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ABSTRACT 7 

The coastal wetlands of northeastern Florida Bay are seasonally-inundated dwarf 8 

mangrove habitat and serve as a primary foraging ground for wading birds nesting in 9 

Florida Bay.  A common paradigm in pulse-inundated wetlands is that prey base fishes 10 

increase in abundance while the wetland is flooded and then become highly concentrated 11 

in deeper water refuges as water levels recede, becoming highly available to wading birds 12 

whose nesting success depends on these concentrations.  Although widely accepted, the 13 

relationship between water levels, prey availability and nesting success has rarely been 14 

quantified. I examine this paradigm using Roseate Spoonbills that nest on the islands in 15 

northeastern Florida Bay and forage on the mainland.  Spoonbill nesting success and 16 

water levels on their foraging grounds have been monitored since 1987 and prey base 17 

fishes have been systematically sampled at as many as 10 known spoonbill foraging sites 18 

since 1990.  Results demonstrated that the relationship between water level and prey 19 

abundance was not linear but rather there is likely a threshold, or series of thresholds, in 20 

water level that result in concentrated prey.  Furthermore, the study indicates that 21 

spoonbills require water level-induced prey concentrations in order to have enough food 22 

available to successfully raise young.   23 
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 26 

INTRODUCTION 27 

 Gawlik (2002) best articulated a widely accepted and well-studied paradigm 28 

regarding the function of ephemeral wetlands in determining nesting success of wading 29 

birds.  In short, during high water periods prey species are relatively less susceptible to 30 

predation and their populations grow exponentially and during low water periods, prey 31 

are concentrated into lower elevation habitats that provide refuge when ephemeral 32 

wetlands are dry.  Wading birds exploit the concentrations and time nesting and nest 33 

location so that there is a readily available food source for the rapidly growing and 34 

energetically demanding young and that this availability must be sustained through the 35 

entire nesting cycle. While most components of this paradigm have been demonstrated 36 

empirically (Kahl 1964, Higer and Kolipinski 1967, Kushlan 1976a, Kushlan 1978, 37 

Kushlan 1980, Ogden et al. 1980, Loftus and Kushlan 1987, Powell 1987, Frederick and 38 

Colopy 1989, Loftus and Eklund 1994, Bancroft et al. 1994, Frederick and Spalding 39 

1994, DeAngelis et al. 1997, Lorenz 2000, Gawlik 2002, Herring et al. 2011) the 40 

connection between water level/prey availability and nesting success has been somewhat 41 

elusive. Because nesting sites and foraging locations are spatially distant and the location 42 

of foraging sites changes temporally as a patch of concentrated prey is depleted, it is 43 

difficult to determine prey abundance at specific sites where a particular pair of 44 

successfully nesting birds foraged.  Furthermore, there could be nesting failure unrelated 45 

to food availability (e.g. predation, disease, weather, human disturbance etc.). 46 
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 Another challenge in demonstrating this connection is that the relationship 47 

between low water levels and prey availability is likely to be non-linear.  For example, 48 

high fish concentrations can arise when water levels are relatively high due to oxygen and 49 

thermal stress that drive prey from wetlands into deeper water (e.g. Frederick and Loftus 50 

1993).  Conversely, prey availability can be low when water levels are low due to 51 

depletion of prey from predation and/or effects of overcrowding (e.g. Gawlik 2002) or 52 

hydrologically-limited productivity (e.g. Lorenz 2000).  Although the linearity of the 53 

relationships between water level, prey availability and nesting success are investigated 54 

here, the analyses also focus on the concept of a Prey Concentration Threshold (PCT).  I 55 

propose that prey concentrations do not adhere to a strictly-linear relationship with water 56 

level, rather, there is some water depth (the PCT) at which prey will abandon the 57 

ephemeral wetlands and move to deep water refuges prior to the wetlands drying out 58 

entirely.  When water levels drop to this point, there is short-lived pulse in prey 59 

concentrations as all the prey flee the drying wetland en masse.  These concentrated prey 60 

are then are quickly depleted through predation and other mortality factors.  61 

I address this paradigm using 22 years of Roseate Spoonbill (Platalea ajaja) 62 

nesting data from colonies on islands in NEFB and water level and prey (demersal fish) 63 

data from multiple foraging sites located in mainland mangrove wetlands specifically to 64 

1) test the linearity of the relationships between water level, prey availability and nesting 65 

success, 2) investigate the concept of the PCT, and 3) to investigate whether prey 66 

availability has a direct impact on nesting success in a wading bird species.  67 

