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Abstract 1 

 We performed two litter decomposition experiments using nearly-senesced red mangrove (Rhizophora 2 

mangle L.) leaves collected from an Everglades dwarf mangrove wetland to understand the short-term (3 weeks) and 3 

long-term (1 year) changes in mass, as well as carbon, nitrogen, and phosphorus contents of decomposing leaf litter.  4 

We expected that leaves decomposing in this oligotrophic environment would be short-term sources of C, N, and P, 5 

but potential long-term sinks for N and P.  In May 1998, we conducted a 3-week leaching experiment, incubating 6 

fresh, individual leaves in seawater for up to 21 days.  From May 1997 to May 1998, leaf litter in mesh bags 7 

decomposed on the forest floor at two dwarf mangrove sites.  Leaching accounted for about 33% loss of dry mass 8 

from R. mangle leaves after 3 weeks.  Leaching losses were rapid, peaking by Day 2, and large, with leachate 9 

concentrations of total organic carbon (TOC) and total phosphorus (TP) increasing by more than an order of 10 

magnitude after 3 weeks.  Mean leaf C:N increased from 105 to 115 and N:P increased from a mean of 74 to 95 after 11 

21 days, reflecting the relatively large leaching losses of N and P.  Loss of mass in the litterbags leveled off after 4 12 

months, with roughly 60% dry mass remaining after nearly one year of decomposition.  The mass of carbon in each 13 

litterbag declined significantly after 361 days, but the mass of nitrogen and phosphorus doubled, indicating long-14 

term accumulation of these constituents into the detritus.  Subsequently, the leaf C:N ratio dropped significantly 15 

from 90 to 34 after 361 days.  Following an initial 44-day increase, leaf N:P decreased from 222 to 144, reflecting 16 

high accumulation of P relative to N.  A review of several estuarine macrophyte decomposition studies reveals a 17 

trend in nitrogen accumulation through time regardless of site, but suggests no clear pattern for C and P.  We believe 18 

that the increase in litter P observed in this study was indicative of the P-limited status of the greater Everglades 19 

ecosystem and that decomposing mangrove litter may represent a substantial phosphorus pool in the system.   20 

 21 
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1. Introduction 1 

Litterfall from deciduous and evergreen trees is a primary mechanism by which nutrients are returned to the 2 

forest floor.  Accounting for roughly 70% of the dry mass of all aboveground litter in forested ecosystems, leaves 3 

are usually the most important litter component (O’Neill and DeAngelis, 1981).  In estuarine mangrove forests, leaf 4 

litter can account for 40-95% of the total pool of litterfall (e.g. Day et al., 1996; Wafar et al., 1997).  This fraction of 5 

mangrove litter represents a relatively large, potentially labile source of organic matter to decomposer communities 6 

(Benner and Hodson, 1985; Benner et al., 1986). 7 

Resorption of materials prior to leaf abscission can be an effective means of conserving vital elements in 8 

many mangrove species (Untawale et al., 1977; Karmarkar, 1982; Lin and Wang, 2001).  However, there is still a 9 

substantial turnover of organic and inorganic materials in the system via leaf litter decomposition (Twilley et al., 10 

1986a; Moran et al., 1991; Wafar et al., 1997).  These materials can be an important source of energy and nutrition 11 

to heterotrophic communities, especially in oligotrophic wetland systems such as the Everglades. 12 

The decomposition of plants typically occurs in three, often simultaneous phases: 1) leaching of soluble 13 

components, 2) microbial oxidation of refractory components such as cellulose and lignin, and 3) physical and 14 

biological fragmentation (Valiela et al. 1985).  The leaching phase of mangrove leaf decomposition, as with most 15 

other litter types, is characterized by a rapid loss of soluble organic compounds (sugars, organic acids, proteins, 16 

phenolics, etc.) and inorganic minerals (K, Ca, Mg, Mn, etc.).  Regardless of vegetation type, this phase lasts 17 

anywhere from a few days to a few weeks and can be responsible for substantial losses of mass, carbon, nitrogen, 18 

and phosphorus (Valiela et al., 1985; Parsons et al., 1990; Chale, 1993; Steinke et al., 1993; Taylor and Barlocher, 19 

1996; France et al., 1997).  The biotic contributions in this early stage of decomposition are usually minimal and are 20 

most often limited to microbial conditioning of the litter (Nykvist, 1959; Cundell et al., 1979; France et al., 1997). 21 

