





Supporting Cryospheric Research Since 1976





Record Low Arctic Sea Ice Extent in 2012: An exclamation point on a longterm declining trend

Walt Meier, National Snow and Ice Data Center

12 September 2012

## The National Snow and Ice Data Center...



#### Manages and distributes scientific data



Creates tools for data access

#### ce Chart Production at AARI

ANR approximation of the Maximum Healer independence independence in the Dehnhommen, and provides as as in a filteration of the transmitter independence in the Dehnhommen and the Dehnh



Supports data users



# Performs scientific research



# Educates the public about the cryosphere

# NSIDC affiliations and sponsorship

Cooperative Institute for Research in Environmental Sciences



#### University of Colorado Boulder

University of Colorado Boulder

#### Main sponsors:









# NOAA@NSIDC

#### **Emphasis on**

- in situ data sets,
- data rescue
- products from the operational community,
- outreach products: Google Earth data sets, Sea Ice Index



SHEBA exp ship. 1m NTM imagery.

## Products in cooperation with operational communities:

- National Ice Center Arctic Sea Ice Charts and Climatologies in Gridded Format [Navy/NOAA/Coast Guard National Ice Center]
- Arctic Sea Ice Melt Pond Statistics and Maps, 1999, 2000, and 2001 [USGS/Reconnaissance imagery]
- Joint US-Russian Env. Working Group Arctic Atlases on CD-ROM [Medea Project and others]
- Snow Data Assimilation System (SNODAS) [National Weather Service]
- IMS Daily Northern Hemisphere Snow and Ice Analysis at 4 km and 24 km Resolution [NOAA and NIC]







Instrumentation on one of the Russian "North Pole" drifting stations. (1937 - 1991)

ULS data with ASL, UW.



#### Long-term sea ice decline, 1979-2011

# Arctic sea ice reaches its seasonal minimum in September





NSIDC Sea Ice News and Analysis: http://nsidc.org/arcticseaicenews/ NSIDC Sea Ice Index: http://nsidc.org/data/seaice\_index/



#### Then came the summer of 2012:







#### September extent trend is accelerating





State of Indiana =  $92,900 \text{ km}^2$ 



## How big of a change is that?





Map courtesy: http://diymaps.net/us\_12.htm



## How big of a change is that?





Map courtesy: http://diymaps.net/us\_12.htm



#### Sea ice volume decreasing





University of Washington Polar Science Center http://psc.apl.washington.edu/wordpress/research/projects/arctic-sea-ice-volume-anomaly/



#### Submarine and ICESat ice thickness





From Kwok and Rothrock, 2009



Inferred thickness from sea ice age data

# Age can be used as a proxy to estimate sea ice thickness

#### Other things being equal:

## Older ice = Thicker ice





## Loss of old ice



#### Images are at weekly intervals



Data from J. Maslanik, C. Fowler, and M. Tschudi, University of Colorado Animation by NOAA Climate Watch, http://www.climatewatch.noaa.gov/videos



#### Melt of old ice during summer 2012







Projections of future sea ice changes

There is much interest to improve predictability of sea ice on century, decadal, and seasonal scales





## Decline is faster than forecast, old IPCC models





Updated from Stroeve et al., Geophysical Research Letters, 2007



## Decline is faster than forecast, new IPCC models





Stroeve et al., Geophysical Research Letters, 2012



Impacts of a changing Arctic sea ice cover

Sea ice plays a key role the Arctic environment, human activities in the Arctic, and in regional and global climate









Photo by Mike Webber, U.S. Fish & Wildlife Service



## Human impacts

- Local communities
- Shipping and navigation
- Resource extraction
- Tourism
- National sovereignty and defense issues
- Global climate impacts













#### Effects of sea ice change on global climate





Winter sea ice; image from NASA



#### Loss of summer sea ice decreases albedo





#### With sea ice: $\alpha \ge 60\%$

#### Without sea ice: $\alpha \leq 10\%$

The change from sea ice to ice-free ocean is the largest surface contrast on earth as far as solar energy is concerned





#### Sea Ice – Albedo Feedback







## Arctic Amplification: a warmer, wetter Arctic

#### • Temperatures:

- Ocean absorbs more of sun's energy during summer than sea ice
- Ocean heat keeps atmosphere warm into the fall
- "Arctic Amplification"
- Water vapor:
  - Less sea ice means more transfer of moister to the atmosphere
  - More water vapor during the autumm



Autumn air temperature anomalies, (2003-2007) minus (1979-2007)

September water vapor anomalies, (2003-2007) minus (1979-2007)



Serreze, et al., 2008 and Serreze et al., 2012 Data from NOAA NCEP (top) and NASA MERRA (bottom)



## Changes in Arctic sea ice affecting global climate?

- Storm tracks change
- Precipitation patterns change
- Most of U.S. becomes drier with less summer sea ice?
- Changes expected in Europe and Asia as well





Precipitation change: Low ice years minus high ice years 1981-2007



J. Francis, Rutgers Univ.; Francis et al., Geophys. Res. Letters, 2009 Francis and Vavrus, Geophys. Res. Letters, 2012



## Summary

#### Arctic sea ice is changing faster than expected

- Extent is decreasing
- Ice is thinning
- Multiyear ice is being lost
- Impacts in the Arctic are being seen
  - Native communities
  - Coastal erosion
  - Wildlife
  - Resource exploitation

 There are already indications of possible impacts on global climate

Sea Ice News: http://nsidc.org/arcticseaicenews/ Sea Ice Data: http:/nsidc.org/data/seaice\_index/ Education Resources: http:/nsidc.org/cryosphere/



Thank you!

