Engineering/Well Completion Report Floridan Aquifer System Test/Monitor Well ORF-60

Reedy Creek Improvement District Orange County, Florida Technical Publication WS-20

Prepared by: Michael W. Bennett, P.G. E. Edward Rectenwald

November 2004

South Florida Water Management District 3301 Gun Club Road West Palm Beach, FL 33406 (561) 686-8800 www.sfwmd.gov

EXECUTIVE SUMMARY

The Kissimmee Basin Water Supply Plan (KBWSP) completed in 2000 was the first look at the long-term water use conditions for areas in the South Florida Water Management District (SFWMD) located north of Lake Okeechobee. The findings of the KBWSP suggest that the ground water supplies in Orange County area may not be sufficient to meet the 2020 (1-in-10 drought year) water supply needs. The continued use of the upper Floridan aquifer system (FAS) may affect wetlands, reduce spring flow, and possibly be a factor in the formation of sinkholes in this area. These conclusions are however, predicated on a limited amount of geologic and hydrologic information in this region. In particular, information regarding the lower Floridan aquifer (LFA) in this area is very limited. The highest ranked recommendation of the KBWSP was to gather additional hydrogeologic information on the FAS to better resolve the uncertainty of future water use affects. Towards that end, three FAS exploratory sites were completed in the Kissimmee Basin Planning Area (KBPA) between 1999 and 2003. This report summarizes results from one of those sites located at the Reedy Creek Improvement District (RCID). This well will supply information needed to characterize the water supply potential of the LFA and for use in the development of a ground water flow model, which will support future planning and regulatory decisions.

The FAS test site described in this report is located in southwest Orange County on Reedy Creek Improvement District property (**Figure 1**). The test/monitor well is located in the southeast quadrant of Section 23 of Township 24 South, Range 27 East. The geographic coordinates of the RCID test/monitor well are $28^{\circ} 22'43.7''$ N latitude and $81^{\circ} 35' 15.9''$ W longitude (North American Datum of 1983 – NAD, 1983). Land surface was surveyed at 131 feet relative to the National Geodetic Vertical Datum of 1929 (NGVD, 1929). The RCID site was selected to augment existing hydrogeologic data and to provide broad, spatial coverage within the KBPA.

The scope of the investigation consisted of constructing and testing a 10-inch diameter test/monitor well in accordance with Florida Department of Environmental Protection (FDEP) Class V, Group 8 well standards. The well identified as ORF-60 was drilled to a total depth of 2,100 feet below land surface (bls). The Contractor constructed a telescoping type well in various stages, completing it into a distinct hydrogeologic zone within the LFA from 1,170 to 1,280 feet bls.

The Contractor, Diversified Drilling Corporation (DDC) based in Tampa, Florida was responsible for all drilling, well construction, and testing services at the RCID site. The cost of this project (\$375,000) was mutually shared by RCID, SFWMD, and Orange County Utilities. SFWMD provided oversight during all well drilling, construction, and testing operations.

The main findings of the exploratory drilling and testing program at this site are as follows:

• The top of the FAS as defined by the Southeastern Geological Society AdHoc Committee on Florida Hydrostratigraphic Unit Definition (1986) was identified at a depth of approximately 80 feet bls.

- A 10-inch inner diameter exploratory well was successfully constructed and tested at the RCID site in accordance with FDEP Class V, Group 8, well standards.
- Lithologic and geophysical logs, and specific capacity test results indicate moderate production capacity in Zone A of the UFA (80 to 250 feet bls) and excellent production capacity in Zone B of the UFA (300 to 740 feet bls). The interval from 220 to 715 feet bls yielded a specific capacity value of 235 gallons per minute per foot (gpm/ft) of drawdown at a pumping rate of 2,610 gpm with a calculated transmissivity of 470,000 gallons per day per foot (gpd/ft).
- Water quality data from 220 to 715 feet bls indicate that chloride and total dissolved solids (TDS) in the upper Floridan aquifer waters meet potable drinking water standards with chloride and TDS concentrations of 5 and 134 milligrams per liter (mg/L), respectively.
- Lithologic information and geophysical logs obtained from ORF-60 indicates that low porosity/permeability, poorly indurated grainstones and moderately to well indurated, wackestones and crystalline dolostones occur from 740 to 1,160 feet bls. These low permeable sediments act as a confining unit that effectively isolates the UFA from the LFA.
- Lithologic and geophysical logs and the specific capacity test results indicate very good production capacity of the LFA "Zone A" from 1,170 to 1,280 feet bls. This zone yielded a specific capacity value of 68 gpm/ft of drawdown at a pumping rate of 1,152 gpm with a calculated transmissivity of 232,000 gpd/ft.
- Composite water quality sampling of ORF-60 (1,170 to 1,280 feet bls) indicates that chloride and TDS meet all primary and secondary potable drinking water standards with chloride and TDS concentrations of 8 and 160 mg/L, respectively.
- Lithologic and production-type log data (e.g. flow, temperature logs) indicates very good production from flow zones from 1,170 to 1,195 feet bls and 1,215 to 1,270 feet bls. Below 1,270 feet bls, the productive capacity is limited (as indicated by the fluid-type logs) suggesting lower permeable semi-confining units near the base of the monitor zone.
- Lithologic data, geophysical logs, and packer test results indicate good production capacity of the LFA in Zone B from 1,860 to 1,970 feet bls. This zone yielded a specific capacity value of 116 gpm/ft of drawdown with chloride and TDS concentrations of 7 and 148 mg/L, respectively.
- The base of the Underground Source of Drinking Water (USDW), those waters having TDS concentrations less than 10,000 mg/L, was not encountered at the total depth of 2,100 feet bls.
- Based on laboratory results produced water from the LFA at this site meet all primary and secondary drinking water standards.

TABLE OF CONTENTS

Executive	Summaryi
Introductio	n1
	Background1
	Project Description
Explorator	y Drilling and Well Construction
-	Lower Floridan Aquifer Test/Monitor Well – ORF-60
Hydrostrat	igraphic Framework
Hydrogeol	ogic Testing
	Formation Fluid Sampling
	Geophysical Logging
	Packer Tests
	Specific Capacity and Step Drawdown Tests
	Specific Capacity Data Analysis
	Ground Water Quality Monitoring Program
Summary	
References	
TABLES	
Table 1	Cement Volume Pumped During Well Construction
Table 2	Internal Casing Pressure Test Results – 10-inch Diameter
	Steel Production Casing
Table 3	Summary of Geophysical Logging Activities
Table 4	Inorganic Water Quality Data - Packer Tests
Table 5	Summary of Hydraulic Data Obtained from Packer Tests
Table 6	Inorganic Water Quality Data from Specific Capacity Tests
Table 7	Discharge and Drawdown Data – Specific Capacity Test No. 1
Table 8	Discharge and Drawdown Data – Specific Capacity Test No. 220
Table 9	Composite Water Quality Data from Completed Monitor Well – ORF-60. 20
FIGURES	
Figure 1	Project Location Map
Figure 2	Completed Wellhead – Test/Monitor Well (ORF-60)
Figure 3	Generalized Lithostratigraphic and Hydrogeologic Section
Figure 4	Well Construction and Testing Summary
Figure 5	Water Quality with Depth – Reverse Air Returns – ORF-60
Figure 6	Pump Rate versus Specific Capacity – Step Drawdown Test No. 1
Figure 7	Pump Rate versus Specific Capacity – Step Drawdown Test No. 2
Figure 8	Pump Rate versus s/Q – Step Drawdown Test No. 1
Figure 9	Pump Rate versus s/Q – Step Drawdown Test No. 2
i igui e 7	1 amp rate versus s = or p Drawaown rest wo. 2

APPENDICES

Appendix A	Weekly Summary Reports	A-1
Appendix B	Casing Mill Certificates	B-1
Appendix C	Geophysical Logs and Field Prints	C-1
Appendix D	Lithologic Field Reports	D-1
	Lithologic Descriptions – Florida Geological Survey	D-2
Appendix E	Primary and Secondary Drinking Water Laboratory Results	E-1

INTRODUCTION

Background

The Kissimmee Basin Water Supply Plan (KBWSP) completed in 2000 was the first look at the long-term water use conditions for areas in the South Florida Water Management District (SFWMD) located north of Lake Okeechobee. The findings of the KBWSP suggest that the ground water supplies in the Orange County area may not be sufficient to meet the 2020 (1-in-10 drought year) water supply needs. The continued use of the Floridan aquifer system (FAS) may affect wetlands, reduce spring flow, and possibly be a factor in the formation of sinkholes in this area. However, these conclusions are predicated on a limited amount of geologic and hydrologic information in this region. In particular, information regarding the lower Floridan aquifer (LFA) is very limited in this area. The highest ranked recommendation of the KBWSP was to gather additional hydrogeologic information on the lower portion of FAS to better resolve the uncertainty of future water use affects. Towards that end, three FAS exploratory sites were completed in the Kissimmee Basin Planning Area (KBPA) between 1999 and 2003. This report summarizes results from one of those sites located at the Reedy Creek Improvement District (RCID).

The RCID, Orange County Utilities, and SFWMD have a mutual interest concerning the aquifer characteristics and water quality of the LFA in southwest Orange County. The primary objective of this study was to construct and test a single-zone LFA test/monitor well on RCID property that will provide additional hydrogeologic information on the lower portion of FAS in support of the KBWSP. Data collected from testing and long-term monitoring will be instrumental in the development of revising the ground water modeling efforts and other consumptive use analyses. The RCID site is presently part of SFWMD's long-term water level and water quality FAS monitoring network.

The LFA test site described in this report is located in southern Orange County within the RCID (**Figure 1**). The LFA test/monitor well is located in the southeast quadrant of Section 23 of Township 24 South, Range 27 East. The geographic coordinates of the RCID test/monitor well are $28^{\circ} 22'43.7"$ N latitude and $81^{\circ} 35' 15.9"$ W longitude (North American Datum of 1983 – NAD, 1983). A land surface elevation of 131 feet relative to the National Geodetic Vertical Datum of 1929 (NGVD, 1929) was determined from a U.S. Geological Survey 7.5 minute topographic map.

Project Description

Site preparation and equipment mobilization at the project site began on March 1, 2003. A single zone well was constructed to facilitate long-term monitoring of the LFA (identified as ORF-60). This test/monitor well was drilled to a total depth of 2,100 feet below land surface (bls) and completed between 1,170 and 1,280 feet bls. During construction and testing operations, weekly informational summary reports were submitted to the Underground Injection Control Group at the Florida Department of Environmental Protection (FDEP) in Orlando, Florida. These weekly summary reports are provided in **Appendix A**.

The contractor, Diversified Drilling Corporation (DDC) based in Tampa, Florida was responsible for all drilling, well construction, and testing services at the RCID site. This project

was completed on July 10, 2003 (on schedule) at the budgeted amount of \$375,000. SFWMD provided oversight during all well drilling, construction, and testing operations.

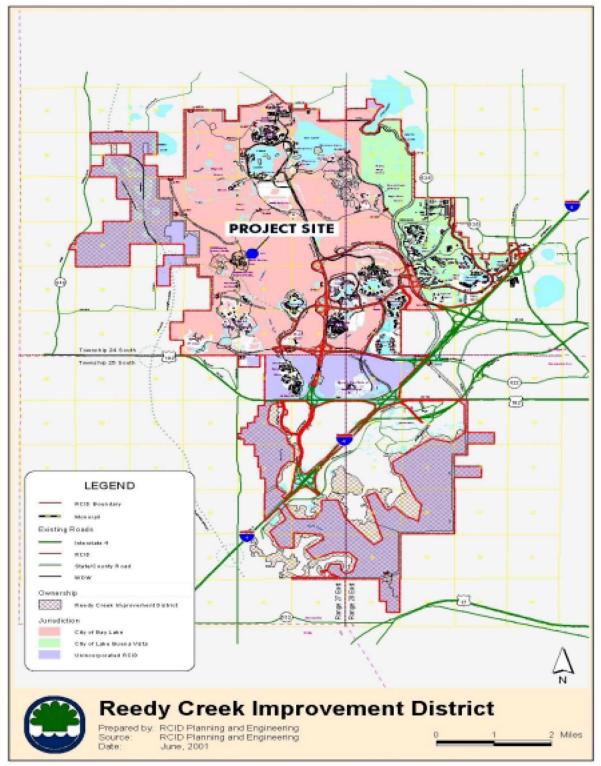


Figure 1. Project Location Map.

EXPLORATORY DRILLING AND WELL CONSTRUCTION

Lower Floridan Aquifer Test/Monitor Well – ORF-60

On March 1, 2003, DDC delivered drilling and support equipment to begin site preparation for drilling and construction of a LFA test/monitor well (referred to as ORF-60). DDC cleared and rough graded the site and then constructed a 2-foot thick drilling pad using crushed limestone. The drilling pad served to reduce impacts to adjacent areas during normal drilling, testing, and construction activities.

Mud rotary and reverse-air techniques were used during drilling operations. Closed-circulation mud rotary drilling was used to advance a nominal 10-inch diameter pilot hole from land surface to 250 feet bls. DDC employed the reverse-air, open circulation method to drill the pilot hole from 250 to 2,100 feet bls due to a highly permeable, fractured/cavernous dolostone/limestone sequence encountered below 250 feet bls, which prohibited continued mud circulation.

SFWMD used formation samples (well cuttings), packer and specific capacity test results, and geophysical logs to determine the actual casing setting depths. Once identified, DDC reamed the pilot hole to a specified diameter and depth for the selected casing setting. Three concentric carbon steel casings (24-, 18-, and 10-inch diameter) were used in the construction of the LFA test/monitor well.

On March 11, 2003, DDC drilled the pilot hole to a depth of 103 feet bls using a 12.25-inch diameter bit via the mud rotary method. They then reamed (over-drilled) the 12.25-inch diameter pilot hole using a nominal 29-inch diameter staged bit reamer to a depth of 103 feet bls. Both the pilot hole and reamed borehole were completed on March 12, 2003. DDC then installed 24-inch diameter pit casing (0.5-inch wall thickness) from land surface to 90 feet bls and pressure grouted it back to land surface using 290 cubic feet (ft^3) of ASTM Type II neat cement. The manufacturer's mill certificates for the 24-inch diameter steel casing are provided in **Appendix B**.

Once installed, DDC continued pilot hole drilling operations (using a 9.875-inch diameter bit) to 250 feet bls via the mud rotary method. The nominal 10-inch diameter pilot hole was recirculated and conditioned before being geophysically logged from 90 to 250 feet bls. A composite of the geophysical log traces and field prints from Geophysical Log Run No. 1 are provided in **Appendix C-1**.

On March 20, 2003, DDC reamed the nominal 10-inch diameter pilot hole to a depth of 226 feet bls using a nominal 22-inch diameter staged bit reamer. Once completed, the reaming tool was tripped to the bottom of the borehole and conditioned before being geophysically logged using a 4-arm caliper and natural gamma ray sonde. A composite of the geophysical log traces and field prints from Geophysical Log Run No. 2 are provided in **Appendix C-2**. DDC then installed an 18-inch diameter (0.375-inch wall thickness) steel casing from land surface to 220 feet bls. Once installed, the surface casing was grouted to land surface using 536 ft³ of ASTM Type II neat cement.

Once the surface casing was installed, DDC switched to the reverse-air method to continue the nominal 10-inch diameter pilot hole through carbonate rock of the Eocene-aged, Avon Park Formation to a depth of 715 feet bls. On April 1, 2003, SFWMD conducted a step drawdown test on the open-hole section from 220 to 715 feet bls (see *"Hydrogeologic Testing"* section for results). Upon successful completion of the step drawdown test, DDC continued to drill the nominal 10-inch diameter pilot hole via the reverse-air to a depth of 998 feet bls. MV Geophysical Services then conducted formation evaluation and production borehole logging operations in the open hole section from 220 to 998 feet bls. A composite of the geophysical log traces and field prints from Geophysical Log Run No. 3 are provided in **Appendix C-3**.

On April 9, 2003, DDC completed drilling of the 10-inch diameter pilot hole to the target depth of 1,350 feet bls and began to reverse-air develop the open-hole section for subsequent geophysical logging operations. On April 11, 2003, MV Geophysical Services conducted formation evaluation and production borehole logging operations from 220 to 1,350 feet bls. A composite of the geophysical log traces and field prints from Geophysical Log Run No. 4 are provided in **Appendix C-4**.

Review and analysis of lithologic and geophysical log data from the pilot hole to a depth of 1,350 feet bls indicates that the top of the LFA (Zone A) occurs at a depth of approximately 1,160 feet bls, at the contact between low permeable carbonates and moderately to highly permeable dolostones. The reasons for setting the final 10-inch diameter steel casing at the site to a depth of 1,170 feet bls were to:

- Seal off the permeable section of the upper Floridan and eliminate the downward flow component within the borehole due to lower hydraulic heads present in the LFA below 1,160 feet bls;
- Facilitate reverse-air drilling operations through underlying permeable horizons of the FAS to 2,100 feet bls;
- Locate the casing in a competent rock unit to reduce under-mining (erosion) at its base because of induced (pumped) high velocity upward flow and establish the upper limits of the long-term LFA monitor interval; and
- Evaluate flow characteristics of the lower portion of the FAS within the open-hole interval of 1,170 to 2,100 feet bls.

On April 22, 2003, MV Geophysical logged the nominal 18-inch diameter borehole (Geophysical Log Run No. 5 provided in **Appendix C-5**). Upon completion, DDC began to install the 10-inch diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness) to a depth of 1,170 feet bls. A casing tally of the 10-inch diameter steel casing is provided in **Appendix B**, **Table 1**. DDC then successfully grouted the annulus to land surface in multiple stages using a combination of ASTM Type II neat cement and bentonite-cement slurry. Pumped volumes, slurry type, and resulting cement levels as measured by a temperature log and physical hard tag after each cement stage are summarized below in **Table 1**.

Stage No.	Pumped Volume (barrels)	Slurry Type	Temperature Taken at ft bls	Hard Tag ft bls
1	76	Neat cement	975	982
2	90	8% bentonite-clement	855	850
3	116	12% bentonite-cement	784	785
4	137	12% bentonite-cement	576	570
5	137	12% bentonite-cement	372	375
6a	81	12% bentonite-cement		
6b	62	Neat-cement	316	320
7	63	Neat-cement	308	310
8	63	Neat-cement	310	306
9	63	Neat-cement	300	301
10	63	Neat-cement	270	275
11	63	Neat-cement	150	150
12	33	Neat-cement		Land surface

Table 1. Cement Volumes Pumped During Well Construction.

The temperature logs were recorded up to eight hours after the multiple cement stages were pumped in the annular space. A composite of temperature log traces and field copies from the multiple temperature logs are provided in Geophysical Log Run No. 6, Appendix C-6.

As part of casing integrity verification, a pressure test on the 10-inch diameter production casing was successfully completed on May 12, 2003. The wellhead was sealed at the surface with a temporary header to facilitate the test. Next, the well was filled with water and pressurized to approximately 100-pounds per square inch (psi) with a high-pressure water pump. During the course of the 60-minute pressure test, the total pressure within the 10-inch diameter casing decreased 2 psi, representing a 2% decline - well within the FDEP Underground Injection Control test tolerance limit of \pm 5%. Table 2 summarizes the internal casing pressure readings taken during the course of the 60-minute test.

Elapsed Time (minutes)	Pressure Reading (psi)	Pressure Change (% psi)
0	100.0	
5	100.0	0.0
10	100.0	0.0
15	100.0	0.0
20	99.5	-0.5
25	99.5	0.0
30	99.0	-0.5
35	99.0	0.0
40	99.0	0.0
45	98.5	-0.5
50	98.5	0.0
55	98.5	0.0
60	98.0	-0.5

 Table 2. Internal Casing Pressure Test Results – 10-inch Diameter Steel Production Casing.

In addition, a cement bond log (CBL) was conducted to evaluate the bond quality between the annular cement, the 10-inch diameter production casing string, and the rock formations. The

recorded wave-amplitude curve from the CBL infers that the entire length of the 10-inch diameter steel casing is well supported by the annular cement with good contact with the steel casing and rock formations and no discernable voids within the annular space. The original CBL field print is provided in **App endix C-6**.

Upon successful completion of the casing pressure test and CBL, DDC continued to drill a nominal 8-inch diameter pilot-hole via reverse-air rotary method from 1,350 feet bls to a total depth of 2,100 feet bls. DDC then developed the open-hole section via reverse-air and prepared it for subsequent geophysical logging operations. On June 13, 2003, MV Geophysical Services conducted formation evaluation and production borehole logging operations in the open-hole section from 1,170 to 2,100 feet bls. A composite of the geophysical log traces and field prints from Geophysical Log Run No. 7 are provided in **Appendix C-7**.

Based on lithologic and geophysical log data, two packer tests were conducted in the open-hole section from 1,510 to 1,540 feet bls and 1,930 to 1,970 feet bls (see *"Hydrogeologic Testing"* section). After testing operations were completed, DDC back-plugged the nominal 8-inch diameter borehole via multiple cement stages to 1,280 feet bls. Cement levels used to back-plug the pilot hole to 1,280 feet bls provided the lower limit of the LFA monitor interval.

In summary, the LFA test/monitor well identified as ORF-60 at the RCID site was constructed using 10-inch diameter steel casing and completed with an open hole monitor interval of 1,170 to 1,280 feet bls. After a specific capacity test on the completed open hole section, DDC installed the permanent wellhead and constructed a 6-foot by 6-foot concrete pad (Figure 2) completing well construction activities at this site. Well construction and testing activities related to ORF-60 are summarized in Appendix B, Table 2.

Figure 2. Completed Wellhead - Test/Monitor Well (ORF-60 - Yellow Well Head).

HYDROSTRATIGRAPHIC FRAMEWORK

SFWMD collected geologic formation samples (well cuttings) from the pilot hole during drilling operations of the LFA test/monitor well and separated them based on their dominant lithologic or textural characteristics, and to a lesser extent, color. The onsite geologist washed and then described the samples using the Dunham (1962)-classification scheme. SFWMD's onsite lithologic descriptions are summarized in **Appendix D-1**. SFWMD sent these samples to the Florida Geological Survey (FGS) for further analysis and long-term storage identified using the reference number W-18445. An electronic version of the lithologic description can be downloaded directly from the FGS Internet site with the descriptions provided in **Appendix D-2**.

Two major aquifer systems underlie this site, the surficial aquifer system and the Floridan aquifer system with the Floridan aquifer system being the focus of this test well program. These aquifer systems are composed of multiple, discrete aquifers separated by low permeable "confining" units that occur throughout this Tertiary/Quaternary-aged sequence. **Figure 3** shows a generalized lithostratigraphic and hydrogeologic section underlying the RCID site.

The FAS consists of a series Tertiary age limestone and dolostone units. The system includes permeable sediments of the Ocala Limestone, Avon Park Formation, and the Oldsmar Formation. The Paleocene age Cedar Keys Formation with evaporitic gypsum and anhydrite beds forms the lower boundary of the FAS (Miller, 1986). This lithostratigraphic unit was not penetrated at a total depth of 2,100 feet bls at this location.

Lithologic information obtained from drill cuttings indicate that undifferentiated quartz sands occur from land surface to 30 feet bls and forms the surficial aquifer. The undifferentiated sediments present from approximately 30 feet to 75 feet bls consist predominately of soft non-indurated detritial clays, silts, and poorly indurated mudstones (see lithologic log – **Appendix D-1**). These low permeability sediments serve as an intermediate confining unit separating the surficial aquifer from the FAS.

The top of the FAS, as defined by the Southeastern Geological Society AdHoc Committee on Florida Hydrostratigraphic Unit Definition (1986), coincides with the top of a vertically continuous permeable carbonate sequence. The upper Floridan aquifer (UFA) consists of thin water bearing horizons with high permeability interspersed within thick units of middle-Eocene age sediments with low permeability. At this site, the top of the FAS occurs at a depth of 80 feet bls, which coincides with a change in lithology that occurs below 80 feet bls; identified in the well cuttings and sonic log. These sediments are poorly indurated, high porosity, wackestones-packstones of the Avon Park Formation.

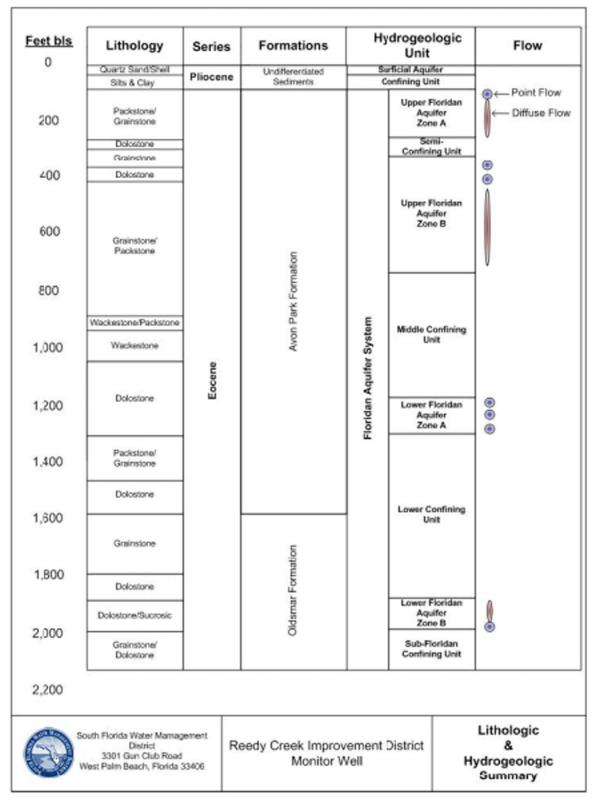


Figure 3. Generalized Lithostratigraphic and Hydrogeologic Section.

Two discrete zones were identified in the UFA separated by a semi-confining unit. These two productive horizons are designated as "Zone A and Zone B" consistent with nomenclature used in O'Reilly et al., 2002. Zone A corresponds to the upper one-third of the aquifer and coincides with the uppermost part of the Avon Park Formation. The top of this interval is marked by a minor lost circulation horizon (permeable zone) at 80 feet bls near the contact between the undifferentiated sediments and Avon Park Formation. The natural gamma log from 80 to 170 feet bls produces thin, intermittent, high-gamma radiation peaks, associated primarily with intervals of high phosphate sand/silt content within low to moderately permeable limestone units. At 170 feet bls, the lithology changes from a tan grainstone containing phosphate grains to a phosphate-free, cream colored, poorly to moderately indurated, packstones and grainstones. This interval is marked by a significant attenuation of the natural gamma ray activity, increased resistivity values, and sonic transit times. These moderately permeable carbonate rocks continue from 170 to 250 feet bls. A well indurated low permeability, grey colored mudstone unit defines the lower limits of Zone A at 250 feet bls.

An intervening semi-confining unit from 250 to 300 feet bls separates Zone A from Zone B in of the UFA. It is composed of competent, well-indurated, low permeability, crystalline dolostones inter-bedded with moderately indurated, tan colored, grainstones and crystalline limestones that occur from 250 to 300 feet bls.

Zone B corresponds to the lower two-thirds of the UFA. The majority of water production from this zone occurs from 310 to 425 feet bls composed of fractured and cavernous dolostone units in the upper portion of the Avon Park Formation. Significant water production occurs at 310 feet bls with minor production at 400 feet bls, as indicated by the flowmeter and temperature logs (see Geophysical Log Run No. 3, **Appendix C-3**). Smaller, less productive intervals continue from 425 to 740 feet bls within poorly to moderately indurated, friable packstone and grainstone units as evident by small deflections on the flowmeter or temperature log traces and seen on the borehole video log.

At this site, the top of the middle semi-confining unit, which separates the upper and lower Floridan aquifers occurs at 740 feet bls. The top of the semi-confining unit is composed of poorly indurated low permeability grainstones that continue to 880 feet bls. Through this upper section, a transition in formation water quality occurs, noted by lower formation and fluid resistivity values (see Geophysical Log Run No. 3, **Appendix C-3**). Moderately to well indurated, low porosity/permeability wackestones occur from 880 to 1,070 feet bls, which become more dolomitic and inter-bedded from 1,025 to 1,060 feet bls. Well-indurated, low permeability, cream to tan colored, dolostones continue from 1,060 to 1,160 feet bls. These low porosity/permeability, well-indurated units caused an indicative decrease in sonic transit times with a corresponding decrease in porosity and a relatively gauge borehole (i.e., similar to the diameter of the drill bit) as measured by a caliper tool. In addition, these low permeable sediments have very little productive capacity, as indicated by a relative straight flowmeter and temperature log trace (see Geophysical Log Run No. 4, **Appendix C-4**). This 420-foot section of low permeability sediments effectively isolates the UFA from the LFA. The LFA underlies the middle confining unit. The top of the LFA at this site was identified at 1,160 feet bls, where the dolostones becomes more sucrosic and permeable in nature. Through the LFA, the formation resistivity, sonic transit times, and caliper log traces vary significantly in response to fractures and solution features. In addition, the flowmeter log traces indicated significant downward flow below 1,170 feet bls. These sections of the borehole are associated with good to excellent secondary permeability (e.g., fractured and cavernous). Review of the borehole video survey confirmed the presence of highly productive zone of secondary permeability.

The lower Avon Park Formation and upper section of the Oldsmar Formation from 1,280 to 1,860 feet bls consists of low permeable moderately indurated, dolomitic wackestones and packstones and well indurated, dense crystalline dolostones. Formation samples do not show evidence of large-scale secondary porosity development, and the temperature and flowmeter log traces indicate limited water production, which supports the overall confining nature of this 580 foot interval.

A low to moderately permeable dolostone unit occurs from 1,860 to 1,970 feet bls. The change in lithology from a dolomitic limestone to dolostone is noted by individual geophysical log traces. The induction and sonic logs show a slight increase in formation resistivity and lower sonic transit times, which are indicative of well-indurated dolostones. A minor flow zone, present near the bottom of this dolostone sequence was initially identified during reverse-air drilling when flow rates from the well bore increased. Lithologic data and minor deflections in the temperature log and information from the borehole video log confirmed small productive horizons from 1,860 to 1,970 feet bls. This interval was identified as Zone B within the LFA. Low permeable sediments of lower part of the Oldsmar Formation mark the base of the LFA at 1,970 feet bls.

Hard, dense dolostone and well-indurated limestone units with anhydrite units are present from 1,970 feet bls to the total depth of 2,100 feet bls. These low permeable units form the sub-Floridan confining unit – lower limits of the FAS. Review of the borehole video log in concert with the production log data and formation samples confirm the confining nature of this lowermost interval.

HYDROGEOLOGIC TESTING

SFWMD collected specific information during the drilling program to determine the lithologic, hydraulic, and water-quality characteristics of the FAS at this site. These data were to be used in the final design of the LFA test/monitor well for use in site-specific aquifer tests, and a long-term water level and water-quality monitoring program. **Figure 4** summaries the well construction and test results from the RCID site.

Formation Fluid Sampling

During reverse-air drilling of the pilot hole, water samples were taken from circulated return fluids (composite formation water) at 30-foot intervals (average length of drill rod) from 250 feet bls to 1,350 feet bls. Water quality data on the reverse-air returns below 1,350 feet bls were not obtained due to equipment availability. A Hydrolab[®] multi-parameter probe was used to measure field parameters on each sample, which included temperature, specific conductance, and pH. **Figure 5** shows field determined specific conductance values and calculated total dissolved solids (TDS) concentrations with respect to depth using the following equation from J.D. Hem (1994):

TDS = Specific Conductance x 0.65

Geophysical Logging

Geophysical logs were conducted in the pilot hole after each stage of drilling and before casing installation. These logs were conducted to provide a continuous record of the physical properties of the subsurface formations and their contained fluids. These logs were later used to assist in the interpretation of lithology, to provide estimates of permeability, porosity, bulk density, resistivity of the aquifer, and to determine the salinity of the ground water using Archie's equation (Archie, 1942). In addition, the extent and degree of confinement of specific intervals can be discerned qualitatively from the individual logs. The geophysical logs also provided data to determine the desired casing setting depths on the test/monitor well.

The geophysical logging contractor(s) downloaded the data directly from the onsite logging processor onto diskettes using log ASCII standard (LAS) version 1.2 or 2.0 format. Appendix C contains the geophysical log traces from the various log runs for ORF-60. Table 3 is a summary of the geophysical logging activity at this site. The original geophysical logs and video surveys from the RCID site are archived (SFWMD Reference No. 095-000014) and available for review at the SFWMD headquarters in West Palm Beach, Florida.

