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ABSTRACT 14 

The elemental (C, N and P) and isotopic (δ
13

C, δ
15

N) content of leaves of the seagrasses 15 

Thalassia testudinum, Halodule wrightii, and Syringodium filiforme were measured across a 16 

10,000 km
2
 survey of the seagrass communities of South Florida in 1999 and 2000. Trends at 17 

local and broad spatial scales were compared to examine interspecific variation in the seagrass 18 

characteristics often used as ecological indicators. The elemental and stable isotope contents of 19 

all species were variable and demonstrated marked interspecific variation. At broad spatial scales 20 

mean nitrogen: phosphorus (N:P) ratios were lowest for T.testudinum (36:5 ± 1.1) and S. 21 

filiforme (38:9 ± 1.3), and highest for H. wrightii (44:1 ± 1.8). Stable carbon isotope ratios (δ
13

C) 22 

were highest for S. filiforme (-6.2‰ ± 0.2‰), intermediate for T. testudinum (-8.6‰ ± 0.2‰), 23 



 2 

and lowest for H. wrightii (-10.6‰ ± 0.3‰). Stable nitrogen isotopes (δ
15

N) were heaviest for T. 1 

testudinum (2.0‰ ± 0.1‰), and lightest for H. wrightii (1.0‰ ± 0.3‰) and S. filiforme (1.6‰ ± 2 

0.2‰). Site depth was negatively correlated to δ
13

C for all species, while δ
15

N was positively 3 

correlated to depth for H. wrightii and S. filiforme. Similar trends were held for local 4 

comparisons, suggesting that taxon specific physiological/ecological properties strongly control 5 

interspecific variation in elemental and stable isotope content. Temporal trends in δ
13

C were 6 

measured, and revealed that interspecific variation was displayed throughout the year. This work 7 

documents interspecific variation in the nutrient dynamics of three common seagrasses in South 8 

Florida, indicating that interpretation of elemental and stable isotope values needs to be species 9 

specific.10 
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INTRODUCTION 1 

 The elemental and isotopic content of plant biomass can be used to characterize both the 2 

nutritional status and environmental conditions of macrophyte communities (McMillan et al. 3 

1980, Atkinson & Smith 1983, Farquhar et al. 1989, Duarte 1992, Fourqurean et al. 2005, 4 

Fourqurean et al. 2007). These plant parameters, while reflecting the local availabilities of 5 

essential resources (nitrogen, phosphorus, carbon, and light), can additionally reflect interspecific 6 

variation, and the manner in which species interact with local resources. Taxonomic differences 7 

in growth rates, life-history strategies, physiology and morphology have the ability to influence 8 

resultant nitrogen:phosphorus (N:P) ratios and the stable isotopic content of plant material 9 

(Farquhar et al. 1989, Dawson et al. 2002, Agren 2004). While landscape patterns in elemental 10 

and isotopic content of submerged plants may be driven by large scale spatial variations in the 11 

stable isotopic composition of nutrient pools and the availabilities of nutrients and light; 12 

localized interspecific differences have been detected (Fourqurean et al. 2007), and may be 13 

attributed to physiological differences amongst sympatric plant species. Prior to using variations 14 

in the N:P ratios and stable isotopic compositions of benthic plants for inferring ecosystem 15 

processes, it is important to understand the factors which drive these variations at all spatial 16 

scales, and how taxonomic differences can be reflected within these parameters. 17 

 The N:P ratio of plant material is related to the availability of these elements in the 18 

environment relative to plant demand (Duarte 1990). Over landscape scales, spatial gradients in 19 

N or P availability are reflected by spatial patterns in plant nutrient content, as shown for 20 

seagrasses growing in coastal marine habitats (Fourqurean et al. 1992a, Fourqurean & Zieman 21 

2002, Fourqurean et al. 2005). Nutrient addition experiments have supported the close link 22 

between environmental availabilities and tissue nutrient content, particularly in locations where 23 
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ambient elemental concentrations are low (Duarte 1990, Ferdie & Fourqurean 2004, Armitage et 1 

al. 2005). Other environmental factors can also influence the nutrient content of plant material. 2 

For example, increased light availability has been found to decrease the nutrient content of 3 

seagrass leaves because of enhanced growth rates leading to the depletion of nutrient sources 4 

(Abal et al. 1994). Thus, it has been widely documented that resource availability strongly 5 

controls intraspecific variation in the elemental ratios of benthic macrophytes. However, 6 

variation seen between plant species may be driven by factors other than environmental 7 

conditions, suggesting that ecological/physiological differences may drive interspecific variation 8 

at any particular location.  While single species comparisons have been used across a broad 9 

range of seagrasses over large spatial scales, localized interspecific comparisons may provide 10 

important cues about the ecological differences occurring between sympatric species 11 

(Fourqurean et al. 2007). 12 

 The stable isotopic content of plant material has provided a powerful tool for the study 13 

and assessment of ecological processes. In addition to identifying nutrient sources and 14 

processing within ecosystems (Dawson et al. 2002), stable isotopes have aided in food web 15 

analysis and the study of energy flow amongst trophic levels (Peterson & Fry 1987). However, 16 

the factors regulating the stable isotopic content of primary producers are complex, and require 17 

detailed knowledge of spatial, temporal, and taxonomic variation. For example, the stable carbon 18 

isotope content of seagrass material is predominantly controlled by the environmental factors of 19 

carbon source, irradiance, and temperature (Durako & Hall 1992, Abal et al. 1994, Grice et al. 20 

1996, Hemminga & Mateo 1996). Spatial and temporal variation in these factors have been 21 

found to influence the carbon isotopic content of seagrass species across landscape scales 22 

(Fourqurean et al. 1997, Fourqurean et al. 2005), highlighting the importance of documenting 23 
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background variation when applied to food web studies. Numerous studies have detailed the 1 

impact of environmental conditions on intraspecific variation in stable isotope parameters. 2 

However, interspecific divergence, particularly amongst sympatric seagrasses, has received less 3 

attention and may be attributable to physiological/ecological distinctions between species. Stable 4 

isotope comparisons between co-occurring species may reveal important cues pertaining to how 5 

specific species process local resources. 6 

 Seagrasses fractionate the available pool of inorganic carbon based upon the degree of 7 

carbon demand relative to the degree of carbon supply. Experimental evidence has shown that 8 

for a given carbon supply, plants grown under high light conditions display increased 9 

photosynthetic rates and increased carbon demand, resulting in reduced discrimination against 10 

13
C and heavier isotopic signatures (Cooper & Deniro 1989, Durako & Hall 1992). Similarly, for 11 

a given light level, experiments have found enriched carbon isotope signatures (δ
13

C) with 12 

decreases in carbon supply (Durako & Sackett 1993). These relationships provide environmental 13 

information pertaining to the light and inorganic carbon status of plant material. However, 14 

interspecific variation in the mechanisms by which plants process carbon can additionally impact 15 

δ
13

C values (Farquhar et al. 1989), thus individual plant physiology may contribute to overall 16 

variation in stable carbon isotope values. Utilization of bicarbonate (which is isotopically distinct 17 

from CO2) may impact δ
13

C ratios (Hemminga & Mateo 1996), and may further contribute to 18 

variation in isotope values. Bicarbonate use is dependent upon species specific seagrass 19 

physiology (Invers et al. 1999), thus interspecific differences in stable isotope values may be 20 

attributed to the varied physiologies associated with HCO3
-
 uptake.  Systematic differences in the 21 

