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We evaluated how changes in nutrient supply altered the composition of epiphytic and 

benthic microalgal communities in a Thalassia testudinum (turtle grass) bed in Florida Bay. We 

established study plots at four sites in the bay and added nitrogen (N) and phosphorus (P) to the 

sediments in a factorial design. After 18, 24, and 30 months of fertilization we measured the 

pigment concentrations in the epiphytic and benthic microalgal assemblages using high 

performance liquid chromatography. Overall, the epiphytic assemblage was P-limited in the 

eastern portion of the bay, but each phototrophic group displayed unique spatial and temporal 

responses to N and P addition. Epiphytic chlorophyll a, an indicator of total microalgal load, and 

epiphytic fucoxanthin, an indicator of diatoms, increased in response to P addition at one eastern 

bay site, decreased at another eastern bay site, and were not affected by P or N addition at two 

western bay sites. Epiphytic zeaxanthin, an indicator of the cyanobacterial/coralline red algae 

complex, and epiphytic chlorophyll b, an indicator of green algae, generally increased in 

response to P addition at both eastern bay sites but did not respond to P or N addition in the 

western bay. Benthic chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin showed complex 

responses to N and P addition in the eastern bay, suggesting that the benthic assemblage is 

limited by both N and P. Benthic assemblages in the western bay were variable over time and 

displayed few responses to N or P addition. The contrasting nutrient limitation patterns between 

the epiphytic and benthic communities in the eastern bay suggest that altering nutrient input to 

the bay, as might occur during Everglades restoration, can shift microalgal community structure, 

which may subsequently alter food web support for upper trophic levels.  
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Habitat management balances multiple ecological, social, and economic objectives (Arthur et 

al., 2004; Sklar et al., 2005) and often requires trade-offs (Brodziak et al., 2004; Pejchar et al., 

2005), as management policies can benefit some community components and simultaneously 

negatively impact others. Understanding the links among ecosystem components and interpreting 

community-level responses to ecosystem changes can increase the overall success of 

management strategies by facilitating the prediction of indirect impacts of land-use projects and 

increasing the potential for positive community-level impacts. 

Hydrological management in watersheds and coastal marshes can alter the supply of 

terrestrially-derived compounds, particularly nutrients such as nitrogen (N) and phosphorus (P), 

to nearshore communities (Valiela et al., 1997). In the context of habitat management, nutrient 

limitation within the primary producer community is often assumed to be uniform, but in coastal 

habitats, macro-producers such as seagrasses and macroalgae often show different responses to 

N and P enrichment (Fong et al., 1993; Udy & Dennison, 1997; Ferdie & Fourqurean, 2004; 

Armitage et al., 2005). Less is known about nutrient limitation within epiphytic or benthic 

microalgal communities, where biomass or production of typically diverse communities are 

usually represented by whole community estimates (Sullivan & Currin, 2000). Nitrogen and 

phosphorus enrichment has been associated with shifts towards cyanobacterial assemblages in 

benthic estuarine habitats (Pinckney et al., 1995; Armitage & Fong, 2004), particularly when 

diatoms are limited by silica (Rocha et al., 2002) or grazing pressure (Cuker, 1983). Green algae 

(Chlorophyta) are often palatable and limited by grazing but are also fast-growing and may 

respond rapidly to increased nutrient input (Valiela et al., 1997; Lotze et al., 2000). Epiphytic 

and benthic microalgal communities have distinct compositions and patterns of nutrient 
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limitation may vary between these assemblages. These communities often provide support for 

higher trophic levels (Moncreiff & Sullivan, 2001), and shifts in microalgal community 

composition can have important implications for food web dynamics (Armitage & Fong, 2004). 
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Implementation of the Comprehensive Everglades Restoration Plan in south Florida might 

change freshwater input and associated nutrient supply to Florida Bay, which is directly 

connected to the southern border of the Everglades. Previous work in the Bay and the Florida 

Keys has demonstrated that increased nutrient input can alter the relative composition of seagrass 

and macroalgal assemblages, although the degree of alteration depends on the nutrient 

availability status of the area (Fourqurean et al., 1995; Ferdie & Fourqurean, 2004; Armitage et 

al., 2005). The objective of this study was to further evaluate how increased nutrient supply 

might alter marine primary producer communities by focusing on nutrient enrichment responses 

within the epiphytic and benthic microalgal communities. We hypothesized that nutrient 

enrichment would shift microalgal community composition, increasing the abundance of faster 

growing groups including palatable green algae and less palatable cyanobacteria.  