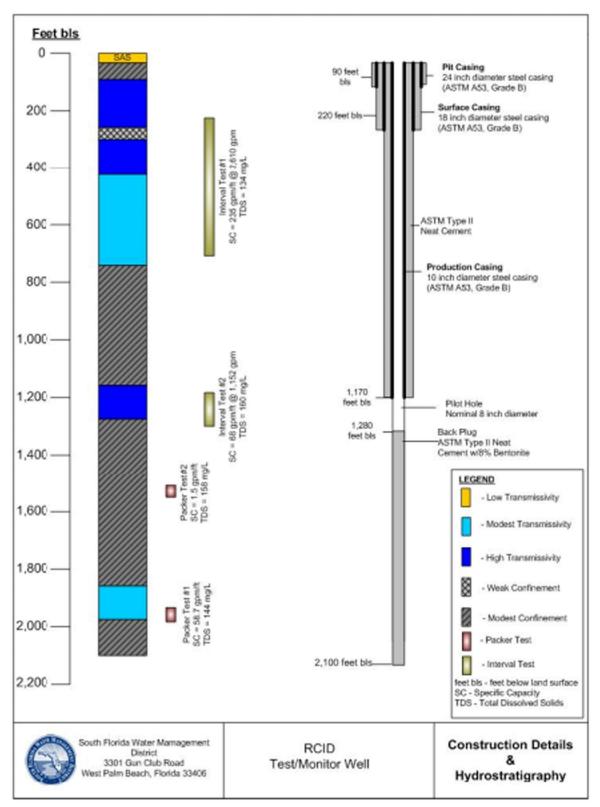


Figure 4. Well Construction and Testing Summary.

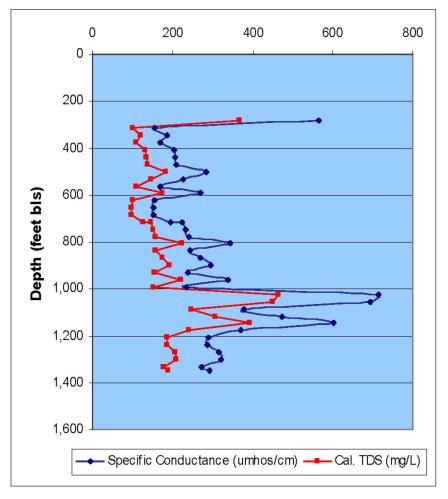


Figure 5. Water Quality with Depth - Reverse Air Returns - ORF-60.

Run #	Date	Logger	Logged Interval ft bls	Caliper	Natural Gamma Ray	SP	Dual Induct.	Sonic	Flow- Meter	Temp	Fluid Resist	Video
1	03/17/03	MVG	90 - 250	х	х	х	х	х				
2	03/20/03	MVG	0 - 226	х	х							
3	04/03/03	MVG	220 - 998	х	х	х	х	х	х	х	х	х
4	04/11/03	MVG	220 - 1350	х	х	х	х	х	х	х	х	х
5	04/22/03	MVG	220 - 1172	х	х							
6	Multiple	MVG	0 - 1170		х					х		
7	06/13/03	MVG	1170-2100	х	х	х	х	х	х	х	х	х
	MVG = MV Geophysical Inc Measuring Point Elevation is Land Surface at 131 feet NGVD, 1929											

Table 3. Summary of Geophysical Logging Activities.

Packer Tests

SFWMD conducted a series of packer tests within the FAS between 1,510 and 1,970 feet bls. The purpose of these tests was to gain water quality and production capacity data on discrete intervals within the lower portion of the FAS. SFWMD selected intervals based on lithologic, geophysical logs, borehole video surveys, and hydraulic and water quality considerations using all available data.

Packer Test No. 1 was conducted on an interval between 1,930 and 1,970 feet bls. This interval produced formation water with a TDS concentration of 144 mg/L and specific conductance of 264 microumhos per centimeter (μ mhos/cm). Packer Test No. 2 conducted between 1,510 and 1,540 feet bls had a TDS concentration of 158 mg/L and specific conductance of 260 μ mhos/cm.

DDC purged the packer intervals a minimum of three borehole volumes or until field parameters of samples collected from the discharge pipe had stabilized, then SFWMD obtained individual ground water samples. A limit of $\pm 5\%$ variation in consecutive field parameter readings was used to determine chemical stability. SFWMD staff used a Hydrolab[®] multiparameter probe to measure field parameters including temperature, specific conductance, and pH on each sample. SFWMD personnel collected unfiltered and filtered water in accordance with SFWMD sampling protocol. The water samples were placed on ice and transported to the SFWMD water quality laboratory where they were analyzed for inorganic constituents using EPA and/or Standard Method procedures (SFWMD, Comprehensive Quality Assurance Plan, 1999). **Table 4** lists the field parameters and laboratory results for the individual packer tests.

	Reedy Creek Improvement District Site, Orange County, Florida.											
			Cat	ions		Anions				Field P	aramete	ers
Identifier	Depth Interval (ft. bls)	Na ⁺ mg/L	K⁺ mg/L	Ca ²⁺ mg/L	Mg ²⁺ mg/L	CI ⁻ mg/L	Alka as CaCO₃ mg/L	SO₄²⁻ mg/L	TDS mg/L	Specific Conduct. µmhos/cm	Temp ° C	pH s.u.
ORF-60_ PT2	1510- 1540	3.9	3.9 0.8 34.0 10.0 4.9 114 22.2 158 260 27.0						27.08	7.50		
ORF-60_ PT1	1930- 1970	3.8	3.8 0.6 35.0 8.9 7.2 115 8.6 144 264 25.87						7.71			
ft. bls = feet below land surface ° C = degree Celsius mg/L = milligrams per liter PT = Packer Test µmhos/cm = microumhos per centimeter s.u. = standard unit												

 Table 4. Inorganic Water Quality Data - Packer Tests.

The Hazen-Williams equation was used to calculate the friction (head) losses for all drawdown data obtained from each packer test because of induced flow up the drill pipe. Packer tests generally involve partial penetration, have significant friction loss due to small pipe diameter, and have short pumping periods, which violate basic assumption of the various analytical methods; therefore, curve-matching techniques were not used to determine transmissivity values from the drawdown or recovery data. **Table 5** lists the pertinent hydraulic information from the individual packer tests.

Identifier	Depth (ft. bls)	Pump Rate (gpm)	Pump Duration (min)	Corrected Drawdown (feet)	Calculated Specific Capacity (gpm/ft)		
ORF60-PT2	1510-1540	72	125	15.9	1.5		
ORF60-PT1	1930-1970	150	100	2.6	58.7		
ft. bls = feet below land surface gpm = gallons per minute PT = Packer Test gpm/ft = gallons per minute per foot of drawdown							

 Table 5. Summary of Hydraulic Data Obtained from Packer Tests.

Specific Capacity and Step Drawdown Tests

Two interval tests were conducted at this site; the first conducted in the UFA from 220 to 715 feet bls and the second in the LFA from 1,170 to 1,280 feet bls. The purpose of these tests was to gain water quality and production capacity data on productive intervals within the FAS.

The first high-volume, specific capacity test was completed on April 1, 2003, within a nominal 10-inch diameter borehole from 220 to 715 feet bls. The objective was to determine the production capacity and water quality characteristics of the UFA at this site.

The procedures listed below were used to conduct individual specific capacity tests in ORF-60 at the RCID site:

- 1. Select an interval for testing based on geophysical logs and lithologic data.
- 2. Install a 275-horsepower submersible pump to depth of 80 to 120 feet below the drill floor with a pumping capacity of 500 to 5,000 gpm.
- 3. Install two 100-psig-pressure transducers inside the production casing connected to a Hermit[®] 3000 data logger to measure and record water level changes during testing operations.
- 4. Perform the step drawdown test (3 to 4 one-hour steps).
- 5. Collect formation water samples for laboratory water quality analyses following SFWMD QA/QC sampling protocol.
- 6. Record recovery data until water levels return to static conditions.

As part of the first step drawdown test, DDC installed an 8-inch diameter, 275-horsepower submersible pump in the test/monitor well with the pumping bowl set at 90 feet bls. An 8-inch diameter in-line flowmeter was used to measure discharge rates during pumping. An In-situ Inc[®] data logger connected to down hole pressure transducers installed in ORF-60 continuously measured and recorded water level changes at pre-determined intervals (1 minute) during testing operations.

During this test, ORF-60 was pumped at successively higher pumping rates from 1,350 gallon per minute (gpm) to a maximum of 2,610 gpm. Four pumping steps were used, each lasting 1

hour with drawdown recorded for each rate (or step). The specific capacity calculated for each step from ORF-60 between 220 and 715 feet bls are displayed in **Figure 6**.

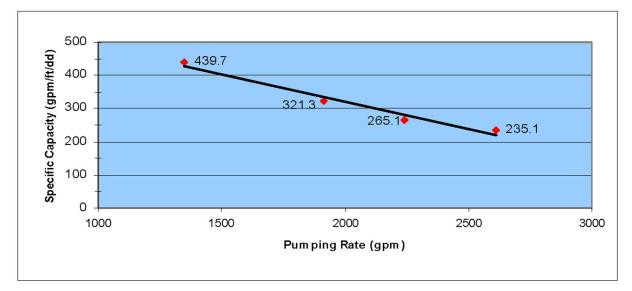


Figure 6. Pump Rates versus Specific Capacity – Step Drawdown Test No. 1.

The second specific capacity test was conducted and completed on November 26, 2003. The objective of this test was to determine well performance and in-situ hydraulic characteristics within the LFA at this site. Specifically, these data were to be used to determine production capacity and to gain water quality information from the completed open-section of ORF-60 between 1,170 and 1,280 feet bls.

DDC installed an 8-inch diameter, 275-horsepower submersible pump in the test/monitor well with the pumping bowl set at 115 feet bls. An 8-inch diameter in-line flowmeter and circular orifice weir with a 6-inch diameter orifice plate were used to measure discharge rates during pumping with automated readings taken from the orifice weir every minute. An In-situ Inc[®] data logger connected to down hole pressure transducers was installed in ORF-60, which continuously measured and recorded water level changes at pre-determined intervals (1 minute) during testing operations.

During the step drawdown test, ORF-60 was pumped at successively higher pumping rates from 537 gpm to a maximum of 1,152 gpm. Four pumping steps were used, each lasting 1 hour with drawdown recorded for each rate (or step). **Figure 7** is plot of production capacity versus pump rate during the second step drawdown test between 1,170 and 1,280 feet bls. **Table 6** provides a summary of inorganic water quality data for samples collected during the two step drawdown tests.

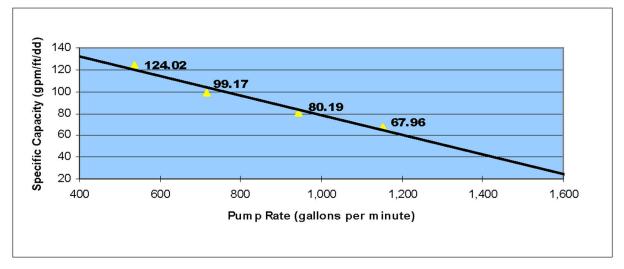


Figure 7. Pump Rate versus Specific Capacity – Step Drawdown Test No. 2.

	Reedy Creek Improvement District Site, Orange County, Florida.											
			Cations				Anions			Field Parameters		
Identifier	Depth Interval (ft. bls)	Na ⁺ mg/L	K⁺ mg/L	Ca ²⁺ mg/L	Mg ²⁺ mg/L	CI ⁻ mg/L	Alka as CaCO₃ mg/L	SO₄ ²⁻ mg/L	TDS mg/L	Specific Conduct. µmhos/cm	Temp ° C	pH s.u.
ORF-60_SC1	220-715	3.5	0.7	37.0	7.4	5.1	116	7.5	134	236	23.18	7.45
ORF-60_SC2	1170- 1280	3.6	1.1	37.0	11.0	7.6	110	12.0	160	347	24.90	7.86
mg/L = milligrams per liter ft. bls = feet below land surface ° C = degree Cel						degree Celsius						
µmhos/cm = mic	roumhos pe	r centime	ter	S	C= Spec	ific Capa	acity		s	s.u.= standard u	ınit	

Table 6. Inorganic Water Quality Data from Specific Capacity Tests.

Specific Capacity Data Analysis

The data from the two step drawdown tests were analyzed to determine the overall well capacity and the effects of individual components. Jacob (1946) suggests that the drawdown (s) in a well is the sum of the first order (laminar) component and the second order (turbulent) component and can be expressed as:

$$s = BQ + CQ^2$$
 Equation 1

where, the laminar term (BQ) is a function of the aquifer loss and the turbulent term (CQ²) is related to well loss. This correlation however, has been shown not to be correct and computing well efficiencies using step drawdown data may be in error.

Step tests however, are still useful in evaluating the magnitude of turbulent head loss for the purpose of determining optimum pumping rates. A simple graphical method for determining B and C was developed by Bierschenk (1964) whereby Equation 1 is divided by the pump rate (Q) and the terms rearranged to yield:

$$s/Q = CQ + B$$
 Equation 2

Therefore, if s/Q is plotted against Q, the result is a straight line with a slope of C and y-intercept of B. The value of B and C from the resultant graph can be used in Equation 2.

Inverting the terms in Equation 2 indicate how specific capacity declines as discharge increases when turbulent flow is present:

$$Q/s = 1 / (CQ + B)$$
 Equation 3

Observing the change in drawdown and specific capacity as discharge increase can provide information necessary to select optimum pumping rates. Equation 3 was used to estimate (predict) the specific capacity for two additional pumping rates for each test. Figure 8 shows s/Q plotted against Q where C is the slope and B is the intercept for Step Drawdown Test No.1. Table 7 summarizes the discharge and drawdown data plus predicted specific capacities for the UFA between 220 and 715 feet bls.

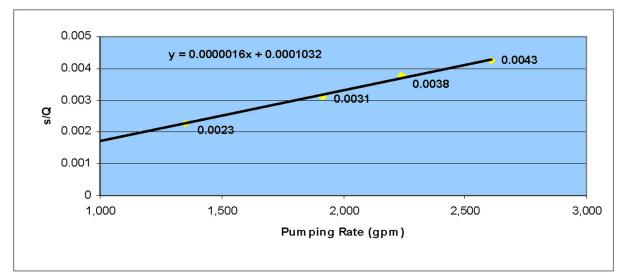


Figure 8. Pump Rate versus s/Q – Step Drawdown Test No. 1.

Measured Pump Rate (Q) gpm	Measured Drawdown (s) feet	Specific Capacity (Q/s) gpm/ft	s/Q feet/gpm	Predicted Specific Capacity (Q/s) (gpm/ft)
1350	3.07	439.74	0.0023	441.85
1915	5.96	321.31	0.0031	315.74
2240	8.45	265.09	0.0038	271.21
2610	11.10	235.14	0.0043	233.69
3000				203.95
3500				175.34

 Table 7. Discharge and Drawdown Data – Specific Capacity Test No. 1.

The transmissivity for this 495-foot open-hole section of the UFA was estimated at 468,000 gallons per day per square foot (gpd/ft^2) at this site. The estimated transmissivity was determined by multiplying the specific capacity of 235.14 gpm/ft of drawdown (found in **Table** 7) by a factor of 2,000 (Driscoll 1989).

During the second step drawdown test, ORF-60 was pumped at successively higher pumping rates from 537 gpm to a maximum of 1,152 gpm. Figure 9 shows s/Q plotted against Q where C is the slope and B is the intercept for Step Drawdown Test No. 2. Table 8 summarizes the discharge and drawdown data plus predicted specific capacities (using Equation 3) for the LFA between 1,170 and 1,280 feet bls.

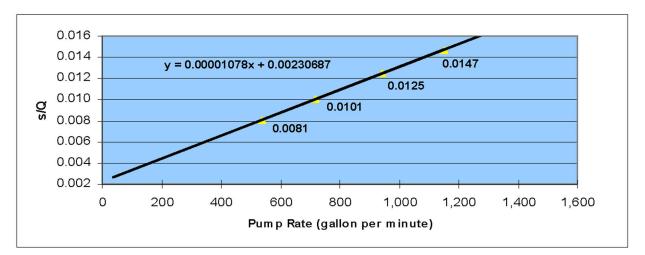


Figure 9. Pump Rate versus s/Q – Step Drawdown Test No. 2.

Measured Pump Rate (Q) gpm	Measured Drawdown (s) feet	Specific Capacity (Q/s) gpm/ft	s/Q feet/gpm	Predicted Specific Capacity (Q/S) (gpm/ft)
537	4.33	124.02	0.0081	123.52
717	7.23	99.17	0.0101	99.64
943	11.76	80.19	0.0125	80.18
1152	16.95	67.96	0.0147	67.91
1350				59.31
1600				51.14

Table 8. Discharge and Drawdown Data – Specific Capacity Test No. 2.

The transmissivity for this 110-foot open-hole section of the LFA was estimated at 136,000 gpd/ft^2 at this site. The estimated transmissivity was determined by multiplying the specific capacity of 67.96 gpm/ft of drawdown (found in **Table 8**) by a factor of 2,000 (Driscoll 1989).

Ground Water Quality Monitoring Program

Upon completion of well construction of ORF-60, background water quality samples were collected and analyzed to determine basic water quality characteristics (temperature, pH, and specific conductance) as well as primary and secondary drinking water standards (Rule 62-550, FAC) and minimum criteria parameters (Rule 62-520, FAC).

Unfiltered and filtered water samples were taken directly from the discharge point into appropriate type of sample containers. Water samples were collected in accordance with FDEP sampling protocol. Once collected, all water samples were preserved and immediately placed on ice in a closed container and transported to a laboratory operated by Advanced Environmental Laboratories (AEL), Inc. in Tampa, Florida. The samples were analyzed for primary and secondary drinking water standards and minimum criteria parameters using EPA and/or Standard Method procedures (SFWMD, 1999). **Table 9** summarizes the analytical results of the inorganic constituents from the completed LFA test/monitor well.

			Cat	ions			Anions			Field P	Paramete	rs
Identifier	Depth Interval (ft. bls)	Na ⁺ mg/L	K⁺ mg/L	Ca ²⁺ mg/L	Mg ²⁺ mg/L	CI ⁻ mg/L	Alka as CaCO₃ mg/L	SO₄²⁻ mg/L	TDS mg/L	Specific Conduct. µmhos/cm	Temp ° C	pH s.u.
ORF-60	1170- 1280	3.6	1.1	37	11	7.6	110	12.0	160	347	23.29	7.80
mg/L = milligrams per liter µmhos/cm = microumhos per centimeter					ft. bls = feet below land surface ° C = s.u.= standard unit							

Table 9. Composite Water Quality Data from Completed Test/Monitor Well – ORF-60.

Laboratory results provided by AEL indicate that produced water from the LFA meet all primary and secondary drinking water standards and are provided in **Appendix E**.

SUMMARY

- 1. The top of the FAS as defined by the Southeastern Geological Society AdHoc Committee on Florida Hydrostratigraphic Unit Definition (1986) was identified at a depth of approximately 80 feet bls.
- 2. A 10-inch inner diameter exploratory well at the RCID site was successfully constructed and tested in accordance with FDEP Class V, Group 8, well standards.
- 3. Lithologic and geophysical logs, and specific capacity test results indicate moderate production capacity in Zone A of the UFA (80 to 250 feet bls) and excellent production capacity in Zone B of the UFA (310 to 740 feet bls). The interval from 220 to 715 feet bls yielded a specific capacity value of 235 gallons per minute per foot (gpm/ft) of drawdown at a pumping rate of 2,610 gpm with a calculated transmissivity of 470,000 gallons per day per foot (gpd/ft).
- 4. Water quality data from 220 to 715 feet bls indicate that chloride and TDS in the UFA waters meet potable drinking water standards with chloride and TDS concentrations of 5 and 134 mg/L, respectively.
- 5. Lithologic information and geophysical logs obtained from ORF-60 indicates that low porosity/permeability, poorly inducated grainstones and moderately to well inducated, wackestones and crystalline dolostones occur from 740 to 1,160 feet bls. These low permeable sediments act as a confining unit that effectively isolates the UFA from the LFA.
- 6. Lithologic and geophysical logs and specific capacity test results indicate very good production capacity of the LFA from 1,170 to 1,280 feet bls. This zone yielded a specific capacity value of 68 gpm/ft of drawdown at pump rate of 1,152 gpm with a calculated transmissivity of 136,000 gpd/ft².
- 7. Composite water quality sampling of ORF-60 (1,170 to 1,280 feet bls) indicates that chloride and TDS meet potable drinking water standards with chloride and TDS concentrations of 8 and 160 mg/L, respectively.
- 8. The lithologic data and production-type logs (e.g. flow, temperature logs) indicates very good production from flow zones between 1,170 and 1,195 feet bls and 1,215 to 1,270 feet bls. Below 1,270 feet bls, the productive capacity is limited (as indicated by the fluid-type logs) suggesting lower permeable semi-confining units near the base of the proposed monitor interval.
- 9. Lithologic and geophysical logs and packer test results indicate good production capacity of the LFA from 1,860 to 1,970 feet bls. Packer test between 1,930 and 1,970 feet bls yielded a specific capacity value of 58.7 gpm/ft of drawdown with chloride and TDS concentrations of 7 and 144 mg/L, respectively.
- 10. The base of the Underground Source of Drinking Water, those waters having TDS concentrations greater than 10,000 mg/L, was not encounter at a total depth of 2,100 feet bls.
- 11. Based on laboratory results, produced water from the LFA at this site meet all primary and secondary drinking water standards.

REFERENCES

Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics, A.I.M.E. Transaction, V. 146, pp.54-61.

Bierschenk, W.H., 1963. Determining well efficiency by multiple step drawdown tests: International Association of Scientific Hydrology Publication 64, pp. 493-507.

Driscoll, F.G., 1989. Ground Water and Wells, 2nd Edition. Johnson Filtration Systems, Inc., St. Paul, Minnesota. p.1089..

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In *Classification of Carbonate Rocks* (Ed. by W.E. Ham) Memoir. AAPG Vol. 1, 108-121.

Hem, J.D., 1994. Study and interpretation of the chemical characteristics of natural water, Third Edition, United States Geological Survey Water Supply Paper 2254, p.263.

Jacob, C.E., 1947, Drawdown test to determine effective radius of artesian well: Transactions American Society of Civil Engineers, v. 112, paper 112, p.1047.

Miller, J.A., 1986. Hydrogeologic framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina, United States Geological Survey Professional Paper 1403-B.

O'Reilly, A.M., Spechler, R.M., and McGurk, B.E. 2002. Hydrogeology and the water quality characteristics of the lower Floridan aquifer system in east-central Florida. United States Geological Survey Water-Resources Investigation Report 02-4193, p.60.

South Florida Water Management District. 1999. Comprehensive Quality Assurance Plan. South Florida Water Management Publications.

Southeastern Geological Society Ad Hoc Committee on Florida Hydrostratigraphic Unit Definition, 1986. Hydrogeologic unit of Florida: Florida Department of Natural Resources, Bureau of Geology, Special Publication No. 28, p.9.

APPENDIX A Weekly Summary Reports

A-2

March 18, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.1 – March 10, 2003 through March 14, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the first week of construction on the lower Floridan aquifer test/monitor well and those activities anticipated for the next report period.

The first week of drilling and construction of the test/monitor well began on March 10, 2003. Initially, the Contractor (DDC) drilled the pilot hole to a depth of 103 feet below pad level (bpl) using a 12.75-inch diameter bit via the mud rotary method. The Contractor then reamed (over-drilled) the 12.75-inch pilot hole to a depth of 103 feet bpl using a nominal 29-inch diameter staged bit reamer. Both the pilot hole and reamed borehole were completed on March 11, 2003. DDC then installed 24-inch diameter pit casing to a depth of 90 feet bpl and pressure grouted back to surface using 302 cubic feet of ASTM Type II neat cement. Grouting operations for the 24-inch diameter pit casing were completed on March 12, 2003. The report period ended on March 13, 2003 with the Contractor drilling out the cement plug at the base of the 24-inch diameter pit casing (a result of pressure grouting operations). In addition, the Contractor continued pilot hole drilling operations (using a 9.875-inch diameter bit) to 250 feet bpl via the mud rotary method. During the course of the above-mentioned activities, no unusual drilling or construction events transpired.

During the next report period, the Contractor will re-circulate and condition the 9.875-inch diameter pilot hole from 90 to 250 feet bpl. MV Geophysical Inc will then geophysically log the pilot hole. The pilot hole logging suite will consist of the following: x-y caliper, natural gamma, spontaneous potential (SP), borehole compensated sonic (BHC), and dual induction/laterolog combination. Once logged, the pilot-hole will be reamed using a nominal 23-inch diameter bit and 18-inch diameter steel casing (0.375 inch wall thickness) installed into the top of Floridan aquifer at an approximate depth of 200 feet bpl. Once installed, the 18-inch diameter steel casing will be pressure grouted back to surface using ASTM Type II cement.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

March 24, 2003

Dear Interested Parties:

SUBJECT: Weekly Summary Report No.2 – March 17, 2003 through March 21, 2003 Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well South Florida Water Management District Well Construction Permit Number SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection of events that transpired during the second week of construction on the lower Floridan aquifer test/monitor well and those activities anticipated for the next report period.

The second week of drilling and construction of the test/monitor well began on March 17, 2003. The Contractor recirculated and conditioned the 9.875-inch diameter pilot-hole from 90 to 250 feet bpl. MV Geophysical Inc then geophysically logged the pilot-hole. The logging suite (run no.1) consisted of the following: x-y caliper, natural gamma ray, spontaneous potential (SP), borehole compensated sonic (BHC), and dual induction/laterolog combination. A composite of the geophysical log traces is attached for your review.

On March 20, 2003, the Contractor reamed the nominal 10-inch diameter pilot-hole to a depth of 226 feet bpl using a nominal 22-inch diameter staged bit reamer. Once completed, the reaming tool was tripped to the bottom of the borehole and the hole conditioned before being geophysically logged (4-arm caliper and natural gamma ray). The caliper log showed no unusual borehole conditions that would prohibit proper installation of the 18-inch steel surface casing. The Contractor installed the 18-inch diameter (0.375 inch wall thickness) surface casing into the Floridan aquifer system at depth of 220 feet bpl. Once installed, the surface casing was pressure-grouted using 378 cubic feet of ASTM Type II neat cement. On March 21, 2003, the pressure-grouted cement was hard tagged within the annulus at 105 feet bpl, an additional 158 cubic feet of neat cement was tremied into place bringing cement levels to surface. During the above-mentioned activities, no unusual drilling or construction events transpired.

During the next report period, the Contractor will drill-out the cement plug at the base of the surface casing (a result of pressure-grouting operations) using a nominal 17-inch diameter bit. The Contractor will drill a nominal 10-inch pilot-hole via the reverse-air method through the Eocene-aged Ocala Limestone and Avon Park Formation to a depth of 700 feet bpl. If the Contractor reaches this depth, formation evaluation and production type logs will be conducted in the nominal 10-inch diameter pilot-hole.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

 Attachments:
 Lithologic Descriptions Geophysical Logs (Pilot Hole 90 to 225 feet bpl, Run No.1)

 Distribution:
 Anil K. Desai, FL Department of Environmental Protection/Orlando Duane. Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

March 31, 2003

Dear Interested Parties:

SUBJECT: Weekly Summary Report No.3 – March 24, 2003 through March 28, 2003 Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well South Florida Water Management District Well Construction Permit Number SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection of events that transpired during the third week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The third week of drilling and construction of the test/monitor well began on March 24, 2003. The Contractor drilled-out the cement plug at the base of the surface casing (a result of pressure-grouting operations) using a nominal 17-inch diameter bit. The Contractor continued to drill a nominal 10-inch pilot-hole via the reverse-air method through the Eocene-aged Ocala Limestone and Avon Park Formation to a depth of 715 feet bpl. On March 27, 2003, the Contractor installed a submersible pump into the 18-inch steel casing and developed the open-hole interval from 220 to 715 feet below land surface (bls). During the above-mentioned activities, no unusual drilling or construction events transpired.

During the next report period, MV Geophysical Services, will conduct formation evaluation and production logging operations in the open hole section from 220 to 715 feet bls. The formation evaluation logging suite will consist of the following: x-y caliper, natural gamma ray, spontaneous potential (SP), borehole compensated sonic (BHC), and dual induction/laterolog combination. The production logs include a flowmeter, fluid resistivity, and temperature conducted under both static and dynamic conditions. In addition, a borehole video survey will be run to complement the geophysical log data. Once completed, the Contractor will conduct a step-drawdown test on the same open-hole interval. The Contractor will then continue to drill a nominal 10-inch pilot-hole via the reverse-air method through the Eocene-aged Avon Park Formation to a depth of 1,350 feet bpl. If the Contractor reaches this depth, formation evaluation and production type logs will be conducted in the nominal 10-inch diameter pilot-hole.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachments: Lithologic Descriptions

Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

April 14, 2003

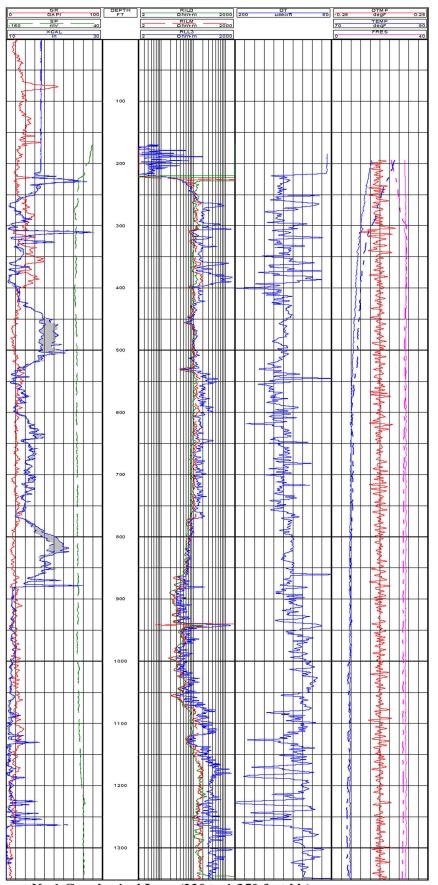
Dear Interested Parties:

SUBJECT:Weekly Summary Report No.5 – April 7, 2003 through April 11, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the fifth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The fifth week of drilling and construction of the test/monitor well began on April 7, 2003. During the report period, the Contractor continued to drill a nominal 10-inch pilot-hole from 998 feet below land surface (bls) via reverse-air method. On April 9, 2003, the Contractor completed drilling of the pilot-hole to the target depth of 1,350 feet bls. Once completed, the Contractor reverse-air developed the open-hole section for subsequent geophysical logging operations.

On April 10, 2003, the Contractor installed a submersible pump into the 18-inch steel casing to facilitate well development and geophysical logging. On April 11, 2003, MV Geophysical Services conducted formation evaluation and production logging operations in the open hole section from 220 to 1,350 feet bls. The formation evaluation logging suite consisted of the following: 4-arm caliper, natural gamma ray, spontaneous potential (SP), borehole compensated sonic (BHC), and dual induction/laterolog combination. The production logs included a flowmeter, fluid resistivity, and temperature conducted under both static and dynamic conditions. In addition, a borehole video survey was conducted to complement the geophysical log data. A composite of the geophysical log traces is provided for your review (Attachment No.1).


During the next report period, the Contractor will begin to ream a nominal 17-inch borehole to the proposed casing setting depth. Once completion, MV Geophysical will conduct a 4-arm caliper and natural gamma ray log on the reamed borehole. The Contractor will then install the 10-inch-diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness) with the annulus grouted back to surface using ASTM Type II neat cement.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachments:	Lithologic Log – 0 to 1,350 feet bls
	Geophysical Logs – 220 to 1,350 feet bls (Attachment No.1 – provided below)

Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

Attachment No.1 Geophysical Logs (220 to 1,350 feet bls)

April 21, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.6 – April 14, 2003 through April 18, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the sixth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The sixth week of drilling and construction of the test/monitor well began on April 14, 2003. During the report period, the Contractor began to ream a nominal 17-inch borehole to the proposed casing setting depth of 1,170 feet below land surface (bls) via reverse-air method. At the end of the report period, the Contractor reamed the nominal 10-inch pilot-hole to a depth of 975 feet bls.

