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Abstract. Despite the importance of mangrove ecosystems
in the global carbon budget, the relationships between envi-
ronmental drivers and carbon dynamics in these forests re-
main poorly understood. This limited understanding is partly
a result of the challenges associated with in situ flux stud-
ies. Tower-based CO2 eddy covariance (EC) systems are in-
stalled in only a few mangrove forests worldwide, and the
longest EC record from the Florida Everglades contains less
than 9 years of observations. A primary goal of the present
study was to develop a methodology to estimate canopy-
scale photosynthetic light use efficiency in this forest. These
tower-based observations represent a basis for associating
CO2 fluxes with canopy light use properties, and thus provide
the means for utilizing satellite-based reflectance data for
larger scale investigations. We present a model for mangrove
canopy light use efficiency utilizing the enhanced green veg-
etation index (EVI) derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) that is capable of pre-
dicting changes in mangrove forest CO2 fluxes caused by a
hurricane disturbance and changes in regional environmen-
tal conditions, including temperature and salinity. Model pa-
rameters are solved for in a Bayesian framework. The model
structure requires estimates of ecosystem respiration (RE),
and we present the first ever tower-based estimates of man-
grove forestRE derived from nighttime CO2 fluxes. Our in-
vestigation is also the first to show the effects of salinity on
mangrove forest CO2 uptake, which declines 5 % per each 10
parts per thousand (ppt) increase in salinity. Light use effi-
ciency in this forest declines with increasing daily photosyn-

thetic active radiation, which is an important departure from
the assumption of constant light use efficiency typically ap-
plied in satellite-driven models. The model developed here
provides a framework for estimating CO2 uptake by these
forests from reflectance data and information about environ-
mental conditions.

1 Introduction

Mangrove forests have received significant attention recently
due to an increased recognition of the role these systems play
in global carbon (C) cycles (Donato et al., 2011). However,
compared to terrestrial systems, the processes that regulate
ecosystem–atmosphere carbon dioxide (CO2) fluxes, includ-
ing gross primary productivity (GPP) and ecosystem respi-
ration (RE), are not well understood. Tower-based, eddy co-
variance (EC) measures of the net (i.e., GPP–RE) ecosystem–
atmosphere CO2 exchange (or NEE) in conjunction with
continuous measurements of environmental variables were
started only recently compared to terrestrial systems (see
Barr et al., 2010) and remain extremely rare. These obser-
vations show that canopy-scale CO2 fluxes are influenced by
stressors that are unique to mangrove forests, including pe-
riodic flooding and variable soil pore water salinity. Using
these EC data to calculate canopy-level light use efficiency
(LUE, defined as GPP divided by incoming photosynthetic
active radiation (PAR)) will improve our understanding of
C cycling in these forests. Modeling canopy-level LUE in
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relation to PAR and ground-based scalars in turn provides a
first step towards using satellite reflectance data to define the
larger role these forests play in both regional and global C
budgets. However, typical LUE models developed for terres-
trial systems do not account for the unique factors that in-
fluence C dynamics in tidal forests, and new approaches are
needed.

For all plant communities, including mangrove forests, the
net ecosystem carbon balance (NECB, or the C accumulating
in plants and soils; Chapin et al., 2006) can be estimated us-
ing the following expression:

NECB= −NEE+ FDIC + FDOC+ FPOC+ FCO+ FCH4 + FVOC (1)

where all terms in Eq. (1) are expressed in g C m−2 t−1. The
FDIC, FDOC, andFPOC are the net lateral exchanges of dis-
solved inorganic C (DIC), organic C (DOC), and particulate
organic C (POC). TheFCO, FCH4, andFVOC are net absorp-
tion (or efflux (negative sign)) of carbon monoxide (CO),
methane (CH4), and volatile organic C (VOC), respectively.
Methanogenesis is generally considered negligible for man-
grove soils, where sulfate reduction prevents bacterial pro-
duction of CH4 (Strangmann et al., 2008). Mangrove foliage
emits several biogenic hydrocarbons (Barr et al., 2003), but
fluxes were several orders of magnitude smaller than leaf-
level CO2 carboxylation rates. Carbon monoxide was pro-
duced from the photodegradation of chromophoric dissolved
organic matter (CDOM) derived from red mangrove leaf lit-
ter (Shank et al., 2010). While it is generally recognized that
mangrove forests are sources of CO, CH4, and VOC, their
contribution to the carbon budget (Eq. 1) has not been quan-
tified. Negative NEE values represent a loss of C as CO2 from
the atmosphere, and negativeF values represent C loss from
the ecosystem. In terrestrial systems with minimalF , pos-
itive nighttime NEE values are considered a proxy forRE.
Compared to terrestrial systems, mangrove forests are char-
acterized by low nighttime NEE, large daytime –NEE values
and large−F (Barr et al., 2012). However, comprehensive
in situ measures of mangrove forest C dynamics that simul-
taneously account for both vertical C fluxes (i.e., NEE) and
lateral C fluxes (F ) have not been attempted. Continuous and
long-term estimates ofFDIC, FDOC, andFPOCusually do not
exist. Instead, lateral C fluxes are ordinarily determined only
during short-term intensive field campaigns (e.g., Romigh et
al., 2006; Alongi et al., 2004; Souza et al., 2009; Mayorga et
al., 2005). In the absence of these measurements, nighttime,
tower-based NEE estimates in many mangrove forests cannot
be used as a direct proxy forRE as they are in terrestrial sys-
tems, since the actual ecosystem-scale respiratory CO2 fluxes
in tidal systems will also include respiratory fluxes derived
from F transported outside of the EC footprint. Nonstandard
methods for calculatingRE, and therefore GPP, are required
in mangrove forests utilizing EC.