Methods 

To evaluate the epiphytic and benthic microalgal responses to N and P enrichment over time 

within Everglades National Park in Florida Bay, we used a three-way ANOVA design, where the 

factors were P addition, N addition, and sampling date. In October 2002 we established four 

study sites (all depths < 2 m) as part of a long-term enrichment study (Armitage et al., 2005). 

The two eastern sites (Duck Key and Bob Allen Keys Long Term Ecological Research (LTER) 

sites, Fig. 1) were characterized by a sparse, short Thalassia testudinum Banks ex König canopy 

with some calcareous green macroalgae, primarily Penicillus capitatus Lamarck and P. 

lamourouxii Decaisne. These two sites occurred in an area of severe P-limitation (Fourqurean & 
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Zieman, 2002; Armitage et al., 2005). The two western sites (Nine Mile Bank, Sprigger Bank 

LTER site) were located in a region that may experience both N- and P-limitation but varied in 

their vegetation characteristics. Nine Mile Bank featured a dense, tall T. testudinum canopy with 

few macroalgae. Sprigger Bank was characterized by a dense and diverse macroalgal community 

mixed with the seagrasses Syringodium filiforme Kützing (manatee grass) and T. testudinum. At 

each site we established 24 0.25 m
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2 study plots demarcated with a PVC frame secured to the 

benthos at one meter intervals. 

We randomly assigned treatments [control (C), nitrogen only (N), phosphorus only (P), both 

nitrogen and phosphorus (NP)] to six plots per site (at the Sprigger Bank LTER site, n = 3 per 

treatment due to the loss of 12 plots from erosion and boat disturbance over the course of the 

study). Bimonthly fertilizer applications began in October 2002. Nitrogen was added in the form 

of slow release nitrogen fertilizer (Polyon™, Pursell Technologies Inc., 38-0-0) and phosphorus 

as granular phosphate rock (Multifos™, IMC Global, Ca3(PO4)2, 18% P). Loading rates of 1.43 g 

N m-2 day-1 and 0.18 g P m-2 day-1 (molar N:P ratio 17.6:1) were selected based on potential 

sewage loading rates (MCSM, 2001) and previous studies in the region (Ferdie & Fourqurean, 

2004; Armitage et al., 2005). We sprinkled the fertilizer evenly on the sediment surface and 

gently worked it into the sediment by hand. Sediment in the control plots was similarly disturbed 

but no fertilizer was added. Benthic fertilizer applications ensured accessibility of nutrients to 

both above-ground and benthic primary producers (Ferdie & Fourqurean, 2004; Mutchler et al., 

2004; Armitage et al., 2005). The plots and experimental treatments in this study are the same 

plots sampled for a recent study (Armitage et al., 2005), but all samples collected for this 

experiment are independent of the previous study. 
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In February 2004, August 2004, and February 2005, we collected one T. testudinum short-

shoot from each plot and removed the epiphytes by gently scraping the seagrass leaves with a 

razor blade. At Sprigger Bank, T. testudinum was not present in all plots. Leaf morphometrics 

were measured to calculate two-sided leaf area. We measured shoot density in each plot and 

calculated leaf area index (LAI = cm
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2 seagrass leaf m-2 habitat). We also collected a 2.5 cm 

diameter, 1 cm deep core haphazardly located within each plot. Due to logistical constraints, 

sediment cores were collected only on the two 2004 sampling dates. Epiphytes and sediments 

were freeze dried and stored at -20º in the dark until further analysis.  

We determined the relative abundance of major phototrophic groups with high performance 

liquid chromatography (HPLC), which measures the relative concentrations of taxa-specific 

indicator pigments (chlorophyll a, chlorophyll b, fucoxanthin, and zeaxanthin) (Pinckney et al., 

1995). Pigments were extracted from freeze-dried epiphytes and sediments with 90% acetone for 

at least 12 hours at -20ºC. An ion-pairing solution (1.00 M ammonium acetate) was added to the 

filtered extracts at a ratio of 4 parts extract: 1 part ammonium acetate just prior to injection. 