During the next report period, the Contractor will continue to ream a nominal 17-inch borehole to the proposed casing setting depth of 1,170 feet bls. Once completion, MV Geophysical will conduct a 4-arm caliper and natural gamma ray log on the reamed borehole. The Contractor will then install the 10-inch-diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness) with the annulus grouted back to surface using ASTM Type II neat cement. Initially, cement levels will be determined using temperature logs then verified by physically hard tagging the cement.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

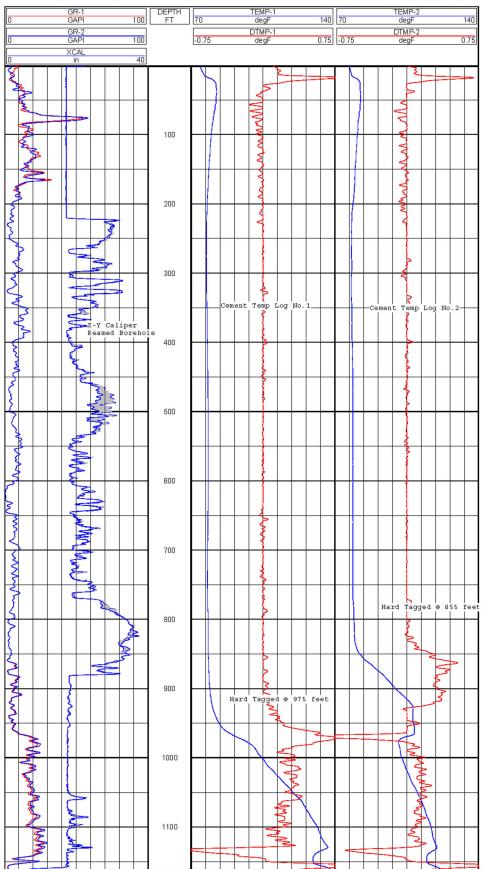
April 28, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.7 – April 21, 2003 through April 25, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the seventh week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The seventh week of drilling and construction of the test/monitor well began on April 21, 2003. During the report period, the Contractor reamed a nominal 17-inch borehole to the proposed casing setting depth of 1,170 feet below land surface (bls) via reverse-air method. Upon completion, MV Geophysical conducted a 4-arm caliper and natural gamma ray log on the reamed borehole (see Attachment No 1). On April 23, the Contractor installed the 10-inch-diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness) to a depth of 1,170 feet bls. The Contractor then pressure grouted the annulus using 420 cubic feet of ASTM Type II neat cement. On April 24, 2003, a cement temperature log was conducted, which indicated the cement level at a depth of 970 feet bls, later hard tagged at 975 feet bls. That same day, the Contractor installed a second cement lift via the tremie method that consisted of 500 cubic feet of bentonite-cement (8% bentonite by volume) slurry. MV Geophysical then conducted a second temperature log, which indicated the cement level at 855 feet bls, which was later hard tagged at the same depth. A composite of the temperature log traces (run 1 and run 2) are provided for your review (Attachment No.1)


During the next report period, the Contractor will continue to stage grout the 10-inch diameter steel casing to surface via the tremie method. After each cement stage, cement levels will be determined using a temperature log and verified via hard tags. If cement operations are completed, the Contractor will begin to set-up to conduct a 50-psi pressure test on the 10-inch diameter casing.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

- Attachments
 Attachment No. 1 (Provided Below)

 Distribution:
 Anil K. Desai, FL Department of Environmental 1
- Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

Attachment No. 1 - X-Y Caliper and Cement Temperature Logs - ORF-60

May 8, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.8 – April 28, 2003 through May 2, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

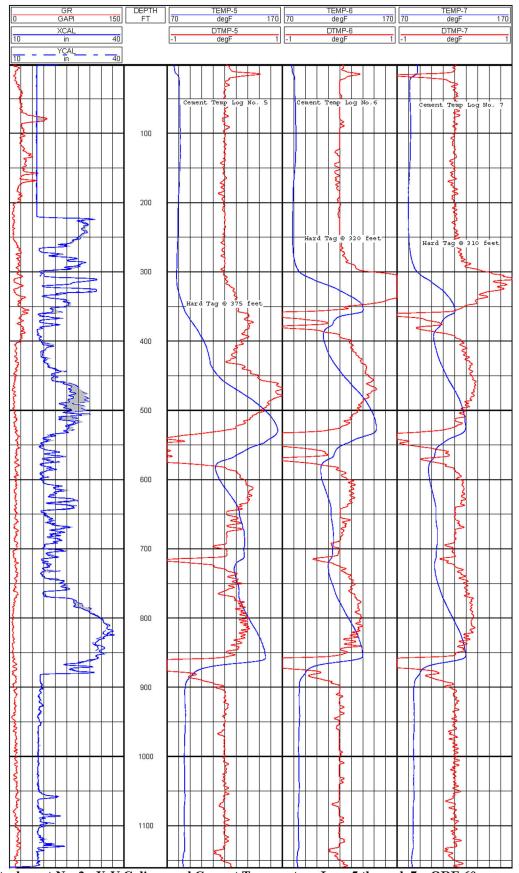
The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the eighth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The eighth week of drilling and construction of the test/monitor well began on April 28, 2003. During the report period, the Contractor continued to cement grout the 10-inch-diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness) in multiple stages using a combination of 12% bentonite-cement slurry and neat cement. Cement volumes (ASTM Type II), slurry type, and resulting cement levels as measured by a temperature log and physical hard tag after each cement stage are summarized below:

Stage No.	Volume	Slurry Type	Temp	Hard Tag
3	116 barrels	12% bentonite-cement slurry	784 feet bls	785 feet bls
4	137 barrels	12% bentonite-cement slurry	576 feet bls	570 feet bls
5	137 barrels	12% bentonite-cement slurry	372 feet bls	375 feet bls
6a	81 barrels	12% bentonite-cement slurry		
6b	62 barrels	Neat cement	316 feet bls	320 feet bls
7	63 barrels	Neat-cement	308 feet bls	310 feet bls

Composites of the temperature log traces (run 1 through 4 and 5 through 7) are provided for your review in Attachment No.1 and No.2.

During the next report period, the Contractor will continue to cement grout the 10-inch diameter steel casing to surface via the tremie method. After each cement stage, the cement level will be determined using a temperature log and verified via hard tags. If cement operations are completed, the Contractor will begin to set-up to conduct a 50-psi pressure test on the 10-inch diameter casing.


Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

- Attachments Attachment No. 1 (Provided Below) Attachment No. 2 (Provided Below)
- Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando

	GR-1	100	DEPTH FT	70	TEMP-1	4.40	70	TEMP-2	440	70	TEMP-3 degF	470	70	TEMP-4	4.70
	GAPI GR-2	100	FT	70	degF DTMP-1	140	70	degF DTMP-2	140	70	DTMP-3	170	70	degF DTMP-4	170
0	GAPI XCAL	100		-0.75	degF	0.75	-0.75	degF	0.75	-0.75	degF	0.75	-0.75	degF	0.75
0	in	40									^				
Sar Ala				X	2			2			$\overline{\mathbf{A}}$		\mathbb{N}		
2					$\overline{\mathbf{A}}$						1			5	
and a					W			VV			{			5	
-					M			5			\$			A ∧	
No.			100		8			V			\$			4	
X					ধ্						Ar			Ann	
				Cement	Temp Log No	.1	Cem	ent Temp Log	g No.2	Ceme	ent Temp Log	у No. 3-	Ce	ement Temp L	og No.4
5					Temp Log No			V			N N			V V	
\$			200		1			٤			1 E			2	
	3				4										
8															
$\left\{ \left \right. \right\}$	12														
3	1	╞┼┤	300					14						\uparrow	
\mathbf{A}		*			\$										
3		++-						 ∮ 							
- AA	X-Y C Reame	aliper	hale								\$				
		d Bore	400								+				
m	E														
\$	E	+ + -													
8	2]							
5++		-	500					+++++					На	ard Tag @ 5	70 feet
	and and														
		++-							+++			$\left \right $	\mathbb{N}	$++\uparrow$	
Anna	MA													\mathbb{N}	
7		++-	600					++++	+++				+ +		⊢≨
<u>}</u>	MM														50
		+++					┠╢┼		+++	$\left \right + \left \right $			$\left + + \right $		\Box
2	MM				S									1	-1
1		++	700				┠╢┼		+++		23			##	
	Mad									Hard	Tag @ 785	reet		2	$ \Lambda $
2		+								$ \downarrow $	+ + *				
3	1							3			<u> <</u>				-
3 +			800				-Hard		feet-	+++	\mathbb{N}	E	+ + + + + + + + + + + + + + + + + + +		
2		2ª						N.N.				M			
2		5				+	+	++				5-2	╞┼╪	╪╞╪╋	
www.								\mathbb{N}	3	T					
\$		++	900	Hard	Tag @ 975 fe	et	┠┼┼	+N+	\$	┢┼╢╴	+ 3-				+++
3	}				NV			A+			3				
2	- }	++					+++		+++		2		┠┼╫╴		+++
2								TR			5				
		+	1000							┢┼╫╴	+	\square		+++++++++++++++++++++++++++++++++++++++	+++
3								A C						- WW	
		+							++++	╏┼╢╴			$\left \right $	++	+++
	£				ATT NO						N N			5	
		+	1100			\mathbf{h}		- E	+++	┟┼╢╴	<u>+ }-</u>		┠┼┼┼	┼┤╋┼	
www								<u>+</u> +-}			3			MM	
×					╺┶┶┶╼╼	1		TT					(-		
			TT TT O		and Can		-	141	-		1 4	OD	F 60		

May 12, 2003

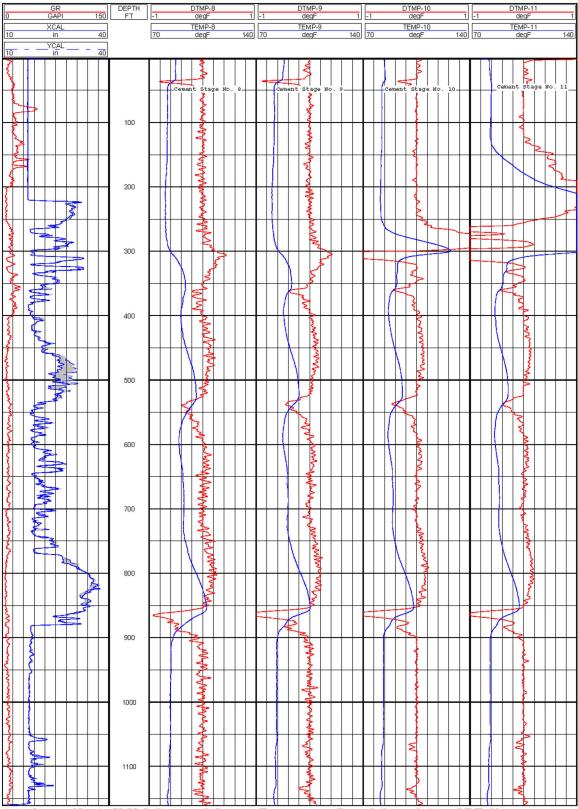
Dear Interested Parties:

SUBJECT:Weekly Summary Report No.9 – May 5, 2003 through May 9, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the ninth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The ninth week of drilling and construction of the test/monitor well began on May 5, 2003. During the report period, the Contractor continued to cement grout the 10-inch-diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness) in multiple stages using Type II neat cement. Cement volumes (ASTM Type II), slurry type, and resulting cement levels as measured by a temperature log and physical hard tag after each cement stage are summarized below:

Stage No.	Volume	Slurry Type	Temp	Hard Tag
8	63 barrels	Neat cement	310 feet bls	306 feet bls
9	63 barrels	Neat cement	300 feet bls	301 feet bls
10	63 barrels	Neat cement	270 feet bls	275 feet bls
11	63 barrels	Neat-cement	150 feet bls	150 feet bls
12	33 barrels	Neat-cement		Land Surface


A composite of the temperature log traces (run 8 through 11) are provided for your review in Attachment No.1. After 12 stages, the Contractor successfully cement-grouted the 10-inch diameter steel casing to surface

During the next report period, the Contractor will set-up and conduct a 100-psi pressure test on the 10-inch diameter casing. The Contractor will then drill-out the cement plug at the base of the 10-inch diameter casing and remove the temporary back-fill material (3/8-inch diameter crushed limestone) from 1,170 to 1,350 feet below land surface (bls). Upon removal of the back-fill material, the Contractor will resume pilot-hole drilling via reverse-air rotary method.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachments Attachment No. 1 (Provided Below)

Attachment No. 1 - X-Y Caliper and Cement Temperature Logs 8 through 11 – ORF-60 CON 24-01

May 19, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No. 10 – May 12, 2003 through May 16, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

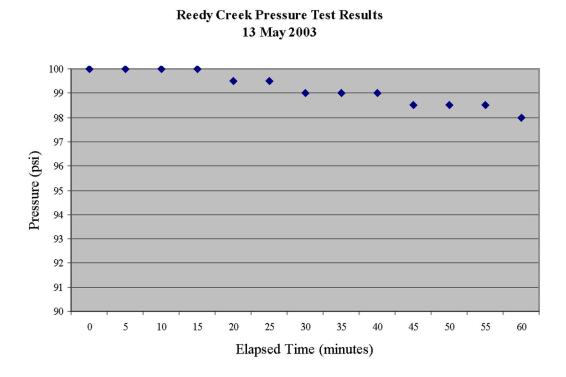
The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the tenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The tenth week of drilling and construction of the test/monitor well began on May 12, 2003. During the report period, the Contractor conducted and successfully completed a 100-psi pressure test on the 10-inch-diameter steel production casing (ASTM A53, Grade B, 0.365-inch wall thickness). During the 60-minute test, pressure inside the casing dropped 2.0 psi (2%), which are within the test limits of \pm 5%. The results of the pressure test are attached for your review (Attachment No.1). The Contractor then drilled-out the cement plug at the base of the 10-inch diameter casing and removed the temporary back-fill material (3/8-inch diameter crushed limestone) from 1,170 to 1,350 feet below land surface (bls). Upon removal of the back-fill material, the Contractor resumed pilot-hole drilling via reverse-air rotary method to 1,370 feet bls.

During the next report period, the Contractor will continue to drill a nominal 8-inch diameter pilot-hole via reverseair rotary method from 1,370 feet bls to anticipated depth of 2,200 feet bls.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District


Attachments Attachment No. 1 (Provided Below)

OSF-60 -- Reedy Creek Casing Pressure Test Field Notes - 13 May 2003

09:40 am	Simon Sunderland (SFWMD) arrives on site at Reedy Creek. Diversified Drilling Corporation set up and ready to run 100-psi casing pressure test. Collected pressure gauge calibration sheet and verified model number on pressure gauge matched serial number on calibration sheet.
Weather:	Partly cloudy, moderate breeze, temp. ~75 °F.
Task:	Oversee a pressure test of the 10-inch diameter steel casing in Reedy Creek well to determine its structural integrity.
09:54 am	Diversified pressures casing to 120 psi. Bleed off excess pressure to 100psi.
09:56 am	Started test.
10:56 am	Ended test. Casing lost 2 psi over 60 minutes. Casing passes pressure test.
11:10 am	Simon Sunderland (SFWMD) off site.

Reedy Creek Casing Pressure Test Results

Elapsed Time	Pressure	Pressure Change			
(minutes)	(psi)	(psi)			
0	100.0	-			
5	100.0	0			
10	100.0	0			
15	100.0	0			
20	99.5	-0.5			
25	99.5	0			
30	99.0	-0.5			
35	99.0	0			
40	99.0	0			
45	98.5	-0.5			
50	98.5	0			
55	98.5	0			
60	98.0	-0.5			

May 27, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.11 – May 19, 2003 through May 23, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the eleventh week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The eleventh week of drilling and construction of the test/monitor well began on May 19, 2003. During the report period, the Contractor continued to drill the nominal 8-inch diameter pilot-hole via reverse-air rotary method from 1,370 feet to 1,650 feet below land surface (bls). Lithologic descriptions of the well cuttings are provided for your review (see Attachment No.1).

During the next report period, the Contractor will continue to drill a nominal 8-inch diameter pilot-hole via reverseair rotary method from 1,650 feet bls to anticipated depth of 2,200 feet bls.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachments Attachment No.1 (Lithologic Descriptions)

June 2, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No. 12 – May 26, 2003 through May 30, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the twelfth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The twelfth week of drilling and construction of the test/monitor well began on May 26, 2003. During this report period, the Contractor halted drilling operations due to mechanical problems with the rotary table. As result, no additional pilot hole was drilled below the previous depth of 1,650 feet below land surface (bls).

During the latter part of the next report period, the Contractor will resume drilling operations and continue to drill a nominal 8-inch diameter pilot-hole via reverse-air rotary method from 1,650 feet bls to anticipated depth of 2,200 feet bls.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

June 9, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.13 – June 2, 2003 through June 6, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the thirteenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The thirteenth week of drilling and construction of the test/monitor well began on June 2, 2003. During this report period, the Contractor fixed the mechanical problems with the rotary table and restarted drilling operations. On June 6, 2003, the Contractor drilled a nominal 8-inch diameter pilot-hole via reverse-air method from 1,650 feet to 1,766 feet below land surface (bls).

During the next report period, the Contractor will continue to drill a nominal 8-inch diameter pilot-hole via reverseair rotary method from 1,766 feet bls to an anticipated depth of 2,100 feet bls. If the pilot-hole is completed, the open-hole section will be developed via reverse air and prepared for geophysical logging operations.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

June 16, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.14 – June 9, 2003 through June 13, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the fourteenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The fourteenth week of drilling and construction of the test/monitor well began on June 9, 2003. During this report period, the Contractor drilled a nominal 8-inch diameter pilot-hole via reverse-air method from 1,766 feet to a total depth of 2,100 feet below land surface (bls). Upon completion, the Contractor developed the open-hole section via reverse-air and prepared it for subsequent geophysical logging operations.

On June 13, 2003, MV Geophysical Services conducted formation evaluation and production logging operations in the open-hole section from 1,170 to 2,100 feet bls. The formation evaluation logging suite consisted of the following: 4-arm caliper, natural gamma ray, spontaneous potential (SP), borehole compensated sonic (BHC), and dual induction/laterolog combination. The production logs included a flowmeter, fluid resistivity, and temperature conducted under both static and dynamic conditions. In addition, a borehole video survey was conducted to complement the geophysical log data. A composite of the geophysical log traces is provided for your review (Attachment No.1).

During the next report period, the Contractor will begin to conduct packer testing operations. Based on lithologic and geophysical log data, the first packer test interval selected is between 1,935 and 1,975 bls. An additional packer test will be conducted later that week within the middle portion of the open-hole section.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

GR 0 GAPI 150	DEPTH FT	RILD 2 Ohm-m	2000 140	DT usec/ft	40 -0.5 degF	0.5	FLOWN cps 200
-160 SP 40 mV 40 XCAL		RILM 2 Ohm-m RLL3	2000		82 degF FRES	87 0	FLOWNS cps 200
6 in 16		2 Ohm-m	2000	~	20	40	
						5	5
	1200					<u> </u>	- Marina -
With Walt							
	1300						
				Munda	When the second		
	1400			A Martine and a ma	and Mam		
	1500				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
where we	1000			A A A			
Man A	1600			M may M			
			₽₩	M M	- John Ja		
	1700				p wowo		
A A A A A A A A A A A A A A A A A A A					harra		
the second second	1800			A AMA	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
Marken		Store Will the store sto			. And		
	1900						
					A Away		
	2000				Adres of the second sec		
				M MM	and the second		
Attachment No 1 Geo							

Attachment No.1 Geophysical Logs – ORF-60 (1,100 to 2,100 feet bls)

June 30, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.15 – June 16, 2003 through June 20, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the fifteenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

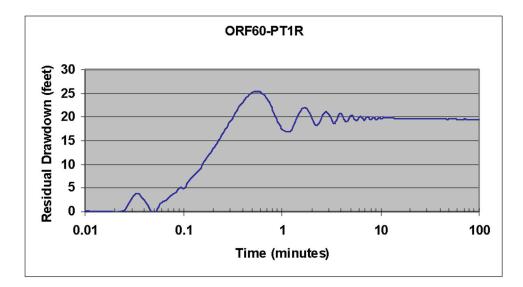
The fifteenth week of drilling and construction of the test/monitor well began on June 16, 2003. During this report period, the Contractor configured and set a dual packer assembly, which isolated an interval (flow zone) from 1,930 feet to 1,970 feet below land surface (bls). The dual packer assembly consisted of two 6.4-inch diameter inflatable packers (Baski) separated by a various lengths of perforated pipe. The packer assembly was connected to non-perforated drill pipe that extended back to land surface. The Contractor then installed a 5-hp submersible pump to begin testing operations. The pressure transducer readings from the isolated section and water quality parameters (temperature, pH, and specific conductance) of the purged formation water were monitored for stability. These parameters were used to determine isolation of the test interval.

The drawdown and recovery phases were completed successfully on June 19, 2003. The calculated specific capacity indicated moderate to good production, yielding 58.7 gallons per minute per foot of drawdown (gpm/ft/Dd). The specific capacity (SC) was calculated using the following method:

SC = Q / Dd = 135 gpm / (19.32 ft - 17.02 ft) = 58.7 gpm / ft / Dd

- Q = pump rate in gallons per minute as measure by an in-line flowmeter,
- Dd = aquifer head loss in feet (total head loss pipe friction loss (0.96 ft/100 feet for 4-inch (ID) pipe which extended to 1,710 feet bls and 0.31 ft/100 feet for 200 feet of 5-inch (ID) pipe). Pumping rate during the drawdown phase was 135 gpm. Friction loss coefficient determined from Appendix 17.A. Ground Water and Wells, 1989.

The productive nature of this interval enabled it to recover to background levels within the first minute after pumping stopped. The quick rise in water levels within the stand-pipe after pumping stopped induced a pressure wave within the water column. The response to this pressure wave is shown in the enclosed time series plot labeled ORF60-PT1R. In addition, a transmissivity value was not determined using curve-matching techniques because these types of tests generally violate the basic assumptions of the various analytical solutions such as partial penetration, friction loss in small pipe, and short pumping period. An estimated transmissivity can be determined by multiplying the specific capacity by 2000 (Driscoll, 1989) (58.7 * 2000) = 117,400 gpd/ft.


Near the end of the drawdown phase of packer test no. 1, composite water samples were taken from the discharge point and submitted to the Orange County's Water Quality Laboratory for major cation/anion/TDS analysis. The water quality results are not yet available but will be submitted to the Department upon completion.

During the next report period, the Contractor will re-configure the dual packer assembly and conduct a second packer test between 1,510 and 1,530 feet bls. Once completed, the Contractor will begin back-plugging operations of the pilot-hole to an anticipated depth of 1,280 feet bls.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachments:	Packer Test No.1 Recovery Time Series Plot Lithologic Descriptions (0 to 2,100 feet bls)
Distribution:	Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando Paul Petrey, Diversified Drilling Corp.

Attachment No.1 Time Series Plot o f Residual Drawdown – Packer Test No.1 (1,930 to 1,970 feet bls)

July 2, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.16 – June 23, 2003 through June 27, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the sixteenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The sixteenth week of drilling and construction of the test/monitor well began on June 23, 2003. During this report period, the Contractor configured and set a dual packer assembly, which isolated an interval within a low permeable unit from 1,510 feet to 1,540 feet below land surface (bls). The dual packer assembly consisted of two 6.4-inch diameter inflatable packers (Baski) separated by a various lengths of perforated pipe. The packer assembly was connected to non-perforated drill pipe that extended back to land surface. The Contractor then installed a 5-hp submersible pump to begin testing operations. The pressure transducer readings from the isolated section and water quality parameters (temperature, pH, and specific conductance) of the purged formation water were monitored for stability. These parameters were used to determine isolation of the test interval.

The drawdown and recovery phases were completed successfully on June 25, 2003. The calculated specific capacity indicated low production, yielding 1.5 gallons per minute per foot of drawdown (gpm/ft/Dd). The specific capacity (SC) was calculated using the following method:

- SC = Q / Dd = 72 gpm / (51.71 ft 4.51 ft) = 1.5 gpm/ft / Dd
- Q = pump rate in gallons per minute as measure by an in-line flowmeter,
- Dd = aquifer head loss in feet (total head loss pipe friction loss (0.33 ft/100 feet for 4-inch (ID) pipe which extended to 1,300 feet bls and 0.11 ft/100 feet for 200 feet of 5-inch (ID) pipe). Pumping rate during the drawdown phase was 72 gpm. Friction loss coefficient determined from Appendix 17.A. Ground Water and Wells, 1989.

A time series labeled ORF60-PT2R is enclosed for your review. A transmissivity value was not determined using curve-matching techniques because these types of tests generally violate the basic assumptions of the various analytical solutions such as partial penetration, friction loss in small pipe, and short pumping period. An estimated transmissivity, however can be determined by multiplying the specific capacity by 2000 (Driscoll, 1989) (1.5 * 2000) = 3000 gpd/ft). The low specific capacity and estimated transmissivity indicates the confining nature of this unit.

Near the end of the drawdown phase of packer test no. 2, composite water samples were taken from the discharge point and submitted to the Orange County's Water Quality Laboratory for major cation/anion/TDS analysis. The water quality results are not yet available but will be submitted to the Department upon completion.


During the next report period, the Contractor will begin back-plugging operations of the pilot-hole to an anticipated depth of 1,280 feet bls.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachments: Packer Test No.2 Recovery Time Series Plot

Distribution: Anil K. Desai, FL Department of Environmental Protection/Orlando Duane.Watroba, FL Department of Environmental Protection/Orlando Ted Mckim, Reedy Creek Energy Services Carlos Zubiria, Reedy Creek Energy Services Chris Sweazy, SFWMD/Orlando Paul Petrey, Diversified Drilling Corp.

Attachment No.1 Time Series Plot o f Residual Drawdown – Packer Test No.2 (1,510 to 1,540 feet bls)

July 7, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.17 – June 30, 2003 through July 4, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the seventeenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The seventeenth week of drilling and construction of the test/monitor well began on June 30, 2003. During this report period, the Contractor began back-plugging operations. The Contactor configured the drill pipe and began back-plugging operations. At the end of the report period, the Contractor back-plugged the nominal 8-inch diameter borehole to an elevation of 1,380 feet below land surface.

During the next report period, the Contractor will continue back-plugging operations of the pilot-hole to an anticipated depth of 1,280 feet bls. Upon completion, the Contractor will begin demobilization and construction of the wellhead and concrete pad.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

July 14, 2003

Dear Interested Parties:

SUBJECT:Weekly Summary Report No.18 – July 7, 2003 through July 11, 2003
Reedy Creek Energy Services, Lower Floridan Aquifer Test/Monitor Well
South Florida Water Management District Well Construction Permit Number
SF022403A

The purpose of this letter is to inform the Florida Department of Environmental Protection (Department) of events that transpired during the eighteenth week of construction on the lower Floridan aquifer test/monitor well identified as ORF-60 and those activities anticipated for the next report period.

The eighteenth week of drilling and construction of the test/monitor well began on July 7, 2003. During this report period, the Contractor completed back-plugging operations of the nominal 8-inch diameter borehole to an elevation of 1,280 feet below land surface (bls).

Attached for your review are the water quality results of water samples obtained during the two packer test completed below 1,500 feet bls

During the next report period, the Contractor will complete demobilization and construction of the wellhead and concrete pad. This will be the last weekly summary report submitted to the Department. An engineering report to be completed by the South Florida Water Management District documenting the construction and testing activities at this site will be submitted to the Department upon completion.

Sincerely:

Michael W. Bennett, P.G. Lead Hydrogeologist Water Supply Department South Florida Water Management District

Attachment No.1 Water Quality Data (ORF-60)

ldentifer	Depth Interval feet (bls)	Na mg/L	K mg/L	Ca mg/L	Mg mg/L	CI mg/L	ALKA mg/L	SO4 mg/L	TDS mg/L	Conduct umhos/cm	Temp centi	pH S.U	SiO2 mg/L	Sample Date
ORF-60_SC1	220-715	3.5	0.7	37	7.4	5.1	116	7.5	134	236	23.18	7.45	9.8	04/01/03
ORF-60_PT1	1930-1970	3.8	0.58	35	8.9	7.2	115	8.6	144	264	25.87	7.71	10.8	06/19/0:
ORF-60 PT2	1510-1540	3.9	0.75	34	10	4.9	114	22.2	158	260	27.08	7.50	12.4	06/25/0

Attachment No.1 – Water Quality Data from Packer and Specific Capacity Tests

APPENDIX B Casing Mill Certificates

Bartow Steel, Inc. An Edgen Company 3595 Hwy 60 W Bartow, FL 33830 Tel: 863 869-9716 Fa Consigned To: (001) DIVERSIFIED DRILLING c/o WELL SITE REEDY CREEK DEVELOPM (((L@@K 4 MAP))) ORLANDO, FLORIDA 04 Tel: 813 988-1132 Fa	ILL OF LAD ax: 863 869-8520 G MENT 4/21/2003 ax: 813 985-6636	863-869-8520 T-228 P.002/0 I N G No: B Ship Date 17AprO3 at 12:1 Probil1 Via OUR TRUCK FOB DELIVERED Frt INCLUDED Route O- O Manifest Vhcle Trailer Slp David Thurner Sold To: (5647) DIVERSIFIED DRILLING 8801 MAISLIN DR P O BOX 290699 TAMPA, FL 33687-0699	LK 26058 4 From LKF 2
1) Our Order BLK- 642 Carbon Steel Pipe ERM	3 I L L O F L A I 203- 1 Your PO # 209 ¥ ASTM A53B	DING	
211261 Y82522 211261 211261 1731001 1731001 1731001 1731001 1740310 1731001 1731001 1731001 1731001 1731001 1731001	amber Tag No LKC5431 ~ LKC5431 ~ LKC5429 ~ LKC5432 ~ LKC3589 ~ LKC3589 ~ LKC3581 ~ LKC3587 ~ LKC3594 ~ LKC3594 ~ LKC3593 ~ LKC3591 ~ LKC3582 ~ LKC3595 ~	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Wt LBS 1700 1700 1700 1484 1427 1565 1407 1734 1616 1596 1596 1599 1430 1589 1680 1623 1626 1626 1626 1626 1623 1626 1623 1626
Page: 1Conti	inued MTR'S W	SHIPMENT fared 4-21-03	red 4-22-03
parties of Copyolation in passession where the contract) agrees to barry to or any parties of said mute to destination, and as each party at any time Southern, Watern and Itilnois Freight Classifications in sifect on the data Supper leveragy carifics that he is familiar with all the terms and condition to by the phisper and accepted for himself and his assigns.	Its usual place of deliver at said destination, if on its route, otherwise interestad in all or any of said property, that every service to be perf anceol. If this is a fail or a rail-water shipment, or (2) in the application ns of the said bill of lading, including those on the back thereof, set for	nigned, and descined as indicated below, which said confier (the word carrier being underste a to deliver to enother sander on the route to said destination, it is mutually agreed, as to er- formed hemander shall be subject to all the terms and conditions of the Uniform Domestic St ble matter carrier classification or tariff if this is a carrier shapment. Jorth in the classification or tariff which governor the transperiation of this shipment, and the	ned throughout this conclused as meaning any ech carrier of all or any said property over all might BIII of Lading ret forth (3) in Official, said karma and conditions are hereby agreed
Subject to Section 7 of Conditions of applicable bill of lading without recourse on the consignor, the consignor shall sign The carrier shall not make delivery of this shipment without SIGNATURE OF CONSIGNOR	the following statement:	CARRIER AGENT PER (Driver's Signature)	FREIGHT Prepaid D Collect D
X Critical Low	RECEIVED To apply in payment of the charge	X AGENT OR CASHIER	CHARGES ADVANCED
write or stamp here. "To be Prepaid."	S on the property described hereon.	(The signature here acknowledges only the amount prepaid.)	\$

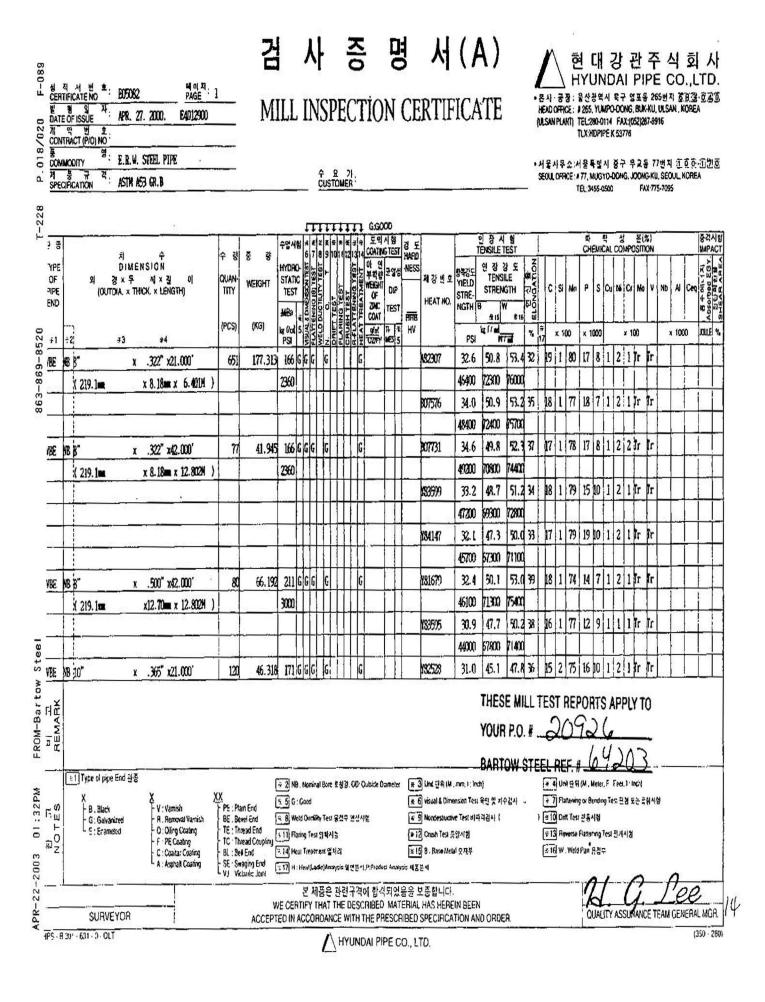
APR-22-2003 01:23PM FROM-Bartow Steel BILLOFLAD Ship From: Bartow Steel, Inc. An Edgen Company 3595 Hwy 60 W Bartow, FL 33830 Tel: 863 869-9716 Fax: 863 869-8520 Consigned To: (001) DIVERSIFIED DRILLING	863-859-8520T-228P.003/020F-089I N GNo:BLK26058Ship Date17Apr03 at 12:14From LKFProbillViaOUR TRUCKFOBDELIVEREDFrtINCLUDEDRouteO-O ManifestVhcleTrailerS1pDavid ThurnerSold To:(5647)DIVERSIFIEDDRILLING
22423 LKC4670 - 22424 LKC4672 - 22426 LKC5254 -	I N G 40 ' 2.0000 " 1 1626 38 ' 5.0000 " 1 1555 38 ' 7.0000 " 1 1562 42 ' 3.0000 " 1 1710 1,195 ' 7.0000 " 30 48399
	Tags Pes LBS TOTAL: 30 30 48399
NERD HELP?? CALL PAUL PETRY @ (813) 91	8-5687