 Roseate Spoonbills were extirpated from Florida by the early 1900's due to 68 

overhunting to provide feathers to the fashion industry (Allen 1942).  Legal protection 69 
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resulted in population recovery and by the late 1970's the population had recovered to 70 

more than 1200 nests in Florida Bay (Powell et al. 1989), more than half of which were 71 

located in extreme northeastern corner of Florida Bay (Fig. 1; Lorenz et al. 2002).  In 72 

1984, the completion and operation of a series of canals and pumps (known as the South 73 

Dade Conveyance System or SDCS) had a profound impact on the way fresh water 74 

flowed into northeastern Florida Bay (NEFB).  Prior to the SDCS, most of the fresh water 75 

flowed from the Everglades into Florida Bay via Taylor Slough and associated creeks to 76 

the east (Fig. 2).  The SDCS diverted water away from Taylor Slough and into the C-111 77 

canal (Fig. 2), fundamentally altering the hydrology of Taylor Slough and NEFB (Kotun 78 

and Renshaw this issue).  Since completion of the SDCS, notable changes have been 79 

observed in the flora and fauna of Florida Bay, particularly in the northeastern region 80 

(Lorenz, this issue) and spoonbill numbers in NEFB have been drastically reduced, with 81 

<50 pairs in 2008-09 (Fig. 1; Lorenz and Dyer 2010).   82 

 83 

METHODS 84 

Wetland Site Description.  85 

 Spoonbills nesting in NEFB primarily forage in the seasonal ephemeral mangrove 86 

wetlands north of the Bay from Taylor Slough eastward to Turkey Point (Fig. 2; Bjork 87 

and Powell 1994, Lorenz et al. 2002, Lorenz unpublished satellite tracking data).  The 88 

mainland wetlands of NEFB are dwarf mangrove habitat, characterized by a centralized 89 

creek (“creek” sub-habitat) that contains water throughout the year that is surrounded by 90 

expansive shallow flats (“flats” sub-habitat) that are ephemerally inundated (Figure 2).  91 

Vegetation consists of widely spaced (0.5-5.0 m) dwarf red mangrove (Rhizophora 92 
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mangle) trees (0.5-2.0 m tall) with varying amounts of herbaceous vegetation between 93 

individual trees.  Seasonal growth of Eleocharis cellulosa, Utricularia spp. and Chara 94 

hornimani is common and the substrate is flocculent, unconsolidated, carbonate marl 95 

(Browder et al. 1994). 96 

There is a characteristic seasonal pattern to the water level fluctuations on these 97 

wetlands, with high water levels that inundate the ephemeral wetlands during the wet 98 

season (June-Nov) and low water during the dry season (Dec-May) that exposes the 99 

ephemeral wetland and results in only the central creeks being inundated (Lorenz 1999).  100 

The principle drivers of this long-term cycle are the thermal expansion and contraction of 101 

the Gulf of Mexico (Marmar 1954, Holmquist et al 1989) and wet season/dry season 102 

rainfall patterns (Duever et al. 1994).  Because the onset of the rainy season provides a 103 

natural break in the cycle (Lorenz and Serafy 2006), “hydroyear” is defined from June 1 104 

to May 31.  Wind-driven tides can increase or decrease water levels (up to 40 cm) on the 105 

wetlands very quickly and those conditions can be maintained until cessation of the wind 106 

event (Holmquist et al. 1989).  Upstream water management practices, such as pulse 107 

releases from the C-111 canal (Fig. 2), can also result in rapid increases in water levels 108 

(Kotun and Renshaw this issue, Lorenz this issue) that may endure for several days.  The 109 

southern Biscayne Bay wetlands are generally unaffected by these pulse releases as water 110 

flow through the C-111 canal is blocked near US Highway 1 (US1; Fig. 2), so the 111 

majority of water released through the C-111 flows southward from the canal on the west 112 

side of US-1 toward Florida Bay (Kotun and Renshaw this issue, Lorenz this issue).  113 

Finally, diurnal tides affect water levels on the wetlands of southern Biscayne Bay, 114 
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although the amplitude is relatively small (9-15 cm; Lorenz 1999); there are no diurnal 115 

tides on the NEFB wetlands (Lorenz 1999). 116 

 117 

Data Collection 118 

Water Level Records.  Water level recorders were placed at ten known spoonbill 119 

foraging locations in the NEFB wetlands and west of southern Biscayne Bay (Fig. 2).  120 

Hydrostations recorded depth (hourly) relative to the elevation of the flats (i.e., a reading 121 

of 0 cm on the recorder indicated that the flats were completely dry while the creek was 122 

flooded).  Establishment of these sites was staggered through time but are identified as 123 

long-term (established prior to 1992) mid-term (established in early 2000s) and short-124 

term (established after 2005; dates of the establishment of sites are presented in the ESM 125 