Extracts (250 µl) were injected into a Hewlett Packard 1090 HPLC equipped with a monomeric 

reverse-phase C18 column (Rainin-Microsorb-MV, 100 x 4.6 mm, 3 µm) and a polymeric 

reverse-phase C18 column (Vydac, 201TP, 250 x 4.6 mm, 5 µm) in series and a photodiode array 

detector set at 440 nm. Solvents and flow rates followed Pinckney et al. (1999) and the column 

temperature was 40ºC. Pigments were identified based on retention times and comparisons with 

pure standards extracted from phytoplankton cultures in 90% acetone (chlorophyll a, chlorophyll 

b) or 100% ethanol (fucoxanthin, zeaxanthin) obtained from DHI Water & Environment 

(Denmark). Epiphyte load is represented as µg pigment cm-2 of seagrass leaf; benthic load is µg 

pigment cm-2 of sediment. Microalgal biomass is represented as the average pigment 
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concentration (mg) m-2 of habitat. Epiphytic biomass is (µg pigment cm-2 seagrass 

leaf)*(LAI)/1000, and benthic biomass is (µg pigment cm
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-2 sediment)*10. 

In February 2005 we collected one additional T. testudinum leaf from each plot, removed the 

epiphytes, and preserved them in 6% Lugol's solution. We qualitatively verified composition of 

the microalgal assemblages by examining the cells at 100x under a light microscope and noting 

the cell types present.  

All data were tested for normality and variances for homoscedasticity using the Fmax test and 

log transformed if necessary to conform to the assumptions of ANOVA. We performed a three-

way ANOVA with Type III Sums of Squares for unequal sample size within each site separately 

for epiphyte and benthic pigment concentrations. The three fixed factors were date (3 dates for 

epiphytes, 2 dates for benthic pigments), P addition (±P), and N addition (±N). Dependent 

variables were epiphyte loads, represented by µg chlorophyll a, fucoxanthin, zeaxanthin, and 

chlorophyll b cm-2 of seagrass leaf or cm-2 of sediment. T. testudinum was not present in all plots 

at Sprigger Bank (n ≤ 2), resulting in insufficient replication for ANOVA, and so means and 

standard errors are reported for epiphytic loads at that site.  

Results 

Qualitative microscopic examination indicated that the most common components of the 

epiphytic microalgal community were diatoms and calcareous red algae. Hence, we interpreted 

fucoxanthin concentration to primarily represent diatom abundance, though a few dinoflagellate 

cysts were also noted at most sites (excepting Nine Mile Bank). Diatom species lists for this 

region are presented in Frankovich et al. (this issue). At Sprigger Bank, part of the fucoxanthin 

signal came from brown algae (e.g., Cladosiphon occidentalis Kylin), particularly in the 

February samplings. The zeaxanthin signal represented a red algal/cyanobacterial complex. Most 
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of the red algae were encrusting calcareous forms (e.g., Melobesia membranacea (Esper) 

Lamouroux, Hydrolithon farinosum (J.V. Lamouroux) Penrose & Y.M. Chamberlain), though 

uncalcified forms (e.g., Polysiphonia binneyi Harvey, Ceramium brevizonatum var. caraibicum 

H.E. Petersen & Børgesen in Børgesen) were also present. The cyanobacteria were primarily 

Lyngbya spp. and unidentified sheathed filaments. The chlorophyll b signal represented green 

microalgae (e.g., Ulvella lens P. Crouan & H. Crouan).  
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Comparisons of epiphytic and benthic microalgal biomass (as represented by mg chlorophyll 

a m-2 habitat) in control plots suggest that benthic microalgal biomass was 6-10 times higher 

than epiphytic biomass at all sites (Fig. 2). Epiphytic biomass (mg m-2 habitat) was higher at 

Nine Mile and Sprigger Banks than at the other sites (Fig. 2a). Benthic biomass was lowest at 

Duck and similar between the other three sites (Fig. 2b). 

At Duck Key, each pigment responded differently to date and nutrient addition treatments. In 

the epiphyte community, a significant interaction between date and P addition for chlorophyll a 

(df = 2, F = 16.336, p < 0.001) was caused by a large increase in response to P addition in 

February 2004 but not on any other date (Fig. 3a). A significant P*N interaction (df = 1, F = 

8.412, p = 0.005) was driven by consistently lower chlorophyll a concentrations in plots that 

received both N and P compared to P only treatments. A significant interaction between date and 

P addition for epiphytic fucoxanthin (df = 2, F = 14.307, p < 0.001) was driven by a P-induced 

increase in February 2004, a P-induced decrease in August 2004, and no nutrient effects in 

February 2005 (Fig. 3b). N addition did not affect epiphytic fucoxanthin. A significant 

interaction between date and P addition for epiphytic zeaxanthin (df = 2, F = 15.860, p < 0.001) 

was caused by a larger response to P addition in the February samplings than in August (Fig. 3c). 

