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Variance of Load Estimates Derived by

Piece-wise Linear Interpolation

George Shih, Xiaosong Wang,2 H.J. Grimshaw,3 and Joel VanArman4

Abstract: Piece-wise linear interpolation (PLI) is frequently used

in environmental studies to estimate missing data. However, to

evaluate the reliability of these estimates, the variances of these

interpolated values must be quantified.

We propose a procedure to quantify this PLI variance which

involves establishing a semi-variogram with coefficients that are

calibrated using a cross-validation technique. Estimated values are

written as a linear combination of neighboring data points and the

variance is calculated with the help of the variogram. Such

interpolated values are unaffected by the variance quantification

procedure.

We then use the PLI model to calculate the variance of a

yearly nutrient load under the assumption that only the nutrient
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concentrations contained missing values. When these results were

compared with those from an arithmetic-mean, a flow-weighted mean,

and a linear regression model, the PLI model was found to be

comparable to the other three models in terms of variance.

Selection of an appropriate model depends on the

characteristics of the data set. Knowing the variance of estimated

loads can help regulatory agencies make better decisions to

determine whether water quality in the environment is in compliance

with established standards or criteria.

INTRODUCTION

Development of rules and regulations to protect environmental

resources and monitoring of those resources to evaluate compliance,

often require determinations of nutrient loadings. Loading is

calculated as the product of discharge and concentration. When

concentration and discharge measurements are "complete" and

"accurate", loading calculations are straightforward and

"accurate". In reality, however, concentration and discharge

measurements involve errors and data are often missing.

Consequently, all nutrient loadings are approximations of the true

loads, with uncertainty resulting from the estimation of missing

values. Various models can be used to estimate missing data. To

evaluate data that are collected as part of a regulatory program,

we believe that all loading models should include some means of

quantifying the degree of uncertainty associated with the results.

Many studies have been conducted during the last two decades
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to improve the accuracy of nutrient loading estimates. Based upon

a comparison of some commonly used load calculation methods and

their relative errors, Scheider et al. (1978) recommended the use

of measured concentrations as the midpoints for estimating

phosphorus concentrations in individual time intervals. Cohn et

al. (1989) compared the biases and variances of three log-linear

regression models and recommended a minimum unbiased load

estimator. Stack and Belt (1989) reported that large differences

in pollutant loads could result from selection of different flow

averaging periods.

Preston et al. (1989) evaluated three broad classes of

tributary loading estimation methods: simple averaging, ratio

estimation, and regression. They found that none of these

estimators was superior to the others for the tested cases.

Preston et al. (1992) reported that Beale's ratio estimator was the

only method that provided unbiased estimates for both stable and

responsive systems, although stratification was necessary under

event sampling. By separating precision from accuracy, Rekolainen

et al (1991) concluded that load calculation methods based on

summing the products of regularly sampled flows and concentrations

resulted in the highest precision, whereas the best accuracy was

achieved using methods based on multiplying annual flow by the

flow-weighted annual mean concentration. In an attempt to use a

less expensive time-composite sampling method for regulatory

purposes, Shih et al. (1994) discussed the bias and accuracy of

this method and the covariances that occur between discharge
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volumes and concentrations.

Uost of these previous studies have assumed that complete data

sets were available (all data necessary to obtain an error-free

reference) and used sub-sampling methods to numerically infer their

results. In practice, however, complete data sets are rarely

available, and various methods, such as piece-wise linear

interpolation (PLI) , are used to estimate missing data.

PLI is a simple procedure. Two neighboring known data points

are connected with a straight line, and estimated values between

these known points are read off the line. Due to the

deterministic nature of PLI, uncertainties of estimated values are

often ignored. In this paper, we develop a model to quantify the

uncertainty of values obtained by PLI.

There are two basic approaches for estimating missing data:

(1) interpolation, of which PLI is the simplest method, and (2)

regression, where linear regression (LR) is the simplest model.

Given N data points, PLi defines N-1 straight line equations, each

line connecting the two nearest neighboring points. LR defines

only one straight line equation with over-determined data points.

We focus our model development on PLI, but numerical examples of

various models are presented for comparison.

In applying the models for load calculations, we assume that

(1) the available flow and concentration data are error-free (data

errors are not considered); (2) that only concentration

measurements have missing values, so that PLI and other estimation

models are applied to concentration data only; and (3) that all
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concentration data were obtained from (instantaneous) grab samples.

