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long-term spatial and temporal patterns 
in C gain and loss in coastal wetlands will 
reduce uncertainty about their persis-
tence and the future of related ecosystem 
services from local to global scales.

The Florida Everglades contains 
wetlands that have been profoundly 
transformed through a history of large-
scale land conversion and water diver-
sion (Figure 1). These wetlands are now 
exceptionally exposed to added pres-
sures of sea level rise, changes in storm 
frequency and severity, and extreme 
weather perturbations (i.e., drought or 
alterations in the timing of rain events; 
IPCC, 2007). The unprecedented land-
scape-scale restoration of the Everglades 
is expected to improve freshwater flow 
to coastal wetlands, but the degree to 
which restoration will mitigate the effects 
of sea level rise and storms, as well as 
how it will interact with activities of the 

9 million residents in the watershed, is 
uncertain. Thus, the Everglades ecosys-
tem is an exemplary model for the types 
of exposures threatening coastal wetlands 
globally. Long-term studies facilitated 
by the Florida Coastal Everglades Long 
Term Ecological Research (FCE LTER) 
project are providing uncommon and 
valuable insight into how changes in 
freshwater supply and climate variabil-
ity interact to affect C gains, losses, and 
storage in the coastal wetlands. Such 
insights are critical to determining long-
term C persistence in the face of change 
(DeLaune and White, 2012). 

Until recently, little was known about 
C cycling, mechanisms controlling its 
variability in coastal ecosystems (Mcleod 
et al., 2011), or the relevance of coastal 
C cycling to global biogeochemical 
cycles (Donato et al., 2011). Initial C bal-
ance approaches applied in South Florida 
coastal ecosystems have shown that 
mangrove forests sequester globally rel-
evant quantities of C at rates that are sen-
sitive to climate change and disturbance 
(Twilley et al., 1992; Bouillon et al., 2008; 
Barr et al., 2012; Breithaupt et al., 2012; 
Malone et al., 2013). Because coastal 
wetlands are often characterized by tidal 
action or flowing water, their carbon 
budgets must also take into account 
exchange over the water–atmosphere 
interface and exchange of C due to 
lateral transport (i.e., aquatic C enter-
ing and exiting the ecosystem). In this 
paper, we present estimates of net eco-
system C balance (NECB), net ecosystem 
exchange (NEE), and aquatic C flux for 
Everglades freshwater marsh, mangrove 
forest, and seagrass ecosystems, where 
available, to make strides toward C bud-
get estimates for these systems. We also 
identify areas of study that will reduce 

Abstr ac t. Recent studies suggest that coastal ecosystems can bury significantly 
more C than tropical forests, indicating that continued coastal development and 
exposure to sea level rise and storms will have global biogeochemical consequences. 
The Florida Coastal Everglades Long Term Ecological Research (FCE LTER) site 
provides an excellent subtropical system for examining carbon (C) balance because 
of its exposure to historical changes in freshwater distribution and sea level rise and 
its history of significant long-term carbon-cycling studies. FCE LTER scientists used 
net ecosystem C balance and net ecosystem exchange data to estimate C budgets 
for riverine mangrove, freshwater marsh, and seagrass meadows, providing insights 
into the magnitude of C accumulation and lateral aquatic C transport. Rates of net 
C production in the riverine mangrove forest exceeded those reported for many 
tropical systems, including terrestrial forests, but there are considerable uncertainties 
around those estimates due to the high potential for gain and loss of C through 
aquatic fluxes. C production was approximately balanced between gain and loss in 
Everglades marshes; however, the contribution of periphyton increases uncertainty 
in these estimates. Moreover, while the approaches used for these initial estimates 
were informative, a resolved approach for addressing areas of uncertainty is critically 
needed for coastal wetland ecosystems. Once resolved, these C balance estimates, 
in conjunction with an understanding of drivers and key ecosystem feedbacks, can 
inform cross-system studies of ecosystem response to long-term changes in climate, 
hydrologic management, and other land use along coastlines. 

