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Dry atmospheric deposition may be a substantial source of phosphorus (P) to
the Everglades. Measured on a weekly basis at nineteen sites throughout the
District, samples often are discarded because of contamination from bird
droppings and other foreign material. This can create large gaps in the time line
of the data sets. Missing data were so extensive at six stations, either in the
amount or in the size of gaps, that they were excluded from further analysis.
For the remaining thirteen stations, we estimated the missing data with
statistical models. These models calculate values of missing samples at a given
site based on relationships to previous samples at that given site and to current
samples at nearby sites.

The estimated data are quite accurate. The overall mean and standard deviation
of the data before estimating the missing values was 88.4±85.7 pg P mY d-' and
after estimating the missing values it was 87.8±82.4 pg P m' d'. For each
sampling site the mean and standard deviation before and after were quite
similar. No trend with time was detected. The P values fluctuate seasonally
(highest in October and lowest in June) but this fluctuation does not follow the
seasonal pattern of South Florida's rainfall. Random noise in the data, however,
was significant and caused long-term fluctuations of the data. The data after
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Abstract

Dry atmospheric deposition may be a substantial source of phosphorus (P) to the

Florida Everglades. Dry deposition has been measured on a weekly basis in the region since

1987, but a significant amount of this data is missing (about 34 percent) due to instrumental

failures and sample contamination. This study develops a set of statistical models of the P dry

deposition time-series to estimate missing data. These models are based on a multivariate

stochastic time-series theory. Model parameters and noise covariances are calibrated using the

expectation-maximization algorithm which is efficient for data sets with many gaps. The

pooled mean and standard deviation of the data before estimating the missing values was

88.4±85.7 g P m" d' and after estimating the missing values was 87.8±82.4 g P m 2 dV.

Model verification demonstrates that the calibrated models provide unbiased data estimates

while preserving the statistics of the raw data. For each sampling site the mean and standard

deviation before and after were quite similar. No trend with time was detected. The P

deposition fluctuates seasonally (highest in October and lowest in June), but this fluctuation

does not follow the seasonal pattern of South Florida's rainfall. Random noise in the data,

however, is significant and causes long-term fluctuations of the data. The data with gaps

filled in are useful for computing the weekly P load distribution.

Key words: Dry deposition; phosphorus load; missing data; time-series model; Kalman

filtering and smoothing.
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Introduction

Increased phosphorus concentrations have resulted in significant changes to the

Everglades ecosystem (Davis, 1994). As a result the State of Florida enacted the Everglades

Forever Act (State of Florida, 1994) that mandates the management of phosphorus loads to

the south Florida ecosystem through the use of stormwater treatment areas and best

management practices. Non-controllable sources such as atmospheric deposition also must be

accurately monitored to assess their impact in relation to all other loads.

Atmospheric deposition is measured in wet (rainfall) and dry (dustfall) forms. Samples

of the latter are often contaminated and have to be removed from any analysis. Gaps created

from this removal of data preclude accurate calculation of weekly P loads. Monthly or yearly

summary statistics can be affected by gaps that increase the influence of non-missing samples

in the calculation. This is important because dry deposition is quite variable over time (Hicks

et al., 1993). Given a single high or low sample in a given month surrounded by missing data,

the average for that month may be skewed higher or lower because of that one high or low

sample. To achieve an accurate account of this variability, missing samples should be

estimated.

If the physical processes driving the occurrence and transportation mechanism of

atmospheric deposition are known, one could build a mathematical model to estimate the data

gaps. However, neither a mathematical model nor supporting input data for the model on a

regional scale is available for south Florida. Alternatively, we selected an empirical approach

using simple statistical models based on currently available P deposition rates. Such an

approach has been used for wet deposition (Ahn 1998), but to our knowledge, it has not been
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used for dry deposition. Our objective was to develop statistical models to estimate the

missing P values. This particular procedure could be used in any multi-site atmospheric

deposition study.

Statistical Methods to Estimate Missing Data

This study uses a multi-site time-series model. Numerical algorithms such as Gauss-

Newton or scoring method (Box and Jenkins, 1976; Brockwell and Davis, 1987; Harvey,

1990) can estimate parameters in the time-series models, but they are not applicable for

incomplete data sets. An expectation-maximization (EM) algorithm is suitable for estimating

parameters of time-series models for data sets with gaps (Dempster et al., 1977; Shumway and

Stoffer, 1982; Stoffer, 1985; Stoffer, 1986). A pre-condition to applying the EM algorithm is

to set the model into state-space form to estimate Kalman filtering and smoothing estimates.