δ
13

C ratios of leaves of co-occurring seagrass species, as documented between the Mediterranean 22 
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species Posidonia oceanica and Cymodocea nodosa (Fourqurean et al 2007), would suggest 1 

fundamental differences in the way that species interact with the available DIC pool.  2 

 Seagrass stable nitrogen content additionally provides important information pertaining 3 

to the identity of the sources of dissolved inorganic nitrogen (DIN), and the various processes 4 

which serve to fractionate the available nutrient pool. For example, as bacterial processing 5 

(nitrification, denitrification, and nitrogen fixation) alters the ratio of 
15

N:
14

N in the DIN pool, 6 

the macrophytic composition of stable nitrogen isotopes is influenced, and thus can be utilized to 7 

infer degrees of nitrogen cycling (Peterson & Fry 1987, Dawson et al. 2002). Due to this 8 

microbial processing, sewage derived nutrient inputs are isotopically heavy, which can be used 9 

to detect possible anthropogenic contributions to the DIN pool.  10 

 Similar to carbon isotope discrimination, seagrasses can fractionate the source pool of 11 

dissolved inorganic nitrogen upon plant uptake (Fourqurean et al. 2005). The degree of nitrogen 12 

fractionation depends upon the size of the DIN pool relative to plant demand (Fourqurean et al. 13 

2005). Seasonal fluctuations in the δ
15

N value of seagrass tissues have been detected, and have 14 

been attributed to changes in both the isotopic signature of the source pool, and the degree of 15 

plant fractionation as a response to seasonal productivities (Fourqurean et al. 2005). However, 16 

altered DIN fractionation between multiple species has yet to be documented.  17 

 In this paper, we document interspecific divergence in the elemental and stable isotope 18 

content of three seagrass species in South Florida, and explore environmental correlates of these 19 

variations across both local and broad spatial scales. Our aim is to better characterize the sources 20 

of variation in elemental and isotopic ratios of plants often used as environmental indicators, and 21 

highlight the role that ecological/physiological characteristics play in determining species 22 

specific values. Seagrass properties (N:P, limitation index, δ
13

C, and δ
15

N) were compared across 23 
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136 sites in South Florida, representing a 10,000 km
2 

survey area of the seagrass beds in the 1 

Florida Keys National Marine Sanctuary (FKNMS). We were particularly interested in 2 

documenting interspecific variation in the properties of seagrasses co-occurring under similar 3 

environmental conditions, within a given site. We hypothesize that the varied life history 4 

strategies of benthic macrophytes would be reflected in plant elemental content, with fast-5 

growing, early successional species displaying N:P ratios further removed from ideal values as 6 

compared to slow-growing species from the same site. We additionally hypothesize that species-7 

specific differences in carbon uptake strategies and plant physiologies have the ability to strongly 8 

regulate stable isotope parameters. Lastly, we hypothesize that fast growing, early successional 9 

species may exhibit larger seasonal variation in stable isotope values as a result of increased 10 

growth rates and elevated carbon and nitrogen demand. Interspecific comparisons at both local 11 

(within site) and broad (amongst all sites) scales allowed us to examine the spatial extent to 12 

which taxonomic variation is important, and its impact on the isotopic and elemental 13 

composition of benthic plants. 14 

 15 

METHODS 16 

 The Florida Keys National Marine Sanctuary (FKNMS) is a shallow-water, marine 17 

ecosystem located at the southern tip of the Florida peninsula and comprised of seagrass beds, 18 

coral reefs, and mangrove communities (Fig. 1). Seagrass communities in the FKNMS are 19 

primarily composed of Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. 20 

During the summer months of 1999, 80 sites were randomly selected across the FKNMS, and 21 

surveyed for seagrass abundance, nutrient content and isotopic composition. A repeat survey was 22 

conducted during the summer of 2000 at 56 different randomly generated sites, which only 23 
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quantified seagrass abundance and nutrient content. Seasonal variation in seagrass isotopic 1 

content was additionally assessed through a separate series of quarterly surveys conducted during 2 

1999 and 2000. Within each year, a network of 30 permanent monitoring stations was sampled 4 3 

times (see Fourqurean et al. 2001 for further description). The elemental and isotopic 4 

composition of T. testudinum has been previously described for this region (Fourqurean et al 5 

2005). In order to examine interspecific variation, our current study incorporates a portion of 6 

those data on the elemental and isotopic content of T. testudinum, with new data for the other 7 

two seagrass species (S. filiforme and H. wrightii) common in South Florida. 8 

 From the selected random sites, three separate comparative analyses were conducted 9 

which spanned various spatial and seasonal scales. One analysis included all data from the 1999 10 

(80 sites) and 2000 (56 sites) surveys, representing comparisons within the summer season over 11 

large spatial scales. Both monospecific (22%) and mixed species (78%) seagrass beds were 12 

included. A second analysis included data from the 1999 and 2000 summer surveys, however 13 

monospecific sites were excluded, thus interspecific comparisons were solely conducted within 14 

multi-species sites where seagrasses co-occurred under similar environmental conditions. Each 15 

multi-species site contained two or more seagrass species growing adjacently (< 50m apart), 16 

under similar light and depth regimes. Multi-species sites were grouped according to pairwise 17 

interspecific comparisons: Thalassia testudinum/Halodule wrightii (65 sites), Halodule 18 

wrightii/Syringodium filiforme (38 sites), and Thalassia testudinum/Syringodium filiforme (75 19 

sites). The third analysis similarly conducted within-site interspecific comparisons, however only 20 

utilized data from the 30 permanent monitoring sites, allowing for comparisons of intra-annual 21 

variability between species pairs. Within this network, the number of sites for interspecific 22 
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comparison varied depending upon season; T. testudinum/H. wrightii (4-7 sites), H. 1 

wrightii/S.filiforme (5-8 sites), T. testudinum/S. filiforme (19-22 sites). 2 

   For all surveys, at each sampling site, short shoots of each seagrass species present were 3 

haphazardly collected along a 50m transect. When available, 6 shoots of Thalassia testudinum, 4 

30 shoots of Syringodium filiforme, and 40 shoots of Halodule wrightii were harvested, placed 5 

on ice, and transported back to the lab. The less robust seagrass species required higher 6 

collection amounts to ensure enough biomass was available for all elemental and isotopic 7 

analyses. Seagrass leaves were separated according to species, cleaned of epiphytes through 8 

gentle scraping with a razor blade, and cut from their respective short shoots. Leaves were then 9 

dried to a constant weight at 80
o
C, ground to a fine powder with a mortar and pestle, and 10 

analyzed in duplicate for C and N content using a CHN analyzer (Fourqurean et al. 2005). 11 

Phosphorus content was determined through dry oxidation, acid hydrolysis extraction followed 12 

by a colorimetric analysis (Fourqurean et al. 1992a). Elemental ratios were calculated on a 13 

mole:mole basis.  14 

 All isotopic analyses were measured using standard elemental analyzer isotope ratio mass 15 

spectrometer procedures. The elemental analyzer was used to combust all organic material and 16 

subsequently reduce the formed gasses into N2 and CO2, which were measured on a Finnigan 17 