Introduc tion
The future of coastal wetland ecosystems 
is uncertain due to a combination of 
climate change impacts (sea level rise, 
changes in storm activity, altered fresh-
water availability) and human activities 
(population growth, changes in resource 
and land use). Consequences of coastal 
ecosystem loss are not limited to the 
regional services they provide (e.g., storm 
mitigation, aquifer recharge, fisher-
ies) but rather extend globally through 
impacts on biodiversity, biogeochemical 
cycling, and atmospheric interactions. 
For instance, recent studies show that 
vegetated coastal systems store up to 
50 times more carbon (C) than tropical 
forests (1,000 Mg organic C ha–1) due to 
high productivity and low C loss through 
respiration (Bouillon, 2011; Mcleod et al., 
2011; Fourqurean et al., 2012b). Studies 
examining patterns and controls on 
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uncertainty in these estimates and their 
drivers, and point out discoveries that 
can emerge from regional and global 
comparisons using consistent approaches 
and methodologies.

Florida Coastal 
Evergl ades Study Area
The FCE LTER site is situated in 
Everglades National Park, which can be 
thought of as a series of linked habitats 
that include freshwater marshes, man-
grove forests, and subtidal areas where 
seagrasses are the dominant producers. 
Freshwater marshes are characterized by 
flooding, with hydroperiods as short as 
0–6 months or as long as 9–12 months 
of the year. They are dominated by 
sawgrass, spikerush, and expansive 
mats of periphyton (an assemblage of 
microorganisms including algae, bac-
teria, and fungi; Gaiser et al., 2012). 
Everglades periphyton assemblages form 

mats that are dominated by calcium car-
bonate (30–50% of dry mass), and their 
residual C is primarily detrital (Donar 
et al., 2004), with autotrophic and hetero-
trophic microbes comprising the small 
remainder of biomass. These freshwater 
marshes grade into mangrove forests 
through an “oligohaline ecotone” that 
expresses marked variability in salinity 
and nutrient availability, depending on 
freshwater flows and marine exposure 
(Rivera-Monroy et al., 2011; Troxler et al., 
2013). Mangrove forests vary from short 
to tall, and most are influenced by semi-
diurnal tides (Chen and Twilley, 1999; 
Ewe et al., 2006). Shallow seagrass ecosys-
tems (with associated macro- and micro-
algal assemblages) dominate the south-
western estuaries of Florida Bay. A mix of 
seagrass beds dominated by Thalassia tes-
tudinum and calcareous rhizophytic mac-
roalgae of Halimeda and Penicillus spp. 
covers the Florida Bay subtidal marine 

environments. Distribution of seagrass 
species and macroalgae assemblages 
responds to salinity and nutrient gradi-
ents (Zieman et al., 1989). 

The FCE LTER study design employs 
a transect approach (Figure 1) to track 
water flow and ecosystem properties 
along the two main Everglades drain-
ages, Taylor Slough/Panhandle (which 
has a short hydroperiod) and Shark 
River Slough (which has a long hydro-
period). Research sites along these two 
freshwater flowpaths allow study of 
the contrasting influences of freshwa-
ter inputs and seawater exposure, peat 
and marl soils, herbaceous and woody 
plant species, and phosphorus (P) status 
(Myers and Ewell, 1990). 

Approaches for Estimating 
C Uptake, Stor age, and 
Tr ansport Across the 
L and-Water Continuum 
Two main approaches are available for 
determining NECB: (1) summing the 
change in C for all pools (i.e., net above- 
and belowground production and soil 
storage), and (2) using eddy covariance-
based NEE measurements combined 
with estimates of aquatic C flux (the 
C entering and leaving the system in 
dissolved and particulate form through 
aquatic transport). Ideally, NECB esti-
mates would be independently esti-
mated by each approach and compared. 
However, if aquatic flux is not known, it 
can be estimated by combining NECB 
determined from the sum of the changes 
in C pools with NEE. Important insights 
into the magnitude of ecosystem C accu-
mulation and C flux (both vertical and 
lateral aquatic transport) can be achieved 
when applied along coastal ecosystem 
gradients from freshwater to mangrove 
forests (Engel et al., 2011; Rivera-
Monroy et al., in press). 