The Kalman filter and smoothing methods provide a convenient means to calculate the

conditional expectations of both state and error vectors. The reason that smoothing is used is

to take advantage of the forward measurement information and to give a fast convergence in

the EM algorithm.

Consider a multi-site state vector x xx ' at time t (=1,...,T), where (nx) is the

number of sites of the state variable, T is the time span, and ' denotes transpose of a matrix.

With the (nz) multi-site covariate vector z(z ,...,z,' which is measured completely and

q
Xr = Vi +grt +Wt

1=1
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concurrently, the order-q multi-site autoregression model is given by,

where $,(nxxnx) and y(nxxnz) are the regression parameters, and w,(nxx1) is the Gaussian

white noise with w1sN(0,Q). For P dry deposition data, x, could represent a P vector

measured from (nx) multiple sites at time t, while z, may be a concurrently measured

covariate vector having a size of (nz).

To estimate the parameters of the above model with incomplete data, an EM algorithm

is applied in conjunction with the modified Kalman smoother estimators. To apply the

Kalman filter, Eq. 1 should be set into a state-space form that consists of state and

measurement equations. Using Eq. 1 as a state equation, the measurement equation that allows

for missing data can be written as,

y = MA + v (2)

where yt (nxx1) is the state measurement vector at t, m, is the (nxxnx) measurement matrix in

which the diagonal element is 1 if y, is measured, or 0 otherwise, and v, is the Gaussian white

noise having vjpN(O,R). In this state-space problem, the parameter set to be calibrated is (,

yv, Q, R} with C=[+i.,4]. An incomplete-data log-likelihood function, 21nL(y), is

calculated (Gupta and Mehra, 1970; and Shumway and Stoffer, 1981) by,

T T
21nL(y)= Z In m, p~1m|' + r e t tm p|-m + (

t=1 t=1

where e---(yrm ) is the measurement error, and xL~IE[xx , .. ,zJ is the state

estimate conditioned on prior information and p-' is the corresponding error covariance term
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(Jazwinski, 1970).

The iterative procedure of the EM algorithm (Shumway and Stoffer, 1981; Shunway, 1988)

starts with an assumed initial parameter set, (D(0), y(0), Q(0), R(0)}, where (0) indicates the

initial time step before iterations. On the i-th iteration, the Kalman filtered and smoothed

estimators with the log-likelihood function (Eq. 3) are computed. The procedure continues

until the log-likelihood function converges.

Data Collection and Analysis

The South Florida Water Management District (District) has collected atmospheric

deposition data in this region since 1974. Before 1987 only bulk collectors were used. The

monitoring program was significantly improved in 1987 with the deployment of wet/dry

collectors (Aerochem Metrics Model 301 automatic wet/dry sampler) and adoption of a

standard operating procedure for atmospheric data collection and processing. Currently, there

are 19 atmospheric deposition monitoring sites operated by the District (Figure 1). Wet and

dry deposition data have been collected at weekly intervals and analyzed at the District's

laboratory to determine the level of nutrients and major ions. A complete description of the

collection and handling of the samples is found in Ahn and James (1998) and in the District's

Comprehensive Quality Assurance Plan (SFWMD, 1996).

Briefly, the dry bucket is inspected for contamination, and any observed contaminants

are noted and removed with tweezers, if possible. The bucket is rinsed with 1 L of deionized

water and the sides of the bucket are rubbed with a precleaned spatula. The sample is placed

into 150 ml Nalgene bottles and acidified to a pH of 2.0 with a 50 percent solution of reagent
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grade H2SO4 The bottles are placed on ice and returned within a day to the District's

laboratory where the samples are analyzed for total P with a persulfate digestion method

(USEPA 1979).

Results and Discussion

Identification of Model Structure

Among 19 atmospheric deposition monitoring sites, six sites (ENR101, ENR203,

ENR301, ENR401, Si27, S308) were excluded because of excessive data contamination that

caused severe data gaps and divergence in Kalman filtering and smoothing: The average

missing percentage of dry P data at these six sites was about 42%. This study used the

weekly dry deposition P loads collected from 13 other monitoring sites for the maximum

period of record from April 1992 to November 1996. The actual periods of record vary from

site to site due to periodic expansion of the monitoring program.

Generally, it would be easy to build one lumped multivariate time-series model for all

13 sites, making it more efficient to estimate model parameters and values for missing data.