Epiphytic zeaxanthin was not affected by N addition. A significant date*P interaction for 
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epiphytic chlorophyll b (df = 2, F = 14.100, p < 0.001) was driven by the largest response to P 

addition occurring in February 2004 and the smallest response in February 2005 (Fig. 3d). A 

significant interaction between N and P addition (df = 1, F = 4.532, p = 0.037) was caused by 

lower chlorophyll b concentration in NP than in P only treatments. 
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The Duck Key benthic microalgal community responded differently to nutrient addition than 

the epiphyte assemblage. Both P (df = 1, F = 17.564, p < 0.001) and N (df = 1, F = 9.921, p = 

0.003) had significant and additive effects on benthic chlorophyll a concentration, with no date 

effect and no interactions between factors (Fig. 3e). Fucoxanthin was significantly affected by all 

three factors with no interactions (Date df = 1, F = 5.449, p = 0.025; P df = 1, F = 11.007, p = 

0.002; N df = 1, F = 8.306, p = 0.006). Benthic fucoxanthin was higher in August than in 

February and was increased by both N and P addition (Fig. 3f). Zeaxanthin increased in response 

to P addition (df = 1, F = 36.509, p < 0.001) but was not affected by date or N addition, with no 

interactions between factors (Fig. 3g). Likewise, chlorophyll b increased in response to P 

addition (df = 1, F = 6.589, p = 0.014) but was not affected by date or N addition, with no 

interactions between factors (Fig. 3h). 

The Bob Allen epiphyte assemblage was variable over time and generally responded to P but 

not N addition. Epiphytic chlorophyll a was significantly affected by date (df = 2, F = 5.058, p = 

0.009) and P addition (df = 1, F = 25.779, p < 0.001) but was not affected by N addition, with no 

interactions between factors. Chlorophyll a was lower in February 2004 than on the other dates 

and decreased in response to P addition on all dates (Fig. 4a). Epiphytic fucoxanthin was 

significantly affected by date (df = 2, F = 17.516, p < 0.001) and P addition (df = 1, F = 27.746, 

p < 0.001) but was not affected by N addition, with no interactions between factors. Fucoxanthin 

was lower in February 2004 than on the other dates and decreased in response to P addition on 
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all dates (Fig. 4b). Zeaxanthin significantly increased in response to P addition (df = 1, F = 

5.533, p = 0.022) but was not affected by date or N addition, with no interactions between factors 

(Fig. 4c). A significant date*P interaction for epiphytic chlorophyll b (df = 2, F = 6.821, p = 

0.002) was driven by a larger increase in response to P in August than in February (Fig. 4d). 

Chlorophyll b was not affected by N addition. 
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The Bob Allen benthic microalgal community exhibited complex responses to date and 

nutrient addition treatments. A significant date*N interaction for benthic chlorophyll a (df = 1, F 

= 5.463, p = 0.025) was caused by a stronger response to N addition in August than in February 

(Fig. 4e). A significant P*N interaction (df = 1, F = 6.408, p = 0.015) was driven by an increase 

in chlorophyll a in response to P addition only when N was also added. Benthic fucoxanthin was 

significantly higher in August than in February (df = 1, F = 21.022, p < 0.001). A significant 

P*N interaction (df = 1, F = 4.842, p = 0.034) was driven by an increase in fucoxanthin in 

response to P addition only when N was also added (Fig. 4f). Benthic zeaxanthin increased in 

response to N addition (df = 1, F = 6.197, p = 0.017). A significant date*P interaction (df = 1, F 

= 4.293, p = 0.045) was driven by a stronger zeaxanthin response to P addition in August than in 

February (Fig. 4g). Benthic chlorophyll b concentration was not significantly affected by date or 

nutrient treatment (Fig. 4h). 