Monteith (1966, 1972) first proposed the concept of relat-
ing GPP to PAR through a light use efficiency term,ε, or mul-
tiplicative efficiency terms. Light use efficiencies describe

the process of light absorption by green vegetation and pho-
tosynthetic CO2 assimilation by foliage. Light use efficiency
terms in ecosystem models (e.g., Xiao et al., 2004; Cook
et al., 2008; Potter, 2010) are calculated in a two-step pro-
cess. First, functional relationships are established between
environmental drivers, such as temperature and water stress,
that regulate physiological functioning and thus GPP. A sec-
ond step is to determine how much of the incident solar ir-
radiance is absorbed by photosynthetic active green vegeta-
tion. Useful proxies for the process of light absorption by
vegetation can be determined using remote sensing informa-
tion (Zhao and Running, 2008). In one of the first attempts
to incorporate remote sensing information into ecosystem
models, Tucker et al. (1983) estimated the productivity of
grasslands using the normalized difference vegetation index
(NDVI) from the Advanced Very High Resolution Radiome-
ter (AVHRR) aboard polar-orbiting platforms. Several other
models have been tested and validated using relationships be-
tween remote sensing information and ground-based C flux
data (Heinsch et al., 2006; Turner et al., 2006; Zhao et al.,
2005). More recently, Chen et al. (2010) applied the en-
hanced vegetation index (EVI) as input into a vegetation pho-
tosynthesis model (VPM, Xiao et al., 2004) to take advan-
tage of the high return frequency (1–2 per day) of the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) and
the increased spatial resolution (30 m) of LANDSAT. How-
ever, the usefulness of satellite reflectance-driven models
such as these developed for simulating terrestrial GPP, such
as the MODIS GPP product (http://modis.gsfc.nasa.gov/data/
dataprod/nontech/MOD17.php) has not been determined for
mangrove forests. These types of models are needed to bet-
ter integrate estimates of mangrove forest CO2 assimilation
patterns across tropical and subtropical coastal zones into
global-scale C balance calculations. Therefore, the objectives
of this study are the following: (1) to calculateRE and GPP
in a tidal mangrove forest using a novel application of EC-
based estimates of NEE, (2) to parameterize and test a model
of daily canopy GPP and LUE driven by satellite reflectance
data, and (3) to compare these GPP estimates to the MODIS
GPP product for this location.

2 Methods

2.1 Site description and meteorological and eddy
covariance measurements

The study site (25.3646◦ N, 81.0779◦ W), located within Ev-
erglades National Park, is near the mouth of the Shark River
and ∼ 4 km from the Gulf of Mexico (Fig. 1). The on-
site 30 m eddy covariance tower is colocated with long-term
monitoring sites operated by the Florida Coastal Everglades
Long Term Ecological Research (FCE LTER, site SRS6)
program and the US Geological Survey (site SH3). Around
the tower site, the dominant mangrove species include
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Fig. 1. Map of Everglades National Park showing mangrove forest zones along the coast, the study site, 668 

and the Park boundaries, defined by the thick green line.  The 30-m EC tower, SRS6, and SH3 are co-669 
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Fig. 1.Map of Everglades National Park, showing mangrove forest zones along the coast, the study site, and the park boundaries, defined by
the thick green line. The 30 m EC tower, SRS6, and SH3 are colocated at the study site.

Rhizhophora mangle, Avicennia germinans, and Laguncu-
laria racemosa, and their maximum heights reach about
19 m. Meteorological measurements and EC observations to
determine NEE have been made since 2003 at a height of
27 m.

During October 2005 the forest experienced a major
disturbance caused by Hurricane Wilma. The disturbance
caused major defoliation of the forest and tree mortality,
with 25 % of stems> 1.5 m in height being destroyed by
the hurricane winds (Barr et al., 2012). Following Hurricane
Wilma, instruments were deployed on a new 30 m tower with
renewed measurements beginning in November 2006 (Barr
et al., 2012). Continuous meteorological measurements are
recorded as 1 min averages on data loggers (model CR3000,
Campbell Scientific, Inc., Logan, UT), and stored in files
saved at 30 min intervals in a laptop computer located on
site. High-frequency (10 Hertz) EC data are stored directly
on the laptop computer for subsequent processing to derive
30 min average fluxes (using Matlab code, The Mathworks,
Inc., Natick, MA), following the protocols employed by sci-
entists associated with the AmeriFlux network (http://public.
ornl.gov/ameriflux/index.html). Data gap-filling procedures
were implemented to produce continuous time series. Addi-

tional details for site characteristics and data processing pro-
tocols are provided in Barr et al. (2010, 2012).

2.2 Partitioning NEE into RE and GPP

Estimates of ecosystem respiration (RE; µmol CO2 m−2 s−1)
are needed to calculate GPP (µmol CO2 m−2 s−1), which
is defined as GPP =−NEE +RE. In tidal mangrove forests
equipped with EC, nighttime NEE can be considered as a
proxy for nighttimeRE only when the sediment surface is
exposed to the atmosphere during low tides. NEE represents
the EC-derived CO2 flux at a height of 27 m plus the amount
of CO2 stored in a column of air below this height since
the previous time step. This storage was estimated from the
change in CO2 mixing ratio at the infrared gas analyzer level
of 27 m (Barr et al., 2010). When the sediment surface is in-
undated during a flood tide, a fraction of the CO2 respired
by soil, roots, and detritus is dissolved in the overlying water
column and transported into the adjacent estuary as DIC dur-
ing the subsequent ebb tide. Therefore, tower-based night-
time NEE6= RE when the surface is inundated. To correct
for this effect in our calculations of GPP, nonlinear least-
squares regression analyses were performed to express night-
time RE as a function of air temperature,TA (after Reich-
stein et al., 2005), using only valid NEE values determined
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when the sediment surface was exposed (Fig. 2). Regres-
sion analyses of nighttime NEE as a function ofTA during
high tides show significantly different relationships than at
low tide and are included in Fig. 2 for comparison. High-tide
data were excluded from our calculations and the function
relating low-tideRE to TA was used to gap-fill these periods.
Data gaps occurring when the EC system was not operating,
or when there was insufficient turbulence (u∗ < 0.14 m s−1;
Barr et al., 2012) and when the flux footprint included large
contributions from adjacent rivers (Barr et al., 2010), were
also filled using this function. TheRE function in Eq. (2) in-
cludes both an Arrhenius-type activation component and a
high-temperature deactivation response.

