all the understood 

processes, which is in fact impossible, but lies in the capabilities to 

simplify things and concentrate on the most relevant processes of the 

model under construction. Selecting an appropriate simulator from a pool 

of so many "useable" simulators is always a big challenge. Two commonly 

used criteria are the spatial scale to be incorporated in the study and how 

much physical detail needs to be included, i.e the space-quantity 

continuum in hydrological modeling.  

Different modeling approaches and methods have been used with different 

assumptions to derive the potential impact of a changed climate on the 

river basin discharge. There is no accepted method or approach for a 

proper assessment of global changes, although using different models, 

assumptions and methods can lead to different conclusions regarding the 

impact of climate change on water resources (Yates, 1996). Large-scale 

and complex environmental systems such as the global hydrological cycle 

or the water quality in a river basin cannot be investigated directly 

through experimentation, but instead must be generalized into their 

component processes (Praskievicz et al., 2009). According to Melone et al. 

(2005), the primary features for distinguishing hydrological modeling 

approaches include: i) the nature of the algorithms, empirical, conceptual 

or physically-based, ii) parameter specification,  stochastic or 

deterministic approach iii) the spatial representation, lumped or 

distributed.  

A basin scale model simulates hydrologic processes by fully incorporating 

the watershed area, a physically based model utilizes physically based 

equations to hydrological proceeses. A  semi-distributed model partially 

allows the hydrologic processes, input, boundary conditions and 

watershed characteristics to vary in space by dividing the basin into a 
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number of smaller sub-basins, which in turn are treated as a single unit 

(Daniel et al., 2011).  

According to Borah and Bera (2003), the more commonly used 

watershed-scale models are: Agricultural Non-point Source (AGNPS, 

Young et al., 1987, Annualized Agricultural Non-point Source (AnnAGNPS, 

Cronshey and Theurer, 1998)), Area Non-point Source Watershed 

Environment Response  Simulation (ANSWERS/ANSWERS-2000, Bouraoui 

and Dillaha, 1996), Gridded Surface Hydrologic Analysis (GSSHA, Downer 

and Ogden, 2006), Hydrologic Engineering Center’s Hydrologic Modeling 

System (HEC-HMS, USACE, 1995), Hydrological Simulation Program – 

FORTRAN (HSPF, Bicknell et al., (2001), KINematic Runoff and ERO-Sion 

(KINEROS2, Goodrich et al., 2002)), Systéme Hydrologique Européen 

(MIKE SHE, Abbott et al., 1986; DHI, 1993)), Precipitation-Runoff 

Modeling System (PRMS, Leavesley, 1983)), Soil and Water Assessment 

Tool (SWAT, Arnold, (1998)) and Water Erosion Prediction Project (WEPP, 

Laflen et al., 1991). AnnAGNPS, HSPF, MIKE SHE, and SWAT are long-

term continuous simulation models that consider the three major 

components (hydrology, sediment and chemical) that are applicable to 

watershed-scale catchments (Borah and Bera, 2003).  

The AnnAGNPS is suited for agriculture watersheds and is widely used for 

evaluating a wide variety of conservation practices and other BMPs. It 

uses a daily or sub-daily time step and it divides the basin into 

homogeneous land areas, reaches and impoundments. Cropping systems, 

fertilizer applications, water and dissolved nutrients from point sources, 

sediment with attached chemicals from gullies, soluble nutrient 

contributions from feedlots and the effect of terraced fields can be 

modeled. Some shortcomings of the simulator include: Single day routing 

of  all runoff and associated sediment, nutrients and pesticides loads,  lack 

of  mass balance calculations tracking inflow and outflow of water, 

requirement for  an additional data input tool to ease the burden of 

developing input data sets for the model (Bosch et al., 1998).  

The HSPF is a lumped parameter hydrologic model that can simulate the 

primary natural hydrological processes. The unsaturated zone is 

approximated using a single storage reservoir. The explicit representation 

of vegetation in the simulator is limited. The model runs at any time step, 

from 1 minute to 1 day. The model empirically simulates 

evapotranspiration from the interception storage, the upper and lower 

zone storages, the active groundwater storage and directly from the 

basefow (Bicknell et al., 2001). The HSPF is generally used to assess the 

effects of land use change, reservoir operations, point or non-point source 
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treatment alternatives, and flow diversions and is also suitable for mixed 

agricultural and urban watersheds (Daniel et al., 2011). According to 

Beckers  et al. (2009), the HSPF simulator is parameter intensive and 

offers little advantage with respect to parameterization and calibration 

over physically based modeling software. Its complexity is compounded by 

its user-unfriendliness, which makes it difficult to use without direct 

guidance from an experienced HSPF model user. Furthermore, many 

parameters that control the hydrologic processes are empirical and can 

only be determined through calibration.  

MIKE SHE is a physically based simulator using multi-dimensional flow-

governing equations with numerical solution schemes, which make the 

models computationally intensive and subject to numerical instabilities. 

MIKE SHE is mainly suited for small watersheds, for detailed studies of the 

hydrology and nonpoint-source pollution under single rainfall events or for 

long-term simulations (Borah and Bera, 2003).  

The Soil and Water Assessment Tool (SWAT) model is a physically based, 

deterministic, continuous, basin scale, semi-distributed hydrological 

simulator (Arnold, 1993; Gassman et al., 2007). As a physically based 

simulator, SWAT requires specific information about weather, soil,  

topography, vegetation and land  management practices rather than 

incorporating  regression equations to describe the relationships between 

input and output variables  

8.2 The Soil and Water Assessment Tool (SWAT) 

The Soil and Water Assessment Tool (SWAT) is a dynamic, long‐term, 

distributed parameter model (Arnold et al., 1998) with applications in 

watersheds having agriculture as the primary land use (Manguerra and 

Engel, 1998). The simulator subdivides a watershed into subbasins 

connected to a stream network and further delineates the subbasin into 

hydrologic response units (HRUs) consisting of unique combinations of 

land cover, soil and topographical slope. The model assumes that there 

are no interactions among the HRUs and these HRUs are virtually located 

within each subbasin (Yang et al., 2007). The model calculations are 

performed on a HRU basis and flow and water quality variables are routed 

from HRU to subbasin and subsequently to the watershed outlet. The 

hydrologic routines within SWAT account for vadose zone processes 

(including inflitration, evaporation, plant uptake, lateral flows and 

percolation) and for groundwater flow. The SWAT model simulates the 

hydrology as a two-component system, comprised of land hydrology and 

channel hydrology. The land portion of the hydrologic cycle is based on a 
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water mass balance. The soil water balance is presented in Eqn 8-1 (all 

terms mmH2O) as: 

                                         
 
   -----------8.1 

Where:    is the water content of the land phase at time t (day),    is the 

initial water content of the land phase,    is the amount of precipitation on 

the day i,      is the amount evapotranspiration on day i,     is the amount 

of surface runoff on day i,      is the amount of lateral flow on day i,     is 

the amount of return flow on day i,      is the amount of water that is 

pumped out of the shallow aquifer for external use of the day i,       is 

the amount of water that is pumped out of the deep aquifer for the 

external use on day i, and      is the amount of water that is lost  from the 

system through the deep aquifer.  

Water enters the SWAT model’s watershed system boundary 

predominantly in the form of precipitation. Precipitation inputs for 

hydrologic calculations can either be measured data or simulated with the 

weather generator available in the SWAT model. Precipitation is 

partitioned into different water pathways depending on system 

characteristics (Fig 8-1). The water balance of each HRU in the watershed 

contains four storage volumes: snow, the soil profile (0-2 m), the shallow 

aquifer (2-20m) and the deep aquifer (>20 m). The soil profile can 

contain several layers. The soil water processes include infiltration, 

percolation, evaporation, plant uptake, and lateral flow.  

Surface runoff volume is estimated using the modified version of the 

United States Department of Agriculture - Soil Conservation Service curve 

number method (CNII) or the Green-Ampt infiltration equation. The 

kinematic storage model is used to predict lateral flow in each soil layer. 

To account for multiple layers, the model is applied to each soil layer 

independently, starting at the upper layer.  
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Figure 8-1: Pathways for water movement in SWAT  

 

There are two aquifer systems in SWAT, the unconfined shallow aquifer 

and the confined deep aquifer (Arnold et al., 1993). The Shallow aquifer 

contributes return flow to streams within the basin and replenishes 

moisture in the soil profile in very dry conditions. It  may also be directly 

removed by the plants (Nietsch et al., 2007). The deep aquifer contributes 

return flow to streams outside the basin boundaries and could also be 

removed through pumping (Fig 8-11). 

Three PET methods, the Penman-Monteith method (Penman, 1956; 

Monteith, 1965), the Hargreaves method (Hargreaves and Samani, 1985) 

and the Priestley-Taylor method (Priestley and Taylor, 1972) are 

incorporated in the SWAT simulators (Arnold et al., 1998). The Penman-

Monteith method requires solar radiation, air temperature, relative 

humidity and wind speed as inputs (Donatelli et al., 2004, Nietsch et al., 

2007). The Penman-Monteith method is commonly used (Migliaccio and 

Srivastava, 2007), has been described as universally accurate (Wang et 
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al., 2009) and is considered to be the best method when a full 

complement of weather data is available (Allen et al., 1998). The 

Hargreaves method requires both maximum and minimum air 

temperatures as the only input. According to Droogers and Allen (2002), 

Saghravani et al., (2009), the wide-spread availability of temperatures 

records in many weather stations has increased the usage of the 

Hargreaves equation enormously. The Hargreaves method has been 

shown to overpredict PET in humid climates (Jensen et al., 1990, Amatya, 

1995) and to underestimate it in very dry regions (Droogers and Allen, 

2002). In the Priestley-Taylor method (Priestley and Taylor 1972) the 

energy component is replaced by a coefficient (Nietsch et al., 2002) and is 

reported to perform better in SWAT than the Penman Monteith (Amatya et 

al., 1995), and the Hargreaves (Lu et al., 2005) for wet and humid 

surfaces.  

Channel flood routing is estimated using the Muskingum method or the 

Variable Storage Method. The Muskingum routing method accounts for 

flooding by modeling storage volume in a channel length as a combination 

of wedge and prism storages that can be expressed as bank storage. 

Outflow from a channel is also adjusted from transmission losses, 

evaporation, diversions, and return flow (Zhang et al., 2008). Erosion is 

estimated using the Modified Universal Soil Loss Equation (MUSLE). After 

the sediment yield is evaluated using the MUSLE equation, SWAT further 

corrects this value by considering snow cover effects and the sediment lag 

in the surface runoff. The sediment routing model that simulates the 

sediment transport in the channel network consists of two components 

operating simultaneously: deposition and degradation (Arnold et al., 

1995a).  

The nutrients simulated in the soil profile of SWAT are nitrogen (N) and 

phosphorous (P). The soil nitrogen is partitioned into five N pools with two 

being inorganic (ammonium-N (NH4
+-N) and nitrate-N (NO3

--N)) and three 

being organic (active, stable, and fresh). SWAT simulates the movement 

between the N pools, such as mineralization, decomposition/ 

immobilization, nitrification, denitrification and ammonia volatilization. 

Other soil processes such as N fixation by legumes and NO3
--N movement 

in the water are also included in the model. Soil phosphorous is divided 

into six P pools.  Three of the pools are characterized as mineral P and 

three are characterized as organic P. Transformations of soil P between 

these six pools are regulated by algorithms that represent mineralization, 

decomposition, and immobilization. Other soil P processes included in 

SWAT are inorganic P sorption and leaching. The QUAL2E model 

algorithms (Brown and Barnwell 1987) are used to describe N and P 
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transformations in the channel reaches. Once N enters a channel reach, 

SWAT partitions N into four pools: organic N, NH4
+-N, NO2

--N and NO3
--N. 

SWAT then simulates changes in N that results in the movement of N 

between pools. Two pools of P are simulated for channel processes: 

organic P and inorganic/soluble P. 

The SWAT model simulates on a daily time step, the model has options for 

the output that allow the user to define the output time step (daily, 

monthly, or annual). Output variables include flow volume, nutrient yields, 

sediment yield, and plant biomass yields. These variables are provided on 

the subbasin or HRU spatial level depending on the output time step 

selected. The output files generated by the SWAT model are created in 

text and database file formats. 

 8.3. Limitations of SWAT modeling in the tropics 

The SWAT model has gained widespread application over its more than 30 

years due to: i). comprehensive considerations of processes (hydrologic, 

biological and environmental), ii) inclusion of scenarios,  iii) availability of 

parameter databases iv). Robustness and excellent support from user 

groups and developers, and V). its open source with good documentation. 

Several comprehensive reviews of SWAT have been published, touching 

on developments, applications and future research opportunities (Kosky 

and Engel 1997, Arnold and Fohrer 2005, Gassman et al., 2007, Douglas-

Mankin et al., 2010, Arnold et al., 2010). Luo et al., (2008) noted that 

"while SWAT is widely applied to a broad range of conditions, few studies 

have reported on the variability and transferability of the model 

parameters and on evaluation of its crop growth, soil water and 

groundwater modules using extensive field experimental data at the 

process scale". The local water balance inside the basins is of prime 

interest in many model applications.  

8.3.1 The crop growth module 

The plant growth module in SWAT assumes a uniform, single plant species 

community (Krysanova and Arnold, 2008; Kiniry et al., 2008),meaning 

that  cropping mixtures typically found in the study area cannot be 

simulated by SWAT in its present form (Kiniry et al., 2008). Balancing the 

representation of such diverse vegetative covers in comprehensive tools 

like SWAT requires careful consideration of the objectives and the level of 

detail required to achieve a desired accuracy in simulating water fluxes 

and water quality. Incorporating accurate plant growth processes into 

hydrological models can improve the simulation performance and provide 

better decision aids. Robust models for crops, grasses and trees provide 
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quantitative means to predict the hydrological consequences of various 

management decisions under different environmental and climatic 

conditions. These include harvesting schemes, replanting, fertilizer 

applications and control of undesirable plants. According to Kiniry et al. 

(2008), field-scale simulators like SWAT provide a general description of 

the growth of a vegetative canopy using deterministic relationships based 

on physiological or physical processes. Leaf growth is often represented by 

the leaf area index (LAI). Yield can be simulated using a harvest index 

(HI) approach, assuming yield is a fraction (the HI) of the total above-

ground biomass (Fig.8-2). Such simulators can be readily applied to 

several plant types by deriving realistic plant parameters such as radiation 

use efficiency (RUE), maturity type, leaf angle through the light extinction 

coefficient and efficiency in partitioning the biomass through the HI.  

 

 

Figure 8-2: Parameterisation of the crop production in SWAT (Nietsch et al., 2002) 

Deficiencies in adequately simulating the plant growth responses to water 

availability can fall under two categories: inadequate quantification of the 

process or the omission of a needed process in the simulator (McMaster et 

al., 2005). SWAT uses the Erosion Productivity Impact Calculator (EPIC) 

crop model concepts of phenological crop development, based on daily 

accumulated heat units, on a harvest index for partitioning grain yield, on 

the Monteith approach for potential biomass and on water and 

temperature stress adjustments. (Williams et al., 1989). A simple concept 

is used for simulating all the crops considered and SWAT is capable of 

simulating crop growth for both annual and perennial plants. Annual crops 

grow from planting date to harvest date or until the accumulated heat 

http://www.google.nl/url?sa=t&rct=j&q=epic%20model&source=web&cd=2&ved=0CG4QFjAB&url=http%3A%2F%2Funfccc.int%2Ffiles%2Fadaptation%2Fmethodologies_for%2Fvulnerability_and_adaptation%2Fapplication%2Fpdf%2Fprocess_crop_models_-_erosion_productivity_impact_calculator__epic_.pdf&ei=-9qkT-PXFYfS8gOA6bT5BA&usg=AFQjCNHWab0WAdHQFb2dStXbWIgRlKJL3g
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units equal the potential heat units for the crop. Perennial crops maintain 

their root systems throughout the year, although the plant may become 

dormant after frost (Arnold et al., 1998). The default number of heat units 

(HUSC) that control start and stop of growth are appropriate for an annual 

crop that is planted after danger of frost and allowed to dry-down before 

harvest, but not for many annuals. Reporting for a study in the Californian 

region, Tetratech (2004), noted that setting the initiation of growth at the 

default of 15% of the base zero heat units means that trees do not start 

leafing out until the beginning of April in many of the test watersheds, 

which is clearly too late. Also, setting the heat units for the “kill” operation 

to the default of 1.20 is probably too large for woody plants in arid areas, 

as it would mean that leaves are likely to be retained for a long period 

after the completion of the annual growth cycle.  

The SWAT model simulates light (Photosynthetic Active Radiation; PAR) 

interception, assuming a constant value for the light extinction coefficient 

(k) of 0.6 for PAR. In the EPIC model, lower k values (e.g 0.4-0.6) are 

suggested for use in tropical areas (where the average sun angle is 

higher) and for wider row spacing (Williams et al., 1989). SWAT simulates 

the soil evaporation using the leaf area index (LAI). Using a moist soil 

surface and for a crop reaching a LAI of 5.8 (Kiniry et al., 2008) 

demonstrated that the LAI-based method predicts a total evaporation that 

is approximately 23% lower than the solar radiation interception-based 

method. They suggested an improvement in the radiation interception 

simulation, especially during the early growth because "the randomness in 

leaf distribution implicit in using the extinction coefficient approach is 

clearly violated in row crops at low LAI when there is minimum overlap 

among leaves, and second, because changes in canopy cover affect soil 

evaporation the most at low LAI". 

The fraction covered by forested areas, their structure and species 

composition has a fundamental influence on the hydrological behaviour of 

a landscape (Wattenbach et al., 2005). The combination of the rooting 

strategy, interception losses, high surface roughness of trees, low albedo 

and great leaf areas lead to higher evapotranspiration rates than any 

other vegetation type under the same environmental conditions. The 

vegetation growth model in SWAT was originally developed for agricultural 

crops, containing the essentials to model the hydrological cycle for areas 

with annual crop production or perennial grass production (MacDonald et 

al., 2008). Dynamic forest growth is either not considered or is processed 

through simple parameterization. Reproduction and simulation of forest 

related processes including biomass accumulation, LAI development and 
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root water uptake and related processes (transpiration and interception) is 

poor (Wattenbach et al., 2005, Johnson et al., 2009).  

In SWAT, the default management operations for forest are  ‘Plant/begin 

growing season' and 'Harvest and kill', which means that trees are planted 

each year, then growth stops later in the year, the trees are all chopped 

down and converted to residue. Using these default settings in SWAT, the 

biomass values in forest are unrealistically low and drop to zero every 

year (Fig.8-3). The model assumes that the forest is growing from zero 

biomass at the beginning of each year. SWAT experiences problems in 

simulating biomass production for tropical  and other climates even when 

all parameters in the crop database are correctly specified.  

Cover specific modifications of the management (.mgt) files for each HRU 

are required to achieve seemingly reasonable biomass simulations. 

Consequently, due to the long maturation of forest cover (typical 35 

years), the annual built up of biomass is very small. Further, since SWAT 

was developed for temperate regions, it is assumed by default that 

senescence and leave drop occurs every year: the vegetation goes into 

dormancy in the winter period. 

 

 

Figure 8-3: The evolution of biomass in a forest HRU in the SWAT default setting for the 
Upper Mara basin 
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Table 8-1: Summary of the key elements in SWAT2005 (modified from Borah and Bera, 2003) 

Model components/ 

capabilities  

Hydrology, weather, sedimentation, soil temperature, crop growth, nutrients, pesticides, agricultural 

management, channel and reservoir routing, water transfer, with user interface and GIS platform 

Temporal scale   Long term; daily or sub-daily steps. 

Watershed 

representation  

Sub-basins grouped based on climate, hydrologic response units (lumped areas with same cover, soil, 

slope and management), ponds, groundwater, and main channel. 

Rainfall excess on 

overland 

Daily water budget; precipitation, runoff, ET, percolation, and return flow from subsurface and 

groundwater flow. 

Runoff on overland  Runoff volume using curve number and flow peak using modified Rational formula or Soil Conservation 

Service Technical Release 55 (SCS TR-55) method. 

Subsurface flow  Lateral subsurface flow using kinematic storage model, and groundwater flow using empirical relations 

Runoff in channel  Routing based on variable storage coefficient method and flow using Manning’s equation adjusted for 

transmission losses, evaporation, diversions, and return flow 

Flow in reservoir  Water balance and user-provided outflow (measured or targeted). 

Overland sediment  Sediment yield based on Modified Universal Soil Loss Equation (MUSLE) expressed in terms of runoff 

volume, peak flow, and USLE factors. 

Channel sediment  Bagnold’s stream power concept for bed degradation and sediment transport, degradation adjusted 

with USLE soil erodibility and cover factors, and deposition based on particle fall velocity. 

Reservoir sediment  Outflow using simple continuity based on volumes and concentrations of inflow, outflow, and storage. 

Chemical simulation  Nitrate-N based on water volume and average concentration, runoff P based on partitioning factor, 

daily organic N and sediment adsorbed P losses using loading functions, crop N and P use from supply 

and demand, and pesticides based on plant leaf-area-index, application efficiency, wash off fraction, 

organic carbon adsorption coefficient, and exponential decay according to half lives. 

BMP evaluation  Agricultural management: tillage, irrigation, fertilization, pesticide applications, and grazing. 
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8.3.2 The groundwater module 

In SWAT, the representation of the aquifers does not allow the explicit 

simulation of underground water movements between subbasins (Notter 

2010). The soil profile and shallow aquifer are physically disconnected, 

with the shallow aquifer being treated as a tank located somewhere below 

the soil profile (Fig. 8-4). There is active interactions between the soil 

profile and the shallow groundwater. Some of the interactions include: the 

wetting action on the soil profile due to changing water table, and the 

uptake of water by  plant from the shallow aquifer.  According to Kim et 

al. (2008), SWAT connects the soil profile and the shallow aquifer using 

two variables: the groundwater “revap” or groundwater evaporation 

(GW_REVAP) and the - threshold water depth in the shallow aquifer for 

"revap" to occur (REVAPMN). Revap is lost to the atmosphere and thus is 

not directly linked to the water content in the soil profile. 

 

Figure 8-4: The partitioning of the groundwater in SWAT (modified from Vazquez-
Amábile and Engel, 2005) 

If no restrictions/forcing are applied on the model during calibration 

especially with the aquifer percolation coefficient (Rchrg_dp), and the 

threshold water level in shallow aquifer for baseflow (GWQMN) 

parameters, the model dumps water into the aquifers leading to high 

accumulation of water in the aquifer making it unavailable for the SWAT 

water balance. Notter (2010) recommended the provision for multiple 

separated deep aquifer systems that each comprise one or several 

subbasins, with groundwater discharge governed by parameters similar as 

for the shallow aquifer. 
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8.4 The adaptation of SWAT to tropical conditions 

8.4.1 Adaptations of SWAT to conditions in Africa 

In a SWAT modification named SWAT Water Balance (SWAT-WB), White 

et al. (2009) introduced a saturation deficit for each soil profile. This 

deficit replaces the SCS-CNII parameter for the calculation of the surface 

runoff and thus of the infiltration, whereby, the surface runoff is equal to 

the amount of rainfall minus the amount of water that can be stored in the 

soil before it saturates. According to the authors, “the SWAT-WB provided 

much more realistic spatial distribution of runoff producing areas. These 

results suggest that replacement of the curve number (CN) with a water 

balance routine in SWAT: significantly improves model predictions in 

monsoonal climates, provides equally acceptable levels of accuracy under 

more typical north American conditions, while at the same time greatly 

improving the ability to predict spatial distribution of runoff contributing 

areas”. The model was tested on the Gumera watershed, a 1270 km2, 

heavily (~95%) cultivated watershed located in the Blue Nile River Basin 

in Ethiopia.  

Notter et al. (2009), working in the Pangani basin in Tanzania, introduced 

SWAT-PANGANI (SWAT-P) with several modifications especially on the 

auto-irigation routine. The irrigation model in SWAT was changed to allow 

for interbasin transfer of excess water. According to Notter, 2010, a new 

input parameter "irr_eff" describing irrigation efficiency was introduced in 

SWAT-P. The values of "irr_eff" can range from 0 to 1, where 0 means 

none of the water abstracted from the source reaches the destination, and 

1 means all water reaches the destination. 

8.4.2 Adaptation of SWAT in other parts of the world 

In the SWAT- DRAINMOD, Vazquez-Amábile and Engel (2005) modified 

the code in order to provide the soil water content layer by layer for every 

HRU. Using this information, it was possible to convert the soil moisture 

into a groundwater table level based on the relationship between the 

water table depth and the drainage volume, which is the effective air 

volume above the water table. SWAT has also been combined with the 

groundwater model MODFLOW (SWAT-MOD, Fig.8-5) to address the 

interconnectivity of the surface and groundwater phases (Sophocleous et 

al., 1999; Kim et al., 2008). 
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Figure 8-5: Schematic block diagram of the SWAT/MODFLOW linkages (Sophocleous et 
al, 1998) 

 

According to Kim et al., (2008) the groundwater component of SWAT does 

not consider distributed parameters, such as the hydraulic conductivity 

and the storage coefficient, due to its semi-distributed features. To 

resolve this challenge they swapped MODFLOW cells for SWAT HRUs, and  

used the HRU-Cell interface to allow for simulation of groundwater 

recharge and evapotranspiration in a distributed manner. 

For the simulation of the forest land cover, Watson et al., (2005) 

integrated physiological principles in SWAT for predicting the forest 

growth, based on 3-PG (SWAT-3PG). The 3-PG (Landsberg and Waring, 

1997) is a dynamic, process based simulator of forest growth that predicts 

the net photosynthesis by forest stands on a monthly basis and allows 

process based calculations to estimate the forest growth in terms of a few 

variables. It is a generalized standalone simulator applicable to plantations 

and even-aged, relatively homogenous forests, based on (optimized) 

parameters that are related to tree physiology.  

8.5 Conclusion 

Despite the few shortcomings in the SWAT simulator, it was selected 

amongst the other available watershed scale models for this study. The 

model has widespread application in divergent environmental conditions. 