The benthic and epiphytic communities at Nine Mile Bank were variable over time but 

largely unaffected by nutrient addition treatments (Fig. 5). The exception was epiphytic 

zeaxanthin, where a significant date*P interaction (df = 2, F = 3.250, p = 0.046) was driven by a 

strong increase in response to P in February 2005, a weak P response in February 2004, and no P 

response in August 2004 (Fig. 5c). Date significantly affected epiphytic chlorophyll a (df = 2, F 

= 20.274, p < 0.001), fucoxanthin (df = 2, F = 22.449, p < 0.001), and chlorophyll b (df = 2, F = 
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58.830, p < 0.001). The concentrations of each of these pigments were higher in August than in 

the February samplings (Figs. 5a, b, d). Date significantly affected benthic chlorophyll a (df = 1, 

F = 27.425, p < 0.001) and benthic fucoxanthin (df = 1, F = 23.726, p < 0.001). The 

concentrations of both of these pigments were higher in August than in February but were not 

significantly affected by nutrient treatment (Figs. 5e, f). Benthic zeaxanthin and chlorophyll b 

were unaffected by date or nutrient treatments (Figs. 5g, h). 
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The benthic and epiphytic communities at Sprigger Bank were generally unaffected by 

nutrient treatments. No statistical analyses were performed for the epiphyte community at this 

site due to insufficient replication (n ≤ 2), but mean estimates of chlorophyll a, fucoxanthin, and 

zeaxanthin were higher on the February dates than in August and did not appear to be affected by 

nutrient addition (Figs. 6a-c). Mean chlorophyll b was higher in August than in February but did 

not appear to be affected by N or P addition (Fig. 6d). A significant date*P interaction for 

benthic zeaxanthin (df = 1, F = 4.758, p = 0.044) was driven by a P-induced decrease in February 

and no P effect in August (Fig. 6g). None of the other benthic pigments were significantly 

affected by date or nutrient treatments (Figs. 6e, f, h).  

Discussion 

Spatial, temporal, and taxa-specific variability in microalgal responses to nutrient enrichment 

demonstrated that the primary producer components of the Florida Bay ecosystem do not 

respond uniformly to changes in nutrient input. In general, nutrient responses were stronger in 

the eastern bay, corresponding with previous studies documenting severe nutrient limitation in 

seagrass (Armitage et al., 2005) and phytoplankton (Fourqurean et al., 1993) in that region. 

However, each microalgal group displayed a unique spatial pattern in response to N and P 

enrichment. Epiphytic chlorophyll a and fucoxanthin responded to P addition differently at each 
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site, with a P-induced increase at one site, a decrease at another site, and no P response at two 

western sites. In contrast, epiphytic zeaxanthin and chlorophyll b were consistently higher in P 

addition treatments in the eastern bay. In the benthos, both N and P impacted chlorophyll a, 

fucoxanthin, and zeaxanthin concentrations, though nutrient addition effects were generally 

complex. These taxa-specific patterns are consistent with previous work documenting within-

community variability in nutrient limitation patterns in a variety of habitats, including salt 

marshes (Sundareshwar et al., 2003), freshwater wetlands (Havens et al., 1999), and marine 

seagrass beds (Ferdie & Fourqurean, 2004). 
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Nutrient limitation patterns were markedly different between the epiphytic and benthic 

communities, especially in the two eastern bay sites (Duck Key, Bob Allen Keys). In particular, 

N addition had more positive effects on benthic pigments than on epiphytic pigments at both 

sites. Positive effects of N addition were detected for benthic chlorophyll a and fucoxanthin at 

both sites and for benthic zeaxanthin at Bob Allen Keys. In contrast, N addition had negative 

effects on epiphytic chlorophyll a and chlorophyll b at Duck Key and no effects on epiphytic 

pigments at Bob Allen Keys. These patterns suggest that N limitation may be stronger in the 

benthos than in the epiphytes in the eastern bay. Thalassia testudinum tissue N content is 

generally high in Florida Bay (Fourqurean & Zieman, 2002), suggesting high N availability in 

this habitat. N-limitation in an N-replete environment may occur through microbial 

transformations such as denitrification that increase the loss of N (Ferdie & Fourqurean, 2004). 