1).  Prior to 2000, data were collected using a Telog® 2108 potentiometric recorder with 126 

a float and pulley design.  After 2000, telemetered hydrostations (Remote Data Inc., 127 

using Hydrolab® pressure sensors to record water depth on a remotely-accessible 128 

Campbell® data recorder) were established at each site in addition to the Telog® 129 

recorders, thereby creating redundancy in water level data collection.  Gaps in the data 130 

were filled by using regression models between nearby hydrostations (see ESM 1 for 131 

further details). 132 

Prey Fish Sampling.   Drop traps were used to collect fish according to the 133 

methodology of Lorenz et al. (1997).  Three 9-m
2
 traps were used in each sub-habitat 134 

(creek and flats) at each site.  Each trap surrounded an individual dwarf mangrove tree, 135 

thereby sampling both prop root habitat and the open area between trees (Fig. 2).  Trees 136 

were selected for sampling such that each site had a similar array of tree sizes with 137 
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roughly equivalent prop root density sampled between sites.  Traps were set, left in place 138 

overnight and deployed the following day within 2h after sunrise.  Fish were cleared from 139 

the trap using rotenone.  Traps remained in place until the following day and any fish 140 

found floating within the trap were added to the sample and their weights were estimated 141 

from length-weight regressions generated from fishes from the initial collection (Lorenz 142 

et al. 1997). Sample collections were targeted for June, September, and monthly from 143 

November through April, however, logistical, economical and climatological problems 144 

prevented complete sampling at some sites (presented in ESM 1).  The majority of fish 145 

collections were made during the dry season and transitional periods so that the impact of 146 

fluctuations in water level could be assessed. 147 

 Although the drop traps were specifically designed to catch the small demersal 148 

fishes that are the primary prey items of spoonbills (Lorenz et al., 1997), incidental 149 

collections of larger fishes did occur.  In some cases, a single large individual weighed 150 

more than the entire sample of smaller fishes.  Length-frequency distributions indicated 151 

that all fish found on the flats were <6.5 cm TL (total length).  The flats made up the 152 

majority of the habitat, indicating that fish larger than 6.5 cm TL were not an integral part 153 

of the demersal fish community.  Based on this observation, all fish ≥6.5 cm TL (3.2% of 154 

total fish collected) were omitted from analyses.  The elimination of these large fish 155 

limits the data to prey that spoonbills are likely to capture, as spoonbills’ principle diet is 156 

fish up to approximately 5 cm (Dumas 2000). 157 

 Spoonbill nesting colony surveys.  Spoonbills typically nest in Florida Bay 158 

between November and April (Powell et al. 1989).  During this period, nest production 159 

was estimated by repeated visits to a given colony on a 7-10 d cycle.  Up to 65 nests were 160 
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marked with uniquely numbered nest tags during the late incubation period.  An estimate 161 

of the mean hatch day was made based on chick size and morphology when they were 162 

first observed.  At approximately 21 d, chicks begin to move out of the nest and spend 163 

their time in adjacent trees (Allen 1942, Dumas 2000, Lorenz et al. 2002) and surveys 164 

must be discontinued for the safety of the chicks (susceptible to falling out of the trees 165 

when disturbed).   Chicks that made it to 21d (from here referred to as the nestling 166 

period) were considered successful even though some mortality does occur after they 167 

leave the nest. 168 

Spoonbill nest success surveys were performed at Tern Key (historically the 169 

largest colony in NEFB) during every nesting cycle from 1987-88 to 2006-07 except for 170 

1993-94.  Beginning in 2007-08, the Tern Key colony failed to form so several smaller 171 

colonies near Tern Key were surveyed in 2007-08 and 2008-09.  No individual nest data 172 

were available for the years 1988-89, 1991-92, 1992-93 and 1994-95 (for various 173 

reasons), however, summary statistics for mean hatch date and mean nest production 174 

were available.  In most years a small number of spoonbills will nest a second time but in 175 