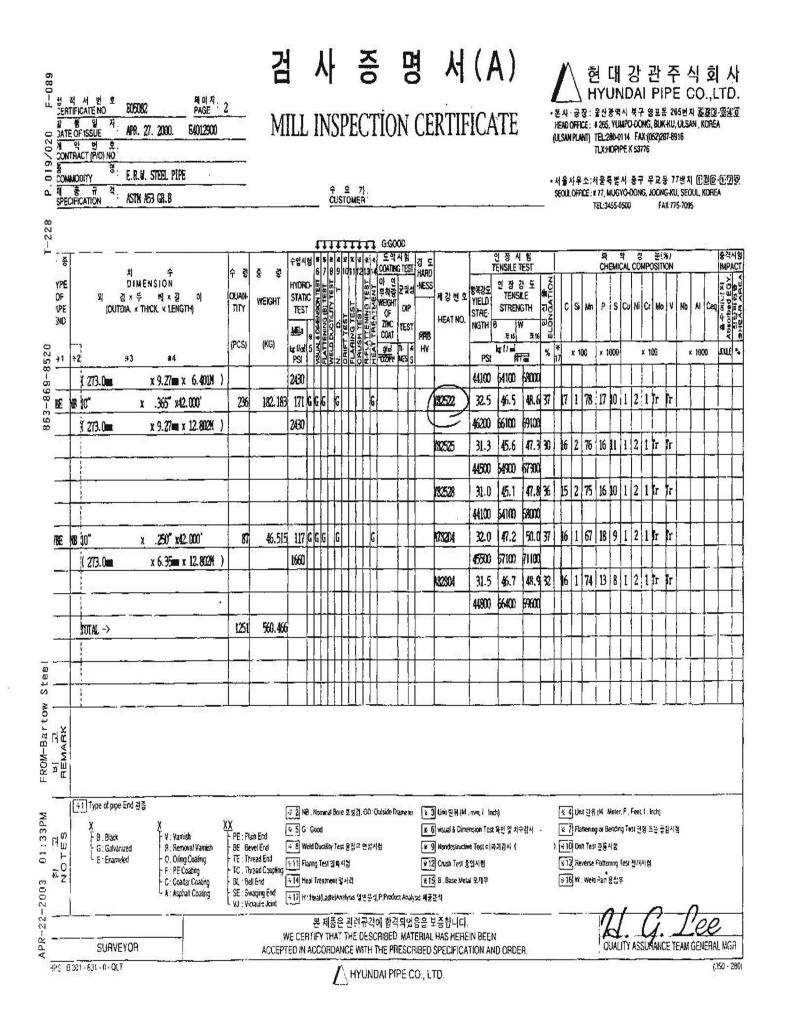
Page: 2 Last

The property described above, in apparent goad order, except 4s noted (contents and condition of contents of packages unknown), marked consigned, and destined as indicated below, which sold carrier being understood simulphout this contract as meaning any prison or corporation in passession under the contract) agrees to carry to its usual place of deliver at sold destination, if on its route, otherwise to deliver co-another carrier on the south to sold destination, and as each party at any bine intensisted in all or any sold groparty over all or any portion of sold route to asid destination, and as each party at any bine intensisted in all or any add groparty over all or any portion of sold route to destination, and as each party at any bine intensisted in all or any add groparty over all or any portion of sold route to asid destination, and as each party at any bine intensisted in all or any add groparty over all or any portion of sold route to destination, and as each party at any bine intensisted in all or any add groparty over all southern, Western and Dinnols Fright Classifications of the Uniform Domastic Straight BRI of Lacies 31 at forth (3) in Official, Southern, Western and Inhinols Fright Classification or tarkff folls is a carrier shipment, and the sold terms and conditions of the sold before an interest, if this is a risk or asid groparty cover of the sold before any interest, and his assignt.

Subject to Section 7 of Conditions of applicable bill of ladix without recourse on the consigner, the consigner shall sign The carrier shall not make delivery of this shipment without	the following state	ement:	CARRIER	FREIGHT Prepaid Q
SIGNATURE OF CONSIGNOR		ej	AGENT PER (Driver's Signature) X	Collect C
Lf charges afe to be prepaid,	RECEIVED	To apply in payment of the charge on the property described hereon.	AGENY OR CASHIER (The signature here acknowledges only the amount prepaid.)	CHARGES ADVANCED

16/020	LANT way 117 es East of	Paragon Indi Rt.3 Box 331 Sapulpa, Ok Phone: (918) Fax: (918) 29	A lahoma, 74) 291-4459		I	iater	ial te:	ST REP	ORT		Cus	tificate Num tomer PO		10646 1906		
	ulna OK	Nelted and I				o be reproduced without written approval of Guality Assurance,						Manufactured by Electric Resistance				
1-228		Results relate on	ly lo lians lest	ed. Test report	hat to be reprod	Produce		ULIARY ASSUM	ance,	,	Weld (Type E) Specifications					
	tomer	BARTOW ST				and second	ч х.3 65 4 0.52	* 1500101		ASTM A534						
		P.O. BOX 17				10.13	K .300 40.32		50D		ASME B36.					
		BARTÓW, FI	. 33831-178	9												
8520		7									line, cy					
-888-		Charl Onder		Vield Cine	ath Taxall					Tumo	Tect C	witten	Caulo	A Width		
863-	at Number Steel Order No.			Yiski Strer Psi	igen Lensu	e Strangth Psi	angth Elongation % inches		Test Type Orientation/Tensile		Test Condition		Gauge Width			
	12027 3576			59460	68640		39.	39.7% Strip/Transverse/Body		As Rolled		1.5				
	22235	3576		55920		6830	0 41.0%		Strip/Trans	Strip/Transverse/Body		As Rolled		1.5		
	11811	3576		59460	(57830	40.	.3% Strip/Transverse/Body			As Rolled			15		
	at Number	Mill Control	C	MN	P	S	Si	Cr	Ni	Mo	Cu	·V	Al	Ca		
	12027	Heat	0.060	0.640	0.012	0.004	0.210	0.030	0.010	0.000	0.020	0.001	0.040	0.003		
		Product	0.049	0.631	0.007	0.004	0.217	0.037	0.025	0,014	0.049	0.002	0.031	0.001		
	22235	Heat	0.070	0.690	0.010	0.005	0.220	0.030	0.010	0.000	0.040	0.001	0.029	0.003		
Steel		Product	0.061	0.669	0.007	0.004	0.228	0.027	0.014	0.008	0.037	0.002	0.021	0.001		
r tow	11811	Heat	0.070	0.660	0.016	0.005	0.210	0.040	0.020	0.010	0,040	0.001	0.034	0.004		
ROM-Bartow		Product	0.054	0.646	0.012	0.004	0.224	0.039	0.020	0.011	0,044	0.002	0.028	0.002		
FRO	IT / INSPECT		()00		Comment			Ť	HESE MILL T	EST REPOR	TS APPLY TO)		1		
Σ	drostatic Tes		1430	() 5 secs	PER CUSTO	MER REQU	est.	Y	OUR P.O. # _	2092	16	-				
m	Attening Test		YES YES	.125 DH				R	ARTOW STE		,4203	-				
	rasonic web		YES	רוע הארי. ווע				9								
2003	ll Length Vis Il Length Dri	ft	NA	size		_ 										
22		Temperature	1600	J		•			compliance w				accordance artment	a to the		
APR-	MTR.				10191911090 2	herningingi			wannama a			de néh		01/03		


				M	ATER	RIAL TE	ST REP	ORT		Cus		- 00 0.0	10495 BLK 19	106
												by Electric	Kesis	land
to	st repo	eport na	not to	t to be reproduce	d without v	written approval	of Quality Assur	ance.				·	a	
	E 201	01			1		2# A53B/S/	453B		ASTM A53-	99B			
					NECH	ANICAL	PROPER	TIES.						
h		17 M 1 M 1	ngth	an of an and the second for	199 - C.	5 Million (1997) (1997) (1997)		201 (D. 2010) (D		Test Co	ndition	Gau	je Widtl	h
		1.02		721	90	34	.1%	Strip/Trans	verse/Body	As R	olled		1.5	
	559	5920	1	668	30	41	.0%	Strip/Trans	verse/Body	As R	olled	BLI y Electric R Gauge 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	1.5	
	561	5160	1	665	520	36	ì.5%	Strip/Trans	verse/Body	As R	olled		1.5	
-	562	5240		667	30	40).9%	Strip/Trans	verse/Body	As R	olled		1.5	1997
R13 Box 331A Sapulpa, Oklahoma, 74066 MATERIAL TEST REPORT Customer PO With Phone: (918) 291-4453 Phone: (918) 291-4453 Manufactured in the USA Results rede only to liens tested. Test report not to be reproduced without written approal of Quality Assurance. Manufactured by Electric Weld (Type E) Immer BARTOW STEEL, INC. 5015 S. FLORIDA AVE. SUITE 201 LAKELAND, FL 33813- Product 10.75 x. 355 40.52# A53B/SA53B Specifications ASTM A53-98B ASIM E38: 10M-1996 Number Steel Order No. Pield Strength Psi Product Psi 10.75 x. 355 40.52# A53B/SA53B Sectorial Strength ASIM E38: 10M-1996 Number Steel Order No. Psi Psi Test Type inches Test Type Orientation/Tensile Test Type ASIM A53-98B ASIME B8: 10M-1996 Number Steel Order No. Psi Psi Elongation % in 2 inches Test Type Orientation/Tensile Test Type ASIM A53-98B ASIM A53-98B ASIM A53-98B ASIM A53-98B ASIM A53-98B ASIM A53-98B ASIM A53-98B Number Steel Order No. Psi Psi Elongation % in 2 inches Test Type Orientation/Tensile As Roled 2223 3576 56160 65520 96.5% Stip/TransverseBody As Rolled As Rolled 2224 3576	1.5													
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1													
			Ca											
(.680	0	0	0.012	0.003	0.210	0.040	0.010	0.000	0.020	0.001	0.034	<u> </u>	004
(.640	0	0	0.009	0.003	0.227	0.030	0.008	0.007	0.015	0.003		0.	001
Phone: (918) 291-4918 Manufactured in the USA Manufactured by EI Results relate only to lems tested. Test epot not to be reproduced without witten agrinol of Quality Assumance. Weld (Type E) BARTOW STEEL, INC. Specifications Sited Order Yeld Strength Product Specifications ASTM 65:290 Test Type Test Type MECHANICAL PROPERTIES Vield Strength Test Type Test Type Test Order Yeld Strength Test Type Test Condition Steel Order Yeld Strength Test Type Test Condition Steel Order Yeld Strength Test Condition Steel Order Yeld Strength Test Condition Steel Orde		··	.003											
().669	9	0	0.007	0.004	Product 10.75 x .365 40.52# A53B/SA53B Specifications ASTM A53-99B ASME B36 10M-1996 IECEHANIGAL PROPERTIES Test Type Test Condition Gauge i inches Orientation/Tensile As Rolled 1 30 34.1% Strip/Transverse/Body As Rolled 1 30 41.0% Strip/Transverse/Body As Rolled 1 30 41.0% Strip/Transverse/Body As Rolled 1 30 41.0% Strip/Transverse/Body As Rolled 1 30 40.9% Strip/Transverse/Body As Rolled 1 30 40.9% Strip/Transverse/Body As Rolled 1 30 40.9% Strip/Transverse/Body As Rolled 1 30 2210 0.040 0.010 0.000 0.020 0.001 30.005 0.220 0.030 0.010 0.000 0.021 0.021 0.004 0.228 0.027 0.014 0.008 0.031 0.002 0.005 0.210	+	.001						
(1.650	0	0	0.010	0.005	0.210	0.040	0.020	0.010	0.050		PO BL8 red by Electric Reset Reset a Gauge N 36 1.5 1.5 1.5 1.6 1.5 1.7 1.5	-+	.004
().632	2	0	0.007	0.004	0.216	0.036	0.025	0.014	_i	0.002		····	.001
().650	0	0	0.009	0.006	0.210	0.040	0.010	0.010	0.020	0.001			.003
().662	2	0	0.005	0.006	0.232	0.031	0.013	0.008	0.025	0.002		. 0.	.002
().640	0	0	0.013	0.004	0.210	0.040	0.010	0.000	0.020	0.001	0.043	0.	.003
().642	2	(0.013	0.005	0.221	0.037	0.020	0.011	0.043	0.002	0.027	<u>i</u> 0.	.001
10	003		Cor	Comment										
	5 sec	ecs							LY TO					
		ł	i			YOUR P.	0.# 20	126				PPE E) 9996 Image: Second		
	125 D	DH	1			BARTON	STEEL DE	F# 642	02	Weld (Type E) Specifications ASTM A53-99B ASME B36.10M-1996 Image: Condition Image: Clip As Rolled dy 0.020 0.015 0.0020 0.020 0.001 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 </td <td></td> <td></td> <td></td>				
			1			SAULAN	Media Weid (Type E) t A:365 40.52# A53B/SA53B Specifications A:365 40.52# A53B/SA53B ASTM A53-99B ASME B36.10M-1996 ASME B36.10M-1996 AIICAL PROPERTIES Test Type Elongation % in 2 Test Type inches Orientation/Tensile 34.1% Strip/Transverse/Body 36.5% Strip/Transverse/Body 36.5% Strip/Transverse/Body 36.8% Strip/Transverse/Body 36.8% Strip/Transverse/Body 36.8% Strip/Transverse/Body As Rolled As Rolled 36.8% Strip/Transverse/Body As Rolled As Rolled 0.210 0.040 0.010 0.227 0.030 0.007 0.015 0.228 0.027 0.014 0.008 0.037 0.002 0.210 0.040 0.010 0.001 0.020 0.01 0.220 0.031 0.025 0.001 0.02 0.01 0.220 <t< td=""><td></td><td></td><td></td></t<>							
		•	We										ice to th	le
		•	We										Py Electric R Gauge 1 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.	


F-089

863-869-8520

FROM-Bartow Steel APR-22-2003 01:31PM

.020/020	PLANT gway 117 les East of pulpa, OK stomer	Paragon Ind Rt.3 Box 33 Sapulpa, Ok Phone: (918 Fax: (918) 2 Meited and I Results relate or BARTOW ST P.O. BOX 17	IA Jahoma, 7 J 291-4459 91-0918 Manufactu Ily to items tes EEL INC. 89	4066 red in the U ted. Tesl report	SA	luced without w		f Quality Assur	ance.		Cus · Mar	d (Type E) ons 99B	BI	11029 LK-1916 Resistance
Ļ		BARTOW, FI					ANICAL I	ROPER	TIES					
	at Number	Steel Order No.		Yield Stren	igth Tensi	le Strength Psi	Elongatio	on % in 2 hes	Test	Type on/Tensile	Test Co	ondition	Gauge	Width
8520	11813	3576		59540		68250	38	2%	Strip/Trans	sverse/Body	As F	Rolled	1	.5
-698	22236	3576		56160		66520	36	5%	Strip/Trans	sverse/Body	As F	Rolled		.5
63-8	22423	3576		56240		66730	40.	.9%		sverse/Body	A	Rolled	1	.5
8	11811	3576		59460		67830		.3%	· ·	sverse/Body		Kolled		••• ••
	22426	3576		59990		69110	39	.7%	Strip/Trans	sverse/Body	l As F	Rolled	1	.5
						- Chie	MICAL A	NALYSIS	\$%					199 <u>7</u>
	eat Number	Mill Control	C	MN	P	S	Si	Cr	Ni	Mo	Cu	<u>V</u>	Al	Ca
	11813	Heat	0.070	0.660	0.010	0.004	0.220	0.030	0.010	0.000	0.020	0.001	O BLK- ed by Electric Res E) Gauge Wi 1.5 1.5 1.5 1.5 1.5 1.5 0.039 0.031 0.030 0.031 0.032 0.033 0.034 0.033	0.003
		Product	0.054	0 630	0.007	0.004	0.226	0.031	0.012	0.009	0.019	0.002		0.001
	22236	Heat	0.060	0.650	0.010	0.005	0.210	0.040	0.020	0.010	0.050	0.001		0.004
		Product	0.049	0.632	0.007	0.004	0.216	0.036	0.025	0.014	0.049	0.002		0.001
	22423	Heat	0.070	0.650	0.009	0.006	0.210	0.040	! 0.010	0.010	0.020	0.001		0.003
Steel		Product	0.066	0.662	0.005	0.006	0.232	0.031	0.013	0.008	0.025	0.002		0.002
	11811	Heat	0.070	0 660	0.016	0.005	0.210	0.040	0.020	0.010	0.040	0.001		0.004
r to		Product	0.054	0.646	0.012	0.004	0.224	0.039	0.020	0.011	0.044	0.002		0.002
A-Ba	22426	Heat	0.060	0.660	0.010	0.005	0.220	0.030	0.010	0.000	0.040	0.001		0.004
FROM-Bartow		Product	0.056	0.549	0.005	0.004	0.231	0.026	0.012	0.008	0.039	0.002	0.033	0.001
	ST /INSPECT	NON	<u> </u>		Comment									
4 PM	ydrostatic Te	st PSI	1430	@ 5 secs	1	THE	SE MILL TE	T 0554-	19					
	attening Test		YES			YOU		ッ HEPORT	S APPLY TO					
	Itrasonic well	dline (NDT)	YES	,125 DH			R P.O. #	20 million (1997)					•	
2003	ull Length Vis	sual	YES			BAR	TOW STEEL	REF. #	4202					
-22-	ull Length Dri		N/A	size	We certify t					ctured, Samp	led, Inspected	and tested in	accordanc	e to the
APR-	eat Treat Min	Temperature	1600	degrees					compliance w					
	P.MTR.		5 10 5											02/03

THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 2092(oBARTOW STEEL REF. # $(.420^3)$

Siat

CERTIFICADO DE CALIDAD QUALITY CERTIFICATE

Yocha/Dute 23/01/2502 Hoja #*01 KS1 Mcv. 1-01/00

1

Nº.

Guatemain 3400 Valenin Abrim - Buenos Aires - Argentina

Cliente/Chicomer: Montes Convention

Orden de Compra/Barchase Orders Thir-5158

Minetroy 10.750" x Expents: 0.365 ". Calland: APTER PSLI

10.758" Oscalda Diamone x 0.365 " Wall Thickness APTEN2 #512

0.9. : 6426-2 PT Fabi 6426-3

Wroduct : Longitudinal Misceric Basistance Velded Stael pipe.

Producto: Caderia de Arano con Contura Longiturinal 1254.

ENSAYOS NECANICOS FLEGADOS TENACIDAD 002. ANALISIS QUIMICOS MUESTRA NECHANICAL TEST KAI TOUGHNESS REAL SIZE SENO TEST HAN CHENICAL ANALISES SAMPLE Trisa TAu TAu Aw. Two TS. Y.S. Burn CH CH SH DWT TLx B3 Col 1000 10000 x100 RE Case | Ratz CH. NAX NOX 108 1080 Cax Nox 100 1000 ĊĬ, Gra HOD Vs S 1 100 AX 1000 TUBO | COLADA Cx Max 100 100 LOTE Face Roat LOC 1 2 AND 20 100 1000 1080 HEAT LOT PIPE 10 13 10 4,13 STOT OF 10 41 118,0 65,4 40 40 150 10 22 128 25 15 -60,0 42.1 24 HILD 13 12 13) 35 0.75 72 100 31 13.5 \$2.7 62.6 2 2 2 5 5 2 1 17 1 201 10 1 1730718 14 95 35 100 101 102 15 13.5 \$2,1 38 0,74 hody 4.1 5 5 2 1 2 17 32 2 2 15 1730758 15 101 1 105 133 72 n Body ę2 32 H.5 79,5 62.5 38 0,79 3 5 5 2 1 17 12 1 19 1731008 13 2 101 7) 67 13) 60 hody 68 Q.1 40 1,77 32 \$6.2 61.1 2 1 3 29 5 4 20 1 14 103 1 1 1730708 28 111 153 55 91 64.3 40 0,76 Body ж 15.3 11.9 15 27 5 4 2 1 2 1120570 1 1 14 111 14 L 115 100 61 103 96 12.5 4. 36 0. 78 100 н 86,7 20 1 1 3 18 1 5 . 1 113 196 17072 14 10 ۱ 35 10 5 1 1 2 136689 1730708 17 2 2 26 107 10 2 34 1 L 16 27 5 1 2 2 1166M 1730718 15 105 11 1 ;1 3 5 2 1) 17 33 2 1 116700 17307281 14 105 35 1 I 5 1 26 107 1 15 26 2 2 10 136675 1734748 14 2 1 3 3 1 18 78 2 1 5 15 106 10 136690 1730978 14 2 1 5 15 28 2 ۵ 1 136630 1733008 25 104 9 Obten aciones / Remarks Control visual y distances Prob.Insayo Traccion CHAPT V - MUTCH TEST 1/COL. 1001 ******** 153 0/2548 62538/2048 80175 Tensils Test Spec. found and demantioned contact TOUPERATURE: 32* F in the second second second C ME 55 SIII: 2/3 Tipo/Type:Strip Spec ALL STANDARDS ACCORDING TO Tando/Sizes 1 1/2" LAST COLTION. awing test turity test ONTERNATION: TRANSVERSEL Orient. /orientation 100% API 142 MIL2/API # MIL2* rcadian Transversa) Corresponde a manatire on the Prime "Samples from rev material. Unting Turka hidraulica John Col. Cal. / OC Chief 1004 2560 PMI - 5 SEC Frimatelic tett Trat.Térmico es sold CHECK OF A TOURING proction ultraminica Held Read Treatment. the here 100% STD. HET IDLE 1/1" Min. 1400*F HORNA: AFE SL ED. 41 Brasoric impaction (m++++T1): 0.15% Raz. ET SI TT.Y 7643 naccion Radiologica ANT APPLICANLS Ray Inspection

T-228 P.004/020 F-089

863-869-8520

13

10020801

,

Siat S.A. Guatemala 3400 (B1622AXZ) Valentin Alsina Buenos Aires, Argentina (54) 11 4365 9500 tel (54) 11 4365 9671 fax

Siat Tenaris Group

THESE MILL TEST REPORTS APPLY TO YOUR P.O. # _______ YOUR P.O. # --BARTOW STEEL REF. # 1643

INSPECTION CERTIFICATE (DIN 50049.3.1R - EN 10204 3.1B - ISO 10474 3.1B)

D

Cliente / Customer		100 <u></u> m		OV 6714/4	PF. Fab 6713/2	Núme	ro / Number 1	Fecha / Date 6/08/2002	Pág. / Page 01 / 03
SIDERCA CORPORATION	<u> </u>	<u> </u>		Orden de Compra / Pi		ltem	Referencia de	Cliente / Custome	r Reference
Caferia de Acero con Costura Longitudina Longitudinal Electric Realstance Welded S	ERW.			BL/K-1669					
Longruconal Electric resistance wellow 3 Norma / Standard API X42-B PSL2/ASTM AS3 B/ASME SA53 I				Grado / Grade X42 PSL2			Extremos / Er BEVELED	AT 30" API 5L	
10,750"x 9,27 mm 60,	/ Nominal Weight 30 kg/m 32 lb/ft	Largo / Length NOMINAL 40 FT	Superficie Extern BARNIZ	a / External Surface			Cantidades/ 49 Pz 49 Pcs	631,63 m	38656 kg 85221 lb

ENSAYOS MECÁNICOS / MECHANICAL TESTS

	_	_	_			1 7			AIL		Bend Test		za / Haro	_	Posición	515			Char	DV V		_			OWIT	
	Muest					ayo de Ti				Guidea d	o Guiado				Location	A	hsorbe	d Ener			Shear	Area		Sh	ear Ar	ea
	Samp					Tensile T			_	Cara	Kaiz	Max	Min	Max	, desirent	1	2	3	Avg	1	2	3	Avg	1	2	Avg
Lote	Tubo	Colada		We		irre	YS	ody Locial	EL	Face	Root	INGA	14(1)	Dif		<u> </u>										
Lot	Pipe	Heat		UTS	EL	ŲΤS		Ratio		Fale	, NOOL				Body Min Weld Min	10	10	IC	13							1
			Max			110,0	\$5,0	0,93		1	, i i	248		1	HAZ Min								ļ			
			Min	60,0		<u>60.0</u> Ksi	42,0		28 %	<u> </u>						h,lb	tt.1b	ft.lb	ft.lb	%	%	%	%	%	%	%
				hsi	%	KSI	NSI		70	+	<u></u>						<u></u>			†	-					
	16	173098C						}			1	216	184	22				1								1
	11	1730980		88,6	l	83,0	64,5	0,79	34						Body	92	111	97	100	100	100	100	100			ł
	18	282783A									1	220	196	24					79	100	100	100	100	2		
	13	282283A		90,5	ļ	80,6	61,2	0,78	40		1	219	194		Bady	ลเ	83	74	15					÷		1
	4	173097B										219	154	25	Body	55	69	54	63	100	100	100	100	1		
	40	1730978		90,6		83,6	64,0	0,76	40	1		228	204	24		-						100				1
	538	1730738		96,5	i i	65,3	54,1	0,75	38			1 -		-	Bochy	75	π	64	72	100	100	100	190		1	1
1	138 145	173073B 1730748		yru,o		643	1	0,10	–			221	192	29				1		ļ		1	•			1
	145	1730748		89,1 *		76,7	64,1	0,84	38		1				Body	12	65	59	69	100	100	100	100			
1	591	2822828	Ļ						ł			230	200	30				ł		100	100	100	100		1	
	191	2822828		91,4	ł	85,0	63,1	0,73	35					1	Budy	74	69	111	- 91	100	100	100	100	!		
	209	282283A		ļ	1		ļ					225	169	26				<u> </u>		Ļ						~.
Anlati	amianto	y ductilidad	1	API 5L											timate tensile s				una	Note -	Nota:					
Catter	nino and	ductility test	s	ALL OF										YS; Yiel	ld Strength - Lli	mite de	fluencia	3								
Chart	V-Noic	hiel		API 5L				1						EL: Elor	ngation - Alargi SVUIS Ralio - H	imiento	(L0 = 2	() altatum								
lemp	erafura /	Temperature	e	0°C	÷.,										laximum - Máx		Ingenci	angune	1							
	ta / Speci				ANSVE			ļ						1	inimum - Minin					1						
	ción/too			90 <u>"</u> F	ROM W	ELD		-							f: Maximum di		- Oifere	ncia mi	ixima							
Ensay	o de Trac	ción / Tensi	e lest										$\mathbf{v}^{\prime\prime}$		verage - Prome											
	ta / Spec Type	inen i		STRIP	SPECH	MEN								HAZ: H	eat affected zo	oneZo	ina afec	tada								
	no/Sze	10 E		1 1/2*	21 440																					
		Orientation		TRAN	SVERSA	4L														1						
																				1					167 8-	0-12/01

F-089

P.005/020

T-228

F-089

P.006/020

T-228

863-869-8520

FROM-Bartow Steel

APR-22-2003 01:24PM

Tenaris Group

INSPECTION CERTIFICATE (DIN 50049.3.18 - EN 10204 3.18 - ISO 10474 3.18)

D

Siat S.A. Guatemala 3400 (81822AX2) Valentin Akina Buenos Aires, Argentina (54) 11 4365 9500 tel (54) 11 4365 9671 fax

Cliente / Customer				ov	PF. Fab	Núme	ro / Number	Fecha / Date	Pág. / Page
SIDERCA CORPORATION				6714/4	6713/2		1	6/08/2002	02 / 03
Producto / Product Catherie de Acero con Cos Longitudinal Electric Resi	1997년 1998년 1997년 - 1997년 1			Orden de Compra / BLK-1669	Purchase Order	ltem	Referencia d	le) Cliente / Custome	Reference
Norma / Standard	3 B/ASME SA53 B/NACE MR0175			Grado / Grade X42 PSL2			Extremos / E BEVELED	nds AT 30" API 51.	
Dimensiones / Dimensions 10,750"x 9,27 mm 10 3/4 x 0,365 in	Peso Nominal / Nominal Weight 60,30 kg/m 40,52 lb/ft	Largo/Length NONINAL 40 FT	Superficie Extern BARNIZ	/ External Surface			Cantidades 49 Pz 49 Pcs	631,63 m	38656 kg 85221 b

ANÁLISIS QUÍMICOS DE PRODUCTO / PRODUCT CHEMICAL ANALYSES

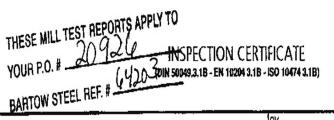
M	vestra													4	*															
S	ample	C	Mn	Ρ	5	Si	Al	Cr	Ni	Mo	٧	Cu	Sл	Nb	Tı	Co	8	Ca	Elm1	ElmZ	Elm3	Ceq1	Ceq2	Рст	Sum1	SumZ	Sum3	81	R2	R
Tubo Pipe	Colada Heat	X 100	X 100	X 1000	X 1000	X 100	X 1000	X 100	X 100	X 1000	X 100	X 100	. X 100	X 1000	X 1000	X 100	X 10000	X 100001	×	x	x	X 100	X 100	X 100	x 100	X 100	X 100			
Max Min		22	120	25	15			40	40	15	B	40										43			15					
11 18 40 138 145 191 141747 138879 138879 138800 136691 136691 141785 141289	173098C 282287A 1730973 1730738 1730748 2822828 1730748 1730978 1730978 1730978 1730978 2822828 2822828 2822838	15 15 16 16 16 16 15 14 15 14	101 101 111 100 108 100 101 107 108 103 102 103	10 18 12 15 9 14 12 10 10 10 10 10 10 13 17	2 1 2 3 2 1 1 2 1 1 2 1	17 19 18 16 17 18 16 15 18 17 15 21	34 33 29 24 35 24 28 28 28 29 20 33	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 1 2 1 2 3 1 2 1 2 1 2 1 2 1	5 5 5 5 5 5 5 5 5 5 5 5 5	5 4 4 5 8 5 5 3 5 4 4	1 2 2 1 2 1 3 5 1 2	5 2 1 2 8 2 1 8 2 1 8 2 1 8 4 6 2 2 7	1 2 1 2 1 1 1 1 1 1 1 1	2 2 2 1 2 1 1 1 1 2 1 2		3 3 3 3 3 3	20 27 27 25 29 26				34 33 35 34 36 33 35 34 33 33 33 33			5 4 4 4 5 4 5 5 3 5 4 4					
In i =	oles: ponde a mues	atra en 1		Prima.		ample	s from i	aw ma	terial. Elm2		kente -	Equiva	ent Ca	ibon				Sum:	 Suma -]	Elm3			R: Rat	0				L		
eql=C		0+V]/5-	(Ni+Cl	1)/15				2	Ceq2 Sum2]	Pcm = 5.m3]
1 =									R? =				_]	R3 =										

Sec.