In addition, P has a high affinity for carbonate sediments such as those in our study (de Kanel & 

Morse, 1978), but the rhizosphere of seagrass beds can actively dissolve carbonate sediments 

(Burdige & Zimmerman, 2002) and make P more available for uptake (Jensen et al., 1998). Such 

processes may increase the bioavailability of P relative to N in the sediments and explain why 
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there was a tendency toward more N-limitation in the benthic than in the epiphytic microalgal 

community. Alternatively, species-specific patterns of nutrient limitation have been documented 

within microalgal communities in freshwater and marine systems (Tilman, 1977; Coleman & 

Burkholder, 1994). Little is known about how similar the epiphytic and benthic microalgal 

communities are in Florida Bay, but the contrasting nutrient limitation patterns that we observed 

suggest that they are taxonomically distinct from each other. Coralline algae in particular were 

unlikely to be present in the benthic algal community, as they require firmer substrate for growth 

(T.A. Frankovich, pers. obs.).  
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Taxonomic groups within microalgal assemblages have shown different nutrient limitation 

patterns in a wide range of habitats including coral reef turf communities (Miller et al., 1999), 

marine microalgal mats (Pinckney et al., 1995), and planktonic assemblages (Kononen, 2001). 

Nitrogen-fixing cyanobacteria are particularly able to increase in response to P addition in both 

epiphytic (Neckles et al., 1994) and benthic assemblages (Pinckney et al., 1995; Armitage & 

Fong, 2004). Our study generally concurred with these previous studies in that cyanobacteria 

were part of the zeaxanthin signature that increased in P addition treatments, particularly in the 

eastern bay. However, our microscopic examinations of the epiphytic assemblages suggest that 

coralline red algae were a major component of the epiphytic zeaxanthin signal. The relative 

dominance model (Littler & Littler, 1984) predicts that crustose coralline algae will dominate in 

high nutrient, high herbivory conditions. There is some evidence for this pattern on coral reefs 

(Smith et al., 2001), but little is known about epiphytic coralline algal responses to nutrient 

enrichment. The strong zeaxanthin responses to P enrichment that we observed suggest an 

increase in epiphytic coralline reds in enriched conditions, as predicted by the relative dominance 

model. Because the zeaxanthin signal represented a cyanobacterial-red algal complex and 
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zeaxanthin is a relatively minor pigment in red algae relative to water soluble pigments such as 

phycoerythrin (van den Hoek et al., 1995) that were not detected with our HPLC protocol, 

further microscopic examination and cell enumeration is necessary to document the extent of 

independent cyanobacterial and coralline red algal responses to N and P enrichment. 
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Blooms of green macroalgae are often associated with N enrichment in marine habitats 

(Valiela et al., 1997; Kamer et al., 2001). In contrast, we detected little chlorophyll b response to 

N addition, but the strong P-induced increases we observed are consistent with the P-limited 

nature of the benthic community in eastern Florida Bay (Armitage et al., 2005). Despite 

substantial increases in green algal load following P addition, the concentration of chlorophyll b 

was relatively low, even in enriched treatments, suggesting that the contribution of green algae to 

the total epiphytic biomass was small. Green algae are often highly palatable and recruitment and 

growth may be controlled by grazers (Gacia et al., 1999; Lotze et al., 2000). Grazer density was 

higher in P-enriched treatments in another study in Florida Bay (Gil et al., this issue), suggesting 

that grazers could have potentially limited green algal responses to the nutrient treatments. 

We did not detect consistent responses of diatoms as a group to nutrient enrichment. In fact, 

the site with the strongest fucoxanthin response to nutrient treatments, Bob Allen Keys, exhibited 

a decrease following P addition. Increased T. testudinum productivity and corresponding reduced 

leaf turnover period or high grazer abundance at that site may explain this pattern, which has 

been previously observed in this region (Ferdie & Fourqurean, 2004; Armitage et al., 2005). In 

addition, diatom responses to increased nutrients can be variable. In temperate benthic 

microalgal communities, nutrient addition can stimulate diatom growth (Sundbäck & Snoeijs, 

1991), though that response may vary with sediment type (Armitage & Fong, 2004). Nutrients 

may cause shifts within diatom guilds, altering species composition (Sundbäck & Snoeijs, 1991; 
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Coleman & Burkholder, 1994) and masking group-level responses to enrichment. Alternatively, 

intense grazing pressure in enriched treatments, as with green algae, may limit epiphytic and 

benthic diatom responses to nutrients (Cuker, 1983; Neckles et al., 1994).  
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The shifts in epiphytic and benthic community composition that we observed in P-enriched 

treatments in the eastern bay may alter support for upper trophic levels in Florida Bay. Green 

algae, which are generally palatable (Gacia et al., 1999; Lotze et al., 2000), increased in P 

addition treatments in the eastern bay, but our microscopic examinations of the epiphytic cells 

suggest that green algae were always rare relative to coralline red algae, diatoms, and 

cyanobacterial filaments. Fucoxanthin was abundant relative to the other pigments we measured, 

and diatoms are an important food source for epiphyte grazers (Sullivan & Currin, 2000), but the 