 The second and third phases of leaf litter decomposition are characterized by microbially mediated 22 

breakdown of labile organic material and refractory structural components, all of which is enhanced by physical and 23 

biological fragmentation of the litter (Harrison and Mann, 1975).  Since refractory compounds make up the bulk of 24 

leaf mass, these latter stages of decay operate over longer time scales than leaching, resulting in a gradual loss of 25 

reduced carbon over time.  However, relative to carbon, there is often a considerable amount of nutrient 26 

accumulation associated with increasing microbial biomass in the detritus complex.  Studies on the decay of a 27 

variety of estuarine macrophytes have shown significant accumulation of N and P relative to carbon on temporal 28 



 4 

scales of a few weeks to several months (Rice and Tenore, 1981; Day et al., 1982; Twilley et al., 1986a; Twilley et 1 

al., 1986b). 2 

There are a number of studies that have focused on the decomposition of estuarine macrophytes (e.g. 3 

Harrison and Mann, 1975; White et al., 1978; Rice and Tenore, 1981; Tam et al., 1990).  Many of these have 4 

addressed temporal changes in the nutritional content of the litter.  However, only a few have considered the time-5 

dependence of such dynamics by focusing on both the rapid (hours—days) decay component and the long-term 6 

(weeks—months), more refractory components of decomposition (Twilley et al., 1986a; Chale, 1993).  In the 7 

present study, we report the findings of simultaneous experiments that addressed both the short-term (3 week) and 8 

long-term (one year) dynamics of carbon, nitrogen, and phosphorus associated with the decay of leaves from a dwarf 9 

red mangrove (Rhizophora mangle L.) forest in the oligotrophic Southern Everglades.   10 

As others have previously shown, we anticipated high leaching losses of carbon, nitrogen, and phosphorus 11 

from the leaves over the first few weeks of decomposition.  We also expected that the low availability of N and P in 12 

this oligotrophic wetland would result in the long-term accumulation of these nutrients into the detritus matrix, as 13 

has been shown for nitrogen in many other systems.  Finally, we compared our results with data synthesized from 14 

numerous estuarine macrophyte decomposition studies to reveal any temporal trends in litter C, N, and P dynamics.  15 

Given the trophic state of the Everglades and concerns about anthropogenic inputs of nutrients to the Everglades and 16 

Florida Bay, there is a need to understand the importance of mangrove leaf detritus as temporally dependent sources 17 

or sinks of nitrogen and phosphorus.  18 

 19 

2. Site Description 20 

The Southern Everglades mangrove zone is part of a highly oligotrophic estuarine system.  Roughly 6,000 21 

ha of this area are composed primarily of the dwarf form (1-2 m canopy height) of the red mangrove (Rhizophora 22 

mangle L.; Lin and Sternberg, 1992).  Leaf litter comprises about 87% ± 4% of total litterfall in this area and 23 

productivity and standing crop values are among the lowest recorded for any mangrove forest (Corronado-Molina, 24 

2000).  Phosphate concentrations in the surface water and soil pore water are low and often below the limit of 25 

detection (0.01 µM), reflecting the P-limited nature of this region (Koch, 1997; Koch and Snedaker, 1997; Davis et 26 

al., 2001).  Rates of herbivory on dwarf red mangrove vegetation are also low, as herbivory has been linked to 27 
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nutrient status (Onuf et al., 1977; Feller, 1995).  As a result, much of the annual litter production (and associated 1 

nutrients) is made available to higher trophic levels only through detrital pathways. 2 

The hydrology of the Southern Everglades mangrove zone is micro-tidal (< 5 cm tidal range) and seasonal 3 

in rainfall and discharge (wet and dry seasons).  Therefore, the direction and velocity of flow and salinity patterns in 4 

mangrove creeks such as Taylor River are driven by the interaction of precipitation, upland runoff, and wind, the 5 

combination of which leads to a net southerly flow and oligohaline/fresh conditions throughout much of the wet 6 

season (usually from June – November) and no net flow and mesohaline/polyhaline conditions throughout the dry 7 

season (Sutula, 1999).  Furthermore, dwarf mangrove wetlands in this area are characterized by persistent standing 8 

water throughout most of the year, and the soils are completely exposed to the atmosphere only during an extended 9 

drought (S. Davis, pers. observ.). 10 

 11 

3. Materials and Methods 12 

For both experiments, we collected nearly-senesced, yellow leaves from dwarf red mangrove trees along 13 

the lower Taylor River in the southern portion of Everglades National Park (Figure 1).  We report the carbon, 14 

nitrogen, and phosphorus content of leaf material from the leaching and litterbag studies as relative (% or mass of 15 

constituent g dry weight
-1

 of tissue) or absolute (mass of constituent per leaf or litterbag).  Single-factor analyses of 16 

variance were used to determine a significant (p<0.05) change in leaf mass, C, N, or P content of leachate or leaves 17 

over time.  Tukey tests were used to determine significant (p<0.05) differences among treatment means. 18 