Figure 1. Florida Coastal 
Everglades Long Term 
Ecological Research 
(FCE LTER) site map, includ-
ing locations of 14 biophysi-
cal research sites (red dots) 
along transects through 
Shark River Slough and Taylor 
Slough into to Florida Bay 
within Everglades National 
Park (ENP). Cross-cutting 
research will extend beyond 
these into the South Florida 
Urban Gradient to examine 
socio-hydrological underpin-
nings of current, past, and 
future conditions in the oligo-
haline ecotone. Map created 
by M. Rugge
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Net Ecosystem C Balance as the 
Change in Ecosystem C Pools
NECB can be approximated follow-
ing Lovett et al. (2006) as the change in 
organic C pools per year:

NECB = ∆AGB+ ∆BGB +  
∆S + ∆CWD + ∆Litter,	

(1)

where NECB (for both mangrove and 
sawgrass marsh) equals the sum of the 
change in C in aboveground (∆AGB) 
and belowground biomass stock 
(∆BGB), soil (∆S), course woody debris 
stock (∆CWD), and litter stock (∆Litter). 
Assuming that the change in C stocks 
of CWD and litter are small relative to 
∆AGB, ∆BGB, and ∆S, NECB = ∆AGB 
+ ∆BGB + ∆S. The net change in soil C, 
approximated as soil C accumulation, 
integrates litter and root inputs, hetero-
trophic respiration, and leaching/export. 
Soil C accumulation can be constrained 
by estimating these parameters, but 
soil C accumulation estimated by other 
means (i.e., radiocarbon dating) provides 
a first-order approximation toward esti-
mation of NECB.

NECB and NEE 
Following the Chapin et al. (2006) 
approach, the amount of C accumulat-
ing in the ecosystem (NECB; in mass of 
C area–1 time–1) equals the net ecosystem 
exchange of CO2 (–NEE), with the nega-
tive sign accounting for uptake from the 
atmosphere, plus the net flux (FTOT) of 
all other forms of C through the system 
(dissolved inorganic C, dissolved organic 
C, particulate organic C, carbon mon-
oxide, methane, and volatile organic C; 
Chapin et al., 2006): 

NECB = –NEE + FTOT	 (2)

The aquatic C flux as organic C in 
particulate and dissolved form and dis-
solved inorganic C complicate estima-
tion of NECB because wetlands can 
be both a source and a sink for these 
forms of laterally transported C. In the 
Everglades, all three forms of C are 
transported through freshwater marsh 
ridges and sloughs downslope along a 
gentle topographic gradient that devel-
ops a hydrologic and salinity gradient 
from freshwater marshes upstream to 
mangrove wetlands along the coast. For 

a particular Everglades wetland land-
scape (i.e., marsh or wetland forest), as 
in Figure 2, particulate organic, dissolved 
organic, and dissolved inorganic C also 
enter from upstream ecosystems, with 
C potentially derived from marshes, tree 
islands, and managed flows in canals, or 
seepage from associated levees. Carbon 
exiting the system serves as input to 
downstream ecosystems that include 
mixed marsh and scrub mangroves, 
mangrove forests, and seagrass meadows. 

Carbon Budgets for 
Evergl ades Ecosystems
Methods for Estimation of NEE 
and NECB Parameters
To develop estimates of NEE for 
Everglades coastal ecosystems, a combi-
nation of eddy covariance studies from 
FCE LTER sites were aggregated for a 
mangrove site in Shark River Slough 
(Barr et al., 2010) and marsh sites in 
Everglades Shark River and Taylor 
Sloughs (Jimenez et al., 2012; recent 
work of author Malone and colleagues). 
Ewe et al. (2006) summarize methods for 
obtaining input parameters to estimate 
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NECB in marshes and mangroves. 
Iwaniec et al. (2006) describe methods 
for determining periphyton accumula-
tion rates and gross primary produc-
tion and ecosystem respiration, and, by 
difference, net ecosystem production. 
Periphyton estimates were considered 
separately and not included in NECB 
estimates for sawgrass marsh. Soil C 
accumulation was estimated using radio-
metric analyses of soil (210Pb and 137Cs) 
and accelerated mass spectrometry 14C 
dating of fossilized plant material as 
described in Saunders et al. (2007) and 
Smoak et al., (2013). 