This extensive usage provides a good opportunity for benchmarking and 

comparing outputs with other studies under similar conditions. The 

development of the SWAT simulator is a continuation of modeling 
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experience spanning a period of 30 years. The very large and vibrant 

SWAT user group ensures continuous sharing of information on the 

challenges and new improvements to tackle the shortcomings 

encountered. The simulator’s open source code allows for manipulation 

and changing of the codes and reporting of the same to the developers 

and in the forum. The release of updated versions and documentations 

passes on the improvements to the wider user community leading to a 

more robust system. SWAT is also among the few basin scale hydrological 

models that can be used to simulate climate predictions and which is an 

important aspect in this study.  
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9. Hydrological modelling of the Mara basin using SWAT 

9.1 Introduction 

Many of the currently available distributed parameter simulators require 

watershed data in a geographic information system (GIS) format to 

facilitate model parameterization (Cotter et al., 2004). The AVSWATX 

version of SWAT2005 (Di Luzio et al., 2002) comprising of a preprocessor, 

interface and post processor under ArcView was used for the model setup. 

Mandatory GIS input files needed for the SWAT model include: the digital 

elevation model (DEM), land cover, and soil layers. 

The first step in the SWAT modeling process is to delineate the sub-

watersheds in the basin. This requires a DEM Map to 

define   the   network   delineation   using  the   threshold method. This is 

the threshold in area units flowing into a given point before it is 

designated as a stream. The lower the number the more streams and sub-

basins will be created. The sub-basins are subsequently divided into HRUs 

by the user specified land use and soil percentage (Neitsch et al., 2002). 

According to Chaubey et al. (2005), the input DEM data resolution affects 

the SWAT model predictions by affecting the total area of the delineated 

watershed, the predicted stream network and the sub-basin classification. 

The result is a watershed that is broken down into several sub-basins. 

Each of these sub-basins drains to a particular point. That point can be 

chosen by the user or based on a pre-set resolution. The user defined 

outlets for the sub-basins are selected based on source points, calibration 

points, elevation bands and/or land use. The subwatersheds are then 

further subdivided into HRUs that consist of homogeneous land use, 

management, slope and soil characteristics. Multiple HRUs are created by 

specifying sensitivities for the land use and soil data that will be used to 

determine the number and kind of HRUs in each watershed. 

Weather data from stations within the region were incorporated to provide 

the most representative meteorological data data available. Weather data 

required by SWAT include: precipitation, temperature, solar radiation, 

wind speed, and relative humidity. In the absence of observed climatic 

data the weather input is estimated using the SWAT weather generator. 

Measured flow and water quality data specific for the watershed is 

identified to perform calibration and validation of the SWAT model within 

the watershed. The SWAT model is calibrated for flow, at daily, monthly 

and annual time scales.  

A description of the overall modeling process: data preparation, model set 

up, model calibration and validation for the Upper Mara is presented the 
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following sections. The input data for this study was sourced locally from 

the national depositories or from global databases. While some datasets, 

like the SRTM DEM, required little adjustments, others had to be refined 

through application of additional data processing techniques. SWAT model 

inputs requiring expert manipulation include: the land use maps and the 

climatic data inputs. Land cover map were prepared using satellite 

imagery through the generations of thematic maps (§5.2). Geostatistical 

tools were applied on the climatic data to prepare interpolated time series. 

All key input databases including the DEM, land use map and soils maps 

were projected to the same spatial reference (Annex 7). 

9.2 Data preparation  

9.2.1 Topographic data 

The Shuttle Radar Topography Mission (SRTM) 90m X 90m DEM was used. 

The characteristics of the DEM used in this study have been described in 

section §4.2.2.1 The elevation in the study area is composed of clear 

defined elevation bands which cut across the basin in a north-west to 

south-east direction, while the slope flows from Northeast to south-west 

direction (Fig 9-1). 

9.2.2 The soil map 

The KenSOTER database used for the soil information has been described 

in §4.2.2.2 The KENSOTER database was selected because the global 

SOTER system is expected to replace the FAO-UNESCO Soil Map of the 

World (SMW). The SMW was the first internationally accepted inventory of 

world soil resources. The soil hydraulic conductivity (Ksat), a parameter 

required for the SWAT soil database is not provided in the KenSOTER 

database. The Ksat was calculated using a pedo-transfer function 

developed by Jabro (1992) and modified by (Droogers et al., 2007). The 

Ksat was calculated using the following equation, 

                                                                      

--------------------9-1 

Where:      is saturated hydraulic conductivity (mm/hr), 

Silt is silt content (%) 

Clay is clay content (%) 

9.2.3 The land use map 

The existing FAO AFRICOVER land cover map (FAO, 2005) was used as 

the baseline map. The AFRICOVER-Kenya Map  is a spatially aggregated 

multipurpose land cover database produced from visual interpretation of 
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digitally enhanced LANDSAT TM images (Bands 4, 3, 2) acquired mainly in 

the year 1999 (FAO, 2005). The land cover class, according to the original 

AFRICOVER dataset is a broad group and consists of several descriptive 

classes. The AFRICOVER classes were reclassified into SWAT usable land 

use classes in the SWAT look-up table. The description of the land cover 

classes from FAO and their SWAT equivalents are given in Table 9.1 

below. The GIS input maps for the DEM, soil and land cover are given in 

Fig 9.1 

9.2.4 The hydroclimatic data 

The Kenya Meteorological Department (KMD) is the official custodian of 

climatic data in Kenya. The KMD data was complemented with privately 

collected data and with global climatic sources, including the CRU2.0 

database of the University of East Anglia (New et al., 2002). The rainfall 

stations have data series of varying lengths and different levels of missing 

data. Two methods, the nearest neighbours (NN) and the inverse distance 

weighting (IDW) methods were used to impute the missing data in the 

databases and to reduce the effect of the topography. According to Cho et 

al., (2009), as the number of rain gauges used in the simulation 

decreases, the uncertainty in the hydrologic and water quality model 

output increases exponentially.  

In SWAT, the weather station nearest to the centroid of each sub-basin is 

taken as the location for the precipitation to be used in the simulation. 

Schuol and Abbaspour (2006) noted that unrealistic weather data are 

generated by SWAT if a weather station is assigned to a subbasin that has 

only a few measured values or many erroneous values. According, to 

Grimes and Pardo-Igúzquiza (2010) the benefits of geostatistical analysis 

for rainfall include the ease of estimating areal averages, the estimation of 

uncertainties and the possibility of using secondary information like 

topography. In the nearest neighbour method, the rainfall stations closest 

to the stations with missing data were used to fill in the gaps. By using 

the neighbourhood stations any missing data in one station was filled in 

from the other stations. The principle of shared similarities of the stations 

to each other due to close spatial proximity is assumed. 

In the IDW method, weights for each sample are inversely proportionate 

to its distance from the point being estimated. The method was used to 

develop a time series of rainfall data. All the stations with long term data 

were used in the algorithm to determine the weighted rainfall for the new 

station. Missing portions of any station data were filled with this series 

data. 
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 -----------------------------------------------------------------------9.2 

Where, Px = estimate of the average basin rainfall, pi = rainfall values of 

rain gauge i, di = distance from gauge I to the centroid of the basin, N = 

number of gauges. 

The data series of the 1970-1977 periods provided the most complete 

data series and was used for this study. The CRU2.0 (New et al., 2002) 

long term (1961-1990) climatic data, on precipitation, temperature, 

evapo-transpiration and number of wet days for the centroid was 

compared with that of two WMO climatic stations (namely, Kericho and 

Narok) lying to the north west and south east axis of the basin. CRU2 data 

is on a 1/2 degree grid, with a time range 1901-2006. The variables are 

precipitation (mm/month), mean minimum temperature and mean 

maximum temperature per month. Each of these variables is has cell 

coordinates (0, 0) in the lower left, increasing to the right (New et al., 

2002) The characteristics of a virtual station centroid to the basin were 

found to lie somehow between those of the Kericho and Narok stations for 

rainfall, number of wet days and temperature, (Fig.9-2). The use of the 

mean of the two stations removed biases towards any of the stations. The 

generated centroid thus had characteristics mid-way between those of 

Kericho and Narok. The average records from the two stations were used 

to calculate the parameters in the weather generator (.wgn) file. The .wgn 

file was created using the WGNmaker4.xlsm tool (Boisrame, 2011) an 

excel macro designed to calculate the weather statistics needed to create 

user weather station files for SWAT. The inputs to the WGNmaker4.xlsm 

include daily datasets for precipitation (mm), temperature (max. and min, 
oC), solar radiation (MJ/m2/day), and wind speed (m/s). For the 

precipitation input, the station created using the NN or IDW procedures in 

each subbasin was used as model input. For the other climatic parameters 

inputs including min. and max. temperatures, the data from the basin’s 

centroid was used..  
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Table 9-1: Description of the land cover classes used in SWAT 

 

Standard Description LCC Label Common name SWAT code 

 

Rainfed Herbaceous crop, Small Fields HR4 

herbacious 

crop RFHC 

 

Continuous Rainfed Small fields [cereal] Hm4 agric closely AGRG 

 

Rainfed Shrub Crop, Large Fields - Tea SL47V-t tea plantation RFTT 

 

Closed to very open herbaceous with sparse trees and sparse 
shrubs 2H(CP)78 herbs HERB 

 

Open woody with closed to open herbaceous 2WP6 upland maize MAIZ 

 

Rainfed Herbaceous Crop, Large to Medium Fields HD4 lowland maize CORN 

 

Closed to very open herbaceous with sparse shrubs 2H(CP)8 grassland PAST 

 

Open trees (broadleaved deciduous) with closed to open shrubs 2TO28 open forest FRST 

 

Trees Plantation - Large Fields, Rainfed Permanent TL47PL tree plantation FRST 

 

Closed trees with closed to open shrubs 2TC8 natural forest FRST 

 

Permanently cropped area with small sized field(s) of rainfed shrub 

crop SR47V shrub crop RFSC 

 

Very open shrubs with closed to open herbaceous and sparse trees 2SVJ67 shrubs SHRB 

 

Open general shrubs 2SOJ67 shrubs SHRB 

 

Rainfed Herbaceous Crop, Large Fields - Wheat HL4-w wheat RFWC 

 

Rainfed Herbaceous Crop, Medium Fields - Wheat HM4-w wheat RFWC 

  Rainfed Herbaceous Crop, HL4 agric generic  AGRL 
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Figure 9-1: Map inputs for the baseline SWAT model  
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Figure 9-2: The climatic relationship of the basin centroid to WMO stations (Kericho, 
Narok) based on CRU 2.0 data (New et al., 2002) 
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9.2.5 The stream flow data 

Stream flow data is available from three stations 1LA02, 1LB03 and 

1LA04. The 1LA02 and 1LB03 stations are located at the midsection of 

the watershed, while the 1LA04 station is located on the downstream 

most edge of the study area. The characteristic of the flow has been 

described in section §4.2.1.2 

9.3 The model build-up 

9.3.1 DEM processing and sub-basin delineation 

In the lower flat plains of the watershed and due to the coarse resolution 

of the DEM, the delineation of the catchment was problematic. To 

correct the anomaly, a shapefile of digitized streams from World wildlife 

fund- Hydrological data and maps based on SHuttle Elevation 

Derivatives at multiple Scales (WWF- HydroSHEDS Lehner, (2005) was 

used to burn these into the DEM, Fig 9-3.  

 

 
Figure 9-3: Delineated streams network overlaid with the HydroSHEDS streams map  
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The watershed was divided into 3 sub-basins. The lowest points for the 

each sub-basin are located at the site of the stream gauging stations 

1LA03 1LB02 and 1LA04. Point 1LA04 is located downstream of the 

confluence of the Amala and Nyangores rivers. Point 1LA04 is the south 

most point in the study area and marks the end of the human activities 

including cultivated agriculture that may have direct impact on the water 

resources, and the start of the Maasai Mara natural reserve.  

 
Figure 9-4: The delineation of the watershed into sub-basins 

9.3.2 Watershed decomposition 

The SWAT model decomposes a watershed to sub-basins and Hydrologic 

response units (HRUs). HRUs represent the unique combinations of soil 

and land cover within each sub-basin at a specified distribution and are 

considered to be hydrologically homogeneous. HRU distributions are set 

by the user as a percentage value for soil and land cover. The 

distribution percent is used by the model so that only combinations of 

soil and land cover that are greater than the set distribution percentage 

are considered. Soil and land cover combinations below the set HRU 

distribution percentage are lumped into the combinations above the set 

distribution percentage and therefore not represented in the model. 

HRUs provide the greatest resolution for parametrization in SWAT; 

however, HRUs do not possess spatial orientation with respect to each 

other within a sub-basin (Nietsch et al., 2002). For this study all the 19 

soil (§9.1.2) and 15 land use (§9.1.3) classes were used in the overlaid 
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map with 0% threshold for both land use and soil resulting into 63 

HRUs. The number of HRUs in the landuse classes differs from one class 

to another.  

9.4 The model sensitivity analysis 

A sensitivity analysis is usually the first step towards model calibration 

and is performed to identify the parameters that have the greatest 

influence on the model results. According to Cho and Lee (2001), a 

sensitivity analysis seeks to answers several questions including: (a) 

where data collection efforts should focus; (b) what degree of care 

should be taken for parameter estimation and (c) the relative 

importance of various parameters. The parameters in SWAT vary by 

sub-basin, land use, or soil type, hence increasing the scale in the 

discretization (or threshold area) increases the number of parameters 

substantially. While some of these parameters represent measurable 

quantities and hence can be estimated directly from field data (or from 

literature), other parameters are empirical or SWAT-specific. A 

sensitivity analysis method should be both computationally efficient and 

robust. 

A parameter sensitivity analysis was performed using the built in 

sensitivity analysis tool of AVSWATx which uses the Latin Hypercube – 

One At a Time (LH-OAT) method (Van Griensven et al., 2006). The LH-

OAT method performs LH sampling followed by OAT sampling. A total of 

eighteen parameters with a sensitivity index > 0 were identified as 

sensitive with regard to flow (Table 9-2). According to Van Griensven et 

al., (2006) parameter with a global rank 1 is categorized as ‘very 

important’, rank 2–6 as ‘important’, rank 7–20 as ‘slightly important’ 

and rank 28 as ‘not important’. The Soil Conservation Service (SCS) 

curve number (CNII) was identified as the most sensitive and hence 

“very important" parameter to stream flow for this watershed. The curve 

number indicates the runoff potential of an area for the combination of 

land use characteristics and soil type. Higher curve numbers translate 

into greater runoff. Curve numbers are a function of hydrologic soil 

group, vegetation, land use, cultivation practice, and antecedent 

moisture conditions. The CNII parameter is of primary influence on the 

amount of runoff generated from a hydrologic response unit and hence a 

relatively large sensitivity index was expected. The parameter which 

depends on the percentage of imperviousness in the land cover type and 

the soil group is important especially in the study area with forest and 
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cultivated land as the major cover groups and little urban settlement 

influence. 

The other "important” parameters, were the groundwater recharge to 

deep aquifer (rchrg_dp), the threshold depth of water in the shallow 

aquifer required for return flow to occur (GWQMN), the available water 

capacity (SOL_AWC) and groundwater ‘‘delay’’ coefficient (GW_DELAY). 

The rchrg_dp controls the fraction of the percolated water that will flow 

to the deep aquifer. A high rchrg_dp value (near 1) indicates more 

allocation of percolated water to the deep aquifer. In SWAT the water 

that percolates through the unsaturated zone is immediately divided 

between the shallow and deep aquifers. The deep aquifer fraction will 

not produce any runoff in the basin and is thus water that is lost to the 

basin.  

The GWQMN regulates the water accumulation in the aquifer. The 

groundwater flow to the reach is only allowed if the depth of the water in 

the shallow aquifer is equal or greater than the GWQMN. The GWQMN 

parameter has wide threshold range (0-5000mm). SOL_AWC is the 

difference between the field capacity and the wilting point. The 

parameter is dependent on the soil textural class and ranges from 0.02 

to 0.3 with typical values of 0.04, 0.24 and 0.21 for sand, loam and clay 

respectively. GW_DELAY is the lag between time the water exits  the soil 

profile and enters shallow aquifer, and depends on the depth of the 

water tble and the hydraulic properties of the geological formation. 

9.5 The model calibration 

Multi-gage observed data if available may be used for implementing a 

distributed approach to calibration, where observed and simulated 

outputs are compared at multiple points on a watershed. Moreover, it 

may be advantageous to employ a multi-step approach to auto-

calibration (Van Liew and Veith, 2009).  

The period between 1970 and 1977 provided data with comparatively 

minimal missing data points and was used in this study for the three 

gauging stations. 1970 was used for model warm-up, 1971-1974 for 

model calibration and 1975-1977 for model validation.Manual calibration 

was attempted but discarded due to two fundamental challenges: 

manual calibration of the large number of HRUs model was labor 

intensive and the large number of non unique solutions was not only 

confusing, but produced no better results than the default simulation. 
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Table 9-2: Ranking of the parameters sensitive to flow in the SWAT modelling  

Rank 
Parameter 

 Lower 
limit 

 Upper 
limit Parameter description 

 

Msi* 
1 CN2 -50 50 SCS runoff curve number II 

 
2.59 

2 rchrg_dp 0 1  Groundwater recharge to deep aquifer 
 

1 
3 GWQMN 0 5000  Threshold depth of water in the shallow  

 
0.87 

 

   

aquifer required for return flow to occur 
(mm) 

 
  

4 SOL_AWC -50 50 Available water capacity (mm/mm soil)  
 

0.5 
5 GW_DELAY 0 100 Groundwater delay (days) 

 

0.33 

6 ALPHA_BF 0 1 Baseflow alpha factor (days) 
 

0.3 
7 SLOPE -50 50 Average slope steepness (m/m) 

 
0.2 

8 ESCO 0 1 Soil evaporation compensation factor   
 

0.19 
9 Sol_k -50 50 Soil conductivity (mm/h) 

 
0.17 

10 Sol_z -50 50 Soil depth 
 

0.14 
11 Canmx 0 10 Maximum canopy index Runoff 

 

0.08 

12 CH_K2 0 150 Effective hydraulic conductivity in  
 

0.06 
 

   
main channel alluvium (mm/hr)  

 
  

13 Sol_alb 0 1 Moist soil albedo  
 

0.04 
14 surlag 0 10 Surface runoff lag coefficient  

 
0.02 

15 EPCO 150 50 Plant evaporation compensation factor   
 

0.02 
16 BLAI -50 50 Maximum leaf area index 

 
0.02 

17 GW_REVAP 0.02 0.2 Groundwater ‘‘revap’’ coefficient  

 

0.01 

18 REVAPMN 0 500 Threshold depth of water in the  
 

0.01 
 

   

shallow aquifer for ‘‘revap’’ to occur 
(mm)  

 
  

*msi= mean sensitivity index 

 

The process of manual calibration requires a high degree of expert 

knowledge of the model and the system and is characterized by 

subjectivity in the strategy employed to adjust the parameter values, as 

well as in the criteria (mainly visual) used to judge the goodness-of-fit of 

the model simulation (Blasone et al., 2007). Also, due to the large 

amount of missing data for the period under consideration, the base flow 

separated with the available filters was only estimation.  

According to Arnold et al., (1995b) some type of baseflow filter is used 

to provide an average annual ratio of baseflow to surface runoff for the 

calibration of model runs. Baseflow separation was therefore performed 

for 1971 and 1974 to give an indication of the baseflow fraction. Three 

different digital filters were used to perform the base flow separation for 

1971 and 1974. Although digital filter method has no physical meaning, 

it removes the subjective aspect from manual separation, and it is fast, 

consistent, and reproducible (Arnold et al., 1995b). 
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The Baseflow Program (Bflow, Arnold et al. 1995b) makes three passes 

(forward, backward and forward) with each pass resulting in less base 

flow as percentage of the total flow. The authors recommend the use of 

first pass as default in the absence of site-conditions, although it 

overestimates the baseflow compared to manual separation techniques, 

Arnold et al. (1995b),  and Arnold et al. (1999) found measured values 

to fall in the midpoint of first and second passes. 

The Water Engineering Time Series PROcessing tool (Wetspro, Willems, 

2009) can be used to conduct the; sub flow filtering, peak flow selection 

and related hydrograph separation for quick flow and slow flow periods, 

and related low flow selection (Willems 2009). 

The WHAT -Web-based Hydrograph Analysis Tool, Lim et al., (2005) has 

three base flow separation modules, the local minimum method and two 

digital (one parameter digital filter method - same algorithm used in 

BFLOW filter , and  two parameter digital filter method- filter parameter 

and BFImax) filter methods, are available in the WHAT system. The 

mean base flow fraction of flow from the analysis of the three methods 

(Bflow, Wetspro, and WHAT)and adopted for this study was found to lie 

between 60-70%. 

The SWAT Calibration and Uncertainty Programs (SWAT-CUP) stand-

alone program was used for the calibration and validation of the SWAT 

model. The program links the Generalized Likelihood Uncertainty 

Estimation method (GLUE; Beven and Binley, 1992), the Parameter 

Solution method (ParaSol; Van Griensven and Meixner, 2006), the 

Sequential Uncertainty Fitting (SUFI2; Abbaspour et al., 2004), the 

Markov chain Monte Carlo method (MCMC; Kuczera and Parent, 1998) 

and the Particle Swarm Optimization method (PSO; Kennedy and 

Eberhart, 1995). It enables sensitivity analysis, calibration, validation 

and uncertainty analysis of a SWAT model.  

The autocalibration was performed using the SUFI-2 and the ParaSol 

algorithms. In both ParaSol and SUFI2, the parameters can be changed 

in three ways; a - an absolute change of value, v – replacement of the 

value and r – a relative change of value. The choice of the change 

method was done as per the protocol set out in the “changepar” section 

of the sensitivity, autocalibration and uncertainity analysis manual of 

(Van Griensven 2006). Two "slightly important" parameters; the Sol_z 

and SLOPE (rank 7 and 10 respectively) were not included in the 

autocalibration. Sol_z caused the model to crash (a problem also 
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repeatedly reported elsewhere in the SWAT model forums), the slope is 

a basin parameter and related to the DEM. The two last parameters with 

sensitivity indices < 0.02 were also not used in the auto calibration 

routine. 

For the autocalibration, stream flow data from 1LA03, 1LB02 AND 1LA04 

stations was used. The parameter ranges are set through available data, 

literature and suggestions from the SWAT user manual. During 

autocalibration, most of the parameters were set in the ranges 

recommended in the SWAT calibration manuals (Van Griensven et al., 

2006; Abbaspour et al., 2004). Only two parameters, the GWQMN and 

the Rchrg_dp were constrained in order to limit the amount of water 

that is routinely percolated to the aquifers. Through preliminary trial and 

error runs, the parameters GWQMN and Rchrg_dp were set to allow 

maximum value change up to 200 mm and 0.1 respectively.  

After the comparison of the initial results of the autocalibration, there 

was no significant difference in the NSE from ParaSol and SUFI 

algorithms. The ParaSol method was therefore selected for subsequent 

autocalibration procedures. The ParaSol algorithm is faster and required 

less interactive attention, as the iterations were completely automated 

unlike the SUFI-2 where the number of runs per iterations is limited to 

500 runs, and the modeller has to set new parameter limits for 

subsequent iterations (Abbaspour et al., 2004). The ParaSol 

incorporated in AVSWATx was therefore adopted for this study. The 

ParaSol method calculates the sum of the squares of the residuals (SSQ) 

as the objective function (OF). The OF is based on matching a simulated 

model output to observation (measured) time series. The ParaSol 

aggregates these objective functions into a global optimization criterion 

(GOC), minimizes the OF or GOC using the Shuffled Complex Evolution 

Uncertainty Analysis (SCE-UA) algorithm and performs an uncertainty 

analysis with a choice between two statistical concepts (Abbaspour, 

2004). The shuffled-complex-evolution algorithm is slower to optimize 

than the parameter estimation (PEST, Doherty, 2005)) optimization 

package, but makes no assumptions about the shape of the objective 

function, and is therefore less likely to be trapped in local minima 

(Marshall, 2005). 

The acceptability and usability of a model to simulate or predict physical 

processes depend on how well it models compared to observed data. 

Hydrological models can be assessed by their goodness of fit to 

statistical measures - based on an objective function - and by 
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comparison to the water mass balance in the watershed. Both metric 

and non metric performance measures are used in this study. The 

goodness-of-fit measures used include the Nash-Sutcliffe efficiency 

(NSE) value Nash and Sutcliffe, (1970), the percent bias (PBIAS) and 

the Root Mean Square Error-observations standard deviation ratio 

(RSR). The three methods are based on three parameters (Yi
obs, Yi

sim, 

and Ymean). Yi
obs is the ith observation for the constituent being evaluated, 

Yi
sim is the ith simulated value for the constituent being evaluated; Ymean 

is the mean of observed data for the constituent being evaluated and n 

is the total number of observations. 

The Nash-Sutcliffe efficiency (NSE) is a normalized statistic that 

determines the relative magnitude of the residual variance as compared 

to the measured data variance (Nash and Sutcliffe, 1970). The 

relationship between NSE and SSQ is 

         
      

    
  

    -----------------------------------9.3a 

       
 

    
      

     
  

   

          
    

      
    

 
 
   

    
      

     
  

   

 --------9.3b 

Where: NSE ranges between −∞ and 1 (1 inclusive), with NSE=1 being 

the optimal value. Values between 0.0 and 1.0 are generally viewed as 

acceptable levels of performance, whereas values <0 indicates that the 

mean observed value is a better predictor than the simulated value, 

which indicates unacceptable performance.  

The NSE is recommended for use by the American Society of Civil 

Engineers (ASCE) (Moriasi et al., 2007). Due to its widespread usage, it 

provides extensive information on reported values. It was found by 

Sevat and Dezetter (1991) to be the best objective function for 

reflecting the overall fit of a hydrograph. An NSE of 0.50 - 0.65 was set 

as satisfactory by Moriasi et al. (2007). The PBIAS measures the 

average tendency of the simulated data to be larger or smaller than 

their observed counterparts.  

        
    

      
         

   

   
    

   

 ----------------------------------9.4 

The optimal value of PBIAS is 0, with low-magnitude values indicating 

an accurate model simulation. Positive values indicate model 

underestimation bias, and negative values indicate model overestimation 

bias.  
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The RSR is calculated as the ratio of the RMSE and the standard 

deviation of the measured data. RSR incorporates the benefits of the 

error index statistics and includes a scaling/normalization factor, so that 

the resulting statistic and reported values can apply to various 

constituents (Moriasi et al., 2007). 