 19 

3.1 Leaching Study 20 

In May 1998, we incubated individual, fresh leaves in 250 ml, clear, glass bottles containing filtered (GF/F) 21 

seawater (32 ppt) for up to 21 days.  The experimental leaves were not pre-dried, as drying has been shown to 22 

modify rates of leaching in many species (Taylor and Barlocher, 1997; Taylor, 1998).  Bottles were incubated in the 23 

field under ambient temperature and sunlight conditions.  In order to determine the abiotic contributions (leaching) 24 

to mass and nutrient loss from each individual leaf, we added 2 ml of a 1% NaN3 solution to half of the experimental 25 

units as an inhibitor of aerobic respiration. We collected 3 replicate bottles of each treatment after 1, 2, 5, 10, and 21 26 

days of decomposition.  Following incubation, leaves were removed from the bottles and rinsed with de-ionized 27 

water and dried to a constant weight at 60 °C (final dry mass = DMt). 28 
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Since we chose to use fresh material, an accurate means of estimating initial dry weight was needed in 1 

order to determine change in mass over the period of decay.  We used a batch of initial control leaves (n=75) to 2 

develop a simple linear regression model that could be used to estimate initial dry weight (DM0) of each 3 

experimental leaf from its initial fresh mass.  This model—with no y-intercept—indicated that dry mass was 4 

consistently34% of initial fresh mass (p<0.0001; adjusted r
2
=0.99).   5 

 Water samples collected from each bottle were stored at 4° C until analyzed for total phosphorus (TP)—6 

according to a modification of the dry ashing, acid-hydrolysis technique of Solorzano and Sharp (1980)—total 7 

nitrogen (TN)—using an Antec 7000N total nitrogen analyzer—and total organic carbon (TOC)—using a hot 8 

platinum catalyst, direct injection analyzer; Shimadzu model TOC-5000.  After final dry weight measurements were 9 

taken, all leaves were ground to a fine powder and analyzed for carbon and nitrogen content—using a Carlo Erba 10 

1500-N CHN analyzer—and TP content, as described above. 11 

At the conclusion of the 21-day experiment, we calculated percent dry mass remaining (% DMR) for each 12 

leaf by dividing DMt by DM0.  To ensure that changes in water nutrients were due to the presence of the leaves, we 13 

also incubated "control" bottles containing only filtered seawater or seawater + NaN3 for the entire 21-day length of 14 

the leaching experiment.  We compared TOC, TN, and TP concentrations from these control bottles with initial 15 

values to determine changes associated with water column or photochemical processes.  Paired t-tests were used to 16 

determine significant differences between initial and final concentrations (α=0.05).  Leaching rates (i.e. fluxes) of 17 

TOC, TN, and TP were calculated from concentrations in the water as moles g DW leaf
-1

 and averaged over the 18 

number of days between each sampling interval. 19 

 20 

3.2 Litterbag Study 21 

 We dried the leaves for the litterbag study at 60 °C for 48 hours and partitioned the pooled mass into 22 

replicates, each weighing approximately 5 g.  We then placed samples into mesh bags fashioned from fiberglass 23 

window screen (approx. 1-2 mm mesh size).  Sixteen litterbags were distributed on the forest floor at each of two 24 

sites (Sites A and B) each approximately 5 m from creek channel in the dwarf mangrove forest (Figure 1). These 25 

two sites were randomly selected to account for some of the variability in the dwarf mangrove forest along lower 26 

Taylor River. The litterbag experiment lasted from May 1997 to May 1998.  At the beginning of the experiment 27 
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(time = 0), two bags were retained to determine relative and absolute C, N, and P content.  Thereafter, duplicate 1 

samples were retrieved from each site after 13, 31, 44, 87, 128, 184, 304, and 361 days of decomposition in the field.   2 

After collection, litterbags were immediately taken to the laboratory and prepared for analysis.  Leaves 3 

were removed from each bag, gently washed to remove sediment and then oven-dried to constant weight at 60 °C.  4 