1998-99, and from 2001-02 to 2005-06, the second nesting effort was sizable (almost as 176 

large or larger than the first nesting).  These second nestings were surveyed using the 177 

above techniques as well, and treated the same as the first nestings. 178 

 179 

Data Analysis 180 

Prey availability.  Average density and biomass of fish were calculated for each 181 

sub-habitat (creeks and flats) at each site.  The mean number of prey/trap from the sub-182 

habitat with the largest number of prey collected was considered the estimate of available 183 
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prey.  The direct use of prey availability (i.e., abundance or biomass m
-
²) is confounded 184 

by the fact that each of the sites has a central creek that drains different sized watersheds 185 

and sites with larger drainage basins tended to have higher concentrations of fishes than 186 

smaller drainage basins.   Concentration events would not be isolated to just the drainage 187 

in which our sites are located but would be spread over a region that site represents.  If 188 

the simple estimate of fish density were used than sites with smaller basins would be 189 

masked by those with larger ones and it would appear that concentration events never 190 

occurred at the sites with smaller basins.  In order to standardize the size of the catchment 191 

area we relativized each sample to the maximum abundance and biomass for each site.  192 

This created an index (on a 0-to-1 scale) for each site, hereby referred to as the fish 193 

density availability index or DAI and the biomass availability index or BAI.   194 

Prey Concentration Threshold.  The mean and standard deviation for all DAI 195 

estimates were calculated.  All samples collected with a DAI > mean +1 SD were 196 

considered to be from a fish concentration event. June or September samples 197 

experiencing a concentration event were removed from the estimate of the PCT because 198 

the events were likely to be the result of thermal or oxygen stress rather than water level. 199 

The tidal sites of southern Biscayne Bay (MB, BS, CS and TP) were also problematic to 200 

estimating the PCT.  This is because it takes up to 2h to deploy all six traps and water 201 

level was only collected on an hourly basis so the actual depth at the time of trap 202 

deployment is unknown.  As a result, concentration events at these sites were also 203 

removed from estimating the PCT.  For the remaining concentration event samples, the 204 

daily mean water level was calculated for the date of the samples.  The PCT was defined 205 

as the maximum depth at which a concentration event occurred.  206 
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Total colony nestling period.  The nestling period for each nesting cycle was 207 

defined as the period from 2d before the first monitored nest hatched until 2d after the 208 

last monitored nest had chicks reach 21d post-hatch. The nestling period had to be 209 

estimated for years for which only the mean hatch date was available (Table 1).  The 210 

mean difference in days from the first hatch date to the mean hatch date was 9d and from 211 

the mean hatch date until the last chick reached 21d was 40d (Table 1).  For years with 212 

only the mean hatch date available, the first hatch date and the date the last chick reached 213 

21d were estimated by subtracting 9d and adding 40d, respectively. 214 

Mean water depth during the nestling period.  For years that individual nests 215 

were monitored, the mean water level for the 21d post-hatch was calculated for each nest 216 

from the long-term water level recording stations.  The four years without individual nest 217 

data could not be included in calculating mean water depth for individual nests but were 218 

used to calculate mean depth for the entire nestling period.  219 

Mean DAI and BAI for the nesting period.  All fish samples that fell within the 220 

nestling period (Table 2) were used to calculate mean DAI and BAI for each nesting 221 

cycle.  The number of samples collected during each cycle was highly variable with more 222 

samples collected as the study went on and fish sampling sites were added.  Also, there 223 

were different sites used to estimate the DAI and BAI for each cycle, but bias caused by 224 

intra-site variation was removed by scaling by the maximum for each site (0 to 1 scale).   225 

 Statistical Analyses.  Regressions were used to compare the linearity of water 226 

level with prey availability indices, water level with nest production and prey availability 227 

indices with nest production. Analysis of variance (ANOVA) was used to compare water 228 

levels with nest success (successful=a nest that produces ≥1 chick) and water levels with 229 
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nest production (chicks/nest or c/n) for individual nests.  The difference between DAI and 230 

BAI for failed and successful nesting cycles were also tested using ANOVA.   231 

 232 

RESULTS 233 

 Negative relationships were detected between mean water level and both mean 234 

nest production (r
2
 = 0.41, p<0.001) and nest success (r

2
 = 0.31, p<0.001; Fig. 3).  235 

ANOVA between the number of chicks produced and the mean water level for the 236 

nestling period of each individual nest were significant (F4,700=39.20, p<0.001).  237 

Individual nests produced between 0 and 4 c/n and for each incremental increase in 238 

production water level was significantly lower (Fig. 4).  All assumption for regression 239 

models and ANOVA were met. 240 

 I observed marked inter- and intra-annual variation in water level and 241 

corresponding prey abundance and biomass throughout this study’s 811 prey sampling 242 

events (results of individual collection are presented in the ESM 1).   Regression models 243 

between water level and fish concentrations were not statistically significant confirming 244 

that the relationship between water level and prey availability was non-linear (Fig. 5).  245 