     
    

        
 

      
      

    
  

    

      
      

     
  

    

-------------------------9.5 

RSR varies from the optimal value of 0, which indicates zero RMSE or 

residual variation and therefore perfect model simulation, to a large 

positive value. The lower RMSE, the lower the RSR, and therefore, the 

better the model simulation performance 

A graphical comparison between simulated and observed hydrographs 

should always be undertaken in any study involving computed and 

simulated hydrograph comparisons (Green and Stephenson, 1986). 

Despite its obvious shortcomings of subjectivity (and hence 

irreproducibility) and inapplicability in large data sets, visual inspection 

is a “powerful expert system for simultaneous, case specific multi-

criteria evaluation which provides results in close accordance with the 

user’s needs” (Ehret and Zehe, 2010).  

9.6 SWAT model performance and improvements 

The NSE for the calibrated simulations for the three stations is given in 

Table 9-3. Since the objective of using the SWAT model was to adapt a 

hydrological model for the prediction of processes taking place in the 

watershed. The models should therefore, as much as possible, meet 

some minimum statistical performance criteria, as well as reflect the 

physical processes in the catchment. The threshold set for this study 

was NSE>=0.5 for monthly time step, which is consistent with the 

criteria spelt out in Moriasi et al. (2007). 

Table 9-3: Model statistical performance for multi-stage calibration stations 

River  stations 
NSE 

% deviation from 

observed flow  

Mara 1LA04 0.29 -30 

Nyangores 1LA03 0.13 24 

Amala 1LB02 -5 36 

Hydrological models can be assessed by their goodness of fit to an 

observed flow series, based on an objective function, and by an analysis 
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of the water balance in the watershed, as compared to observations. 

From Table 9-3, the results of the calibration were not satisfactory, even 

after manipulation of the parameter ranges for the model. A change in 

the model set up was therefore necessary. The SWAT model was 

systematically improved in order to make its performance agree to the 

set minimum modelling performance standards and to mirror the 

hydrological processes in the watershed.  

In order to get the SWAT model to satisfactory level, several 

improvements were made on the default SWAT model that was 

developed using the FAO-AFRICOVER land cover map of 1999 and the 

precipitation data for individual stations (§ 9.3). Whereas the Nash-

Sutcliffe efficiency (NSE) was the index used for model statistical 

performance, the total water yield was the indicator for water balance 

performance. Improvement changes were made with and without 

recalibration of the model. Table 9-4 summarizes the changes made on 

the model inputs and management files throughout the improvement 

process. The improvement changes were first performed to improve the 

NSE and later the water balance, and are described in details in the 

following sections. 

Table 9-4: Summary of changes on the SWAT model  

 
  Files changed 

 ID Improvement target Land map Precipitation Management files 

1* Objective function AFRICOVER Individual stations default setting 

2 Objective function Landsat 1976 Individual stations default setting 

3 Objective function Landsat 1976 Interpolated default setting 

4 Water balance Landsat 1976 Interpolated Perenial HRUs 

5 Water balance NDVI Interpolated Perenial HRUs 

6 Water balance NDVI Interpolated Perenial + Crops 

7 ET forest NDVI Interpolated Cropdat changed 

*Default simulation 

9.6.1 The improvement of the objective function.  

The target for these improvement efforts was to have the SWAT model 

performance indices attain the performance criteria for hydrological 

models set out in Moriasi et al. (2007). Since rainfall and stream flow 

data for the period 1970-1977 was used for the model calibration and 

validation, and in cognizance of land cover change dynamics in the study 

area, the use of a latter day land cover map (the FAO 1999 map) was 

assessed as a potential source of error. The hydrology component of the 

SWAT model uses the curve method. The CNII is the most sensitive 
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parameter, and is a function of the soil group and land cover. Therefore 

the representation of the wrong land cover type also affects the 

parameter sensitivity and response. A land cover map was created using 

Landsat MSS data to synchronise the data sets period under 

consideration. The FAO land map was substituted with the new land 

cover map and all the other model inputs and parameterization kept 

unchanged (Fig 9-5). Only the ILA04 station was used in this 

improvement process and the model improved from NSE of 0.29 to a 

new NSE of 0.43.  

 

Figure 9-5: Substitution of the AFRICOVER map (right) with Landsat 1976 map 

 

The SWAT model employs a simplified system for climatic data input. 

The station located nearest to the subbasin's  centroid is used as the 

input for that subbasin. While this maybe applicable in areas with 

homogeneous terrain, it maybe problematic in regions where spatial 

heterogeneity is high or where data are sparse. Due to the geospatial 

heterogeneity of the study area, with elevation changing from 1800 to 

3000m, the use of data of a single station for the basin or sub-basin was 

assessed as inappropriate. 

A simple cluster and average (CA) method was implemented in this 

study. The method involved the clustering of the rainfall stations in a 

scatterplot. The average annual rainfall (mm) is plotted against the 

elevation (m). The relation betweeen the topographic elevation and the  

mean long term  annual precipitation for the rainfall stations was a 

polynomial fit. Three clusters were distinguised, Cluster 1; Low altitude- 

low rainfall, cluster 2; Medium  altitudes – high rainfall, and cluster 3; 

High altitudes – medium rainfall. Figure 3 represents the clustering of 

eleven (11) stations based on elevation and rainfall. The selection of the 
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clusters was performed qualitatively by visible subject analysis of the 

plots. Due to their indiscreet positioning some stations were dismissed 

as noise and not clustered. Using the clustering principle where 

"patterns within a valid cluster are more similar to each other than they 

are to a pattern belonging to a different cluster" (Jain et al., 1999), 

three cluster classes were qualitatively established. Once the clusters 

were identified, the rainfall stations within the clusters were used to 

generate  new, virtual stations by averaging stations’ daily precipitation 

in each cluster (Table 9-5).  

The clustering system was validated graphically by use of the areal 

interpolation of the annual rainfall using the ordinary Kriging technique. 

Using the  ordinary kriging technique with a gaussian transformation, all 

the point rainfall stations were  interpolated to a spatial distribution of 

rainfall over the study area. After re-classification, three   zones  were  

produced The zonings generated by the kriging interpolation were 

consistent with the  clusters  produced with  the simple scatterplot  

clustering.  The spatial interpolation indicates that the majority of the 

area upstream of the midsection experience higher than average rainfall, 

downstream had  lower rainfall..The clusters identified represent a low 

altitude-low rainfall zone, a medium altitude-high rainfall zone and a 

high altitude-medium rainfall zone (Fig. 9-6). Three synthetic rainfall 

stations developed in these clusters and the new stations used as the 

precipitation inputs to the model. 

Table 9-5: Stations used to generate new, virtual, precipitation stations with the 
Cluster and Average (CA) method  

ID LAT LONG Av. 
Rfall,mm 

Elev. 
(m) 

New  
station  

Description of new 
stations 

9035079 -0.75 35.37 1465 2012  

Pcp_medd 

 

Medium altitude 

high rainfall 
9035260 -0.82 35.35 1627 1916 

9035227 -0.78 35.33 1332 1951 

9035265 -0.78 35.35 1343 1951 

9035241 -0.42 35.73 1118 2865 Pcp_high High altitude 
medium rainfall 9035228 -0.45 35.8 1263 2957 

9035324 -0.48 35.63 980 2650 
  

9135008 -1.0 35.23 956 1646 
  

9135019 -1.1 35.38 788 1829 Pcp_loww 

 

Low altitude low  

rainfall 
9135010 -1.2 35.25 812 1826 

9035334 -0.8 35.6 750 1942 
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Figure 9-6: Scatter plot of the rainfall stations (left) and the corresponding spatial 
extent of the interpolation zones in the study area 

 

The calibrated model performance using observed data for 1LA04 

improved to NSE= 0.58. The NSE for the other two stations was 

considerably low (0.38 and 0.26 for Amala and Nyangores 

respectively).the graphical representation of the multi-stage calibration 

processs for 1970-1974 is shown in Fig 9-7. With the satisfactorily 

acceptable results from 1LA04,  single station calibration using only 

1LA04 was performed for the next improvements. The unsatisfactory 

performance for the 1LA03 and 1LB02, especially with the large amount 

of missing data (1LB02) and gross underestimation (1LA03) made it 

practically impossibble to rely on these stations for the SWAT model 

calibration. The poor performance of SWAT at the Nyangores station has 

also been experienced by other researchers. Mango et al. (2012) 

obtained a NSE=0.085 and attributed the poor model performance to 
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using data from limited number of raingauges/the very coarse spatial 

distribution of climate stations in the catchment.  

 

Figure 9-7. Time series for simulated and observed flows at three gauging stations on 
the Mara river 

9.6.2 The improvement of the water balance 

While the NSE of the SWAT model was satisfactory, the other indicators 

of the model performance were not yet within acceptable ranges. The 

water yield was 16% lower than the observed flow. Arnold et al., (2012) 

recommended a deviation of +-10% for yields to be considered 

satisfactory. Default information entered in the management files in 

SWAT (.mgt) by the simulator interface creates problems for realistic 

simulation of landcover types specific for an area. 



150 
 

SWAT develops the biomass simulation primarily on the basis of the 

information in the crop database, which maybe modified to reflect 

appropriate parameters for regional cover types. To better reflect the 

catchment processes, the initial LAI, initial biomass and the heat units 

were adjusted according to Table 9-6. Since the model was simulated in 

a catchment in which permanent land cover types were growing, the 

Initial Plant Growth Parameters (IGRO) was changed. IGRO is the land 

cover status code, which informs the model whether or not a land cover 

is growing at the beginning of the simulation, (0 for no land cover 

growing, 1 for land cover growing). Plant_ID is the land cover 

identification number, and is the numeric code for the land cover given 

in the plant growth database. LAI_INT is the initial leaf area index, 

BIO_INT is the initial dry weight biomass (kg/Ha). 

According to the SWAT documentation (Neitsch et al., 2002) trees go 

dormant as the day length nears the shortest or minimum day length for 

the year. During dormancy no growth takes place. Also once trees enter 

dormancy the tree leaf biomass is converted to residue and the LAI for 

the tree species is set to the minimum value allowed ('Harvest and Kill'). 

This has been changed to allow for an unlimited growth and biomass 

accumulation in the forest, taking into account the natural senescence 

processes. The initial biomass in the natural evergreen land use classes 

including forest and shrubs were initialized with values obtained in the 

literature to simulate mature tropical plants, Asner et al., (2003), Breuer 

et al., (2003), Houghton, (2005). 

The potential heat unit (PHU_LT) is the total number of heat units 

required to bring a plant to maturity, and is calculated using 1) long-

term maximum and minimum temperature data, 2) the base or 

minimum temperature required by the plant for growth, 3) and the 

average number of days for the plant to reach maturity. For tree 

species, the PHU parameter is an estimate of the growing season, i.e., 

the amount of time between budding and leaf senescence. Once 

vegetation reaches maturity in the model, the leaf area index for the 

plant is set to zero and the vegetation no longer intercepts rainwater nor 

takes up water from the soil for the purpose of growth. Therefore, after 

plant maturity, evapotranspiration due to the vegetation does not occur. 

This modeling approach has a significant effect on soil moisture content 

and water yield for land covers with vegetation that has reached 

maturity (von Stackelberg et al., 2007).  
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Since the permanent cover types in the study area do not stop 

transpiring and certainly continue to intercept rainwater after maturity, 

the growing season was extended to delay or prevent the vegetation 

from reaching maturity. A value of 3,500 PHUs which is the highest 

allowable value for this parameter in the model was used for the 

grassland, mixed forest, tea and shrub land cover types. 

Table 9-6: Modification of the management files for the perennial land cover classes, 
(data source Breuer et al., 2003) 

Variable   Land cover class 

 

Forest Shrub Grass 

IGRO 1 1 1 

Plant _ID 7 6 6 

LAI_INIT 4 2.5 3 

BIO_INIT (kg/ha) 50000 30000 30000 
PHU_LT 3500 3500 3500 

After implementing these changes, the biomass and the crop yields for 

the perennial land cover classes increased considerably, but the water 

balance were not yet satisfactorily improved. While the statistical 

performance was good with NSE = 0.61, the modelled water yields, and 

the ET were underestimated, Table 9-7.  

Table 9-7: Model performance with perenial HRUs modification 

Variable Simulated  Observed(expected) 

Water yield, mm 171 ~234 

Evapotranspiration,mm 624 >700 

NSE 0.61 >0.50 

The next step of the model improvement consisted of the use of a crop 

level land use map. In the lower sections of the study area, there are 

two distinct rainy seasons (MAM and OND) resulting in two peaks in the 

vegetation growth. In the default management file, the growing season 

is scheduled by heat units (HU). Crop growth only occurs on those days 

when the mean daily temperature exceeds the base temperature. Crop 

growth only occurs on those days when the mean daily temperature 

exceeds the base temperature. The heat unit accumulation for a given 

day is calculated with the equation; 

                                      ----------------------------9.6 

Where:          is the mean daily temprature (oC),        is the plant's base 

or minimum temperature for growth (oC). 

The total number of heat units also referred to as potential heat units 

(PHU) required for a plant to reach maturity is calculated as  
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    ------------------------------------------9.7 

Where; d=1 is the day of planting and m is the number of days required 

for a plant to reach maturity. 

This means that the growing season for the vegetation is dependent on 

the total heat units needed by the specific crop to accumulate to reach 

maturity. The growing season starts if the temperatures are above a 

minimum value for a specified number of days and ends if temperatures 

drop below a minimum value for a specified number of days. To 

overcome this, the scheduling of planting and harvesting was done by 

the use of planting dates for the agricultural land use types. A crop 

calendar (Table 9-8) was developed from field surveys. Maize growing is 

the key agricultural activity and exhibits two distinct patterns, depending 

on the agroclimatic zone in which it is grown.  

In the SWAT crop database (crop.dat), a new crop designated as upland 

corn (and assigned the SWAT code MAIZ ) was introduced. Two maize 

crops classes namely: lowland maize (CORN) and upland maize (MAIZ) 

are therefore considered in SWAT simulation. The two classes share 

similar characteristics in the crop.dat file with the only difference being 

the timing of planting and harvesting. Also in the lowland maize (CORN) 

growing areas two growing seasons are simulated, while only one 

season was simulated in the upland maize (MAIZ) areas. Annex 8 shows 

the editing of the management files for the different maize classes. 

Table 9-9 represents the full spectrum of changes made on the 

management file in SWAT to better mimic the actual situation on the 

ground.The changes in Table 9-9 include those performed on the 

perennial land cover types (Table 9-6) as well as changing the 

management files for crop cover types to more realistically control the 

planting and harvesting cycles.  
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Table 9-8: The crop calendar for the main crops in the different zones 

            crop  calendar            

ZONE   Jan Feb Mar Apr May  Jun July Aug Sep Oct Nov Dec 

Molo Maize 
 

LP P W               H 

  Potatoes        
 

            

Bomet Maize H  LP P 
 

 W     H 
 

LP P 
 

W 

   Potatoes  
     

LP P W   H 
  

Chebunyo Maize H  LP P 
 

 W     H 
 

LP P 
 

W 

  S. Potato  
    

LP P W   H 
   

Olulunga Maize H  LP P 
 

 W    H 
 

LP P 
 

W 

  Wheat LP P   W     H 
     

  Potatoes            LP P W   H 
 

  

Abbreviations         colour code           

LP Preparation W Weeding     Green off  H Harvest  

P Planting   H Harvesting     Green on         

 

Table 9-9: Modification of the SWAT management files  

Code Description SWAT code Modifications  

3 Lowland maize CORN Plant Mar 1st, Harvest July 30th 

   

Plant Oct 1st, Harvest Jan 31th 

6 Closed shrub SHRB LAI_INIT 3, BIO_INIT 30ton/ha,  

7 Rainfed shrub crop RFSC LAI_INIT 3, BIO_INIT 30ton/ha,  

10 Rainfed shrub crop RFSC LAI_INIT 3, BIO_INIT 30ton/ha,  

11 Forest mixed FRST LAI_INIT 4, BIO_INIT 50 ton/ha,  

15 Upland maize MAIZ Plant March 1st, Harvest Dec 30th 

19 Forest mixed FRST LAI_INIT 4, BIO_INIT 50 ton/ha,  

20 Rainfed tree crop RFTT LAI_INIT 3, BIO_INIT 30ton/ha, 
 

The better reflect and control the parameterisation of the changed 

model the watershed was re-divided into 6 sub-basins. New user defined 

lowest points for the each sub-basin (labelled A-F) are shown in figure 

9-7. Points A and B marks the end of the upland corn growing areas and 

were selected from the elevation bands. They also define the upper 

boundaries of the Mau forest. Points C and D are located downstream of 

the forest and at the site of the stream gauging stations 1LA03 and 

1LB02 respectively. Point E is located immediately downstream of the 

confluence of the Amala and Nyangores rivers. Point F at the site of 

station 1LA04 marks the end of the human activities including cultivated 

agriculture, and start of the Maasai Mara natural reserve.  
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Figure 9-8:  User defined delineation of the watershed 

The performance of the model simulation for a daily time-step is given in 

table 9-10 below. The total water yield component of the water balance 

is within ±5% of the observed fractions. The close approximation of the 

watershed processes represented by the closeness in the values of the 

observed and simulated fractions of the water balance indicates a good 

match. The statistical indices PBIAS = -12.34%, NSE =0.51 and RSR= 

0.7 are within the "good", "satisfactory" and "satisfactory" rating 

respectively according to Moriasi et al. (2007) criterion of NSE > 0.5, 

PBIAS <±25  and RSR < 0.7 for stream flow. Though the SWAT model is 

satisfactorily calibrated for flows in this study, the evapotranspiration for 

the forest and other perennial land cover types was still very low. 

Table 9-10: Model performance for annual water balance  

  Water balance parameters   Goodness of fit  

  Water Baseflow Surface Baseflow ET,  NSE PBIAS RSR 

 
yields, flow, flow, fraction 

    

 
mm mm mm  (%) mm 

   Observed 234 167* 67* 71         

Simulated 240 158 82 64 679 0.51 -12 0.7 

% diff -3 5 -22           

(O-S/O)                 

In order to improve on the ET in forest, a modified SWAT version 

(SWAT_L) was deployed together with other adjustments in the crop 
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database and the parameter maximum canopy storage (CANMX). The 

plant canopy can significantly affect infiltration, surface runoff and 

evapotranspiration. The maximum canopy storage (CANMX) also known 

as interception capacity (Ic) is the maximum amount of water that can 

be trapped in the canopy. The parameter was changed in the .hru files 

for all the land cover types. The value used for Ic (Table 9-11) for each 

cover type was derived from Breuer et al. (2003). 

Table 9-11: Typical values for interception capacity (Ic)  (Breuer et  al., 2003). 

Type of biome crops Herbs/grass conf. forest shrubs 

Ic 2.6 1.9 1.9 1.1 

To test the modification, the SWAT2005_L was run on the DOS prompt. 

The ET for tea and shrubs increases drastically. Example ET in Hru1 with 

tea cover changed from 416mm to 844mm. However the ET for a forest 

hru (hru4) changed marginally from 489 to 647mm. With the ET in tea 

hru1 doubling and the ET in forest Hru4 changing only by 32%, the crop 

database was explored for any mis-representation of realistic values. 

The most sensitive parameters in the crop data list were analysed. The 

harvest index for optimal growing conditions (hvsti) and the maximum 

stomatal conductance (GSI) were found to be the most sensitive. Hvsti 

defines the fraction of the aboveground biomass that is removed in a 

harvest operation. The value defines the fraction of plant biomass that is 

lost from the system and unavailable for conversion to residue. The 

harvest index for forest has been set at 0.76 and was not changed, since 

reducing the hvsti would reduce the ET further.  

Stomatal conductance of water vapor is used in the Penman-Monteith 

calculations of maximum plant evapotranspiration. The typical values for 

the maximum stomatal were found from literature. The maximum 

stomatal conductance (g) values for tropical forest is 5 mms-1 (Schulze 

et al., 1994). In SWAT crop database the default value is 2 mms-1 and 

was changed to 7 mms-1. The g value for all the relevant landcover 

types were changed accordingly. Using the best parameters in the last 

calibrated model, the model re-run with the new crop database using 

both the standard SWAT2005 and the modified SWAT 2005_L. The 

results of the simulations are summarized in Table 9-12. There is a 

significant reduction in the water yield from both the standard SWAT 

model with new crop database and the modified SWAT 2005_L, but no 

significant difference between the interventions (columns b,c,d in Table 

9-12). The ET was considerably higher for all the interventions, with the 
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modified SWAT having moderately higher average ET than the standard 

SWAT. 

Table 9-12: Comparison of water balances for the different SWAT versions: a) default 
crop data and SWAT2005, b) default cropdata with SWAT2005_L, c) new crop data 
with SWAT2005, d) modified crop data with SWAT2005_L. 

 

Default Interventions 

  SWAT2005 SWAT2005_L SWAT2005 SWAT2005_L 

  
mm, (a) Oldcropdata 

 mm, (b) 
Newcropdata 
mm, (c) 

Newcropdata 
mm, (d) 

Pcp 1155 1155 1155 1155 

Surface runoff 90 80 86 80 

lateral soil 31 28 25 24 

Shallow AQ 120 68 64 52 

Revap 37 37 37 37 

Deep AQ 35 24 23 20 

Total AQ 

Recharge 

354 235 230 204 

Water Yied 241 176 175 156 

ET 679 814 817 847 

ET_Forest 416 844 827 852 

ET_Tea 489 648 825 872 

The model was re-calibrated to generate new best parameters sets for 

the modified model. With the modified SWAT, the simulated ET for the 

forest and other perennial landcover types is comparable to the other 

annual cover types with the modified crop database. The modified SWAT 

however has a poorly balanced hydrology with no surface runoff, column 

b (Table 9-13). 

The modified SWAT version shuts out the LAI loop and thus affects the 

distribution to the surface runoff routine fraction. The algorithm was 

however instrumental in identifying the deficit in the default crop 

database to simulate ET for tropical forests and woodland. When the 

crop database is changed, the modified SWAT_L has little influential 

advantage on the ET, indicating that the modification has similar positive 

effect on the ET, but a negative/undesirable effect on the surface runoff. 

The ET for the perennial cover types was high, although still lower than 

the annual landcover types like maize and pasture. To address the 

shortcoming of zero surface runoff, the standard SWAT with the new 

crop database was adopted.  

Although the SWAT manual (Nietsch et al., 2007) recommends the 

initialising of the PHU_LT when IGRO is 1, the SWAT model was 

simulated without making this file modification to allow Forest transpire 
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without limitation. The resulting recalibrated model is given in column c, 

Table 9-13. The forest ET is now the high, although the surface runoff is 

low (15% of flow). Manual calibration was used to fine tune the 

calibration and improve on the water balance fractions especially the 

surface runoff, column d. The calibrated parameters for the adapted 

SWAT model are provided in table 9.14.  

Table 9-13: Comparison of recalibrated SWAT model versions for forest ET 
optimisation. 

Fraction SWAT2005 SWAT2005_L NO  NO PHU with 

mm mm,  (a) mm, (b) 

PHU 

mm, 

(c) 

Manual 

tuning mm, 

(d) 

Pcp 1155 1155 1155 1155 

Surface runoff 80 0 33 80 

lateral soil 30 101 77 30 

Shallow AQ 100 115 142 123 

Revap 37 29 32 35 

Deep AQ 24 28 2 2 

Total AQ Recharge 234 280 280 255 

Water Yied 210 216 252 233 

ET 816 771 765 793 

ET_Forest 824 739 1032 1038 

ET_Tea 825 799 828 838 
 

Table 9-14: Minimum and maximum range of SWAT parameters and the initial and 
best parameters values. 

    parameter values   

  min max initial Value Final value 

Sol_Awc -50 50 0.1 - 0.9 0.06 - 0.57 

Cn2 30 100 40 - 83 42.24 - 87.64 

Esco 0 1 0 0.54 

Sol_K -50 50 13.19 - 45.61 19.52 - 67.50 

Rchrg_Dp 0 0.1 0.05 0.10 

Epco 0 1 0 0.71 

Ch_K2 0 150 0 0.39 

Alpha_Bf 0 1 0 0.00 

Surlag 0 10 0 0.09 

Canmx 0 10 0 8.19 

Sol_Alb 0 0.1 0 0.08 

Gw_Delay 0 50 31 0.14 

Gwqmn 0 200 0 81.72 

Blai 0 1 0 0.79 
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The resulting calibrated model has simulated water yield very close to 

the observed flow (±1mm), surface runoff at 35% of the flow. According 

to the results of the baseflow separation analysis, surface runoff should 

contribute to between 30 - 40% of the total water yield. The statistical 

parameters for the calibrated model were -8%, 0.55, and 0.67 indicating 

“very good”, “satisfactory” and “satisfactory” for the PBIAS, NSE and 

RSR respectively (Table 9-15) 

Table 9-15: Model performance for assessed annual water balance fractions. 

  Water balance parameters   Goodness of fit  

  Water Baseflow Surface Baseflow ET,  NSE PBIAS RSR 

 
yields, flow, flow, fraction 

   

 
mm mm mm  (%) mm 

   Observed 234 167* 67* 71         

Simulated 233 150 83 64 793 0.55 -8 0.67 

% diff 0 6 -24           

(O-S/O)                 

 
*calculated from observed data (baseflow separation) 

  
From the representation of simulated ET in Fig 9-8, the ET for the forest 

is on average higher than the rest of the land cover types. This is 

consistent with expected ET relationship between different biomes (Cho 

et al., 2011). The lowland corn (CORN) has the highest variability in ET 

due to the wide range of agroclimatic zones in which its is grown. The 

rainfed shrub crop (RFSC) which in reality represents small scale tea 

farms interspiced with crops and agroforestry has higher ET than the 

range land bush (SHRB) due to the higher water availability in the sub-

humid areas. The main driving force in the ET is the water availability. 

Vegetations types growing in the humid and semihumid zones have 

higher ET than those in semi-arid areas. 

