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EXECUTIVE SUMMARY 
This report serves as a summary of our efforts to date in the execution of the Water Quality 

Monitoring Project for the FKNMS as part of the Water Quality Protection Program.  The period 
of record for this report is Mar. 1995 – Dec. 2010 and includes data from 62 quarterly sampling 
events at 155 stations within the FKNMS and SW Florida Shelf, including the Dry Tortugas 
National Park.   

Field parameters measured at each station include salinity (practical salinity scale), 
temperature (ºC), dissolved oxygen (DO, mg l-1), turbidity (NTU), relative fluorescence, and light 
attenuation (Kd, m-1).  Water quality variables include the dissolved nutrients nitrate (NO3

-), 
nitrite (NO2

-), ammonium (NH4
+), dissolved inorganic nitrogen (DIN), and soluble reactive 

phosphate (SRP).  Total unfiltered concentrations include those of nitrogen (TN), organic 
nitrogen (TON), organic carbon (TOC), phosphorus (TP), silicate (SiO2) and chlorophyll a (CHLA, 
μg l-1).   

The EPA developed Strategic Targets for the Water Quality Monitoring Project which state 
that beginning in 2008 through 2011, they shall annually maintain the overall water quality of 
the near shore and coastal waters of the FKNMS according to 2005 baseline.  For reef sites, 
chlorophyll a should be less than or equal to 0.2 micrograms/l and the vertical attenuation 
coefficient for downward irradiance (Kd, i.e., light attenuation) should be less than or equal to 
0.13 per meter.  For all monitoring sites in FKNMS, dissolved inorganic nitrogen should be less 
than or equal to 0.75 micromolar and total phosphorus should be less than or equal to 0.2 
micromolar.  Table 1 shows the number of sites and percentage of total sites exceeding these 
Strategic Targets for 2010. 
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Table 1: EPA WQPP WQ Targets from 1995-2005 Baseline 
 
Targets for reef sites include chlorophyll a less than or equal to 0.35 micro grams/l and vertical attenuation coefficient for downward 
irradiance (Kd, i.e., light attenuation) less than or equal to 0.20 per meter. Targets for all sites in FKNMS include dissolved inorganic 
nitrogen (DIN) less than or equal to 0.75 micromolar and total phosphorus (TP) less than or equal to 0.25 micromolar.  Compliances 
were calculated as percent of those achieving targets divided by total number of samples.  Values in green are those years with % 
compliance greater than 1995-2005 baseline.  Values in yellow are those years with % compliance less than 1995-2005 baseline. 
 
 

EPA WQPP Water Quality Targets 
     
 Reef Stations All Stations 

Year CHLA ≤ 0.35 μg l-1 Kd ≤ 0.20 m-1 
DIN ≤ 0.75 μM  

(0.010 ppm) 
TP ≤ 0.25 μM  
(0.0077 ppm) 

1995-05 1778 of 2367 (75.1%) 1042 of 1597 (65.2%) 7826 of 10254 (76.3%) 7810 of 10267 (76.1%)
2006 196 of 225 (87.1%) 199 of 225 (88.4%) 432 of 990 (43.6%) 316 of 995 (31.8%) 
2007 198 of 226 (87.6%) 202  of 222 (91.0  %) 549 of 993 (55.3%) 635 of 972 (65.3%) 
2008 177 of 228 (77.6%) 181 of 218 (83.0%) 836 of 1,000 (83.6%) 697 of 1,004 (69.4%) 
2009 208 of 228 (91.2%) 189 of 219 (86.3%) 858 of 1,003 (85.5%) 869 of 1,004 (86.6%) 
2010 170 of 227 (74.9%) 176 of 206 (85.4%) 843 of 1000 (84.3%)  738 of 1,003 (73.6%) 



 7

Several important results have been realized from this monitoring project.  First, is 

documentation of elevated nitrate in the inshore waters of the Keys (Fig. 1).  This result was 

evident from our first sampling event in 1995 and continues to be a characteristic of the 

ecosystem.  Interestingly, this gradient was not observed in a comparison transect from the 

Tortugas (no human impact).  This type of distribution implies an inshore source which is 

diluted by low nutrient Atlantic Ocean waters.  Presence of a similar gradient in TOC and 

decreased variability in salinity from land to reef also support this concept.  There were no 

trends in either TP or CHLA with distance from land.   

 

 

Figure 1. 

 

Some variables showed noteworthy differences over the period of record (Fig 2).  Since the 

2005 hurricane season, water quality on the reef, especially DIN, have been elevated but have 

mostly returned to normal levels.
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This brings up another important point; when looking at what are perceived to be local 

trends, we find that they seem to occur across the whole region but at more damped 

amplitudes.  This spatial autocorrelation in water quality is an inherent property of highly 

interconnected systems such as coastal and estuarine ecosystems driven by similar hydrological 

and climatological forcing.  It is clear that trends observed inside the FKNMS are influenced by 

regional conditions outside the Sanctuary boundaries.  

Trend analysis has shown that many variables have undergone significant changes in 

concentration over the 15 year period of record.  Examples for salinity, DO, TN and TP are 

shown in Figures 3-6.  

           
   Figure 3      Figure 4 

           
   Figure 5      Figure 6 

For 2010, in all regions of the FKNMS, water quality has returned to conditions prior to 2005 

hurricane season (Fig. 7).  Overall, TOC remains lower than the long term median mostly 

because it has been declining over the years.  DO and light penetration were better than the 

norm. 
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The large scale of this monitoring program has allowed us to assemble a much more holistic 

view of broad physical/chemical/biological interactions occurring over the South Florida 

hydroscape.  Much information has been gained by inference from this type of data collection 

program: major nutrient sources have be confirmed, relative differences in geographical 

determinants of water quality have been demonstrated, and large scale transport via 

circulation pathways have been elucidated.  In addition we have shown the importance of 

looking "outside the box" for questions asked within.  Rather than thinking of water quality 

monitoring as being a static, non-scientific pursuit it should be viewed as a tool for answering 

management questions and developing new scientific hypotheses.   

We continue to maintain a website (http://serc.fiu.edu/wqmnetwork/) where data and 

reports from the FKNMS is integrated with the other programs are available. 
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1. Project Background 
The Florida Keys are an archipelago of sub-tropical islands of Pleistocene origin which 

extend in a NE to SW direction from Miami to Key West and out to the Dry Tortugas (Fig. 1).  In 

1990, President Bush signed into law the Florida Keys National Sanctuary and Protection Act 

(HR5909) which designated a boundary encompassing >2,800 square nautical miles of islands, 

coastal waters, and coral reef tract as the Florida Keys National Marine Sanctuary (FKNMS).  The 

Comprehensive Management Plan (NOAA 1995) required the FKNMS to have a Water Quality 

Protection Plan (WQPP) thereafter developed by EPA and the State of Florida (EPA 1995).  The 

original agreement for the water quality monitoring component of the WQPP was subsequently 

awarded to the Southeast Environmental Research Program at Florida International University 

and the field sampling program began in March 1995.   

 

 
Figure 1.   Map of FKNMS boundary including Segment numbers and common names. 

 

The waters of the FKNMS are characterized by complex water circulation patterns over both 

spatial and temporal scales with much of this variability due to seasonal influence in regional 

circulation regimes.  The FKNMS is directly influenced by the Florida Current, the Gulf of Mexico 

Loop Current, inshore currents of the SW Florida Shelf (Shelf), discharge from the Everglades 

through the Shark River Slough, and by tidal exchange with both Florida Bay and Biscayne Bay 
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(Lee et al. 1994, Lee et al. 2002).  Advection from these external sources has significant effects 

on the physical, chemical, and biological composition of waters within the FKNMS, as may 

internal nutrient loading and freshwater runoff from the Keys themselves (Boyer and Jones 

2002).  Water quality of the FKNMS may be directly affected both by external nutrient transport 

and internal nutrient loading sources (Gibson et al. 2008).  Therefore, the geographical extent 

of the FKNMS is one of political/regulatory definition and should not be thought of as an 

enclosed ecosystem.  

A spatial framework for FKNMS water quality management was proposed on the basis of 

geographical variation of regional circulation patterns (Klein and Orlando, 1994).  The final 

implementation plan (EPA 1995) partitioned the FKNMS into 9 segments which was collapsed 

to 7 for routine sampling (Fig. 1).  Station locations were developed using a stratified random 

design along onshore/offshore transects in Segment 5, 7, and 9 or within EMAP grid cells in 

Segment 1, 2, 4, and 6.   

Segment 1 (Tortugas) includes the Dry Tortugas National Park (DTNP) and surrounding 

waters and is most influenced by the Loop Current and Dry Tortugas Gyre.  Originally, there 

were no sampling sites located within the DTNP as it was outside the jurisdiction of NOAA.  