METHODS

Definitions

Let li be the load in a given time period, dt; ti be the

midpoint of this period; and C(t) and Q(t) be the concentration

graph and discharge hydrograph, respectively, Then,

t.+dt/2
I t -dt/2C(t)Q(t)dt (1)

When dt is sufficiently small, C(t) for the ith period can be

approximated by a constant Ci. Thus,

t-dt/2
1. = Ci t+dt|2Q( t) dt = CiV (2)

where Vi is the integrated discharge volume in the ith time

interval. If the time interval, dt, is one day, then Ci and Vi in

Equation (2) can be viewed as their daily averages and 1, is the

daily load for the day ti. For a given time period the total load,

L, can be obtained by summing the daily loads as follows:

T, - CV (3)

where N is the total number of days in the given time period. When

daily Ci and Vi data are "complete" and "accurate" for the period,

the summation in Equation (3) is straightforward. "Complete" means
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that there are no missing data for the entire period, whereas

accurate" means that the data are unique and are not subject to

any sampling or analytical errors. If either of the these

conditions is not met, Equation (3) will incur uncertainty.

Concentration and flow measurements are usually acquired

independently. For an accurate but incomplete data set with

missing values, uncertainty in the load calculation only occurs due

to the estimation of missing values. If n is the number of missing

data and K is the number of days when concentration data are

available, then Equation (3) can be rewritten as:

L = [C] V + C Vk (4)
1=1 k-1

where [C] is the estimated value of the missing concentration for

day i, and n + K is the total number of days in the calculation

period. The first term on the right-hand side of Equation (4)

includes all estimated concentrations while the second term

includes only known values. Therefore, the uncertainty of L only

comes from the first term.

Models

Before developing the PLI model, some other established

models that are commonly used in nutrient load calculations should

be examined. Arithmetic mean (AM), flow-weighted mean (FM) and

linear regression (LR) models all have established uncertainty

analysis procedures.
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A. Models that do not fill in missing data

If missing and available data are from the same population,

the mean and the variance of this population can be estimated from

the available data without estimating individual missing values.

Thus, the load for a given period is the sum of the products of the

daily discharge volume and the mean concentration during that

period. AM and FM models are in this category, These means and

variances can be calculated by following procedures in Snedecor and

Cochran (1980, pp 2 7 -30) . The difference between AM and FM is that,

for AM, the frequency of each sample is one; for FM, the frequency

is proportional to the flow volume at the time that the sample is

taken. Since we are considering that only the concentration (SV)

has uncertainty, these models are denoted as SVAM and SVFM.

B. Models that fill in missing data

Although the SVAM model and the SVFM model are easy to use and

often give satisfactory results, differences between the sample and

population means can be significant, especially when the sample

size is small. On the other hand, nutrient concentration is often

related to other hydrologic parameters such as discharge volume and

rainfall. These relationships, which are not used in the AM and FM

models, can be used to provide better estimates of missing

concentrations and to reduce uncertainties. Linear Regression (LR)

is one of the simplest of such models. A simple regression model

can be established using daily data, such as discharges, as the

independent variable. With a complete set of daily discharge data,
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each missing daily concentration can then be estimated by the

regression equation. Draper and Smith (1981, pp86-8 7 ) provide a

clear treatment of how to establish such a model. To find the

variance of the load estimated as the product of a flow-volume and

the concentration, however, one must consider the variance-

covariance of multiplying two correlated random variables- We

followed Kendall and Stuart (1977, pp 2 61- 2 6 2 ) to calculate the

variance of the estimated load denoted herein as the SVLR (single-

variable linear regression) model.

The PLI model, when established, also belongs to this

category. One can use time or distance as the independent variable

in PLI, to reduce the covariance problem in further mathematical

operations.

Piece-wise linear interpolation (PLI) model

Due to its simplicity, linear interpolation from two adjacent

known points is widely used to estimate missing data. Since it is

defined by a deterministic equation, uncertainty is often ignored.

To our knowledge, no other procedures have been established to

quantify the variance of PLI. Without such a variance

quantification procedure, PLI is simply a protocol and is not

comparable to other models that provide quantitative variance

analysis. Because some regulatory agencies have adopted PLI as

Their standard in nutrient load calculations, it is imperative that

a variance analysis procedure be developed for this method.