The SWAT model was validated with streamflow data fro 1975-1977. 

The NSE for the validation was 0.52. The lower NSE for the validation 

stage as compared to the calibration NSE could be attributed to the 

available data as shown in the graphic representation of the time series 

(Fig 9-10) 
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Figure 9-9: The variability in ET for the different land cover classes as simulated by the 
SWAT model 

A satisfactory simulation of the river flows does not necessarily indicate 

a satisfactory simulation of the individual hydrological processes, due to 

the equifinality (Beven, 2001) issues for model input parameter values. 

‘Internal’ model performance indicators need to be assessed to 

demonstrate that the model is also providing a good hydrological 

simulation (Glavan, 2011). The SWAT_checker stand alone tool (White 

et al., 2012) was used to assess the hydrological balance of the model 

simulation. The tool compares simulated outputs and typical value 

ranges from a database. The model reads selected SWAT output, alerts 

the user of values outside the typical range, and creates process-based 

figures for visualization of the appropriateness of output values. The 

tool's check for this study returned no error warning, indicating that the 

hydrological components were well within expected typical ranges. 

Figure 9-9 shows the output of the SWAT_checker analysis of the 

calibrated model output for the study area. 
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Figure 9-10: Visualisation of the hydrological cycle components for the SWAT modelling 
of the Upper Mara river basin.  

The graphical representation of the observed and the simulated flow is 

given in Fig 9-10. Both the observed and simulated flows respond well to 

the rainfall events. After the initial warm-up, the simulated flow 

corresponds fairly well to the observed flows except for the peak flows. 

The highest residuals in the time-series plot seems to coincide with the 

period in the flow observations when there were peak flows in 1971 and 

1974 (Fig.9-10), indicating a model failure to match peak flows. Several 

studies have explained the failure by SWAT to effectively simulate peak 

flows.  

According to Borah et al., (2007) and Mehmet et al., (2009), the SWAT 

model has an inherent shortcoming in predicting peaks. SWAT has the 

capability to accurately capture the distribution of daily runoff over a 

long period. Since SWAT is not a single event model it has difficulties to 

predict some extreme flow events. Also due to the representation of 

rainfall with a limited number of stations and the sub daily variations in 

rainfall intensity, the peaks cannot be captured by the SCS method on 

the daily time step (Gao and Long, 2008).  
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Figure 9-11: Time series of the simulated and the observed (top) and residuals for the 
calibration period 1971-1974 (bottom) 

Since rainfall was the only variable observed within the study area, the 

large number of missing data both in the input climatic variables (i.e. 

temperature, wind and solar radiation and relative humidity), and in the 

observed flow time series presents a challenge in model forcing during 

autocalibration. The use of the neighbourhood stations and the model 

weather generator could also be a source of uncertainties. 

The model performance improvement procedures outlined above used 

recalibration of the same range of model parameters. The performance 
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of the different stages in the improvement process was also compared 

without recalibration using the best parameters of the latest 

improvement (top down approach). The change in the water balances 

for the six different improvements was compared with the observed flow 

data (Table.9-16). All initial simulation using the FAO map was found to 

relate closer to the final simulation interms of the water yield. This land 

use classes in the FAO map have been aggregated to large classes 

similar to the developed map. Besides controlling the parameterisation 

process, land use maps play an important rule in the the water balance 

due to the use oft the Curve number method. The drop in the average 

catchment ET after the introduction of the interpolated rainfall was an 

indication that areal rainfall may not be best suited for simulation of 

catchment processes. Though the problem was attributed to the 

decrease in the precipitation input (1432 to 1155mm), the low 

precipitation itself was a result of the interpolation process. This implies 

that the use of satellite gridded data with a coarser resolution (than the 

interpolated data) is less likely to give a good representation of the 

basin processes. Observed data, therefore, remain a vital component of 

hydrological models until finer resolution gridded data is available. 

Table 9-16: Water balance components in different improvement procedures the SWAT 
modelling.  

a). With re-calibration           

 
SWAT version Water  Surface  Baseflow ET pcp 

     Yield,mm Runoff,mm  mm     

 
Observed 234 67 

   1 Initial setup (FAOmap) 287 0 286 976 1432 

2 1976-Lulc map 188 9 180 980 1289 

3 Interpolated rainfall 197 1 196 708 1155 

4 Modify perenials 171 52 126 578 1155 

5 NDVI  map 171 0 171 624 1155 

6 NDVI + All mdgt files 241 92 158 679 1155 

7 New cropdata 233 83 157 793 1155 

b). Without recalibration - change with best simulation first  

1 Initial setup (FAOmap) 218 46 183 1014 1432 

2 1976-Lulc map 305 147 173 852 1289 

3 Interpolated rainfall 209 70 149 768 1155 

4 Modify perenials 203 73 139 776 1155 

5 NDVI  map 198 90 119 820 1155 

6 NDVI + All mdgt files 277 91 196 678 1155 

7 New cropdata 233 83 157 793 1155 
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9.7 The SWAT model validation 

9.7.1 Single point validation 

The SWAT model was validated using the classic hydrological model 

validation process, based on stream flow data from the period 1975 -

1977. The data available for the validation stage was poor (with 24-

100% gaps); with only 1977 has less (24%) missing data points, 

compared to 70% and 100% for 1975 and 1976 respectively. Against 

this background of poor observed data, further validation of the model 

using distributed variables was explored in this study. 

9.7.2 Distributed validation 

Single outlet calibration and validation of hydrological models have been 

faulted for not fully accounting for the spatial variability in the modelled 

basin (Qi and Grundwald, 2005; Rahbeh et al., 2011). They suggested a 

spatial approach by the calibration and validation of SWAT at several 

gauge stations of sub-watersheds within a larger watershed. The major 

shortcoming of rainfall-runoff modelling, particularly in ungauged basins, 

is the lack of long-term stream flow observations with sufficient spatial 

coverage that would allow for adequate model calibration and validation 

(Miller et al., 2002). The International Association of Hydrological 

Sciences (IAHS) defined an ungauged basin as "one with inadequate 

records of hydrological observations to enable computation of 

hydrological variables of interest at the appropriate spatial and temporal 

scales, and to the accuracy acceptable for practical applications" 

(Sivapalan et al., 2003). The quantification of the hydrological budget is 

extremely difficult over large spatial domains and over large time 

periods, as in situ observations are labour intensive and expensive to 

generate (Lakshmi, 2004).  

According to Sivapalan et al., (2003) and Srinivasan et al., (2010) 

different methods have been used to build hydrologic modelling systems 

in ungauged basins, including the extrapolation of response information 

from gauged to ungauged basins, measurements by remote sensing, the 

application of process based hydrological models in which climate inputs 

are specified or measured, and the application of combined 

meteorological hydrological models that do not require the user to 

specify precipitation inputs. Other variables that have gained increased 

use in spatial model calibration include the evapotranspiration (ET), 

biomass, the leaf area index (LAI) and the crop yield. LAI represents the 

size of the interface between the plant and the atmosphere for energy 



164 
 

and mass exchanges. It is thus of prime interest for the energy balance, 

photosynthesis, transpiration and litter production. LAI could be used to 

validate canopy photosynthesis models which simulate the growth and 

the canopy development based on climate and environmental factors 

(Baret et al., 2006). In SWAT, the LAI is simulated as a function of heat 

units using the following series of functions 

      
     
   

   
     -----------------------------9.8 

 

        
     

                      
 -----------------------------9.9 

 

                                 
                          -------9.10 

 

                   ----------------------------9.11 

The LAI during the senescence period is given by: 

          
         

            
  ----------------------------9.12 

Where;       is the fraction of potential heat unit at point i ,    is the 

heat unit,     is the potential heat unit and         is heat unit at 

LAImax, which is maximum Leaf Area index (BLAI) 

Crop yield or biomass generally depends on  evapotranspiration and on 

soil moisture, and can therefore be used as an alternative for evaluating 

the combined actual evapotranspiration (AET) and soil moisture within 

the hydrological budget (Srinivasan et al., 2010). These indices are 

either measured in the field or generated from remote sensing. Lakshmi 

(2004) noted that satellite data represent a wealth of information, which 

can bridge the gap between point measurements and computer-based 

simulations, and that larger basins (100–10 000 km2) are perfect 

locations for the use of satellite and radar data, as they will have 

multiple pixel coverage. Satellite remote sensing is an attractive tool for 

crop area and Net Primary Productivity (NPP) estimates because it 

provides spatial and temporal information on the location and state of 

crop canopies (Moulin et al., 1998).  

In our case, a distributed validation was necessitated by the fact that 

the 2905 km2 watershed has complex hydrographic and agroclimatic 

profiles, making the use of one monitoring site ineffectual. Furthermore, 

the river gauging stations available have data of questionable quality 

(Gann et al., 2006). The lack of spatial reference for the HRU presents a 

problem in presenting distributed information. While HRU approach can 
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indicate the effect of management practices within the HRU, it fails to 

show the interaction between the HRUs as they are not internally linked 

within the landscape but are all routed individually to the basin outlet. 

Therefore, the impact of management of an upslope HRU on a 

downslope HRU cannot be assessed. The lumped method of using 

dominant soil and land use and the HRU delineation do not consider 

landscape position when computing runoff (Arnold et al., 2010).  

In the absence of data for model calibration, quantification of output 

uncertainty due to spatial representation of the watershed input data 

should be assessed and minimized to appropriately interpret modeling 

results (Migliaccio and Chaubey, 2008). In addition, the SWAT was 

developed to be used in ungauged watersheds. In order to resolve the 

spatial location shortcoming, a new term referred to as land use soil unit 

(LUSU) was introduced in this study to represent a physical location on 

the ground. A specific combination of soil and land use, with a given 

land use layer overlaying the soil layer. The polygon overlay, intersected 

the two data layers producing new features, and with combined the 

attributes of intersecting polygons. Prior to the overlay procedures, the 

datasets were properly geo-registered. Data layers were referenced to 

the same coordinate system, the same map projection, the same datum, 

and the same unit of measure.  

The differences between the LUSU and the HRU are; 1. A space in the 

watershed other than a point has a unique land use and soil type. 2. 

There are fewer LUSUs than HRUs in a watershed, since HRU is defined 

in the sub-basin, while LUSU is basin wide (i.e. repeat HRU are not 

considered in LUSU). The amalgamation of different HRUs produces 

smooth units unlike the fuzzy outputs from the HRU delineation (Fig 9-

11). The purpose of the LUSU is to make it possible to assess the 

watershed response to hydrological processes at any point by use of 

measurable spatially distributed metrics. Physical metrics for yields; 

biomass, evapotranspiration (ET) and LAI are readily available at a given 

point from satellite imagery and from data collected from the field on a 

relatively shorter timeframe than stream flow data. The LUSU system 

produced 50 units instead of 75 HRUs. The land use classes under crops 

are used in this study for the comparison of the measured and simulated 

yield and LAI. 
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Figure 9-12: Comparison of the Mara watershed decomposition into HRU (left) and 
LUSU (right) 

For the distributed validation of the SWAT modelling results, remote 

sensed Leaf Area Index (RS-LAI) (§5.5) and the crop yield data 

gathered from field survey (§5.6) were used. In order to more precisely 

simulate the actual activities on the ground, two SWAT simulations were 

used. The default SWAT simulation which represents the calibrated 

SWAT model (§9.4) and is referred to as unfertilized simulation. Also a 

SWAT model simulation (fertilized) where the management practices 

implemented by farmers (from data gathered in the field survey) are 

incorporated. 

9.7.2.1 Validation of the model with remote sensed LAI 

The LAI time series for the different agricultural LUSUs corresponding to 

the period when the land use maps were made (2008-2010) were 

extracted from the remote sensed VGT4Africa LAI maps (§5.6). They 

were compared with the LAI values obtained from the SWAT simulation 

(Fig 9-12). Whereas the remote sensed LAI (RS-LAI) captures all the 

green activity on the ground, the SWAT model simulates plant growth 

for only a single crop at a time. The SWAT model has a definite start-

stop sequence which is timed on the calendar year. While the model will 

reduce the amount of biomass depending on water stress, the plant and 

harvest periods are pre-determined and do not follow the availability of 

water. RS_LAI on the other hand reflects the actual vegetation 

response, as influenced by the moisture content and other conducive 
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environmental factors. The shape of the RS_LAI profile is therefore very 

random. The shape of the graphs for both remote sensed and simulated 

LAI has a clear seasonality that correctly represents the phenological 

profile of agricultural crops.  

The SWAT model is able to correctly predict the timing of the start of the 

growing season. This is critical because it indicates that the model is 

properly setup to respond to the change in the available water. 

Depending on the available water, the growing period of the RS_LAI is 

either the same as that of the SWAT-LAI or longer. The model was able 

to correctly lag the growing profile for the upland corn crop (MAIZ) in a 

way similar as predicted by the RS_LAI (Fig 9-12). Although the RS_LAI 

values are higher than SWAT values, they resonate well with literature 

values obtained from field studies in the region (Mburu et al., 2011). 

Remote sensing data may therefore be used for the validation of the 

start of the growing season in SWAT. The RS_LAI has minimum LAI 

value which maybe attributed to background LAI. When this is filtered 

out, the resultant corrected RS_LAI has compared magnitude to the 

SWAT_LAI in the initial stages. In subsequent seasons the corrected 

RS_LAI is higher  while the SWAT_LAI remains constant, indicating the 

SWAT models inability to dynamically change with changing 

environmental (landcover) conditions. 

 

Figure 9-13: Leaf area index (LAI) values for agricultural HRU (CORN) for a scenario 
with fertilizer and corresponding remotely sensed LAI.  
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9.7.2.2 Validation of the model with crop yields 

The performance on the SWAT model was assessed using both default 

yields without and also with fertilizer application. From sampled farmers, 

the commonly used fertilizer was Di-Ammonium Phosphate (DAP) 

(18:46:0), with application rate ranging from 9 to 247 kg/ha, a mean of 

116 kg/ha and standard deviation of 65 kg/ha. Since fertilizer in Kenya 

is packaged in 50kg bags, 100kg (2 bags) was selected as the nominal 

rate. For unfertilized simulation, there is no statistical difference 

(p=0.05) between the different agricultural classes. However there is a 

significant difference in yields between soil types. The simulated yields 

are lower than the measured yields except for two soil types (F17 and 

Up2) whose simulated yields are comparable to observed yields. On an 

annual average, the unfertilized scenario has water stress (W_STRS) for 

as many as 50 days and up to 144 days of Nitrogen stress (N_STRS). 

There is a significant increase in yields with fertilizer application(Fig 9-

13). The simulated yields for maize crop under fertilized conditions 

approximate closely to the observed yields for most of the soil types. In 

38% of the LUSUs the application of the 100 kg/Ha was not enough to 

simulate the observed yields. The yields from two soil types (F17 and 

Up2) was much higher in the fertilized simulation than the observed 

data, which is understandable since the initial unfertilised yields were 

already high. The addition of fertilisers reduced the nitrogen stress by at 

least half for all soil classes.  

 

Figure 9-14: Comparison of simulated and the observed lowland corn yields.  
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implying that some soils are naturally more nutrient stressed than 

others. The response to the fertilizer application was proportionate for 

all the soil types. A spatial representation of the yields on soil map is 

shown in Figure 9-14. For all the soil types except Up2 and F17, 

reasonable yields may only be expected with fertilizer application. The 

yields increased by 46 to 248% due to application of 100 kg/Ha 

fertilizer. The increase should not be taken at face value since the model 

assumes optimum management practices. SWAT‐estimated yields 

represent the typical or potential yield given nutrient, water and 

temperature conditions. However, in reality, unfavourable external 

factors like pests, weeds, winds and management practices may exist. 

These attenuating circumstances may reduce the simulated yields 

considerably.  

 

Figure 9-15: Comparison between SWAT simulated yields (red= no fertilizer, green=with 

fertilizer) and observed field survey (blue) crop yields for selected  soil type classes 
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9.8 Conclusion 

The SWAT hydrological model has been successfully adapted for the 

Upper Mara basin by changing the crop database and the model 

management file. Input landcover map specially developed for the 

watershed adaptation was deployed to better simulate farm level 

activities and enable the distributed validation of the model.  The model 

performance was statistically satisfactory and the water balance fitted 

well to the observed conditions. The crop yield and leaf area index have 

been shown as promising methods of SWAT model validation in areas 

with scarce observed streamflow data. 

 

 
. 
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10. Modeling climatic change impacts on the hydrology 

of the Upper Mara basin 

10.1 Introduction 

Tisseuil et al., 2010 described Impact studies of climate change on 

hydrology as a two-step approach that involves: (i) downscaling GCM 

outputs to generate local precipitation and temperature, (ii) using the 

downscaled local precipitation and temperature as input to a hydrological 

model to project the hydrological changes according to future climate 

scenarios. The changes in the climatic inputs pathway uses either the 

downscaling of general circulation models (GCMs) or GCMs coupled with 

regional climate models (RCMs). Past climate change analysis for Africa 

indicate that in tropical and subtropical regions more intense and longer 

droughts have been observed over wider areas since the 1970s, that the 

frequency of heavy precipitation events has increased over most land areas 

and that widespread changes in extreme temperatures have been observed 

over the last 50 years. For future projections in eastern Africa most GCMs 

are in agreement that temperatures will increase across the region. There 

is also some agreement that precipitation will increase from December to 

February in eastern Africa.  

Recent trends show a tendency towards greater extremes. Arid or semi-

arid areas in northern, western, eastern and parts of southern Africa are 

becoming steadily drier and there is an increased magnitude and variability 

of precipitations and storms. Nyong (2005) predicted that by the year 

2050, rainfall in sub-Saharan Africa could drop by 10%, leading to major 

water shortages. De Wit et al. (2006) however suggested that East Africa’s 

future looks better, with increases of drainage density to be expected, 

because parts of the region may expect an increase in rainfall that could 

even put it into the wet regime. This is in agreement with Ringius et al., 

(1996), whose simulations of climate change in Africa indicated that Kenya 

will be about 1.4oC warmer by the year 2050 (about 0.2oC/decade). Annual 

rainfall might increase with 20% by 2050 throughout the country, but 

especially in the highlands, while the potential evapotranspiration (PET) is 

expected to increase throughout the region by 10% due to the increase in 
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temperature and by about 15% with the inclusion of other climatic changes 

and changes in the plant physiological characteristics in a CO2 enriched 

environment. Dessu and Mellese, (2012) also found that the DJF showed 

the largest range of change in precipitation for 2050s and 2080s. In “The 

physical science basis”, the Intergovernmental Panel on Climate Change 

(IPCC, 2007)) working group I states: "Although model results vary, there 

is a general consensus for wetting in East Africa". The forecasts from the 

A1B scenario from multiple climate models used for the IPCC (2007) report 

are shown in fig 10-1. The projection using the Multi Model Datasets 

scenario A1B for the East African region up to 2099 is summarized in Table 

10-1 below  

 
 
Figure 10-1:Forecasted change in precipitation and runoff for the period 2080 to 2099, as 
compared to 1980 - 1999 (IPCC, 2007)   

http://www.ipcc.ch/ipccreports/ar4-wg1.htm
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Table 10-1: Projected decadal mean change for the A1B scenario through the 21st century 
for East Africa (IPCC, 2007) 

 

Temperature 

(°C) 

Precipitation 

 (%) 

Extreme seasons 

(%) 

Season Min Max T yrs Min Max T yrs Warm Wet Dry 

DJF  2 4.2 10 -3 33 55 100 25 1 

MAM  1.7 4.5 10 -9 20 >100  100 15 4 

JJA  1.6 4.7 10 -18 16   100     

SON  1.9 4.3 10 -10 38 95 100 21 3 

Annual  1.8 4.3 10 -3 25 60 100 30 1 

Legend: T = return period in years 

10.2 The climate change sensitivity analysis 

In order to assess the impacts of climate change on the hydrology of the 

Upper Mara river basin, a sensitivity analysis was performed by exposing 

the SWAT model to variations in temperature, rainfall and CO2. While 

exposure relates to the degree of climate stress upon a particular unit 

analysis, it may be represented as either a long-term change in climate 

conditions or by a change in climate variability, including the magnitude 

and frequency of extreme events. IPCC, 2001 defines sensitivity as "the 

degree to which a system will be affected by, or responsive to climate 

stimuli, either positively or negatively". Further, according to IPCC 2001, 

an assessment of the sensitivity of a model to climate change does not 

necessarily provide a projection of the likely consequences of climate 

change. Such studies, however, provide valuable insights into the 

sensitivity of the hydrological systems to changes in climate.  

Sensitivity studies of CO2, temperature and precipitation variations can 

provide important information regarding the responses and vulnerabilities 

of different hydrologic systems to climate change, especially in the light of 

the substantial uncertainty of the GCM climate projections. Possible 

changes in regional and seasonal patterns of temperature and precipitation 

and their implications for the hydrologic cycle are as yet poorly understood. 

An increase of atmospheric CO2 will directly affect plant transpiration and 

growth which are inherently tied to the hydrologic cycle. According to 

Chaplot (2007), an increase in CO2 - while holding temperature and 

precipitation constant - will cause increases in water yield. This is due to 
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marked decrease of the stomatal conductance of plants thus decreasing ET, 

(Wilson et al., 1999). Nash and Gleick (1993) on the other hand reported 

that higher temperatures lead to increased evaporation rates, reductions in 

stream flow and increased frequency of droughts. The Precipitation-Runoff 

Modeling System (PRMS) simulated a 30% decrease in runoff with a 10% 

decrease in precipitation amount in Africa (Legesse et al., 2003). The 

SWAT simulator has also been used for the simulation of climatic scenarios 

in hydrological processes. There are two pathways for climate change 

impacts prediction using SWAT: the land cover/land use change pathway 

uses either increased atmospheric CO2 concentrations or plant 

development and transpiration changes, while the changes in climatic 

inputs way uses results of downscaled general circulation models (GCMs) 

or GCMs coupled with regional climate models (RCMs).  

In the SWAT simulator, the calculation of the evapotranspiration (ET) takes 

into account variations of the radiation-use efficiency, the plant growth and 

plant transpiration due to changes in the atmospheric CO2 concentrations. 

The latter is essential for any study of CO2-induced climate change. SWAT 

allows adjustment terms, such as the CO2 concentration, to vary so that 

the user is able to incorporate GCM projections of atmospheric greenhouse 

gas concentrations and temperatures into the model simulations.  

Although SWAT does not allow incremental increases of atmospheric CO2 

concentration, the impact of the increase of plant productivity and the 

decrease of plant water requirements due to increasing CO2 levels are 

considered (Nietsch et al., 2007). For the estimation of ET, the Penman–

Monteith method, which has been modified in SWAT to account for CO2 

impacts, should be used for climate change scenarios that account for 

changing atmospheric CO2 levels (Ficklin et al., 2009). The maximum 

projected global temperature rise by 2099 is 6.4oC (IPCC, 2007). The trend 

analysis in the study has shown temperature increments of up to 4oC over 

a 19 year period (1999-2010).  

For the sensitivity analysis, the minimum and maximum temperature 

ranges were set between -5 and 10°C. The maximum range for the 

sensitivity analysis was selected to accommodate all the possible projected 

changes including potential uncertanities in the projections.GCM predictions 

are in disagreement over the direction in which rainfall will go for the East 

African highlands. Historical trend analyses in the study area show 
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declining rainfall trends. The sensitivity regarding precipitation was 

conducted with a ±20% range. 

Depending on the greenhouse gas emission scenario, atmospheric CO2 is 

expected to increase from the current concentration of 400 ppm (Tans and 

Keeling, 2013) to between approximately 550 and 970 ppm by the end of 

the 21st century (IPCC, 2001). According to Pritchard et al. (1999), the 

decrease in stomatal conductance may theoretically be compensated by a 

potential increase in leaf area with increased atmospheric CO2. However, 

SWAT assumes that the leaf area does not increase with increasing CO2 

concentrations. The equation for simulating leaf conductance, with an 

increased CO2 concentration in SWAT is given by Easterling et al., (1992) 

as: 

                 
   

      ------------------------------------10.1 

Where: gCO2 = the conductance modified to reflect CO2 effects; g = the 

conductance without the effect of CO2; CO2 = the atmospheric CO2 

concentration (ppm); 400 = the present day atmospheric CO2 

concentration  

For the sensitivity analysis, historical time series were perturbed, whereby 

relative changes (percent wise) were effected for the precipitation, while 

the temperature was increased by absolute values. The climate change 

scenarios, including the combinations of the different variables, are shown 

in Table 10-2. The sensitivity was initially assessed by changing individual 

variables one by one (scenarios 1 to 21) and then by considering different 

combinations of changes (scenarios 22 to 26). The results from the 

sensitivity analysis show that an increase in the (minimum or maximum) 

temperature leads to an increase of the evapotranspiration and a decrease 

of the water yield (Fig. 10-2). At higher temperature changes, the response 

of the ET is slightly more sensitive to a change of the maximum 

temperature than to a change of the minimum temperature. An increase in 

temperature affects ET primarily by increasing the capacity of the air to 

hold water vapor. The water yield and the evapotranspiration increase with 

increased rainfall. Increased precipitation makes more water available for 

the different fractions of the water balance. Precipitation is assumed to be 

the only source of water in the basin and the balance will be determined by 
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the input amount. The higher the water input to the SWAT simulator, the 

higher the expected outputs of water yield and evapotranspiration since the 

amount that can be stored within the basin is limited.  

Table 10-2: Climate change sensitivity scenarios used for the SWAT simulations. 

Variable Scenario Change 

  Baseline 0 

 
1 -5 

minTemp 2 -2.5 
o
C 3 2.5 

 
4 5 

  5 10 

  6 -5 

 
7 -2.5 

maxtemp 8 0 
o
C 9 2.5 

 
10 5 

  11 10 

  12 -20 

pcp 13 -10 

% 14 -5 

 
15 5 

  16 10 

 
17 330 

CO2 18 490 

 
19 650 

 
20 810 

  21 970 

  22 min-5,max-5,pcp-10 

 
23 min-2.5,max-2.5,pcp-5 

Combined 24 min2.5,max2.5,pcp5 

 
25 min5,max2.5,pcp-5 

  26 min5,max5,pcp10 

 



177 
 

When the sensitivity of the model to both temperature and the rainfall 

inputs are simulated together, the water yield and the evapotranspiration 

increased (Fig 10-3). The increase in ET is higher than with individual 

climate inputs, due to the accumulation of positive effects. The water yield 

increased but at a slower rate with the increase in rainfall and temperature. 