INSPECTION CERTIFICATE

Siat S.A. Guatemala 3400 (B1822AXZ) Valentin Alsina Buenos Aires, Argentina (S4) 11 4365 9500 tel (S4) 11 4365 9671 fax

(DIN 50049.3.18 - EN 10204 3.18 - ISO 10474 3.18)


Cliente / Customer			OV	PF, Fab 6713/2	Núme	ero / Number	Fecha / Date 6/06/2002	Pág. / Pag 03 / 03
SIDERCA CORPORATION		eren en entre	6714/4 Orden de Compra i		litern	Referencia	lei Cliente / Custom	
Cafiería de Acero con Costura Longitudinal ERW. Longitudinal Electric Resistance Welded Steel pipe.			BLK-1669					
Vorma / Standard API X42-B PSL2/ASTM A53 B/ASME SA53 B/NACE MR0175			Grado / Grade X42 PSL2			Extremos / E BEVELED	nds At 30° API 51	
Dimensiones / Dimensions Peso Nominal / Nominal Weight 10,750" x 9,27 mm 60,30 kg/m 10,750" x 9,27 mm 60,30 kg/m 10,374 x 0,385 in 40,52 lb/H	argo / Lenglh NOMINAL, 40 FT	Superficie Externa BARNIZ) External Surface			Canlidades 49 Pz 49 Pcs	631,63 m	38656 kg 85221 lb
Marcación / Marking						tilet etc.		2
@ = Monograma / Monogram API NN ≈ Número de tubo / pipe num	ber LL = Largo / Length	PP = Peso / W	leight MMYY =	Wes / Ana - Month / Y	ear	HH = Colad	a / Heal	
VISUAL AND DIMENSIONAL CONTROL 100% HYDROSTATIC TEST : 2550 PSI - 5 SEC. WELD ULTRASONIC INSPECTION: REFERENCE STD. 1/8" DRILLED HOLE. STD: API 5L ED. 42. JULY 2000 ASTM AS3.ED. 1999 ASME SAS3. ED. 2001 NACE MR 0175. ED 1999)		h: max. 42.97 Ft. min, 41.01 Ft.					
Por la presente certificarnos que el material aqui descripto ha sido fabricado de acuerdo con las normas y especificaciones soficifadas en vuestra orden y salatacen los concespondientes requerimientos	We hereby certified that in accordance with the satisfies the correspon	standards and spec			-			
y saturacen los correspondentes requerimentos Esta cartificado se emite mediante un sistema computarizado y os válido	This certificate is issue		system and it is va	vi with the			anni	•
con firma electrónica. En el certificado original el logo SIAT-TENARIS (verd está impreso en la parte superior y como fondo de la hoja. En caso que el poseedor entregue una copia del mismo, deberá garantizar la conformidad con el original, haciéndose responsable por cualquier uso ilegal o indebido.	1000 A 10	n the original the Slu e upper part and as released a copy, he	AT-TENARIS green background of the p must attest ils conf	coloured trade age, in case the ormity to the			T	
Cualquier olteración y / o falsificación estará sujeta a la ley. Si necesita asegurar la autenticidad de este certificado, contactarse con Siat S.A., e-malt: ctommasi@siat.com.ar	Any attention and / or i If you need to assure the to contact Stat S.A., e-	talsification will be s he authenticity of thi	ubject to the law s certificate, please			Sect	ss Engineering Depa or Ingenieria de Prox UDIO G. TOMI	cesos ·

F-089

452 Pry 0.1781

Siat
Tenaris Group

D

10020801

Siat S.A. Guatemala 3400 (81622AXZ) Valentin Alsina Buenos Aires, Argentina (54) 11 4365 9500 tel (54) 11 4365 9671 fax

ţ

	/ Custon	ner RPORATIO	N		_										714/2		6713/1		Númer	o/Num 1			08/2002	2	_	83
Caller	io / Produ in die Ac	uct cero con Co Electric Re	notura sistem	Longitu ce Weld	idinal El ed Steel	W. pipe.									e Compra / Pu - 1669	chase O	nder		ltem	Referen	ncia del	Cliente	/ Custor	mer Ref	erence	p
damah	(Chanda))175							Grado / I X42 P	Grade SL2					Extrem BEV	ios / End	KT 30"	API 5L			
8,6	25 "x E	vimensions 3,18 mm 1,322 in		Peso Non	ninal / No 42,54 28,59	minal We kg/m lb/ft	ight		o / Lengi O MINA I	ih . 40 FT		Superfici BAR		/ Externa	l Surface					46	ades/Q Pz Pce	598	s ,85 п (,73 ft		6070 7474	kg Ib
i.								ENS	SAY				/ ME	CHAN	IICAL TE	STS										•
6 F.	Mues				Ens	ayo de Ti Tensile T					Bend Test Guiado		za / Har ne: HV1		Posición Location		hsarbe	d Enero		npy V I	Shear	Area			DWTT lear A	
Lote	Samp Tubo	Colada		W	eld	Tensile I	<u>β</u> ο	dy		Cara	Raiz	Max	Min	Max		1	2	3	Avg	1	2	3	Avg	1	2	Av
iot	Pipe	Heat	Max Min	UTS	EL	UTS 110,0 60,0	YS 65,0 42,0	Ratio 0,93	EL 27	Face	Root	248		Dif	Body Min Weld Min HAZ Min	10	10	tO	13							
-				60,0 Ksi	%	ksi	42,0 ksi		%							ft.Bo	ft.lb	ft.lb	ít.Ib	%	%	%	%	%	%	9
		2422838 2822836 282282A 282282A 2017618 2217618 2217618 2217618 2217618 2217618 2217618 220188 220188 22017618		88,6 90,2 988,9 87,3 90,8		82,7 : 61,5 : 65,7 : 92,9 81,5 : 86,4	59,5 60,9 61,9 62,1 63,8 64,4	0,72 0,75 0,72 0,76 0,78 0,78	36 38 36 38 36 36 36			222 221 228 219 217 227 222 222 220	201 197 297 199 198 203 199	21 24 21 20 21 19 21 21	Body Body Body Body Body Body Body	79 85 114 79 119 79	83 77 119 114 105 48	100 74 108 121 114 68	87 79 114 105 112 71	100 200 100 100 100	100 100 100 100 100 100	100 100 100 100 100	100 100 100 100 100			
Flatter Charg Temp Probe Ubica Ensay Probe Tipo Tama	ving and y V-Not ca Spec ción / Lo o de: (ra ta / Spec Type no / Size		e	2/3 TF 90 **F STRIF 1.1/2	ANSVE	rsal Eld Men							: ; ;	YS: Yiel EL: Elon Ratio: Y Max: M Min: Mi Max Dif Avg: Av	d Strength - Li igation - Alarg SVJTS Ratio - I aximum - Máx inimum - Minir i: Maximum di rerage - Prome eat affected zo	nite de amiento Relación imo no ference dio	fluencia (Lo = 2 fluenci Difere	n 1) a/rotura ncia má								

863-869-8520

	stomer	_	_	-				_				_				OV			PF.	Fab		Nú	imero /	Numb	er Fe	cha/D			¥ág.
SIDERCA	CORPORAT	ON		_						_					÷	Orde	6714 n de Co	_	Purcha	671 se Orde		ite	m Rei	ferenci	a del C		Custom		02 eren
roducto / I Cañería d	a Acero con	Contain	a Long	Itudina	el ERW												LK-166		•									1	•
Longitud	nal Electric F	lesista	nce We	ided S	ited pi	pe.			-				_			Grad	o/Gra	de					Ex	tremos	/Ends	0.00	N CI		
APIX42-	PSL2/ASTM			_	_								- <u>[c</u>	perficie	-		PSL2									antities	_		
8,625	x 0,18 mm x 0,322 in		Peso N	42	/ Nomi 54 kg 59 kb	¥m	ight			Length				BARN		a / Exit		lidLe		0				46 P 46 P	2		5 m	26 57	07
4					A	NÁL	ISIS	QU	MIC	OS	DEF	RO	DUC			DDU	ICT	ĊHE	MIC	AL /	ANA	LYS	ES						
	uestra ample	C	Mn	P	5	Si	AI	Cr	Ni	Mo	۷	Cu	Sn	Nb	6 Ti	Co	B	Ca	Elm1	Elm2	Elm3	Ceq1	Ceq2	Pcm	Sum1	Sum2	Sum3	81	R
Tubo	Colada	x	X	×	X	X	x	X	x	x	X 100	X 100	X 100	X 1000	X 1000	X 100	X 10000	X 10000	x	X	x	X 100	X 100	X 100	X 100	X 100	X 100		
Pipe Max Min	Heat	100	100 120	1000 25	1000	100	1000	100 40	40	1000 :	8	42	100	1000	1000		1000					43	145		15				
	2822838 282282A 271751B 174078C	14 14 14 15 15 14 14 15 14	103 105 105 107 114 111 104 114 104 102 102 102	16 16 10 12 12 12 8 8 8 12 12 9 10 10			38 36 24 30 34 25 26 35 32 25 26 42	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	4 4 5 4 5 4 5 4 4 4 4	2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2	<pre>{ 1 2 2 1 2 .2 1 . 1 1 1 1 1 1 1 1 1 1 1</pre>	1 1 1 1 1 1 1 1 2	2 2 2 2 2 2 2 1 1 1 1 1 1	1 1 1 1 1 1 .	3 3 3 3 3	30 32 25 33 34 34				33 33 33 33 33 36 35 33 33 34 33			4 4 5 5 4 8 4 4 4				
Notas () Corres	ponde almues	Elm: E stra en l	ilement Materia	Pnma	nent		is from	. Ceq: raw ma	aterial.	o equiv	alente -	Equiva	lent Ca	rbon	; · .			Sum:	Suma -				R: Rati	0					
			-	_				1 1 /										-	1										-
			TINITO	0412				י ר ר				_		•					J		, '								
Notas / M 'Corres Elm1'=# Ceq1'='C	Antibacia ponde a mues reserve rMn/6+(Cr+M lb+V+Tissage	Elm: E stra en lo+V)/5	Materia	Prima	nent Sint		us from	Ceq:	Carbon aterial. [Elm2 [Ceq2 [Sum2 [R2 =	=	alente -	Equiva	lent Ca					Sum:		Sum Ekm3 = Pcm = Sum3 R3 =	,.		R: Rati	0					

:

ļ

.

.....

1

FROM-Bartow Steel APR-22-2003 01:26PM

1

:

Tenaris Group

F-089

P.010/020

T-228

863-869-8520

INSPECTION CERTIFICATE (DIN 50049.2,18 - EN 10204 3,18 - ISO 10474 3,18)

Siat S.A. Guatemala 3400 (B1822AX2) Valentin Alsina Buenos Aires, Argentina (54) 11 4365 9500 tel (54) 11 4365 9571 fax

Cliente / Customer	·····	<u></u>	C		PF. Fab	Núme	ro / Number	Fecha / Date	Pág. / Page
SIDERCA CORPORATION				6714/2	6713/1	the second se			03/03
Producto / Product			c	irden de Compra / Pr	irchase Order	ilem	Referencia de	el Cliente / Custom	ar Reference
Cafleria de Acero con Costur Longitudinal Electric Rasista	a Longitudinal ERW. nce Welded Steel pipe.	1		BLK-1669	•				
Norma / Standard API X42-B PSL2/ASTM A53 B	and the second second second second		G	irado / Grade X42 PSL2			Extremos / E BEVELED	AT 30" API 5L	
Dimensiones / Dimensions 8,625 °x 8,18 · mm 8 5/8 x 0,322 in	Peso Nominal / Nominal Weight 42,54 kg/m 28,59 Drft	Largo / Length NONINAL 40 FT	Superficie Edema / BARNIZ	External Surface			Cantidades / 46 Pz 46 Pcs	Quantities 598,85 m 1964,73 ft	26070 kg 57474; lb
Marcación / Marking		<u></u>							· **
macacown / marking @ ≈ Monograma / Monogram AF	NN = Número de tubo / pipe nur	mber LL = Largo / Length	PP = Peso / We	ight MMYY = Me	es / Año - Month / Ye	ar	HH = Colada	/ Heat	,
IND. ARGENTINA Nº: NN LEN Observaciones / Remarks	7 0.322" 28.59 Lb/Ft API X42 PSL2/API B GTH: (Ft): LL. PF/IT: 6714-2. PO BLK-11 	669. N° HEAT:						;	
VISUAL AND DIMENSIONAL Hydrostatic test : 2659 Weld Ultrasonic Inspe XHOLE	Control 100% PSI - 5 Seg. Ction: Reference Std. 1/8" Drille	Đ		: max, 42,97 Ft. in, 41.01 Ft.					
STD API SL ED 42. JULY 2 ASTM ASS ED 1999 ASMESASS ED 2001 NACE MR 0175: ED 1999									
				• .					
Esta certificado se emite media con firma electrónica. En el cert	e el material aquí descripto ha sido fabrica pecificaciones solicitadas en vuestra orde es requerimientos nte un elsterna computarizado y es válido lificado original el logo SIAT-TENARIS (ve	rde) electronic signature. O	standards and special nding requirements ed by a computatized In the original the SIA	ications required in y system and it is valid T-TENARIS green co	our order and with the youred trade		1	ound the	2
estă împreso en la parte superio poseedor entregue una copia di	n y como fondo de la hoja. En caso que el al mismo, deberá garantizar la conformida	mark is stamped on lix d owner of the certificate	e released a copy, he				1	• /	

original, taking upon himself the responsibility for any unlawful or not allowed use.

If you need to assure the authenticity of this certificate, please do not hesitate

Any alteration and / or faisification will be subject to the law.

to contact Siat S.A., e-mail ctommasi@siat.com.ar

1

Process Engineering Department Sector Ingenieria de Procesos CLAUDIO G. TOMMASI

FROM-Bartow Steel 01:27PM APR-22-2003

con el original, haciéndose responsable por cualquier uso ilegal o Indebido.

Cualquier alteración y / o falsificación estará sujeta a la ley. Si necesita asegurar la autenticidad de este certificado, contactarse con Siat SIA, e-mail, chommasi@siat.com.ar

BORUSAN BORU Berunt Bittesk Boru Febrikater A.S.

.

Certificate No	MILL TEST CERTIFICATE 9242 Fage 1/5	
Type of Document	EN 10204 /3.1 B Date B/05/2003	2
Contract No/Lot No Standard Material Product Customer Order No (IC No	2088 / 01 API 5L PSL1/ASTN A53/ASME SA53 ASTM A53 GR B/ASME SA53 GR B/API 5L GR BINSPECTOR'S SLAM E.R.W STEEL PIPE ABD-NORSTEEL CORP 16633 / BLK-17703 401 API 5L-00/ASTM A53-01/ASME SA53-57	þ
Item Dimension OP X WT X L (1 3 1/2 "X .216X 2 3 1/2 "X .216X 3 4 1/2 "X .216X 5 9/16"X .258X 6 5 9/16"X .258X 7 6 5/8 "X .280X 9 8 5/8 "X .322X 10 3 5/8 "X .322X 11 10 3/4"X .365X 12 10 3/4"X .365X 13 12 3/4"X .375X 14 12 3/4"X .375X	M. TypePiecesTotal Length Total Weight TypeINCH)(Fr)(Tons)121.0NWB87418354.063.113VPE142.0NWB2108820.030.330VPE142.0GWB4379177.044.923VPE142.0GWB2249408.046.048VPE142.0GWB2785838.038.721VPE142.0GWB763192.021.161VPE142.0GWB3066426.055.298VPE142.0GWB27811676.0100.469VPE142.0GWB1918022.0103.841VPE142.0GWB1918022.0103.841VPE142.0GWB1813601.018.780VPE142.0GWB1813601.085.432VPE142.0GWB1044368.098.176VPE	
iltem! Heat No.	! Chemical Composition(%) ! C !Si IMn !P !S [Al IMo [Cr INi [Cu IV !Nb !Ti ! Ceq ! x100 ! x1000 }	
1 1221429 1 1221430 1 1221432 1 1221432 1 2 1217195	1 17: 1 89! 10! 12! 65! 0! 10! 6; 24! 1! 2! 1! .32 1 14: 1 85! 10! 14! 69! 0! 10! B 28! 1! 2! 1! .26 1 17: 1 89! 10! 12! 66! 0! 9! 5! 24! 1! 2! 1! .32 1 14: 1! 83! 9! 12! 67! 0! 10! 7! 27! 1! 2! 1! .32 1 14: 1! 85! 10! 14! 69! 0! 10! 8! 28! 1! 2! .1! .28 1 14: 1! 85! 10! 14! 69! 0! 10! 8! 28! 1! 2! .1! .28	16 2 5
	MANAGER OF QUALITY CONTROL DEPARTMENT KORAY YASAR BOLEVE BAN CALLIN CONTOL Department	
	e-mail : tcofcof@borugan.com	

r.

e-mail : tcofcofgborusan.com

THESE MILL TEST REPORTS APPLY TO YOUR P.O. # 20926 BARTOW STEEL REF. # 6423

.

A R EE ESSE STREETH THOM OUT ON STOOL

Certificate No

.

τ.

MILL TEST CERTIFICATE 9242 Page 2/5

5	Chemical Composition(%) C ISI IMA IP IS (AL IM X100 ! X10	0 1Cr 1N1 1CD 1V 00	IND ITL I Ceq I
3 114250 3 211203 4 117149 4 210740 5 221327 6 221327 7 211209 8 221103 8 221103 8 221108 8 221208 8 221280 8 221280 9 212333 9 21332 9 21333 9 21333 9 21333 9 21335 9 21335 10 211335 10 211335 10 21135 10 2115 10 2115 10 2115 10 2115 10 2115 10 2115 10 2115 10 2115 10 215 10 215 10 215 10 215 10	15! 1 861 9! 81 481 16! 1 90! 12! 9! 73! 14! 1! 91! 13! 81 621 15! 1! 90! 13! 81 621 15! 1! 90! 13! 81 621 15! 1! 90! 13! 81 61! 16! 1! 89! 11! 9! 72! 13! 0! 88! 9! 13! 56! 14! 1! 89! 10! 15! 54! 15! 1! 86! 9! 13! 56! 14! 1! 91! 12! 17! 56! 14! 1! 90! 10! 17! 56! 14! 1! 90! 10! 17! 56! 14! 1! 91! 12! 17! 56! 14! 1! 91! 12! 17! 56! 15! 1! 91!	0: 10: 5: 18: 0: 10: 5: 17: 0: 12: 30: 34: 0: 14: 8: 23: 0: 14: 8: 23: 0: 14: 8: 23: 0: 14: 8: 23: 0: 13: 7: 26: 0: 13: 7: 26: 0: 12: 5: 20: 0: 12: 5: 20: 0: 12: 5: 20: 0: 12: 6: 22: 0: 4: 2: 17: 0: 5: 3: 18: 0: 6: 15: 24: 0: 4: 2: 17: 0: 4: 12: 26: 0: 4: 2: 17: 0: 4: 2: 17: 0: 4: 2: 27: 0: 5: 5: 5: <	1 1 1 312 1 1 1 329 1 1 1 329 1 1 1 330 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 300 21 1 1 304 1 1 304 1 1 1 304 1 1 1 304 1 1 1 304 1 1 1 304 1 1 1 304 1 1 1 304 1 1 1 304 1 1 1 304
	· ~ = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		ALINY CONTROL

.

Certificate No

.

.

MILL TEST CERTIFICATE 9242 Page 3/ 5

ITEM! Heat No.	! Chemical Composition ! C Si Mn 1P 1S], ! x100]	Al Ma (Cr (Ni (Cu (V (NS (Ti) Cω) x1000 1
12 121261 12 1231354 13 127612 13 136360 13 121250 13 121251	1 15! 1:100! 8: 12! 1 18! 2! 9D! 9! 9! 1 15! 1:100 11! 10! 1 15! 1:103! 10! 11! 1 14! 1! 98! 7! 8:	68: 0: 11: 15: 62: 1: 2: 1: .331 57: 0: 16: 7: 25: 1: 1: 1: .342 59: 0: 13: 9: 29: 1: 1: 1: .342 59: 0: 13: 9: 29: 1: 1: 1: .329 67: 0: 11: 9: 26: 1: 2: 1: .310
14 1211250 14 1211251 14 1211252	1 141 11 981 71 81	\$31 0: 131 91 291 1! 11 11 .329 671 0) 11: 91 261 1! 2! 1! .310 421 11 8! 10! 291 31 21 1! .307
ITem Tens: Hest No. ** YS 234 pe		Tem! HT I EL INP IB IVITIDIDI
11221430 INLB148 11221432 INLB153 21117195 INLB153 21221430 INLB148	24861654211311 [1 33001619801321] 1 28801663431311] 1 01041632901311] 1 33001619801321] 1	12494/ 51 1 1301616161616 12494/ 51 1 1301616161616
1 31211203 KL8 62 1 41117149 KL8 64 1 41210740 KL8 64 1 51221327 KL8 56	15071717261331 ! 20071721601341 ! 44691742831351 ! 57301755741341 5090167608131! ! 6098167608131! !	12204/51 1 1301G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1
7 7 211209 1818161 1 91221103 1819165 1 81221105 1819165 1 81221105 1819166 1 91221109 1819166	14091698711311 ! ! 53151741161311 ! ! 60731743191311 ! ! 48471743921321 ! ! 47231734591321 ! !	11783/5! 1301G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1G1
		MANAGER OF QUALITY CONTROT. DEPARTMENT N KOCKER IN STREET
		e-mail : tcofcof@borusan.gom

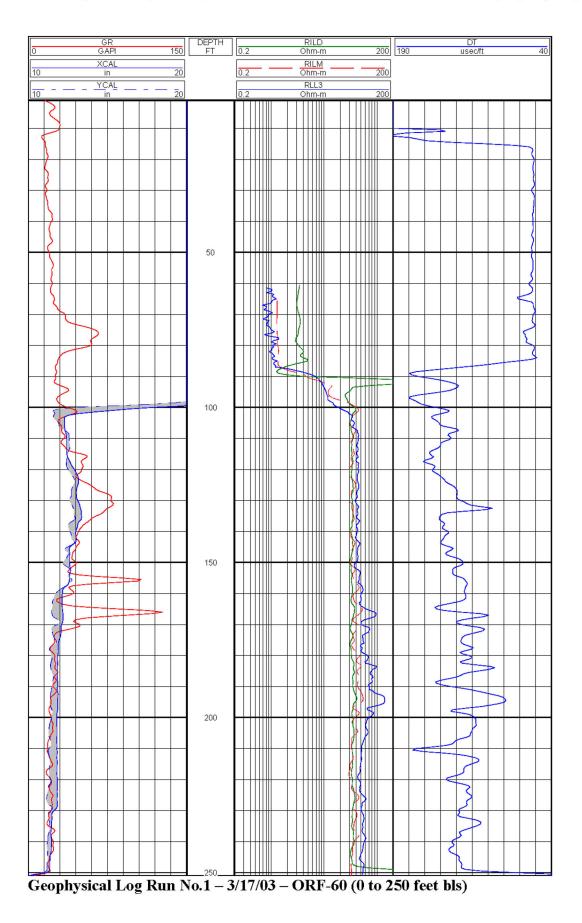
Certificate N		MILL 92		IST C	ERTIF	ICATE Page	4/5
1 1 Heat No.1	Tensile ***!YS 234!psi	ITS		pact Tes +!Ave!Te 15! !		Threads ! EL ! NP : 8 ! 1D	I I I INI I IVIFIDIDI I IDIBIEITICI
<pre>! 6:231283 ! ! 9:117368 ! ! 9:137600 ! ! 9:137600 ! ! 9:211332 ! ! 9:211332 ! ! 9:211333 ! ! 9:211333 ! ! 9:211365 ! ! 9:211365 ! ! 9:220099 !! ! 9:221365 !! ! 0:137167 !! ! 0:137167 !! ! 0:137167 !! ! 0:211335 !! ! 0:211335 !! ! 0:211365 !! ! 0:211365 !! ! 0:211365 !! ! 10:211365 !! ! 10:211265 !! ! 11:211260 !! ! 11:211261 !</pre>	KLE:6719 KQW: KLE:6719 KQW: KLE:5462 KQW: KLE:5489 KQW: KLE:5737 KQW: KLE:5737 KQW: KLE:5737 KQW: KLE:5701 KQW: KLE:5701 KQW: KLE:5701 KQW: KLE:5701 KQW: KLE:5707 KQW: KLE:583 KQW: KLE:583 KQW: KLE:5737 KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW: KQW:	172002 11669923 12699232 12699232 12699232 12699232 127394232 127394232 12739425 175080010 1275080010 12750965543 21750965543 21769065543 21769065543 21769065543 21770916944 1270931491 2170941491 2170941444444444444	31 30 34 31 32 31 32 31 32 31 32 31 32 31 32 31 32 32 33 32 33 33 33		(1783/ 5) 1566/ 5) 1571/ 5] 1771/ 5] 1771/ 5]	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
	1 	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			7. 2	GER OF QUALITY PEPARTMENT Koray YASAR E OF U PALISY Control Depa : tcofcof@bor	N : riment

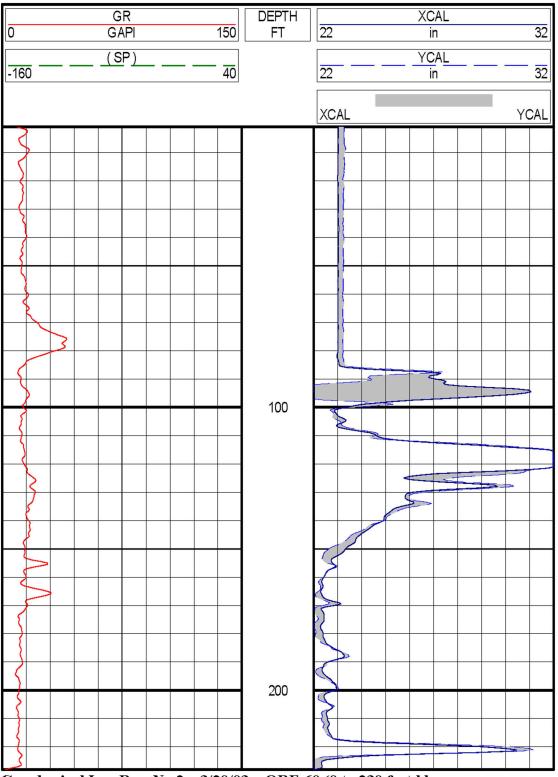
.

.

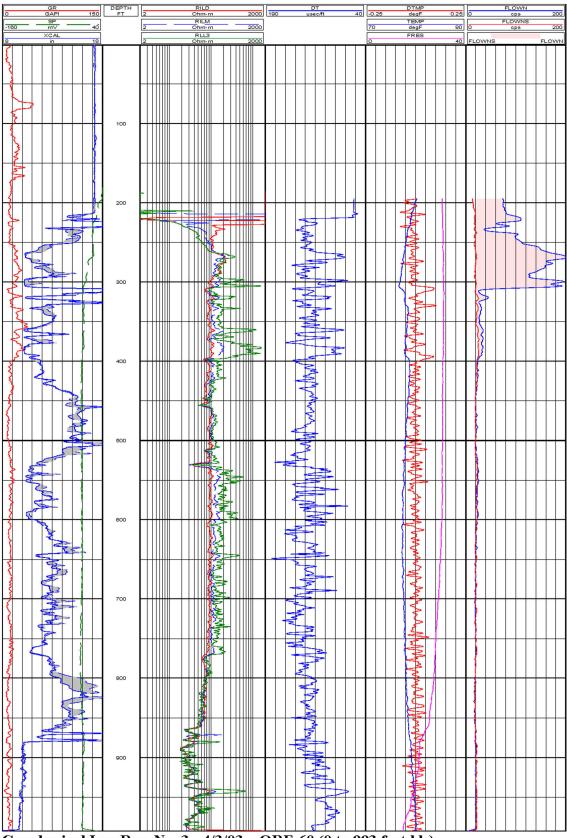
1

.

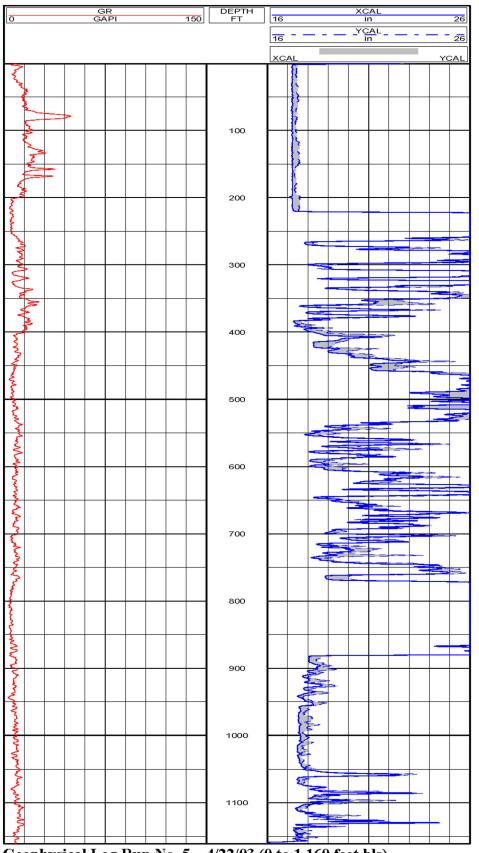



MILL TEST CERTIFICATE Certificate No 9242 Page 5/5

litem	1 Tensile Test 1 Tensile Test 1 TF 1 TS	IImpact			
			psi/Se		D IDIBIBITICI
12:211260 12:211260 12:211261 12:211261 12:2211261 12:2211261 12:221261 12:221261 12:221261 12:231354 12:231354 13:127612 13:127612 13:127612	!KLB:51126:6969 !KQW: !7504 !KQW: !7504 !KQW: !8041 !KLB:59442:7166 !8041 !KLB:52158:17490 !8128 !KQW: !8128 !KLB:5126:5952:17600 !KLB:55126:5969 !KLB:55126:5969 !KC001 !KLB:55126:5969 !KC001 !KLB:52499:6960 !KC001 !KLB:52499:6860 !K001 !KLB:52499:6860 !K001	4 1 4 321 1 1 2 331 91 1 5 311 1 1 5 311 1 1 6 1 1 1	1711/ 5 1721/ 5 1721/ 5 1722/ 5 1722/ 5 1722/ 5		1301G1G1G1G1G1G1G1 1 G1G1G1G1G1G1G1 1 G1G1G1G1G1G1G1 1 G1G1G1G1G1G1G1 1 G1G1G1G1G1G1G1 1 G1G1G1G1G1G1G1 1 G1G1G1G1G1G1G1 1 G1G1G1G1G1G1 1 G1G1G1G1G1 1 G1G1G1G1 1 G1G1G1G1 1 G1G1G1G1 1 G1G1G1G1 1 G1G1G1G1 1 G1G1G1G1 1 G1G1G1 1 G1G1G1 1 G1G1G1 1 G1G1G1 1 G1G1G1 1 G1G1 1 G1G1G1 1 G1G1 1 G1G1
1131136360 1131211250 1131211250 1131211251 1131211251 1141211250 1141211250 1141211251 1141211251 1141211251 1141211251	IKLB15794517062 IKQWI 17592 IKLB15780717356 IKQWI 17760 IKLB15676316999 IKQWI 17582 IKQWI 17583 IKQWI 17593 IKQWI 17593 IKQWI 17593 IKLB157575171971	71301 1 41 1 1 51321 1 5131	/ 1247/ 51 / 1247/ 51		130:GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGIGI 1 GIGIGIGIGIGIGI 1 GIGIGIGIGIGIGI 1 GIGIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGIGI 1 GIGIGIGIGI 1 GIGIGIGIGI 1 GIGIGIGIGI 1 GIGIGIGI 1 GIGIGIGI 1 GIGIGI 1 GIGI 1 GIGIGI 1 GIGIGI 1 GIGIGI 1 GIGIGI 1 GIGI 1 GIGIGI 1 GIGIGI 1 GIGIGI 1 GIGI 1 GIGI
			4	AGER OF QUAL: DEPARTMEN KORAY YASI Control Control C	AN !
ED.: Sevel De VN.: VisualiD FB.: Flattenn DL.: Crift Ex C: Coating EL.: Effective G.: Good * We hereby co of order co	Imensions TS: ing-Bending E panding Aver HT. e Length NP. N.Ty stify that the	(ield Stres Tensile Str Elongatio Average Hydrostat Number pe yge: Manuf. matorial d	ength *2 n *3 ic Test *4 x inch type *5	.Kind of Ste Direction:L Sampling For Inspact Type	=Longicudina! =Transversu =ition:B→Base W=Weld =U Type,V Typ