Given a set of data (yk, t) for k=1, 2, ., K, where yR is an
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independently measured value of a random variable Y at some

abscissa tk such as time, a missing value zi at ti where t, < ti <

tk,i may be estimated based on the two adjacent known points yk and

y,, using the following linear interpolation equation:

( t1  - tk)
zi y + (Y - Y k) _(5 )

tk+l t k)

The variable Y is assumed to be stationary for the first two

moments. It can be seen that when ti = tk, then z1 = yk; similarly,

when t; = t..1, then zi = Yk',- Our question is, what is the

uncertainty or variance of the estimated zi? This uncertainty

results from the inability of Equation (5) to predict the true

value of zi, not from the measurement errors of yk and y,.,.1

Equation (5) can be rewritten into a linear combination form as

follows:

2. =W y +W. , Y, (6)

t -t A1
W = -k (7)

23 -t &+
k+1 k 1 2

tk+1 t1 2

k1 k 1 2

where W 1, and W2, are the weight factors of Yk and Yk+t,

respectively. It is clear from equations (7) and (8) that W,, and

W, satisfy the following constraint of unbi-asedness:
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W + W =1. (9)

Therefore, the weights are determined when the ti is known.

Equation (6) can be expanded to include linear combinations of

three or more known data points.

To evaluate the variance of z; and thus the variance of the

calculated load, we have used a modified version of the kriging

process as follows:

(1) An appropriate theoretical semi-variogram (Skrivan and

Xarlinger, 1980) is selected which is a function of the

variable A.

(2) The selected theoretical semi-variogram is calibrated by

cross-validation (Hjorth, 1994, pp 24-57) under the constraint

that the variance produced with the semi-variogram agrees with

the variance produced by linear interpolation of the K known

points. In this step, a two-point kriging procedure (Journal,

1989) is followed to determine the variances of the estimates.

Steps (1) and (2) are repeated until a satisfactory semi-

variogram is obtained.

(3) Variance of the load is calculated using the calibrated

theoretical semi-variogram.

For example, we can select an exponential function as the

theoretical semi-variogram in step (1):
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(10)
y(A) =n(1 - e A/) + c , A > 0

where w, a, and c are coefficients to be calibrated. The maximum

of the above function is the sill (o+c, when A - ee) . The

parameter c is called the "nugget effect" that creates a jump of

uncertainty if not exactly at the measured data point- Step (2) is

to calibrate the three coefficients by cross-validation. In this

process, the inner (K-2) known points, yk (k=2, 3, .. , K-1), are

first estimated one at a time using Equation (6) as follows:

k 1,yk-1 + 2,k+1

where 2k is the estimate of yk. Non-neighboring points can also be

used as long as their weights are correctly calculated. In most

cases, however, it is desirable that the selected semi-variogram be

valid for small A's. Therefore, it is advantageous to use the

nearest points in Equation (11). The sum of the squared cross-

validation error is calculated using the following equation:

, (yk -2k)2  (12)
k-2

The variance is:

S
02. (13)

SK-2

Equation (13) is comparable to variances of other models when the
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variances are defined as the average of the sum of squared

differences between observed and predicted errors. Equations (12)

and (13) are immediately known for a given data set after the

weights are defined. The sum of squared errors in Equation (12) is

used as the constraint to calibrate the coefficients in the

theoretical semi-variogram.

Let y ( , a,c; A) be the semi-variogram in Equation (10). The

constraint in step (2) requires that the sum of variance produced

with the theoretical semi-variogram agrees with equation (12). We

now express the residual of the estimate tk in terms of the semi-

variogram. From Equation (11):

e2 = { yk - [W k-1+WkykIl) 2 (14)

Expanding Equation (14) and considering Wl + W 2 k = 1,

e 2 =2 W (y yk-1 2 2W (ky)2- WI W (k-1 k'1 ( 15)
2 W 1.k 2 2 ,k 2 1,k z,k 2

Based on the semi-variogram,

Y(A) = Var[(y - y = (yk - y ) (16)

Therefore, the expected values of the squared differences in

Equation (15) can be approximated by the theoretical semi-variogram

yA) as the following:

C k= 2W 1 y (A1,k) + 2 y (A),k 1,k 2,kT (A1,k)Az,k (17)
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Equation (17) is the variance produced with the semi-variogram.

The imposed constraint becomes:

e = S (18)
k-2

The coefficients, 0, a, and c, for the theoretical

semi-variogram y(W,a,c;A) are calibrated to satisfy Equation (18).

A two-point kriging procedure is followed to derive a set of raw

semi-variance data at selected intervals from a given data set.