Upon request from the National Park Service, we initiated sampling at 5 sites within the DNTP 

boundary.  Segment 2 (Marquesas) includes the Marquesas Keys and a shallow sandy area 

between the Marquesas and Tortugas called the Quicksands.  Segment 4 (Backcountry) 

contains the shallow, hard-bottomed waters on the gulfside of the Lower Keys.  Segments 2 and 

4 are both influenced by water moving south along the SW Shelf.  Segment 6 can be considered 

as part of western Florida Bay.  This area is referred to as the Sluiceway as it strongly influenced 

by transport from Florida Bay, SW Shelf, and Shark River Slough (Smith, 1994).  Segments 5 

(Lower Keys), 7 (Middle Keys), and 9 (Upper Keys) include the inshore, Hawk Channel, and reef 

tract of the Atlantic side of the Florida Keys.  The Lower Keys are most influenced by cyclonic 

gyres spun off of the Florida Current, the Middle Keys by exchange with Florida Bay, while the 

Upper Keys are influenced by the Florida Current frontal eddies and to a certain extent by 

exchange with Biscayne Bay.  All three oceanside segments are also influenced by wind and 

tidally driven lateral Hawk Channel transport (Pitts, 1997).   
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We have found that water quality monitoring programs composed of many sampling 

stations situated across a diverse hydroscape are often difficult to interpret due to the “can’t 

see the forest for the trees” problem (Boyer et al. 2000).  At each site, the many measured 

variables are independently analyzed, individually graphed, and separately summarized in 

tables.  This approach makes it difficult to see the larger, regional picture or to determine any 

associations among sites.  In order to gain a better understanding of the spatial patterns of 

water quality of the FKNMS, we attempted to reduce the complicated data matrix into fewer 

elements which would provide robust estimates of condition and connection.  To this end we 

developed an objective classification analysis procedure which grouped stations according to 

water quality similarity.  

Ongoing quarterly sampling of 155 stations in the FKNMS, as well as SFWMD monthly 

sampling of ~100 stations in Florida Bay, Biscayne Bay, and the mangrove estuaries of the SW 

coast (Fig. 2), has provided us with a unique opportunity to explore the spatial component of 

water quality variability.  By stratifying the sampling stations according to depth, regional 

geography, distance from shore, proximity to tidal passes, and influence of Shelf waters we 

report some conclusions as to the relative importance of external vs. internal factors on the 

ambient water quality within the FKNMS. 
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Figure 2.  The SERC Water Quality Monitoring Network showing the distribution of fixed sampling 
stations (+) within the FKNMS and SW Florida Shelf. 

 

 

2. Methods 

2.1. Field Sampling 

The period of record of this study was from March 1995 to December 2010 which included 

62 quarterly sampling events.  For each event, field measurements and grab samples were 

collected from 155 fixed stations within the FKNMS boundary (Fig. 2).  Depth profiles of 

temperature (°C), salinity (practical salinity scale), dissolved oxygen (DO, mg l-1), 

photosynthetically active radiation (PAR, µE m-2 s-1), in situ chlorophyll a specific fluorescence 

(FSU), turbidity (NTU), depth as measured by pressure transducer (m), and density (σt, in kg m-3) 

were measured by CTD casts (Seabird SBE 19).  The CTD was equipped with internal RAM and 

operated in stand-alone mode at a sampling rate of 0.5 sec.  The vertical attenuation coefficient 

for downward irradiance (Kd, m-1) was calculated at 0.5 m intervals from PAR and depth using 

the standard exponential equation (Kirk 1994) and averaged over the station depth.  This was 

necessary due to periodic occurrence of optically distinct layers within the water column.  
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During these events, Kd was reported for the upper layer.  To determine the extent of 

stratification we calculated the difference between surface and bottom density as delta sigma-t 

(Δσt, in kg m-3), where positive values denoted greater density of bottom water relative to the 

surface.  A Δσt >1 is considered weakly stratified, while any instances >2 is strongly stratified.   

In the Backcountry area (Seg. 4, Fig. 1) where it is too shallow to use a CTD, surface salinity 

and temperature were measured using a combination salinity-conductivity-temperature-DO 

probe (YSI 650 MDS display-datalogger with YSI 600XL sonde).  DO was automatically corrected 

for salinity and temperature.  PAR was measured every 0.5 m using a Li-Cor LI-1400 DataLogger 

equipped with a 4π spherical sensor (LI-193SB).  PAR data with depth was used to calculate Kd 

from in-air surface irradiance. 

Water was collected from approximately 0.25 m below the surface and at approximately 1 

m from the bottom with a Niskin bottle (General Oceanics) except in the Backcountry, 

Sluiceway and SW Shelf where surface water was collected directly into sample bottles.  

Duplicate, unfiltered water samples were dispensed into 3x sample rinsed 120 ml HDPE bottles 

for analysis of total constituents.  Duplicate water samples for dissolved nutrients were 

dispensed into 3x sample rinsed 150 ml syringes which were then filtered by hand through 25 

mm glass fiber filters (Whatman GF/F) into 3x sample rinsed 60 ml HDPE bottles.  The resulting 

wet filters, used for chlorophyll a (CHLA) analysis, were placed in 1.8 ml plastic centrifuge tubes 

to which 1.5 ml of 90% acetone/water was added (Strickland and Parsons 1972).   

All samples were kept on ice in the dark during transport to the laboratory.  During 

shipboard collection in the Tortugas/Marquesas/Shelf and overnight stays in the Lower Keys, 

filtrates and filters were frozen until further analysis. 

 

2.2. Laboratory Analysis 

Unfiltered water samples were analyzed for total organic carbon (TOC), total nitrogen (TN), 

total phosphorus (TP), silicate (SiO2), and turbidity.   TOC was measured by direct injection onto 

hot platinum catalyst in a Shimadzu TOC-5000 after first acidifying to pH<2 and purging with 

CO2-free air.  TN was measured using an ANTEK 7000N Nitrogen Analyzer using O2 as carrier gas 

to promote complete recovery of the nitrogen in the water samples (Frankovich and Jones 

1998).  TP was determined using a dry ashing, acid hydrolysis technique (Solórzano and Sharp 
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1980).  SiO2 was measured using the molybdosilicate method (Strickland and Parsons 1972).  

Turbidity was measured using an HF Scientific model DRT-15C turbidimeter and reported in 

NTU.   

Filtrates were analyzed for nitrate+nitrite (NOx
-), nitrite (NO2

-), ammonium (NH4
+), and 

soluble reactive phosphorus (SRP) by flow injection analysis (Alpkem model RFA 300).  Filters 

for CHLA content (µg l-1) were allowed to extract for a minimum of 2 days at -20° C before 

analysis.  Extracts were analyzed using a Gilford Fluoro IV Spectrofluorometer (excitation = 435 

nm, emission = 667 nm).  All analyses were completed within 1 month after collection in 

accordance to SERC laboratory QA/QC guidelines. 

Some parameters were not measured directly, but were calculated by difference.  Nitrate 

(NO3
-) was calculated as NOX

- - NO2
-, dissolved inorganic nitrogen (DIN) as NOX

- + NH4
+, and total 

organic nitrogen (TON) defined as TN - DIN.  All concentrations are reported as mg-1 unless 

noted.  All elemental ratios discussed were calculated on a molar basis.  DO saturation in the 

water column (DOsat as %) was calculated using the equations of Garcia and Gordon (1992). 

 

2.3. Objective Classification Analysis 

Stations were stratified according to water quality characteristics (i.e. physical, chemical, 

and biological variables) using a statistical approach.  Multivariate statistical techniques have 

been shown to be useful in reducing large data sets into a smaller set of independent, synthetic 

variables that capture much of the original variance.  The method we chose was a type of 

objective classification analysis (OCA) which uses principal component analysis (PCA) followed 

by hierarchical clustering algorithm to classify sites as to their overall water quality.  This 

approach has been very useful in understanding the factors influencing nutrient 

biogeochemistry in Florida Bay (Boyer et al. 1997), Biscayne Bay (Briceno and Boyer 2010), and 

the Ten Thousand Islands (Boyer 2006).  We have found that water quality at a specific site is 

the result of the interaction of a variety of driving forces including oceanic and freshwater 

inputs/outputs, sinks, and internal cycling.   

Briefly, data were first standardized as Z-scores prior to analysis to reduce artifacts of 

differences in magnitude among variables.  PCA was used to extract statistically significant 

composite variables (principal components) from the original data (Overland and Preisendorfer 
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1982).  The PCA solution was rotated (using VARIMAX) in order to facilitate the interpretation 

of the principal components and the factor scores were saved for each data record.  Both the 

mean and SD of the factor scores for each station over the entire period of record were then 

used as independent variables in a hierarchical cluster analysis algorithm with Ward distance 

calculations in order to aggregate stations into groups of similar water quality.  The purpose of 

this analysis was to collapse the 155 stations into a few groups which could then be analyzed in 

more detail. 

 

2.4. Box and Whisker Plots 

Typically, water quality data are skewed to the left (low concentrations and below detects) 

resulting in non-normal distributions.  Therefore it is more appropriate to use the median as the 

measure of central tendency because the mean is inflated by high outliers (Christian et al. 

1991).  Data distributions of water quality variables are reported as box-and-whiskers plots.  