RE = RE20exp

(
E0

(
1

TREF− T0
−

1

TA − T0

))/
(2)

(1+ exp(ED (TA − TD)))

The RE20 (µmol (CO2) m−2 s−1) represents the ecosystem-
level respiration rate at the reference air temperature,TREF,
which is set as 293.15 K. ThisRE20 value differs from the
more common reference temperature of 283.15 K (Lloyd
and Taylor, 1994) because it is a closer approximation of
the minimum temperature range frequently observed in this
forest. Also, theRE was related to air temperature rather
than the more prevalently used soil temperature (Lloyd and
Taylor, 1994). The use of air rather than soil temperature
was justified by considering the sources contributing toRE.
Foliage respiration alone can contribute 73 % of the to-
tal RE during low-tide periods at night (Barr et al., 2010).
Measurements of soil respiration in relatively undisturbed
mangrove forests throughout the Caribbean, Australia, and
New Zealand (Lovelock, 2008) suggest that soils contribute
less respired CO2 to RE compared to that of aboveground
sources. However, the fractional contribution of the soil to
RE may increase as a result of hurricanes or other distur-
bances. Soil respiration increased by 18 % in a dry tropical
forest in Mexico one year following disturbance from Hurri-
cane Wilma (Vargas and Allen, 2008).

In Eq. (2) the Eo (K) and ED (K) parameters are
temperature-dependent activation energy and deactivation
sensitivity, respectively. TheTo (K) also accounts for changes
in activation energy associated with variations in tempera-
ture. Its expected values range between 0 K and observed air
temperature (Lloyd and Taylor, 1994). TheTD (K) term is
the temperature at which deactivation occurs, and represents
a unique feature in this study that explicitly accounts for a
reduction in respiration above a threshold temperature. The
deactivation term, represented by the denominator in Eq. (2),
is assumed equivalent to the relationship describing foliage
carboxylation and dark respiration rates (Campbell and Nor-
man, 1998). The response ofRE to temperature is a dynamic
process, and consequently the fitted characteristics in Eq. (2)
are expected to change seasonally. To capture such variability
in respiratory responses, values ofRE and regression charac-
teristics (e.g.,RE20, E0, T0, ED, TD) were determined for a 3-

day moving window using nighttime data during low-tide pe-
riods from a 15 day centered window. Similar to the findings
of Reichstein et al. (2005), a window size of 15 days was suf-
ficiently long to provide adequate data and temperature range
for performing the nonlinear regression of Eq. (2) and short
enough to minimize the confounding seasonal changes in res-
piration response. During each 3-day period, the relationship
in Eq. (2) was used to compute half-hourly daytimeRE, and
half-hourly GPP values were computed as the difference be-
tweenRE and daytime NEE (i.e., GPP =−NEE +RE). Half-
hourly values of GPP (µmol C m−2 s−1) were summed as
shown in Eq. (3) to provide daily GPP and 8-day average
values in units of mol C m−2 per day. This 8-day time step
matches that of the MODIS product and removes noise in the
daily data, while retaining seasonal trends. The coefficient
of 0.0216 in Eq. (3) converts units of µmol CO2 m−2 s−1 to
g C m−2 per each 30 min flux averaging interval.

GPP= 0.0216
48∑
i=1

GPP30 min (3)

2.3 Albedo, EVI, and MODIS GPP

We investigate seasonal changes in canopy structural prop-
erties using two measures of canopy reflectance: albedo and
EVI. The surface albedo (Fig. 3a) was estimated as the ratio
of reflected to incoming solar irradiance measured above the
canopy. The adjusted albedo was estimated as the average of
albedo values for the periods when the solar elevation angle
ranged between 35 and 50◦. This adjustment was necessary
to remove the influence of changing daily solar elevation an-
gles over the course of the study.

The MODIS EVI product was used to examine seasonal
patterns in the mangrove canopy reflectance properties. It
is well established (Huete et al., 2002; Jiang et al., 2008)
that the EVI data are more reliable compared to NDVI in
environments with high biomass content. For this study the
EVI data (Fig. 3b) were obtained from the MOD13A1 prod-
uct (EOS;http://modis.gsfc.nasa.gov/). The mangrove flux
tower site is included in grid h10v06, with a 500 m spatial
resolution. Using GIS (geographic information system) soft-
ware (Matlab Mapping Toolbox, The Mathworks, Inc., Nat-
ick, MA), the 16-day composite average EVI values for the
pixel corresponding to the flux tower site and the 8 adjacent
pixels were extracted for the period 2000 to 2011. This 9-
pixel domain approximates the extent of the EC measure-
ment footprint (see Fig. 1 in Barr et al., 2010). The MODIS
GPP product, MOD17A2 (https://lpdaac.usgs.gov), was also
extracted from grid h10v06 for comparison with estimated
and modeled GPP in this study. MODIS GPP represents a 16-
day composite average with a 1 km spatial resolution. Values
were averaged for the pixel corresponding to flux tower site
and 4 adjacent pixels included within the measurement foot-
print and not centered over water.
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2.4 LUE modeling framework

The mangrove vegetation photosynthesis light use efficiency
model (MVP-LUE) presented here is based on the production
efficiency modeling (PEM) framework (Prince and Goward,
1995; Running et al., 1999, 2000). It has the basic form of

LUE =

∑
GPP/

∑
PAR= εg × fPAR, (4)

where LUE (mol C (mol photons)−1) is calculated as the ratio
of 8-day sums of GPP to PAR (mol (photons) m−2). Theεg is
a quantum efficiency (mol C (mol photons)−1) that describes
conversion of absorbed PAR into gross primary production
specific to the irradiance incident on green vegetation. fPAR
(unitless) is the ratio (8-day average) of PAR absorbed by
green vegetation to total incident PAR determined above the
vegetated landscape. Previous modeling studies suggested
that fPAR linearly increased with EVI (Xiao et al., 2004) or
NDVI (Goetz et al., 1999; Schubert et al., 2010). However,
in the present study, fPAR increases in response to increas-
ing EVI as determined from the 500 m spatial resolution data
according to

fPAR = 1− e−mEVI×EVI, (5)

wheremEVI determines the initial slope of fPAR response to
increasing EVI. The rate of increase in 8-day average fPAR
to increasing EVI diminishes and is dependent on the value
of mEVI . We found that the observed quantum LUE of the
mangrove ecosystem approaches some optimum efficiency,
ε0 (defined as the light conditions when maximum NEE is at-
tained). Theε0 is not known a priori and must be determined
from an optimization procedure. Most of the time, environ-
mental conditions are less than optimal, and thereforeεg is
often less thanε0. Theεg represents a multiplicative chain of
efficiencies (Monteith, 1972) where eachf term in the chain
accounts for a reduction in quantum LUE belowε0.