The theoretical semi-variogram is fitted to this data set by least

squares to obtain the initial values of the coefficients, W., CCO,

and ca. The initial values are then adjusted so that Equation (18)

is satisfied. Another constraint used in the cross-validation is

that the sill is kept constant during the coefficient adjustment,

i~e., b)+c = W0 +c0 . Keeping the sill constant for a monitoring site

ensures that the variance of a calculated load is only dependent on

the number and sequence of missing data points.

Once the coefficients are determined for the theoretical semi-

variogram, proceed to step (3) to calculate the variance of the

estimated load. An equation similar to Equation (17) is used,

except that the subscript k (indicating known points) is replaced

by i (indicating missing points) and the equation is multiplied by

a factor equal to the squared discharge volume:

Var (I) = 2Vj [Wy i) + y (d ) - W y (A9+ +) ] (19)

If the time interval, ti, is one day, then the above variance is
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the variance of the calculated daily load. The variance of the

calculated yearly load then is expanded as:

Var(L) = Var(1) + S ViVj [ (wi+c) -y (A)] ; i j (20)
i=1 I=1 ]=,

where n is the number of missing concentrations. The upper bound

of the variance in Equation (20) is the sill w-+c, and A,, is the

time difference in days between day i and day j. The second term

on the right-hand side of Equation (20) is the sum of the

covariances between estimated concentrations, i.e.,

Cov(C,C )=(o+c)-y(A 11) . Equations (15) through (20) define a PLI

model that is denoted as the Single Variance Linear Interpolation

(SVLI) model.

RESULTS AND DISCUSSION

The models discussed above were applied to a sample data set

from water control structures located near the southern end of

Florida over a 13-year period (1978-1990). Characteristics of this

data set are described in Table I. The data set has complete daily

discharge (no missing data) but incomplete daily concentration

data. In the SVLR model, a simple equation (C = ac + a 1V) using

daily discharge as the independent variable, was used to estimate

missing daily concentrations. In the SVLI model, the exponential

function in Equation (10) was used as the semi-variogram.

Yearly loads were also calculated using each model. To

compare the load variances, we also defined and calculated the
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following dimensionless coefficient of load variation,

G = +Var (L) (21)

where Var(L) is the load variance and L is the calculated load.

Results are plotted in Figures 1, 2 and 3.

Differences among the loads calculated by these models are

small in magnitude (Figure 1) . In 1982, many high concentration

values were recorded on low discharge days. Therefore, the SVAM

model gave a 60% higher estimate than the other three models in

that year.

The G values from different models are significantly different

(Figure 2) . G values from the SVAM and SVLR models were much lower

than those from the SVFM and SVLI models. The G values of a single

model also varied annually. One reason for this variation is that

the uncertainty of a model is data dependent, i.e., differences in

data values and in the number of missing data will result in

different G values for different years. Another reason is that the

uncertainties of missing concentrations propagate differently in

different models into the final load variance, Var(L). The SVLI

and SVLR models tend to magnify the variance of missing data

estimates, while the variance of SVAM and SVFM models depends more

on the variation of collected data.

The G values from the different models showed a similar

pattern of change over time (Figure 2). This was because all of

these models used the same data, so that the number of data

available in each year was the same. We expect a good load model
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to be data-driven.

To understand how different models behave, a numeric index is

needed to compare the uncertainties attributable to each model

Uncertainty of missing data estimates can be represented by the

coefficient of variation (CV) of model predictions, which is

defined as follows:

CV = It=(C.-C )2 (22)

where Ci is the observed concentrations, Cp2 is the model predicted

value of ci, C, is the arithmetic mean of C;, and K is the total

number of observations. The error magnification due to the

multiplication by flow-volume can be specified as the difference

between G and CV. For this purpose, the DG coefficient is defined

as follows to indicate model behavior:

DG - I (G 1 -CVi) 2  (23)
MJ=1

where M is the number of years (13 in this study), Calculated CV

values for the three models are shown in Fig. 3. Comparing Figures

2 and 3, it is clear that a small variance in the missing data

estimates does not necessarily correspond to a small variance in

the calculated load. Variance of load calculations depends upon

model-error and multiplication pattern. DG, as an overall model

performance indicator, is shown in Table 2.

The SVLI gives the smallest DG value, which means that the
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,ariance of the load by this model varies the least from the

variance attributable to data source. Therefore, PLI is the

preferred approach. DG is a useful index for model comparisons,

and is perhaps also applicable to two-variance cases when both flow

and concentration measurements contain missing data.