We calculated % DMR by dividing DMt by DM0 and multiplying by 100.  A sub-sample of dried tissue from each 5 

litterbag was ground to a fine powder and analyzed for C, N, and P content using the same procedures as described 6 

for the leaching experiment. 7 

 8 

4. Results 9 

4.1 Leaching study 10 

 There was no significant inhibitor effect on % DMR over the 21-day leaching experiment (Figure 2a), and 11 

all leaves lost a significant amount of mass (ANOVA, p<0.0001).  After 24 hours of decomposition in the bottles, 12 

red mangrove leaves had lost 17% ± 2% (std dev) of the initial dry mass.  The majority of these losses were 13 

attributable to leaching rather than microbially mediated processes, as aerobic respiration was inhibited with sodium 14 

azide in half of the experimental units (Figure 2a).  For the next 9 days, all leaves lost approximately the same 15 

amount of dry mass per day (1.3% d
-1

).  However, from day 10 to day 21, leaching losses seemed to subside while 16 

microbial activity (bottles without NaN3) appeared to increase, as the difference between poisoned and non-poisoned 17 

bottles became more noticeable (Figure 2a).  At the conclusion of the experiment, poisoned and non-poisoned leaves 18 

had lost 33% ± 6% and 41% ± 17% of their initial dry mass, respectively, but these did not differ significantly.   19 

 The C, N, and P content of the leaves in the leaching experiment showed little inhibitor effect (poison vs. 20 

no poison) over the 3-week experiment.  In addition, we were unable to detect any statistically significant change in 21 

relative and absolute C, N, and P content of the leaves over time.  Nevertheless, mean relative C of leaves increased 22 

slightly after three weeks (Figure 2b), but absolute values decreased noticeably from Day 0 to Day 21(Figure 2c), 23 

reflecting the large losses of mass.  Similarly, the mean relative N content of all leaves remained fairly steady at 24 

about 0.6% (Figure 2b), but they showed a decrease in the absolute N content after three weeks (Figure 2c).  Mean 25 

% P content of leaves also declined—especially over the first few days in the presence of azide (Figure 2b).  Initial 26 

values of relative P (0.021±0.001%) were nearly double those after 3 weeks (0.011±0.001%).  As with C and N, 27 

absolute P content decreased throughout the 3-week study period (Figure 2c). 28 
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We found no statistical difference in C:N ratios between poisoned and non-poisoned leaves after 21 days of 1 

immersion.  After 24 hours, leaves exhibited a decline in C:N from 105 to an overall mean of 96 (Figure 3).  2 

Thereafter, the C:N of poisoned leaves increased above initial levels, fluctuating between a mean of 110 and 115 3 

throughout the remainder of the experiment (Figure 3).  The C:N of the non-poisoned leaves showed an overall 4 

decline over the first 10 days, and then increased from a mean of 82 to 105 after 21 days (Figure 3).  The ratios of 5 

N:P in these same leaves showed overall increases from 74±8 (std dev) at Day 0 to Day 21 levels of 95±18 (non-6 

poisoned) and 104±10 (poisoned; Figure 3).  The only significant difference in N:P between treatment levels was at 7 

Day 1, when N:P of the non-poisoned leaves decreased below initial levels to 53±10 while poisoned leaves 8 

remained unchanged at 76±7 (ANOVA; p=0.03).  From Day 1 to Day 2, the N:P of non-poisoned leaves nearly 9 

doubled to a mean of 94 (Figure 3). 10 

 We observed substantial changes in water chemistry throughout the leaching study.  Bottles with leaves 11 

showed significant increases in TOC, TN, and TP over the 3-week study (Table 1).  In either treatment, mean TOC 12 

and TP concentrations increased by more than an order of magnitude after 21 days, and average concentrations of 13 

TN more than doubled in the "no azide" treatment (Table 1).  Given the high N-content of our poison (NaN3) 14 

relative to ambient water concentrations, we did not analyze poisoned samples for TN content.  Fluxes for all 15 

constituents were generally highest after 1 or 2 days, then declined considerably over the next 19 to 20 days of 16 

incubation (Table 1).  We found no significant change in the TOC, TN, or TP content of the water in the control 17 

bottles without leaves. 18 

 19 

4.2 Litterbag study 20 

 We observed a significant decrease in the % DMR over time using the litterbag technique (ANOVA; 21 

p<0.0001; Figure 4a).  Although there appeared to be a difference in the loss of dry mass between sites after 128 22 

days of decay, there was no significant difference in % DMR between sites (ANOVA; p>0.05; Figure 4a).  The 23 

percentage of dry mass loss in individual litterbags was quite variable after 13 days of decomposition in the field, 24 

ranging from 2% to 35%.  High losses of mass continued for about 3 months at Site A and 4 months at Site B, but 25 

then appeared to level off (Figure 4a).  At the conclusion of the litterbag experiment, leaves decomposing at both 26 

sites had lost an average of 40±7% of their initial dry mass. 27 
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 The C, N, and P contents of the litterbag leaves were consistent between sites.  The relative carbon content 1 

of litterbag leaves increased from about 44% to as much as 55% over the first 3 months of the study, but then 2 

declined, approaching initial levels by the end of the study (Figure 4b).  Normalized to dry mass of tissue, this 3 

pattern was not evident, as the absolute concentration of carbon decreased over the course of the entire experiment 4 