Several variables contribute to reducing the quantum effi-
ciency in this forest. The first is elevated foliage temperature
resulting from air temperatures (TA > 303 K) which elicit
suboptimal carboxylation rates (Barr et al., 2010). Such re-
sponses to elevated temperature can be expressed by the re-
lationship shown in Eq. (6) formulated by Raich et al. (1991):

fTA =
(TA − TMin)(TA − TMax)

[(TA − TMin)(TA − TMax)] −
(
TA − TOpt

)2
, (6)

where TA is air temperature recorded at 27 m above the
ground (Fig. 4a), andTMin , TMax, andTOpt are minimum,
maximum, and optimal temperatures for GPP, respectively.
The functionfTA attains the value of 1 whenTA becomes
the same asTOpt and is set to zero forTA < TMin . Raich
et al. (1991) determined GPP as a function of temperature
for several vegetation types in South America, including
tropical evergreen forests, grasslands, and temperate forests.

To compare the temperature dependency of productivity
that occurred independently of the magnitude of GPP, ra-
tios of GPP to site-specific maximum GPP (GPPMax) were
compared. All three vegetation types exhibited ratios (i.e.,
GPP / GPPMax) that followed the relationship in Eq. (6), but
each possessed its own unique characteristics (TMin , TMax,
andTOpt). While this relationship in Eq. (6) was not previ-
ously quantified for the mangrove ecosystem, the shape of
the curve is consistent with –NEE response toTA during
2004–2005 (see Fig. 6 in Barr et al., 2010) for conditions
when PAR> 1000 µmol (photons) m−2 s−1.

Barr et al. (2010) showed a linear decline in the 8-day av-
erages of LUE / LUEsalinity = 0 versus 8-day average soil pore
salinity between 10–40 parts per thousand (ppt) of dissolved
solutes during both pre- (2004–2005) and post-hurricane
(November 2006 to December 2011) periods. This reduction
in LUE attributed to changes in salinity (fsal) is defined in
Eq. (7). LUEsalinity = 0 was determined from the intercept of
the regression.

fsal = 1− msal× salinity (7)

Themsal defines the rate of decrease infsal in response to in-
creasing salinity. The decline in LUE with increasing salin-
ity may be partially attributed to photosynthetic saturation
under high PAR (> 50 mol photons m−2 day−1), which coin-
cides with maximal salinity during May and June. A linear
function in Eq. (8) was included to account for photosynthe-
sis saturation manifested as declining LUE with increasing
PAR.

fPAR = 1− mPAR× PAR (8)

ThemPAR defines the rate of decrease infPAR in response to
increasing PAR.

Since fPAR,fTA , fsal, andfPAR have a maximum value of
1, light use efficiencies approachε0 as EVI attains the value
of 1, air temperature approachesTOpt, and salinity (ppt) and
PAR (mol photons m−2 day−1) decrease to zero. The overall
resulting quantum efficiency may then be expressed as the
multiplicative set of efficiencies to account for the effects of
temperature, salinity, and PAR as shown in Eq. (9).

εg = ε0 × fTA × fsal× fPAR (9)

To implement the model described in Eqs. (4) to (9), the
individual forcing terms (i.e.,ε0, mEVI , TMin , TMax, TOpt,
msal, mPAR) must be derived from the data through the use
of an optimization approach. We apply a Bayesian frame-
work to solve for the posterior probability of model parame-
ters and LUE during the periods 2004–2005 and November
2006 to 2011 when EC-derived estimates of GPP and LUE
are available. The Bayesian analytical framework provides
several advantages over more traditional model optimization
approaches, including the ability to directly estimate uncer-
tainties in modeled LUE without the use of ad hoc proce-
dures. Outputs from the optimization procedure provide the

www.biogeosciences.net/10/2145/2013/ Biogeosciences, 10, 2145–2158, 2013
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forcing terms (e.g.,mEVI , TOpt, etc.) that are described prob-
abilistically, thereby allowing us to assess the applicability
of each term. To cast this model within the Bayesian frame-
work, LUE was considered to exhibit a normal distribution
as

LUE ∼ N (µLUE, σLUE) , (10)

whereµLUE is the time-varying mean and is equal to the ex-
pected 8-day average LUE with varianceσLUE. A quantile–
quantile (QQ) plot of LUE data against the standard normal
distribution was used to verify the normality assumption. The
forcing terms were considered to have a prior probability dis-
tribution which, when taken together, follow a multivariate
normal distribution. That is,

ε0
mEVI
Tmin
Tmax
Topt
msal
mPAR


∼ N



µε0

µmEVI

µTmin

µTmax

µTopt

µmsal

µmPAR

,
∑


, (11)

with mean values,µ, and covariance matrix,6. Off-diagonal
terms in6 explicitly quantify the interdependence of model
forcing terms, if such relationships exist. The inverse Wishart
distribution (O’Hagan and Forster, 2004) was used to de-
scribe the prior probability distribution of6 because it repre-
sents the conjugate probability distribution of the multivari-
ate normal distribution (Gelman et al., 2004), and expresses
the uncertainty about6 before the data are taken into ac-
count. The inverse Wishart distribution represents the multi-
variate generalization of the scaled inverse-chi-squared dis-
tribution, which is the conjugate prior of the univariate nor-
mal distribution with unknown mean and variance. The in-
verse Wishart distribution is defined by its own set of param-
eters,� andν, commonly referred to as hyperparameters that
represent the inverse-scale matrix and degrees of freedom of
the distribution, respectively.