 

Figure 10-2: Sensitivity of hydrological processes to changing climatic variables applied 
independently. 
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Figure 10-3: Sensitivity of the hydrological model to combined climatic inputs. 

The increase in water yield due to increasing rainfall is counterbalanced by 

the increase of the evapotranspiration due to increasing temperature. At 

lower temperatures and rainfall, the system is more sensitive to 

temperature than to rainfall changes. With a rise in rainfall and 

temperature, the rainfall seems to take over the becomes the bigger 

driving force in the system. This complicates the assessment of climate 

change impacts on stream-flow because there is no agreement (only 

consensus) from the GCMs on the direction of rainfall change for the east 

African region.  

An increase in only CO2 leads to an increase of the water yield and a 

decrease of evapotranspiration (Fig.10-4). As can also be seen on the 

Figure 10-4, the relationship between CO2 and both ET and the water yield 

is non-linear, with a sharper response observed at high CO2 concentrations. 

These results are consistent with findings by Aber et al. (1995) and 

Fontaine et al. (2001). There is experimental evidence by Medlyn et et al. 

(2001) and by Wullschleger et al. (2002) indicating that the stomatal 

conductance of some plants will decline as the atmospheric CO2 increases, 

resulting in a reduction of transpiration.  

With less and less transpiration, the total evapotranspiration component of 

the water balance will decrease with increasing CO2 build-up. This will lead 

to a higher water yield in order to maintain the water balance closed. On 
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the other hand, according to Ficklin et al. (2009), the standard SWAT 

(SWAT2005) does not account for the leaf area increase caused by the 

rising levels of ambient CO2. This may lead to an overestimation of ET 

reduction and of the increase of the water yield. 

 

Figure 10-4: Sensitivity of the SWAT model to CO2 variations. 

10.3 The weather generator  

For making projections of the future situation, daily rainfall amounts, and 

the daily minimum (Tmin) and maximum (Tmax) temperatures were 

estimated over a 20-year simulation period using the Long Ashton 

Research Station weather generator version 5.5 (LARS-WG 5.5) (available 

from http://www.rothamsted.bbsrc.ac.uk/masmodels/larswg/download.php). 

LARS-WG can be used for the simulation of daily time-series of climate 

variables (precipitation, maximum and minimum temperature and solar 

radiation) at a single site under both current and future climate conditions 

(Semenov and Barrow, 2002). A weather generator (WG) is a simulator 

which, after calibration of site parameters with observed weather data at 

that site, is capable of simulating synthetic time-series of daily weather 

data that are statistically similar to observed weather (Richardson and 

Wright, 1984; Wilks and Wilby, 1999). The LARS-WG ver. 5.5 includes 

climate scenarios based on 15 Global Climate Models (GCMs) which have 

been used in the IPCC 4th Assessment Report (IPCC, 2007). When 
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compared to other weather generators, the LARS-WG was found to produce 

better precipitation and minimum and maximum temperature results for 

diverse climates than the WXGEN and WGN weather generators (Semenov 

et al., 1998). The LARS-WG also produced better precipitation statistics 

than the Agriculture and Agri-Food Canada (AAFC)-WG (Qian et al., 2004).  

The first step in using any stochastic weather generator consists of a 

statistical analysis of observed weather data for the station in question. 

According to Semenov et al., (1998), this is important not only for the 

synthetic data to be similar to the observed data on average, but also for 

the distribution of the data to be similar across their whole range. The 

statistical analysis was done by comparing the statistics of the original 

observed data with those of synthetic data generated by LARS-WG. The χ2 

goodness-of-fit test was used to compare the probability distributions for 

the lengths of wet and dry series for each season and for the daily 

distribution of precipitation for each month.  

The QTest option in LARS-WG was used to carry out a statistical 

comparison of the generated weather data with the parameters derived 

from the observed weather data. In order to ensure that the simulated 

data probability distributions are close to the true long-term observed 

distributions for the test site, a large number of years of simulated weather 

data should be generated (Semenov and Barrow, 2002). Two stations, 

Narok and Kericho, which have long time (1962-2010) data on rainfall and 

temperature, were used for the quality test, alongside the station of 

interest (Centroid station, 1971-1978). The Kolmogorov–Smirnov (K-S) 

statistic and p-value results of the quality test are listed in Table 10-3.  

The LARS_WG generated precipitation for the centroid station (test site) 

was similar to the observed value (p=1) for both seasonal and monthly 

time-steps. The Narok precipitation was also well simulated with the 

generator. The rainfall for June in Narok - and consequently the JJA season 

– showed the lowest quality with a p value =0.99. The generation of the 

seasonal precipitation for the Kericho station has a comparatively low 

statistic in the wet seasons (MAM and JJA) with p-values of 0.41 and 0.43 

respectively. Kericho is the wettest of the three stations under review and 

experiences humid climatic conditions. The statistical test for the generated 

temperatures was also satisfactory with p-values larger than 0.9 for all 

tested sites. The results indicate that the WG can be used to generate long 

http://www.google.nl/url?sa=t&rct=j&q=komolov%20smirnov%20test&source=web&cd=1&cad=rja&ved=0CC0QFjAA&url=https%3A%2F%2Fen.wikipedia.org%2Fwiki%2FKolmogorov%25E2%2580%2593Smirnov_test&ei=8yq8UfLkEoWxOd7IgOgM&usg=AFQjCNHbI1xMyot8qooxO5VIv6WHCEN9Xg
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term synthetic data series which have the same characteristics as the 

original time series.  

Table 10-3: The quality test statistics for rainfall stations in the study area. 

    Narok Kericho Centroid 

Seasons 

 

K-S* p-value** K-S p-value K-S p-value 

DJF wet 0.06 1.00 0.05 1.00 0.07 1.00 

DJF dry 0.08 1.00 0.10 1.00 0.09 1.00 

MAM wet 0.06 1.00 0.25 0.41 0.11 1.00 

MAM dry 0.07 1.00 0.08 1.00 0.03 1.00 

JJA wet 0.07 1.00 0.25 0.43 0.07 1.00 

JJA dry 0.13 0.99 0.08 1.00 0.05 1.00 

SON wet 0.04 1.00 0.02 1.00 0.07 1.00 

SON dry 0.09 1.00 0.16 0.90 0.06 1.00 

Month 

 

      

J 

 

0.06 1.00 0.07 1.00 0.04 1.00 

F 
 

0.06 1.00 0.05 1.00 0.02 1.00 

M 

 

0.08 1.00 0.06 1.00 0.05 1.00 

A 

 

0.05 1.00 0.02 1.00 0.05 1.00 

M 
 

0.03 1.00 0.06 1.00 0.07 1.00 

J 

 

0.13 0.99 0.04 1.00 0.05 1.00 

J 

 

0.04 1.00 0.10 1.00 0.01 1.00 

A 
 

0.05 1.00 0.06 1.00 0.03 1.00 

S 

 

0.05 1.00 0.05 1.00 0.03 1.00 

O 

 

0.01 1.00 0.11 1.00 0.03 1.00 

N 
 

0.05 1.00 0.08 1.00 0.04 1.00 

D 

 

0.05 1.00 0.03 1.00 0.05 1.00 

*Kolmogorov - Smirnov 

According to IPCC, 1994, a baseline period is needed to define the 

observed climate with which climate change information is usually 

combined to create a climate scenario. When using climate model results 

for scenario construction, the baseline also serves as the reference period 

from which the modelled future change in climate is calculated. Further the 

possible criteria for selecting the baseline period include: i). should be 

representative of the present-day or recent average climate in the study 

region, and ii), should be of a sufficient duration to encompass a wide 

range of climatic variations especially anomalies. For this study, we 

adopted the period 1961-1990 as baseline period. A baseline scenario, 

without perturbation of the variables of the WG, was generated for the 



182 
 

region to represent the current period. This baseline series was used as the 

reference simulation in the validated SWAT model against which the 

climate change scenarios are assessed. The baseline data series spans over 

a period of twenty years, compared to 8 yrs for calibrated model. This 

long-term period encompasses seasonal, intra-annual, inter-annual and 

decadal variations.  

10.4 The climate change scenarios 

IPCC, 2007 decscribes scenarios as "images of the future, or alternative 

futures. They are neither predictions nor forecasts. Rather each scenario is 

one alternative image of how the future might unfold. A set of scenarios 

assists in the understanding of possible future developments of complex 

systems". In order to explain the scenarios, the IPCC developed several 

narratives storylines to describe possible future developments. The 

narrative consider economic development, linkages between societies and 

environmental consciousness. Four scenarios "families" either at global 

(A1, B1) or regional (A2, B2) scale were developed.  The extent of the 

historical and predicted global warming as a result of the different 

scenarios and many GCMs is shown in Fig.10-5.  

There are two main possibilities in attempting to predict the future based 

on models: to choose the best model or to take information from an 

ensemble of models and combine it into a single estimate. According to 

Zou and Yang (2004), a single model produces  a significant variability due 

to slight variations in initial conditions or parameter values. The selection 

of a single climate model run is not viable: initial conditions can never be 

known to a high enough degree of accuracy and significant uncertainty 

exists in the values of various physical parameters. Tebaldi et al., (2009) 

described the structural identity of a model as the way each model 

discretizes its domain. Haughton (2012) identified the two commonly used 

procedures to combine GCM results as: 

- Unweighted averaging - is the simplest, and involves taking the 

arithmetic mean of the model outputs. The method is simple and 

provides a mean as well as estimates of the uncertainty. 
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Figure 10-5: Global temperatures in the past and for the future (IPCC, 2007). Solid lines are 

multi-model global averages of surface warming (relative to 1980–1999) for the scenarios A2, 

A1B and B1, shown as continuations of the 20th century simulations. Shading denotes the ±1 

standard deviation range of individual model annual averages. The orange line is for the 

experiment where concentrations were held constant at year 2000 values. The grey bars at the 

right indicate the best estimate (solid line within each bar) and the likely range. The assessment 

of the best estimate and likely ranges in the grey bars includes the GCMs in the left part of the 

figure, as well as results from a hierarchy of independent models and observational constraints. 

  

- Performance weighting methods - base on the recognition of the fact 

that no model is the true model but some models perform better 

than others due to more accurate algorithms and parameterisations; 

higher resolution, capturing more complexity; or the inclusion of 

more physical components. It makes intuitive sense to treat the 

output of such models with higher regard. Predictions can be 

adjusted by calculating the performance of each model and weighting 

better performing models more heavily. Performance (or skill) is 

generally calculated by some measure of distance between a model 

run and observations. The difference from observations can be 

calculated in any number of ways, depending on the purpose of the 

experiment. For instance, Rajagopalan et al. (2002,) introduced a 

Bayesian methodology to determine the optimal weights by using the 

equi-probable climatological forecast probabilities as a prior. 
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Three IPCC scenarios (A1B, A2 and B1) are available in the LARS-WG 

database, for the periods 2011-2030, 2046-2065 and 2080-2099. The 

LARS-WG incorporates predictions from 15 GCMs for the A1B scenario and 

from 11 GCMs for the B1 scenario. These GCMs - used by the IPCC Fourth 

Assessment Report (AR4)- form the coordinated set of climate model 

simulations archived at the Program for Climate Model Diagnosis and 

Intercomparison (PCMDI) and are know as multi-model data set or MMD of 

IPCC (2007). Ensembles where developed for the selected scenarios by 

averaging the results of the different GCMs, the averaging cancels out the 

individual model's error and decreases the uncertainty. 

Annex 9 summarises the centres developing the model, the names of the 

GCMs, and grid resolution. Annex 10 provides a sample of the climate 

perturbations with the HADCEM3 GCM. Long term climatic data for the 

periods 2011-2030 and 2046-2065 were generated and used for the 

analysis of the climate change impacts on the hydrology of the basin. The 

period 2011-2030, coincides with national planning strategy, the Kenya 

“Vision 2030” (GOK, 2007) was particularly used to assess the alignment of 

projects to the national agenda on climate change.  

10.5  The projected rainfall  

The mean annual precipitation for all the GCMS in the period 2011-2030 

(referred as 2020s) and 2045-2065 (referred as 2050s) are given in Fig. 

10-6 and 10-7 respectively. The averaging method was used to establish 

the ensemble mean for each of the scenarios and time period, since all the 

GCMs series were generated using the same weather generator. All the 

ensemble means for the GCMs are higher than the baseline (Fig. 10-8). 

Most GCMs agree on a wetter climate for the region. Only three of the 15 

GCMs have projections lower than the baseline in the A1B 2020 scenario. 

The A1B scenarios have, on average, higher annual rainfalls than the B1 

scenario. The 2050 time period has a higher mean annual precipitation 

than the 2020s. The variability of the projected precipitation is higher in 

the A1B_2020 scenario than in the other scenarios. 

The deviation of the various GCMs from the baseline for the different 

scenarios and time horizons can be visualized in Fig. 10-9. Six of the 15 

GCMs have a projected rainfall that is higher than the baseline for the two 

scenarios and time horizons. Only one GCM (HadGEM1) has a projected 
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rainfall that is consistently lower than the baseline for all scenarios. The 

rest of the GCMs have mixed projections for the different scenarios. 

 

 

Figure 10-6: Mean annual precipitations for A1B and  B1 scenarios in the 2020s 
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Figure 10-7: Mean annual precipitations for A1B and B1 scenarios in the 2050s 

10.6 The projected temperatures 

The projected temperatures are higher than the baseline for all the 

scenarios and time horizons. The highest temperatures rises are projected 

in the A1B2050 scenarios. All the projections for the 2020s both in 

scenarios and minimum and maximum temperatures have same 

magnitude.  

The projected changes in both the minimum and maximum temperatures 

are higher in the 2050s than in the 2030s (Fig. 10-10). The change in 

minimum temperature is higher than the change in maximum 

temperatures. On average, the projected change in the 2050s (max.t +1.8 

/ min.t +2.00C) is twice as high as for the 2020s (max.t+0.9 / min.t 

+1.00C). The highest change in the 2030s is projected in months of August 

and September while for the 2050s the largest increase in temperatures is 

expected in June-July.  
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Figure 10-8: The ensemble means for the climate scenarios 

 

 

 

Figure 10-9: Projected percentage of change of the mean annual precipitation with respect 
to the baseline period (1960-1990) 
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Figure 10-10: Projected changes in temperature  

10.7 The impacts of climate change on the hydrology 

The SWAT model was used to assess the impacts of climate changes on the 

hydrological processes in the Upper Mara basin. Time-series for all the 

GCMs (15 for A1B and 11 for B1) and the four ensembles were used in the 

SWAT model to assess the impact on the water yield and on the 

evapotranspiration. Two options for the perturbations (precipitation only 

and combined precipitation with minimum and maximum temperature) 

were explored in order to also test the sensitivity with actual GCMs 

projected changes.  

Fig.10-11 shows that there is no significant statistical difference between 

the water yields that are simulated based on the 2 perturbation options 

(Fig. 10-12). The projected water yield (median) is higher than the 

baseline water yield for all scenarios. The projected water yields are higher 

in the 2050s than in the 2020s. While the difference in the projected yields 
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between the scenarios A1B and B1 is not statistically significant in the 

2020s, the A1B scenario produces, on average, higher water yields than 

the B1 in the 2050s The variability in the water yield for the different GCMs 

is highest in the A1B_2050 scenario.  

 
Figure 10-11: The variability in water yield for different GCMs for the selected IPCC 
scenarios 

The combined temperature and precipitation perturbations' option has 

higher projected ET. Except for the A1B2020s, the rest of the GCMs 

scenarios have projected higher ET in the combined option than the PCP 

only. The scenarios in the 2050s have a clear difference in the projected ET 

from the two options, Fig 10-12. Both the rainfall and temperature are 

projected to higher in the 2050s compared to the baseline and the 2020s. 

Since both inputs have a positive effect on the ET, the combination leads to 

higher difference between the pertubation options. Amongst the Scenarios, 

the A1B2020 has a markedly high ET  compared to the other scenarios, 

and is the only scenarios with simulated ET higher than the baseline. The 

ET computation is usually based on the potential evapotranspiration (PET), 

which is the amount of water that could evaporate and transpire from a 

vegetated landscape with no restrictions other than the atmospheric 

demand (Jensen et al., 1990).  
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Figure 10-12: Projected ET for perturbations with precipitation and temperature 

The rate at which the changing climate affects the water yield was assesed 

by analyzing the percent change in water yield due to a percent change in 

precipitation. Regardless of the scenario and the time horizon, the change 

in the average precipitation between projected and baseline for all the 

GCMs was plotted against the corresponding change in the water yield 

(Fig.10-13) 

There is a linear relationship between projected precipitation change in the 

GCMs and the change of the simulated water yield. This linear correlation is 

exhibited in both perturbations options., the change in water yield from a 

changing precipitation input may be given by the following the relationship  

For the perturbations with precipitation only (R2 = 0.96): 

                                                ------------- 10.2 

For the combined perturbations (R2 = 0.97) 

                                                ---------------- 10.3 

Where; ∆ =  
                              

           
  ------------------------10.4 
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From Figure 10-13, the highest projected % change in precipitation of 26% 

for the NCPCM model will lead to a 65% increase in water yield for the 

Upper Mara. On the other hand the projected 18% decrease in rainfall (for 

the HadGEM1 and MIROC3.2 models) will lead to a 45% decline in water 

yield. 

No relationship could be established between the projected change in 

precipitation and the resultant change of ET. The parameterization of the 

variables affecting the ET is different for the different GCMs under 

consideration. Whereas the good correlation between the water yield and 

precipitation makes it possible to approximate the simulated water yield 

given precipitation, the same direct deductions may not be possible with 

ET. Whereas for a GCM ranked high in terms of projected rainfall, the 

expectation is that the water yield will also be comparatively high. For ET, 

high projected precipitation does not translate into high ET  

 

 
Figure 10-13: Relationship between precipitation input and the resultant water yield for 
different GCMs 

10.8 Bias correction of GCM simulations 

According to Ghosh and Mujumdar, the possible reasons for bias in GCM 

simulations include; partial ignorance about geophysical process, 

assumptions for numerical modeling, parameterization, and the use 
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empirical Formulae. The two methods available for the correction of the 

GCM simulation bias are; the change factor (delta change) methods  and 

the statistical bias correction (histogram equilization or quantile mapping) 

methods. Delta transformation approach was implemented for temperature 

and precipitation in this study using the transformation developed by 

Alcamo, 1997 and adapted by Park et al., 2010;  

 
        
              

           
 ) ---------------------------------10.5 

 
        
              

           
 ) ------------------------------------10.6 

 
Where:         

  is the  corrected temperature,        is the average future 

ensemble GCM temperature,       
    is the measured temperature over the 

reference period,         
  is the average historical GCM  temperature,  

        
  is the  corrected precipitation,       is the average future ensemble 

GCM precipitation,      
   is the measured precipitation  over the reference 

period,         
   is the average historical GCM  precipitation. 

 The delta method  ensure that historical data and GCM output have similar 

statistical properties (Drooger and Aerts, 2005, Park et al., 2010, Chen et 

al., 2011) and  transfers the mean monthly change signal between 

historical GCM and GCM projection period to an observed time series 

(Eisner et al., 2012). The  historical GCM data are  model backcasting 

output and  not true historical records. The historical  GCM was 

downloaded using the  rWBclimate tool  (Arel-Bundock, 2013) from the API 

climate database which is derived from the same 15 IPCC GCMs used in the 

LARS-WG. 

Besides bias correction various approaches can been used to study and 

forecast monthly and seasonal rainfall. These methods can be broadly 

classified into two categories: empirical and dynamical (HE etal., 2013).The 

empirical methods include statistical models and artificial Neural networks. 

The forecast lead time of these studies varies from  1 month to 3 months. 

This short lead time is likely owing to weakened correlation between 

precipitation and predictor variables with an increasing lag.  Persistent 

exploration of precipitation teleconnections with large-scale climate signals 

(e.g the  El Nino Southern Oscillation, ENSO), result in a large number of 

predictors as well as a variety of fitting techniques. Forecasts of climate 

variables, of which rainfall is the most important in water resources 



193 
 

applications, can be obtained from Numerical Weather Prediction (NWP) 

models, which are routinely run by weather services. Although NWP models 

can provide reasonable large scale forecasts out of one week or longer, 

because of their coarse spatial resolution they have limited skill in 

forecasting point or drainage basin-scale rainfall.  

10.9 The impacts of climate change on the water resources 

Climate change may be perceived most through the manifestation of either 

low or high extremes. Floods and low-flows are natural phenomena that 

may hamper the ecosystem functions of the rivers. Low-flows are defined 

as the flow of water in a stream during prolonged dry weather. They are 

seasonal phenomena and an integral component of a flow regime of any 

river (WMO, 1974). High flows information is essential for planning of 

future water resources and flood protection systems, where system design 

is traditionally based on the assumption of stationarity of the hydrological 

variables such as river stage or discharge. The annual maximum flow is 

hereby often used as a surrogate for floods, recognizing that it does not 

always represent an out-of-bank flow ((Kundzewicz et al., 2005). There are 

a number of different ways of analyzing the time series of daily flows to 

describe low (high) flow regimes. The lowest (highest) mean discharge for 

1, 3, 7, 30, and 90 days (minima -maxima) method has been used to 

characterise low (high) flows in a river system (Riggs, 1972).  

The Indicator of Hydrologic Alteration (IHA) methodology uses 32 variables 

within five groups to quantify hydrological alterations assosciated with 

presumed perturbations such as dam opearations, flow diversions, or 

intensive conversion of land uses in a watershed. It works by comparing 

the hydrologic regimes for pre-impact (baseline conditions)  and post 

impact time frames (Richter et al., 1996). The method allows estimation of 

the magnitude of impacts but does not enable  strong inferences regarding 

the cause. The magnitude of monthly water condition (monthly median) 

and the magnitude and duration of annual extremes (minima - maxima) 

variables are used to assess the alteration due to changes in flow resulting 

from changes in climate. The Range of Variability (RVA, Ritcher et al., 

1997), a modified IHA method introduces target ranges. The RVA target 

range for each hydrologic parameter is based on selected percentile levels 

(25 and 75% in this case). The degree to which the RVA target is not 
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attained is a measure of hydrologic alteration and is expressed as a 

percentage, thus: 

Hydrologic alteration (HA) =  
                                     

                  
 ---------10.7 

Range of variability Approach (RVA) = 
                                       

                  
 --------10.8 

where the observed frequency is the number of years in which the 

observed value of the hydrologic parameter fell within the target range and 

the expected frequency is the number of years for which the value is 

expected to be within the target range. For HA=0, the observed frequency 

equals the expected frequency; a positive HA indicates that the variable 

values fell inside the RVA target window more often than expected and vice 

versa.  

The monthly median (IHA group 1), minima and maxima variables (IHA 

group 2) hydrologic parameters were used to compare the baseline and the 

projected flows for both the bias corrected and uncorrected  A1B2020 and 

A1B2050 scenarios. The A1B climate scenarios were selected for the impact 

assessment for both time horizons, since they represent the largest 

changes in the projected rainfall and temperatures.  

The results of the IHA analysis are given in Fig.10-14. All the calculated HA 

for monthly median flows in the 2020s and 2050s are positive for the 

uncorrected GCM simulations compared to the baseline. This indicates that 

median flow the simulated flows have years often falling in the target 

window for all months of the year, thus no major difference from the 

baseline period. The bias corrected GCM simulations have the HA negative 

for the 2020s and the 2050s in comparison to the pre- impact period.  The 

median flows are out of the 25-75% percentile target window meaning a 

significant difference in the flow regime due to the impacts of climate 

change. 

Also all the low flows in the 2020s and 2050s were assessed using the 

minimum flow indices of the 1-day, 3-day, 7-day, 30 day and 90 day 

minimum. All indices  are positive for the uncorrected GCM simulations, 

and negative for the bias corrected simulations. This indicates that the low 

flows will often fall within the same target window in the future as they are 

in the baseline period in the uncorrected situations and outside of the 
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target in the bias corrected. With the ias correction, extreme low flows are 

expected whcih will be more severe than in the baseline period. As for the 

high flows, there was mixed signal from the the indices of maximum flow. 

For the 2020s period all indices except the 1-day and 7-day, are positive 

for the 2020s. In the 2050s the 1-day, 3-day 7-day are negative compared 

to the baseline. However the 30-day and 90-day maxima have a positive 

change. There is therefore higher possibility of experiencing the same level 

of severity in high flows both in the 2020 and 2050s as currently 

experienced in the baseline period. However, in the 2050s flood like events 

are expected in the more 2050s than in the 2020s in reference to the 

baseline period. The probability of a 1,3, 7 day flood is higher for the 2050s 

than is in the baseline period. 

 
 
 
 
Figure 10-14: Changes in the monthly median, minima and maxima flow indices with 
reference to the baseline. 

 

In many water engineering applications, the accurate description of 

extreme surface water states (floodings) and their recurrence rates is of 

primary importance. The return period, defined as the average number of 

years to the first occurrence of an event of magnitude greater than a 

predefined critical event (Benjamin and Cornell, 1970), is an essential 

design parameter for engineered structures. 
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The return level is the river flow at a defined return period. The n- year 

return flood is statistical probability that a  certain stream discharge will be 

equalled or exceeded in n year i.e has n-year recurrence interval. The 

return period is best predicted if there is sufficient duration of flow records. 

Holmes and Dinicola, 2010  recommended 10 or more years of data  for 

the determination of recurrence intervals. 

The return level at the outlet of the basin for a presumed 30, 50 and 100 

yr flood was determined for all the flow scenarios (Table10.4). The return 

level increases by 11% in the 2020s to 19% in the 2050s. There rise in 

return flows is consistent with the anticipated hydrological alteration for a I 

day maximum flood in 2050s. The 1 day maximum for 2020s in the IHA 

method  shows that the flows will fall within the  same target window.  

When the climate is corrected with historical rainfall the return level flow 

increases only marginally (by between 1-3 %) for the 30,50 and 100 yr  

floods. There is therefore minimal change in the return flows from the 

baseline levels with bias correction.  