 
Estimates for NEE and NECB in 
Everglades Coastal Wetlands 
In deriving estimates for each of the 
coastal Everglades ecosystems—
riverine mangrove forest, freshwater 
marsh in Shark River and Taylor 
Sloughs, and seagrass—we com-
bined Equations 1 and 2 to determine 

∆AGB+ ∆BGB + ∆S = –NEE + FTOT. 
Mangrove forests were sinks for 

CO2 (–NEE = 1,170 g C m–2 yr–1; 
NECB = 1,038 g C m–2 yr–1). This range 
approximated and exceeded rates of 
NEE found for tropical and temper-
ate systems in large part due to low 
respiration rates (Barr et al., 2010). 
Annual net aboveground primary 
production (∆AGB) of litterfall and 
wood was 14.51 Mg ha–1 yr–1. Overall, 
litterfall production had the highest 
contribution to annual net aboveground 
primary production, accounting for 
approximately 70% of the total. Total 
net aboveground (∆AGB) and below-
ground (∆BGB) primary production 
was 19.2 Mg ha–1 yr–1, with the total 
over two times higher at the Shark River 
riverine mangrove site as compared 
to an average value for Taylor River 
mangrove sites (8.3 ± 0.3 Mg ha–1 yr–1). 
Annual net belowground primary pro-
duction (∆BGB) made a significant 

contribution to this total (Castañeda-
Moya et al., 2011, in press). Soil C accu-
mulation, estimated from radiometric 
analyses (Smoak et al., 2013) was 
194 g C m–2 yr–1. Thus, employing the 
equation above, total aquatic C flux 
(FTOT) is –131 ± 155 g C m–2 yr–1 
(Table 1). An upper-bound estimate of 
FTOT could also be derived by assuming 
that over the longer term (decades to 
centuries), the C accumulation in live 
biomass is negligible when considered 
on an annual basis (191 g C m–2 yr–1, 
assuming wood burial is estimated as 
60% of standing dead wood; Robertson 
and Daniel, 1989; Krauss et al., 2005) 
or an estimate of aquatic export of 
784 g C m–2 yr–1. This upper-bound 
value is nearly a third larger than the 
estimated aquatic C flux using approxi-
mations derived from studies and 
model estimates of dissolved organic, 
inorganic, and particulate organic 
C flux (~ 500 g C m–2 yr–1; Twilley, 

Figure 2. Balancing coastal Everglades ecosystem C budgets. Schematics showing CO2 uptake, transport, and storage (S) components and land-water-atmo-
spheric fluxes that will be used to balance the FCE LTER site C budget. Existing eddy covariance towers in the Shark River Slough (SRS) riverine mangroves (A) 
and SRS and Taylor Slough/Panhandle (TS/Ph) marsh (B) will be supplemented by new towers in the TS/Ph dwarf mangroves and Florida Bay. Aboveground 
and belowground net primary production and ecosystem R are measured at all sites, and C flux research is being expanded to quantify lateral transport of DIC, 
DOC, and POC in Taylor and Shark Rivers. Storage is estimated using sediment elevation tables and dated sediment cores. By quantifying these parameters 
across a spatio-temporally variable template of fresh and marine water delivery, we can create dynamic C budgets to determine how changes in water supply 
influence the balance of C uptake, storage, and transport. Figure created by J. Barr
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1985; Romigh et al., 2006, as sum-
marized in Barr et al., 2010) but does 
not consider aquatic export, sediment-
water or groundwater-surface water 
exchange, or C transformations. These 
large uncertainties identify the need for 
estimating FTOT via measurements of 
dissolved organic, inorganic, and par-
ticulate organic C through tidal creeks 
and larger rivers, as long as drainage for 
these creeks and C flux approximations 
are further verified with process-based 
studies. On an annual basis, the NECB 
validation provides important insights 
into aquatic C export, although major 
sources of uncertainty remain. 