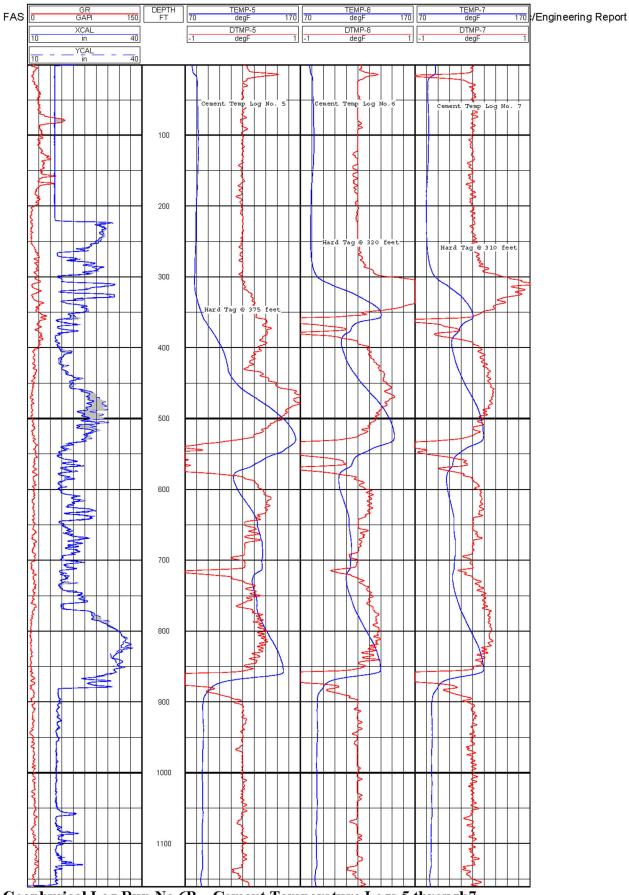

TOTAL P. 25

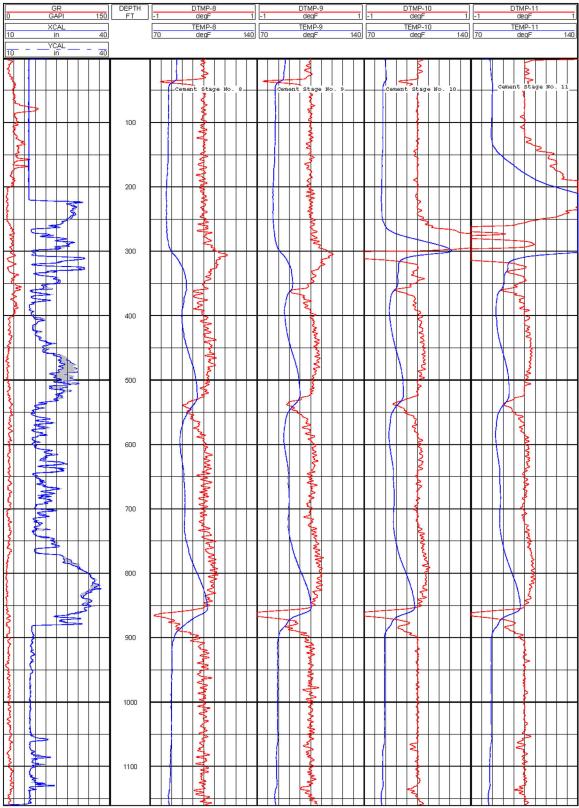
APPENDIX C Geophysical Logs


Geophysical Log Run No.2 – 3/20/03 – ORF-60 (0 to 230 feet bls

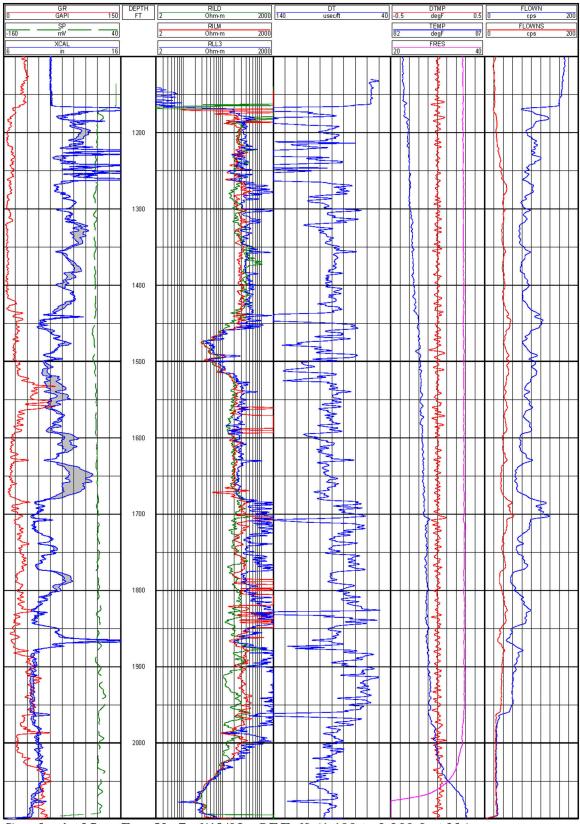
Geophysical Log Run No. 3 - 4/3/03 – ORF-60 (0 to 993 feet bls)

GR		DEPTH		RILD		DT	_	DTMP		FLOWP
0 GAPI SP	100	FT	2	Ohm-m RILM		200 usec/ft 5	0.25	degF TEMP	0.25	FLOWN
-160 mV XCAL	40		2	Ohm-m RLL3	2000		70	degF FRES	80	0 cps 75
10 in	30		2	Ohm-m	2000		0	rkeð	40	
and the second s		100								
	1	200					+			Ę
	£ {						-	Mary Harris		
		300							ð	
	}	400						why was		
and and	{							Ann Ann	5	
- Altroches	}	500		And the second sec				Arnorada		
	} }	600		3				the will		
A A A		700		- And Contraction		A A Man		white a war		
				and the start		A A A		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		A A A
	{	800				A manufacture		Aprove and		8
	;	900	6					whytry		
All and a second s	}							Armyorhan .		WW
		1000						4 Monthlynew	8	Mar Mar
	}	1100			≠ ₽			May Man		
		1200		A Contraction				A happen	4 }} 1	
		1200		Laboratory Constraints						
		1300		a the A there is						
Ş		Da Du	un No			3– ORF-60 (0		1 350 fo	of bl	e)


Geophysical Log Run No.4 – 4/11/03– ORF-60 (0 to 1,350 feet bls)


Geophysical Log Run No. 5 – 4/22/03 (0 to 1,160 feet bls)

	GR-1 GAPI 100	DEPTH FT	70	TEMP-1 degF	140	70	TEMP-2 degF	140	70	TEMP-3 degF	170	70	TEMP-4 degF	170
	GR-2			DTMP-1			DTMP-2			DTMP-3			DTMP-4	
0	GAPI 100 XCAL		-0.75	degF	0.75	-0.75	degF	0.75	-0.75	degF	0.75	-0.75	degF	0.75
0	in 40		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			_	- 1		I IF I	-			2	
۲ ۲				2		N	2							
A.				\mathbf{A}						{			E.	
pre				W			V						5	
5				No.			5			\$			\$	
		100		- A - A - A - A - A - A - A - A - A - A			5							
*				¥			3						Ann	
×			Cement	. Temp Log No	b.1	Cement	. Temp Log	g No.2	Ceme	nt Temp Loc	ио. 3-	Cet	nent Temp L	og No.4
							4			V W			A A	
a		200		4			5			- 8 -				
8				4			2			1			2	
5	3													
\mathbf{x}													}	
$\left \right $										}				
र		300					1			₹				
				\$									N N	
3								+++		- F-			 	
J.V.	X-Y Caliper Reamed Bore									}				
	Reamed Bore	ahola 400								│ 				
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\zeta$													
8														
3	E						4							
}														
7	N/W	500										На	rd Tag @ 57	0 feet
2													M	
					+			+++		+				
Acord	Mura													
3		600			$\square$			$\square$				$\square$		1
													N	
ξ										5				150
~				A.									2	Å
각										2			A A	
5	4	700							Hard	Tag @ 785	feet		>	
	1			8								R	2-2	8
2										++			╞╪╪╤╸	3+
<u>}</u>	2						8			<				-
2		800			+	Hard Ta	ag @ 855 :	feet-		$\mathbb{N}^{+}$	5			
$\left\{ \left  \left  \right  \right\} \right\}$							An				N			A
<u>}     </u>							2				5	+ + + - + + + + + + + + + + + + + + +		Z
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				5		N		$\mathbf{A}$		H T				-+-
3	5	900		3				8		$\overline{\mathbf{n}}$		1		
2		500	Hard	Tag @ 975 fe	et			2		Š			2	
5				VVV			T			3			\$	
\mathbf{v}			$\square N$										2	
N I				\mathbb{N}	17		13							
		1000					12			1			╘	
A Mar							AN AN						AM N	
1 18			+ +	++	$\left \right $	+ + +							15	
P.M.				5			1			1				
		1100	$ \downarrow \downarrow \downarrow $		\mathbf{N}		3			{			≨	
ww	2			NUM			S-A			3			M.	
					12		50	1					5	
	hysical L													


Geophysical Log Run 6A -Cement Temperature Logs 1 through 4 – ORF-60

Geophysical Log Run No 6B – Cement Temperature Logs 5 through7

Geophysical Log Run 6C – Cement Temperature Logs 8 through 11

Geophysical Log Run No.7- 6/13/03-ORF-60 (1,100 to 2,200 feet bls)

C-12

APPENDIX D Lithologic Field Reports

D-2

Field Lithologic Log Reedy Creek Test Well: ORF-60 Orange County, Florida

Depth in Feet (bls)

From	То	Lithologic Description
0	10	White, well sorted medium quartz sand, good permeability
10	30	Brown, well sorted, medium quartz sand, good permeability
30	35	Brown, well sorted, medium quartz sand, abundant grey clay
35	55	Grey silty lime mudstone
55	80	Greenish grey phosphatic lime mudstone
80	90	Light brown wackestone, medium hard, interparticle porosity
90	105	Light brown packstone, medium hard, interparticle porosity
105	170	Tan grainstone, friable, occasional phosphate, interparticle porosity
170	200	Cream-colored grainstone, friable, common echinoid fossils, moldic porosity
200	215	Cream-colored packstone, friable, common echinoid fossils, moldic porosity
215	250	Cream-colored grainstone, friable, common echinoid fossils, moldic porosity
255	260	Cream-colored grainstone, friable, common echinoid and dictyoconus fossils, moldic porosity, 15% grey mudstone, hard low permeability
260	265	Brown dolomite, friable, crystalline, low permebility, 15% grey mudstone, low permeability
265	275	Brown dolomite, friable, crystalline, low permebility, 30% grey mudstone, low permeability
275	295	Cream-colored grainstone, friable, common echinoid and dictyoconus fossils, moldic porosity
295	300	Cream-colored mudstone, very friable, intergranular porosity, 5% tan crystalline dolomite
300	310	Cream-colored grainstone, friable, common echinoid and dictyoconus fossils, moldic porosity

310	315	Tan mudstone, friable, intergranular and vuggy porosity, 5% light grey crystalline dolomite
315	320	Cream-colored dolomite/crystalline limestone, hard, low permeability
320	325	Tan mudstone, friable, intergranular and vuggy porosity, 5% light grey crystalline dolomite
325	335	Cream-colored mudstone, friable, dictyoconus fossils, intergranular and vuggy porosity, 5% light grey crystalline dolomite
335	340	Cream-colored/tan grainstone, friable, moldic porosity, 15% brown crystalline dolomite
340	345	Cream-colored/tan grainstone, friable, dictyoconus fossils, moldic porosity, 15% brown crystalline dolomite
345	350	Cream-colored grainstone/crystalline limestone, friable, moldic porosity
350	355	Cream-colored/tan grainstone, friable, dictyoconus fossils, moldic porosity, 15% brown crystalline dolomite
355	360	Cream-colored/tan grainstone, friable, echinoid and dictyoconus fossils, moldic porosity, 15% brown crystalline dolomite and tan lime mud
360	365	Dark brown dolomite, crystalline, low permeability
365	370	Cream-colored/tan grainstone, friable, dictyoconus fossils, moldic porosity, 15% brown crystalline dolomite
370	375	Tan dolomite, crystalline, low permeability
375	380	Tan dolomite, crystalline, low permeability, some soft offwhite lime mud
380	390	Dark brown dolomite, crystalline, low permeability
390	400	Dark brown dolomite, crystalline, some vugs on larger cutting fragments
400	405	Grey lime mud, very soft, some tan crystalline dolomite, hard, some vugs of larger fragments
405	425	Tan grainstone, friable, moldic and intergranular porosity
425	440	Cream-colored grainstone, friable, moldic and intergranular porosity
440	445	Cream-colored grainstone, friable, echinoid fossils, moldic and intergranular porosity

445	455	Cream-colored grainstone, friable, mainly moldic and intergranular porosity, some vuggy porosity
455	465	Cream-colored grainstone, friable, echinoid fossils, moldic and intergranular porosity
465	485	Tan grainstone, friable, mollusk fossils, moldic and intergranular porosity, some vuggy porosity
485	490	Tan grainstone, friable, moldic, vuggy, and intergranular porosity
490	500	Tan grainstone, friable, mollusk fossils, moldic and intergranular porosity, some vuggy porosity
500	520	Light grey grainstone, friable, mollusk fossils, moldic and intergranular porosity, some vuggy porosity
520	540	Tan grainstone, friable, mollusk fossils, moldic and intergranular porosity, some vuggy porosity
540	550	Tan mudstone, friable, vuggy and moldic porosity
550	595	Tan packstone-grainstone, hard, mollusk fossils, vuggy and moldic porosity
595	605	Brown packstone-grainstone, hard, vuggy and moldic porosity
605	610	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity
610	615	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, some hard crystalline dolomite
615	620	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity
620	625	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, some hard crystalline dolomite
625	645	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity
645	650	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, some hard crystalline dolomite
650	655	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity

655	660	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, <5% white calcite and grey dolomite
660	665	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, some hard crystalline dolomite
665	675	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity
675	680	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, some hard crystalline dolomite and tan/brown calcite
680	700	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity
700	705	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, some hard crystalline dolomite
705	735	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity
735	750	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, 5% grey crystalline dolomite
750	755	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, 5% grey crystalline dolomite, 2% crystalline calcite
755	765	Cream-colored packstone-grainstone, friable, mollusk fossils, vuggy and moldic porosity, 5% grey crystalline dolomite
765	770	Cream-colored packstone, friable, mollusk fossils, vuggy and moldic porosity, 5% grey crystalline dolomite
770	780	Cream-colored mudstone, friable, mollusk fossils, vuggy and moldic porosity, 5% grey crystalline dolomite
780	815	Tan grainstone, friable, mollusk fossils, vuggy and moldic porosity, 5% grey crystalline dolomite
815	820	Tan packstone, friable, mollusk fossils, vuggy and moldic porosity, 10% grey crystalline dolomite
820	825	Tan grainstone, friable, mollusk fossils, vuggy and moldic porosity, 20% white/grey crystalline dolomite
825	835	Tan grainstone, friable, mollusk fossils, vuggy and moldic porosity, 10% white/grey crystalline dolomite

835	840	Tan grainstone, friable, mollusk fossils, vuggy and moldic porosity, 20% grey/black crystalline dolomite
840	845	Tan grainstone, friable, mollusk fossils, vuggy and moldic porosity, 1% crystalline calcite
845	855	Tan grainstone, friable, mollusk fossils, vuggy and moldic porosity
855	865	Cream-colored grainstone, friable, mollusk fossils, vuggy and moldic porosity, 20% grey crystalline dolomite
865	870	Cream-colored grainstone, friable, mollusk fossils, vuggy and moldic porosity, 20% soft grey clay/lime mud, 10% grey crystalline dolomite
870	875	Tan wackestone -packstone, friable, mollusk fossils, vuggy and moldic porosity, 10% soft brown clay/lime mud, 10% grey crystalline calcite
875	880	Tan wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 10% grey crystalline dolomite, 5% soft brown clay/lime mud
880	890	Cream-colored wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 20% soft white clay/lime mud "chalky", 10% grey crystalline dolomite
890	895	Cream-colored wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 10% grey crystalline dolomite, 5% soft white clay/lime mud ''chalky''
895	900	Cream-colored wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 25% Cream-colored/tan crystalline dolomite
900	905	Cream-colored wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 10% grey crystalline dolomite, 5% soft white clay/lime mud "chalky"
905	915	Tan wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 25% tan crystalline dolomite
915	920	Tan wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 30% dark brown crystalline dolomite
920	925	Tan wackestone-packstone, friable, mollusk fossils, vuggy and moldic porosity, 10% dark brown crystalline dolomite
925	930	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 5% white crystalline dolomite
930	940	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 1% white crystalline dolomite

940	950	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 40% soft, white clay/lime mud "chalky", 5% white crystalline limestone
950	955	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 1% white crystalline dolomite
955	960	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 40% soft, white clay/lime mud "chalky", 5% white crystalline limestone
960	980	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 1% white crystalline dolomite
980	985	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 1% white crystalline dolomite, 1% crystalline limestone
985	995	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 10% white crystalline dolomite, 10% crystalline limestone
995	1,000	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 20% white crystalline dolomite
1,000	1,005	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 20% white crystalline dolomite, 1% crystalline limestone
1,005	1,010	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 20% white crystalline dolomite, 5% dark brown clay/lime mud, 1% crystalline limestone
1,010	1,015	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 20% white crystalline dolomite, 1% crystalline limestone
1,015	1,020	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 20% white crystalline dolomite, 15% dark brown clay/lime mud, 1% crystalline limestone
1,020	1,025	Tan wackestone, friable, mollusk fossils, vuggy and moldic porosity, 30% white crystalline dolomite
1,025	1,030	Tan/Cream-colored crystalline dolomite, hard, 20% soft, grey clay/lime mud, low permeability
1,030	1,035	Tan/Cream-colored crystalline dolomite, hard, 10% tan packstone, friable, mollusk fossils, vuggy and moldic porosity
1,035	1,040	Tan/Cream-colored crystalline dolomite, hard, 10% soft, white clay/lime mud, low permeability
1,040	1,045	Tan packstone, friable, mollusk fossils, vuggy and moldic porosity, 30% white crystalline dolomite

1,045	1,050	Tan/Cream-colored crystalline dolomite, hard, 40% tan packstone, friable, mollusk fossils, vuggy and moldic porosity
1,050	1,060	Tan/Cream-colored crystalline dolomite, hard, 10% tan packstone, friable, mollusk fossils, vuggy and moldic porosity
1,060	1,070	Tan/Cream-colored crystalline dolomite, hard, vuggy, 5% white crystalline limestone
1,070	1,080	Tan/Cream-colored crystalline dolomite, hard, vuggy
1,080	1,090	Dark brown crystalline dolomite, hard, vuggy
1,090	1,100	Cream-colored/tan crystalline dolomite, hard, vuggy
1,100	1,105	Cream-colored/tan crystalline dolomite, hard, vuggy, 5% tan packstone, friable, mollusk fossils, vuggy and moldic porosity
1,105	1,110	Cream-colored/tan crystalline dolomite, hard, vuggy
1,110	1,115	Cream-colored/tan crystalline dolomite, hard, vuggy, fewer vugs than previous interval
1,115	1,120	Cream-colored/tan crystalline dolomite, hard, vuggy
1,120	1,130	Cream-colored/tan crystalline dolomite, hard, vuggy, 5% dark brown clay/lime mud
1,130	1,135	Cream-colored/tan crystalline dolomite, hard, vuggy, fewer vugs than previous interval
1,135	1,140	Cream-colored/tan crystalline dolomite, hard, vuggy, 15% white crystalline limestone
1,140	1,150	Cream-colored/tan crystalline dolomite, hard, vuggy, 5% white crystalline limestone
1,150	1,160	Cream-colored/tan crystalline dolomite, hard, vuggy, fewer vugs than the previous interval, 5% white crystalline limestone
1,160	1,165	Brown crystalline dolomite, hard, vuggy, fewer vugs than the previous interval, 5% white crystalline limestone
1,165	1,170	Brown crystalline dolomite, hard, vuggy, fewer vugs than the previous interval, 1% white crystalline limestone
1,170	1,180	Dark brown dolomite, hard, ''sucrosic'', some vugs, otherwise low permeability

1,180	1,185	Tan packstone, friable, mollusk fossils, vuggy and moldic porosity, 40% dark brown dolomite, hard, "sucrosic"
1,185	1,205	Tan dolomite, hard, ''sucrosic'', some vugs, otherwise low permeability, 5% tan crystalline dolomite
1,205	1,210	Dark brown dolomite, hard, ''sucrosic'', some vugs, otherwise low permeability, 5% dark brown crystalline dolomite
1,210	1,215	Tan dolomite, hard, ''sucrosic'', some vugs, otherwise low permeability, 5% tan crystalline dolomite
1,215	1,230	Dark brown dolomite, hard, ''sucrosic'', 30 % tan grainstone, friable, intergranular porosity
1,230	1,235	Dark brown dolomite, hard, ''sucrosic'', dense, low permeability
1,235	1,240	Dark brown dolomite, hard, ''sucrosic'', dense, low permeability, 10% dark brown crystalline dolomite
1,240	1,245	Grey crystalline dolomite, hard, dense, low permeability, 40% dark brown dolomite, hard, "sucrosic", vuggy
1,245	1,250	Dark brown dolomite, hard, ''sucrosic'', vuggy, 40% grey crystalline dolomite, hard, dense, low permeability
1,250	1,255	Grey crystalline dolomite, hard, dense, low permeability, 40% dark brown dolomite, hard, "sucrosic", vuggy
1,255	1,265	Tan dolomite, hard, "sucrosic", some vugs, 30% tan packstone, friable, mollusk fossils, vuggy and modlic porosity
1,265	1,270	Grey crystalline dolomite, hard, dense, low permeability, 40% dark brown dolomite, hard, ''sucrosic'', vuggy
1,270	1,275	Tan dolomite, hard, ''sucrosic'', some vugs, 15% offwhite packstone, friable, mollusk fossils, vuggy and modlic porosity, 5% grey crystalline dolomite
1,275	1,285	Tan dolomite, hard, ''sucrosic'', some vugs, 5% grey crystalline dolomite
1,285	1,320	Tan dolomite, hard, ''sucrosic'', some vugs, 30% offwhite packstone, friable, mollusk fossils, vuggy and modlic porosity, 5% grey crystalline dolomite
1,320	1,340	Tan packstone, friable, mollusk fossils, vuggy and modlic porosity, 20% grey crystalline dolomite, hard, low permeability
1,340	1,345	Tan/grey packstone, friable, mollusk fossils, vuggy and modlic porosity, 20% grey crystalline dolomite, hard, low permeability

-							
1,345	1,350	Grey packstone, friable, mollusk fossils, vuggy and modlic porosity, 5% brown crystalline dolomite, hard, low permeability					
1,350	1,370	Grey grainstone, friable, mollusk fossils, vuggy and modlic porosity, hard, low permeability					
1,370	1,385	Grey grainstone, friable, mollusk fossils, vuggy and modlic porosity, 5% anyhydrite, hard, low permeability					
1,385	1,430	Grey grainstone, friable, mollusk fossils, vuggy and modlic porosity, 5% anyhydrite, 20% brown dolomite, hard, low permeability					
1,430	1,445	Grey grainstone, friable, mollusk fossils, vuggy and modlic porosity, 5% anyhydrite, hard, low permeability					
1,445	1,460	Dark brown to brown dolomite, hard, "sucrosic", some vugs, 10% light grey grainstone, friable, mollusk fossils, vuggy and modlic porosity					
1,460	1,480	Dark brown to brown dolomite, hard, ''sucrosic'', some vugs, 10% anhydrite					
1,480	1,490	Dark brown to brown dolomite, hard, ''sucrosic'', some vugs, 45% anhydrite					
1,490	1,500	Dark brown to brown dolomite, hard, "sucrosic", some vugs, 45% anhydrite, interbedded with white sticky clay					
1,500	1,515	Brown dolomite, hard, ''sucrosic'', some vugs, 45% anhydrite					
1,515	1,520	Brown dolomite, hard, ''sucrosic'', some vugs, 45% anhydrite, interbedded with white sticky clay					
1,520	1,535	Brown dolomite, hard, ''sucrosic'', some vugs, 30% anhydrite					
1,534	1,545	Brown dolomite, hard, ''sucrosic'', some vugs, 30% anhydrite, interbedded with grey sticky clay					
1,545	1,550	Brown dolomite, hard, ''sucrosic'', some vugs, 30% anhydrite					
1,550	1,560	Brown dolomite, hard, ''sucrosic'', some vugs, 20% anhydrite, interbedded with grey sticky clay					
1,560	1,580	Light grey grainstone, moderately hard, vuggy porosity, 5% anyhydrite, 15% brown dolomite, hard, low permeability					
1,580	1,585	Light brown packstone, moderately hard, vuggy porosity, 5% anyhydrite, low permeability					

1,585	1,600	Light brown and light grey grainstone, moderately hard, vuggy porosity, 5% anyhydrite, good permeability
1,600	1,615	Light brown and grey grainstone, moderately hard, vuggy porosity, 5% anyhydrite, good permeability
1,615	1,635	Light brown and grey grainstone, moderately hard, micritic, good permeability
1,635	1,640	Light brown and grey grainstone, friable, micritic, good permeability
1,640	1,655	Light brown grainstone, friable, micritic, good permeability
1,655	1,665	Light grey grainstone, friable, micritic, good permeability
1,665	1,680	Light brown grainstone, friable, micritic, good permeability
1,680	1,690	Light brown grainstone, friable, micritic, 10% phosphate, good permeability
1,690	1,725	Light brown dolomite, hard, crystalline, low permeability
1,725	1,740	Brown dolomite, hard, crystalline, < 10% tan grainstone, low permeability
1,740	1,750	Light tan grainstone, friable, micritic, 20% brown dolomite, moderate permeability
1,750	1,755	Very light tan grainstone, hard, micritic, 15% brown dolomite, moderate permeability
1,755	1,765	Very light tan grainstone, hard, micritic, 25% brown dolomite, moderate permeability
1,765	1,775	Tan grainstone, moderately hard, micritic, good permeability
1,775	1,780	Dark brown dolomite, hard, crystalline, 40% tan grainstone, low permeability
1,780	1,785	Light tan/light grey grainstone, hard, sucrosic, good permeability
1,790	1,805	Brown dolomite, hard, crystalline, low permeability
1,805	1,820	Grey dolostone, moderately hard, low permeability
1,820	1,835	Brown dolomite, very hard, crystalline, low permeability
1,835	1,855	Dark brown dolomite, very hard, crystalline, low permeability
1,855	1,865	Very light brown dolomite, very hard, crystalline, low permeability
1,865	1,870	Off white grainstone, moderately hard, sucrosic, good permeability

1,870	1,880	Off white grainstone, moderately hard, sucrosic, 15% brown dolomite, good permeability				
1,880	1,885	Grey and tan grainstone, moderately hard, sucrosic, 20% brown dolomite				
1,885	1,915	Brown dolomite, very hard, crystalline, low permeability				
1,915	1,925	Grey grainstone, hard, sucrosic, good permeability				
1,925	1,955	Brown dolomite, very hard, crystalline, low permeability				
1,955	1,960	Light grey grainstone, hard, sucrosic, 10% shell fragments, good permeability				
1,960	1,965	Brown dolomite, very hard, crystalline, low permeability				
1,965	1,970	Light grey grainstone, hard, sucrosic, 10% shell fragments, good permeability				
1,970	1,990	Brown dolomite, very hard, crystalline, low permeability				
1,990	2,015	Tan and light grey grainstone, friable, sucrosic, good permeability				
2,015	2,095	Grey grainstone, hard, sucrosic, good permeability				
2,095	2,100	Dark grey packstone, hard, sucrosic, 20% white lime mud, low permeability				

Lithologic Descriptions Florida Geological Survey

LITHOLOGIC WELL LOG PRINTOUT

WELL NUMBER: W-18445 TOTAL DEPTH: 2100 FT. 420 SAMPLES FROM 0 TO 2100 FT.

COMPLETION DATE: 07/03/03 OTHER TYPES OF LOGS AVAILABLE - NONE

OWNER/DRILLER:SFWMD/DIVERSIFIED DRILLING CORP.

WORKED BY:E. DORN 7/29/2003 SECTION BCC

0.	- 75.	090UDSC	UNDIFFERENTIATED SAND AND CLAY	
75.	- 1565.	124AVPK	AVON PARK FM.	
1565.	- 2100.	124OLDM	OLDSMAR LIMESTONE	

- 0 5 SAND; TRANSPARENT TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY GRAIN SIZE: FINE; RANGE: VERY FINE TO COARSE ROUNDNESS: ANGULAR TO SUB-ROUNDED; HIGH SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: PHOSPHATIC SAND-01% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: NO FOSSILS
- 5 10 AS ABOVE
- 10 15 SAND; TRANSPARENT TO GRAYISH BROWN POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY GRAIN SIZE: FINE; RANGE: FINE TO COARSE ROUNDNESS: ANGULAR TO SUB-ROUNDED; HIGH SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: PHOSPHATIC SAND-01% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: NO FOSSILS
- 15 20 SAND; TRANSPARENT TO DARK YELLOWISH BROWN POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY GRAIN SIZE: FINE; RANGE: FINE TO COARSE ROUNDNESS: ANGULAR TO SUB-ROUNDED; HIGH SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: PHOSPHATIC SAND- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: NO FOSSILS
- 20 25 SAND; TRANSPARENT TO GRAYISH BROWN POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY GRAIN SIZE: MEDIUM; RANGE: FINE TO COARSE ROUNDNESS: SUB-ANGULAR TO SUB-ROUNDED; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: IRON STAIN- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: NO FOSSILS

SOURCE - FGS

COUNTY - ORANGE LOCATION: T.24S R.27E S.23 LAT = 28D 28M 18S LON = 81D 32M 05S ELEVATION: 115 FT

- 25 30 AS ABOVE
- 30 35 SAND; TRANSPARENT TO GRAYISH BROWN POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: SUB-ANGULAR TO ANGULAR; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: PLANT REMAINS-01% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: PLANT REMAINS
- 35 40 SAND; TRANSPARENT TO YELLOWISH GRAY POROSITY: INTERGRANULAR, POSSIBLY HIGH PERMEABILITY GRAIN SIZE: FINE; RANGE: VERY FINE TO VERY COARSE ROUNDNESS: ANGULAR TO ROUNDED; MEDIUM SPHERICITY UNCONSOLIDATED ACCESSORY MINERALS: PLANT REMAINS- T%, PHOSPHATIC SAND-01% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: PLANT REMAINS
- 40 45 CLAY; MODERATE LIGHT GRAY TO LIGHT OLIVE GRAY POROSITY: INTERGRANULAR, LOW PERMEABILITY; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: QUARTZ SAND-15%, ORGANICS- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: PLANT REMAINS
- 45 50 SAND; YELLOWISH GRAY TO MODERATE LIGHT GRAY POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: ANGULAR TO SUB-ANGULAR; MEDIUM SPHERICITY POOR INDURATION CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: CLAY-20%, ORGANICS-01% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: PLANT REMAINS
- 50 55 AS ABOVE
- 55 60 SAND; LIGHT OLIVE GRAY TO OLIVE GRAY POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: ANGULAR TO SUB-ANGULAR; HIGH SPHERICITY POOR INDURATION CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: CLAY-10% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: NO FOSSILS
- 60 65 SAND; LIGHT OLIVE GRAY TO GRAYISH BROWN POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO MEDIUM ROUNDNESS: ANGULAR TO SUB-ANGULAR; HIGH SPHERICITY POOR INDURATION CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: CLAY-07%, PLANT REMAINS- T% OTHER FEATURES: UNWASHED SAMPLE

FOSSILS: PLANT REMAINS

- 65 70 SAND; LIGHT OLIVE GRAY TO GRAYISH BROWN POROSITY: INTERGRANULAR GRAIN SIZE: FINE; RANGE: VERY FINE TO VERY COARSE ROUNDNESS: ANGULAR TO ROUNDED; HIGH SPHERICITY POOR INDURATION CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: CLAY-05%, PLANT REMAINS-01% ORGANICS-02% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: PLANT REMAINS
- 70 75 AS ABOVE
- 75 80 WACKESTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MEDIUM; RANGE: COARSE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: CLAY-10%, QUARTZ SAND-03% ORGANICS-03% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: FOSSIL FRAGMENTS
- 80 85 WACKESTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MEDIUM; RANGE: COARSE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND-02%, PHOSPHATIC GRAVEL-07% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA, FOSSIL FRAGMENTS Dictyoconus Americanus
- 85 90 AS ABOVE
- 90 95 AS ABOVE
- 95 100 WACKESTONE; YELLOWISH GRAY TO LIGHT GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND-01% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: FOSSIL FRAGMENTS
- 100 105 WACKESTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE

20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: ECHINOID Driller's mud or cement present

- 105 110 WACKESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA Dictyoconus
- 110 115 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 80% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: FOSSIL FRAGMENTS DRILLER'S MUD/CEMENT PRESENT
- 115 120 AS ABOVE
- 120 125 AS ABOVE
- 125 130 AS ABOVE
- 130 135 AS ABOVE
- 135 140 WACKESTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA DICTYOCONUS
- 140 145 WACKESTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX

OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA DICTYOCONUS

- 145 150 AS ABOVE
- 150 155 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 60% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: LOW RECRYSTALLIZATION, UNWASHED SAMPLE FOSSILS: FOSSIL MOLDS, BENTHIC FORAMINIFERA POSSIBLE DRILLER'S CEMENT PRESENT; DICTYOCONUS
- 155 160 WACKESTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T%, ORGANICS- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA DICTYOCONUS
- 160 165 AS ABOVE
- 165 170 WACKESTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 45% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA DICTYOCONUS; SAND IS VERY COARSE AND ANGULAR; POSSIBLE DRILLER'S CEMENT PRESENT.
- 170 175 MUDSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA POSSIBLE DRILLER'S CEMENT PRESENT