The box-and-whisker plot is a powerful statistic as it shows the median, range, the data 

distribution as well as serving as a graphical, nonparametric ANOVA.  The center horizontal line 

of the box is the median of the data, the top and bottom of the box are the 25th and 75th 

percentiles (quartiles), and the ends of the whiskers are the 5th and 95th percentiles.  The notch 

in the box is the 95% confidence interval of the median.  When notches between boxes do not 

overlap, the medians are considered significantly different.  Outliers (<5th and >95th percentiles) 

were excluded from the graphs to reduce visual compression.  Differences in variables were 

also tested between groups using the Wilcoxon Ranked Sign test (comparable to a t-test) and 

among groups by the Kruskall-Wallace test (ANOVA) with significance set at P<0.05.   

 

2.5. Contour Maps 

In an effort to elucidate the contribution of external factors to the water quality of the 

FKNMS and to visualize gradients in water quality over the region, we combined Keys and Shelf 

data into contour maps of specific water quality variables (Surfer,  Golden Software).  We used  

kriging as the geostatistical algorithm because it is designed to minimize the error variance 

while at the same time maintaining point pattern continuity (Isaaks & Srivastava, 1989).  Kriging 

is a general method of statistical interpolation that can be applied within any discipline to 
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sampled data from random fields that satisfy the appropriate mathematical assumptions.  

Kriging is a global approach which uses standard geostatistics to determine the "distance" of 

influence around each point and the "clustering" of similar samples sites (autocorrelation).  

Therefore, unlike the inverse distance procedure, kriging will not produce valleys in the contour 

between neighboring points of similar value. 

 

2.6. Time Series Analysis 

Individual site data for the complete period of record were plotted as time series graphs to 

illustrate any temporal trends that might have occurred.  Temporal trends were quantified by 

simple regression with significance set at P<0.10.   
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3. Results 

3.1. Overall Water Quality of the FKNMS 

Summary statistics for all water quality variables from all 62 sampling events are shown as 

median, minimum, maximum, and number of samples (Table 1).  Overall, the region was warm 

and euhaline with a median temperature of 26.61 °C and salinity of 36.46; oxygen saturation of 

the water column (DOsat) was relatively high at 95.8%.  On this coarse scale, the FKNMS 

exhibited very good water quality with median NO3
-, NH4

+, TP, and SiO2 concentrations of 0.001, 

0.003, 0.006, and 0.009 mg l-1, respectively.  NH4
+ was the dominant DIN species in almost all of 

the samples (~70%).  However, DIN comprised a small fraction (4%) of the TN pool with TON 

making up the bulk (median 0.173 mg l-1).  SRP concentrations were very low (median 0.001 mg 

l-1) and comprised only 6% of the TP pool.  CHLA concentrations were also low overall, 0.24 µg l-

1, but ranged from 0.01 to 7.38 µg l-1.  TOC was 1. 763 mg l-1; a value higher than open ocean 

levels but consistent with coastal areas.   

Median turbidity was low (0.67 NTU) as reflected in a low Kd (0.128 m-1).  Overall, 27% of 

incident light (Io) reached the bottom.  Molar ratios of N to P suggested a general P limitation of 

the water column (median TN:TP = 62.1) but this must be tempered by the fact that much of 

the TN is not bioavailable.   
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Table 1.  Summary statistics for each water quality variable in the FKNMS for the 2010 period of 
record.  Data are summarized as median (Median), minimum value (Min.), maximum value 
(Max.), and number of samples (n).   
 

Variable Depth Median Min. Max. n 

NO3
- Surface 0.001 0.000 0.025 716 

(mg l-1) Bottom 0.001 0.000 0.106 372 

NO2
- Surface 0.000 0.000 0.006 721 

(mg l-1) Bottom 0.000 0.000 0.002 382 

NH4
+ Surface 0.003 0.000 0.098 722 

(mg l-1) Bottom 0.002 0.000 0.012 381 
TN Surface 0.173 0.036 0.584 722 

(mg l-1) Bottom 0.159 0.019 0.948 382 
DIN Surface 0.005 0.001 0.100 722 

(mg l-1) Bottom 0.004 0.000 0.115 379 
TON Surface 0.166 0.027 0.581 722 

(mg l-1) Bottom 0.155 0.013 0.946 379 
TP Surface 0.006 0.001 0.038 722 

(mg l-1) Bottom 0.005 0.001 0.020 380 
SRP Surface 0.001 0.000 0.048 722 

(mg l-1) Bottom 0.001 0.000 0.011 381 
CHLA (mg l-1) Surface 0.240 0.011 7.383 722 

TOC Surface 1.376 0.915 5.984 722 
(mg l-1) Bottom 1.168 0.837 2.933 381 

SiO2 Surface 0.009 0.000 2.758 722 
(mg l-1) Bottom 0.006 0.000 0.605 381 

Turbidity Surface 0.672 0.032 23.893 706 
(NTU) Bottom 0.814 0.010 23.895 584 

Salinity Surface 36.46 34.08 41.90 686 
  Bottom 36.47 34.23 39.92 683 

Temperature Surface 29.61 10.51 37.60 686 
(oC) Bottom 29.43 14.66 37.60 683 
DO Surface 6.22 4.74 9.58 686 

(mg l-1) Bottom 6.24 4.56 9.29 683 
Kd (m-1)   0.128 0.000 3.516 645 

pH Surface 7.940 6.160 8.220 105 
TN:TP Surface 62.111 15.976 345.300 722 

DO Saturation Surface 95.794 73.077 135.430 686 
(%) Bottom 96.185 70.132 134.928 683 
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Variable Depth Median Min. Max. n 
Io (%) Bottom 27.035 0.046 100.000 604 
Δσt   0.005 -1.247 3.134 683 

Si:DIN Surface 0.909 0.007 289.371 721 
 

 

3.2. Objective Classification Analysis 

PCA identified five composite variables (hereafter called PC1, PC2, etc.) that passed the rule 

N for significance at P<0.05 (Overland and Preisendorfer 1982) indicating five separate modes 

of variation in the data.  These five principal components accounted for 56.8% of the total 

variance of the original variables.  PC1 had high factor loadings for NO3
-, NO2

-, NH4
+, and SRP 

and was named the “Inorganic Nutrient” component.  PC2 included TP, CHLA, and turbidity and 

was designated as the “Phytoplankton” component.  The covariance of TP with CHLA implies 

that, in many areas, phytoplankton biomass may be limited by phosphorus availability.  This is 

contrary to much of the literature on the subject which usually ascribes nitrogen as being the 

limiting factor for phytoplankton production in coastal oceans.  TOC and SiO2 were included in 

PC3 as the “Terrestrial Organic” component.  Interestingly, this implies that much of the silicate 

in the system is delivered from terrestrial, or at least Gulf of Mexico, sources.  Temperature and 

DO were inversely related in PC4.  Finally, PC5 included salinity and TON, implying a source of 

TON from marine waters.  In past analyses, TON has been a member of the Terrestrial PC3.  We 

are unsure as to the reason for its change in association. 

Spatial distributions of the mean factor score for each station indicated how the average 

water quality varied over the study area.  The “Inorganic Nutrient” component had two peaks: 

in the Backcountry and bayside of the Middle Keys.  The “Phytoplankton” component described 

a N to S gradient in the Backcountry and Sluiceway which extended west across the northern 

Marquesas.  The “Terrestrial Organic” component was highest in eastern Sluiceway extending 

into the Backcountry and was also distributed as a gradient away from land on the Atlantic side 

of the Keys.  Temperature and DO showed a distribution heavily loaded in the oceanside.  

Finally the salinity/TP component showed lower loadings in the alongshore Upper Keys and 

bayside Sluiceway extending through most Atlantic sites of the Middle and Lower Keys.   
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The hierarchical clustering algorithm used the mean and SD of the four factor scores of each 

station to classify all 155 sampling sites into 6 groups having robust correspondence in 

water quality (Fig. 3): Backcountry (BACK), western bayside Middle Keys (BAY), Inshore Keys 

(INSHORE), Marquesas (MARQ), Offshore Keys (Reef), and Tortugas (TORT).  The SW Florida 

Shelf (SHELF) was assigned as a separate zone, making a total of 7 groups.  

 

 
Figure 3.  Results of statistical analysis showing station membership in distinct water quality groups. 

 
Although the differences among the 7 zones were subtle, they were statistically significant 

and allowed us to say that the overall nutrient gradient, from highest to lowest concentrations, 

was BACK>BAY>SHELF>INSHORE>MARQUESAS>REEF>TORT (Table 3).  

The BACK zone was composed primarily stations located inside and north of the Lower Keys 

(Fig. 3).  This group was highest in nutrients, especially NO3
-, NH4

+, TN, and TP, as well as TOC 

(Fig. 4).  In the shallow BACK sites we expect that either nutrient transport from the SW Shelf 
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and/or benthic flux of nutrients might be more important than anthropogenic loading.  The 

BACK also had highest salinity and DO, relative to other regions. 

The BAY (Sluiceway) included sites most influenced by Florida Bay and water moving south 

from the SW Shelf.  It was highest in SiO2, high in TN, TP, and TOC, but was relatively low in 

inorganic nutrients and CHLA.  BAY sites had greatest range in salinity than the other areas. 