In the SVLI model, interpolation weights are determined prior

to the calculation of the load variances. Other linear

interpolation methods with fixed weights have been used by

investigators (Scheider et al., 1978). For the purpose of

comparison, the following three commonly used fixed-weight linear

interpolation methods were also investigated.

a) The mid-point method uses observed data as the midpoints of

corresponding intervals to interpolate missing concentrations

(equivalent to assigning W, = 1 and W2 = 0) -

b) The equal-weights method interpolates missing

concentrations by the arithmetic mean of the two adjacent known

points (equivalent to assigning W1 = W2 = 0-5),

c) The three-points method interpolates missing concentrations

by the three nearest neighboring points with fixed weights W1 =

0.25, W2  = 0.5, and W3  = 0.25.

Using the same data set, it was found that these three fixed-

weight linear interpolation methods gave very similar yearly load

estimates to these provided by the SVLI model, but had higher G

and DG values. DG valued for the three-points method was 0.052,

for the mid-point method was 0.169.
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SUMARY AND CONCLUSIONS

In this paper, we propose a model to quantify the variance in

piece-wise linear interpolation (PLI) and apply the model to

nutrient load calculations. This model provides a method for

regulatory agencies that use PLI to compare their results with

those from other models. The PLI uncertainty analysis procedure

consists of the following steps:

a. Estimate missing data using PLI with Equation (6) . The

load can be determined before the variance analysis is conducted.

b. Select a theoretical semi-variogram based on properties of

the data and calibrate it for each year by cross-validation until

the convergence requirement in Equation (18) is met. This

convergence requirement ensures that the variances derived from the

model are comparable to those obtained from other models.

c- Compute variance of the calculated yearly load using

equation (20) .

By comparing the SVLI model with other models, we concluded:

1. Load estimates derived by applying different models to the

sample data set were not significantly different.

2. Uncertainties in missing data estimations were dependent

upon the type of model used and data properties.

3. The dimensionless coefficient of load variation, G, in

Equation (21) was a convenient way to compare the uncertainties in

loading estimations among different models, especially when both

discharge and concentration measurements contained missing values.

This coefficient also provides information on error magnification,
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resulting from error propagation within a particular model.

4. The DC coefficient defined in Equation (23) can be used to

select a numerically robust model. A smaller DG suggests less

magnification of the uncertainty in the missing data estimation.

Consequently, a perturbation in data will not significantly change

the loading estimation result of a model if its DG value is small.

The SVLI model gave the smallest DG value and thus was the most

desirable model for the data set that was used in this study.

5. Other fixed-weight linear interpolation models were

comparable to the SVLI model in terms of calculated loads and load

variances. The three-points model, in particular, provided

relatively smoother transitions from point to point.

6. Since the models are data dependent, there is no guarantee

that the best model for one data set will also be best for another

set. Model selection depends on how well the model describes the

inherent properties of the data.

One may argue that since calculated loads from different

models are often very close to each other, it doesn't matter which

model is used. Statistically this is true. However, in the

context of a regulatory program, specific numeric limits are often

set as loading thresholds. In such cases, knowing the uncertainty

or confidence interval of an estimated load may be critical to

regulatory agencies in their determination of whether a loading

estimate is, or is not, in compliance with established criteria.
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APPENDIX II. NOTATION

The following symbols are used in this paper.

C concentration

c coefficient of semi-variogram

Cm yearly mean concentration

Cov co-variance

CV coefficient of variation

DG coefficient of deviation of G from CV

dt time increment

G Coefficient of load variation, dimensionless

K total number of known data points

L yearly load

I daily load

lm mean daily load

N total number of days of calculation period

n total number of missing data points

Q discharge

S sum of squared errors

t time

V discharge volume

Var variance

V. mean daily discharge volume

W weight of interpolating point

yk predicting or known point in linear interpolation

7 predicted value of a variable by linear regression method

z; predicted value of a missing data by linear interpolation
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2, predicted value of a known data point

[.] an estimated value, involving variance

a coefficient of semi-variogram

A difference in sampling dates of two samples, normally in days

y semi-variogram

(32 variance

(o coefficient of semi-variogram
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TABLES

TABLE 1. A Description of Data Used in the Example.

TABLE 2. Model Performance Indicator, DG.

FIGURES

Figure 1. Loads from the four load calculation models.

Figure 2. G values from the four load calculation models.

Figure 3. CV values from the four load calculation models.
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Table 2. Model Performance Indicator, DG.

Model: DG

SVLI: single-variable Linear Interpolation 0.040

SVLR: single-varibale Linear Regression 0.189

SVFM: single-variable Flow-weighted Mean 0.238

SVAM: single-variable Arithmetic Mean 0.328
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