(Figure 4c).  Patterns for nitrogen and phosphorus in these leaves were comparable with significant increases in the 5 

relative and absolute content occurring over the entire year of this study (Figures 4b and 4c).  Mean relative nitrogen 6 

increased from 0.6% to 1.7% and absolute values nearly doubled (0.03 to 0.05 g).  Long-term increases in 7 

phosphorus were somewhat similar, with relative P increasing from a mean of 0.009% to 0.029% and absolute P 8 

increasing from an initial average of 0.4 mg to 0.9 after 1 year (Figures 4b and 4c). 9 

 Molar ratios of C:N and N:P in leaf tissue were also quite similar in the two sites.  Leaf C:N decreased 10 

significantly from a mean of 90 to 34 after 361 days in the field, reflecting the losses in absolute C and increases in 11 

absolute N (Figure 5).  The pattern for leaf N:P was different, with large increases up through Day 44 followed by 12 

decreases to near initial levels by Day 128 (mean=144; Figure 5).  At its highest, the N:P ratio of our mangrove litter 13 

averaged 222±41. 14 

 15 

5. Discussion 16 

Leaching has been shown to be a major pathway for loss of mass and materials from senesced estuarine 17 

vegetation.  In our bottle experiment, leaching accounted for more than a third of the mass lost after three weeks, 18 

and short-term leaching losses were nearly as great as the mass lost from leaves after one year in the litterbag study 19 

(Figures 2 & 4).  This was remarkable given that past studies using the litterbag methodology have shown a 60%–20 

90% loss of mangrove leaf mass in 6 months or less (Steinke et al., 1983; Twilley et al., 1986a; Tam et al., 1990; 21 

Mackey and Smail, 1996).  As anticipated, leaching losses translated to substantial fluxes of TOC, TN, and TP to the 22 

water column, with highest flux rates occurring during the first few days of leaf submergence (Table 1). 23 

We found no inhibitor effects on total fluxes of C, N, and P or on litter C, N, and P content throughout the 24 

study.  This supported the notion that leaching was the principal process contributing to materials loss during the 25 

early phase of R. mangle leaf litter decay.  After 361 days, the relative concentration of C in the litter was no 26 

different than % C in the leaching leaves.  However, relative concentrations of N were significantly higher after 27 

long-term decomposition in the field (1.6±0.09) than after 21 days of leaching (0.53±0.08).  In addition, relative P 28 
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was higher at the conclusion of the litterbag study (0.028±0.003 vs. 0.011±0.002) even though initial % P of the 1 

leaching leaves was double the initial content of the litterbag leaves (Figures 2 and 4).  This N and P enrichment 2 

over time signifies the microbial contribution to the long-term control of red mangrove leaf litter quality. 3 

The early decay of estuarine macrophytes often varies as a result of inundation period, with highest losses 4 

generally occurring in low inter-tidal zones (Kruczynski et al., 1978; Valiela et al., 1985; Twilley et al, 1986a; 5 

Mackey and Smail; 1996).  Our short-term losses are similar to those (25% after 14 days) reported by Steinke et al. 6 

(1993) in their study of Avicennia marina leaves.  Other work on A. marina indicated a 19% loss of mass after 24 7 

hours of submergence and only an additional 11% loss after 6 weeks (Chale, 1993).  Robertson (1988) determined 8 

that two species of mangrove leaves decomposed much more slowly on the exposed forest floor than when 9 

continuously submerged.  In our leaching study, leaves were continually submerged for up to 3 weeks, perhaps 10 

enhancing the rate of loss.  The inundation pattern at our litterbag sites was much more variable.  Although we did 11 

not intensively monitor site inundation, we estimated that the litterbags at both dwarf mangrove sites were inundated 12 

at least 50% of the year. 13 

The carbon content of our leaves showed little change over the first few weeks of decay.  Given that the 14 

bulk of the carbon in these leaves is tied up in refractory structural tissues, this was not unexpected.  Nevertheless, 15 

many estuarine macrophytes, including red mangrove leaves, are known to leach considerable amounts of labile 16 

DOC to the water column when submerged (Rice and Tenore, 1981; Benner et al., 1986; Twilley et al., 1986a; this 17 

study). 18 

Early changes in N seem to be variable and may be related to soluble protein content in the leaf tissue 19 