Table 10-4: Return flow levels for different return periods in the projected and baseline 
periods. 

Scenarios Return period (yrs) 

 
30 50 100 

  Return levels (m3/s)  

Baseline 93 100 110 

2020 103 111 123 

2020 110 119 131 

2020_bias corrected 95 103 113 

2050_bias corrected 94 102 113 

  % change from baseline 

Baseline - 2020 11 11 12 

Baseline - 2050 18 19 19 

Baseline- 2020_corrected 2 3 3 

Baseline-  2050_corrected 1 2 3 
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10.9 Possible adaptation strategies 

Adaptation is how individuals, groups and natural systems can prepare for 

and respond to changes in climate, which is crucial in reducing climate 

change vulnerability (Mitchell and Turner, 2006). Nhemachena and Hassan 

(2007) classified the farmers’ adaptation options as two main kinds of 

modification in the production systems: a) increased diversification and b) 

protecting sensitive growth stages by managing the crops to ensure that 

these critical stages do not coincide with very harsh climatic conditions 

such as mid-season droughts. Strategies to insure against rainfall 

variability include: increasing diversification by planting crops that are 

drought tolerant and/or resistant to temperature stresses; taking full 

advantage of the available water and making efficient use of it and growing 

a variety of crops on the same plot or on different plots, thus reducing the 

risk of complete crop failure since different crops are affected differently by 

climate events.  

Strategies to modify the length of the growing season include: using the 

additional water from irrigation and water conservation techniques. 

Adaptive capacity is the potential to adjust in order to minimise negative 

impacts and maximise any benefits from changes in climate. Integrating 

climate information into the risk management strategies of communities 

with climate-sensitive livelihoods depends on effective use of 

communication infrastructure and networks to support dialogue with users, 

to facilitate awareness and education campaigns, and to receive feedback 

so that users can influence the services they receive (Nepad, 2007).  

Field-level experiences show that climate adaptation measures are easier 

to approach from the perspective of programmes rather than through 

individual activities, thus highlighting the importance of cross-sectoral 

approaches. Gbetibouo (2009) reported that farmers cited a number of 

barriers to adaptation, including poverty, lack of access to credit, lack of 

savings, insecure property rights and lack of markets. Other barriers 

include lack of information and knowledge of appropriate adaptation 

measures as barriers to adaptation. Nzuma et al., (2010) summarized the 

climate change adaptation strategies in “Association for Strengthening 

Agricultural Research in Eastern and Central Africa” (ASARECA) member 

countries.  
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Among the farm-scale strategies adapted for Kenya include: developing 

and promoting drought-tolerant and early-maturing crop species; 

exploiting new and renewable energy sources, such as solar power, 

hydropower and wind power; harvesting rainwater using small check dams; 

irrigation; reducing the overall livestock numbers by sale or slaughter; 

delimiting all protected areas to avoid their clearing through 

encroachment; inaugurating community-based management programmes 

for forestry, rangelands, national parks; and promoting and strengthening 

aquaculture, poultry raising, as among other alternative livelihood options 

(Nzuma et al., 2010).  

As a strategy to adapt to the projected high rainfall, this study supports the 

the construction of a multipurpose dam. The dam will hold the expected 

excess water during the rainy season and release it for the generation of 

hydropower, and for use in irrigation during the dry season season. The 

availability of excess water is demonstrated by use of frequency 

distribution curves for the baseline and climate scenarios (Fig 10-15). The 

flows for the ensemble means in A1B2020 and A1B2050 which have the 

highest rainfall are used for this evaluation. From Figure 10-15, for the 

uncorrected simulation with the 90% probability of exceedance, the flow 

has changed from 29.4 m3/s in the baseline period to 32.4 and 33.8 m3/s 

for the 2020s and 2050s respectively. This increase in flow indicates a 10 

to 15% rise from the baseline flow. For the bias corrected GCM simulations, 

there was a 7 and 5% rise in the flow with the 90% probability of 

exceedance indicating a change in flow to 31.4 and 30.8 m3/s for the 

2020s and 2050s respectively.  
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Figure 10-15: Flow duration curves for the flow projected flow due to climate change  

Besides the hydrology, changes in temperature and rainfall due to climate 

change also have socio economic and ecological impacts. A variety of 

tropical diseases common in Kenya are also sensitive to changes in 

meteorological parameters such as rainfall, temperature and humidity. 

These include malaria, cholera, Rift Valley Fever (RVF) and meningitis, 

among others (ICPAC, 2007). Warmer temperatures will also lead to a 

decrease of the dissolved oxygen concentrations in the rivers, negatively 

affecting fisheries and limiting lake overturn (Fick et al., 2005) Climate 

change is expected to exacerbate the occurrence and intensity of future 

disease outbreaks and may increase the spread of diseases in some areas 

(IPCC, 2001).  

According to Githeko and Ndegwa (2001), Hay et al. (2002), Zhou et 

al.(2004), Rainfall and unusually high maximum temperatures are 

positively correlated with the number of malaria cases in the highland 

areas of east Africa. Temperature affects the development rates of vectors 

and parasites while rainfall affects the availability of mosquito breeding 

sites. There is a correlation between short-term increases in temperature 

(1971-1995) and malaria incidences, but not on the long term (1911-1995) 

(Hay et al., 2002). Uncertainties however exist on these correlations. The 

drop in mosquito control and a rise in drug resistance appear to be 

confounding studies assessing whether malaria incidence has grown 

because of - or independently of- climate (Chua, 2012). 
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10.10 Conclusion 

The SWAT hydrological model has been used to analyse the sensitivity of 

climatic variables for water yield and evapotranspiration. Rainfall was found 

to be more sensitive than temperature in the Upper  Mara basin . 

The projected future climate will lead to marginal changes in the 

streamflow. The incidence of  worse low flows is not anticipated.  However 

high freak floods (1,3,7-day flows) are projected especially for the 2050s. 

Projected higher temperature  will lead to higher evaporation rates 

meaning more loss of water from the basin. 

Climate change remains  a big threat to livelihood and food security in 

Africa. When the GCM are no corrected for bias, the projection of the GCMs  

is for a wetter future in the Upper Mara basin is a little consolation 

especillay considering that the GCMs resolution is fairly coarse. There is 

contradiction between the actual historical trends and the projected future 

precipitation. This contradiction neccesitated the correction of the bias from 

the GCM simulation with observed  and hindcasted GCM simulations. The 

corrected precipitation and temperatures leads to model outputs which are 

consistsent with the observed regional tendencies. The climate of the 

Upper Mara is influenced more by local and regional forcings than the 

global phenomena. Water resource management strategies should 

therefore be skewed towards mitigating local causes of hydrological cycle  

disruptions including calls for more prudent management of the natural 

resources.  
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11.  Modelling land use and management change impacts 

on the hydrology of the basin 

11.1 The land cover change scenarios 

Scenarios of land use changes are generated in order to reflect plausible 

future land use patterns. Each scenario contains a coherent and internally 

consistent set of parameters, with reasonable descriptions of possible 

future states. A scenario is therefore not a prediction of a future state. 

According to the UNFCCC (2007) “Plausible and credible land use 

alternatives are developed by taking into account current and historic land 

use/cover changes; national, local and sectorial policies and regulations; 

and private activities that influence the use of land in the areas. The level 

of enforcement of policies and regulations, together with consideration of 

common practice in the region in which the study is located, are also 

considered. For identifying realistic land use scenarios, land use records, 

field surveys, data and feedback from stakeholders, and information from 

other appropriate sources, including participatory rural appraisal, may be 

used as appropriate".  

The three main pathways commonly used in building different land use 

scenarios include: the no change scenario, the use of past trends and the 

use of future trends (Bernoux et al., 2010). In the no change scenario 

there is no change in the land use or the practices, with respect to the 

current situation. It represents the most simplistic scenario to build since 

no additional information is required. However, it does not always reflect 

the future reality. The use of past trends to get information on the future 

situation supposes that the changes in land use and practices will evolve in 

the same way as they have done in the past. The scenario is therefore 

forecasted using past trends, either using long term (>50 years) or short 

term (10-30 years) past trends. Recent past trends are especially used to 

build the baseline for two main reasons. First, in some countries and for 

some kind of data, the implementation of a monitoring system is quite 

recent and there is therefore no long term data available. Secondly, the 

changes of the past 10-30 years are often representative of the current 

evolution. The use of future trends estimates the future land uses and 

practices from models based on country planning data. This type of 

scenario requires the highest number of assumptions on how the situation 
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may eventually evolve. If the models used to build such scenario are 

robust and fairly reliable, they might logically reflect the future reality. 

There are many land use models available, which range from very simple 

to complex. Lambin et al. (2000) reviewed and classified the models based 

on their methodology and the questions that need to be answered. Such 

questions include: when and where the changes may occur in the future 

and what drives the changes or why they change.  

For this study, a sustainability first (ecological/environmental concern) 

scenario was adopted for the land use change impact analysis. In this 

scenario, regulations regarding the land use are strictly enforced. Statutes, 

strategic plans and policy documents on the sustainable use of the natural 

resources are adhered to. These include the decreased forest degradation 

and afforestation/reforestation to pre-1976 forest cover levels. Observance 

of riparian laws and banning of farming activities in the riparian reserve is 

enforced. In the SWAT model build-up, the land use map is replaced with 

the 1976 land cover map which has only four land cover classes. All the 

agricultural land cover types are represented as one generic agriculture 

land cover class (AGRL) as presented in Table 11-1.  

Compared to the 2006 baseline landcover, the area under pasture and 

forest cover changes from 6 and 16% to 18 and 33% respectively. At the 

same, time the area covered by agriculture decreases from 55% to 28% in 

this scenario. The least change in cover type is in the shrub class, which 

decrease marginally from 23% to 21%. Compared to the 2006 baseline 

map, the water balance fractions changes to varying degrees when the 

1976 land map is used (Table 11-4). The average annual water yield 

reduced marginally (8%) from 233 mm/yr in the baseline to 213 mm/yr, 

while the evapotranspiration increases by 3% from 793 mm to 813 mm/yr. 

The.largest relative change concerns a decrease of the surface runoff by 

29%. In this scenario, in which the forest cover is increased and land under 

agriculture is reduced, there is indeed more infiltration due to the slower 

movement of water over forest, shrub and grassland areas. Under the 

1976 land cover scenario, more than 50% of the area is under permanent 

cover throughout the year. This reduces surface runoff especially at the 

onset of rains, as agricultural land would otherwise be bare after land 

preparation.  
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Table 11-1: Substitution of the baseline 2006 land use map classes with the 1976 land 
cover map classes. 

  2006 baseline map     1976 map   

Name SWATCODE 
main 
group 

% 
cover Name 

SWAT 
CODE 

% 
cover 

Wheat fields RFWC Agriculture 7 Agriculture AGRL 28 
Small cereal CORN Agriculture 21 

   Small cereals AGRL Agriculture 5 
   Small herbacious/tea AGRG Agriculture 9 
   Medium 

herbacious/trees RFHC Agriculture 3 
   Small cereals/open 

trees MAIZ Agriculture 4 
   Closed 

herbacious/trees HERB Agriculture 6 
   

  
Subtotal 55 

   
       Closed trees FRST Forest 12 Forest FRST 33 
tree plantation FRST Forest 4 

   

  
Subtotal 16 

   Low open shrubs PAST Pasture 6 Grass PAST 18 

  
Subtotal 

    Trees and shrub SHRB Shrub 6 Shrub RNGB 21 

Small fields tea RFSC Shrub 14 
   Large tea fields RFTT Shrub 3 
       Subtotal 23       

According to Bruijnzeel 1992, deforestation has a number of potential 

negative effects on the hydrological processes including: decreased canopy 

interception of rainfall, decreased transpiration from the replacement 

vegetation, increased evaporation from the exposed soil surface, decreased 

soil infiltration because of changes in soil structure, and increased velocity 

of runoff after removal of surface litter and roughness. Re-afforestation is 

therefore intented to reverse these negative effects. 

With increased infiltration, there is more water available in the soil for 

plants to take up and transpire. Because the leaf surface area of a forest is 

generally much higher other cover types, the potential amount of water 

that a forest can evaporate and transpire is typically much greater than 

that for other ecosystems under the same moisture conditions. Increasing 

the vegetation canopy cover affects the water balance through an increase 
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in evaporation, thereby reducing the amount of water available for runoff 

and stream flow.  

The inability of scarce and low vegetation to control the runoff and 

precipitation turns the hydrological cycle into a sequence of droughts and 

floods accompanied by extreme winds. (Makarieva and Gorshkov, 2010). 

The anticipated consequence of more forest cover is the reduction of the 

extreme flow conditions. Flash floods which occur as a result of high 

surface runoff during storm events will be reduced. Some of the infiltrated 

water will still find its way into the river system but at a slower rate.  

The results obtained in this scenario are constistent with the results 

obtained by Githui et. (2009) for the 12000km2 Nzoia basin also in the 

Lake Victoria region. The  findings on the Upper Mara  and those of Githui 

et al., 2009 are in line with the logical expectations, whereby the removal 

of vegetative cover generally leads to increased surface runoff. According 

to Costa et al., 2003, the higher surface albedo, the lower surface 

aerodynamic roughness, the lower leaf area and the shallower rooting 

depth of pasture and agriculture compared with forest all contribute to 

reduced evapotranspiration (ET) and increased long-term discharge.  

Mango et al., 2012 working on one of the three subbasins (Nyangores 

subbasin) had a contrary conclusion that who a reduction in forest cover 

led decrease in water yield.  

According to the report of the Government of Kenya taskforce on the 

rehabilitation of the Mau ecosystem (GOK, 2009) “Continued destruction of 

the forests is leading to a water crisis: perennial rivers are becoming 

seasonal, storm flow and downstream flooding are increasing, in some 

places the aquifer has dropped by 100 meters while wells and springs are 

drying up”. The results for this scenario show that the re-forestation effort 

will help to ease the pressure on the groundwater water resources. This 

may be achieved by the increase in the groundwater component of the 

water balance due to increased infiltration and percolation, as a result 

longer residence time. The reduction of the surface runoff will lead to 

decrease in the negative impacts of both soil erosion and floods. 

11.2 The management scenarios 

Management scenarios relate to the activities undertaken by the occupants 

of the land, individually or collectively, as a result of a shift in policy or 
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market forces, in order to increase the productivity and profitability. The 

following management scenarios were separately implemented in the 

SWAT model and the impacts on the hydrological process and the yields 

were simulated: 

- The application of commercial fertilizers 

- The implementation of auto irrigation schedules during periods with 

water stress 

- The change of the cultivated staple crop 

11.2.1 The fertilizer application scenario 

The fertilizer operation in the SWAT simulator applies both organic and 

inorganic fertilizer to the soil. The information required in the fertilizer 

operation include: the timing of application and the type and the amount of 

fertilizer. This information was obtained from the field survey ($6.3) and 

corroborated by literature reviews. Field studies also revealed that organic 

manure is used in the study area, although the use is limited, random and 

the amounts are unverifiable. The scenario for fertiliser application used in 

this study involves the application of Di-Ammonium Phosphate (DAP). The 

month and day for fertilizer application was estimated from the crop 

calendar (§8.2). A baseline (no change scenario) nominal application rate 

of 100 kg/ha of DAP (18:46:00) (Nietsch et al., 2007) was used. The 100 

kg/ha was set, based on the field survey for a data set of 100 farmers. The 

surveyed application rate on maize ranges for 10 kg/ha to 248 kg/ha, with 

a mean of 116 kg/ha and a standard deviation of 66 kg/ha. Also the world 

average fertilizer application use on maize is 136 kg/ha (FAO, 2006). 18-

46-00 represents the percentages N,P2O5 and K2O respectively. The 

fractions of minerals N and P in the fertilizer are given by the following 

expressions; 

            ---------------------------------------11.1 

       %P2O5/100) --------------------------------------11.2 

In this management scenario, the SWAT model is used to assess the 

impacts of fertiliser use on the maize yields for the different soil types. The 

sensitivity of the different soil types to fertiliser application was 

investigated by varying the amount of fertiliser applied. The 100 kg/Ha 

application rate was used as the baseline.  
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The study differentiates between three terms commonly used for crop yield 

as defined by Witt et al., 2009:  

 the yield potential - being the theoretical maximum yield of a crop in 

unlimiting environment both for water and nutrients . Also yield-

reducing factors such as pests and diseases are absent and the yield is 

solely determined by the climate and the germplasm.  

 The attainable yield - as the yield achieved with the best management 

practices, including optimal pest and nutrient management. Although 

nutrients and pests may not be limiting, soil constraints or water 

availability may limit the yield.  

 The actual yield - often lower than the attainable yield due to 

constraints like poor crop and nutrient management practices that may 

also enhance pest and disease pressure.  

Due to inputs and uncertainty, it makes little economic sense to strife to 

close the gap between the potential and attainable yield. However, the gap 

between actual and attainable yield maybe realistically exploited and 

significantly narrowed by use of new technologies and implementation of 

best management practices (Witt et al., 2009) 

The Agricultural Sector Development Strategy identifies several 

interventions to achieve the objectives of the Kenya’s Vision 2030, (GoK, 

2008). In the Medium Term Investment Plan (MTIP, 2010-2015), maize 

production is planned to increase form 1.6 ton/ha to 2.2 ton/ha. The goal 

of this scenario therefore, was assess the quantity fertiliser required to 

produce a target attainable yield of 3 tons/ha (historical estimates of actual 

average world yield maize). Maize is targeted for analysis for several 

reasons including: (1) there is more data available on fertilizer use for 

maize than any other cereal crops, mostly because of the importance of 

maize as a staple food crop; (2) maize accounts for nearly 40 percent of all 

fertilizers applied to cereal crops (IFDC, 2012).  

In order to encourage higher productivity through the use of fertilizer, the 

Kenyan government through the National Cereals and Produce Board 

(NCPB) has been subsidizing fertilizers to farmers at 70% of the market 

price. According to Druilhe and Barreiro-Hurlé (2012), "in low input/low 

output agricultural systems, fertilizer subsidies can play a role in raising 

fertilizer use and agricultural productivity. They can help demonstrate the 
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benefits of fertilizers and/or kick-start market development by raising input 

demand at a large scale". 

From the sensitivity analysis, the yield response of the all different soils is 

directly proportional (R2 = 0.99) to the DAP fertilizer application below 300 

kg/ha. Though 300 kg/ha was the highest recorded application rate in the 

study area (Kilonzo and Obando, 2012), the sensitivity analysis was 

extended to 500 kg/ha to test the effect of  the law of diminishing return 

on yields. Three distinct soil clusters are indentified, Fig 11-1. The first 

group consisting of F17 and Up2 soil types and accounting for 12.5% of the 

Upper mara basin area have a high response to fertiliser application. In this 

group less than half (50 kg/Ha) of the baseline rate is required to attain 

the 3 ton/Ha yield target. The relationship between the fertiliser and the 

yields for these soil types (upto 300kg/ha)  is given as: 

        ton/Ha                                       ---------------11.3  

The second group in which 77% of the soil types belong, and accounting 

for 86.5% of the total land mass have a moderate response to fertilizer 

application. In this group between 150 and 220 kg/Ha of fertiliser is 

required for the production of 3 ton/Ha of maize. The relationship between 

the yields and the fertilizer is given by:  

         ton/Ha                                      ---------------11.4 

In the last least yielding soil type (H13), 280 kg/ha is required to attain the 

target yield. This amount is higher than the highest reported application 

rate. The relationship between the yields and the fertilizer is given by 

        ton/Ha                                     ---------------11.5 

The application of more than fertilizer 100kg/ha on the F17 and Up2 soils 

adds little value to the farmer and not only leads to unnecessarily higher 

input costs but also to environmental degradation. For most of the soil 

types, diminishing returns seems to set in at 300kg/ha. The results of the 

fertilizer analysis also indicate that that the selection of 100kg/ha for the 

SWAT simulation would lead to under fertilisation of more than 87% of the 

area in the basin. According to IFA (1992), the fertility demands for grain 

maize are relatively high and amount, for high-producing varieties, up to 

about 200 kg/ha N, 50 to 80 kg/ha P and 60 to 100 kg/ha K. The 

application of 100kg/ha of 18:46:00 DAP fertilizer means only 18kg N and 
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20kg are applied per hectare. This means that only 9 and 40% of the N 

and P demands respectively are met. For the targeted attainable yields, the 

majority of the soil types require 200kg/ha of DAP. At this application rate 

82% and 20% of the N and P fertility demands for maize is still unmet. For 

some soil types like H13, the target yield can not be reached with realistic 

amounts of fertiliser. For such soil types it is better to use the land for 

other economic activities like pasture.  

Considering all this, there is little chance of impairment of the water quality 

due to fertilizer use in agricultural land, since the use of the average rates 

of application does not match the fertility need for 89% of the area. Note 

that the fertilizer application scenario has not considered the proximity of 

the fields to the water course or the observance of the buffer zone 

regulations. 

 

Figure 11-1: Sensitivity of yields to fertilzer application 

 

11.2.2 The auto-irrigation 

Irrigation in the SWAT simulator is either scheduled by the user or 

automatically applied by the simulator in response to a water deficit in the 

soil. For the first option, the timing and the amount of water that is applied 

must be specified. For both options, the source of the irrigation water must 

be specified. Water applied to an HRU is obtained from one of five types of 

water sources: a reach, a reservoir, a shallow aquifer, a deep aquifer or a 
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source outside the watershed (Nietsch et al., 2007). Currently no 

reservoirs exist in the study area; however two medium sized multi-

purpose dams are planned on the Mara River: at Norera on the Amala 

tributary in Kenya and at Borenga in Tanzania (NBI, 2011). According to 

the NBI (2011), the Norera medium dam will provide water for irrigation, 

domestic water supply, fisheries and flood control.  

A reservoir dam was introduced in the SWAT model to represent the Norera 

dam (Fig. 11-2) and used in this study to supply irrigation water to all the 

maize HRUs in the subbasins downstream of the reservoir. The Aster DEM 

was used to delineate the profile of the reservoir and to calculate the 

surface area covered by the reservoir.  

 

 

Figure 11-2: The location of the Norera multipurpose reservoir on the Amala river in the 
Mara River basin  

With no more details on the planned dam available from the authorities, 

reservoir storage characteristics were determined using the Rippl diagram 

method (Klemes, 1987) and the long-term stream flow data (October 

1955-April 1995) from the 1LB02 river gauging station at Kapkimolwa. 
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Information on the monthly water demand for the entire Mara basin was 

derived from literature values (Gereta et al., 2003; Hoffman, 2007). 

Hoffmann (2007) estimated the whole Mara river basin annual consumptive 

demand to be 23 million m3. The procedure used to determine the 

reservoir storage volume is described in Annex 11. The highest monthly 

demand is 2713727 m3 in July. This demand was used as the worse case 

scenario for tabulation of the constant demand for a year. The long-term 

monthly flow was used in the mass curve. The estimated reservoir storage 

capacity is 432Mm3. and 39Mm3 for the worse-case and for normal flow 

conditions, respectively. 

In the irrigation scenario only CORN HRUs in subbasins 5 and 6, located 

downstream of the reservoir, were auto-irrigated during water stress days. 

Table 11-2 shows the comparison of the irrigated and non irrigated 

scenarios. Under normal rainfed conditions the CORN land cover types 

experience water stress of between 7 to 44 days during growing period. 

The water yield and the ET increased with the introduction of irrigation in 

the basin. The crop yields increase on average by ca. 100% for the HRUs in 

the two irrigated subbasins 5 and 6 located downstream of the reservior.  

Table 11-2: Comparison of water balance fractions under irrigated and rainfed conditions. 

  Scenario setting 

Variable Without irrigation With irrigation 

Water yield,mm 233 280 

ET,mm 793 800 

Revap,mm 35 35 

Average crop yield, ton/ha 0.75  1.66 

Water stress in HRUs, days 7 to 44 0 -10 

 

11.2.3 The change of cultivated crop type  

The main cereal grains consumed in Kenya are maize, wheat, rice, and 

sorghum. While maize is the most important staple in Kenya, the 

consumption of wheat and rice has gained prominence in recent years, 

particularly in urban areas. The consumption of sorghum has traditionally 

been centered in the drought-prone agricultural areas of Kenya where it is 

also predominately produced (Nzuma and Sarker, 2010). Maize is the 

staple food in the study area and the main source of livelihood for the 
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subsistence farmers. Farmers in the study area and the entire Kenyan 

maize-growing belt suffered heavy losses due to the maize leaf necrosis 

(MLN) disease in the 2011-2012 growing season. MLN is a serious threat to 

farmers in the affected areas, who experienced extensive to complete crop 

loss (Wangai et al., 2012; Adams et al., 2012). According to Wangai et al. 

(2012), a high incidence of new maize disease was reported in 2011 at 

lower elevations (1900 masl) in the Longisa division of Bomet County, 

which later spread to the Narok South district, in Southern Rift Valley, 

Kenya.  

According CIMYT, (2012), the MLN disease is difficult to control for two 

reasons: 1. it is caused by a combination of two viruses that are difficult to 

differentiate individually based on visual symptoms, and 2. the insects that 

transmit the disease-causing viruses may be carried by wind over long 

distances. Since MLN does not occur on other crops except maize, farmers 

were advised to avoid growing maize after maize and to grow alternative 

crops for 2 years in order to reduce losses (CIMYT, 2012). Also, as an 

adaptation strategy to climate change, sorghum has been promoted as one 

of the orphaned African crops that need to be grown as an alternative to 

maize (Schipmann, 2011). In a study to assess the impacts of climate 

change on crop yields, Ringler et al. (2010) projected a 6% drop in maize 

and a 4% increase in sorghum yields by 2050. Besides its water saving and 

nutritional attributes, the economic viability of sorghum growing is higher 

than that of maize. With an acre under sorghum producing between 20-25 

bags (1800-2250 Kg) of sorghum, yields are comparable to those of maize. 

In Kenya, sorghum retails for approximately 1.5 times more than maize 

(MOA, 2011). The entry of beer malting companies in contracting farming 

will push the prices higher and benefit the farmers more.  