However, developing such a lumped model in this case was not possible because of the

varying periods of record and the lack of covariate information other than the P data

concurrently measured from adjacent sites. Because of these limitations, this study constructed

five separate models (Table 1).

In the time-series model described by Eq. 1, the state vector x< at time t is a function

of both the time-lagged state x, and the concurrently measured covariate z,. The concurrently

measured dry P data collected from sites adjacent to that being modeled were used as the



covariates in each model. Because inter-site correlation of concurrently measured data is

stronger than auto-correlation (correlation in time), selecting sites for the z; vector is very

important.

Because gaps are not allowed in the z, vector, the model structure was designed to

estimate model parameters and missing data in x, sequentially by taking the state estimates

" (with filled-in data) of the previous model (Table 1) and applying it to z; of the current

model. Considering the cross-covariance, periods of record, and the distance from the state

site, several alternative models with different combinations of covariates were tried from

which an optimal model was selected for each case by maximizing the log-likelihood function

of Eq. (3). In order to obtain a complete covariate data set for Model I, Model II without the

z, term was initially used to estimate the missing data in x/=[x g,,,, %44Q,3

The order q in Eq. 1 was determined using Akaike Information Criteria (AIC)

(Shumway, 1988) which chooses the model order q that minimizes,

T

AIC(q) ( [w/w,1 +2nx2qfT (4)
r=1

For each model, alternative models having different orders ranging from q=l to q=4 were

tried for identification of the best model order. Based on the AIC statistics, q=1 was dominant

in all five models. During the model identification process, the low-order model (q-1) was

preferred because increasing the number of model parameters adversely affected the AIC

statistics.
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Parameter Calibration

The large number of missing samples in the measured data sets were caused by sample

contamination due to bird droppings and other foreign matter: An average of 34 (ranging

from 10 to 58) percent of dry deposition P data collected on a weekly basis in the region was

missing from the historical data sets (Table 2).

The distribution of raw data were positively skewed (with skewness coefficients

ranging from 0.23 to 1.05), and were log-transformed before the models were applied. After

setting up the measurement matrix in each model based on the availability of data, the

parameters of the five models were sequentially estimated using the EM algorithm. For

example, Model IJ where x,'=[x.gae, x5s14 ]-x,x.* and z =[z ,zS 6 5 ,z=,J[zl,z 3,zJ are

the log-transformed air-borne P rates in pg m d-', and T=240, the calibrated model is given

by

X1, 0.722 -0.328 X1 ,r-1 [0.900 0.422 0.356 ,Wir

x 2 t L -0.321 0.022 x 2 , 1 _ 0.354 1.124 0.669 ' w2tJ
~3t

with the diagonal terms in Q, which represents noise (Eq. 1), and R, which represents

measurement equations (Eq. 2), matrices being [1.936, 1.599] and [0.0046, 0.0056],

respectively. The regression coefficients for z; are higher than those of xi, That is, the inter-

site correlation of concurrently measured P values are higher than the time-lagged correlation

of the data.

The parameter calibration demonstrated that the smaller the size of missing data, the

faster the EM algorithm converges. As a result, the model for a small state dimension
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(probably 2-4 sites) gives a more accurate estimate for missing data than a larger one. This

fact also justified development of five separate models instead of one lumped model. The

initial assumed parameter set {+(0),N;(0),Q(0),R(0)} needed for the EM algorithm was not

sensitive to the final estimation result. This insensitivity was another advantage of the EM

algorithm as a parameter estimation method for a time-series model.

Summary Statistics and Trends

The final data sets consisted of direct observations if they were available and model

estimates if they were missing (Figure 2). The data varied from near 0 to over 450 pg P m-2

d. The estimated missing data also reflect this variability. A comparison of the mean and

standard deviation before and after filling in the gaps demonstrates that these summary

statistics were well preserved (less than 5 percent error) after gaps in the data were filled,

with the expected means and standard deviations of the data falling slightly below the 1:1 line

with the observed statistics (Figure 3).

This variability in dry deposition has been documented for both space (Hicks et al.

1993, Van Ek and Draaijers 1994, Dixon et al. 1996, Hendry et al. 1981), and time (Hicks et

al. 1993). The latter is primarily a result of episodic events and deposition of larger (> 2 p)

particles. Both the spatial and temporal variability are also demonstrated in the District's

network of atmospheric deposition stations (Figure 2, Table 2). The standard deviation for

each site is equivalent to the mean. Also the means ranged from an average of 14.4 pg P m.2

d at a remote station in a marsh area of the Everglades (L67A) to 154,2 pg P m' d'' at S65A

a site surrounded by improved pasture. The pooled mean for the 13 sites before filling-in the
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data gaps was 88.4±85.7 ig P m'' d-' and after filling-in data gaps was 87.8±82.4 ig P -2 o'

(Table 2).