The SHELF was composed of 49 stations located north of the jurisdictional boundary of the 

FKNMS.  The SHELF is influenced by both Everglades freshwater discharge and by southward 

transport of coastal Gulf of Mexico waters.  Therefore, SHELF waters greatly influence the 

FKNMS via advection of nutrients through the Middle and Lower Keys.  The SHELF has highest 

TP, CHLA, and turbidity, high TN, SiO2, and lowest salinity of any other region.   

The water quality of INSHORE, MARQ, REEF, and TORT zones was most similar to each 

other.  The INSHORE and REEF zones may be interpreted as representing an onshore-offshore 

nutrient gradient.   The INSHORE zone included the innermost sites of the Keys, which are 

shallow, closest to any possible anthropogenic nutrient sources, and typically more turbid than 

REEF zone from beach wave resuspension.  These sites were slightly elevated in DIN, TN, and 

TOC relative to the REEF sites.  The INSHORE zone had comparable TP and CHLA as in the REEF 

and TORT zones.  No significant inshore-offshore gradient was observed for TP or CHLA. 

The MARQ zone was made up of sites between Key West and Rebecca Shoals.  This is an 

area of relatively shallow water which separates the SW Shelf from the Atlantic Ocean.  The 

MARQ zone had higher TP, CHLA, and turbidity than TORT and REEF zones but was comparable 

in N.   

The REEF zone was made up of all Hawk Channel and reef tract sites of the mainland Keys.  

This zone had very low nutrients, TP, CHLA, and turbidity.  The TORT zone was composed of all 

sites west of Rebecca Shoal, including those in Dry Tortugas National Park.  The distinction 

between the REEF and TORT zones was driven by the slightly higher TN and TOC concentrations 

and lower TP found in the REEF zone.   
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Figure 4.  Box-and-whisker plots showing median and distribution of NOx

-, NH4
+,TN, TP,  SiO2, CHLA, TOC, 

turbidity, salinity, and DO as stratified by water quality cluster. Notches in the box that do not overlap 
with another are considered significantly different. 
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3.3. Contour Maps 

All contour maps of combined data from EPA and SFWMD projects are archived on the 

website http://serc.fiu.edu/wqmnetwork/CONTOUR%20MAPS/ContourMaps.htm and are 

updated quarterly.  An example of such (Fig. 5) shows the median distribution of salinity across 

the region.  Both freshwater sources and marine influences are visible using this approach.  The 

major freshwater sources to the region are the Shark River/Slough system on the SW coast and 

the Taylor Slough/C-111 Basin in eastern Florida Bay.  Southerly currents along the SW coast 

and Shelf moves water through the Keys passes and may impact the reef tract.  

 

 

Figure 5.  Median salinity field for the region showing freshwater inputs and marine influence. 
 

The usual distribution of dissolved NO3
- and NH4

+ are very different than that for salinity 

(Fig. 6).  This implies that there are other factors responsible for their distributions, such a 

phytoplankton and seagrass uptake as well as N2 fixation and benthic remineralization.    
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Figure 6.  Median nitrate and ammonium in the region. 

 

In contrast, TP distributions often are very similar to salinity patterns, but only on the west 

coast (Fig. 7).  This implies that the source of P on the Shelf is partially terrestrial and partly 

from southward transport of coastal waters from above Cape Romano.  It is important to note 

that the CHLA concentrations are tightly coupled to TP availability (Fig. 8). 
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Figure 7.  Distribution of median total phosphorus in the region. 

 
 

 
Figure 8.  Median chlorophyll a in the region showing the similarity to TP distribution. 
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3.4. Time Series Analysis 

We must always keep in mind that trend analysis is limited to the window of observation; 

trends change with continued data collection.  In addition, water quality in the Keys is largely 

externally-driven and may fluctuate according to climactic or disturbance events of longer 

periodicity.  Trends may even reverse during a period of record.  Examples of this are shown in 

Figures 9-11, where trends can be seen to be 1) monotonic, 2) episodically driven, and 3) 

reversing.  

 

 
Figure 9.  Monotonic trend in TOC at Carysfort Reef. 

 

 
Figure 10.  Episodically driven trend in NH4

+ at The Elbow. 
 

 
Figure 11.  Reversing trend in DO at Carysfort Reef. 
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Least squares regressions for each water quality variable were calculated for the 15 year 

period of record.  Only slopes having significant trends (p < 0.01) in ppm yr-1, or as noted were 

reported; non-significant trends were coded as slope = 0.  Some of the slopes are very small, 

but to get an idea of total change over the period of record, the annual slopes were multiplied 

by 15 and plotted as contour maps of Total Change for 15 year period (Fig. 12-22). 

Clearly, there have been large changes in the FKNMS water quality over time, but the only 

sustained monotonic trend that has been observed is a decline in TOC.  That said, significant 

increases and decreases in some water quality variables has occurred.  This brings up an 

important point that, when looking at what are perceived to be local trends, we find that they 

may occur across the whole region at more subtle levels.  This spatial autocorrelation in water 

quality is an inherent property of interconnected systems such as coastal and estuarine 

ecosystems which are driven by hydrological and climatological forcing.   

NO3
-+NO2

- (NOx
-) has generally remained the same or declined slightly over the region (Fig. 

12).  Declines were greatest in surface waters of the Backcountry and inshore of Middle Keys.  

Interestingly, the sites off Elliot Key – Triumph Reef, Old Rhodes Key, and White Bank exhibited 

increases in bottom NOx
-.   

NH4
+ has also generally remained the same in most surface waters of the FKNMS except for 

the Atlantic side of the Marquesas and Tortugas where it increased by 0.005-0.02 ppm (Fig. 13).  

There was no change in NH4
+ in bottom waters except for a few inshore sites in the Middle Keys 

where it decreased and increases at the same sites in the Upper Keys where NOx
- was also seen 

to increase.   

Surface TN increased slightly (0.05-0.10 ppm, total) in the Tortugas/Marquesas and at many 

offshore reef sites throughout the FKNMS (Fig. 14).  This trend did not hold for bottom TN as 

only increases were observed in Tortugas region.  Significant increases in TN (up to 0.5 ppm) 

were observed in the Fort Jefferson area of the Dry Tortugas National Park. 

TP concentrations were relatively constant throughout the FKNMS with a few notable 

exceptions (Fig. 15).  TP increased at sites offshore of the Upper Keys and along one inshore-

offshore transect Rattlesnake Key - White Bank - The Elbow.  The same trend was seen in 

bottom waters as well as at Mosquito Bank.  Contrary to TN, TP decreased significantly in Fort 

Jefferson area of the Dry Tortugas National Park.   



 30

Overall CHLA concentrations declined or stayed the same throughout the FKNMS (Fig 16) 

with largest decreases in the west Marquesas.  CHLA increased in the Sluiceway around SW 

Florida Bay and in station along the northern edge of the SW Shelf.  These increases were 

driven by phytoplankton blooms from outside the FKNMS. 

Light extinction (Kd) declined at most sites (Fig. 17), which is a good thing as it means that 

there was an increase in light penetration to the benthos over time.  Kd increased greatly on the 

SW Shelf adjacent to Everglades freshwater outputs from mangrove rivers.  We believe the 

output of colored dissolved organic matter (CDOM) from mangrove forest accounts for this 

change.  

With the exception of a few areas, DO did not change over the region in both surface and 

bottom waters (Fig. 18).  Significant declines in surface and bottom DO were observed in NE 

Sluiceway – adjacent to Florida Bay, Spanish Harbor Keys, and Long Beach area.  Some areas 

adjacent to Florida Bay experienced decreases up to 1.5 ppm for the period of record.  This is 

problematic as DO is an important requirement for animal life.   

SiO2 changed very little.  Increases were observed in NE Sluiceway adjacent to Florida Bay, 

while increases occurred at Mosquito Bank and Molasses Reef Channel (Fig. 19). 

Changes in water turbidity did not always correspond with Kd, indicating that CDOM 

probably has more impact on the light field than does fine particulate seston (Fig. 20).  In 

western Florida Bay, turbidity decreased with declines in light penetration.  This points out the 

fact that turbidity is not the only optical property affecting light penetration.  The strong decline 

in surface TOC over the FKNMS and SW Shelf may help explain this contradiction (Fig 21).  In 

most areas, TOC has declined 1-2 ppm over the period of record.  The decrease in color 

associated with this DOm is another important component of light penetration.   

Finally, salinity on the Oceanside of the FKNMS has ton changed.  However salinity in both 

surface and bottom waters of the of the gulfside areas - Backcountry, Sluiceway, and SW Shelf 

has increased dramatically (Fig. 22).  We attribute these increases to climactic cycles and 

Everglades water management.   
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Figure 12.  Total change in NO3

-+NO2
- in surface and bottom waters for 15 year period calculated from 

significant trends (p<0.10). 
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Figure 13.  Total change in NH4

+ in surface and bottom waters for 15 year period calculated from 

significant trends (p<0.10). 
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Figure 14.  Total change in TN in surface and bottom waters for 15 year period calculated from significant 

trends (p<0.10). 

 



 34

 
 

 
Figure 15.  Total change in TP in surface and bottom waters for 15 year period calculated from significant 

trends (p<0.10). 
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Figure 16.  Total change in CHLA in surface waters for 15 year period calculated from significant trends 

(p<0.10). 
 