Against this background, two scenarios where grain sorghum was grown in 

the watershed were simulated. To avoid the problem occasioned by 

monoculture cultivation, other agricultural land use types like closed 

herbacious crops (HERB) and medium to closed herbacious crops (RFHC) 

will not be changed in the scenario settings. The following scenario’s were 

considered: 

1. A scenario where all the lowland maize (CORN), which was severally 

affected by the MLN, is replaced with the grain sorghum. 

(Replace_CORN) 
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2. A scenario where all cereal (agricultural) land use types (notated in 

SWAT as CORN, MAIZ, AGRG, AGRL) which are at a high risk of MLN 

attack are replaced by sorghum HRU (Replace_ALL) 

Table 11-3 shows the change in the land cover under the different 

scenario’s. The impact of the change in crop types was assessed in terms 

of simulated changes in the water yield, crop yields and water stress. The 

results of the simulations show that there is a slight (4%) increase in the 

water yield for the “Replace_CORN” scenario (Table 11-4). The area under 

CORN is indeed relatively small (21%) in order to change the water yield 

for the entire basin. The CORN crop is also limited to the lowland subbasins 

5 and 6, located in the semi-arids zones with low rainfall and comparatively 

low soil fertility. 

The “Replace_ALL” scenario, however, has significant impacts on the water 

yield. The cluster area under this cover types accounts for 39% of the 

basin area(Table 10-4). For this scenario, the simulated water yield 

increases by 21% to 282mm/yr from 233mm/yr in the baseline scenario  

With the introduction of Sorghum, the  ET decreases from a high of 793 

mm/yr to 774 and 727 mm/yr for the replace_corn and replace_all 

scenarios respectively. This represents an upto 9% drop in ET compared to 

the baseline. 

Table 11-3: Synthesis of different cover changes under sorghum subsitution scenarios. 

    Scenarios       

Baseline % cover Replace_CORN % cover Replace_ALL % cover 

RFWC 3 RFWC 3 RFWC 3 

RFWC 4 RFWC 4 RFWC 4 

CORN 21 GRSG 21 GRSG 21 

AGRL 5 AGRL 5 GRSG 5 

AGRG 9 AGRG 9 GRSG 9 

MAIZ  4 MAIZ 4 GRSG 4 

HERB 6 HERB 6 HERB 6 

RFHC 3 RFHC 3 RFHC 3 

Cover under Sorghum 0   21   39 

(%)          

Figure 11-3 compares the flow frequency curves for the replacement 

scenario’s with the calibrated model (baseline) flow data. The curves for 

the baseline and the “replace with corn” scenario are almost identical 
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except during low flows (>90% exceedance). The “Replace_all” scenarios 

have flow which are consistently higher than the baseline flow for all the 

simulation period. Although the observed flows have near zero values, in 

reality the river does not stop flowing but the extreme low flows are 

difficult to capture using the staff gauging method. 

Sorghum, as a drought resistant crop, has a lower water requirement than 

maize (Assefa et al., 2010; Zsembeli et al., 2011) and other crops like 

potatoes and vegetables grown in the study area. The prolific root system, 

the ability to maintain a stomatal opening at low levels of leaf water 

potential and the high osmotic adjustment help sorghum to cope with 

drought. The lower green water fraction (crop water consumption) leads to 

a higher blue water component of the water balance. The excess water 

therefore finds its way into the river system through lateral flow. By 

growing grain sorghum instead of maize, more water will be available for 

release into the river system. In case of low rainfall, the sorghum crop will 

be able to withstand drought better than maize leading to food security and 

safety. With similar rainfall input the number of days with water stress 

reduced significantly under sorghum cultivation as compared to corn. 

 

Figure 11-3: The flow frequency curves  after replacement of existing crop(s) with 
sorghum 

From Fig 11-4, over a period of 4 years, the average number of water 

stress days for the most affected HRU (no. 62) reduced from 45 to 28 

days, while that of the least affected HRU (no. 30) reduced by half (Fig 11-
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4B). On average, for all corn HRUs over the same 4 year period, the 

number of water stress days was reduced from 25 to 10 days (Fig. 11-4C). 

 

Figure 11-4: Number of water stress days for HRUs under sorghum (GRSG) and maize 
(CORN) cultivation.  

Although sorghum offers the best alternative to maize to ensure grain food 

security in the larger sub-Saharan Africa region, some factors mitigate 

against embracing it as an adaptation strategy for climate change. The 

study area is not classified as a sorghum producing zone as per the 

Sorghum Atlas fig 11-5 (Wortmann, et al., 2009). Due to the fact that 
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Kenya is the least producer of grain sorghum compared to other countries 

in the region, and in spite of the water resources related benefits, a 

paradigm shift in the socio-economic aspects of sorghum adoption needs to 

be addressed. The conversion of the local farmers to not only produce but 

also to consume more sorghum products is an uphill anthropological 

challenge which should be factored in the scenario intervention. In addition 

to the acceptability challenge, the quelea birds are a big stumbling block to 

the realisation of good sorghum yields. According to Markula et al. (2009), 

the queleas also referred to as ‘feathered locusts’ form nomadic super-

colonies of up to 30 million birds, feeding on ripe sorghum, wheat, barley, 

rice, sunflowers and corn. A flock of 2 million can consume 50 tonnes of 

grain in a day. Queleas are one of the most abundant and destructive birds 

in the world, causing $US70 million damage to grain crops per annum 

(Markula et al., 2009). Traditional methods of control is mainly through 

bird-scaring are cost effective, and more environmentally friendly, but 

hugely labour intensive and time-consuming. 

11.3 Conclusion 

The considered scenarios show that land use changes may affect the water 

yield and the water resources in different ways. The reintroduction of forest 

cover improves the water retention in the watershed, increases the ground 

water recharge, and leads to less surface runoff. Although there is less 

water yield to the streams, the naturally regulated water flow through 

increased the proportion of water in soil which moves in form lateral flow, 

and will potentially lead to fewer occurrences of extreme events in both low 

and high flows. Despite the existence of a policy framework in favour of 

this scenario, the heightened political climate surrounding the Mau forest 

and increased demographic pressure mitigates against the implementation 

of the scenario.  

 



216 
 

 

Figure 11-5.Atlas of Sorghum Production in Eastern and Southern Africa (Wortmann et al., 
2008) 
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The substitution of maize crop with grain sorghum could lead to more 

water yield in the streams as the sorghum crop uses less water for the 

same yields. With impending climate change and trends in the study area 

indicating lower rainfall and higher temperatures, there is a need to shift to 

more drought tolerant crops. The biggest challenges for this scenario is the 

behavioural change in eating habits and destruction from quelea birds. The 

transition from using maize as the staple grain to sorghum will require 

strong anthropological intervention than a mere scenario on water saving 

techniques.  

The introduction of irrigation is not only the most expensive scenario but 

also one with high potential negative effects on the river ecosystem. A 

regulated flow regime will have impacts both in terms of alterations to the 

flow regime as well as disturbance of the natural balance of the fauna and 

flora which have benefited from the natural cycles of low and high flows. 

Unfortunately this scenario has high visibility and would gain acceptance 

and support across the stakeholders’ spectrum (policy makers and 

beneficiaries).Table 11-4 summarises the impacts of the land use scenarios 

on water hydrology and water resources. 

 

Table 11-4: Impacts of Land use and water management change scenarios on hydrology. 

Scenario 
Water 

yields 
Lateral 

flow 
Shallow 

Aquifer 
Surface 

flow 
ET 

(mm) 
PCP 

(mm) 
PET 

(mm) 

 
(mm) (mm) (mm) (mm) 

  Baseline 233 30 120 83 793 1155 1846 

1976 map 213 32 122 59 813 1155 1846 

Irrigation 280 29 153 98 800 1155 1846 

Replace_CORN 242 28 122 92 774 1155 1846 

Replace_All 282 33 141 108 727 1155 1846 

Fertilizer_100 244 30 127 87 780 1155 1846 
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12. Conclusions 

This chapter summarizes the key findings of the research based on the laid 

out study objectives and research questions. The challenges encountered in 

the process of achieving the objectives are discussed. It also suggests some 

recommendations for future research in the Mara River basin and regarding 

hydrological modeling using the SWAT model.  

12.1. Key findings in view of the research objectives 

12.1.1 Research objective 1 

Assess the trends in the changes in climate, land cover/land use and 

vegetation variables in the Mara River Basin 

A trend analysis for rainfall was performed for six stations located within or 

in close proximity to the basin. The analysis of historical rainfall data (1962-

2008) in the study area are trending towards decreased rainfall. The 48 

years rainfall records for Olenguruone and Baraget, in the forested humid 

climatic zone, show significant declining trends (18 mm/yr and 9 mm/yr 

respectively) at 95% probability level. The stations in the non-forested sub-

humid  zones of the study area, Bomet and Tenwek, show non-significant 

mixed trends, with an insignificant increase for Bomet (1 mm/yr) and an 

insignificant decrease at Tenwek (2 mm/yr) at 95% probability level. Narok 

station, located in the semi arid zone of the basin, shows a significant (90% 

confidence) decrease (4 mm) in historical rainfall. The highest drop in annual 

rainfall experienced in the study area in the last 50 yrs was 18mm/yr. There 

was no autocorrelation of the annual rainfall data for five of the six stations, 

but  the Bomet station data show a strong negative autocorrelation. The 

spatial distribution of the historical change in rainfall indicates a general 

decrease along the north-east to south-west axis. A seasonality analysis 

carried out for Narok station – the station with the longest rainfall record 

(1960-2010)- indicates that there is no significant difference in the 

occurence of seasons between the first and the second halves of the study 

period. 

The historical trends (1993-2009) in minimum temperatures for the Kericho, 

Narok and Kisii stations show a significant (90% confidence level) increase. 

The highest rise in minimum temperature was experienced in Narok, with an 

increase of up to 0.040C/yr. The rise of annual temperature is caused nearly 

exclusively by a rise of the minimum temperatures, as the increase of the 
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maximum temperature is insignificantly over the last 17 years (1993-2009). 

Based on the three stations, the spatial analysis of the minimum 

temperature changes show a west to east increment. Though insignificant 

the increment in the maximum temperature, is in the south-east to north-

west direction. 

The indices for vegetation health, including the annual integrated NDVI 

(inDVI), the seasonal NDVI, the standardised vegetation index (SVI), the 

vegetation condition index (VCI) and the vegetation productivity 

indicator(VPI), have a positive increasing trend and skewness towards good 

and very good health for the last 12 years (1999-2011). Increase in 

minimum temp may have contributed to better vegetation health due to 

availability of more heat units. 

Multi-temporal images (1986, 1995, and 2006) from Landsat multispectral 

sensors (MSS, TM and ETM+) were separately classified into thematic maps 

using both supervised and unsupervised techniques. Post classification 

techniques, involving the comparison of satellite imagery pixel by pixel, was 

implemented on the classified images. Land change analysis indicates that 

between 1976 and 2006, the area under cropland cover has increased in size 

by 109%. The other land cover types in the area including shrub cover, 

forest and grassland decreased by 34%, 31% and 4% respectively. 

The changes in the basin over three decades were also analysed by 

considering unclassified Landsat images of 1986, 1995 and 2006). This was 

performed by simultaneously projecting each of three NDVI dates through 

the red, green, and blue (RGB) computer display write functions. Change 

and no change categories were identified by interpreting the RGB-NDVI color 

composites. A replacement of a vegetation type with one of lower (higher) 

NDVI value means a loss (or gain) of vegetation biomass. The biggest loss in 

vegetation biomass was found to have taken place in the 1990s (1995-2006) 

due to agriculture expansion and excision of government forest land. 

Though deficient in phosphorous the soils in the Upper Mara basin are 

generally of good quality for crop production with crop yields in the basin 

above the national levels. The concentration for both total phosphorous and 

total nitrogen remain acceptably low (< 1 mg/l). However, during the wet 

season the concentrations of TN and TP are beyond the levels for natural 

systems, suggesting the influence of anthropogenic interference mostly near 

the urban centres and in agricultural streams. 
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12.1.2 Research objective 2 

Adapt a process based hydrological model to evaluate and predict the 

response of hydrological processes to changing climatic, land use and 

water management conditions under past, present and future 

conditions 

A SWAT model was built for the Upper Mara River basin, using local 

observed data, global databases and remotely sensed data. Observed data 

included the climatic, stream flow and crop yield data. Global datasets used 

in the study were the digital elevation maps (DEM), the soil and the land 

cover maps. Landsat and SPOT_VGT NDVI remotely sensed databases were 

used to develop the land map. The Upper Mara basin was defined as the 

area between the Mau escarpments and the point where the Maasai mara 

game reserve begins.  

Simulations were made with the SWAT model, using different land use maps 

and climatic inputs. Hereby, it was shown that the use of the “dominant type 

rule” in assigning the land use classes in the creation of land use/land cover 

maps significantly affects the simulated water balance. It was also shown 

that the land cover map with clustered land use classes produced a better 

hydrological balance than when the thematic map was derived using a per 

pixel classification. Also, the use of interpolated precipitation data for the 

three rainfall zones resulted in a better model performance than with 

individual rainfall stations. The individual observed station have various 

degree of missing data which was filled during the the interpolation process.  

The modification of the model databases (crop databases and management 

files) to suit the Upper Mara watershed was critical in attaining realistic 

hydrological components. The daily model was satisfactorily calibrated and 

validated for stream flow using observed flow data for the period 1970 to 

1977 at the Lalgorian bridge gauging station (1LA04). The Nash Sutcliffe 

Efficiency and percent of bias were 0.55 and 8% respectively. For the water 

balance, the annual water yield was estimated to be 233mm/yr, with 

baseflow contributing ca. 67%. This compared well with the observed annual 

flow of 234mm/yr and a baseflow fraction of 71%. The evapotranspiration 

component for the catchment and for the individual HRU was within the 

expected ranges of between 600 and 1000 mm/yr, depending on location 

(semi-arid or humid) and vegetation type 
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Data from remote sensing and field survey were successfully implemented in 

the validation of the SWAT model outputs. The timing of the planting season 

determined from the crop calendar, which was developed during field 

surveys, agreed with that of the remote sensed LAI. Observed yields and 

those simulated by the SWAT model were comparable once the model had 

been adjusted to reflect realistic catchment activities, including farmers’ 

practices of fertilizer use. 

12.1.3. Research objective 3 

Assess the impacts of climate, land use and water management 

changes on the sustainable management of water resources in the 

Mara River Basin. 

From a sensitivity analysis of climatic variables it was found that an increase 

in both minimum and maximum temperatures leads to an increase in the 

evapotranspiration (ET) and a decrease in the water yield. Higher rainfall 

input amounts lead to increases in both ET and water yield. Surface heating 

increase both the surface temperatures and the evaporation so long as there 

is adequate moisture. The water-holding capacity of the atmosphere 

increases as  temperature rises. With an increase in water carrying capacity 

of the atmosphere there is enhanced evaporation. 

Increase in CO2 leads to a rise in water yield and a drop in ET. Stomata 

conductance of plants decline as the atmospheric CO2 increases, resulting in 

a reduction of transpiration. With declining transpiration, the total 

evapotranspiration component of the water balance will decrease with 

increasing CO2 build-up. This will lead to a higher water yield in order to 

maintain a closed water balance.The combination of reduced rainfall and 

higher temperature make the impact of the drought through increased 

evapotranspiration. 

There is an agreement in all GCMs of higher temperatures in the 2020s 

(2011-2030) and 2050s (2046-2065) than during the 1980s (1961-1990). 

For the same periods respectively 80% and 90% of the GCMs agree on an 

increase in the projected rainfall for the A1B and B1 scenarios of the IPCC. 

The 2050s are expected to have higher projected rainfall and temperatures 

than the 2020s. There is a higher variability between the GCMs in the A1B 

than in the B1 scenarios for both 2020s and 2050s.  

The projected impact of the climate change is an increase in the water yield 

and the evapotranspiration. The analysis of the frequency duration curves of 
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the flows shows   that the maximum flows over 30 and 90 days will increase, 

but that the 1 day, 3 day and 7 day maxima will decrease. The flow rate for 

the 100 yrs return flood is expected to increase by 11 and 18% in the 2020 

and 2050 A1B scenarios respectively. According to the simulations, there is 

no significant change to be expected for the minimum flows. 

The increase of forest cover to pre 1976 levels will lead to a reduction in the 

water yield and an increased ET, with possibly a higher transfer of water to 

the groundwater. The replacement of lowland maize crop -whose production 

has been seriously affected by the maize lethal necrosis (MLN) disease- with 

grain sorghum will lead to higher (4%) water yields. Further replacement for 

all lowland crops with grain sorghum will lead to even higher (21%) water 

yields. There is a significant reduction (in some HRU up to 50%) in the water 

stress with the sorghum crop. Use of irrigation leads to both higher river 

flow and ET, while the average crop yields double in this scenario, even 

without fertilizer use. 

Regarding the impact of the use of fertilisers, it has been shown that the 

response of the use of DAP fertilizers on the crop yields is soil-dependent. 

The use of DAP fertilizer significantly and proportionately increases yields for 

all the soils. The majority of the soil types (86%) would require fertilizer 

application of between 150 and 220 kg of (18:46:00) DAP/ha to attain the 

world average maize yields of 3 ton/ha. For two of the soil types in the 

basin, as little as 50kg/ha would be sufficient to produce the target 3 ton/ha. 

Excessive use of fertilizer in such fields would not only be a waste of 

resources but would also pose a risk to the water quality. Other soil types, 

poorly suited for crop production even with addition of unrealistically high 

fertilizer amounts, are better off left for natural production systems like 

grassland.  

Whereas 80% of the GCM predict a wetter future, historical trends analysis 

show an opposite declining direction in rainfall. This disagreement makes it 

difficult to predict the impacts of climate change on the hydrology. Based on 

the historical trends, an increase in temperature and decrease in rainfall 

potent a disastrous scenario since the water yields will decrease and the ET 

increase. Based on this scenario the adoption of grain sorghum growing in 

place of and as a rotation for corn and the use of fertilizers should be 

considered as part of the coping mechanisms to the climate change. 

If the GCM projections are upheld and there is an increase rainfall, there will 

be an increase in the water flow. The increased high flows could be stored in 
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reservoir, and the water used for crop irrigation in the dry period for the 

semi-arid areas to supplement rainfed agriculture. It was shown that the use 

of expected excess flows due to climate change for irrigation will lead to 

increased yields and reduced water stress in the dry periods. 

12.2 Contributions of this study 

The cluster and averaging (CA) method for interpolating rainfall was 

introduced in this study. The simple method considers the topography and 

the rainfall amounts and groups all the stations that cluster together. The 

mean of the rainfall in the groups is used as the station rainfall for that 

subbasin. The method was validated by performing kriging of the rainfall 

data. The CA clusters falls into the same zones as those formed in the 

kriging process. The method was compared with the inverse distance 

weighting method and the nearest neighbor methods on SWAT, and found to 

produced the best NSE.  

Although thematic maps have been produced from remote sensed data 

before, in this study a f crop level map has been developed – using NDVI 

data - specifically for use as an input map for hydrological modeling. The 

main difference with the other studies is the limited amount of resources 

(effort) put into the mapping and the level of details produced. The 1x1 km 

NDVI map produced a land use map with accurate enough details , which 

may only be possible to produce with extensive ground truthing field work 

using even finer resolution 30x30m Landsat maps. The key to the land 

mapping was the use of the field information especially the crop calendar 

developed during field surveys. The information of the timing of planting and 

harvesting was crucial for the separation of spectral signatures mediated by 

the phenological differences.  

The NDVI map was used to improve on the water balance in the modeling 

process by better representing the processes on the ground instead of using 

generic land cover types. Classifying land maps to crop level enables the 

adjustment of the crop and managemement databases to finer details due 

specificity of crop charactersictics.  

Distributed data has been use previously for the validation of hydrological 

models especially in ungauged catchments. In this study the land unit / soil 

unit (LUSU) was introduced. The concept is based on identifying the soil type 

and the land cover at any particular physical point. The SWAT model model 

can be subdivided into user defined units  corresponding to the commonly 
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used local mapping units. The HRU outputs can tehn be clustered to user 

defined units). This makes it easier to compare the model outputs with 

measured outputs archived at the maping unit. The LUSU was used to 

validate the leaf area index in SWAT. Its ease of implementation reduces the 

dependence on GIS expertise.  

 

12.3 Challenges 

The achievement of the objectives of this study was not without challenges. 

The main challenge in the study area is access to good observed data, both 

in quality and quantity. The principal custodians for these datasets are state 

corporations. Due to lethargy, underfunding and understaffing, there was a 

near total collapse of the monitoring systems, especially for stream flow, in 

the 1980s and 1990s. For most of the river basins, especially where there 

are no hydro electric power (HEP) dams, there was little emphasis to 

monitor the flows. This problem created a large gap in the data availability. 

This is a big shortcoming in the modeling process since the calibration of a 

hydrological model with observed data is a key step in adapting the model to 

the basin conditions.  

The analysis of impacts from different scenarios regarding changes due to 

both the land use and the climate can only be meaningful if the model is well 

adapted. Efforts by key players, including the Water Resources Management 

Authority and the Lake Victoria Basin Authority, to improve on the 

hydrometeorogical network in the region is commendable. The vandalism of 

these new stations for material re-sale as scrap metal is disturbing and a 

great disservice both to the local community and the larger scientific world. 

Lack of a water quality (including sediments) monitoring scheme is a big 

hindrance to monitoring land use changes. Some of the best manifestations 

of degradation of watershed are the sediment loading and the turbidity. The 

unavailability of an automatic sampling gear to capture the freak storms is a 

setback towards understanding the magnitude of nutrient fluxes and 

sediment transport problem. 

The attempt to link trends in climatic variables to trends vegetation response 

in study was unfruitful. The idea was to derive a method that could use 

vegetation indices to deduce climatic anomalies in the absence of climatic 

data. The high precipitation in the upper humid zones study area showed 

there was no extractable correlation. A better correlation could have been 
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expected in the semi-arid zones, but lack of rainfall and temperature data in 

the lower sections of the basin hindered the successful implementation such 

an attempt.  

The lack of a clear land planning policy caused the subdivision of land into 

small agricultural production units, which are almost economically unviable. 

Also, due to the small irregularly shaped land units, remote sensing 

classification tools produce land cover maps with a very large number of 

small, fragmented mixed signal land units. 

The modelling of the tropical forest land cover types with the SWAT has 

remained a big challenge. The model was developed especially for use in 

temperate agricultural watersheds. Attempts to improve on the ET 

simulation for forest produced mixed results. The initialisation of the leaf 

area index and the biomass in the model was the most promising. Although 

the buildup of more biomass in the forest was not attained, there was no 

characteristic annual drop of the biomass to zero, as experienced in other 

studies and in the default simulation for this study. The requirement for the 

initialization of the potential heat unit (PHU_LT) if the vegetation is growing 

at the start of the simulation (IGRO=1) was a major cause of SWAT 

simulating unrealistic low forest ET.  

12.4 Limitations of SWAT modeling for the Upper Mara basin 

The SWAT model  has been adapted for the Upper Mara basin. The selection 

of the Old mara bridge streamflow gauging site presented serious data 

challenges. The gauging station was selected for this study due to its 

strategic location. It captures the anthropogenic activities taking place 

upstream of the key Masai  Mara - Serengeti  ecosystem. The site was  

established in the 1970s, and has  available records are from 1970 to 1991 

albeit with high percentage of  missing data. Quarterly discharge 

measurements at a bridge 50m upstream of the station were recorded, 

before  the station was  refitted with an automatic sensor during the -Jan - 

feb dry season of  2010 (Ngessa, personal communication).  

Though the selected  period (1970-1977) had better available data with 

fewer missing points, it might have been short to cover the whole range of 

internnual climate variablity cycle. However, the use of short data periods is 

not unique to this study. Dessu and Melese 2012, also used "7 year data 

segments" for their calibration of the Nyangores and Mara mines.  
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The use of multisite calibration serves to address the hydrological model to 

different gauging  stations. In normal practices some  stations will be poorly 

simulated than others (Arnold et al., 2012). SWAT hydrological model was 

initially developed for ungauged or poorly gauged catchments. The use of 

performance criteria that relies on comparing the observed and simulated 

values also sets out performance thresholds upon which a minimum 

performance must be met for the model to be deemed satisfactory for use in 

impact assessments on water resources. 

The poor performance of the Amala and Nyangores gauging station has been 

reviewed  Dessu and Melese, 2012 and Mango  et al., 2012. Despite the  

discharge data available for use in both studies being of seemingly fairly long 

duration (1978-1992, 1996-2008 respectively), both authors concluded that 

the poor performance of the SWAT model in this upper section was due to 

poor data quality. 

The changing environment in the Upper Mara may be presenting unique 

hydrological complications 

1. The significant  drop in the observed precipitation might be affecting the 

fitting of the water balance. In a study rating curve in the Nyangores sub-

catchment of the  study area, Juston et al., 2013, found only "subtle 

changes in the discharge" which they attributed to the change in the river 

morphology near the  gauging site after the construction of a bridge. These 

findings indicates that despite the reduction in the input part of the water 

balance, the measured (monitored) surface flow part of the output shows no 

change. This could imply that the baseflow part might have changed and 

gone unnoticed. For the water balance to be realized, a drop in input must 

be accompanied by a corresponding decrease in the output sections. Since 

the objective function in the calibration process is based on the fitting the 

observed surface flow to the flow simulated  at a discharge point, the ground 

water component is not considered in the fitting of the objective function.  

2. The destruction, removal and the replacement of dense forest cover with 

sparse cropland has been shown in controlled catchments to lead to increase 

in water yield. There is evidence of removal of forest vegetation in the Upper 

Mara basin in this study which is consistent with other findings (Mati et al., 

2008, Olang et al., 2011, Mango et al., 2012). Coincidentally, the removal of 

forest in the Upper Mara basin seems to have "conveniently compensated" 

for the reduction in rainfall. As a result the recorded flow in the river may  
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not have changed significantly even with a significant drop in the 

precipitation in the basin. 