The average estimation errors in the last two columns of Table 2 were computed from

the square root of the smoothed error covariance computed from the EM algorithm. The

average estimation error for the missing part was about 50 percent greater than that of the

overall data (both missing and non-missing parts) but the estimation errors were relatively

small compared to their mean (about 6%) implying this estimation of missing data was quite

accurate.

Estimates of atmospheric P deposition from dry deposition range from 4 to 10 times

that of wet deposition (Hicks et al. 1993). Wet deposition in south Florida, with a mean

rainfall of 1.35 m year' and an mean concentration of 10.6 pg P L' (Ahn 1998) in rainfall, is

estimated as 14.3 mg P m-2 year-'. Our pooled estimate of dry deposition with estimates of

missing data is 32.1 mg P m.2 year'. Thus, the ratio of our dry deposition to wet deposition is

approximately 2:1, which is lower than others have observed.

The total estimate of wet deposition plus dry deposition, 46.4 mg P m4z year', is

consistent with estimates from peat accretion data of 35.5 mg P m2 year 1 (Walker 1993), and

50 mg P nr 2 year' from bulk. collectors throughout Florida (Hendry et al. 1981). But it is less

than the 93.3 mg P mf2 year' determined in the Tampa area from seven bulk collectors

(Dixon et al., 1996). These comparisons provides a certain level of confidence regarding the

District's sampling network, procedures, and the statistical approach that we have taken.

To investigate the seasonality in the data, the monthly dry P deposition rates from all

13 sites were pooled, and the mean and standard deviation for each month of the year were
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computed (Table 3a). The monthly mean P values are lowest in June (about 59.7 pg P m 2 d-')

and highest in October (120.8 ig P m-2 d") before filling in the data gaps. This same

seasonal trend was observed after filling in the data gaps but the values were slightly lower

(58.6 and 110.8 pg P m 2 d-' respectively) (Table 3b). The standard deviations were also

smaller as were the minimum values. However, after estimating missing data, the maximum

values in some months increased. There is a month-to-month fluctuation in the monthly P

values, but the fluctuation does not follow the wet-dry rainfall pattern in South Florida where

the wet season extends from mid-May to October.

The overall 12 month mean (80.3± 14.8 pg P m 2 d-', Table 3a) was smaller than the

overall site mean (82,2±33.6 pg P m-2 d', Table 2). The difference between these means is a

reflection of the differing amounts of data collected at each station. The differences between

the standard deviations of the mean for these two values is indicative of a greater spatial than

seasonal variation in the data.

Plots of the monthly average time-series of the P deposition of three arbitrarily

selected sites shows that there is no temporal trend in the data during the period of record as

evidenced by the slopes of the regression lines that are not significantly different from zero

(Figure 4). A 6-month moving average used to indicate seasonal trends simply fluctuates due

to abnormal high P rates that appear randomly in time, The other sites have the same

temporal patterns but are not presented here.
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Summary

Samples of dry atmospheric deposition to South Florida are often contaminated and

must be discarded. This produces numerous gaps in data sets that measure dry P deposition.

We estimated values for this missing information with statistical models. Five multivariate

time-series models were developed from historical data collected from 13 monitoring sites.

The model parameters and the missing data were estimated simultaneously by an expectation-

maximization algorithm. In order to compute the expectation step, the time-series model was

set into a state-space form and the Kalman filtering and smoothing algorithms were applied.

As a verification of the model estimates, the statistics of the data were computed after

estimating the missing data and compared with those from the original data set. The results

were quite satisfactory in that the mean and standard deviation of the data (after estimating

the missing data) were preserved. The averages of the estimated means from the 13 sites were

82.2±70.5 g P m- d-', with an average estimation error of 3.1 pg m2 d't There were no

temporal trends. The P values are high in October and low in June, but the fluctuation did not

follow the wet-dry rainfall pattern in South Florida. Instead, random noise in the data

appeared to be the main cause of long-term irregular fluctuations in the data; In general, the

inter-site correlation of the data was stronger than temporal correlation.