 
Figure 17.  Total change in Kd for 15 year period calculated from significant trends (p<0.10). 
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Figure 18.  Total change in DO in surface and bottom waters for 15 year period calculated from significant 

trends (p<0.10). 
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Figure 19.  Total change in SiO2 in surface and bottom waters for 15 year period calculated from 

significant trends (p<0.10). 
 

 



 38

 
 

 
Figure 20.  Total change in Turbidity in surface and bottom waters for 15 year period calculated from 

significant trends (p<0.10). 
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Figure 21.  Total change in TOC in surface and bottom waters for 15 year period calculated from 

significant trends (p<0.10). 
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Figure 22.  Total change in Salinity in surface and bottom waters for 15 year period calculated from 

significant trends (p<0.10). 

 



 41

4. Overall Trends 
Several important results have been realized from this monitoring project.  First, is 

documentation of elevated nitrate in the inshore waters of the Keys (Fig 23).  This result was 

evident from out first sampling event in 1995 and continues to be a characteristic of the 

ecosystem.  Interestingly, this gradient was not observed in a comparison transect from the 

Tortugas (no human impact).  This type of distribution implies an inshore source which is 

diluted by low nutrient Atlantic Ocean waters.  Presence of a similar gradient in TOC and 

decreased variability in salinity from land to reef also support this concept.  There were no 

trends in either TP or CHLA with distance from land.   

 

 

Figure 23 

 

Second, highest CHLA concentrations are seen on the SW Florida Shelf with a strong 

gradient towards the Marquesas and Tortugas (Fig. 24).  This is due to higher TP concentrations 

on the Shelf as a result of southerly advection of water along the coast. 
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Figure 24 

 

Clearly, there have been large changes in the FKNMS water quality over time, and some 

sustained monotonic trends have been observed, however, we must always keep in mind that 

trend analysis is limited to the window of observation.  Trends may change, or even reverse, 

with additional data collection.  This brings up another important point; when looking at what 

are perceived to be local trends, we find that they seem to occur across the whole region but at 

more damped amplitudes.  This spatial autocorrelation in water quality is an inherent property 

of highly interconnected systems such as coastal and estuarine ecosystems driven by similar 

hydrological and climatological forcings.  It is clear that trends observed inside the FKNMS are 

influenced by regional conditions outside the Sanctuary boundaries.  

 

4.1. Strategic Targets 

The EPA developed Strategic Targets for the Water Quality Monitoring Project which state 

that beginning in 2008 through 2011, annually maintain the overall water quality of the near 

shore and coastal waters of the FKNMS according to 2005 baseline.  For reef sites, chlorophyll a 

should be less than or equal to 0.2 micrograms/l and the vertical attenuation coefficient for 

downward irradiance (Kd, i.e., light attenuation) should be less than or equal to 0.13 per meter.  

For all monitoring sites in FKNMS, dissolved inorganic nitrogen should be less than or equal to 

0.75 micromolar and total phosphorus should be less than or equal to 0.2 micromolar.  Table 3 

shows the number of sites and percentage of total sites exceeding these Strategic Targets for 

2010. 
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Table 3.  EPA WQPP WQ Targets from 1995-2005 Baseline 
 
Targets for reef sites include chlorophyll a less than or equal to 0.35 micro grams/l and vertical attenuation coefficient for downward 
irradiance (Kd, i.e., light attenuation) less than or equal to 0.20 per meter. Targets for all sites in FKNMS include dissolved inorganic 
nitrogen (DIN) less than or equal to 0.75 micromolar and total phosphorus (TP) less than or equal to 0.25 micromolar.  Compliances 
were calculated as percent of those achieving targets divided by total number of samples.  Values in green are those years with % 
compliance greater than 1995-2005 baseline.  Values in yellow are those years with % compliance less than 1995-2005 baseline. 
 
 

EPA WQPP Water Quality Targets 
     
 Reef Stations All Stations 

Year CHLA ≤ 0.35 μg l-1 Kd ≤ 0.20 m-1 
DIN ≤ 0.75 μM  

(0.010 ppm) 
TP ≤ 0.25 μM  
(0.0077 ppm) 

1995-05 1778 of 2367 (75.1%) 1042 of 1597 (65.2%) 7826 of 10254 (76.3%) 7810 of 10267 (76.1%)
2006 196 of 225 (87.1%) 199 of 225 (88.4%) 432 of 990 (43.6%) 316 of 995 (31.8%) 
2007 198 of 226 (87.6%) 202  of 222 (91.0  %) 549 of 993 (55.3%) 635 of 972 (65.3%) 
2008 177 of 228 (77.6%) 181 of 218 (83.0%) 836 of 1,000 (83.6%) 697 of 1,004 (69.4%) 
2009 208 of 228 (91.2%) 189 of 219 (86.3%) 858 of 1,003 (85.5%) 869 of 1,004 (86.6%) 
2010 170 of 227 (74.9%) 176 of 206 (85.4%) 843 of 1000 (84.3%)  738 of 1,003 (73.6%) 
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5. Discussion 
Water quality is a subjective measure of ecosystem well-being.  Aside from the physical-

chemical composition of the water there is also a human perceptual element which varies 

according to our intents for use (Kruczyinski and McManus 2002).  Distinguishing internal from 

external sources of nutrients in the FKNMS is a difficult task.  The finer discrimination of internal 

sources into natural and anthropogenic inputs is even more difficult.  Most of the important 

anthropogenic inputs are regulated and most likely controlled by management activities, 

however, recent studies have shown that nutrients from shallow sewage injection wells may be 

leaking into nearshore surface waters (Corbett et al. 1999).  Advective transport of nutrients 

through the FKNMS was not measured by the existing fixed sampling plan.  However, nutrient 

distribution patterns may be compared to the regional circulation regimes in an effort to 

visualize the contribution of external sources and advective transport to internal water quality 

of the FKNMS (Boyer and Jones 2002).   

Circulation in coastal South Florida is dominated by regional currents such as the Loop 

Current, Florida Current, and Tortugas Gyre and by local transport via Hawk Channel and along-

shore Shelf movements (Klein and Orlando 1994).  Regional currents may influence water 

quality over large areas by the advection of external surface water masses into and through the 

FKNMS (Lee et al. 1994, Lee et al. 2002) and by the intrusion of deep offshore ocean waters 

onto the reef tract as internal bores (Leichter et al. 1996).  Local currents become more 

important in the mixing and transport of freshwater and nutrients from terrestrial sources 

(Smith 1994; Pitts 1997, Gibson et al. 2008).   

Spatial patterns of salinity in coastal South Florida show these major sources of freshwater 

to have more than just local impacts (Fig. 25).  In Biscayne Bay, freshwater is released through 

the canal system operated by the South Florida Water Management District; the impact is 

clearly seen to affect northern Key Largo by causing episodic depressions in salinity at 

alongshore sites.  Freshwater entering NE Florida Bay via overland flow from Taylor Slough and 

C-111 basin mix in a SW direction. The extent of influence of freshwater from Florida Bay on 

alongshore salinity in the Keys is less than that of Biscayne Bay but it is more episodic.  

Transport of low salinity water from Florida Bay does not affect the Middle Keys sites enough to 

depress the median salinity in this region but is manifested as increased variability.  The 
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opposite also holds true; hypersaline waters from Florida Bay may be transported through the 

Sluiceway to inshore sites in the Middle Keys. 

On the west coast, the large influence of the Shark River Slough, which drains the bulk of 

the Everglades and exits through the Whitewater Bay - Ten Thousand Islands mangrove 

complex, is clearly seen to impact the Shelf waters.  The mixing of Shelf waters with the Gulf of 

Mexico produces a salinity gradient in a SW direction which extends out to Key West.  This 

freshwater source does not usually affect the Backcountry because of its shallow nature but 

instead follows a trajectory of entering western Florida Bay and exiting out through the 

channels in the Middle Keys (Smith 1994).  This net transport of lower salinity water from 

mainland to reef in open channels through the Keys is observed as an increase in the range and 

variability of salinity rather than as a large depression in salinity.  All these forces have large 

influence on other water quality variables, especially DO (Fig. 26).  Lowest DO concentrations 

tend to develop inside the Backcountry during warmest months. 

In addition to surface currents there is evidence that internal tidal bores regularly impact 

the Key Largo reef tract (Leichter et al. 1996; Leichter and Miller 1999).  Internal bores are 

episodes of higher density, deep water intrusion onto the shallower shelf or reef tract.  

Depending on their energy, internal tidal bores can promote stratification of the water column 

or cause complete vertical mixing as a breaking internal wave of sub-thermocline water.   
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Figure 25.  Surface salinity distributions across the region during 2010. 
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Figure 26.  Surface dissolved oxygen distributions across the region during 2010. 
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Visualization of spatial patterns of NO3
- concentration over South Florida waters provide an 

extended view of source gradients over the region (Fig. 27).  Biscayne Bay, Florida Bay, and the 

Shark River area of the west coast exhibited higher NO3
- concentrations relative to the FKNMS 

and Shelf (Caccia and Boyer 2005, Boyer and Briceño 2007).  Elevated NO3
- in Biscayne Bay is 

the result of loading from both the canal drainage system and from inshore groundwater 

(Alleman et al. 1995, Meeder et al. 1997, Caccia and Boyer 2007).  A large source of NO3
- to 

Florida Bay is the Taylor Slough and C-111 basin (Boyer and Jones, 1999; Rudnick et al., 1999) 

while the Shark River Slough impacts the west coast mangrove rivers and out onto the Shelf 

(Rudnick et al., 1999).  We speculate that in both cases, elevated NO3
- concentrations are the 

result of N2 fixation/nitrification within the mangroves (Pelegri and Twilley 1998) and not 

simple transport of agricultural N from northern Everglades.   