MAT Delta C IRMS in a continuous flow mode. The samples' isotopic ratios (R) are reported in 18 

the standard delta notation (‰): δ (‰) = [(Rsample/Rstandard)-1] x 1000. These results are presented 19 

with respect to the international standards of atmospheric nitrogen (AIR,N2) and Vienna Pee Dee 20 

belemnite (V-PDB) for carbon. Analytical reproducibility of the reported δ values, based on 21 

sample replicates, was better than ± 0.08‰ for carbon and ± 0.2‰ for nitrogen. Care was taken 22 

to remove all visible carbonate material from the surface of the leaves. As a test of the efficacy 23 
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of our cleaning we acidified a subset of seagrass samples with the most enriched δ
13

C values to 1 

drive off any remaining carbonate material, and then determined the δ
13

C of this decalcified 2 

material. The differences in δ
13

C between acidified and unacidified samples were small (< 0.3 ‰ 3 

on average). 4 

 The distributions of all seagrass elemental and isotopic parameters were checked for 5 

normality using the Kolmogorov-Smirov test (α=0.05). Standard linear regression was used to 6 

test the strength of the relationship between stable isotope variables (δ
13

C, δ
15

N) and site depth. 7 

Relationships among elemental and isotopic ratios were additionally assessed for all species, 8 

across all sites sampled in 1999, using non-parametric correlations (Spearman's ρ). Interspecific 9 

Sanctuary-wide species-specific differences in seagrass N:P ratios and isotopic values were 10 

assessed using a single factor analysis of variance (ANOVA). Upon detecting significance, post-11 

hoc analysis was conducted using either a Tukey's HSD for equal variances, or a Dunnett's T3 12 

test for unequal variances (significance p < 0.05). In addition to testing N:P ratios, a Limitation 13 

Index (L.I. = |30- N:P|) was calculated to quantify the degree of divergence from the ideal ca. 14 

30:1 "Seagrass Redfield Ratio" identified by Atkinson and Smith (1983) and Duarte (1990). 15 

Larger L.I. values indicate greater degrees of nutrient limitation.  Such a calculation is necessary 16 

because across the landscape of the FKNMS there are both N- and P-limited regions (Fourqurean 17 

et al 2005).  18 

To conduct within-site interspecific comparisons, differences in N:P ratios, L.I., δ
13

C, and 19 

δ
15

N were tested with a pair-wise Students t-test, significance p < 0.05. To describe temporal 20 

variation in seagrass isotopic content for species that co-occurred at the 30 permanent stations, 21 

we fit a sine model of the form y = mean + α[sin(time + Φ)], where α is the amplitude of a sine 22 

wave, and Φ is a phase angle (we used time values in radians for both time and Φ, where 2π 23 



 11 

radians = 365d), to a seasonal time series using an iterative nonlinear curve fitting regression. 1 

Confidence intervals (95%) of model parameters were compared to test for significant 2 

differences in seasonal variation. We were interested in using the non-linear regression as a 3 

means of testing interspecific divergence in the mean and amplitude of seasonal seagrass δ
13

C 4 

variation.  5 

 6 

RESULTS 7 

Interspecific variation in seagrass elemental and isotopic composition at broad scales 8 

across the FKNMS     9 

 In 1999, Thalassia testudinum occurred at 78 of the randomly selected sites (98%), while 10 

Halodule wrightii and Syringodium filiforme occurred at 31 sites (39%) and 37 sites (46%) 11 

respectively. In 2000, T. testudinum occurred at 56 sites (100%), while H. wrightii and S. 12 

filiforme occurred at 39 sites (70%) and 40 sites (71%) respectively. Nitrogen, phosphorus and 13 

carbon content varied within each species, across all sanctuary sites in both years (Table 1), 14 

however they did not vary significantly between years. In both years, coefficients of variation 15 

show that leaf phosphorus content (CV=0.28-0.37) displayed greater variation in all species 16 

compared to nitrogen (CV=0.15-0.25) and carbon content (CV=0.06-0.12). The N:P frequency 17 

distribution for T. testudinum was slightly skewed towards higher values (Fig. 2). Comparatively, 18 

H. wrightii displayed a normal distribution with the highest mean N:P ratios (44.1 ± 1.8), which 19 

were reflected in the highest mean L.I. of all species (15.3 ± 1.7, Fig. 3, Table 1). Syringodium 20 

filiforme displayed an intermediate N:P ratio of 38.9 ± 1.3, which was normally distributed, and 21 

an average limitation index value of 10.9 ± 1.1.  Thalassia testudinum displayed the lowest mean 22 

N:P ratio (36.5 ± 1.1), and the lowest mean L.I. value (9.6 ± 0.9) of the species.  Mean T. 23 
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testudinum N:P ratio and L.I. values were significantly lower than those of Halodule wrightii, yet 1 

similar to Syringodium filiforme (Table 1). Mean H. wrightii N:P ratio and L. I. values were 2 

similar to S. filiforme (ANOVA,  F = 7.89, p = 0.07; ANOVA, F = 6.25, p  = 0.09). 3 

 Halodule wrightii displayed the lowest δ
13

C values of all species, with a mean of -10.6 ‰ 4 

± 0.3‰, a range of -13.2‰ to -7.8‰, and a normal distribution (Fig. 4). Halodule wrightii δ
13

C 5 

values were significantly lower than both Thalassia testudinum and Syringodium filiforme (Table 6 

1; ANOVA, F = 53.5, p < 0.001). Syringodium filiforme displayed the highest δ
13

C values with a 7 

mean of -6.2‰ ± 0.2‰, a range of -3.5‰ to -8.4‰, and a normal distribution. The δ
13

C values 8 

of S. filiforme were significantly higher than those of T. testudinum (ANOVA, F = 53.5, p < 9 

0.001). Thalassia testudinum displayed intermediate δ
13

C values with a mean of -8.6‰ ± 0.2‰, 10 

a range of -13.0‰ to -5.3‰, whose values were normally distributed.  11 

Stable nitrogen isotope values varied by 7.7‰, 7.5‰, and 6.3‰ for Thalassia 12 

testudinum, Halodule wrightii, and Syringodium filiforme respectively (Table 1). Thalassia 13 

testudinum displayed the highest δ
15

N values of all species, with mean of 2.0‰ ± 0.2‰ and a 14 

normal distribution (Fig. 5). Thalassia testudinum displayed δ
15

N values which were higher than 15 

those of H. wrightii (Table 1; ANOVA, F = 5.08, p < 0.01), yet similar to S. filiforme (ANOVA, 16 

F = 5.08,p = 0.45).  Halodule wrightii displayed the lowest values, with a mean of 1.0‰ ± 0.3‰ 17 

and a normal distribution. Halodule wrightii δ
15

N values were similar to those of S. filiforme 18 

(ANOVA, F = 5.08,p = 0.18). Syringodium filiforme displayed intermediate values, with a mean 19 

of 1.6‰ ± 0.3‰ and a normal distribution.  20 

 Across FKNMS, elemental and isotopic ratios of all three seagrass species were 21 

correlated with site depth (Table 2, Fig. 6). The δ
13

C and N:P ratios were negatively correlated to 22 

site depth for all species, and displayed similar variation with depth amongst species. The δ
15