For Everglades freshwater sawgrass 
marsh sites, NEE estimates show that 
Shark River Slough is a small source 
of CO2, and Taylor Slough is a small 
sink (Table 1). Along the Shark River 
Slough transect, sawgrass above
ground net primary production is about 
400–700 g dw m–2 yr–1 and is higher 
than that in the Taylor Slough transect, 
which is 250–400 g dw m–2 yr–1. In 
Taylor Slough, plants are smaller, but 
culm (stem) density is higher. Also, 
because Taylor Slough freshwater marsh 
sites dry more frequently and for a lon-
ger time, these sites are dominated by 
marl, a calcitic mineral soil, rather than 
peat soil. Annual belowground sawgrass 
productivity averaged 450 g dw m–2 yr–1, 
with approximately two-thirds occurring 
in the top 10 cm of soil (Juszli, 2006). 
These root-production estimates are 
generally consistent with rates measured 
in other freshwater marshes (Birch and 
Cooley, 1982; Symbula and Day, 1988) 
but lower than those reported for salt 
marshes (Valiela et al., 1976; Schubauer 
and Hopkinson, 1984). Given the higher 
sawgrass aboveground primary produc-
tion, ∆AGB was higher in Shark River 
Slough than in Taylor Slough and ∆BGB 

values were approximately equivalent 
(Table 1; Juszli, 2006). Soil C accumula-
tion was estimated as 90 g C m–2 yr–1 
(Saunders et al., 2007). The low values for 
NEE relative to aboveground and below-
ground net primary production, and 
equivalent rate of soil C accumulation, 
suggest that exported C mass and C accu-
mulated in living biomass are equivalent 
(Table 1). This is in good agreement with 
rates of leaf turnover for sawgrass plants 
estimated to occur three to four times 
within a year (Childers et al., 2006). 
Furthermore, these low NEE values also 
suggest that water-table variation has 
a significant effect (Schedlbauer et al., 
2010) and that periphyton may contrib-
ute to CO2 uptake. Field tests, however, 
suggest that periphyton does not con-
tribute significantly to NEE (Schedlbauer 
et al., 2012), although this result assumes 
that aquatic C import is negligible, and 
it neglects the role of flocculent material 
production and deposition, also reported 
to be important in Everglades freshwater 
marsh C cycling (Troxler and Richards, 
2009, and references therein).

Periphyton biomass is high com-
pared to algal biomass in other wetland 
ecosystems, averaging over 100 g C m–2 

and attaining up to 10,000 g AFDM m–2 
(AFDM = ash-free dry mass) at some 
localities (Ewe et al., 2006; Iwaniec et al., 
2006; Gaiser, 2009; Gaiser et al., 2011) 

vs. 10–50 g m–2 yr–1 from other wet-
land types (Vymazal and Richardson, 
1995). Determining the influence of 
periphyton on NEE is complicated by 
difficult-to-capture metabolic pulses that 
occur during drying or wetting events 
(Thomas et al., 2006) and by exchanges 
of organic C among the mat, sediment, 
and water column that are not measured 
in standard approaches. Schedlbauer 
et al. (2012) attempted to evaluate the 
influence of periphyton on net ecosystem 
CO2 exchange at the short-hydroperiod 
Taylor Slough marsh and found that 
periphyton did not significantly contrib-
ute to CO2 fluxes. While it is clear that 
periphyton can regulate water-column 
oxygen concentrations (McCormick 
et al., 1997; McCormick and Laing, 
2003) and aquatic production and res-
piration (Hagerthey et al., 2011), these 
whole-system studies suggest that het-
erotrophic processes in the mat and of 
mat-produced C in the floc and water 
column may, in fact, balance gross pri-
mary production (Schedlbauer et al., 
2012). This is supported by the C balance 
estimates we determined for the fresh-
water sawgrass marsh in Taylor Slough. 
However, periphyton also likely plays a 
major role in the cycling of inorganic C 
between dissolved and particulate forms.