- 175 180 WACKESTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 25% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T% OTHER FEATURES: UNWASHED SAMPLE
 - 180 185 WACKESTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: ECHINOID
 - 185 190 WACKESTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 25% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T% OTHER FEATURES: UNWASHED SAMPLE
 - 190 195 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MEDIUM; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: QUARTZ SAND- T% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: BENTHIC FORAMINIFERA DICTYOCONUS
 - 195 200 MUDSTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: FINE TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: UNWASHED SAMPLE
 - 200 205 AS ABOVE
 - 205 210 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL

15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: FOSSIL FRAGMENTS

- 210 215 AS ABOVE
- 215 220 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE, LOW RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS
- 220 225 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE 25% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE
- 225 230 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: PELLET, CALCILUTITE 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: UNWASHED SAMPLE, LOW RECRYSTALLIZATION DOLOMITIC
- 230 235 AS ABOVE
- 235 240 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 35% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: FOSSIL FRAGMENTS
- 240 245 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION

CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE FOSSILS: FOSSIL FRAGMENTS

- 245 250 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 25% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: MEDIUM TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: UNWASHED SAMPLE, LOW RECRYSTALLIZATION DOLOMITIC FOSSILS: FOSSIL FRAGMENTS
- 250 255 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, MOLDIC GRAIN TYPE: CALCILUTITE, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: LOW RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS, FOSSIL MOLDS DICTYOCONUS; GREY CAREONATE PRESENT - POSSIBLE CASING CEMENT. SUBSTANCE IS A LIGHT GRAY WITH VERY FINE-GRAINED SAND, APPEARS TO BE 'SWEATING' EVAPORITES. WILL BE REFERRED TO AS DRILLING CEMENT IN LATER SAMPLES. 20%
- 255 260 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, MOLDIC, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: FOSSIL MOLDS DRILLING CEMENT 20%
- 260 265 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: SUCROSIC, HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS DRILLING CEMENT 25%
- 265 270 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01%, CALCITE- T% OTHER FEATURES: SUCROSIC, HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS DRILLING CEMENT 15%

- 270 275 PACKSTONE; VERY LIGHT ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 70% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-10% FOSSILS: FOSSIL FRAGMENTS DOLOMITE IS CRYPTOCRYSTALLINE, ANHEDRAL, AND POSSESSES NO VUGS.
- 275 280 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS DRILLER'S CEMENT 5%
- 280 285 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: UNWASHED SAMPLE FOSSILS: NO FOSSILS DC 3% (DC= DRILLER'S CEMENT)
- 285 290 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CALCILUTITE; 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: ECHINOID, FOSSIL MOLDS DC 2%
- 290 295 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX

ACCESSORY MINERALS: DOLOMITE-30% OTHER FEATURES: LOW RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS DC 1%

- 295 300 DOLOSTONE; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, VUGULAR, LOW PERMEABILITY 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS DC 3%
- 300 305 SAND; GRAYISH ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, VUGULAR, LOW PERMEABILITY GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS DC 5%
- 305 310 WACKESTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, PELLET, SKELETAL 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-07% FOSSILS: FOSSIL FRAGMENTS
- 310 315 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01% OTHER FEATURES: MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS DC 1%
- 315 320 DOLOSTONE; VERY LIGHT ORANGE TO GRAYISH BROWN POROSITY: INTERGRANULAR, VUGULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS DC 1%

- 320 325 MUDSTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE; 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-30% FOSSILS: NO FOSSILS
 - 325 330 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, PELLET, SKELETAL 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-20%, CALCILUTITE-15% FOSSILS: FOSSIL FRAGMENTS ACCESSORY MICRITE IS IN THE FORM OF A POORLY INDURATED VERY PALE ORANGE TO WHITE CARBONATE MUDSTONE
 - 330 335 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, PELLET 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: FINE; RANGE: MEDIUM TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-05% FOSSILS: FOSSIL FRAGMENTS DC 2%
 - 335 340 LIMESTONE; VERY LIGHT ORANGE TO GRAYISH ORANGE POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CALCILUTITE, PELLET, CRYSTALS 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX FOSSILS: FOSSIL FRAGMENTS TWO KINDS OF LIMESTONE: A CHALKY WACKESTONE (40%) AND A RECRYSTALLIZED LIMESTONE WHOSE ORIGINAL FABRIC IS NOT APPARENT (60%)
 - 340 345 LIMESTONE; VERY LIGHT ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, CRYSTALS, PELLET 02% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-10%, DOLOMITE-05% FOSSILS: NO FOSSILS ACCESSORY LIMESTONE IS CHALKY, VERY PALE ORANGE MUDSTONE
 - 345 350 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, VUGULAR, MOLDIC

GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 80% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MEDIUM; RANGE: COARSE TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-02% FOSSILS: FOSSIL FRAGMENTS DC 7%

- 350 360 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS
- 360 365 WACKESTONE; VERY LIGHT ORANGE TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 30% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-35% FOSSILS: FOSSIL FRAGMENTS DC 1%
- 365 370 DOLOSTONE; MODERATE YELLOWISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 370 375 DOLOSTONE; DARK YELLOWISH BROWN TO VERY LIGHT ORANGE POROSITY: INTERCRYSTALLINE, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-20% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 375 380 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE

RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-03% OTHER FEATURES: SUCROSIC, HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS DC 1%

- 380 385 AS ABOVE
- 385 390 AS ABOVE
- 390 395 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 395 400 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, INTRACLASTS, PELLET 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC; RANGE: COARSE TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-05%, ORGANICS-01% FOSSILS: NO FOSSILS
- 400 405 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR POSSIBLY HIGH PERMEABILITY; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 405 410 AS ABOVE
- 410 415 AS ABOVE
- 415 420 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY
 POROSITY: INTERGRANULAR; 10-50% ALTERED; ANHEDRAL
 GRAIN SIZE: MICROCRYSTALLINE
 RANGE: VERY FINE TO CRYPTOCRYSTALLINE; POOR INDURATION
 CEMENT TYPE(S): DOLOMITE CEMENT
 SEDIMENTARY STRUCTURES: LAMINATED
 ACCESSORY MINERALS: LIMESTONE-02%
 FOSSILS: NO FOSSILS

- 420 425 DOLOSTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; MODERATE INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 425 430 AS ABOVE
- 430 435 DOLOSTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; MODERATE INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: LIMESTONE-25% FOSSILS: NO FOSSILS
- 435 440 AS ABOVE
- 440 445 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, PELLET 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC; RANGE: COARSE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-01% OTHER FEATURES: DOLOMITIC, HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 445 450 AS ABOVE
- 450 455 AS ABOVE
- 455 460 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CALCILUTITE, CRYSTALS 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-01% OTHER FEATURES: DOLOMITIC, HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 460 465 AS ABOVE
- 465 470 AS ABOVE
- 470 475 AS ABOVE
- 475 480 AS ABOVE
- 480 485 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY

POROSITY: INTERGRANULAR GRAIN TYPE: CALCILUTITE, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO LITHOGRAPHIC POOR INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: LOW RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS

- 485 490 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 10-50% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-03% OTHER FEATURES: CALCAREOUS, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 490 495 AS ABOVE
- 495 500 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, PELLET 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC; RANGE: VERY FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: LOW RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 500 505 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CALCILUTITE, CRYSTALS 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC; RANGE: VERY FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 505 510 AS ABOVE
- 510 515 AS ABOVE
- 515 520 AS ABOVE
- 520 525 AS ABOVE
- 525 530 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT

ACCESSORY MINERALS: LIMESTONE-05% FOSSILS: NO FOSSILS DC 1%

- 530 535 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% FOSSILS: NO FOSSILS
- 535 540 AS ABOVE
- 540 545 AS ABOVE
- 545 550 AS ABOVE
- 550 555 AS ABOVE
- 555 560 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CALCILUTITE, CRYSTALS 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC; RANGE: VERY FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-01% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 560 565 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE (S): DOLOMITE CEMENT FOSSILS: NO FOSSILS
- 565 570 AS ABOVE
- 570 575 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-02% FOSSILS: NO FOSSILS
- 575 580 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED SUBHEDRAL

GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: CALCAREOUS, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS

- 580 585 AS ABOVE
- 585 590 AS ABOVE DC 1%
- 590 595 AS ABOVE
- 595 600 AS ABOVE
- 600 605 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX OTHER FEATURES: CALCAREOUS, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS DC 2%
- 605 610 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-02% OTHER FEATURES: DOLOMITIC, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 610 615 AS ABOVE
- 615 620 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-15% OTHER FEATURES: DOLOMITIC, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 620 625 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE

GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: ANHYDRITE-01% OTHER FEATURES: CALCAREOUS, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS

- 625 630 AS ABOVE
- 630 635 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-05%, ORGANICS-01% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, CALCAREOUS FOSSILS: NO FOSSILS
- 635 640 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-01% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 640 645 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-03%, DOLOMITE-02% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 645 650 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, CALCAREOUS FOSSILS: NO FOSSILS
- 650 655 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE

GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-07%, ORGANICS-01% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, CALCAREOUS FOSSILS: NO FOSSILS DC 2%

- 655 660 AS ABOVE
- 660 665 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-02% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS DC 2%
- 665 670 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-02% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS DC 1%
- 670 675 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-05% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS DC 1%
- 675 680 AS ABOVE
- 680 685 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-02% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS

- 685 690 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-02% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS DC 1%
- 690 695 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, VUGULAR, MOLDIC GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS DC 1%
- 695 700 DOLOSTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, MOLDIC, VUGULAR; 10-50% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, CALCAREOUS FOSSILS: NO FOSSILS DC 4%
- 700 705 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, MOLDIC, VUGULAR GRAIN TYPE: CRYSTALS, CALCILUTITE 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS- T%, DOLOMITE-01% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC DC 2%
- 705 710 AS ABOVE
- 710 715 AS ABOVE
- 715 720 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS

- 720 725 AS ABOVE
- 725 730 AS ABOVE
- 730 735 AS ABOVE
- 735 740 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-10%, ORGANICS- T% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 740 745 AS ABOVE
- 745 750 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 750 755 AS ABOVE
- 755 760 AS ABOVE
- 760 765 AS ABOVE
- 765 770 AS ABOVE
- 770 775 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 775 780 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE

GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS

- 780 785 AS ABOVE
- 785 790 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 790 795 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 795 800 AS ABOVE
- 800 805 AS ABOVE
- 805 810 AS ABOVE
- 810 815 AS ABOVE
- 815 820 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 820 825 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-01% OTHER FEATURES: CALCAREOUS

FOSSILS: NO FOSSILS

- 825 830 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-02% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS DC 1%
- 830 835 AS ABOVE
- 835 840 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 840 845 AS ABOVE
- 845 850 AS ABOVE
- 850 855 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: VUGULAR, MOLDIC, INTERGRANULAR GRAIN TYPE: CALCILUTITE, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: DOLOMITIC FOSSILS: NO FOSSILS
- 855 860 AS ABOVE
- 860 865 SILT-SIZE DOLOMITE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR; POOR INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-03%, ORGANICS-02% LIMESTONE-03% FOSSILS: NO FOSSILS
- 865 870 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT

ACCESSORY MINERALS: LIMESTONE-15%, CLAY-10%, ORGANICS- T% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS

- 870 875 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CLAY-30% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 875 880 CLAY; GRAYISH BROWN TO DARK YELLOWISH ORANGE POROSITY: INTERGRANULAR; POOR INDURATION CEMENT TYPE(S): CLAY MATRIX ACCESSORY MINERALS: GYPSUM-07%, CLAY-01% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 880 885 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-07%, CLAY-01% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 885 890 AS ABOVE
- 890 895 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-01%, LIMESTONE-15% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 895 900 DOLOSTONE; YELLOWISH GRAY TO WHITE POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05% FOSSILS: NO FOSSILS
- 900 905 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE

POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05%, ORGANICS-01% FOSSILS: NO FOSSILS

- 905 910 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-03%, ORGANICS-02% FOSSILS: NO FOSSILS
- 910 915 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-10%, CHERT-15% FOSSILS: NO FOSSILS
- 915 920 AS ABOVE
- 920 925 DOLOSTONE; YELLOWISH GRAY TO WHITE POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05%, ORGANICS-01% FOSSILS: NO FOSSILS
- 925 930 DOLOSTONE; YELLOWISH GRAY TO WHITE POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05% FOSSILS: NO FOSSILS
- 930 935 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION

CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-02%, ORGANICS-02% OTHER FEATURES: LOW RECRYSTALLIZATION FOSSILS: NO FOSSILS

- 935 940 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-40%, ORGANICS-01% FOSSILS: NO FOSSILS GYPSUM IS IN TWO FORMS: PLATY, FIBROUS GYPSUM AND A CHALKY WHITE POWDER. LATTER FORMS A LOOSE CEMENT BETWEEN DOLOMITE CLASTS; PROBABLY NOT IN ORIGINAL FORM - COULD BE RE-PRECIPITATED.
- 940 945 AS ABOVE
- 945 950 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-02% FOSSILS: NO FOSSILS GYPSUM CONTAINED WITHIN SOME PORE SPACES OF ROCK
- 950 955 DOLOSTONE; YELLOWISH GRAY TO WHITE POROSITY: VUGULAR, INTERGRANULAR, MOLDIC; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-20%, CHERT-01% FOSSILS: NO FOSSILS
- 955 960 DOLOSTONE; YELLOWISH GRAY TO GRAYISH ORANGE POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-03% FOSSILS: NO FOSSILS

- 960 965 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05% FOSSILS: NO FOSSILS
- 965 970 AS ABOVE
- 970 975 AS ABOVE
- 975 980 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-03%, LIMESTONE-10% FOSSILS: NO FOSSILS
- 980 985 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05%, LIMESTONE-05% FOSSILS: NO FOSSILS
- 985 990 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-15%, LIMESTONE-05% FOSSILS: NO FOSSILS
- 990 995 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-02%, ORGANICS- T% FOSSILS: NO FOSSILS DC 1%

- 995 1000 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-01%, ORGANICS-01% FOSSILS: NO FOSSILS
- 1000 1005 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-01%, ORGANICS-01% FOSSILS: NO FOSSILS
- 1005 1010 AS ABOVE

1010 - 1015 DOLOSTONE; DARK YELLOWISH BROWN TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: GYPSUM-02%, ORGANICS-07% FOSSILS: NO FOSSILS

- 1015 1020 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR GRAIN TYPE: CALCILUTITE, CRYSTALS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-03%, ORGANICS- T% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 1020 1025 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-30% FOSSILS: NO FOSSILS DC 2%

1025 - 1030 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-03%, CHERT-01% FOSSILS: NO FOSSILS

- 1030 1035 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-07%, ORGANICS- T% FOSSILS: NO FOSSILS
- 1035 1040 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, MOLDIC, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-15% FOSSILS: NO FOSSILS
- 1040 1045 AS ABOVE
- 1045 1050 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-05% FOSSILS: NO FOSSILS
- 1050 1055 LIMESTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-01% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS

- 1055 1060 DOLOSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: VUGULAR, INTERGRANULAR; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: GYPSUM-01%, ORGANICS- T% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 1060 1065 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: CRYSTALS, CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: GYPSUM-01% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 1065 1070 AS ABOVE
- 1070 1075 AS ABOVE
- 1075 1080 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT FOSSILS: NO FOSSILS SAMPLE CONTAINS A SMALL (T%) AMOUNT OF LARGE (1-2 MM) PERFECTLY SHAPED DOLOMITE RHOMBS.
- 1080 1085 AS ABOVE
- 1085 1090 AS ABOVE
- 1090 1095 AS ABOVE
- 1095 1100 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: ORGANICS-01%, QUARTZ- T% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 1100 1105 AS ABOVE
- 1105 1110 AS ABOVE

- 1110 1115 LIMESTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: CRYSTALS, PELLET 02% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS- T% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 1115 1120 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-15% FOSSILS: NO FOSSILS
- 1120 1125 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-10%, QUARTZ-01% FOSSILS: NO FOSSILS
- 1125 1130 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ORGANICS-01%, QUARTZ-01% FOSSILS: NO FOSSILS
- 1130 1135 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: QUARTZ-05%, ORGANICS-01% FOSSILS: NO FOSSILS

1135 - 1140 AS ABOVE

1140 - 1145 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: QUARTZ-05%, ORGANICS-05% FOSSILS: NO FOSSILS

- 1145 1150 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERGRANULAR, INTERCRYSTALLINE 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: QUARTZ-07%, ORGANICS-05% FOSSILS: NO FOSSILS
- 1150 1155 AS ABOVE
- 1155 1160 AS ABOVE
- 1160 1165 AS ABOVE
- 1165 1170 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: VUGULAR, INTERCRYSTALLINE, INTERGRANULAR 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1170 1175 AS ABOVE
- 1175 1180 DOLOSTONE; GRAYISH BROWN TO GRAYISH ORANGE POROSITY: VUGULAR, INTERCRYSTALLINE, INTERGRANULAR 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: QUARTZ-03%, LIMESTONE-01% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS SAMPLE APPEARS TO HAVE CAVITY-FILLING LIMESTONE- POSSIBLE RESULT OF SEVERAL DIAGENETIC EVENTS

1180 - 1185 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

- 1185 1190 AS ABOVE
- 1190 1195 AS ABOVE
- 1195 1200 AS ABOVE
- 1200 1205 AS ABOVE
- 1205 1210 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1210 1215 LIMESTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR GRAIN TYPE: PELLET, CALCILUTITE 35% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: CHERT-03%, ORGANICS-01%, DOLOMITE-15% OTHER FEATURES: DOLOMITIC, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1215 1220 AS ABOVE
- 1220 1225 AS ABOVE
- 1225 1230 AS ABOVE

1230 - 1235 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-40% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1235 - 1240 AS ABOVE

- 1240 1245 AS ABOVE
- 1245 1250 AS ABOVE
- 1250 1255 AS ABOVE
- 1255 1260 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: QUARTZ- T% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1260 1265 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-45% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1265 1270 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-20% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1270 1275 AS ABOVE
- 1275 1280 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-05% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS DC 3%

1280 - 1285 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-05% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1285 - 1290 AS ABOVE

1290 - 1295 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-03%, LIMESTONE-10% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1295 - 1300 DOLOSTONE; DARK YELLOWISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-05%, LIMESTONE-03% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1300 - 1305 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05%, CHERT-07%, QUARTZ-02% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

- 1305 1310 AS ABOVE
- 1310 1315 AS ABOVE
- 1315 1320 AS ABOVE

- 1320 1325 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT SEDIMENTARY STRUCTURES: LAMINATED ACCESSORY MINERALS: LIMESTONE-15%, CHERT-05%, QUARTZ-01% ORGANICS- T% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS DC T%
- 1325 1330 AS ABOVE
- 1330 1335 AS ABOVE
- 1335 1340 LIMESTONE; YELLOWISH GRAY TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-20% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS POSSIBLE DOLOMITE OF CALCITE CRYSTALS WITHIN LIMESTONE FABRIC IS REMINISCENT OF DRUSY CALCITE - EUHEDRAL TO SUBHEDRAL CRYSTALS BETWEEN LIMESTONE CLASTS; SAMPLE HAS BEEN HEAVILY RECRYSTALLIZED.
- 1340 1345 AS ABOVE
- 1345 1350 AS ABOVE
- 1350 1355 LIMESTONE; YELLOWISH GRAY TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-15% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1355 1360 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05%, ORGANICS-01% FOSSILS: NO FOSSILS

1360 - 1365 NO SAMPLES

1365 - 1370 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT ACCESSORY MINERALS: DOLOMITE-02% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS

1370 - 1375 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT ACCESSORY MINERALS: DOLOMITE-05%, CHERT- T% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS

1375 - 1380 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT ACCESSORY MINERALS: CHERT-25%, DOLOMITE-03% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS

1380 - 1385 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: FOSSIL MOLDS

1385 - 1390 DOLOSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CHERT-01% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1390 - 1395 AS ABOVE

D-51

1395 - 1400 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT ACCESSORY MINERALS: CHERT-01% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC SUCROSIC FOSSILS: NO FOSSILS

```
1400 - 1405 AS ABOVE
```

- 1405 1410 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT ACCESSORY MINERALS: CHERT-01%, DOLOMITE-02% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC SUCROSIC FOSSILS: NO FOSSILS
- 1410 1415 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SILICIC CEMENT ACCESSORY MINERALS: CHERT-01%, DOLOMITE-07% OTHER FEATURES: HIGH RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 1415 1420 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SPARRY CALCITE CEMENT ACCESSORY MINERALS: DOLOMITE-05%, CHERT-01%, ORGANICS-01% OTHER FEATURES: DOLOMITIC, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS

1420 - 1425 AS ABOVE

- 1425 1430 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, SPARRY CALCITE CEMENT ACCESSORY MINERALS: DOLOMITE-02% OTHER FEATURES: DOLOMITIC, MEDIUM RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1430 1435 AS ABOVE
- 1435 1440 AS ABOVE
- 1440 1445 AS ABOVE
- 1445 1450 DOLOSTONE; YELLOWISH GRAY TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-15%, CHERT-20%, QUARTZ-01% FOSSILS: NO FOSSILS
- 1450 1455 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05%, CHERT-30%, QUARTZ-02% FOSSILS: NO FOSSILS
- 1455 1460 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH ORANGE POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: QUARTZ-01% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1460 1465 AS ABOVE
- 1465 1470 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01% FOSSILS: NO FOSSILS

1470 - 1475 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ANHYDRITE-03%, LIMESTONE-01% FOSSILS: FOSSIL MOLDS

- 1475 1480 AS ABOVE
- 1480 1485 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ANHYDRITE-30%, CHERT-10% FOSSILS: NO FOSSILS
- 1485 1490 AS ABOVE
- 1490 1495 DOLOSTONE; YELLOWISH GRAY TO WHITE POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, ANHYDRITE CEMENT ACCESSORY MINERALS: ANHYDRITE-35%, CHERT-05% FOSSILS: NO FOSSILS ANHYDRITE FORMS A THICK LAYER AND MATRIX BETWEEN CLASTS OF DOLOMITE AND CHERT; CHUNKS DIS-AGGREGATE WHEN WET; PROBABLE RE-FORMATION IN THIS FORM AFTER SAMPLE WAS TAKEN.
- 1495 1500 AS ABOVE
- 1500 1505 DOLOSTONE; GRAYISH ORANGE TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ANHYDRITE-25% FOSSILS: NO FOSSILS
- 1505 1510 AS ABOVE
- 1510 1515 AS ABOVE

- 1515 1520 DOLOSTONE; YELLOWISH GRAY TO WHITE POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, ANHYDRITE CEMENT ACCESSORY MINERALS: ANHYDRITE-45% FOSSILS: NO FOSSILS COMMENT AS IN 1495'
- 1520 1525 AS ABOVE
- 1525 1530 DOLOSTONE; GRAYISH ORANGE TO WHITE POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ANHYDRITE-05% FOSSILS: NO FOSSILS
- 1530 1535 AS ABOVE
- 1535 1540 DOLOSTONE; WHITE TO GRAYISH ORANGE POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ANHYDRITE-03% FOSSILS: NO FOSSILS SAMPLE COVERED WITH A LAYER OF WHITE MICRITE, ACCURATE PERCENTAGES DIFFICULT TO GAUGE
- 1540 1545 AS ABOVE
- 1545 1550 DOLOSTONE; GRAYISH BROWN TO WHITE POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: ANHYDRITE-03% FOSSILS: NO FOSSILS
- 1550 1555 DOLOSTONE; WHITE TO GRAYISH ORANGE POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: CALCILUTITE-30%, ANHYDRITE-05% LIMESTONE-10% FOSSILS: NO FOSSILS COMMENT AS IN 1540'

1555 - 1560 AS ABOVE

1560 - 1565 AS ABOVE

- 1565 1570 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL 80% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-03% FOSSILS: FOSSIL FRAGMENTS
- 1570 1575 LIMESTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERCRYSTALLINE, INTERGRANULAR GRAIN TYPE: CRYSTALS, PELLET 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: LITHOGRAPHIC; RANGE: VERY FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-02% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1575 1580 AS ABOVE
- 1580 1585 AS ABOVE
- LIMESTONE; MODERATE BLUISH GRAY TO YELLOWISH GRAY 1585 - 1590 POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR GRAIN TYPE: CRYSTALS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-45%, ANHYDRITE- T% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS SAMPLE IS COMPOSED OF TWO TYPES OF LIMESTONE - THE DARK CRYSTALLINE VARIETY THAT COMPOSES 55% OF THE SAMPLE, AND A YELLOWISH GRAY PACKSTONE COMPOSED OF MICRITE, PELLETS, AND SOME SKELETAL FRAGMENTS. THIS PORTION FO THE SAMPLE IS ALSO WELL INDURATED WITH A CALCILUTITE CEMENT. IT CONTAINS BOTH VUGULAR AND INTERPARTICLE POROSITY; 45% OF SAMPLE.
- 1590 1595 AS ABOVE
- 1595 1600 LIMESTONE; DARK GRAY TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR GRAIN TYPE: CRYSTALS GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS COMMENT AS ABOVE.

- 1600 1605 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, VUGULAR, INTERCRYSTALLINE GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 80% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-10% OTHER FEATURES: MEDIUM RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS MAJORITY OF SAMPLE IS NOW COMPOSED OF PACKSTONE W/CRYSTALLINE LIMESTONE BEING IN THE MINORITY.
- 1605 1610 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, VUGULAR, INTERCRYSTALLINE GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 80% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-01% OTHER FEATURES: MEDIUM RECRYSTALLIZATION FOSSILS: FOSSIL FRAGMENTS
- 1610 1615 AS ABOVE
- 1615 1620 AS ABOVE
- 1620 1625 AS ABOVE
- 1625 1630 AS ABOVE
- 1630 1635 AS ABOVE
- 1635 1640 AS ABOVE
- 1640 1645 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 85% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS-01%, DOLOMITE-01% FOSSILS: FOSSIL FRAGMENTS, FOSSIL MOLDS
- 1645 1650 AS ABOVE
- 1650 1655 AS ABOVE
- 1655 1660 AS ABOVE
- 1660 1665 AS ABOVE

- 1670 1675 LIMESTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, PELLET 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-01%, CHERT- T%, ORGANICS- T% OTHER FEATURES: LOW RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1675 1680 PACKSTONE; YELLOWISH GRAY TO VERY LIGHT ORANGE POROSITY: INTERGRANULAR, VUGULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 85% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: CHERT-02%, DOLOMITE-01%, ORGANICS-02% FOSSILS: FOSSIL FRAGMENTS
- 1680 1685 WACKESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: VERY FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ORGANICS-01%, DOLOMITE- T%, CHERT- T% FOSSILS: NO FOSSILS
- 1685 1690 AS ABOVE
- 1690 1695 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-05%, CHERT- T% FOSSILS: NO FOSSILS
- 1695 1700 AS ABOVE
- 1700 1705 AS ABOVE
- 1705 1710 AS ABOVE

- 1710 1715 AS ABOVE
- 1715 1720 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-20%, CHERT- T% FOSSILS: NO FOSSILS
- 1720 1725 AS ABOVE
- 1725 1730 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-20%, CHERT- T% FOSSILS: NO FOSSILS
- 1730 1735 DOLOSTONE; MODERATE YELLOWISH BROWN TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-15%, CHERT- T% FOSSILS: NO FOSSILS SOME SUCROSIC DOLOMITE PRESENT (15% OF SAMPLE)

1735 - 1740 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: VERY FINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-30% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1740 - 1745 PACKSTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERGRANULAR, VUGULAR, INTERCRYSTALLINE GRAIN TYPE: PELLET, SKELETAL, CALCILUTITE 85% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-10% FOSSILS: NO FOSSILS

```
1745 - 1750 AS ABOVE
```

1750 - 1755 AS ABOVE

- 1755 1760 WACKESTONE; YELLOWISH GRAY TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, VUGULAR, INTERCRYSTALLINE GRAIN TYPE: CALCILUTITE, PELLET 40% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-20% FOSSILS: NO FOSSILS
- 1760 1765 DOLOSTONE; MODERATE YELLOWISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR 50-90% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-35% FOSSILS: NO FOSSILS
- 1765 1770 LIMESTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: CALCILUTITE, OOLITE CLAST GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-30% FOSSILS: NO FOSSILS MAJORITY OF SAMPLE IS COMPOSED OF A MICRITE MATRIX WITH EUHEDRAL DOLOMITE CRYSTALS GROWING IN IT.
- 1770 1775 AS ABOVE
- 1775 1780 LIMESTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: CALCILUTITE, OOLITE CLAST GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-45% FOSSILS: NO FOSSILS COMMENT AS ABOVE
- 1780 1785 AS ABOVE

1785 - 1790 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, INTERGRANULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: LIMESTONE-05% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1790 - 1795 AS ABOVE

- 1795 1800 AS ABOVE
- 1800 1805 NO SAMPLES

1805 - 1810 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERGRANULAR, INTERCRYSTALLINE; 10-50% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-35% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS EUHEDRAL DOLOMITE IN A MICRITE MATRIX

- 1810 1815 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERGRANULAR, INTERCRYSTALLINE; 10-50% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT, CALCILUTITE MATRIX ACCESSORY MINERALS: CALCILUTITE-30%, LIMESTONE-05% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS COMMENT AS ABOVE
- 1815 1820 AS ABOVE
- 1820 1825 DOLOSTONE; MODERATE YELLOWISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, INTERGRANULAR; 50-90% ALTERED EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02%, CALCILUTITE-02% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1825 1830 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01%, CALCILUTITE-02% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

1830 - 1835 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; EUHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02%, CALCILUTITE-03% OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS

- 1835 1840 AS ABOVE
- 1840 1845 AS ABOVE
- 1845 1850 DOLOSTONE; MODERATE YELLOWISH BROWN TO OLIVE GRAY POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; EUHEDRAL GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1850 1855 AS ABOVE
- 1855 1860 DOLOSTONE; GRAYISH BROWN TO OLIVE GRAY POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; EUHEDRAL GRAIN SIZE: VERY FINE; RANGE: FINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT FOSSILS: NO FOSSILS
- 1860 1865 AS ABOVE
- 1865 1870 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: CALCILUTITE, CRYSTALS, PELLET 15% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-05% OTHER FEATURES: LOW RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1870 1875 AS ABOVE
- 1875 1880 AS ABOVE
- 1880 1885 DOLOSTONE; DARK YELLOWISH BROWN TO GRAYISH ORANGE POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: VERY FINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT FOSSILS: NO FOSSILS
- 1885 1890 AS ABOVE

- 1890 1895 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: VERY FINE RANGE: VERY FINE TO CRYPTOCRYSTALLINE; GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-02% FOSSILS: NO FOSSILS
- 1895 1900 AS ABOVE
- 1900 1905 LIMESTONE; YELLOWISH GRAY TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, INTERGRANULAR GRAIN TYPE: CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: DOLOMITE-30% FOSSILS: NO FOSSILS EUHEDRAL DOLOMITE CRYSTALS IN A MICRITE MATRIX
- 1905 1910 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE- T% FOSSILS: NO FOSSILS
- 1910 1915 DOLOSTONE; GRAYISH BROWN TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR; 50-90% ALTERED ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01% OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 1915 1920 AS ABOVE
- 1920 1925 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE- T% FOSSILS: NO FOSSILS
- 1925 1930 AS ABOVE
- 1930 1935 AS ABOVE
- 1935 1940 AS ABOVE

- 1940 1945 AS ABOVE
- 1945 1950 DOLOSTONE; GRAYISH BROWN TO MODERATE YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: SUCROSIC FOSSILS: NO FOSSILS
- 1950 1955 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT FOSSILS: NO FOSSILS
- 1955 1960 DOLOSTONE; GRAYISH BROWN TO DARK YELLOWISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR; 50-90% ALTERED SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-01% FOSSILS: NO FOSSILS
- 1960 1965 AS ABOVE
- 1965 1970 AS ABOVE
- 1970 1975 AS ABOVE
- 1975 1980 DOLOSTONE; GRAYISH BROWN TO OLIVE GRAY POROSITY: INTERCRYSTALLINE; 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT FOSSILS: NO FOSSILS
- 1980 1985 NO SAMPLES
- 1985 1990 LIMESTONE; VERY LIGHT ORANGE TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR GRAIN TYPE: CALCILUTITE, CRYSTALS, PELLET 05% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC MODERATE INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-05% OTHER FEATURES: LOW RECRYSTALLIZATION FOSSILS: NO FOSSILS

- 1990 1995 LIMESTONE; VERY LIGHT ORANGE TO YELLOWISH GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR GRAIN TYPE: CALCILUTITE, CRYSTALS, PELLET 10% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: MICROCRYSTALLINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-35% OTHER FEATURES: HIGH RECRYSTALLIZATION FOSSILS: NO FOSSILS
- 1995 2000 AS ABOVE
- 2000 2005 AS ABOVE
- 2005 2010 AS ABOVE
- 2010 2015 LIMESTONE; YELLOWISH GRAY TO MODERATE GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR GRAIN TYPE: PELLET, CALCILUTITE, SKELETAL 20% ALLOCHEMICAL CONSTITUENTS GRAIN SIZE: VERY FINE; RANGE: FINE TO LITHOGRAPHIC GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: DOLOMITE-20% OTHER FEATURES: MEDIUM RECRYSTALLIZATION, DOLOMITIC FOSSILS: NO FOSSILS
- 2015 2020 AS ABOVE
- 2020 2025 AS ABOVE
- 2025 2030 AS ABOVE
- 2030 2035 AS ABOVE
- 2035 2040 AS ABOVE
- 2040 2045 DOLOSTONE; GRAYISH ORANGE TO GRAYISH BROWN POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; SUBHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-15% FOSSILS: NO FOSSILS

2045 - 2050 AS ABOVE

- 2050 2055 LIMESTONE; YELLOWISH GRAY TO MODERATE GRAY POROSITY: INTERCRYSTALLINE, INTERGRANULAR, VUGULAR GRAIN TYPE: CRYSTALS, CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT ACCESSORY MINERALS: CHERT- T% OTHER FEATURES: DOLOMITIC FOSSILS: NO FOSSILS
- 2055 2060 AS ABOVE
- 2060 2065 DOLOSTONE; YELLOWISH GRAY TO MODERATE GRAY POROSITY: INTERCRYSTALLINE, VUGULAR, INTERGRANULAR 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT ACCESSORY MINERALS: LIMESTONE-10% FOSSILS: NO FOSSILS
- 2065 2070 AS ABOVE
- 2070 2075 DOLOSTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY POROSITY: INTERGRANULAR, INTERCRYSTALLINE, VUGULAR 50-90% ALTERED; ANHEDRAL GRAIN SIZE: MICROCRYSTALLINE RANGE: MICROCRYSTALLINE TO CRYPTOCRYSTALLINE GOOD INDURATION CEMENT TYPE(S): DOLOMITE CEMENT OTHER FEATURES: CALCAREOUS FOSSILS: NO FOSSILS
- 2075 2080 AS ABOVE
- 2080 2085 AS ABOVE
- 2085 2090 LIMESTONE; YELLOWISH GRAY TO LIGHT OLIVE GRAY POROSITY: INTERGRANULAR, INTERCRYSTALLINE, VUGULAR GRAIN TYPE: CRYSTALS, CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX, DOLOMITE CEMENT OTHER FEATURES: DOLOMITIC FOSSILS: NO FOSSILS
- 2090 2095 AS ABOVE

2095 - 2100 LIMESTONE; LIGHT OLIVE GRAY TO MODERATE LIGHT GRAY POROSITY: INTERGRANULAR, INTERCRYSTALLINE GRAIN TYPE: CRYSTALS, CALCILUTITE GRAIN SIZE: MICROCRYSTALLINE RANGE: VERY FINE TO LITHOGRAPHIC; GOOD INDURATION CEMENT TYPE(S): CALCILUTITE MATRIX ACCESSORY MINERALS: ANHYDRITE-01% OTHER FEATURES: DOLOMITIC FOSSILS: NO FOSSILS

```
2100 TOTAL DEPTH
```

APPENDIX E Primary and Secondary Drinking Water Laboratory Results

Client:	Diversified Drilling
Project Name:	Disney Injection Well
Project Number:	24310
PWS ID#:	
Attention:	Paul Petrey
Phone Number:	
Address:	8801 Maislin Drive

Report No.:	T0310976
Date Sampled:	11/26/03
Date Received:	11/26/03 10:00
Date Reported:	12/23/03

Tampa, FL 33637

Project Description

The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody.