N 23 
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ratio was positively correlated with site depth for Halodule wrightii and Syringodium filiforme, 1 

yet there was no correlation for Thalassia testudinum (Fig. 6). The variation in δ
15

N with depth 2 

was similar between H. wrightii and S. filiforme, and further analysis revealed that negative 3 

correlations between %N and δ
15

N were restricted to the deeper offshore locations (>4.3m). 4 

Syringodium filiforme was the only species for which δ
13

C was correlated to δ
15

N. Correlations 5 

between elemental and isotopic ratios were mixed depending upon species. In T. testudinum, N:P 6 

was positively correlated to δ
13

C, yet uncorrelated to δ
15

N. Syringodium filiforme showed a 7 

negative correlation between N:P and δ
15

N, yet no correlation between N:P and δ
13

C. In H. 8 

wrightii, N:P was both negatively correlated to δ
15

N, and positively correlated to δ
13

C. L.I. 9 

values were negatively correlated to both site depth and δ
15

N for H. wrightii and S. filiforme, T. 10 

testudinum showed no correlation amongst these parameters. For all species L.I. was positively 11 

correlated to δ
13

C. 12 

 13 

Interspecific variation in seagrass elemental and isotopic composition at local scales 14 

 Of the sites which contained both Thalassia testudinum and Halodule wrightii (65 sites), 15 

N:P ratios and L.I. values were significantly higher for H. wrightii (p < 0.001; Fig. 7). When 16 

averaged for both years, T. testudinum had an N:P ratio and an L.I. value of 35.9 ± 1.4 and 8.8 ± 17 

1.1 respectively at sites where it co-occurred with H. wrightii, while H. wrightii had an N:P ratio 18 

and an L.I. value of 44.5 ± 1.9 and 15.8 ± 1.8 at the same sites. When growing in similar 19 

locations, significant differences were additionally detected in δ
13

C signatures, with T. 20 

testudinum (-8.9 ± 0.4) displaying isotopically heavier values than H. wrightii (-10.4 ± 0.3) (p < 21 

0.001)(Fig. 8). There were no consistent, statistically significant differences in δ
15

N between 22 

these two species at sites where they co-occurred. 23 



 14 

 Halodule wrightii and Syringodium filiforme co-occurred at 38 sites, and did not differ in 1 

either N:P ratios or L.I. (Fig. 7). For both sampling years, N:P ratios and L.I. were 43.9 ± 2.6 and 2 

15.8 ± 2.2 respectively for H. wrightii, and 42.3 ± 2.2 and 14.2 ± 1.9 respectively for S. filiforme. 3 

Significant differences were detected in δ
13

C signatures, with H. wrightii displaying a value of    4 

-10.1‰ ± 0.3‰, as compared to the isotopically heavy S. filiforme (-5.7‰ ± 0.3‰) (p < 5 

.001)(Fig. 8). There were no consistent, statistical differences in δ
15

N between H. wrightii and S. 6 

filiforme at sites where they co-occurred. 7 

 Thalassia testudinum and Syringodium filiforme co-occurred at 75 sites, and displayed 8 

significant differences in both N:P ratios and L.I. at those sites (p < 0.001, p < 0.01 respectively). 9 

For both years, T. testudinum displayed an N:P ratio and L.I. value of 34.2 ± 1.1 and 7.4 ± 0.9, 10 

respectively. While S. filiforme displayed an N:P ratio and L.I. of 38.8 ± 1.4 and 10.9 ± 1.2, 11 

respectively (Fig. 7). Additionally, δ
13

C signatures were statistically distinct, with T. testudinum 12 

(-8.8‰ ± 0.2‰) displaying isotopically lighter values than S. filiforme (-6.3‰ ± 0.2‰) (p < 13 

0.001) (Fig. 8). There were no statistical differences in δ
15

N between T. testudinum and S. 14 

filiforme at sites where they co-occurred. 15 

 16 

Temporal variation in seagrass isotopic content at local scales 17 

 There was marked seasonal variation in the δ
13

C values of Thalassia testudinum, 18 

Halodule wrightii, and Syringodium filiforme (Fig. 9). δ
13

C values for all three species were 19 

heaviest in the summer and fall months, and lightest in the winter months. The sine models 20 

described 51-73% of the variation in δ
13

C values (Table 3). Parameter estimates for α and Φ 21 

were not significantly different between species comparisons, indicating no interspecific 22 

differences in the degree of seasonal variation, nor the seasonal timing of δ
13

C values. Mean δ
13

C 23 
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values of the sine models were significantly different for all species comparisons, indicating that 1 

the interspecific differences we documented above with our FKNMS-wide summer surveys were 2 

maintained throughout the year. Seasonal trends in δ
15

N values were not detected for any 3 

species. 4 

 5 

DISCUSSION 6 

 The elemental and isotopic leaf content of the seagrasses Thalassia testudinum, Halodule 7 

wrightii, and Syringodium filiforme displayed marked interspecific variation at both local and 8 

broad spatial scales within the Florida Keys National Marine Sanctuary. Both within and 9 

between species variations were nonrandom, and demonstrated both the effects of environmental 10 

parameters and species-specific physiologies on the elemental and isotopic content of seagrass 11 

tissues. This study highlights the importance of seagrass species identity in the evaluation of 12 

plant nutrient and isotopic data for coastal monitoring efforts and food web analyses. 13 

 14 

Relationships between elemental ratios, isotopic ratios, and water depth across the FKNMS  15 

  Significant differences in δ
13

C were detected amongst all three seagrass species. The 16 

lightest δ
13

C values were displayed by Halodule wrightii, while Thalassia testudinum and 17 

Syringodium filiforme displayed the intermediate and heaviest values respectively. Similarly, 18 

Lepoint et al. (2008) found that Syringodium isoetifolium was more enriched in 
13

C compared to 19 

Halodule sp. and Thalassia hemprichii in Mozambique. The heaviest δ
15

N was displayed by T. 20 

testudinum, which was significantly more positive than H. wrightii. The δ
15

N value for S. 21 

filiforme was not statistically distinct from the other species. Large scale trends in the stable 22 

isotopic content of various seagrasses may provide information pertaining to physiological and 23 



 16 

ecological properties of each species. However, data at this large scale should be interpreted with 1 

caution, as trends may be confounded by spatial variations in: (1) the distribution of various 2 

seagrass species and (2) environmental conditions.  3 

All three seagrass species showed significant correlations between δ
13

C values and site 4 

depth across the large spatial scale of the sanctuary (Fig. 6). Because light availability generally 5 

decreases with depth in the sea, this suggests that for each species, light plays an important role 6 

in regulating the δ
13

C content of seagrass tissues, as demonstrated in both laboratory and field 7 

studies (Durako & Hall 1992, Abal et al. 1994, Grice et al. 1996). Likely this is because of 8 

reduced photosynthetic discrimination against the heavier isotope, leading to increased δ
13