Carbon from primary production of 
seagrasses, estimated for Florida Bay at 

Table 1. Values for annual net ecosystem C balance (NECB),  
net ecosystem exchange (NEE), and derived aquatic carbon (Aq C) export.

Ecosystem Site

g C m–2 yr–1

Soil AG BG
Aq C 

ExportNECB –NEE

Marsh
SRS 621 ± 59 –45 ± 16 90 291 ± 35 240 ± 48 666 ± 61

TS 457 ± 61 50 ± 15 90 122 ± 12 245 ± 60 407 ± 63

Mangroveψ SRS 1,038 ± 88 1,170 ± 127 194 638 ±36 206 ± 80 –131 ± 155

Seagrass FL Bay       75 ± 40    

ψ Mangrove root production estimates for size classes < 2 mm to 20 mm in diameter (to a depth of 90 cm). 
AG = aboveground. BG = belowground. SRS = Shark River Slough. TS = Taylor Slough.
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a rate of 31–182 g Corg m–2 yr–1 (Zieman 
et al., 1989) with ~ 37% of net aboveg-
round primary production, is channelled 
into belowground biomass (Herbert 
and Fourqurean, 2009) and, eventually, 
the sediment (Orem et al., 1999). New 
results suggest that C storage in seagrass 
sediment rivals that of tropical forests, 
and that Florida Bay sediment is C-rich 
compared to seagrass systems worldwide 
(Fourqurean et al., 2012a,b). This high 
capacity for storing C results from high 
primary production of seagrass mead-
ows, their capacity to filter out particles 
from the water column, and their subse-
quent storage in soils (Fourqurean et al., 
2012b). Low decomposition rates in the 
oxygen-poor seagrass soils allow accu-
mulation over millennia and yield high 
stability of seagrass Corg storage. 

Aquatic C Export 
Although aquatic C flux can only be 
derived by combining estimates for 
NEE and NECB, FCE LTER research 

conducted in the Everglades illustrates 
some important patterns, linkages, and 
insights into important C processes and 
transformations, and it provides prelimi-
nary estimates of C flux. Figure 3 shows 
the main biogeochemical processes 
involved in organic matter (OM) source, 
transport, and fate for the freshwater 
marsh, the estuarine ecotone, and the 
marine end-member for the Everglades. 
Differences in OM between Shark River 
and Taylor Sloughs are derived from 
biomass and thus are related to vegeta-
tion cover and primary productivity and, 
consequently, to aquatic C exchange. In 
Everglades marshes, the source materials 
for particulate OM production, depo-
sition, and accumulation are mainly 
derived from periphyton and freshwater 
macrophytes. Although oligotrophy 
limits the presence of free-floating 
plankton as a potential source for par-
ticulate organic C, this C pool is mainly 
represented in the form of flocculent 
material and is spatially controlled by 

local vegetation patterns and periphyton 
production (Neto et al., 2006; Pisani 
et al., in press). In the estuarine ecotone, 
mangrove-derived OM likely dominates 
the particulate organic C source, either 
in the form of detritus or of resuspended 
sediment mobilized through tidal 
action (Mead, 2003; Ding He, Florida 
International University, pers. comm., 
2013). Lastly, particulate organic C in 
the marine end-members is, to a large 
extent, a mixture of terrestrial particulate 
organic C export and marine-derived 
OM sources such as phytoplankton 
and seagrass detritus (Jaffé et al., 2001; 
Hernandez et al., 2001; Xu et al., 2006, 
2007; Xu and Jaffé, 2007). 

These studies also indicate that canal 
inputs (Lu et al., 2003; Yamashita et al., 
2010), leachates of soils, and plant exu-
dates (Lu et al., 2003; Scully et al., 2004; 
Davis et al., 2006; Maie et al., 2006; 
Yamashita et al., 2010) are quantitatively 
important inputs of dissolved organic 
C to the estuarine ecotone (Cawley 