The mean and standard deviation of the DAI for these samples was 0.182 and 0.187 246 

respectively.  There were forty samples with a DAI greater than the mean plus one 247 

standard deviation (0.369) and qualified for use in estimating the PCT (Table 3).  The 248 

deepest water level that these concentration samples were collected in was 13.15 cm 249 

(collected at JB in April 2000) thereby defined as the PCT.   250 

 Regressions of the relationship between chick production and prey availability 251 

indices had mixed results (Fig. 6).  There was a significant linear relationship between 252 
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DAI and chick production (r
2
 = 0.34, p<0.001) but not between BAI and chick production 253 

(r
2
 = 0.12, p=0.11).  ANOVA of DAI and BAI between failed (average <1c/n) and 254 

successful (average >1c/n) nesting cycles were significant (DAI: F(1,20)=7.78, p<0.05; 255 

BAI: F(1,20)=4.62, p<0.05), with successful nesting cycles having a significantly higher 256 

degree of available prey (Fig. 7).  All assumptions for regression models and ANOVA 257 

were met. 258 

  259 

DISCUSSION 260 

Results presented here suggest that prey do not concentrate linearly with 261 

decreasing water depth, rather, there is a depth threshold at which fish first become 262 

concentrated.  In the mangrove NEFB wetlands this appears to occur when water levels 263 

drop below ~ 13 cm on the ephemeral wetland surface (i.e., the PCT).  Previous studies 264 

have suggested these concentrated prey are rapidly depleted, primarily through predation 265 

(e.g., Kahl 1964, Master 1992, Gawlik 2002).  These data also indicate that concentration 266 

events can occur at water levels as low as 5 cm below the wetland surface and at 267 

numerous depths in between (Table 3).  As water levels continue to decline below the 268 

PCT, prey that survive the initial concentration event become re-concentrated at lower 269 

water, resulting in sequential concentration events at the same location (based on local 270 

topography).  The concept of thresholds that concentrate fish explains, at least in part, 271 

why there is not a linear relationship between water level and fish prey availability.  Kahl 272 

(1964) presented data that support the concept of a water level threshold for 273 

concentrating prey.  He indicated that a 6 cm drop in water levels at a Wood Stork 274 

(Mycteria american) foraging site increased the density of prey fish from 50m
-
² to ~2000 275 
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m
-
².  After dropping another 6 cm, the density remained about the same (2200 fish m

-
²).  276 

This suggests that, at some level between the first and second recession events fish were 277 

forced to leave the adjacent wetland.  278 

 The regression results relating water level with nesting success concur with 279 

numerous other studies that, in southern Florida, nesting wading birds have a greater 280 

degree of nesting success at lower water levels (Kahl 1964, Frederich and Collopy 1989, 281 

Powell et al. 1989, Ogden 1994, Hoffman et al 1994, Bancroft et al. 1994, Frederick and 282 

Spaulding 1994, Lorenz et al. 2002).  The estimation of the PCT at about 13 cm 283 

augments the results of the ANOVA of water level and nest production (Fig. 4) since 284 

failed nests had a mean water level and standard error above the PCT.  Nests producing 1 285 

c/n also had a mean just above the PCT but the standard error that spans below the PCT. 286 

Nests that produced 2, 3 and 4 c/n were foraging under conditions where the mean water 287 

level and standard error were below the PCT, and each incremental increase in 288 

productivity had significantly lower water level.   289 

There was a linear relationship between DAI and nest production but not BAI and 290 

nest production (Fig. 6).  Lorenz and Serafy (2006) documented that, at these sampling 291 

locations, the assemblage of fishes present is a better determinant of biomass than the 292 

density of fish present.  Furthermore, they documented that salinity was the major 293 

determinant of the community structure with communities from lower salinity 294 

environments having larger biomass.  Although it is intuitive that higher biomass should 295 

be more important than the total density of available fish for determining nest 296 

productivity, it is the density of fish that determines whether there is a concentration 297 

event or not.  The fact that fish are concentrated at these sites may suggest that fish 298 
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further upstream in lower salinity environments may be concentrated as well.  These 299 

would have higher biomass and would also be readily exploited by nesting spoonbills.  300 

Thus, the fact that fish are concentrated may be a better indicator that foraging conditions 301 

are better throughout the landscape than the biomass that is available at these particular 302 

locations and times.  303 

 The ANOVA of DAI and BAI between failed and successful nesting cycles 304 

demonstrated that prey were more available during nesting cycles that resulted in an 305 

average of greater than 1 c/n than those that produced less than 1c/n (Fig. 7).  These 306 

results, in addition to the DAI regression model (Fig. 6) support the relationship between 307 

available prey on the primary foraging grounds with the ability of spoonbills nesting on 308 

islands in NEFB to raise chicks through the critical 21 d post hatch period.   309 