3.The two sub-basins in the Upper Mara basin (Nyangores and Amala) 

consist of geological structure formed as a result of volcanic activity, this 

consists of volcanic ashes mainly trachytes and tuffs. The ashes form a deep 

soil layer with high hydraulic conductivity. There is high possibility of water 

loss to the  deep aquifers. The Upper Mara basin is also located in the Rift 

Valley. The presence of faults lines may also be contributing to substantial 

loss of water from the basin, imposing difficulties in the closing of the water 

balances. In the SWAT simulation the waterbalance does not close 100% 

indicating that some water is still unaccounted for. The restriction of the 

amount of water that could be transferred to the deep aquifer using the 

parameter Rrchr_DP maybe responsible for this anomaly. 

The performance of the adpoted SWAT model was assessed under the three 

classes/categories  of model  evaluation described by van Griensven et al., 

2012. In the "fit-to-observations" class, the study used three statistical 

parameters with results for daily time step ranging from satisfactory  to 

good. The assessment of model performance with monthly and  yearly time 

steps would have yielded better performance but the daily time step was 

selected to give more comparison points and to reduce errors in 

accumulating months and years with missing daily observations. In the "fit-

to-reality"  class, the water yield and the evapotranspiration in the 

hydrological  balance  of the Upper Mara were within  ±5% of the expected 

range of values.  The "fit-to-purpose" class saw the model  simulate crop 

yields to fairly mirror the yields produced in the different zones and soil 

types. The adapted SWAT model was also able to match the timing of the 

growing period of perenial crops as  compared with he remote sensed Leaf 

air index.  

Despite the short period of usable observation data, the adapted SWAT 

model has been proven to not only simulate the physical processes well but 

also reproduce  management activities taking place in the watershed. 

Though this limits the extent to whcih the results and findings can be applied 

in water resources management, it will at least trigger debate on the need to 

set-up and manage hydrometeorological stations. 
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 12.5 Recommendations 

Based on the experience gained in this study, the following 

recommendations touching on the model inputs, model routines and model 

implementation are offered: 

The wealth of data currently available from remote sensing should be aptly 

applied to monitor hydrological processes. With the availability of near-real 

time remote sensed ET, LAI, NDVI and climate data for all locations in the 

globe (albeit at coarse resolution), a dynamic feedback mechanism could be 

established. Realistic modeling of hydrological processes may be improved if 

the land cover input is made dynamicFurther, the SWAT simulator processes 

could also be improved by hard-wiring default operations for known perenial 

landcover types to automatically and realistically simulate the biomass 

accumulation processes. The SWAT crop database needs to be expanded to 

include information on major plant communities and types in tropical 

regions. Such information specific for tropical climates include: leaf area 

index, timing and percentage of senescence and base temperature for 

growth.  

The use of hydrological models in data scarce and data poor catchments is a 

big challenge. Methods of calibration and validation of these models using 

non-statistical objective functions and performance criteria need to be 

evaluated to quantify the skill of models to fit to hydrological processes. 

The biotic pump theory has been touted to provide a general physical 

platform for analysing the critical role of land use and cover changes. The 

study recommends the testing of the theory to assess if land degradation is 

responsible for the decline in regional rainfall against projected global 

increase. 

The application of fertilizer has both economic and environmental 

consequences. Soil fertility testing is not performed routinely except only by 

the large commercial farming enterprises. The study recommends the 

development of generic fertilizer application maps which could serve as a 

quick guide to farmer fertilizer use depending on the locations’ soil type. 

Delineation of exclusion zones for non cultivated agricultural production 

could also be developed.  

A water quality monitoring programme could be established to monitor the 

impacts of increased agricultural activity. The planned government policy to 

make Kenya food sufficient through a green revolution involving the use of 
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fertiliser will increase the threat of nutrient loading into the river. The 

continued use of ad hoc water quality monitoring exercises may serve a 

short term goal, but a longer term sustainable mechanism should be 

established to give early warning signals to avert disasters and maintain 

ecological integrity. 
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14. Annexes 
Annex 1: Open source software/tools used in the study 

   Software/ Functions used  Brief description 

   tool     

1 Timesat 1. Time series  The Timesat 3.0 software manual consists of three parts. Part I gives general  

  

extraction information together with examples of some applications of Timesat. 

   
 Part II describes the algorithms underlying the software package. 

  

2. Filter time 
series Also the settings affecting the processing are discussed in detail.  

   

Part III is the software user’s guide, with detailed information on how to install, run, 

   

and handle the program package. 

   

The Timesat program package is designed primarily for analyzing time-series of  

   

satellite data and uses an adaptive Savitzky-Golay filtering method and methods 

   

based on upper envelope weighted fits to asymmetric Gaussian and double logistic  

   

model functionsFrom the fitted model functions a number of seasonality parameters,  

   

e.g. beginning and end of the growing season, can be extracted. Parameters for 

   

a number of pixels can be merged into a map displaying seasonality on a regional 

   

or global scale. 

   

Timesat consists of a number of numerical and graphical routines coded in Matlab & 

   

Fortran 2003. The Matlab version of the package, which comes with a versatile  

   

graphical user interface (GUI), is mainly applied for testing input settings and  

   

running smaller cases. 

   

Matlab routines are pre-compiled and users of the program package do not need to  

   

have Matlab installed. Instead processing is done through a runtime engine 

   

 called the Matlab Compiler Runtime (MCR), that is set up on the users machine 

   

 by executing the file MCRinstall.exe 

   

 The latter file is provided along with the Timesat program package. The Fortran 

   

 version of the package is highly vectorized and efficient and should  used to process 
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large data sets. Also for the Fotran version we supply pre-compiled executable files. 

2 VGTExtract 
Extract SPOT-
VGT The primary aim of VGTExtract is to facilitate the integration of SPOT-VGT products 

  

 files  into commonly used GIS and Remote Sensing software for further visualisation, 

   
analysis and postprocessing.VGTExtract searches for VGT products in a given  

   

directory and its subdirectories. For each product found,VGTExtract can   

   

automatically unpack (uncompress) the product and perform the following actions   

   

on the resulting unzipped HDF data files: 

   

Mosaic the data layers, when they are provided as a set of regular tiles (e.g. ten by  

   

ten degrees, as in Geoland2 products); 

   

Extract a given rectangular geographic bounding box or Region of Interest (ROI); 

   

Convert to a set of file formats; 

   

Change data type as may be required by the output format; 

   

Apply a linear encoding of the form output = (scale * input) + offset to all values 

   

 except one (and only one) special value for missing data. 

   

When extracting the geographic region from an input image, VGTExtract checks if  

   

the desired output region intersects with the region covered by the input image. 

   

When this intersect is only partial, VGTExtract automatically fills the non-intersecting  

   

part of the output image with missing data values. 

   

This means that the output file will always have the size of the desired region, but it  

   

may be partly empty in those areas that were not present in the input image. 

3 3DEM Convert HDF The program that opens DEM data and allows  visualization and use it in a number of  

  

 to GEOTIFF different ways. It comes with a first-rate PDF manual, available from the Help menu.  

   

3DEM will accepts DEM formats, like USGS DEMs (ASCII and SDTS), .hgt, .bil, LIDAR  

   

.las,  even MARS MOLA (.img). 

   

 It allows for selection  and download of lower-resolution DEM data from the GLOBE  

   

merge them together,and allows saving of  merged form in either USGS ASCII  

   

format or GeoTiff format. 

4 VTbuilder Render Eind VTBuilder is a tool for viewing and processing geospatial data. 
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Bytes 

   

It can import a wide variety of data formats, and output efficiently to 3d runtime 

   

 software. The usual process of vizualising DEMs 

   

1. Acquire raw geospatial data (elevation, road vectors, etc.) 

   

2. Read them into VTBuilder. 

   

3. Clean up the data with operations such as bringing it into alignment, extracting 

   

      areas of interest,merging and resampling, and supplying missing information. 

      4. Write the data out 

5 PAST Autocorrelation The PAST program integrates spreadsheet-type data entry with univariate and  

  

Durbin Watson  
multivariate statistics, curve fitting, time-series analysis, data plotting, and simple 
phylogenetic analysis 

  

statistics   

6 Makesen Mann-Kendall  An Excel template – MAKESENS – is developed for detecting and estimating trends 

   

 in the time series of annual values of atmospheric and precipitation concentrations. 

  

trends analysis The procedures based on the nonparametric Mann-Kendall test for the trend and 

  

Sens estimator the nonparametric Sen’s method for the magnitude of the trend.  

   

The Mann-Kendall test is applicable to the detection of a monotonic trend of a  

   

time series with no seasonal or other cycle. The Sen’s method uses a linear model 

       for the trend 
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Annex 2: Kensoter soil classes in the study area 

 
 

NEWSUID REVISED FAO1988 
CODE 

TEXTURAL  
CLASS 

KSS CODE % 

1 45 humic Acrisol sandy loam F17 2.59 
2 56 eutric Regosol silt loam H13 1.29 
3 57 Cambisol clay L10 1.07 
4 58 humic Regosol clay L25 2.3 
5 61 humic Phaeozem clay A14 1.95 
6 93 humic Phaeozem sandy clay loam F4 5.49 
7 183 Nitisol  clay Ps7 0.66 
8 187 vertic Luvisol clay Up2 9.93 
9 190 Nitisol clay Ps7 0.94 
10 192 mollic Andosol clay loam Pc6 9.32 
11 196 mollic Andosol  loam F10 35.47 
12 200 mollic Andosol clay Uc8 1.16 
13 377 eutric Planosol clay loam Pv11 0.31 
14 378 humic Phaeozem sandy clay loam L20 0.92 
15 380 eutric Vertisol clay Pn4 5.31 
16 381 eutric Planosol clay loam Up5 1.19 
17 382 humic Regosol loam Pn11 4.13 
18 386 Cambisol  loam H16 4.29 
19 387 eutric Planosol clay loam Pn10 0.06 
20 389 eutric Planosol clay loam Pn6 5.2 
21 391 eutric Planosol clay loam Pn7 6.41 
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Annex 3a: 1978  Survey of Kenya topographic sheets used in the accuracy assessment of  1976/86 thematic maps 
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Annex 3b: Ground control points (GCPs) used for the ground truthing of the NDVI map and  2006 thematic map 
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Annex 4: Sample questionaire for the Upper Mara  study  

 

INFORMED CONSENT                                                                                  Code: FK/_____/ 

I have been asked to participate in a questionnaire activity that forms part of the 

PhD studies for Fidelis N. Kilonzo of Kenyatta University, P.O BOX 43844-

00100, Nairobi. This questionnaire has been designed to gather information 

about the Crop yield and related farm management practices within Mara 

river basin. I understand that any information I provide shall be kept confidential, 

and the results that may be published in a professional or academic report or 

journals will be anonymous.   

I hereby consent to participate in this survey under the specified conditions. 

 
 
Name:__________________________________________________________ 
 
Signature (Thumbprint) __________________ Date _____________________ 

 

Interviewer code: FK/INTW Nr./_____________________________________ 
 

 

1. Farm details1.1Where is the farm located? 

Description Name 

Village  

Sub-location  

Location  

Division  

District  

County  

Geog. coordinates  

 
1.2 Who is responsible for the farm?   |__|  
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1= Husband 4= Relative 
 2= Wife 5= Other(specify) 

3= Child 
   

 

 

2.1  What type of farming system  do you  practice?  |__|  
 

Type of farming system 
   1= mixed farming 3= Intercropping 

2= Monoculture 4= Other (specify) 
  

2.3.What are the approximate sizes of the  of the  parcel/block? 

Unit for area: ______________________________________ 
 
Land piece (Name/location) Size 
1  
2  
2  

 
3. Types of crops grown 

3.1. Did the household plant any crops during the last rainy season?         |__|  
(Yes = 1, No = 2), if no go to 6 
3.2. For each crop planted during last rainy season provide the following information: 

 Crop name Planting Harvesting 

 Local English Dates Area Dates Quantity 

1.       

2.       

3.       

4.       

5.       

 
Units for area __________________________Conversion to S.I ____________________________ 
Units for harvest _____________________ Conversion to S.I ___________________________ 
 
4. Management practices4.1. How do you improve the fertility of your farm? 

Fertilizer |__| Manure |__| Both Fertilizer+ Manure |__|   None |__| 
If fertlizer go to 4.1.1, 
if manure go to 4.1.24.1.1.  
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List here the type and quantity of fertilizers used 

 
Fertilizer type Quantity used 

  

  

  

  

 
4.1.2. What is the source and quantity of manure used ?4.1.2.1. What is the source of manure 

used ? 

 Composting |__| Farmyard |__| Animal dung |__|  Other specify |__| 
4.1.2.2. What is the quantity of manure used ?  __________________________ 

 

4.2.  How do you control weeds in your farm? 

Weeding |__| Herbicides  |__| Weeding +Herbicides  |__| None |__| 
If herbicides, go to 4.2.1  
4.2.1 List here the type and quantity of herbicides used  
Herbicides  type Crop used on Quantity used 

   

   

   

   

   

 
4.3. How do you control pests  in your farm? 

 
Pesticides |__|     organic    |__|     None  |__| 
 
If pesticides, go to 4.3.1.  

 
If organic , go to 4.3.2 
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4.3.1 List here the type and quantity of Pesticides used  

Pesticides  type Crop used on Quantity used 

   

   

   

   

   

 
4.3.2 List here the type of organic method  used  

Organic method Crop used on Quantity used 

   

   

   

   

 
4.4. What do you do with the crop residuals after harvesting the grain? _________________ 

Crop residual 

1= left to rot insitu 
 

3= burnt 
 2= fed to own animals 4= Other (specify) 

 

 

5. Market for the produce; Licensed marketer/wholesale |__| Broker   |__|   
Retail |__| 
6.  What is reasons for not growing crops and vegetables during the last rainy season? |__| 

Main reasons for not growing crops and vegetables during last 
rains 

   01= no rains 
 

03= no inputs 
 

05= Other (specify) 
02= rains came rate 04= illness/social problems 

   
 

 

7. Type of tree crops  

7.1.  Does the farm grow any tree crops? 1 = Yes, 2 = No            |__|  
If yes, go to 7.2 
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 7.2.  What type of tree crops does the farm  grow and what number of trees? 

S/NO Tree  Number  where main other Amount harvest 

 
type of trees planted use use harvested period 

1 
       2 
       3 
       4 
       5 
        

Fruits and nuts permanent crops 
 

Forest trees and plantations 
  100= Mango 200= Tea 

 
300= Natural  

   110= Oranges 210= Coffee 
 

310= Plantation 
  120= Passion 220= Other (specify) 320= Other (specify) 
  130= Pawpaw 

        140= Other (specify) 
       

          where planted 
   

Uses 
    1= mostly on field/plot boundaries 1= timber 4= shade 

 2= mostly scattered in fields 
 

2= food 5= medicinal 
3= mostly in plantation 

 
3= charcoal 6= Other (specify) 

 

 

 

8.  Animals kept in the farm 

8.1 Does the farm have any domestic animals? 1 = Yes, 2 = No            |__| 
If yes, go to 8.2 
8.2 Which animals are kept and their number? 

Type Number 
Zero 
grazing? Type Number 

Zero 
grazing ? 

Cattle 
 

 Chicken 
 

 

Pigs 
 

 Rabbit 
 

 

Goats 
 

 Donkey 
 

 

Sheep 
 

 Ducks 
 

 

 

9.0 Any other observations/Remarks from farmer 

______________________________________________________________________________

______________________________________________________________________________

______________________________________________________________________________

____________________ 

10.0 Any special notes by the Interviewer 

_____________________________________________________________________________ 
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Annex 5. Description of all the sites sampled in the study, including the main 16 sites labeled K1-K18 

ID Site  Name longitude Latitude  Subbasin Landuse 

Main sites*  
  1 K1 Emarti 35.23E 1.06S Mara Agriculture 

2 K2 Lelaitich 35.64E 0.7S Amala Agriculture 

3 K3 Kimulgul 35.55E 0.79S Amala Forest 

4 K6 Nyangores 35.42E 0.7S Nyangores Forest 

5 K7 Lionget 35.5E 0.58S Nyangores Agriculture 

6 K8* Masese 35.44E 0.73S Nyangores Forest 

7 K9* Matecha 35.5E 0.83S Amala Forest 

8 K10* Bomet 35.35E 0.79S Nyangores Agriculture 

9 K11 Kaptwek 35.66E 0.48S Nyangores Agriculture 

10 K12 Olposmoru 35.78E 0.55S Amala Agriculture 

11 K13* Mulot 35.42E 0.94S Amala Agriculture 

12 K14* Silibwet 35.36E 0.74S Nyangores Agriculture 

13 K15 Oldmara 35.04E 1.22S Mara Mixed 

14 K16* Kapkimolwa 35.44E 0.9S Amala Mixed 

15 K17 Baraget 35.8E 0.45S Nyangores Forest 

16 K18 Tipis 35.71E 0.56S Amala Mixed 

Other sites**  
    17 

 
Ainabcheruik  38.48E 0.68S Nyangores Forest 

18 
 

Ainabngetuny 35.44E 0.72S Nyangores Forest 

19 
 

Borowet 35.42E 0.71S Nyangores Agriculture 
20 

 
Chepkosiom I 35.45E 0.7S Amala Agriculture 

21 
 

Chepkosiom II 35.42E 0.71S Amala Agriculture 
22 

 
Chepkosiom III 35.42E 0.71S Amala Agriculture 

*the 6 Key sites used for physical-chemical analysis 
** for nutrient monitoring 
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Annex 6a:  Script used in ERDAS model maker for calculation of VCI 
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Annex 6b:  Script used in ERDAS model maker for calculation of Z scores in SVI 

determinations 
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Annex 7. The spatial reference properties 

Feature Description 
Name  
Projection 
False_Easting 
False_Northing 
Central_Meridian 
Standard_Parallel_1  
Linear Unit 
Geographic Coordinate System  
Angular Unit 
Prime Meridian 
Datum 
Spheroid  
Semimajor Axis 

WGS_1984_Mercator 
Mercator 
0.000000 
0.000000 
0.000000 
0.000000 
Meter (1.000000) 
GCS_WGS_1984 
Degree (0.017453292519943299) 
Greenwich(0.000000000000000000) 
D_WGS_1984 
WGS_1984 
6378137.000000000000000000 

 



270 
 

 

Annex 8: Management file edits for MAIZ and CORN HRUs 
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Annex 9. MMD dataset used in the LARS-WG  

Centre 
Centre  

acronym Country Global Climate Model Grid resolution 

Australia's Commonwealth 
Scientific and Industrial Research 

Organisation CSIRO Australia CSIRO-MK3.0 1.9 x 1.9  
Canadian Centre for Climate 

Modelling and Analysis CCCma Canada 
CGCM3 (T47) CGCM3 

(T63) 
2.8 x 2.8  
1.9 x 1.9  

Beijing Climate Centre BCC China BCC-CM1 1.9 x 1.9  

Institute of Atmospheric Physics LASG China FGOALS-g1.0 2.8 x 2.8  

Centre National de Recherches 
Meteorologiques CNRM France CNRM-CM3 1.9 x 1.9  

Institute Pierre Simon Laplace IPSL France IPSL-CM4 2.5 x 3.75  
Max-Planck Institute for 

Meteorology MPI-M Germany ECHAM5-OM 1.9 x 1.9  

Meteorological Institute, University 
of Bonn MIUB Germany ECHO-G 3.9 x 3.9  

Model and Data Group at MPI-M M&D Germany ECHO-G 3.9 x 3.9  

National Institute of Geophysics 
and Volcanology INGV Italy SXG 2005 1.9 x 1.9  

Meteorological Research 
Institute,Japan NIES Japan 

MIROC3.2 (hires) 
MIROC3.2 (medres) 

1.1 x 1.1  
2.8 x 2.8  

National Institute for 
Environmental Studies MRI Japan MRI-CGCM2.3.2 2.8 x 2.8  

Meteorological Research Institute 
of KMA METRI Korea ECHO-G 3.9 x 3.9  

Bjerknes Centre for Climate 
Research BCCR Norway BCM2.0 1.9 x 1.9  
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Institute for Numerical 
Mathematics INM Russia INM-CM3.0 4 x 5  

UK Met. Office UKMO UK 
HadCM3 

HadGEM1 
2.5 x 3.75  
1.3 x 1.9  

Geophysical Fluid Dynamics 
Laboratory GFDL USA 

GFDL-CM2.0, 
GFDL-CM2.1 

2.0 x 2.5  
2.0 x 2.5  

Goddard Institute for Space Studies GISS USA 

GISS-AOM 
GISS-E-H 
GISS-E-R 

3 x 4  
4 x 5  
4 x 5  

National Centre for Atmospheric 
Research NCAR USA 

PCM 
CCSM3 

2.8 x 2.8  
1.4 x 1.4  
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Annex 10: Climate change perturbations for 2011—2030 and 2046-2065 based on the 1961-1990 baseline for the HADCM3 GCM. 

 



274 
 

Annex 11: The Norera reservoir  

The required storage of the reservoir is determined using the flow mass curve (Rippl 
diagram). A flow mass curve (Rippl Diagram) is a plot of the cumulative discharge volume 

against time. The equation for a mass curve at any time t is given by        
 

  
 

Where  

V = the accumulated volume at time t 

to = the time at the beginning of the curve 
Q = the discharge rate 
t = the time 
A mass curve was constructed by plotting the accumulative monthly flows against time. The 

slope of the mass curve at any time is a measure of the inflow rate at that time. Demand curves 

are straight lines having a slope equal to a – constant - demand rate. Demand lines drawn tangent 

to the high points of the mass curve represent rates of withdrawal from the reservoir. 

The slope of the mass curve at any point represents 
  

  
                                

Assuming the reservoir to be full whenever a demand line intersects the mass curve, the 

maximum departure between the demand line and the mass curve represents the reservoir 

capacity required to satisfy the demand. At the beginning of the dry period, the storage required 

is  

                                                    

The minimum storage volume required by a reservoir is the largest of Vsupply values over 
different dry periods. Assumptions in applying the mass curve method are that the 
reservoir is full at the beginning of the critical drawdowal period and, as the analysis 
utilizes historical streamflow data, it is implicit that future sequences of inflow will not 
contain a more severe drought than the historical sequence. The demand information 
(Table I0 was obtained from Hoffman (2007)  

There is a water deficit in months of January- February. According to Hoffman, the 

abstraction of water from the Mara is limited in the drier months of July to September. The 

demand curve therefore serves only as a guide. Furthermore, the Amala is not the only 

tributary in the watershed. The Nyangores River contributes an equal or larger amount of 

water to the basin. The Nyangores river serves Bomet, the largest town in the basin. It is 

also the water supply for the Tenwek referral hospital. This study assumes that the water 

from the Nyangores will be used to provide for the increasing population in these two users 

and will not be used for irrigation.In addition, feasibility studies have been done only for 

the damming of the Amala. The long term data (Oct 1955-April 1995) for the Kapkimolwa 

gauging station (1LB02) (Table II) was used to construct the mass curve.The Amala River 

has been reported to experience both extreme low and high flows, and flood regulation is 

therefore a priority (Mango et al. 2012). For the mass curve generation the highest monthly 

demand (3647 ~3650cumec-day) was used. An assumption that this monthly demand will 

be the same throughout the year was made.  
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Table I. estimated monthly & annual consumptive water use (m³) in the MRB 

(modified from Hoffman, 2007) 

Month Total  consumptive  water user per month 

  m3 

January 2117814.9** 

February 1765473.4 

March 1521980.8 

April 1413581.7** 

May 1727056.3** 

June 2247673.5 

July 2713726.5* 

August 2527675.2* 

September 2302131.3*/** 

October 2607258.7* 

November 1531110.9 

December 1336971** 

*Assumes the annual migration is within the MRB for the four  

month period from July through Oct 

**Abstractions not possible for Sept and limited in December 
Table II. Accumulated monthly flow and demand for the Mara River at 1LB 02 

Month Observed Actual  Highest  Acc. Flow Actual 

Demand 

highest 

demand 

  flow, m3 Demand, 

m3 

demand, 

m3 

m3 actual, m3 demand, m3 

Jan 2167488 2117814 2713727 2167488.2 2117814 2713727 

Feb 1569786 1765473 2713727 3737274.6 3883287 5427454 

Mar 2766980 1521981 2713727 6504254.3 5405268 8141181 

Apr 6808513 1413582 2713727 13312768 6818850 10854908 

May 7847573 1727056 2713727 21160340 8545906 13568635 

Jun 3788786 2247674 2713727 24949127 10793580 16282362 

Jul 5183174 2713727 2713727 30132300 13507307 18996089 

Aug 7512612 2527675 2713727 37644912 16034982 21709816 

Sep 8490799 2302131 2713727 46135711 18337113 24423543 

Oct 6488611 2607259 2713727 52624322 20944372 27137270 

Nov 1891728 1531111 2713727 54516050 22475483 29850997 

Dec 2064930 1336971 2713727 56580980 23812454 32564724 
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Figure I. Flow mass curve for 1L0B2 station 

From the graph the required storage volume is 216Mm3. This volume was compared with 
the volume determined using the deficit/excess method given in table II below. In the 
deficit/excess method, three alternatives for determining the deficit were used. The actual 
difference scenario, a worst case scenario where the highest demand in the year  is adopted 
as the monthly demand, and a case where the mean of the monthly demands is used. The 
worst case scenario gives 6 to 10 times the deficit as compared to other cases. The mass 
curve method gives a higher storage volume even in the worst case scenario. A storage 
reservoir with a volume of 400 Mm3 is adopted for the SWAT model irrigation from 
reservoir scenario analysis. 

Table III. Reservoir storage determination from long term average monthly flows and the 
monthly demand for the Mara basin 

    Flow Demand   Deficit/Excess flow  

Month 
Days (cumecday) (cumec-

day) 
 (Flow-Demand) 

    I O Actual worst- case mean 

Jan 31 3010 2847 164 -640 294 

Feb. 28 2180 2627 -447 -1470 -536 

Mar 31 3843 2046 1797 193 1127 

Apr 30 9456 1963 7493 5806 6740 

may 31 10899 2321 8578 7249 8183 

Jun 30 5262 3122 2140 1612 2546 

July 31 7199 3647 3551 3549 4483 

Aug 31 10434 3397 7037 6784 7718 

Sept 30 11793 3197 8595 8143 9077 

Oct 31 9012 3504 5508 5362 6296 

Nov 30 2627 2127 501 -1023 -89 

Dec 31 2868 1797 1071 -782 152 

  Minimum storage required (Mm3) 39 338 54 
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