The oceanside transects off the uninhabited Upper Keys (off Biscayne Bay) exhibited the 

lowest alongshore NO3
- compared to the Middle and Lower Keys.  A similar pattern was 

observed in a previous transect survey from these areas (Szmant and Forrester 1996).  They 

also showed an inshore elevation of NO3
- relative to Hawk Channel and the reef tract which is 

also demonstrated in our analysis.  Interestingly, NO3
- concentrations in all stations in the 

Tortugas transect were similar to those of reef tract sites in the mainland Keys; there was no 

inshore elevation of NO3
- on the transect off uninhabited Loggerhead Key.  We suggest this 

source of NO3
- in the Keys is the due to human shoreline development.   

A distinct intensification of NO3
- occurs in the Backcountry region.  Part of this increase may 

due to local sources of NO3
-, i.e. septic systems and stormwater runoff around Big Pine Key 

(Lapointe and Clark 1992).  However, there is another area, the Snipe Keys, that also exhibits 

high NO3
- which is uninhabited by man, which rules out the premise of septic systems being the 

only source of NO3
- in this area.  It is important to note that the Backcountry area is very 

shallow (~0.5 m) and hydraulically isolated from the Shelf and Atlantic which results in its 

having a relatively long water residence time.  Elevated NO3
- concentrations may be partially 

due to simple evaporative concentration as is seen in locally elevated salinity values.  Another 

possibility is a contribution of benthic N2 fixation/nitrification in this very shallow area.   

The elevated DIN concentrations in the Backcountry are not easily explained.  We think that 

the high concentrations found there are due to a combination of anthropogenic loading, 
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physical entrapment, and benthic N2 fixation.  The relative contribution of these potential 

sources is unknown.  Lapointe and Matzie (1996) have shown that stormwater and septic 

systems are responsible for increased DIN loading in and around Big Pine Key.  The effect of 

increased water residence time in DIN concentration is probably small.  Salinities in this area 

were only 1-2 higher than local seawater which resulted in a concentration effect of only 5-6%.  

Benthic N2 fixation may potentially be very important in the N budget of the Backcountry.  

Measured rates of N2 fixation in a Thalassia bed in Biscayne Bay, having very similar physical 

and chemical conditions, were 540 μmol N m-2 d-1 (Capone and Taylor 1980).  Without the plant 

community N demand, one day of N2 fixation has the potential to generate a water column 

concentration of >0.014 ppm NH4
+ (0.5 m deep).  Much of this NH4

+ is probably nitrified and 

may help account for the elevated NO3
- concentrations observed in this area as well.  Clearly, N2 

fixation may be a significant component of the N budget in the Backcountry and that it may be 

a exported as DIN to the FKNMS in general. 

 



 50

           
 

           
 

Figure 27.  Surface nitrate distributions across the region during 2010. 
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Interestingly, in many cases for 2010 and other years, NO3
- was highest in the bottom waters 

on the offshore reef tract (Fig. 28).  We attribute this to regular “upwelling” (actually internal tidal 

bores) of deep water onto the reef tract (Leichter et al. 2003).  It is a regular and persistent 

phenomenon which may deliver high nutrient waters to the offshore reef tract independent of any 

anthropogenic source.  In 2010, NO3
- concentrations were as high as 0.169 ppm at Fish Haven. 

In many situations, independent water masses may be distinguished by difference in density 

(sigma-t, σt) between surface and bottom (Δσt, Fig. 29).  Since density is driven more by salinity 

than temperature, we do not always observe differences in σt between surface and bottom during 

upwelling events.  However, decreased temperature of bottom waters (ΔT, Fig. 30) from intrusion 

of deeper oceanic waters is clearly an indicator of increased NO3
- (Fig. 28).  These upwelling events 

also affect other nutrient species such as NH4
+, TP, and SRP in these bottom waters as well.   

In 2010, the NW area of the Tortugas segment experienced the strongest stratification event 

seen in years.  This event was driven by salinity as well as temperature as Δσt values were strongly 

positive (Fig. 29).  No anomalous increase of bottom nutrients was observed. 

 

 



 52

           
 

           
 

Figure 28.  Bottom nitrate distributions across the region during 2010. 
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Figure 29.  Surface and bottom density differences (Δσt) across the region during 2010. 



 54

           
 

           
 

Figure 30.  Surface and bottom temperature differences across the region during 2010. 
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NH4
+ concentrations were distributed in a similar manner as NO3

- with highest levels 

occurring in Florida Bay, the Ten Thousand Islands, and the Backcountry (Fig. 31).  NH4
+ 

concentrations were very low in Biscayne Bay because it is not a major component of loading 

from the canal drainage system.  NH4
+ also showed similarities with NO3

- in its spatial 

distribution, being lowest in the Upper Keys and highest inshore relative to offshore.  Typically, 

there is no alongshore elevation of NH4
+ concentrations in the Tortugas where levels were 

similar to those of reef tract sites in the mainland Keys.  That the least developed portion of the 

Upper Keys in Biscayne National Park and uninhabited Loggerhead Key (Tortugas) exhibited 

lowest NO3
- and NH4

+ concentrations is evidence of a local anthropogenic source for both of 

these variables along the ocean side of the Upper, Middle, and Lower Keys.  This pattern of 

decline offshore implies an onshore N source which is diluted with distance from land by low 

nutrient Atlantic Ocean waters.   
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Figure 31.  Surface ammonium distribution across the region during 2010. 
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Spatial patterns in TP in South Florida coastal waters were strongly driven by the west coast 

sources (Fig. 32).  A gradient in TP extended from the inshore waters of Whitewater Bay - Ten 

Thousand Islands mangrove complex out onto the Shelf and Tortugas.  Gradients also extended 

from western Florida Bay to the Middle/Lower Keys.  The spatial distribution of TP on the Shelf 

is driven by freshwater inputs from mangrove rivers and transport of Gulf of Mexico waters 

through the region.  No significant evidence of a groundwater source exists (Corbett et al. 

2000).  However, there is evidence of a significant terrestrial source of TP to Biscayne Bay 

(Caccia and Boyer 2007), which may impact inshore waters of Upper Keys.  
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Figure 32.  Distributions of surface total phosphorus across the region during 2010. 
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Concentrations of TOC (Fig. 33) and TON (Fig. 34) are remarkably similar in pattern of 

distribution across the South Florida coastal hydroscape.  The decreasing gradient from west 

coast to Tortugas was very similar to that of TP.  This gradient weas most probably due to 

terrestrial loading.  On the west coast, the source of TOC and TON was from the mangrove 

forests.  Our data from this area shows that concentrations of TOC and TON increased from 

Everglades headwaters through the mangrove zone and then decrease with distance offshore.  

In Biscayne Bay, much of the TOC and TON is from agricultural land use.  The high 

concentrations of TOC and TON in Florida Bay were due to a combination of terrestrial loading 

(Boyer and Jones, 1999), in situ production by seagrass and phytoplankton, and evaporative 

concentration (Fourqurean et al. 1993, Boyer et al. 1997).   

Advection of Shelf and Florida Bay waters through the Sluiceway and passes accounted for 

this region and the inshore area of the Middle Keys as having highest TOC and TON of the 

FKNMS.  Strong offshore gradients in TOC and TON existed for all mainland Keys segments but 

not for the Tortugas transect.  Part of this difference may be explained by the absence of 

mangroves in the single Tortugas transect.  The higher concentrations of TOC and TON in the 

inshore waters of the Keys implies a terrestrial source rather than simply benthic production 

and sediment resuspension.  Main Keys reef tract concentrations of TOC and TON were similar 

to those found in the Tortugas.   
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Figure 33.  Distributions of surface total organic carbon across the region during 2010. 
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Figure 34.  Distributions of surface total organic nitrogen across the region during 2010. 
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Much emphasis has been placed on assessing the impact of episodic phytoplankton blooms 

in Florida Bay on the offshore reef tract environment.  Spatial patterns of CHLA concentrations 

showed that the Shelf, NW Florida Bay, and the Ten Thousand Islands exhibited high levels of 

CHLA relative to the FKNMS (Fig. 35).  It is interesting that CHLA concentrations on the Shelf are 

higher in the Marquesas (0.36 μg l-1) than in other areas of the FKNMS.  When examined in 

context with the whole South Florida ecosystem, it is obvious that the Marquesas zone should 

be considered a continuum of the Shelf rather than a separate management entity.  This 

shallow sandy area (often called the Quicksands) acts as a physical mixing zone between the 

Shelf and the Atlantic Ocean and is a highly productive area for other biota as well as it 

encompasses the historically rich Tortugas shrimping grounds.  A CHLA concentration of 2 μg l-1 

in the water column of a reef tract might be considered an indication of eutrophication.  