P-induced increase in coralline algae and cyanobacteria may have decreased the accessibility of 

diatoms to grazers by creating a more complex algal matrix with increased resistance to 

herbivory (Klumpp et al., 1992; Geddes & Trexler, 2003).  

Our estimates of microalgal biomass (mg chlorophyll a m-2 habitat) suggest that benthic 

microalgal productivity may be higher than epiphytic production in Florida Bay. We did not 

directly test extraction efficiencies, and the use of acetone to extract pigments from carbonate 

sediments may underestimate benthic microalgal biomass (Louda et al., 2000). In addition, 

water-soluble pigments such as phycoerythrin that were not detected with our HPLC protocol are 

more abundant in red algae than chlorophyll a (van den Hoek et al., 1995), suggesting that we 

underestimated the biomass of the epiphytic microalgal community as well. Although our 

estimation of the difference between benthic and epiphytic productivity is not an absolute value, 

few comparisons between epiphytic and benthic productivity within habitats exist in subtropical 

estuaries. One notable exception found that epiphytic production was about three times higher 
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than benthic production in Halodule wrightii Ascherson beds in the nutrient-enriched northern 

Gulf of Mexico (Moncreiff et al., 1992), which contrasts with the patterns we observed in 

oligotrophic Florida Bay. 
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The complex patterns of nutrient limitation within and between the epiphytic and benthic 

microalgal communities illustrate the importance of using experimental manipulations to aid in 

the prediction of ecosystem responses to alterations. This study contributes to a growing body of 

work in the region (Ferdie & Fourqurean, 2004; Armitage et al., 2005; Gil et al., this issue) 

revealing that the potential impacts of nutrient enrichment are not uniform among closely 

associated primary producers. Varying nutrient responses within the primary producer 

assemblage in Florida Bay suggest that increased freshwater flow and associated nutrient input 

during Everglades restoration efforts may cause shifts in microalgal community composition and 

cascade up to higher trophic levels by modifying food web support (Sullivan & Currin, 2000; 

Armitage & Fong, 2004). Consideration of strategies that will minimize nutrient input during 

restoration will lessen the indirect impacts of Everglades management on the Florida Bay faunal 

community. 
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Figure captions 

Figure 1: Map of Florida Bay and study sites. Sp = Sprigger Bank, 9M = Nine Mile Bank, BA = 

Bob Allen Keys, Du = Duck Key. 

Figure 2: Microalgal biomass, represented by chlorophyll a concentrations in control 

(unenriched) plots averaged over all sampling periods in the a) epiphytic and b) benthic 

communities. In all figures, bars represent standard error. 

Figure 3: Responses of epiphytic (µg cm-2 seagrass leaf) and benthic (µg cm-2 sediment) 

pigments to nitrogen and phosphorus addition at Duck Key. ψ indicates no data collected and φ 

signifies that no pigment was detected. Significant p-values are depicted.  

Figure 4: Responses of epiphytic (µg cm-2 seagrass leaf) and benthic (µg cm-2 sediment) 

pigments to nitrogen and phosphorus addition at Bob Allen Keys. ψ indicates no data collected 

and φ signifies that no pigment was detected. Significant p-values are depicted; NS indicates no 

significant effects. 

Figure 5: Responses of epiphytic (µg cm-2 seagrass leaf) and benthic (µg cm-2 sediment) 

pigments to nitrogen and phosphorus addition at Nine Mile Bank. ψ indicates no data collected 

and φ signifies that no pigment was detected. Significant p-values are depicted; NS indicates no 

significant effects. 

Figure 6: Responses of epiphytic (µg cm-2 seagrass leaf) and benthic (µg cm-2 sediment) 

pigments to nitrogen and phosphorus addition at Sprigger Bank. ψ indicates no data collected 

and φ signifies that no pigment was detected. Significant p-values are depicted; NS indicates no 

significant effects. No statistical analyses were performed for epiphytic pigments. 
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