Undoubtedly, the P rates resulting from applying this methodology to estimate missing

data can be useful for calculating the weekly P load input from the atmosphere. Alternatively,

the load could be calculated for a longer time interval (monthly or yearly), but it would be

less accurate than weekly since the temporal variability of the data is very significant.
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Table 1. Composition of time-series models and periods of record of the historical data

used for model calibration.

Model Sites Periods of Record N Covariate

Number (month/day/year) Sites

I ENR, S65A, S7 4/7/92- 240 OKEEFS, 5140

11/5/96

11 OKEEFS, S140 4/7/92- 240 ENR, S65A, S7

11/5/96

Ill BG1, ENPRC, S131 9/7/92- 166 ENR, S65A, S7

11/5/96

IV BG2, 5310, G36 9/7/93- 166 S65A, ENPRC,

11/5/96 BGl

V L67A, L6 11/21/95- 51 ENR, ENPRC

11/5/96
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Table 2, Summary statistics of dry deposition of P ( g m-2 d-') measured at 13 sites in

south Florida. 'Ratio of missing points to available data points during period of

record. + Standard deviation of column values.

Site Missing Mean S.D. Estimation Error
Ratio*

Overall Missing

BGl 0.26 83.5 80.8 2.9 5.1

BG2 0.17 82.0 85.6 2.6 4.7

ENPRC 0.58 66.6 75.3 4.5 6.1

ENR 0.10 88.3 80.3 2.5 5.1

G36 0.50 134.0 81.6 3.2 4.1

L67A 0.43 14.4 10.2 3.0 3.9

L6 0.35 64.1 49.2 3.0 4.5

OKEEFS 0.44 72.0 70.3 3.6 5.3

S131 0.31 80.7 74.4 3.2 5.3

S140 0.40 67.6 63.6 3.4 5.3

S310 0.31 89.0 68.0 2.8 4.0

S65A 0.42 154.2 96.8 3.3 4.7

57 0.15 72.4 79.8 2.6 5.1

Mean 0.34 82.2± 70.5± 3.1 4.9
33.6 . 21.4+

Pooled Mean with 87.8 82.4
estimates

Pooled Mean 88.4 85.7
without estimates
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Table 3a. Summary statistics of the thirteen station dry deposition network in South

Florida, Pooled by month before filling in data gaps- + Standard deviation of

column values. *Pooled maximum or minimum.

Month Mean Standard N Minimum Maximum
Deviation

January 77.0 63.1 118 4.1 294.1

February 99.3 82.0 104 8.1 363.0

March 95.9 86.2 103 12.2 354.9

April 72.6 66.4 110 8.1 314.3

May 90.2 87.5 116 4.1 361,0

June 59.7 72.3 114 4.1 352.9

July 72.0 73.6 108 4.1 363.0

August 73.2 81.2 131 4.1 354.9

September 89.7 88.0 126 4.1 346.8

October 120.8 105.4 152 4.1 365.0

November 102.8 88.9 110 4.1 354.9

December 101.2 99.4 102 4.1 365.0

Mean 87.9± 82.4± 116 4.1* 365.0*
17.3* 12.6*
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Table 3b. Summary statistics of the thirteen station dry deposition network in South
Florida, Pooled by month after filling in data gaps. + Standard deviation of
column values. 'Pooled maximum or minimum.

Month Mean Standard N Minimum Maximum
Deviation

January 61.4 51.0 184 4.1 294.1

February 86.2 69.1 160 5.4 363.0

March 87.1 70.6 176 12.2 354.9

April 73.8 61.4 193 4.1 336.6

May 82.2 74.8 202 3.4 361.0

June 58.6 60.5 190 2.0 352.9

July 72.8 74.4 193 4.1 416.3

August 65.8 69.8 207 4.1 354.9

September 87.2 80.5 209 4.1 346.8

October 110.8 100.7 228 4.1 449.7

November 94.3 81.2 191 4.1 363.0

December 84.1 80.2 165 4.1 365.0

Mean 80.3± 72.9± 192 2.0* 449.7*
14.8* 12.6*
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Figure 1. Locations of the District's atmospheric deposition monitoring sites and the

Water Conservation Areas (WCA).

Figure 2. Time-series of weekly air-borne P flux rate data after filling in missing data.

Figure 3. Comparison of dry deposition P rates before and after filling in missing data.

A) mean (r2= 0.98) and B) standard deviation (r2=0.96)

Figure 4. Seasonal and long-term trends of the dry deposition P rates for three selected

sites.
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