(Table 2).  Some have suggested that changes in leaf N are function of initial C:N (Harrison and Mann, 1975; Fell et 20 

al., 1984).  However, initial C:N ratios alone do not seem to explain the differences we observed in early N 21 

dynamics.  Cundell et al. (1979) and Fell et al. (1975) measured large, early increases in % N of submerged R. 22 

mangle leaves with initial C:N ranging from 90-110 (Table 2).  We found a small, early decrease in leaf % N with 23 

initial C:N also ranging from 90-110 (Table 2).  The difference, as described by Twilley et al. (1986b), may be 24 

controlled by the amount of N available to microbial decomposers.  Perhaps the greater availability of N (relative to 25 

P) at our Southern Everglades sites accounted for the differences we observed in R. mangle leaf decomposition. 26 

Early P dynamics in decomposing estuarine macrophytes appears more consistent, as a preponderance of 27 

the cases we reviewed showed substantial decreases in relative P in 3 weeks or less (Table 2).  In this study, we 28 
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found a significant increase in the TP content of the leachate in the bottles that coincided with an apparent decrease 1 

in the mean % P content of the leaves.  High P leaching from estuarine macrophytes is believed to be a result of the 2 

large inorganic fraction of P in leaf tissue, as opposed to N, which is mostly organic (Twilley et al., 1986b).  Data in 3 

Table 2 suggest that estuarine macrophyte litter can be a rapid, short-term source of N and P to the environment, 4 

possibly enhancing the degradability and microbial conditioning of the plant litter.  This may be particularly 5 

important to the degradation of litter in oligotrophic environments such as the dwarf mangrove wetlands of the 6 

Southern Everglades. 7 

The long-term decay of the more refractory components of estuarine macrophyte litter is not as influenced 8 

by the inundation pattern of the site (Valiela et al., 1985).  We observed a continuous loss of mass from our litterbag 9 

leaves until about Day 128, regardless of inundation pattern.  From this point on, values stabilized at about 55-65% 10 

DMR for the remaining 200+ days of the study (Figure 2), suggesting that about half of the mass of these dwarf 11 

mangrove leaves is refractory.  Johnson et al. (1993) demonstrated a similar trend for blades of S. patens in a 12 

mesohaline Louisiana coastal marsh with about 56% DMR after 320 days.  Studies have shown that the breakdown 13 

of this recalcitrant fraction is more dependent on habitat characteristics such as the decomposer community, tidal 14 

energy, site fertility, tissue nutrient content, and air temperature (Cramer et al., 1981; Valiela et al., 1985; Robertson, 15 

1986; Twilley et al. 1986a; Robertson, 1988; Mackey and Smail, 1996; Slim et al., 1997).   16 

Long-term changes in the elemental content of litter tend to reflect the importance of biotic over abiotic 17 

processes. Our experiments revealed small increases in R. mangle leaf % C with considerable increases in both % N 18 

and % P after nearly one year (Figure 4; Table 2).  Increases in the relative N content of R. mangle leaves 19 

overshadowed any change in C, resulting in a large decline in leaf C:N from 90 (initial average) to 34 (final 20 

average).  However, N enrichment was surpassed by increases in % P of R. mangle leaf detritus after about 50 days 21 

of decomposition in the field.  At this point, N:P began declining to a mean of 132 after 361 days—slightly less than 22 

initial N:P of 142 (Figure 5). 23 

A review of estuarine macrophyte decomposition studies supports our findings for tissue N dynamics, with 24 

consistent increases in the % N content of leaves over time regardless of habitat type and climate (Figure 6).  This 25 

accumulation of nitrogen through time has been linked to increases in bacterial and fungal protein on the surface of 26 

estuarine macrophyte detritus (Harrison and Mann, 1975; Fell et al., 1975; Cundell et al., 1979; Rice and Tenore, 27 

1981).  Nitrogen derived from the water column and soil accounts for a sizable fraction of this immobilized N, but 28 
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these combined sources do not always account for all accumulated nitrogen in estuarine detritus.  It has been shown 1 

that this N budget deficit can be accounted for by nitrogen fixed from the atmosphere (Fell et al., 1975; Valiela et 2 

al., 1985; Twilley et al., 1986a). 3 

While this concept may be useful in explaining the long-term increases in litter nitrogen in low N 4 

environments, it does not explain the long-term increases in phosphorus we observed in the P-limited dwarf 5 

mangrove wetland we studied.  A few studies have noted long-term increases in litter P; however, they offered little 6 