Studies that relate water level to nesting success express or imply that this is the 310 

result of prey becoming more available to wading birds at lower water levels (Ogden et 311 

al. 1980, Powell, 1987, Frederick and Collopy 1989, Frederick and Spalding 1994, Ogden 312 

1994) however, few studies present any prey availability data.  Conversely, many studies 313 

demonstrate that wading birds forage more successfully in areas where fish have been 314 

concentrated (Kahl 1964, Kushlan 1976b, Master 1987, Master 1989, Gawlik 2002), but 315 

rarely can this foraging success be related back to the success or failure of a specific 316 

colony or population although it is commonly inferred.  Previous studies have 317 

demonstrated that spoonbills nesting in NEFB primarily forage in the wetlands where I 318 

measured water levels and collected prey samples (Bjork and Powell 1994, Lorenz et al. 319 

2002, Lorenz unpublished satellite tacking data).  By surveying spoonbill colonies so as 320 

to know nest production and identify the nestling period and by using numerical indices 321 
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of prey collected on their primary foraging grounds during the nestling phase, links 322 

between lower water levels, greater prey availability and higher nest production were 323 

demonstrated.    324 

 Lorenz et al. (2002) demonstrated that, prior to anthropogenic alterations to the 325 

foraging habitats of Florida Bay, spoonbills produced an average of 2.25 c/n, resulting in 326 

an exponential increase in the number of spoonbill nests in Florida Bay.  Since the 327 

completion of the SDCS in 1984, the average production has been 0.98 c/n (Table 1).  De 328 

le Court and Aguilera (1997) indicated that Eurasian Spoonbills (Platalea leucordia) 329 

exhibit nesting fidelity to their natal colony location and that their is only a small degree 330 

of gene flow between discrete nesting populations.  Similarly, I have found that Roseate 331 

Spoonbills in Florida likely occur in discrete nesting populations that are largely insular 332 

when it comes to immigration and emigration (unpublished banding and tracking data). It 333 

appears that the conditions that result in a production rate of <1 c/n are not able to sustain 334 

NEFB's population thereby explaining the striking decline in nest numbers (Fig. 1). 335 

 Results indicate that if water management practices result in a reversal of the dry 336 

down process such that PCT is exceeded during the nestling period, prey will disperse 337 

and become unavailable to higher trophic levels.  The high energetic demands of rapidly 338 

growing wading bird chicks (e.g. Kahl 1964) suggest that nesting attempts will likely fail 339 

if prey are unavailable for even a relatively brief period (2-3d).  Such reversals have 340 

occurred with regularity since the completion of the SDCS (Lorenz 2000), but in the last 341 

decade water management practices began to take into account environmental impacts 342 

and efforts were made to avoid such reversals.  Spoonbill nesting success has been higher 343 

since this has happened (Lorenz and Dyer 2010). 344 
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 Kotun and Renshaw (this issue) indicate that current operation of the SDCS have 345 

lowered wet season and increased dry season water levels in Taylor Slough and that this 346 

had similar hydrologic repercussions throughout NEFB.  Data presented here indicate 347 

these conditions should result in lower prey production during the wet season and less 348 

prey availability during the nesting season.  Therefore, the water management practices 349 

of recent decades likely had a significant role in the depressed nesting success and the 350 

declining population of spoonbills in Florida Bay. Given that numerous other species 351 

have been similarly affected (Lorenz, this issue) and that spoonbills are an indicator of 352 

ecosystem integrity for Florida Bay and the southern Everglades (Lorenz et al. 2009), the 353 

current efforts to restore natural flows are necessary and justified.  354 

In conclusion, this study demonstrated that the relationship between water level 355 

and prey abundance was not linear but rather there is likely a threshold, or series of 356 

thresholds, in water level that result in prey concentrations.  Furthermore, the study 357 

indicates that spoonbills require water level-induced concentrated prey in order to have 358 

enough food available to successfully raise young.  359 

 360 
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Tables  471 

Table 1.  Dates of first hatch, mean hatch and last chick to 21d for each nesting cycle.  472 

“B” indicates a second nesting cycle in the given hydrologic year.  473 

Table 2.  Nestling period; mean depth (calculated from the 4 long term data sets), prey 474 

Density Availability Index (DAI), prey Biomass Availability Index (BAI) and number 475 

of prey samples collected (i.e., number of collections used to calculate the DAI and 476 

BAI) for the nestling period; nest production and percent of nests successful. 477 

Table 3.  Fish collections that were classified as concentration events because they had a 478 