C 9 

values at high light levels. Within a species, isotopically heavy values may indicate the 10 

possibility of photosynthetic carbon limitation during periods of high irradiance (Fourqurean et 11 

al. 2005). Field studies have shown that the inverse relationship between light and depth are 12 

reflected in the δ
13

C ratio of seagrass tissues elsewhere (Cooper & Deniro 1989, Lepoint et al. 13 

2003, Fourqurean et al. 2007). In our study, δ
13

C values decrease by 0.40, 0.29, and 0.25 ‰ m
-1

 14 

in depth for Thalassia testudinum, Halodule wrightii, and Syringodium filiforme respectively. 15 

We don’t think that the δ
13

C-depth relationships are a function of variations in the isotopic 16 

signature of the DIC pool, as has been observed in regions where mineralization of organic 17 

matter from C3 mangroves causes isotopically depleted DIC that is incorporated into seagrass 18 

tissues (Fry & Sherr 1984, Fleming et al. 1990, Lin et al. 1991). The FKNMS sites that are in 19 

close proximity to terrestrial DIC sources display the heaviest δ
13

C values, contrary to what 20 

would be expected if C3 material was impacting the isotopic value of the DIC pool available to 21 

the seagrass community. 22 
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 The δ
15

N value of seagrass leaf material can be controlled by numerous factors. In 1 

addition to alterations in the isotopic composition of the source nitrogen pool, the relationship 2 

between plant nutrient demand and environmental availability represents a strong determinant of 3 

leaf isotope ratios. Reduced light as depth increases could, by reducing leaf growth rates and 4 

demand for N, influence leaf δ
15

N as depressed demand increases discrimination against the 5 

heavier isotope. However, the net change in leaf δ
15

N with increasing depth should be a 6 

consequence of the magnitude of the reduction in N demand relative to the changes in N 7 

availability. For instance, in cases where N availability remains constant with increasing depth, 8 

we would expect a decrease in leaf δ
15

N with increasing depth due to a depressed demand for N 9 

and higher discrimination against 
15

N. Alternatively, cases in which leaf δ
15

N shows little change 10 

with depth may represent scenarios whereby both N demand and N availability concurrently 11 

decrease with depth, resulting in little alteration to 
15

N discrimination. Working with other 12 

species of seagrasses, Grice et al (1996), Lepoint et al (2003), and Fourqurean et al (2007) all 13 

found no significant change in leaf δ
15

N across large depth and light gradients, although they did 14 

not investigate the causal mechanisms for those observations. Lastly, if nitrogen availability 15 

decreases dramatically with increasing depth, we could, despite reductions in N demand, find 16 

higher leaf δ
15

N values as depth increases. We believe this to be the case in our study, as the 17 

observed relationships between δ
15

N and depth are a consequence of the distribution of deep-18 

water sites within a landscape of variable nitrogen availability. The leaf δ
15

N value of both 19 

Halodule wrightii and Syringodium filiforme was positively correlated to site depth, and 20 

negatively correlated to both N:P ratios and L.I. Such correlations suggest that as nitrogen 21 

becomes less available and nutrient limitation increases, these seagrasses reduce fractionation of 22 

the available DIN pool. Additionally, the negative correlation between %N and δ
15

N was only 23 



 18 

significant for the deeper sites under similar light regimes, further indicating that environmental 1 

availability was driving the relationship between depth and δ
15

N. This indicates that the reduced 2 

DIN discrimination in H. wrightii and S. filiforme increasingly occurs at deeper offshore 3 

locations, where primary production is N-limited (Fourqurean & Zieman 2002, Ferdie & 4 

Fourqurean 2004, Fourqurean et al. 2005). This trend, however, was not held for Thalassia 5 

testudinum which exhibited no correlation between δ
15

N values and site depth or N:P ratios. 6 

Thus, these correlations were only evident for the fastest growing seagrasses (H. wrightii and S. 7 

filiforme), which may utilize nutrient resources more rapidly than T. testudinum, leading to 8 

decreases in DIN fractionation and higher L.I. compared to the slower-growing T. testudinum. 9 

Further experimentation is needed to detail these processes. 10 

 The fact that interspecific differences in stable carbon isotopes remain statistically 11 

distinct across large spatial scales may imply that seagrass physiology plays a dominant role in 12 

determining interspecific variation in δ
13

C. Average values for Halodule wrightii were 2.0 ‰ 13 

lighter than Thalassia testudinum, and 4.5 ‰ lighter than Syringodium filiforme. Such 14 

differences might be attributed to the varied mechanisms of bicarbonate acquisition and internal 15 

carbon recycling within marine macrophytes (Fry & Sherr 1984, Fry et al. 1985, Hemminga & 16 

Mateo 1996, Fourqurean et al. 2007), or caused by morphological variations in leaves (Lepoint et 17 

al. 2008). To various degrees, seagrass photosynthetic carbon demand may be met via a 18 

combination of diffusive CO2 transport, and active HCO3
-
 import (Invers et al. 1999, Invers et al. 19 

2001). While dissolved CO2 has an isotopic carbon signature of ca. -9 ‰, HCO3
-
 in marine 20 

waters has an isotopic signature of 0 ‰. Preferential fixation of bicarbonate from the inorganic 21 

carbon pool should result in seagrass tissue which is enriched in 
13

C (Hemminga & Mateo 1996). 22 

Interspecific variation in seagrass δ
13

C values may reflect previously documented interspecific 23 
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variation in bicarbonate acquisition mechanisms, as some species display enhanced HCO3
-
 1 

utilization efficiencies (Bjork et al. 1997, Invers et al. 1999, Schwarz et al. 2000, Uku et al. 2 

2005). Our field data suggest that S. filiforme may rely more on HCO3
-
 as a carbon source than 3 

H. wrightii or T. testudinum, an hypothesis that should be explored. 4 

 Internal recycling of CO2 has been proposed as an alternate mechanism which can 5 

influence the stable carbon isotope value of benthic macrophytes (Cooper 1989, Abal et al. 1994, 6 

Grice et al. 1996). Seagrass species which have enhanced lacunal volume may display increased 7 

recycling of internal carbon pools, and reduced isotopic discrimination. As internal recycling of 8 

CO2 reduces the degree of carbon back-diffusion, RUBISCO operates in an increasingly closed 9 

environment, converting all inorganic carbon into organic products, resulting in isotopically 10 

heavier δ
13

C signatures (Sharkey & Berry 1985). Internal recycling may therefore serve to 11 

complicate the relationship between the δ
13

C of source DIC, and the δ
13

C of seagrass tissues. Our 12 

data are consistent with more efficient internal recycling of CO2 in Syringodium filiforme than 13 