6 ∼ Inv-Wishart(�,ν) (12)

The� was initialized with a 6× 6 identity matrix, and the de-
grees of freedom,ν = 6, representing the number of forcing
terms. To learn the optimal probability distributions of the
forcing terms (ε0, mEVI , TMin , TMax, TOpt, msal), a Markov
chain Monte Carlo (MCMC) procedure with Gibbs sampling
(Cassella and George, 1992; Gilks et al., 1995) was per-
formed in Matbugs. Matbugs is a Matlab (The Mathworks
Inc., Natick, MA) interface to WinBUGS (Spiegelhalter et
al., 2003). Gibbs sampling is the simplest of the Markov
chain simulation algorithms (Gelman et al., 2004) and is
used to directly sample from each conditional posterior dis-
tribution in a model. The resulting distribution of the forc-
ing terms maximizes the likelihood that the LUE during the

study period would be observed given the modeled LUE val-
ues. The Gibbs sampling procedure within WinBUGS re-
quires initial values (i.e., best guesses) for all the forcing
terms. Here, initial values were determined using a con-
strained optimization technique (Matlab Optimization Tool-
box) in minimizing the sum of squared errors (SSE) between
modeled and EC estimated 8-day LUE values obtained dur-
ing the entire study period of 2004–2005 and November 2006
to December 2011. The constrained optimization is useful for
obtaining a single point estimate of forcing terms, but does
not provide a robust fit that includes the probability distribu-
tion of both parameters and modeled LUE values.

3 Results and discussion

3.1 CalculatingRE and GPP from NEE

Temperature, level of inundation, and foliage physiology
drive respiration in this forest. Nighttime NEE increased
with increasingTA below ∼ 25◦C during both high- and
low-tide periods during 2004–2005 (Fig. 2a). NEE was
∼ 1 µmol (CO2) m−2 s−1 higher during low tides, and NEE
rates converged at temperatures> 25◦C for both low- and
high-tide periods during 2004–2005 and 2006–2011 (Fig. 2a
and b, respectively). The exponential function with deacti-
vation in Eq. (2) generally fit the NEE data during 2004–
2005 and 2006–2011 periods (Fig. 2a–d). During 2004–
2005, there was some evidence of bimodality inRE response
to temperature with maxima occurring atTA values ranging
between 15 and 20◦C and 25 to 28◦C (Fig. 2a). The NEE
was∼ 1 µmol (CO2) m−2 s−1 higher during 2006–2011 com-
pared to 2004–2005 for temperatures above 25◦C, possibly
due to an increased respiratory contribution from decompos-
ing coarse woody debris (CWD) generated by the hurricane.
The hurricane disturbance also resulted in warmer soils dur-
ing 2006–2011 as more solar irradiance reached the soil sur-
face beneath the damaged canopy (Barr et al., 2012). Such
processes contributed to increased nighttime soil–air temper-
ature gradients of 1 to 3◦C one year following disturbance
(Table 1, Barr et al., 2012). Warmer soils in this system are
expected to lead to increased belowground respiration and
fractional increases in the belowground contribution to total
nighttimeRE. During both pre- and post-disturbance periods,
the functional response ofRE to air temperature exhibited a
better fit than that using soil temperature.

The substantial seasonal changes in the respiratory re-
sponse of the mangrove ecosystem (Fig. 2c, and d) required
the use of moving windows to fit Eq. (2) to these data. By
partitioning the data by time, particularly into dry and wet
season periods, the apparent bimodality of nighttime NEE
versusTA response (Fig. 2a) was no longer apparent in the
fitted model. The deactivation term in Eq. (2) that is needed
to account for the observed decline in nighttime NEE at ele-
vatedTA represents a unique characteristic of NEE patterns
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Fig. 2.Nighttime net ecosystem exchange (NEE (µmol (CO2) m−2 s−1)) versus air temperature at 27 m are partitioned by low- and high-tide
periods in 2004–2005(A) and 2006–2011(B), and by dry and wet season months in 2004–2005(C) and 2006–2011(D). Each subset of the
data was divided into 30 bins and the average (circles) and±1 standard deviation (dashed lines) were computed for each bin. Best-fit lines
(Eq. 2) of the half-hourly NEE versus air temperature are included. During low-tide periods, NEE is equivalent toRE.

at this site compared to terrestrial forests. The temperature
that defines the transition from increasing to decreasing res-
piratory response changed with seasons and as a result of
disturbance. The increase in nighttime NEE in response to
increasingTA following the hurricane disturbance was most
evident during dry season months, when the values increased
by ∼ 1 µmol (CO2) m−2 s−1 asTA exceeded 20◦C, and con-
tinued on an upward trend until reaching a maximum of
∼ 4 µmol (CO2) m−2 s−1 at 22◦C. Before the hurricane dis-
turbance, NEE declined with temperatures exceeding 19◦C.
This increase in temperature, which defines peak respiratory
response, also suggested an increased contribution of below-
ground respiration toRE following disturbance. Quantifying
the belowground contribution toRE and the respiratory re-
sponse to soil temperature require continuous measurements
of belowground respiration, and such measurements were not

made during this study. Due to the long-term nature of this
investigation (spanning several years), the ecosystem respi-
ration response captured the broad temperature ranges and
levels of inundation experienced by the mangrove forest. As
a result, it was possible to identify and quantify the dynamic
character of the total respiratory responses,RE to air temper-
ature and subsequent declines in respiration aboveTopt.

3.2 Albedo and EVI

Canopy-scale CO2 fluxes in mangrove forests vary season-
ally as a result of changes in leaf area index and physiological
responses to stressors. Such changes in the amount and func-
tion of foliage were inferred from temporal patterns in locally
measured surface albedo and the satellite-based greenness in-
dex, EVI. Albedo (Fig. 3a) varied seasonally with minimum
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Fig. 3. Eight-day average albedo (raw) and albedo adjusted to in-
clude only those values when the solar elevation angle was between
35◦ and 50◦ (A). Eight-day 500 m resolution EVI(B) values were
linearly interpolated using 16-day composites. Averages include the
pixel that contains the tower site and the adjacent 8 pixels.