DAI greater than the mean + 1 standard deviation for all samples collected. 479 

 480 

Figures 481 

Fig. 1.  The number of spoonbill nests found for each primary nesting cycle at Tern Key 482 

and for all of the colonies in northeastern Florida Bay combined showing the steady 483 

decline in nests since the completion of  water management infrastructure in 1984. 484 

Fig. 2.  Top: map showing locations of sites and pertinent landmarks.  Bottom: Aerial 485 

photo of JB site showing creeks and flats sub-habitats and the fish traps used. 486 

Fig. 3.  Regression results comparing mean water level from the long-term sites with the 487 

nest production (A) and percent of nest successful (B) for each nesting cycle.   488 

Fig. 4.  ANOVA results comparing mean water levels during the nesting cycle with nest 489 

production for each individual nest that was monitored in this study.  Number of nests 490 

used are provided along the x-axis. 491 

Fig. 5.  Regression results comparing mean water level from the long-term sites with the 492 

DAI (A) and the BAI (B) for each nesting cycle. 493 



 23 

Fig. 6.  Regression results comparing the DAI (A) and the BAI (B) with nest production 494 

for each nesting cycle. 495 

Fig. 7.  ANOVA results comparing DAI and BAI between failed (mean <1 c/n) and 496 

successful (mean > 1 c/n) nesting cycles (n=12 successful cycles and 10 failed cycles).   497 



 24 

 498 

Table 1 499 

Nesting 

cycle 

Number 

of nests 

surveyed 

First Hatch Mean Hatch Last to chick 

to 21d 

first hatch 

to mean 

hatch (d) 

mean hatch 

to last chick 

to 21d 

1987-88 60 30-Dec-87 20-Jan-88 21-Feb-88 22 53 

1988-89   12-Dec-88    

1989-90 50 20-Dec-89 23-Dec-89 18-Jan-90 3 29 

1990-91 37 27-Nov-90 2-Dec-90 1-Jan-91 5 35 

1991-92   16-Dec-91    

1992-93   1-Jan-93    

1994-95   5-Mar-95    

1995-96 38 14-Dec-95 19-Dec-95 16-Jan-96 6 33 

1996-97 24 21-Dec-96 7-Jan-97 9-Feb-97 18 50 

1997-98 35 17-Dec-97 22-Dec-97 21-Jan-98 6 35 

1998-99 38 17-Dec-98 22-Dec-98 20-Jan-99 6 34 

1998-99B 18 21-Mar-03 30-Mar-03 2-May-03 9 42 

1999-00 24 8-Dec-99 11-Dec-99 5-Jan-00 3 28 

2000-01 32 28-Dec-00 31-Dec-00 28-Jan-01 3 31 

2001-02 31 31-Dec-01 3-Jan-02 13-Feb-02 4 44 

2001-02B 14 21-Feb-02 27-Feb-02 29-Mar-02 6 36 

2002-03 35 13-Dec-02 26-Dec-02 22-Jan-03 14 40 

2002-03B 16 26-Jan-03 7-Feb-03 19-Mar-03 12 52 

2003-04 38 30-Dec-03 12-Jan-04 21-Feb-04 14 53 

2003-04B 27 4-Apr-04 7-Apr-04 1-May-04 3 27 

2004-05 15 10-Jan-05 15-Jan-05 7-Feb-05 5 28 

2004-05B 7 31-Mar-05 2-Apr-05 24-Apr-05 3 24 

2005-06 54 7-Dec-05 17-Dec-05 28-Jan-06 11 52 

2005-06B 12 3-Apr-06 11-Apr-06 12-May-06 8 39 

2006-07 56 14-Dec-06 24-Dec-06 20-Jan-07 11 37 

2007-08 23 29-Nov-07 17-Dec-07 23-Jan-08 18 55 

2008-09 21 17-Dec-08 30-Dec-08 1-Mar-09 14 74 

Mean     9 40 
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Table 2 500 

Nesting 

Cycle 

Start 

Nestling 

Period 

End 

nestling 

period 

Length of 

nestling 

period (d) 

Mean WL 

during 

nestling 

period 

# prey samples 

collected during 

nestling period 

Mean DAI 

during 

nestling 

period 

Mean BAI 

during 

nestling 

period 

Mean 

Production 

(Chicks/nest) 