Halodule wrightii or Thalassia testudinum. It is evident that the factors contributing to the 14 

characteristic δ
13

C value of specific seagrass species are complex, and require studies focused on 15 

detailing the contributions that carbon acquisition mechanisms, seagrass lacunal volume, and 16 

rates of CO2 recycling make to the overall isotopic signature. 17 

 Interspecific variation in δ
15

N across FKNMS reveal significant differences between 18 

Thalassia testudinum and Halodule wrightii, however it remains unclear whether this trend is 19 

due to differences in the degree of isotope fractionation among species, or due to spatial trends in 20 

the isotopic composition of source DIN and seagrass abundance. Across a large spatial scale, T. 21 

testudinum was isotopically heavier than H. wrightii, indicating decreased fractionation amongst 22 

nitrogen isotopes. Successional studies have demonstrated T. testudinum as a climax species with 23 
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the ability to thrive in nutrient poor environments, and H. wrightii as an early successional 1 

species thriving under more eutrophic conditions (Fourqurean et al. 1995). Across large spatial 2 

scales, T. testudinum may monospecifically occupy the most oligotrophic locations with the 3 

lowest DIN pools, resulting in decreased fractionation of the nitrogen isotope, accounting for 4 

heavier δ
15

N values; H. wrightii, occupying areas with higher DIN pools may have higher rates 5 

of fractionation, lowering δ
15

N values. Such results are not contradictory to previous findings 6 

concerning the correlation between δ
15

N and depth. Despite H. wrightii displaying decreased 7 

δ
15

N fractionation with depth, overall this species remains isotopically lighter than T. testudinum 8 

because it is excluded from the highly oligotrophic deeper waters solely occupied by T. 9 

testudinum.    10 

 Elemental comparisons across FKNMS reveal that Thalassia testudinum had significantly 11 

lower N:P ratios and L.I. than Halodule wrightii ( p <0.01), while Syringodium filiforme was not 12 

statistically distinct from either T. testudinum or H. wrightii. Overall, intraspecific variation at 13 

this scale is attributable to the balance between the availability nutrient resources (N and P) and 14 

rates of seagrass productivity (Fourqurean et al. 2005). However interspecific differences in the 15 

N:P ratios of T. testudinum and H. wrightii may result from life history differences between these 16 

2 species. The early successional status and higher growth rates of H. wrightii may account for 17 

increased deviation from seagrass Redfield N:P stoichiometry. Nutrient demand is higher for H. 18 

wrightii than for T. testudinum (Fourqurean et al. 1992b), thus despite possibly being limited to 19 

sites elevated in nutrient concentrations, the fast growth rates of H. wrightii still produce N:P 20 

ratios which are drastically altered from Seagrass Redfield values.  Ecologically, T. testudinum is 21 

a late successional species, and the life history strategy of reduced growth rates may allow T. 22 

testudinum to produce biomass with N:P ratios closer to the ideal Redfield value of 30:1. The 23 
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extensive investment in underground biomass (root/rhizome complex) may additionally allow T. 1 

testudinum to exploit sediment nutrient pools unavailable to other species, thus bringing 2 

stoichiometric ratios closer to 30:1. However, across landscape scales, elemental variation due to 3 

life history differences are difficult to separate from elemental variation due to spatial trends in 4 

nutrients, light, and seagrass abundance. For example, if T. testudinum were relatively more 5 

abundant in deeper, lower light environments, then lower productivities and reduced N:P ratios 6 

may be attributable to this spatial environmental factor, and not species-specific 7 

physiological/ecological properties.  8 

 9 

Interspecific variation at local scales within the FKNMS 10 

 Within site, local comparisons between species control for spatial gradients in abiotic 11 

factors (light and nutrients), hence differences in elemental and isotopic compositions do not 12 

reflect environmental variation, and may be attributed to differences in species specific 13 

physiological and ecological properties. Congruence or discordance of local trends with broad 14 

spatial trends reveals whether interspecific variation is due to physiological attributes or wide 15 

ranging abiotic variation. We find that at the local scale, interspecific trends in stable carbon 16 

isotopic content and elemental ratios are generally held, while trends in stable nitrogen isotopic 17 

content are not consistent with the trends observed at broad spatial scales. 18 

 Local scale interspecific trends in δ
13

C agree with broad scale trends, revealing that 19 

species specific physiological attributes are dominant factors in controlling taxon specific δ
13

C 20 

values. At the same location, Halodule wrightii was significantly lighter than both Thalassia 21 

testudinum and Syringodium filiforme, and T. testudinum was significantly lighter than S. 22 

filiforme, yet heavier than H. wrightii (Fig. 8), suggesting that the interspecific trends at the 23 
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broad scale of the FKNMS are functions of the physiological attributes of carbon acquisition. 1 

Utilizing this model, H. wrightii may represent a seagrass species which, while displaying HCO3
-
 2 

use, exhibits high rates of carbon back diffusion (low CO2 recycling), and thus fails to fix a large 3 

portion of incorporated carbon, allowing for increased isotopic discrimination. Conversely, S. 4 

filiforme may represent a species which displays reduced carbon back diffusion (high CO2 5 

recycling), and thus fixes a large majority of imported carbon. The apparent dependence of 6 

seagrass δ
13

C on specific carbon acquisition properties has terrestrial analogues, as seen in the 7 

δ
13

C variation between C3 and C4 plants. In addition to utilizing PEP carboxylase to fix CO2, 8 

which discriminates less against 
13

C than RUBISCO, C4 plants limit carbon diffusion out of the 9 

leaves with morphological adaptations (e.g. bundle sheaths), and variations in the rates of CO2 10 

back diffusion have been noted to impact the δ
13

C values of C4 vegetation (Farquhar et al. 1989). 11 

While seagrasses are all C3 plants (Beer & Wetzel 1982), the degree of bicarbonate use, extent of 12 

internal recycling, and specific leaf morphology (Lepoint et al. 2008) are likely to play analogous 13 

roles in explaining interspecific variation in the δ
13

C value of marine plants.    14 

 Local scale interspecific trends in stable nitrogen isotope values displayed non-significant 15 

differences amongst all seagrass species. The significant differences observed between Thalassia 16 

testudinum and Halodule wrightii at the broad scale were not observed within sites, indicating 17 

that δ
15

N trends across FKNMS were predominantly a result of spatial variation in seagrass 18 

distribution and DIN pools, as opposed to interspecific physiological differences in nitrogen 19 

uptake and fractionation. However, we note that the reduced sampling effort of the within site 20 

comparisons may have limited our ability to detect a significant difference in δ
15

N between T. 21 

testudinum and H. wrightii, warranting future studies. 22 
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 Interspecific variation in elemental ratios revealed that, similar to broad scale patterns, 1 

Thalassia testudinum displayed significantly lower N:P ratios than Halodule wrightii when 2 

growing at the same location. At the local scale, it was additionally found that T. testudinum had 3 

significantly lower N:P ratios than S. filiforme, previously undocumented at broader scales. 4 

There remained no difference in N:P ratios between H. wrightii and S. filiforme. By removing 5 

spatial variation in environmental variables and seagrass distribution, interspecific differences in 6 

elemental composition reflect important differences in the ecology of these seagrass species. 7 

When co-occurring with T. testudinum, and exposed to similar nutrient and light conditions, 8 

rapidly growing early successional species (H. wrightii and S. filiforme) are further removed 9 

from Seagrass Redfield stoichiometry, indicating heavily nutrient limited growth (particularly 10 

with respect to phosphorus). The slower growth rates of T. testudinum may allow for reduced 11 

nutrient limited growth, and an enhanced ability to thrive under oligotrophic conditions. The 12 

altered elemental ratios of co-occurring seagrasses further suggests that nutrient limitation needs 13 

to be viewed in respect to a specific primary producer, and may not be applicable to other species 14 

within the same location. 15 

 16 

Temporal variation in seagrass isotope content 17 

 As previously documented for Thalassia testudinum (Fourqurean et al. 2005) the δ
13