values of 0.10 to 0.11 during May and June, and maximum
values of 0.13 to 0.15 during December to January. Albedo
was about 0.12 during January 2007 and represented a de-
cline of> 0.01 compared to values observed before Hurri-
cane Wilma. Raw and adjusted albedo variability resulted
in response to the recovery of foliage from the 2005 distur-
bance, with apparent full recovery observed by 2011. Struc-
tural damage and defoliation of the mangrove forest was ev-
ident in the 16-day EVI time series (Fig. 3b) in the days
following hurricane disturbance on 24 October 2005. The
EVI declined from 0.4–0.5 to 0.22 following the 2005 dis-
turbance. When tower measurements resumed in November
2006, refoliation of surviving branches in the upper canopy
and new shoots in the understory had already occurred, with
rapid regrowth occurring during June to October 2006. Yet,
recovery was incomplete. EVI exhibited a decline of∼ 12 %
when 2007–2008 values were compared with those obtained
in 2004–2005. These patterns were consistent with the 30 %
lower annual−NEE obtained for 2007. Though noisy, EVI
exhibited similar sinusoidal seasonal patterns with maxima
and minima values coinciding with the winter and summer
solstices, respectively. EVI values represent a much larger
area than do the albedo measurements (∼ 250 000 m2 (per

pixel), versus∼ 3000 m2, respectively). Such seasonal pat-
terns were consistent with coherent patterns in monthly litter
fall rates (Castaneda, 2010) within the flux footprint of the
tower site.

3.3 Physical drivers of mangrove productivity

In South Florida, mangroves receive highly variable amounts
of PAR (Fig. 4a) resulting from sinusoidal seasonal patterns
and cloud cover from localized convective storms during the
May to October wet season. The seasonal peak in PAR, and
therefore the amount of energy available to drive photosyn-
thesis and GPP, occurred during April and May before the
onset of the wet season in late May and June. Air tempera-
tures (Fig. 4b) during March to May were between 25 and
30◦C, and these conditions favored near-optimal foliage car-
boxylation rates and GPP. However, surface water salinities
(Fig. 4c) achieved their highest values (30–40 ppt) during this
time period, with peak values of 35–40 ppt extending into
June and the start of the wet season. Such high salinities have
previously been shown to contribute to reduced stomatal con-
ductance and lowered net carbon assimilation at the leaf-level
(Barr et al., 2009) during the afternoon. Surface water salin-
ities above 28 ppt also result in reduced NEE at the ecosys-
tem scale (Barr et al., 2010). PAR declined throughout the
wet season following the summer solstice in June, coincident
with reduced salinity levels resulting from increased fresh-
water flow through Shark River. Seasonal minima in salinity
of 15–20 ppt occurred at the end of the wet season in October
and November. Productivity was predicted to be seasonally
lowest during December and January, when air temperatures
were below 20◦C and when PAR reached seasonal minima
of 20–30 mol photons m−2 per day, coincident with the win-
ter solstice. During the extended cold spell of January 2010,
temperatures reached nearly the freezing point during sev-
eral early morning periods, with an 8-day average of approx-
imately 10◦C. Premature abscission of leaves in the canopy
crown was observed on site, and likely resulted in reduced
productivity and GPP.

3.4 Canopy-scale CO2 fluxes

During the year-round growing season, this forest exhib-
ited pronounced seasonal NEE patterns. Seasonal maxima in
daily CO2 uptake by the forest were observed during March
to May in 2004–2005 (Fig. 5a). Secondary peaks were ob-
served during the month of November both before and af-
ter the hurricane.RE values (Fig. 5b) were seasonally high-
est during June to August with 8-day averages of 0.30–
0.40 and 0.30–0.55 mol C m−2 day−1 during 2004–2005 and
2007–2011, respectively.RE values were lowest between De-
cember and April. GPP (Fig. 5c) values were lowest dur-
ing January and February, coincident with seasonal min-
ima in PAR andTA , and exhibited broad seasonal maxima
between April and October, with values of 0.50–0.63 and
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Fig. 4.Eight-day averages of photosynthetic active irradiance, PAR;
mol (photons) m−2 day−1 (A) and air temperature (◦C) (B) at a
height of 27 m at the SRS6 tower site. Eight-day average surface
water salinities (ppt)(C) measured from a well at the USGS SH3
site adjacent to the tower.

0.50–0.75 mol C m−2 day−1 during 2004–2005 and 2007–
2011, respectively. LUE and PAR exhibited a strong negative
correlation (R2

= −0.70), suggesting that this ecosystem has
adapted a physiological strategy for maintaining high GPP
rates throughout most of the year. Elevated GPP values dur-
ing cloudy days may be caused by higher fractions of dif-
fuse compared to direct solar irradiance penetrating to lower
canopy layers and raising the whole canopy LUE (Barr et
al., 2010). Other forests experience enhanced C assimilation
when subject to elevated diffuse irradiance (Gu et al., 2003).
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Fig. 5. Eight-day sums of−NEE, mol C m−2 day−1 (A) from the
SRS6 tower site and derived products including ecosystem res-
piration, RE; mol C m−2 day−1 (B), gross primary productivity,
GPP; mol C m−2 day−1 (C), and light (PAR) use efficiency LUE;
mmol C (mol photons)−1 (D).

3.5 Light use efficiency

Seasonal LUE patterns (Fig. 5d) were different com-
pared to GPP and exhibited seasonal maxima (13–
20 mmol C (mol PAR)−1) during the months of September to
December, while PAR and salinity levels were declining or at
their seasonal minima. LUE values generally declined with
the progression of the dry seasons, reaching annual minima
of 7–10 mmol C (mol PAR)−1 during the months of April to
June, with some interannual variability. For example, in Jan-
uary 2010, LUE declined from an 8-day average of 19 to
6 mmol C (mol PAR)−1 from 19 December 2009 to 4 January
2010. This period coincided with several weeks of nighttime
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temperatures that approached 0◦C. These cold air masses
induced foliage senescence and extensive litterfall. Salinity
represents an important control on mangrove forest LUE, and
therefore on ecosystem productivity. The regression analyses
that relate the 8-day average LUE (i.e., LUE / LUEsalinity = 0)
to salinity (Fig. 6) provided a 1.5 % reduction in this ratio
for every 1 ppt salinity increase. However, the relationship
between LUE / LUEsalinity = 0 and salinity was heteroscedas-
tic and suggested that salinity was one of several forcings
required in the MVP-LUE model in relationship Eq. (7).
The linear forcing was also consistent with previous results
(Barr et al., 2010) and showed that midday LUE declined
linearly with increasing salinity, resulting in a 48 % reduc-
tion in LUE from the lowest (16.7 ppt) to highest (34.7 ppt)
salinity recorded during the 2004–2005 study period. The ob-
served reductions in LUE were also consistent with previous
studies (Ball and Pidsley, 1995; Sobrado, 1999; Krauss and
Allen, 2003; Parida et al., 2004) that indicated declines in
leaf-level C assimilation in response to increasing soil water
salinity. By extrapolating the observed linear decline in LUE,
the productivity of the mangrove ecosystem ceases at surface
water salinity approaching 70 ppt according to the model ex-
pressed in relationship Eq. (7). Whereas such high salinity
levels do not occur at the Everglades study site, this estimate
is in close agreement with average salinity tolerances of 60–
90 ppt reported for red, white, and black mangroves (Odum
et al., 1982).