% of nest that 

produced 

chicks 

1987-88 28-Dec-87 23-Feb-88 57 16.12    1.2 0.66 

1988-89 1-Dec-88 14-Jan-89 44 11.18    1.9  

1989-90 18-Dec-89 20-Jan-90 33 -0.50    2.4 0.86 

1990-91 25-Nov-90 3-Jan-91 39 5.67    2.2 0.77 

1991-92 5-Dec-91 18-Jan-92 44 12.91 3 0.13 0.31 1.3  

1992-93 21-Dec-92 3-Feb-93 44 18.20 5 0.09 0.07 0 0 

1994-95 22-Feb-95 7-Apr-95 44 15.34 6 0.14 0.17 0 0 

1995-96 12-Dec-95 18-Jan-96 37 19.58 0   0.26 0.24 

1996-97 19-Dec-96 11-Feb-97 54 15.34 4 0.21 0.27 0.25 0.25 

1997-98 15-Dec-97 23-Jan-98 39 16.64 4 0.15 0.20 0.81 0.6 

1998-99 15-Dec-98 22-Jan-99 38 19.36 4 0.18 0.16 0.35 0.38 

1998-99B 19-Mar-03 4-May-03 46 12.61 7 0.34 0.24 2.17 0.69 

1999-00 6-Dec-99 7-Jan-00 32 19.09 4 0.06 0.09 0.64 0.32 

2000-01 26-Dec-00 30-Jan-01 35 8.52 4 0.13 0.27 0.92 0.44 

2001-02 29-Dec-01 15-Feb-02 48 11.69 7 0.11 0.07 1.26 0.68 

2001-02B 19-Feb-02 31-Mar-02 40 8.72 5 0.09 0.14 0.61 0.39 

2002-03 11-Dec-02 24-Jan-03 44 13.07 10 0.16 0.24 0.88 0.33 

2002-03B 24-Jan-03 21-Mar-03 56 2.23 11 0.24 0.21 0.9 0.5 

2003-04 28-Dec-03 23-Feb-04 57 14.24 14 0.17 0.17 0.14 0.08 

2003-04B 2-Apr-04 3-May-04 31 6.68 5 0.17 0.17 1.86 0.83 

2004-05 8-Jan-05 9-Feb-05 32 13.49 9 0.14 0.19 0.18 0.07 

2004-05B 29-Mar-05 26-Apr-05 28 12.65 7 0.11 0.08 0.37 0.36 

2005-06 5-Dec-05 30-Jan-06 56 12.05 19 0.23 0.19 1.54 0.63 

2005-06B 1-Apr-06 14-May-06 43 15.22 12 0.17 0.20 0.06 0.06 

2006-07 12-Dec-06 22-Jan-07 41 14.74 14 0.23 0.30 0.96 0.54 

2007-08 27-Nov-07 25-Jan-08 59 12.19 21 0.29 0.29 1.6 0.96 

2008-09 15-Dec-08 3-Mar-09 78 7.03 22 0.25 0.23 1.7 0.77 

Mean        0.98 0.46 
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Table 3 501 

Hydro yr month site Depth DAI   Hydro yr month site Depth DAI 

08-09 1 SB -4.70 0.74   07-08 12 SB 5.90 0.65 

07-08 3 WJ -1.76 1.00   96-97 2 TR 6.50 0.52 

06-07 2 SB -1.63 0.89   03-04 3 HC 6.65 0.51 

04-05 2 SB -1.58 0.89   04-05 3 TR 6.80 0.45 

98-99 3 HC -1.50 0.95   04-05 12 HC 7.30 0.49 

00-01 2 TR -1.28 0.51   06-07 12 HC 7.60 0.52 

03-04 1 HC 0.17 0.47   96-97 2 JB 8.00 0.46 

03-04 4 HC 0.42 0.50   96-97 3 TR 8.20 0.85 

91-92 4 HC 0.50 0.38   06-07 1 EC 8.30 0.39 

00-01 3 TR 0.74 0.53   04-05 3 SB 8.71 0.63 

07-08 12 HC 0.96 0.41   05-06 11 SB 9.05 0.46 

90-91 12 HC 1.07 0.39   98-99 1 HC 9.30 0.41 

93-94 1 HC 1.40 0.74   98-99 12 HC 9.70 0.38 

95-96 3 TR 1.72 0.47   07-08 2 EC 10.05 0.49 

07-08 3 EC 2.10 0.87   96-97 4 TR 10.20 1.00 

06-07 2 EC 2.88 1.00   08-09 12 SB 10.78 0.37 

97-98 4 HC 3.00 0.39   96-97 1 TR 10.80 0.38 

00-01 4 TR 3.58 0.40   98-99 3 JB 11.20 0.49 

07-08 3 SB 4.70 0.42   06-07 1 SB 11.92 0.41 

01-02 4 HC 5.05 0.44   05-06 4 JB 13.15 1.00 
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