or no explanation as to the sources or mechanisms for P-accumulation (Twilley et al., 1986b; Tam et al., 1990).  In 7 

our litterbag study, the sources of immobilized phosphorus were likely limited to the water column (via direct 8 

precipitation or upland runoff) and soil. 9 

Another potentially important source of phosphorus may have been from the leachate of freshly fallen 10 

leaves.  When leaves abscise in this dwarf mangrove forest, they accumulate on the forest floor, as there is little 11 

particulate export in this system (S. Davis pers. observ.).  It is likely that leachate from recently abscised leaves 12 

supplies a portion of the P accumulated in microbial biomass in older leaves, thus maintaining an efficient recycling 13 

of phosphorus in this system.  We contend that the occurrence of P accumulation in dwarf mangrove detritus, 14 

despite extremely low phosphorus concentrations in the surrounding environment (water column TP≈0.5 µM; pore 15 

water SRP≈0.2 µM; and soil TP<25µg cm
-3

; Koch, 1997; Davis et al. 2001), reflected the P-limited status of the 16 

Southern Everglades Ecosystem.17 
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Table 1: Water concentrations and fluxes (± standard deviation) of TOC, TN, and 1 

TP in mangrove leaf leaching bottles over time.  Fluxes of C, N, and P were 2 

calculated as change in water concentration over time normalized to grams dry 3 

weight (gdw) of each leaf.  There was a net release of all constituents from the leaf 4 

to the water column.  Different letters represent significant differences over time 5 

(p<0.05) using single factor ANOVAs and Tukey post-hoc comparisons. 6 

 7 
Constituent 

(treatment level) 

Day Concentration 

(µmol) 

Letter Flux 

(µmol gdw
-1

 d
-1

) 

TOC 0 168 ± 1 A  

(no azide) 1 781 ± 286 A 1259 ± 574 

 2 919 ± 219 AB 340 ± 127 

 5 1513 ± 225 AB 543 ± 174 

 10 2364 ± 207 B 442 ± 109 

 21 3061 ± 873 B 284 ± 131 

TN 0 11.7 ± 0.1 A  

(no azide) 1 14.6 ± 0.8 A 13.9 ± 2.7 

 2 15.1 ± 0.5 AB 3.2 ± 0.2 

 5 19.9 ±1.3 B 5.3 ± 1.9 

 10 23 ± 1.5 B 3.5 ± 1.2 

 21 29.1 ± 1.7 C 1.9 ± 0.3 

TP 0 0.03 ± 0.01 A  

(no azide) 1 0.13 ± 0.03 A 0.2 ± 0.07 

 2 0.19 ± 0.04 A 0.1 ± 0.02 

 5 0.61 ± 0.19 B 0.2 ± 0.03 

 10 0.4 ± 0.02 AB 0.08 ± 0.02 

 21 0.52 ± 0.06 B 0.04 ± 0.00 

TOC 0 173 ± 0 A  

(azide) 1 207 ± 7 AB 215 ± 54 

 2 997 ± 465 AB 827 ± 342 

 5 1186 ± 403 ABC 468 ± 196 

 10 1483 ± 1032 BC 169 ± 92 

 21 2964 ± 448 C 219 ± 47 

TP 0 0.04 ± 0.01 A  

(azide) 1 0.11 ±0.01 AB 0.16 ± 0.05 

 2 0.43 ± 0.18 B 0.33 ± 0.19 

 5 0.36 ± 0.12 B 0.15 ± 0.08 

 10 0.38 ± 0.17 B 0.07 ± 0.03 

 21 0.56 ± 0.02 B 0.04 ± 0.00 
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Table 2: Percent changes in relative C, N, and P content from initial values during the decomposition of a number of estuarine macrophytes.  Studies 1 

were categorized as "litterbag", if leaf material was contained within a mesh bag of some sort, or "leaching", if leaf material was incubated directly in 2 

water without a litterbag.  All changes are reported as percentages of initial relative values.  Positive values indicate an increase while negative values 3 

indicate a decrease in litter content.  Some values were calculated from tabular data, but most were estimated from plotted data. 4 

 5 

 

Study type 

 

Species 

 

Tissue treatment 

Time 

(days) 

% chg. in 

rel. C 

% chg. in 

rel. N 

% chg. in 

rel. P 

 