3.6 MVP-LUE model results

The cross-validated LUE model (Sect. 2.4) was capable of
reproducing the observed responses of LUE and GPP to sea-
sonal changes in environmental variables and recovery from
a major hurricane disturbance. The median and 95 % uncer-
tainty bounds of modeled mean LUE,µLUE (Fig. 7), pro-
vided posterior predictions from 10 000 MCMC iterations in
each of 3 independent chains determined from 5-fold cross
validation. The largest discrepancies between estimated and
modeled mean LUE occurred during March to May of 2007
and 2008, when estimated LUE were seasonally lowest. Pos-
terior means calculated over the full 2004–2011 period of
record were evaluated by the Pearson’s correlation coeffi-
cient (R), the coefficient of efficiency (CoE), and the normal-
ized bias (NB). The model performed nearly as well during
validation (R2

= 0.646, CoE = 0.645; NB =−0.015) as dur-
ing training (R2

= 0.651, CoE = 0.651; NB =−0.015).
Posterior distributions of model forcings (Table 1) al-

lowed estimates of mangrove productivity in response to
key forcings, including EVI, air temperature, and salinity.
The positivemEVI (4.03± 0.52; mean± 1 s.d.) confirmed
that fPAR, and therefore LUE, increased with EVI values.
Air temperatures of 27.8± 0.3◦C (mean± 1 s.d.) favored
optimal mangrove LUE. These temperatures (Fig. 4b) oc-
curred most frequently during March to May and Octo-
ber to November. Both modeled and estimated LUE val-
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Fig. 6. Eight-day average light use efficiency (LUE) normalized
by the extrapolated LUE, LUE0 at a salinity value of 0 ppt dur-
ing 2004–2005 and November 2006 to December 2011. The best fit
line (slope =−0.0146 and intercept = 1.0) represents the predicted
decline in fractional LUE with 8-day average salinity beginning at
a value of 1.0 at zero salinity.

ues declined as air temperatures approached the TMax value
of 33.5± 0.6◦C. The slopemsal (0.0047± 0.0022) of the
salinity forcing fsal was a factor of three lower compared
to the slope (0.0146) determined from the response of
LUE / LUEsalinity = 0 to salinity (Fig. 6). This apparent sharper
decline in LUE with increasing salinity masked the effect
of increasing PAR on LUE since seasonal PAR peaks in
nearly the same season (May–June) as salinity. The Bayesian
model results suggest that LUE significantly declined with
increasing PAR, with a slopemPAR of 0.0101± 0.0004 (Ta-
ble 1). Photosynthetic saturation with increasing PAR is cur-
rently not included in many light-use-efficiency-based mod-
els of productivity using satellite data (e.g., Xiao et al.,
2004; Cook, et al., 2008; Chen et al., 2010). An increase
from the lowest (15 ppt) to highest (39 ppt) salinity val-
ues observed during the study period was predicted to re-
sult in an 11 % reduction in LUE. Also, an increase in
PAR from the lowest (17 mol photons m−2 day−1) to high-
est (67 mol photons m−2 day−1) 8-day average during 2004–
2011 resulted in a 51 % reduction in LUE.

Air temperature, salinity, PAR, and EVI were all deter-
mined as significant predictors of LUE (Fig. 7). Low temper-
atures (∼ 10◦C) during passages of cold fronts can last from
a few days to weeks during December to February, resulting
in large reductions in LUE and therefore GPP. For instance,
the passage of cold fronts during January 2010 resulted in es-
timated and modeled LUE of∼ 6 mmol C (mol photons)−1.
While other controls on LUE remained constant, a change in
air temperature from 28◦C (optimum temperature) to 10◦C
was predicted to result in a 65 % reduction in LUE. These re-
sults confirm that mangrove forests become severely stressed
when daily average temperatures drop below∼ 5◦C. Ross
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Table 1.MVP-LUE model forcing terms and associated uncertainty bounds.

Parameter Description Mean SD 2.50 % Median 97.50 %

ε0 Optimum light use efficiency
(mmol C (mol photons)−1)

31.8 2.2 27.7 31.6 36.7

mEVI Curvature of fPAR response to
EVI (dimensionless)

4.03 0.52 3.11 3.99 5.21

Tmin Temperature minimum (◦C) 2.6 0.6 1.4 2.7 3.7
Tmax Temperature maximum (◦C) 33.5 0.6 32.4 33.5 34.8
Topt Temperature optimum (◦C) 27.8 0.3 27.2 27.8 28.5
msal Salinity forcing (dimensionless) 0.0047 0.0022 0.0000 0.0048 0.0084
mPAR PAR saturation forcing 0.0101 0.0004 0.0092 0.0102 0.0110
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Fig. 7. Eight-day average estimated LUE and modeled mean LUE,
µLUE (mmol C (mol photons)−1) at the tower site during 2004
through 2011. LUE estimates were not available from August 2005
through October 2006. The line (red) represents the posterior me-
dianµLUE and shaded area represents the 2.5 % and 97.5 % uncer-
tainty bounds ofµLUE. Uncertainties are provided for validation
data sets derived from 5-fold cross validation. Modeled mean LUE
is controlled by 8-day averages of EVI, air temperature at 27 m, and
surface water salinity.

et al. (2009) measured high mangrove mortality following
freeze events, and the inability of mangroves to survive in
climates where temperatures near the freezing point are fre-
quent.