C of 18 

Halodule wrightii and Syringodium filiforme fluctuate seasonally. Interspecific variation in 19 

seagrass δ
13

C value was not limited to the summer conditions of high productivity, as we would 20 

expect if differential CO2 acquisition were leading to different amounts of isotopic 21 

discrimination during summer periods of maximum photosynthesis. Interspecific differences in 22 

δ
13

C were maintained throughout the year, with peaks during the highly productive summer 23 
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periods and lows during the less productive winter periods. The constant interspecific variation 1 

suggests that species specific δ
13

C values are a result of physiologically based traits, and are 2 

unlikely the result of altered or adaptive carbon acquisition mechanisms during the summer 3 

months. Thus, despite seasonal variation, seagrass δ
13

C values remain significantly distinct 4 

throughout the year, and maintain the similar trends (S. filiforme > T. testudinum > H. wrighii) 5 

found during the summer surveys.  6 

 Seasonal variation in seagrass δ
13

C values have been correlated to seasonal patterns in 7 

productivity, governed both by light availability and temperature (Fourqurean et al. 2001, 8 

Fourqurean et al. 2005, Fourqurean et al. 2007). Drawdown of CO2 pools during the summer 9 

months, combined with limited CO2 diffusion rates, may decrease the degree of fractionation 10 

displayed by RUBISCO. Similar seasonal trends have been noted for a number of phytoplankton 11 

studies, and may indicate carbon limitation during periods of high productivity (Fogel et al. 12 

1992). Alternately, it is possible that increased summer productivities may enhance bicarbonate 13 

use within all seagrass species, elevating δ
13

C values and mitigating carbon limited 14 

photosynthesis. The amplitudes of the sine models were not statistically distinct among species, 15 

thus there was no difference in the degree of seasonal variation. These findings contrasted with 16 

our original hypotheses, which expected the fastest growing seagrass species (H. wrightii and S. 17 

filiforme) to exhibit the greatest amplitude in seasonal variation, suggesting that while taxonomic 18 

differences strongly influence the mean δ
13

C value, seasonal environmental factors strongly 19 

control annual variation within each species. There were no interspecific differences in Φ, and 20 

therefore the timing of the seasonal response (summer peaks and winter lows) amongst species. 21 

It is evident that while seasonal responses are not different in all three seagrass species, their 22 

mean δ
13

C value remains markedly distinct throughout the annual cycle. 23 
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 Seasonal variation in seagrass δ
15

N was undetected for all species. Seasonal cycles in 1 

stable nitrogen isotope content have been previously documented for Thalassia testudinum in 2 

South Florida (Fourqurean et al. 2005), thus the lack of a seasonal pattern in our study may be 3 

due to an insufficient sampling size for this particular isotope parameter.  4 

 The elemental and stable isotopic content of seagrass species in South Florida displays 5 

considerable interspecific variation at both broad and local spatial scales. Here we present the 6 

first documentation of species specific variation in South Florida; by which carbon isotopic 7 

values may be associated with physiological differences in carbon acquisition and elemental 8 

ratios may be associated with ecological differences in seagrass growth rates. As such, the use of 9 

these parameters as indicators of ecosystem properties needs to carefully consider the species of 10 

marine plant being studied. In addition to previously documented spatial and temporal variation, 11 

taxonomic differences in isotopic and elemental content can introduce additional variation of 12 

significant magnitude. Interspecific differences are non-random, thus understanding how 13 

seagrass species differ in isotopic and elemental content will aid in the interpretation of studies 14 

which examine the food web and nutrient dynamics of multi-species seagrass ecosystems. 15 
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Table 1: Elemental and stable isotopic composition of seagrass leaves collected across 

FKNMS in 1999 and 2000 (L.I. = Limitation Index). Superscripts on means within a 

column identify significantly different groups (post-hoc tests, p<0.05) 

 

δ
15

N δ
13

C %C (% dry wt) %N (% dry wt) %P (% dry wt) C:N C:P N:P L.I. 

Thalassia testudinum

Mean 2.0 
A

-8.6 
A

39.2 
A

1.9 
A

0.13 
A

24.1 
A

870.8 
A

36.5 
A

9.6 
A

n 78 78 134 134 134 134 134 134 134

SE 0.15 0.20 0.20 0.02 0.00 0.31 26.28 1.07 0.88

C.V. 0.70 0.20 0.06 0.15 0.28 0.15 0.35 0.34 1.07

Median 1.8 -8.3 39.6 1.9 0.13 24.0 783.7 34.4 6.2

Minimum -2.2 -13.0 31.1 1.4 0.06 17.1 500.3 17.1 0.2

Maximum 5.4 -5.3 43.2 2.6 0.22 33.9 1902.3 76.5 46.5

Halodule wrightii

Mean 1.0 
B

-10.6  
B

43.4 
B

2.3 
B

0.13 
A

22.7 
A

1014.1 
B

44.1 
B

15.3 
B

n 31 31 70 70 70 70 70 70 70

SE 0.29 0.28 0.27 0.05 0.01 0.44 51.76 1.82 1.67

C.V. 1.70 0.15 0.05 0.17 0.37 0.16 0.43 0.35 0.91

Median 0.9 -10.8 43.9 2.26 0.12 22.5 890.9 39.7 9.7

Minimum -3.5 -13.2 35.0 1.48 0.05 16.7 472.3 23.7 0.3

Maximum 4.0 -7.8 46.3 3.18 0.25 33.9 2572.2 94.9 64.9

Syringodium filiforme

Mean 1.6 
AB

-6.2  
C

38.9 
A

2.1 
C

0.13 
A

22.8 
A

866.0 
A

38.9 
AB

10.9 
AB

n 37 37 77 77 77 77 77 77 77

SE 0.25 0.21 0.55 0.06 0.00 0.56 27.89 1.35 1.13

C.V. 0.96 0.20 0.12 0.25 0.30 0.22 0.28 0.30 0.91

Median 1.6 -6.2 41.0 2.2 0.12 21.3 846.3 37.7 8.3

Minimum -1.6 -8.4 27.0 0.9 0.06 15.9 417.8 19.2 0.2

Maximum 4.7 -3.5 44.4 3.2 0.24 36.7 1576.4 77.2 47.2

ANOVA statistics for differences between species

Between Group MS (df) 11.1 (2) 165.8 (2) 502.5 (2) 2.9 (2) 0.0 (2) 60.9 (2) 553539.6 (2) 1337.4 (2) 783.2 (2)

Within Group MS (df) 2.1 (143) 2.6 (143) 10.5 (278) .15 (278) 0.0 (278) 16.2 (278) 107213.3 (278) 169.4 (278) 125.3 (278)

F-ratio 5.2 65.0 48.1 19.0 0.2 3.7 5.2 7.9 6.3

P-value <0.01 <0.01 <0.01 <0.01 0.855 <0.05 <0.01 <0.01 <0.01
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 Table 2: Correlations (non-parametric Spearman's ρ) among elemental content, stable isotopic ratios, and 

water depth for all three species. Correlation coefficients are designated above the diagonal, P values for the 

pairwise comparisons are below the diagonal. Significant (P < 0.05) correlations are indicated in bold. 