Project Name: Disney Injection Well

1 Approved By: Nissa Mulnick, QA Deputy

If you have any questions, the above named should be contacted.

Advanced Environmenial Laboratories certifies that the test results in this report meet all requirements of the NELAC standards, unless notated otherwise in the body of the report.

Total Number of Pages = iq

Analytical Report

Client: Diversified Drilling

Project Name: Disney Injection Well

Matrix: Water

PWS ID#:

Client Sample ID: Well Tap

Site: Reddy Creek

Report No.: T0310976 Date/Time Sampled: 11/26/03 8:45 Date/Time Received: 11/26/03 10:00

Sampled By: Jason Hopp Shipping Method: AEL Pick-up

Inorganic Analysis

				•							
Paramete	r ID Analytes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab /	Analyst
1005	Arsenic	0.050	T0310976-01	0.0016	mg/L	U	SW6010B	12/2/03 19:36	0.0016	J	KC
1010	Barium	2.0	T0310976-01	0.018	mg/L		SW6010B	12/2/03 19:36	0.00076	J	KC
1015	Cadmium	0.0050	T0310976-01	0.00054	mg/L	I.	SW6010B	12/2/03 19:36	0.00036	J	KC
1020	Chromium	0.10	T0310976-01	0.0012	mg/L	i	SW6010B	12/2/03 19:36	0.0010	J	KC
1030	* Lead	0.015	T0310976-01	0.00091	mg/L	U	SW6010B	12/2/03 19:36	0.00091	J	KC
1036	* Nickel	0.10	T0310976-01	0.00085	mg/L	U	SW6010B	12/2/03 19:36	0.00085	J	KC
1045	Selenium	0.050	T0310976-01	0.0022	mg/L	U	SW6010B	12/2/03 19:36	0.0022	J	KC
1052	Sodium	160	T0310976-01	3.6	mg/L		SW6010B	12/2/03 19:36	0.049	J	KC
1075	Beryllium	0.0040	T0310976-01	0.000059	mg/L	U	SW6010B	12/2/03 19:36	0.000059	J	кс
	and the second	the based of the second state of the second st		6		a a Kasil					

The reported value is between the laboratory method detection limit and the laboratory practical quantilation limit.

The compound was analyzed for but not detected. U

Nickel

DOH certification #E82574 (AEL-JAX) (FL NELAC certification) 3 Comment for Lead

Analyzed 12-04-03 11:34 due to reanalysis.
 Analyzed 12-04-03 11:34 due to reanalysis.
 Analyzed 12-04-03 11:34 due to reanalysis.

MDL Method Reporting Limit

Comment for

Analytical Report

Client: Diversified Drilling

Project Name: Disney Injection Well

Report No.: T0310976 **Date/Time Sampled:** 11/26/03 8:45 **Date/Time Received:** 11/26/03 10:00

PWS ID#:

Matrix: Water

Client Sample ID: Well Tap

Site: Reddy Creek

S	amp	led E	Jason Hopp				
Shipp	ing	Meth	od:	A	EL Pick-up)	
	•			•	-		

Miscellaneous Analytes

Parameter ID	Analytes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab	Analyst
	Total Coliform (MF)		T0310976-01	1	cfu/100ml	U	SM9222B	11/26/0310:30	1.0	Т	DMF
	Total Alkalinity (as CaCO3)		T0310976-01	110	mg/L		E310.1	12/24/03 12:30	5.0	т	DLS
1017	Total Chlorides	250	T0310976-01	7.6	mg/L	i	E325.1	12/6/03 17:18	2.5	т	NBM
1024	Cyanide	0.20	T0310976-01	0.0041	mg/L	U	SM4500CN-E	12/2/03 8:15	0.0041	т	JH
1025	Fluoride	4.0	T0310976-01	0.14	mg/L		SM4500F-C	12/1/03 10:20	0.031	т	DLS
1040	Nitrate (as N)	10	T0310976-01	0.050	mg/L	U	SM4500NO3-F	11/26/0312:00	0.050	т	CLB
1041	Nitrite (as N)	1.0	T0310976-01	0.050	mg/L	U	SM4500NO3-F	11/26/0312:00	0.050	τ	CLB
1055	Sulfate (as SO4)	250	T0310976-01	12	mg/L		E375.4	12/9/03 16:30	1.9	т	SB
1905	* Color	15	T0310976-01	8.0	Color Units		SM2120B	11/26/0310:35	5.0	Т	AJ
1920	Odor	3.0	T0310976-01	8.0	TON		SM2150B	11/26/0315:40	1.0	т	AJ
1925	рH	6.5-8.5	T0310976-01	8.0	pH Units	, Q	E150.1	11/26/0310:25		т	NS
1930	Total Dissolved Solids	500	T0310976-01	160	mg/L		E160.1	12/1/03 13:30	10	τ	JH
2905	MBAS	0.50	T0310976-01	0.064	mg/L	i	E425.1	11/26/03 12:20	0.026	т	AJ

i The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

Q Sample held beyond the acceptable hold time.

U The compound was analyzed for but not detected.

 T
 DOH certification #E84589, Compape #980174 (AEL-Tampa)

 * Comment for
 Color
 - pH was 8.00 at time of color analysis.

MDL Method Reporting Limit

Analytical Report

Client: Diversified Drilling

Project Name: Disney Injection Well

Matrix: Water

PWS ID#:

Client Sample ID: Well Tap

Site: Reddy Creek

Report No.: T0310976 Date/Time Sampled: 11/26/03 8:45 Date/Time Received: 11/26/03 10:00

Sampled By: Jason Hopp Shipping Method: AEL Pick-up

Secondary Chemical Analysis

Parameter ID	Analytes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab A	Analyst
1002	Aluminum	0.20	T0310976-01	0.021	mg/L	i	SW6010B	12/2/03 19:36	0.021	J	KC
1022	Copper	1.0	T0310976-01	0.0049	mg/L		SW6010B	12/2/03 19:36	0.0011	J	KC
1028	Iron	0.30	T0310976-01	0.090	mg/L		SW6010B	12/2/03 19:36	0.019	J	KC
1032	Manganese	0.050	T0310976-01	0.0019	mg/L	i	SW6010B	12/2/03 19:36	0.0014	J	KC
1050	* Silver	0.10	T0310976-01	0.00017	mg/L	υ	SW6010B	12/2/03 19:36	0.00017	J	KC
1095	* Zinc	5.0	T0310976-01	0.0025	mg/L	U	SW6010B	12/2/03 19:36	0.0025	J	KC

The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit. i

The compound was analyzed for but not detected. U

DOH certification #E82574 (AEL-JAX) (FL NELAC certification) 3

Silver Zinc Comment for

 Analyzed 12-04-03 11:34 due to reanalysis.
 Analyzed 12-04-03 11:34 due to reanalysis. Comment for

MDL Method Reporting Limit

Analytical Report

Client:	Diversified Drilling	Report No.:	T0310976
Project Name:	Disney Injection Well	Date/Time Sampled:	11/26/03 8:45
Matrix: PWS ID#:	Water	Date/Time Received:	11/26/03 10:00
Client Sample ID:	Well Tap	Sampled By:	Jason Hopp
Site:	Reddy Creek	Shipping Method: /	AËL Pick-up

				Total	Metals						
Parameter ID	Analytes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab	Analyst
	Calcium		T0310976-01	37	mg/L		SW6010B	12/2/03 19:36	0.018	J	кс
	* Potassium		T0310976-01	1.1	mg/L		SW6010B	12/2/03 19:36	0.11	J	KC
	Magnesium		T0310976-01	11	mg/L		SW6010B	12/2/03 19:36	0.016	J	KC

J DOH certification #cource Comment for Potassium DOH certification #E82574 (AEL-JAX) (FL NELAC certification)

Analyzed 12-4-03 due to reanalysis.

MDL Method Reporting Limit For all Results qualified with an I, the PQL is defined to be 4 times the MDL

Analytical Report

Client:	Diversified Drilling						ł	Report No.:	T031	0976
Project Name:	Disney Injection Well	l –					Date/Tir	ne Sampled:	11/26	/03 8:45
Matrix:	Water						Date/Tim	ne Received:	11/26	/03 10:00
PWS ID#:										
Client Sample ID:	Well Tap						:	Sampled By:	Jason	Норр
Site:	Reddy Creek						Ship	ping Method:	AEL P	ick-up
				Total Met	als (Hg)					
Parameter ID Analyt	es:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab Analyst

0.0020 T0310976-01 0.000018 U SW7470A 12/5/03 8:42 0.000018 1035 mg/L J TP Mercury The compound was analyzed for but not detected. DOH certification #E82574 (AEL-JAX) (FL NELAC certification) υ

J

MDL Method Reporting Limit For all Results qualified with an I, the PQL is defined to be 4 times the MDL

Analytical Report

Client:	Diversified Drilling							Report No.:	T031	10976
Project Name	Disney Injection Well	I					Date/Tir	me Sampled:	11/26	5/03 8:45
Matrix:	Water						Date/Tin	ne Received:	11/26	5/03 10:00
PWS ID#:										
Client Sample ID:	Well Tap							Sampled By:	Jason	Норр
Site:	Reddy Creek						Shij	oping Method:	AEL F	Pick-up
				Total Me	tals (Sb)	i i				
Parameter ID Analy	tes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab Analyst

mg/L

U

SW7041A

12/11/0315:27 0.0034

KC

0.0034

T0310976-01

υ

Antimony

The compound was analyzed for but not detected.

MDL Method Reporting Limit For all Results qualified with an I, the PQL is defined to be 4 times the MDL

Analytical Report

Clien	: Diversified Drilling							Report No	.: T031	10976	;
Project Nam	e: Disney Injection We	11					Date/T	ime Sampleo	i: 11/26	6/03 8	:45
Matrix	: Water						Date/Ti	me Received	1: 11/28	5/03 1	0:00
PWS ID#	:										
Client Sample I	: Well Tap							Sampled By:	Jason	Норр	
Site	: Reddy Creek						Sh	ipping Method	I: AEL F	ick-up	
				Total M	etals (T	7)					
Parameter ID Ana	ytes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab A	Analyst
1085 Tha	llum	0.0020	T0310976-01	0.00098	mg/L	U	SW7841	12/15/039:17	0.00098	J	кс

1085 Thalllum U The compound was analyzed for but not detected.

DOH certification #E82574 (AEL-JAX) (FL NELAC certification) J

MDL Method Reporting Limit

Analytical Report

Client: Diversified Drilling

Project Name: Disney Injection Well

Matrix: Water

PWS ID#:

Client Sample ID: Well Tap

Site: Reddy Creek

Report No.:	T0310976
Date/Time Sampled:	11/26/03 8:45
Date/Time Received:	11/26/03 10:00

Sampled By: Jason Hopp Shipping Method: AEL Pick-up

			Vol	atile Org	anic Ar	nalysis					
Parameter IC	Analytes:	MCL	Sample Number	Results	Units	Qualifier	Analysis Method	Analysis Date/Time	MDL	Lab /	Analyst
2378	1,2,4-Trichlorobenzene	70	T0310976-01	0.30	ug/L	U	SW8260B	12/9/03 18:04	0.30	J	BB
2380	Cis-1,2-dichloroethene	70	T0310976-01	0.33	ug/L	U	SW8260B	12/9/03 18:04	0.33	J	BB
2955	Xylenes (Total)	10000	T0310976-01	0.86	ug/L	U	SW8260B	12/9/03 18:04	0.86	J	BB
2964	Methylene Chloride	5.0	T0310976-01	0.21	ug/L	U	SW8260B	12/9/03 18:04	0.21	J	BB
2968	1,2-Dichlorobenzene	600	T0310976-01	0.28	ug/L	U	SW8260B	12/9/03 18:04	0.28	J	BB
2969	1,4-Dichlorobenzene	75	T0310976-01	0.30	ug/L	U	SW8260B	12/9/03 18:04	0.30	J	BB
2976	Vinyl Chloride	1.0	T0310976-01	0.49	ug/L	U	SW8260B	12/9/03 18:04	0.49	J	68
2977	1,1-Dichloroethene	7.0	T0310976-01	0.50	ug/L	u	SW8260B	12/9/03 18:04	0.50	J	BB
2979	Trans-1,2-dichloroethene	100000	T0310976-01	0.50	ug/L	U	SW8260B	12/9/03 18:04	0.50	J	BB
2980	1,2-Dichloroethane	3.0	T0310976-01	0.36	ug/L	U	SW8260B	12/9/03 18:04	0.36	J	B8
2981	1,1,1-Trichloroethane	200	T0310976-01	0.39	ug/L	U	SW8260B	12/9/03 18:04	0.39	J	BB
2982	Carbon Tetrachloride	3.0	T0310976-01	0.39	ug/L	U	SW8260B	12/9/03 18:04	0.39	J	BB
2983	1,2-Dichloropropane	5.0	T0310976-01	0.30	ug/L	U	SW8260B	12/9/03 18:04	0.30	J	BB
2984	Trichloroethene	3.0	T0310976-01	0.43	ug/L	U	SW8260B	12/9/03 18:04	0.43	J	BB
2985	1,1,2-Trichloroethane	5.0	T0310976-01	0.34	ug/L	U	SW8260B	12/9/03 18:04	0.34	J	BB
2987	Tetrachloroethene	3.0	T0310976-01	0.43	ug/L	U	SW8260B	12/9/03 18:04	0.43	J	88
2989	Chlorobenzene	100	T0310976-01	0.31	ug/L	u	SW8260B	12/9/03 18:04	0.31	J	BB
2990	Benzene	1000	T0310976-01	0.30	ug/L	U	SW8260B	12/9/03 18:04	0.30	J	B8
2991	Toluene	1000	T0310976-01	0.29	ug/L	U	SW8260B	12/9/03 18:04	0.29	J	BB
2992	Ethylbenzene	700	T0310976-01	0.27	ug/L	U , 1	C SW8260B	12/9/03 18:04	0.27	J	BB
2996	Styrene	100	T0310976-01	0.25	ug/L	U , ۱	C SW8260B	12/9/03 18:04	0.25	J	BB
AIC Aller	to initial politorian esiteria const faces	DOD -159()									

AIC Alternate initial calibration criteria used (mean RSD <15%)

U The compound was analyzed for but not detected.

J DOH certification #E82574 (AEL-JAX) (FL NELAC certification)

MDL Method Reporting Limit

Client: Diversified Drilling P.O. Box 290699 Tampa, FL 33687 Contact: Paul Petrey Phone Number: (813)988-1132 Project Location: Disney Injection Well/Reddy Creek 5810-D Breckenridge Parkway Tampa, Florida 33610 (813) 630-9616 FAX (813) 630-4327

 Report Number:
 T0310976

 Date Reported:
 12/23/03

 Date/TimeSampled:
 11/26/03 0845

 Date/Time Received:
 11/26/03 1000

 Compqap:
 980174

 DOH Cert. No.:
 E84589

 Total Pages:
 1

Matrix: Ground Water

RADIOCHEMICAL ANALYSIS 62-550.310(5) (PWS033)

Parameter ID	Name(MCL)	Sample Number	Analysis Result(pci/l)	Data Qualifier		Analytical Method	MDL	Analysis Date	Analyst Initials	DOH Lab ID:
4000	Gross Alpha(5.0**)	T0310976-01	1.6	U	1.2	EPA 900.0	1.6	12/10/03	MJN	E83033
4030	Radium 228(3.0*)	T0310976-01	1	U	0.6	EPA Ra-05	1	12/8/03	KLN	E83033

Approved by:

Nissa Mulnick, Quality Assurance Deputy

** Above 5 pci/l requires analysis on Radium 226, above 15 pci/l requires analysis on Uranium. *Radium 226 and 228 cannot exceed 3 MCL-Maximum Contaminant Level U-Sample was analyzed for but not detected Advanced Environmental Lab certifies that the test results in this report meet all requirements of Nelac standards.

NO. 502 P. 1

Florida Radiochemistry Services, Inc.

<u>Contact: Michael J. Naumann</u> 5456 Hoffner Ave., Suite 201 Orlando, FL 32812 Phone: (407) 382-7733 Fax: (407)382-7744 Certification I. D. # E83033

Work Order #: 0312008 Report Date: 12/11/03

Report to:

Advanced Environmental Laboratories, Inc. 5810-D Breckenridge Parkway Tampa, FL 33610 Attention: Michael Cammarata

I do hereby affirm that this record contains no willful misrepresentations and that this information given by me is true to the best of my knowledge and belief. I further certify that the methods and quality control measures used to produce these laboratory results were implemented in accordance with the requirements of this laboratory's certification and NELAC Standards.

Signed Michael J. Mumann - President

Date 12-11-07

Page 1 of 3

Sample Login

Client:	Advanced Environmental Laboratories, Inc.	Date / Time Received	Work order #
		12/02/03 09:51	0312008
Client Contact;	Michael Cammarata		
Client P.O.			
Project I.D.	T0810976		
Lab Sample I.D.	Client Sample I.D.	Sample Date/Time	Analysis Requested
0312008-01	T0310976-01	11/26/03 08:45	Ga, Ra228

Analysis Results

Gross Alpha	<1.6	Radium 228	<1.0
Error +/-	1.2	Error +/-	0.6
MDL	1.6	MDL	1.0
EPA Method	900.0	EPA Method	Ra-05
Prep Date	12/09/03	Prep Date	12/05/03
Analysis Date	12/10/03	Analysis Date	12/08/03
Analyst	MJN	Analyst	PJ
Units	pCi/l	Units	pCi/l

-

QA Page

Analyte	Sample #	Date Analyzed	Samp ie Result	Amount Spiked		Spike /Dup Result	Spike % Rec.	Spike Dup % Rpd
Gross Alpha	0311257-02	12/10/03	<0.8	10.2	10.0	10.0	98	0.0
Radium 228	0312008-01	12/08/03	<1.0	6.8	6.0	6.2	88	3.3
		Quality	Control	Limits				
		% RPD		% Rec.				
Gross Alpha		15.8		65 -125				
Radium 228		19.1		77-115				

Page 3 of 3

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 813-855-1844 tax 813-855-2218

Advanced Environmental Laboratories Inc. 5810-D Breckenridge Parkway Tampa, FL 33610December 9, 2003 Project No: 39139

Laboratory Report

FDEP Report Form attached for the following sample(s):

Client Project Description: T0310976

Sample NumberSample Description39139.01T0310976-01

 Date & Time Collected
 D

 11/26/03
 08:45
 1

Date & Time Received 11/26/03 13:50

Find

Approved By: Francis I. Daniels, Laboratory Director Leslie C. Boardman, Q. A. Manager

FDOH Laboratory No. E84129 NELAP Accredited

ion: T0310976

SOUTHERN ANALYTICAL LABORATORIES, INC.

110 BAYVIEW BOULEVARD, OLDSMAR, FL 34677 610-855-1844 tax 813-855-2218

Advanced Environmental Laboratories Inc. T0310976

December 9, 2003 Project No: 39139

Sample ID: T0310976-01

Pesticide/PCB Analysis 62-550.310(4)b (PWS029)

Param	eter ID and Name	MCL	Sample Number	Analysis Result	Units	Analytical Method	Analysis Date	Detection Limit	Lab ID
2005	Endrin	2	39139.01	0.1 U	ug/t	EPA 525.2	12/05/03	0.1	E8412
2010	gamma-BHC (Lindane)	0.2	39139.01	0.06 U	ug/l	EPA 525.2	12/05/03	0.06	E84129
2015	Methoxychlor	40	39139.01	0.05 U	ug/l	EPA 525.2	12/05/03	0.05	E84129
2020	Тохарнеле	з	39139.01	0.5 U	ug/l	EPA 508.1	12/06/03	0.5	E84129
2031	Dalapon	200	39139.01	1 U	ug/l	EPA 515.3	12/06/03	1	E84129
2032	Diquat	20	39139.01	1 U	ug/l	EPA 549.2	12/03/03	1	E8412
2033	Endothall	100	39139.01	20 U	ug/l	EPA 548.1	12/04/03	20	E84129
2034	Glyphosate	700	39139.01	10 U	ug/l	EPA 547	12/05/03	10	E84129
2035	Di(2-ethylhexyl)adipate	400	39139.01	0.3 U	ug/l	EPA 525.2	12/05/03	0.3	E84129
2036	Oxamyl (Vydate)	200	39139.01	0.5 U	ug/l	EPA 531.1	12/09/03	0.5	E84129
2037	Simazine	4	39139.01	0.07 U	ug/l	EPA 525.2	12/05/03	0.07	E84129
2039	Di(2-ethylhexyl)phthalate	6	39139.01	1.0 U	ug/l	EPA 525.2	12/05/03	1.0	E84129
2040	Pictoram	500	39139.01	0.75 U	ugA	EPA 515.3	12/06/03	0.75	E84129
2041	Dinoseb	7	39139.01	0.5 U	ug/l	EPA 515.3	12/06/03	0.5	E8412
2042	Hexachlorocyclopentadiene	50	39139.01	0.2 U	ug/l	EPA 525.2	12/05/03	0.2	E84129
2046	Carbofuran	40	39139.01	0.5 U	ug/l	EPA 531.1	12/09/03	0.5	E8412
2050	Atrazine	3	39139.01	0.06 U	ug/l	EPA 525.2	12/05/03	0.06	E84129
2051	Alachlor	2	39139.01	0.2 U	ug/l	EPA 525.2	12/05/03	0.2	E8412
2065	Heptachlor	0.4	39139.01	0.08 U	ug/l	EPA 525.2	12/05/03	0.08	E8412
2067	Heptachlor Epoxide	0.2	39139.01	0.1 U	ug/l	EPA 525.2	12/05/03	0.1	E8412
2105	2,4-D	70	39139.01	1 U	ugA	EPA 515.3	12/06/03	1	E84129
2110	2,4,5-TP (Silvex)	50	39139.01	0.25 U	ug/l	EPA 515.3	12/06/03	0.25	E84129
2274	Hexachlorobenzene	1	39139.01	0.05 U	ug/l	EPA 525.2	12/05/03	0.05	E84129
2306	Benzo(a)pyrene	0.2	39139.01	0.1 U	ug/l	EPA 525.2	12/05/03	0.1	E84129
2326	Pentachlorophenol	1	39139.01	0.1 U	ug/l	EPA 515.3	12/06/03	0.1	E84129
2383	PCBs	0.5	39139.01	0.2 U	ug/l	EPA 508.1	12/06/03	0.2	E84129
2931	Dibromochloropropane	0.2	39139.01	0.005 U	ug/i	EPA 504.1	12/05/03	0.005	E84129
2946	Elhylene dibromide	0.02	39139.01	0.005 U	ug/l	EPA 504.1	12/05/03	0.005	E84129
2959	Chlordane	2	39139.01	0.05 U	ug/l	EPA 508.1	12/06/03	0.05	E84129
504.1	Dale Extracted		39139.01	12/04/03		EPA 504.1			E84129
508.1	Dale Extracted		39139.01	12/04/03		EPA 508.1			E84129
515.3	Date Extracted		39139.01	12/04/03		EPA 515.3			E84129
525,2	Date Extracted		39139.01	12/04/03		EPA 525.2			E84129
548.1	Date Extracted		39139.01	11/28/03		EPA 548.1			E84129
549.2	Date Extracted		39139.01	12/02/03		EPA 549.2			E84129

Footnotes:

υ

Analyte was not detected; indicated concentration is method detection limit.

Chain-of-Custody for AEL Tampa to Southern Analyti

AEL Tampa 5810-D Breckenridge Parkway Tampa, FL 33610 813-630-9616 Fax 813-630-4327 Contact Person: Michael Cammarata

Project #: T0310976

Southern Analytical 110 Bayview Blvd. Oldsmar, FL 34677 813-855-1844 Contact Person: Sample Receiving

39139

	Lab Code	Client Sample ID	Test	Matrix	Collect Date	/ Time	Receive Date	Due Date	# Bottles Bottle Type (Pres.)
	T0310976-01	Well Tap	62-550 549.2	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	- IXILAP Lazszus
1/	/ T0310976-01	Well Tap	62-550 548	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	
1	T0310976-01	Well Tap	62-550 547	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	Jix ILU Nazsuz
,	T0310976-01	Well Tap	62-550 531.1	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	
	T0310976-01	Well Tap	62-550 525.2	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	5×40mLV 1425203
	T0310976-01	Well Tap	62-550 515.1	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	JX46mc AV Naz SzOs
,	T0310976-01	Well Tap	62-550 508.1	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	- IXYUMLY NHYLL
	T0310976-01	Well Tap	62-550 508	Water	11/26/2003	8:45	11/26/03 10:00	12/3/2003	
	T0310976-01	Well Tap	62-550 504.1	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003	

 $f_{\mathcal{E}}^{2}$ Tampa Relinquisher: Shipping Receiver: Date/Time: 11/26/2003 10:21:28 AM 1350 Shipping Relinquisher: 11/26/0 Southern Analytical Receiver: Date/Time:

Page 1 of 1

Chain-of-Custody for AEL Tampa to Florida Radioch

a.	
	AEL Tampa
	5810-D Breckenridge Parkway
02	Tampa, FL 33610
5	813-630-9616 Fax 813-630-4327
NO.	Contact Person: Michael Cammarata

Project #: T0310976

Florida Radiochemistry 5456 Hoffner Ave., Suite 201 Orlando, FL 32812-2517 407-382-7733 Contact Person: Sample Receiving

Department: FloridaRad

Check if Rush

Lab Code	Client Sample ID	Test	Matrix	Collect Date	/Time	Receive Date	Due Date	# Bottles Bottle Type (Pres.)
T0310976-01	Well Tap	Radium 228	Water	11/26/2003	8:45	11/28/03 10:00	12/10/2003	1L Amber Glass
T0310976-01	Well Tap	Gross Alpha	Water	11/26/2003	6:45	11/26/03 10:00	12/10/2003	1L Poly

4

Tampa Relinquisher: Shipping Relinquisher:

Shipping Receiver.

Florida Radiochemistry Receiver:

12 05 Date/Time: +1/25/2003 12/2/13 9:5 Data/Time:

1600

Page 1 of 1

Chain-of-Custody for AEL Tampa to AEL Jax

AEL Tampa 5810-D Breckinridge Parkway Tampa, FL 33610 813-630-9616 Fax 813-630-4327 Contact Person: Michael Cammarata

Project #: T0310976 CustomerName: Diversified Drilling Collector: Jason Hopp AEL Jax 6601 Southpoint Parkway Jacksonville, FL 32216 904-363-9350 Fax 904-363-9354 Contact Person: Sean Hyde

Check if Rush

Lab Code	Client Sample ID	Test	Matrix	Collect Date	/ Time	Receive Date	Due Date	# Bottles	Bottle Type (Pres.)	<u> </u>
T0310976-01	Well Tap	-550 Metals ICP (Primary) C	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003		1L Poly	
T0310976-01	Well Tap	50 Metals ICP (Secondary)	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003		1L Poly	
T0310976-01	Well Tap	62-550 VOCs GW	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003		40mL VOC Vial	
T0310976-01	Well Tap	Hg	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003		500mL Poly	
T0310976-01	Well Tap	Sb (GFAA)	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003		500mL Poly	
T0310976-01	Well Tap	TI (GFAA)	Water	11/26/2003	8:45	11/26/03 10:00	12/10/2003		500mL Poly	

Date/Time: _//_ Shipping Receiver: Tampa Relinquisher: -03 Jacksonville Receiver: Shipping Relinquisher:

Page 1 of 1

G	Advanced Environmental Labor			N OF CUS)		LAE	3 NUN	IBER:	Ti	31	971	ı	
	J Tampa: 5810-0	Southpoint Parkway, Jackso) Breckenridge Parkway, Ta IW 67th Place, Suite 7, Ga	ampa, FL 33610 • (813	8) 630-9616 Fax	(813) 630-4327							Pa	ige'	Ń	of _(4
CLIENT NAME;		W UNIT HOLE, SUILE F, CO	PROJECT NAM		ax (002) 007-00			BOTTLE SIZE								
ADDRESS: D	d Diffig		DISTICUL P.O. NUMBERY	- unison	ILM L	uell		& TYPE								
ADDRESS: P.C	<u>D. Bex 2906</u> 04 FL 3368		PROJECT LOC	ATION:	2	.431()	A R N E A Q		30						L A B
PHONE	· · · · · · · · · · · · · · · · · · ·	1 45-6636	Re	ddy (ræk			L U Y I S R		d 2]						N U
CONTACT: P	un Petiy		SAMPLED BY: -	9501	Hopp			S D		1Pc			1 form			M B E
TURN AROUND		REMARKS / SPEC											Colifi			R
		pH	, 7.86						50	ALG			_			
		Ter	, 7.86 np: 24.9 rb: 0.4	[°] د د						12.20	200	100	lota			
WW= waste water	SW=surface water		W=drinking water	OIL A=	air SO ≕	soil S	sludge	Preserv		<u> </u>						
SAMPLE ID	SAMPLE	DESCRIPTION	Grab Composite		PLING TIME	MATRIX	NO			_	_		_			
	Well -	Tup	G	11/26/03		GN	18		x	x	x	X	XT	531	bar	اررا
						+ .							_	_		
						-								-		
						-				_				-		
												_	-			
	S = (H ₂ SO ₄) N =			Relir	nquished by:		Date	Time			leceive	d by:		Da	te	Time
	Method Sample Kit : RB AB			Ja	11.77		1 26/55	1000	(J	ne			11/24	lu <u>3</u> 11	3.00
Ret: / / Via	Tria DI	0,	3								<u> </u>				_	
Received on ice: Lyes		sent Arece	eived								rev	vised 8/0	1		- <u> </u>	