3.7 MVP-LUE and MODIS GPP compared to EC GPP
estimates

The calibrated MVP-LUE model provided an improved
mechanistic understanding of mangrove forest productivity
compared to the standard MODIS GPP product. Specifically,
least-squares linear regressions of 8-day MVP-LUE mod-
eled GPP values to EC-estimated GPP (Fig. 8a) indicated
improved performance during 2004–2005 (slope = 0.720, in-

tercept = 0.144,R2
= 0.56) compared to the 2006–2011 pe-

riod following hurricane disturbance (slope = 0.483, inter-
cept = 0.249,R2

= 0.45). The regression of MODIS GPP
to EC-estimated GPP (Fig. 8b) suggested that the uncal-
ibrated MODIS model only weakly captured productivity
trends during 2004–2005 (slope = 0.477, intercept = 0.238,
R2

= 0.050), and failed to capture any trends in GPP during
2006–2011 (slope =−0.372, intercept = 0.597,R2

= 0.056).
The MVP-LUE model captured the broad seasonal maxima
(0.5–0.7 mol C m−2 day−1) in EC-estimated GPP (Fig. 9) as
a result of the strong dependence of mangrove forest pro-
ductivity on air temperature. However, a mechanism to de-
scribe the short-lived (8 to 24 days) peaks in GPP of 0.6–
0.75 mol C m−2 day−1 was not identified. During December
to February, temperatures below∼ 20◦C, and to a lesser ex-
tent shorter day length and daily PAR, resulted in short-lived
minima in GPP of 0.2–0.35 mol C m−2 day−1. The produc-
tivity response of mangrove forests to temperature has not
been calibrated in the MODIS product and may partially
explain the lack of correlation between MODIS GPP and
EC-estimates. Also, the increased variance in MODIS GPP
compared to EC-estimates (Fig. 8b) may be attributed to
the MODIS model structure, which considers GPP as lin-
early increasing with PAR. The dampened GPP response
to PAR identified in the MVP-LUE model resulted in sea-
sonal variability in GPP better matching observations. Also,
the MVP-LUE model captured the sustained plateau in EC-
estimated GPP into November. This resulted from lowered
salinity stress during September to November represented in
the model (Eq. 7) and a modulated response of GPP to daily
PAR integrals represented by the decline in LUE with in-
creasing PAR (Eq. 8).

4 Summary and conclusions

This research represents a first attempt to design and verify a
light use efficiency model for mangroves through the integra-
tion of remotely sensed information, and meteorological and
hydrologic data. This study is the first one to quantify the res-
piratory responses of mangrove forests over temporal scales

www.biogeosciences.net/10/2145/2013/ Biogeosciences, 10, 2145–2158, 2013



2156 J. G. Barr et al.: Modeling light use efficiency in a subtropical mangrove forest

28 

 

 714 
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Fig. 8. Eight-day averages of MVP-LUE modeled GPP
(LUE × PAR) versus 8-day averages of EC-estimated GPP during
2004–2005 and 2006–2011(A). Best-fit lines were determined
from least-squares linear regression and include 95 % confidence
bands for the best-fit line during 2004–2005 (slope = 0.720,
intercept = 0.144, R2

= 0.56) and 2006–2011 (slope = 0.483,
intercept = 0.249,R2

= 0.45). 8-day averages of MODIS GPP
versus 8-day averages of eddy covariance estimated GPP(B) and
best-fit lines during 2004–2005 (slope = 0.477, intercept = 0.238,
R2

= 0.050) and 2006–2011 (slope = -0.372, intercept = 0.597.
R2

= 0.056).

of several growing seasons. Ecosystem respiration was suc-
cessfully modeled using an atypical response function that
includes a high-temperature (∼ 33◦C) deactivation term. Es-
timation of the temporally and temperature-dependent re-
sponse of ecosystem respiration to air temperature provided
a critical first step in modeling mangrove GPP.

Observed seasonal patterns in 8-day LUE were controlled
by variability in daily PAR and air temperature, and to a
lesser extent salinity and EVI fluctuations. LUE was lower
when seasonal PAR was highest during April and May as a
result of photosynthetic saturation. Also, salinity maxima of
35 to 40 ppt contributed to canopy-scale reductions in LUE
during April to early June, amounting to a 5 % reduction in
LUE per each 10 ppt increase in salinity. Lowered LUE val-
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Fig. 9. Eight-day averages of EC-estimated and MVP-LUE modeled GPP (LUE*PAR) and 3-period 724 

moving average of modeled GPP during 2004-2011. 725 
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Fig. 9. Eight-day averages of EC-estimated and MVP-LUE mod-
eled GPP (LUE× PAR) and 3-period moving average of modeled
GPP during 2004–2011.

ues during December and January were the result of lower
air temperatures and lowered physiological activity. As tem-
peratures approach 3◦C, our model predicts that CO2 uptake
in these forests approaches zero. Significantly reduced EVI
values after Hurricane Wilma in 2005 also resulted in signif-
icantly lowered model estimates of CO2 uptake during the
period when the EC tower was not operating. These results
suggest that mangrove forest LUE can be quite variable in
subtropical environments that experience seasonal variations
in solar irradiance and air temperature, and disturbance from
tropical storms.

The model and functional relationships determined in this
study provide an important first step for understanding the
larger role mangrove forests play in both regional and global
C budgets. Remote sensing applications building on these re-
sults provide a means to estimate CO2 fluxes in areas out-
side the flux tower footprint and in other mangrove forests
around the tropics and subtropics. To do this, spatiotemporal
patterns in salinity are required as model input, which may be
resolved, as in the Everglades, from networks of hydrologic
monitoring stations. PAR and air temperature data fields are
also required. However, validating this model in locations not
equipped with EC will require novel approaches that link pre-
dicted GPP values to other measurable parameters, such as
biomass accumulation, or NECB at appropriate time scales.
As more EC towers are deployed in other types of mangrove
forests, LUE models such as this one may be used to identify
patterns in quantum efficiencies across species, across for-
est structural characteristics (e.g., scattered or dwarf forests),
and latitudinal position. The integrated datasets in turn will
enable more precise approximations of the role mangrove
forests play in global C dynamics.
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