Figure 3. Conceptual model of organic matter (OM) compartments and fluxes, based on research conducted by the FCE. The lower diagram refers to drivers 
of ecosystem structure and exchange. Figure 2 summarizes the flows connecting environments and the drivers affecting the exchange of OM (timing, quality, 
quantity). Both particulate organic matter (POM, as floc) and dissolved organic matter (DOM, derived from freshwater plant production) are delivered to the 
estuarine ecotone from upstream. Seagrass-derived litter, POM, and DOM are delivered to the ecotone from downstream. Hydrology and biogeochemical pro-
cessing control the degradation and residence times of these C pools, and are not fully understood. Thus, whether these allochthonous sources of OM help to 
fuel the estuarine productivity peak remains to be determined. Although we have made great strides in understanding OM dynamics in the FCE, there are still 
many OM pools and pathways to investigate in the context of a dynamic south Florida hydroscape. Figure created by R. Chambers, R. Jaffe, and V. Rivera-Monroy
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et al., in press). In addition, there are 
sources from the fringe mangrove for-
ests (Jaffé et al., 2004; Cawley et al., in 
press) as well as potential exchange with 
groundwater (Chen et al., 2010, 2013). 
Mangroves were found to contribute up 
to 30% of the dissolved organic carbon 
that is transported by the Shark River. 

Uncertainties and Areas 
for Further Work
Key areas of uncertainty that will be 
better constrained by resolving input 
parameters and synthesizing process-
based studies are estimates of net soil 
C change, aquatic C flux, and, spe-
cifically, the contribution of water table 
variation and periphyton to NEE. Soil 
C process-based studies can be used 
to constrain these values of net soil C 
change and, in some cases, to validate 
these estimates (e.g., Chambers, 2012). 
While the approaches we employed 
were useful in constraining aquatic flux 
estimates, further uncertainties remain 
with regard to C form and porewater 
exchange of dissolved inorganic C in 
mangroves, recently illustrated to exceed 
dissolved organic C flux (Alongi et al., 
2012). Comparing these fluxes and stock 
changes, which can represent differ-
ent temporal scales, is also a challenge 
that requires a unified approach beyond 
what is considered here (Chapin et al., 
2006), especially for cross-system stud-
ies. Integrating process-based studies 
with estimates of NECB and aquatic flux 
estimates will further improve this work 
(e.g., Cawley et al., in press). Another 
source of uncertainty that would be 
common in estimates of NEE in wet-
lands is that imposed by water-table 
variation. A proportion of the ecosys-
tem–atmosphere CO2 exchange that 
would occur in wetlands with low or no 
water-table inundation would be reduced 

significantly in wetlands where plants 
were inundated and that fraction would 
likely be exported through lateral flux. 

Synthesis of NEE data sets of longer 
time series will also improve integra-
tion of NEE and NECB. Although 
seagrass metabolism may be the easiest 
to infer from whole-system measure-
ments, more work is needed to under-
stand how C cycling within and among 
ecosystem components contributes to 
estimates of NECB in these ecosystems. 
In Everglades freshwater marshes, meth-
ane could have a substantial impact on 
ecosystem C balance. While ecosystem-
scale measures of CH4 concentration are 
not yet available, data from small-scale 
experiments could be considered in 
order to reduce uncertainty around its 
potential contribution. Other areas of 
anticipated work include development 
of modeled scenarios of regional climate 
and hydrologic models (e.g., Fitz and 
Sklar, 1999) and continued mechanistic 
advances in microbial pathways and 
rates of change in fluxes (Chambers, 
2012). Moreover, while the approaches 
we used for these initial estimates were 
informative, a resolved approach for 
addressing areas of uncertainty is criti-
cally needed for coastal wetland eco-
systems. The intensive C budget studies 
summarized here and the approach of 
the Chapin et al. (2006) framework in 
Equations 1 and 2 can be combined to 
provide a strong basis for coastal LTER 
inter-site C research. Synthesis efforts 
such as these that draw on long-term, 
integrated data sets for multiple sites 
broaden the ecological, geographical, 
and social contexts necessary to under-
stand drivers and effects of their interac-
tions, reduce uncertainties, and predict 
change. These efforts can increase 
understanding of coastal ecosystem 
drivers and the patterns and processes 

with which critical global policy issues, 
including land use change in the coastal 
zone, can be addressed. 
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