 

Thalassia testudinum Depth 
15

N 
13

C C:N C:P N:P L.I. 

Depth  0.113 -0.655 0.377 -0.131 -0.322 -0.208 


15

N 0.326  0.162 0.272 -0.073 -0.182 -0.012 


13

C <0.001 0.158  -0.050 0.327 0.400 0.407 

C:N 0.001 0.016 0.665  0.281 -0.159 0.057 

C:P 0.255 0.526 0.003 0.013  0.871 0.624 

N:P 0.004 0.110 <0.001 0.163 <0.001  0.700 

L.I. 0.067 0.919 <0.001 0.621 <0.001 <0.001  

        

        

        

Halodule wrightii Depth 
15

N 
13

C C:N C:P N:P L.I. 

Depth  0.415 -0.609 -0.090 -0.391 -0.466 -0.547 


15

N 0.020  -0.210 0.494 -0.052 -0.407 -0.423 


13

C <0.001 0.258  0.364 0.631 0.559 0.627 

C:N 0.632 0.005 0.044  0.613 0.173 0.163 

C:P 0.029 0.781 <0.001 <0.001  0.861 0.809 

N:P 0.008 0.023 0.001 0.353 <0.001  0.958 

L.I. 0.001 0.018 <0.001 0.381 <0.001 <0.001  

        

        

        

Syringodium filiforme Depth 
15

N 
13

C C:N C:P N:P L.I. 

Depth  0.650 -0.477 0.321 -0.211 -0.459 -0.500 


15

N <0.001  -0.407 0.631 0.041 -0.390 -0.412 


13

C 0.003 0.012  0.019 0.253 0.279 0.360 

C:N 0.052 <0.001 0.909  0.377 -0.299 -0.203 

C:P 0.210 0.812 0.131 0.022  0.733 0.668 

N:P 0.004 0.017 0.095 0.072 <0.001  0.885 

L.I. 0.002 0.011 0.029 0.228 <0.001 <0.001  
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 Table 3: Parameter estimates for non-linear regressions of pairwise seagrass δ
13

C seasonal data 

from 1999-2000 at 30 permanent monitoring stations in Florida Keys National Marine 

Sanctuary. 

non linear 
regression      

   Parameter estimates (95% confidence interval) 
Species 

Comparison equation r
2
 mean amp Φ 

T.testudinum Y = -8.94 + 0.54 sin(DOY radians + 3.71) 0.55 (-9.41 , -8.48) (-.140 , 1.22) (2.55 , 4.88) 

H. wrightii Y = -11.02 + 0.83 sin(DOY radians + 4.28) 0.56 (-11.79 , -10.24) (-.208 , 1.87) (2.92 , 5.64) 

        

H. wrightii Y= -10.90 +0.69 sin(DOY radians + 4.19) 0.55 (-11.55 , -10.25) (-.193 , 1.57) (2.83 , 5.55) 

S. filiforme Y= -6.67 + 0.83 sin(DOY radians + 4.28) 0.55 (-7.45 , -5.88) (-.224 , 1.89) (2.9 , 5.66) 

        

T. testudinum Y= -8.96 +0.43 sin(DOY radians + 3.59) 0.73 (-9.2 , -8.71) (.068 , .797) (2.84 , 4.35) 

S. filiforme Y= -6.99 +0.61 sin(DOY radians + 4.73) 0.51 (-7.62 , -6.36) (-.216 , 1.43) (3.16 , 6.31) 
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FIGURE CAPTIONS 

Figure 1. Map of study area showing locations of both survey sites and permanent monitoring 

sites. Survey sites have been designated as either single- or multi-species seagrass beds. 

Figure 2. Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Frequency 

distributions of elemental ratios analyzed during 1999 and 2000 across FKNMS. 

Figure 3. Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Frequency 

distributions of Limitation Index values analyzed during 1999 and 2000 across FKNMS. 

Figure 4.  Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Frequency 

distributions of stable carbon isotopes analyzed during 1999 across FKNMS. 

Figure 5.  Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Frequency 

distributions of stable nitrogen isotopes analyzed during 1999 across FKNMS. 

Figure 6.  Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Relationship 

between the δ
13

C and δ
15

N isotope ratios and depth. Linear regression and 95% 

confidence interval of the regression are indicated. 

Figure 7. Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Interspecific 

comparisons in N:P ratios and Limitation Index values where species co-occur. Error bars 

are ± 1 SE.  Significant differences between species are indicated (paired T-tests, ** = p 

< 0.01). The numbers of sites at which the species pairs co-occurred are given over each 

pair of bars. 

Figure 8. Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Interspecific 

comparisons in δ
13

C and δ
15

N isotope ratios where species co-occur. Error bars are ± 1 

SE.  Significant differences between species are indicated (paired T-tests, ** = p < 0.01).  
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The numbers of sites at which the species pairs co-occurred are given over each pair of 

bars. 

Figure 9. Thalassia testudinum, Halodule wrightii, and Syringodium filiforme. Pairwise 

interspecific comparisons of seasonal patterns in δ
13

C of green leaves at the 30 permanent 

monitoring stations for co-occurring species. Each point represents the mean of the sites 

where both species of the pairwise comparisons co-occurred. Error bars represent ± 1 SE. 

The best fit sine model of the form y = mean + amp x sin(time + Φ) is shown, where amp 

is the amplitude of a sine wave and Φ is a phase angle in radians (2π radians = 365 d). 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 

N
:P

20

30

40

50

60

Tt H w TtH w Sf S f

** **

n=65 n=38 n=75

L
im

it
a

ti
o

n
 I

n
d

e
x

0

5

10

15

20

25

30

Tt H w TtH w Sf S f

** **

n=65 n=38 n=75

 
 

 

 



 41 

Figure 8 
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Figure 9 

 

 

 
1

3
C

 (
‰

)

-14

-12

-10

-8

-6

-4
Y= -6.67+.83 s in(D O Y radians +4.28)

Y=-10.90+.69 s in(D O Y radians +  4.19)

R 2=0.55

R 2=0.55

H . w rightii

S . filifo rm e

-14

-12

-10

-8

-6

-4
Y= -8 .94+.54 s in (D O Y rad ians+3.71)

Y= -11.02+.83 s in (D O Y rad ians+4.28)

R
2

=0.55

R
2

=0.56

T. testud inum

H . w rightii

-14

-12

-10

-8

-6

-4

Y= -8.96+.43 s in(D O Y radians +  3.59)

Y= -6.99 + .61 s in(D O Y radians +  4.73)

R
2

=0.51

R
2

=0.73

T. testud inum
S. filifo rm e

Year

 
1

3
C

 (
‰

)
 

1
3
C

 (
‰

)

J M M J S N

20001999

J M M J S NNSJ

1998

J

 


	Florida International University
	FIU Digital Commons
	1-1-2009

	Interspecific variation in the elemental and stable isotope content of seagrasses in South Florida
	Justin E. Campbell
	James W. Fourqurean
	Recommended Citation