Conversely, a similar CHLA level in the Quicksands indicates a productive ecosystem which 

feeds a valuable shrimp fishery.   

The oceanside transects in the Upper Keys exhibited the lowest overall CHLA concentrations 

of any area in the FKNMS.  Transects off the Middle and Lower Keys showed that a drop in 

CHLA occurred at reef tract sites; there was no linear decline with distance from shore.  

Interestingly, CHLA concentrations in the Tortugas transect showed a similar pattern as the 

mainland Keys.  Inshore and Hawk Channel CHLA concentrations among Middle Keys, Lower 

Keys and Tortugas sites were not significantly different.  As inshore CHLA concentrations in the 

Tortugas were similar to those in the Middle and Lower Keys, we see no evidence of persistent 

phytoplankton bloom transport from Florida Bay.   
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Figure 35. Distributions of surface chlorophyll a across the region during 2010. 



 64

Along with TP, turbidity is probably the second most important determinant of local 

ecosystem health (Fig. 36).  The fine grained, low density carbonate sediments in this area are 

easily resuspended, rapidly transported, and have high light scattering potential.  Sustained 

high turbidity of the water column indirectly affects benthic community structure by decreasing 

light penetration, promoting seagrass extinction.   

Large scale observations of turbidity clearly show patterns of onshore-offshore gradients 

which extend out onto the Shelf to the Marquesas (Stumpf et al. 1999).  Strong turbidity 

gradients were observed on the Shelf but reef tract levels were remarkably low regardless of 

inshore levels.  Elevated inshore turbidity is most probably due to the shallow water column 

being easily resuspended by wind and wave action.  Light extinction (Kd) was highest alongshore 

and improved with distance from land.  This trend was expected as light extinction is related to 

water turbidity (Fig 37).  However, in Keys waters, CDOM is a more prominent driver of light 

penetration.   
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Figure 36.  Distributions of surface turbidity across the region during 2010. 
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Figure 37.  Distributions of Light extinction across the region during 2010. 
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Surface SiO2 concentrations exhibited a pattern similar to salinity (Fig. 38).  The source of 

SiO2 in this geologic area of carbonate rock and sediments is from siliceous periphyton 

(diatoms) growing in the Shark River Slough, Taylor Slough, and C-111 basin watersheds.  Unlike 

the Mississippi River plume with CHLA concentrations of 76 μg l-1 (Nelson and Dortch 1996), 

phytoplankton biomass on the Shelf (1-2 μg l-1 CHLA) was not sufficient to account for the 

depletion of SiO2 in this area.  Therefore, SiO2 concentrations on the Shelf are depleted mostly 

by mixing (although we no longer have data from the Shelf), allowing SiO2 to be used as a semi-

conservative tracer of freshwater in this system (Ryther et al. 1967; Moore et al. 1986).   

In the Lower and Middle Keys, it is clear that the source of SiO2 to the nearshore Atlantic 

waters is through the Sluiceway and Backcountry (Fig. 38).  SiO2 concentrations near the coast 

were elevated relative to the reef tract with much higher concentrations occurring in the Lower 

and Middle Keys than the Upper Keys.  There is an interesting peak in SiO2 concentration in an 

area of the Sluiceway, which is densely covered with the seagrass, Syringodium (Fourqurean et 

al. 2002).  We are unsure as to the source but postulate that it may be due to benthic flux. 

Using the TN:TP ratio has been used as a relatively simple method of estimating potential 

nutrient limitation status of phytoplankton (Redfield 1967).  Most of the South Florida 

hydroscape has TN:TP values >> 16:1, indicating the potential for phytoplankton to be limited 

by P at these sites (Fig. 39).  However, most of the TN is not available to phytoplankton while 

much of the TP is labile.  Therefore, using the TN:TP ratio overestimates potential P limitation 

and should be recognized as such.   
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Figure 38.  Distributions of surface silicate across the region during 2010. 
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Figure 39.  Distributions of surface TN:TP ratio across the region during 2010. 
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Most of the FKNMS is routinely P limited using this metric.  Interestingly, the Shelf and 

Tortugas area was the least P limited of all zones and exhibited a significant regression between 

SRP and CHLA.  Only in the northern Ten Thousand Islands and Shelf did N become the limiting 

nutrient.  The south-north shift from P to N limitation observed in the west coast estuaries has 

been ascribed to changes in landuse and bedrock geochemistry of the watersheds (Boyer 2006).  

The west coast south of 25.4 N latitude is influenced by overland freshwater flow from the 

Everglades and Shark River Slough having very low P concentrations relative to N.  Above 25.7 N 

latitude the bedrock geology of the watershed changes from carbonate to silicate based and 

landuse changes from relatively undeveloped wetland (Big Cypress Basin) to a highly 

urban/agricultural mix (Naples, FL).   

This brings up an important point that, when looking at what are perceived to be local 

trends, we find that they seem to occur across the whole region but at more damped 

amplitudes.  This spatial autocorrelation in water quality is an inherent property of highly 

interconnected systems such as coastal and estuarine ecosystems driven by similar hydrological 

and climatological forcings.  Clearly, there have been large changes in the FKNMS water quality 

over time, and some sustained monotonic trends have been observed, however, we must 

always keep in mind that trend analysis is limited to the window of observation.  Trends may 

change, or even reverse, with additional data collection.   

The large scale of this monitoring program has allowed us to assemble a much more holistic 

view of broad physical/chemical/biological interactions occurring over the South Florida 

hydroscape.  Much information has been gained by inference from this type of data collection 

program: major nutrient sources have be confirmed, relative differences in geographical 

determinants of water quality have been demonstrated, and large scale transport via 

circulation pathways have been elucidated.  In addition we have shown the importance of 

looking "outside the box" for questions asked within.  Rather than thinking of water quality 

monitoring as being a static, non-scientific pursuit it should be viewed as a tool for answering 

management questions and developing new scientific hypotheses.   

We continue to maintain a website (http://serc.fiu.edu/wqmnetwork/) where data and 

reports from the FKNMS is integrated with the other parts of the SERC water quality network 
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(Florida Bay, Whitewater Bay, Biscayne Bay, Ten Thousand Islands, and SW Florida Shelf) are 

available. 
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7. Appendix 1 
 

Table 3.  Statistical summary of water quality in zones for the period of record.  Data are 

summarized as median, minimum (Min.), maximum value (Max.), and number of samples (n).   

 
Variable Cluster Median Min. Max. n 
Surface  1 0.10 0.00 3.04 586 

NO3
- 2 0.09 0.00 1.33 82 

(ppm) 3 0.06 0.00 2.30 2506 
 4 0.06 0.00 0.81 209 
 5 0.18 0.00 2.11 821 
 6 0.09 0.00 5.90 1221 
 7 0.30 0.00 4.42 459 
 8 0.06 0.00 2.11 501 

Bottom 1 0.04 0.00 1.33 43 

NO3
- 2     

(ppm) 3 0.08 0.00 4.46 2351 
 4     
 5 0.12 0.00 1.17 136 
 6 0.09 0.00 5.01 1017 
 7 0.06 0.01 0.39 3 
  8 0.07 0.00 1.94 334 

Surface  1 0.06 0.00 0.45 586 

NO2
- 2 0.06 0.00 0.25 82 

(ppm) 3 0.03 0.00 0.71 2513 
 4 0.05 0.00 0.35 209 
 5 0.06 0.00 0.25 823 
 6 0.04 0.00 0.42 1222 
 7 0.09 0.00 0.40 459 
 8 0.04 0.00 0.37 500 

Bottom 1 0.04 0.01 0.20 43 

NO2
- 2     

(ppm) 3 0.04 0.00 1.73 2356 
 4     
 5 0.06 0.00 0.25 137 
 6 0.05 0.00 0.36 1017 
 7 0.06 0.04 0.10 4 
  8 0.05 0.00 0.32 334 
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Variable Cluster Median Min. Max. n 
Surface  1 0.39 0.00 4.97 585 

NH4
+ 2 0.38 0.07 10.32 82 

(ppm) 3 0.24 0.00 2.73 2513 
 4 0.27 0.00 3.17 209 
 5 0.38 0.00 4.03 823 
 6 0.27 0.00 5.03 1221 
 7 0.54 0.00 4.62 459 
 8 0.27 0.00 2.21 499 

Bottom 1 0.27 0.00 0.95 43 

NH4
+ 2     

(ppm) 3 0.24 0.00 2.90 2352 
 4     
 5 0.33 0.03 2.49 137 
 6 0.27 0.00 3.88 1016 
 7 0.44 0.30 0.64 4 
  8 0.28 0.00 1.91 334 

Surface  1 15.37 2.46 71.94 587 
TN 2 15.52 3.90 63.44 82 

(ppm) 3 9.42 1.00 67.85 2510 
 4 15.40 3.14 69.95 209 
 5 14.41 0.92 86.60 821 
 6 11.10 0.73 213.21 1217 
 7 16.27 2.37 73.72 460 
 8 12.48 2.18 70.17 501 