Reference 

leaching Avicennia marina oven-dried material, submerged 2  3 -17 Chale 1993 

litterbag Rhizophora mangle fresh material, submerged 7 <1 30  Cundell et al. 1979 

litterbag Aegiceras corniculatum air-dried material, tidally inundated 13 19 2 22 Tam et al. 1990
a 

litterbag Avicennia marina air-dried material, tidally inundated 13 10 -18 -52 Tam et al. 1990
a 

litterbag Kandelia kandel air-dried material, tidally inundated 13 9 -39 50 Tam et al. 1990
a 

leaching Avicennia marina fresh material, poisoned 14  8 -72 Steinke et al. 1993 

leaching Avicennia marina air-dried material, poisoned 14  1 -84 Steinke et al. 1993 

litterbag Spartina alterniflora air-dried material, tidally inundated 14 6 7  Valiela et al. 1985
b 

litterbag Spartina patens air-dried material, tidally inundated 14 -2 <1  Valiela et al. 1985
b 

litterbag Rhizophora mangle fresh material, submerged 15 9 50  Fell et al. 1975 

leaching Spartina alterniflora fresh material, submerged 15 -1 3 13 Twilley et al. 1986b 

litterbag Avicennia marina fresh material, submerged 21 1 38 -42 Steinke et al. 1983 

litterbag Brugueira gymnorrhiza fresh material, submerged 21 -1 36 -50 Steinke et al. 1983 

leaching Rhizophora mangle fresh material, submerged 21 3 -2 -34 this study
c 

 6 
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Table 2: continued 1 

 2 

 

Study type 

 

Vegetation 

 

Tissue treatment 

Time 

(days) 

% chg. in 

rel. C 

% chg. in 

rel. N 

% chg. in 

rel. P 

 

Reference 

litterbag Rhizophora mangle fresh material, submerged 70 -22 75  Cundell et al. 1979 

litterbag Aegiceras corniculatum air-dried material, tidally inundated 81 -5 59 -30 Tam et al. 1990
a 

litterbag Kandelia kandel air-dried material, tidally inundated 81 -9 -15 200 Tam et al. 1990
a 

leaching Spartina alterniflora fresh material 93 2 90 93 Twilley et al. 1986b 

leaching Avicennia marina oven-dried material 98  105 -32 Chale 1993 

litterbag Avicennia marina air-dried material, tidally inundated 109 6 26 50 Tam et al. 1990
a 

litterbag Rhizophora mangle fresh material, submerged 115 21 148  Fell et al. 1975 

litterbag Avicennia marina fresh material, submerged 175 -10 91 -54 Steinke et al. 1983 

litterbag Rhizophora mangle air-dried material, tidally-inundated 180  209 200 Day et al. 1982
d 

litterbag Brugueira gymnorrhiza fresh material, submerged 189 11 164 -55 Steinke et al. 1983 

litterbag Rhizophora mangle fresh material 361 6 181 207 this study
 

litterbag Spartina alterniflora air-dried material, tidally inundated 700 -19 157  Valiela et al. 1985
b 

litterbag Spartina patens air-dried material, tidally inundated 700 -2 250  Valiela et al. 1985
b 

 3 
a
 Freshly-picked green leaves were used in this study. 4 

b
 Data taken from un-enriched low marsh and high marsh sites. 5 

c
 Data from non-poisoned bottles only. 6 

d
 Data collected from Estero Pargo, MX site. 7 



 20 

List of Figures 1 

Fig. 1. Map of the Southern region of Everglades National Park with Taylor Slough borders and indication (*) of 2 

litter collection and decomposition sites (A & B) adjacent to Taylor River.  Units for lat/long are in degrees with 3 

decimal minutes. 4 

 5 

Fig. 2. Cell plots of: a) % dry mass remaining, b) relative C, N, and P and c) absolute C, N, and P in red mangrove 6 

leaves over the course of the 21-day leaching experiment.  Bars indicate standard deviation of three replicates. 7 

 8 

Fig. 3. Molar ratios of C:N (top) and N:P (bottom) in red mangrove leaves over the course of the 21-day leaching 9 

experiment.  Bars indicate standard deviations of three replicates. 10 

 11 

Fig. 4. Cell plots of: a) % dry mass remaining, b) relative C, N, and P and c) absolute C, N, and P in red mangrove 12 

leaves over the course of the 361-day litterbag experiment.  Bars indicate standard deviation of three replicates. 13 

 14 

Fig. 5. Molar ratios of C:N (top) and N:P (bottom) in red mangrove leaves over the course of the 361-day litterbag 15 

experiment.  Bars indicate standard deviations of three replicates. 16 

 17 

Fig. 6. Regression of % change in litter N content versus time for a number of decomposing estuarine macrophytes 18 

(5 species of mangrove and 2 species of cordgrass). Tabular data and reference for each decomposition study are 19 

provided in Table 2.  Data from this study indicated with open circles. 20 
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