Bottom 1 11.88 2.47 43.09 43 
TN 2     

(ppm) 3 9.04 0.88 56.87 2343 
 4     
 5 13.88 2.61 52.83 132 
 6 11.04 0.96 153.75 1002 
 7 17.78 15.53 21.80 3 
  8 11.26 2.30 95.88 334 

Surface  1 14.61 0.98 71.65 585 
TON 2 14.51 3.41 62.91 82 

(ppm) 3 8.95 0.00 67.72 2500 
 4 14.82 2.89 69.19 209 
 5 13.70 0.51 85.88 816 
 6 10.50 0.39 212.89 1213 
 7 15.22 1.32 73.23 459 
 8 11.79 1.55 70.00 499 
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Variable Cluster Median Min. Max. n 
Bottom 1 11.32 2.21 42.78 43 

TON 2     
(ppm) 3 8.47 0.00 56.54 2324 

 4     
 5 13.22 2.27 52.67 132 
 6 10.44 0.00 153.43 996 
 7 15.91 15.14 16.68 2 
  8 10.60 1.90 95.77 333 

Surface  1 0.26 0.07 1.09 585 
TP 2 0.24 0.10 0.83 82 

(ppm) 3 0.17 0.00 1.22 2513 
 4 0.21 0.05 0.50 209 
 5 0.19 0.02 1.39 825 
 6 0.17 0.00 1.78 1223 
 7 0.19 0.03 0.84 460 
 8 0.25 0.05 1.35 499 

Bottom 1 0.21 0.08 0.45 42 
TP 2     

(ppm) 3 0.17 0.00 1.50 2350 
 4     
 5 0.17 0.02 0.77 132 
 6 0.17 0.00 1.02 1011 
 7 0.18 0.14 0.39 3 
  8 0.23 0.05 0.67 333 

Surface  1 0.02 0.00 0.30 586 
SRP 2 0.02 0.00 0.22 82 

(ppm) 3 0.02 0.00 0.23 2502 
 4 0.02 0.00 0.26 209 
 5 0.02 0.00 0.56 820 
 6 0.02 0.00 0.21 1221 
 7 0.02 0.00 0.20 459 
 8 0.02 0.00 0.20 500 

Bottom 1 0.02 0.00 0.17 43 
SRP 2     

(ppm) 3 0.02 0.00 0.39 2347 
 4     
 5 0.02 0.00 0.15 137 
 6 0.02 0.00 0.36 1013 
 7 0.01 0.01 0.11 5 
  8 0.02 0.00 0.16 334 
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Variable Cluster Median Min. Max. n 
Surface  1 0.32 0.00 15.24 587 

Chl a 2 0.30 0.00 4.95 82 
(μg l-1) 3 0.21 0.00 3.12 2510 

 4 0.20 0.00 7.35 208 
 5 0.22 0.00 2.79 825 
 6 0.21 0.00 2.02 1223 
 7 0.20 0.00 6.20 459 
  8 0.47 0.00 6.81 501 

Surface  1 230.01 88.54 1435.42 586 
TOC 2 231.33 135.31 505.54 82 

(ppm) 3 144.17 18.38 1054.79 2511 
 4 239.85 132.00 702.50 209 
 5 210.02 28.81 670.25 823 
 6 164.52 22.79 805.31 1217 
 7 238.38 84.98 1653.54 459 
 8 183.65 68.85 950.44 501 

Bottom 1 178.54 88.11 446.04 43 
TOC 2     

(ppm) 3 142.75 0.00 883.10 2343 
 4     
 5 206.17 78.56 392.63 136 
 6 162.54 21.69 2135.83 1007 
 7 225.90 147.40 281.73 3 
  8 161.79 75.83 847.71 335 

Surface  1 1.53 0.00 89.00 557 

SiO2 2 4.74 0.00 55.16 78 
(ppm) 3 0.26 0.00 17.90 2391 

 4 7.07 0.30 88.53 199 
 5 1.71 0.00 127.11 784 
 6 0.67 0.00 18.95 1167 
 7 1.93 0.00 37.36 436 
 8 0.99 0.00 22.43 477 

Bottom 1 1.05 0.00 3.93 40 

SiO2 2     
(ppm) 3 0.30 0.00 17.89 2236 

 4     
 5 1.60 0.00 30.20 130 
 6 0.77 0.00 18.35 966 
 7 0.32 0.30 0.34 2 
  8 0.96 0.00 9.71 318 
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Variable Cluster Median Min. Max. n 
Surface  1 1.31 0.00 37.00 581 

Turbidity 2 1.13 0.20 5.55 82 
(NTU) 3 0.33 0.00 10.14 2486 

 4 0.79 0.00 7.70 208 
 5 0.86 0.00 16.20 821 
 6 0.55 0.00 8.80 1221 
 7 0.95 0.00 17.35 458 
 8 1.33 0.00 11.84 493 

Bottom 1 1.67 0.00 9.10 52 
Turbidity 2   

(NTU) 3 0.36 0.00 11.18 2329 
 4   
 5 0.77 0.00 16.90 156 
 6 0.56 0.00 7.95 1020 
 7 0.72 0.00 4.89 12 
  8 1.58 0.00 15.96 331 

Surface  1 36.14 28.79 39.64 585 
Salinity 2 36.22 29.59 40.30 82 

 3 36.19 26.70 37.80 2488 
 4 36.10 27.69 40.90 208 
 5 36.30 29.51 40.00 798 
 6 36.24 28.02 38.50 1200 
 7 36.40 27.95 40.39 452 
 8 36.15 30.33 39.06 493 

Bottom 1 36.13 28.77 39.66 585 
Salinity 2 36.21 29.62 40.20 81 

 3 36.20 32.63 37.80 2478 
 4 36.07 27.69 40.90 208 
 5 36.39 29.52 40.00 792 
 6 36.28 30.48 38.50 1192 
 7 36.40 27.99 40.37 449 
  8 36.18 30.41 39.14 490 

Surface  1 26.71 17.32 36.10 586 
Temperature 2 26.94 17.49 32.65 82 

(oC) 3 26.89 16.30 32.20 2489 
 4 27.64 17.69 34.56 208 
 5 27.62 15.10 39.60 799 
 6 27.42 15.40 33.00 1203 
 7 27.57 17.78 35.00 452 
 8 26.10 17.75 34.50 494 
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Variable Cluster Median Min. Max. n 
Bottom 1 26.78 17.32 33.40 585 

Temperature 2 26.90 17.49 32.36 81 
(oC) 3 26.20 16.30 32.00 2479 

 4 27.66 17.69 32.99 208 
 5 27.67 15.10 33.40 795 
 6 27.22 15.40 32.60 1194 
 7 27.58 17.78 36.80 449 
  8 25.95 17.68 34.50 491 

Surface  1 6.20 0.91 11.30 586 
DO 2 5.88 4.23 8.11 82 

(mg l-1) 3 5.90 0.08 13.53 2467 
 4 6.13 1.60 10.50 208 
 5 5.97 0.64 10.80 793 
 6 5.80 1.48 14.53 1197 
 7 5.96 1.67 9.70 452 
 8 6.14 2.26 10.80 493 

Bottom 1 6.20 2.70 11.40 585 
DO 2 5.97 4.31 8.10 81 

(mg l-1) 3 5.90 1.35 13.90 2441 
 4 6.20 4.30 10.60 208 
 5 6.00 2.78 10.30 791 
 6 5.90 3.19 9.80 1185 
 7 5.99 2.10 9.80 449 
  8 6.20 3.00 10.90 489 

Kd 1 0.31 0.00 3.18 454 
(m-1) 2 0.30 0.01 3.72 52 

 3 0.13 0.00 2.75 1740 
 4 0.36 0.01 3.27 109 
 5 0.30 0.01 3.14 499 
 6 0.20 0.00 3.41 833 
 7 0.33 0.01 4.08 315 
  8 0.27 0.01 3.31 361 

Surface  1 91.60 12.92 165.46 586 

DOsat 2 89.29 63.88 118.95 82 
(%) 3 87.92 1.23 191.57 2467 

 4 92.87 23.03 148.20 208 
 5 88.53 9.74 153.34 793 
 6 86.89 22.70 226.21 1196 
 7 89.22 25.82 134.81 452 
 8 90.90 31.23 169.87 493 
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Variable Cluster Median Min. Max. n 
Bottom 1 91.48 41.56 166.85 585 

DOsat 2 90.23 65.37 125.13 81 
(%) 3 87.65 19.29 207.01 2440 

 4 94.27 65.20 149.62 208 
 5 89.26 42.89 152.24 791 
 6 87.70 46.74 144.02 1184 
 7 89.75 32.44 132.00 449 
  8 91.23 41.17 171.44 489 

Δδt 1 0.00 -1.50 6.53 584 
(kg m-3) 2 0.00 -0.22 0.37 81 

 3 0.04 -3.19 6.64 2467 
 4 0.00 -0.37 1.96 208 
 5 0.00 -1.44 5.66 788 
 6 0.03 -3.05 6.00 1188 
 7 0.00 -4.42 4.36 449 
  8 0.01 -0.74 3.74 491 

 


