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Variance of Load Estimates Derived by

Piece-wise Linear Interpolation

George Shih!', Xiaosong Wang,® H.J. Grimshaw,’ and Joel VanArman®

Abgtract: Piece-wise linear interpolation (PLI) is frequently used
in envirommental studies to estimate missing data. However, to
evaluate the reliakbility of these estimates, the variances of these
interpolated values must be quantified.

We propose a procedure to quantify this PLI wvariance which
involves establighing a semi-variogram with coefficients that are
calibrated using a cross-validation technicque. Estimated values are
written as a linear combination of neighboring data points and the
varjiance is calculated with the help of the wvariogram. Such
interpolated wvalues are unaffected by the variance quantification
procedure.

We then wuse the PLI model to calculate the wvariance of a

yvearly nutrient lecad under the assumption that only the nutrient
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concentrations contained missing values. When these results were
compared with those from an arithmetic-mean, a flow-weighted mean,
and a linear regression modsl, the PLT model was found to be
comparable to the other three models in terms of variance.
Selection of an appropriate model depends on the
characteristics of the data set. Knowing the variance of estimated
loads can help regulatory agencies make better decisions to
determine whether water quality in the environment is in compliance

with established standards or eriteria.

INTRODUCTION

Development of rules and regulations to protect environmental
resources and monitoring of those resources to evaluate compliance,
often require determinations of nutrient loadings. Loading 1is
calculated asz the product of discharge and concentration. When
concentration and discharge measurements are “complete" and
"accurate", loading calculations are straightforward and
"accurate". In reality, however, concentration and diacharge
measurements involve errors and data are often missing.
Consequently, all nutrient loadings are approximations of the true
loads, with uncertainty resulting from the estimation of missing
values. Various models c¢an be used to estimate missing data. To
evaluate data that are collected as part of a regulatory program,
we believe that all leoading modelz sheould include some means of
guantifying the degree of uncertainty associlated with the results.

Many studies= have been conducted during the last two decades
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to improve the accuracy of nutrient loading estimates. Based upon
a comparison of gome commonly used load calculation methods and
their relative errors, Scheider &t al. (1978) recommendsd the use
of meagured c¢oncentrations as the midpoints for estimating
phosphorus concentrations in individual time intervals. Ccohn et
al. {(1289) compared the hiases and variances of three log-linear
regression models and recommended & minimum unbiased load
estimator. Stack and Belt (1989) reported that large differences
in pelluktant leoads could result from selection of different flow
averaging periods.

Prestonn et al. (1989) evaluated three broad classes of
tributary loading estimation methods: simple averaging, zratio
egtimation, and regregsion. They found that none of these
estimators was superior bto the others for the tested cases.
Preston et al. {1992) reported that Beale's ratio estimator was the
only method that provided unbiased estimates for both =table and
responsive aystems, although =tratification was necessary under
event sampling. By separating preciszion from accuracy, Rekolainen
et al. (1831) concluded that lcocad calculation methods based on
summing the products of regularly sampled flows and concentrations
resulted in the highest precision, whereas the best accuracy was
achieved using methods based on multiplying annual flow by the
flow-weighted annual mean concentration. In an attempt to uszse a
lezz expencsive time-composite sampling method for regulatory
purpoeses, Shih et al. (1294) discussed the blas and accuracy of

this method and the c¢ovariances that occur between discharge



volumes and concentrations.

Mozt of these previcus studies have assumed that complete data
sets were available (all data necesszary to cbtain an error-free
reference) and used sub-sampling methods to numerically infer their
results. In practice, however, complete data sets are rarely
available, and +wvarious methods, such as piece-wise linear
interpolation (PLI), are used to estimate missing data.

PLI is a simple procedure. Two neighboring known data points
are connected with a straight line, and estimated values between
these known points are read off the line. Due to the
deterministic nature of PLI, uncertaintiea of estimated values are
often ignored. In this paper, we develop a model to quantify the
uncertainty of valuesg obtained by PLI.

There are two basic approaches for estimating missing data:
(1) interpolation, of which PLI is the simplest method, and (2)
regression, where linear regression (LR) is the simplest model.
Given N data points, PLT defines N-1 straight line equations, each
line connecting the twe nearest- - neighboring points. LR defines
only one straight line equation with over-determined data points.
We focus our model development on PLI, but numerical examples of
various models are presented for comparison.

In applying the models for load calculations, we assume that
{1} the available flow and concentration data are error-free (data
arrors are not consideresd); (2) that only concentration
measurements have missing values, so that PLI and other estimation

models are applied to c¢oncentration data only; and (3) that all



concentraticon data were chtained from [(ingtantaneous) grab samples .

METHCODS
Definitions

Let 1, be the load in a given time period, dt; t; be the
midpoint of thisg period; and C(t) and Q(t} be the concentration
graph and discharge hydrograph, respectiwvely. Then,

ti+dt/2 ‘
11 = ti_dt/zc(t)Q(t)dt (1)

When dt is sufficiently =small, C(t) for the ith period can be

approximated by a constant C;. Thus,

£ -dt/2
1, =c, ftj+dt/29(t)dt - ¢,v, (2)

where V; 1s the integrated discharge velume in the ith time
interval. If the time interval, d4dt, iz one day, then C, and V, in
Ecuation {2) can be wviewed as their daily averages and 1, is the
daily load for the day t;,. For a given time pericd the total load,

L, can be obtained by summing the daily loads ag follows:

where N i1z the total mnumber of days in the given time pericd. When
daily @ and V, data are "complete" and "accurate" for the period,

the summation in Equation (3) is straightforward. "Complete" means



rthat there are no missing data for the entire period, whereas
"accurate" means that the data are unigque and are not subject to
any sampling or analvtical errors. If either of the these
conditionz is not met, Equation (3) will incur uncertalnty.
Concentration and flow measurements are usually acguired
independently. For an accurate but incomplete data set with
missing values, uncertainty in the load ¢alculation only occurs due
to the estimation of missing values. If n is the number of missing
data and K iz the number of days when concentration data are

available, then Egquation (3) can be rewritten as:

L=§_:1[|f:i]vi+§;c‘kvk (4)
where [(,] is the estimated wvalue of the missing concentration for
day 1, and n + K iz the total number of days in the calculation
period. The first term on the right-hand side of Eguation (4)
includes all estimated concentrations while the second term
includes only known walues. Therefore, the uncertainty of L only

comes from the first term.

Models

Before developing the PLTI model, some other established
models that are commonly used in nutrient load calculations should
be examined. Arithmetic mean (&M}, flow-weighted mean (FM) and
linear regression (LR) models all have established uncertainty

analysis procedures.



A. Models that do not £ill in missing data

If missing and available data are from the same population,
the mean and the variance of this populétion can be eztimated from
the available data without estimating individual missing values.
Thus, the load for a given period is the sum of the products of the
daily discharge wvolume and the mean concentration during that
periocd. AM and FM models are in this category. Theze means and
variances can ke calculated by following procedures in Snedecor and
Cochran (1980, pp27-30). The difference hetween 2M and FM is that,
for AM, the frequency of each sample is one; for FM, the frequency
iz proportional to the flow volume at the time that the sample is
taken. Since we are considering that only the concentration (8V)

has uncertainty, these models are denoted as SVAM and SVFM.

B. Models that f£ill in missing data

Although the S5VAM model and the SVFM model are sasy to use and
often give satisfactory results, differences between the sample and
population means can be significant, especially when the sample
size 1z =zmall. On the other hand, nutrient concentration is often
related to other hydrologic parameters such as discharge volume and
rainfall. These relationships, which are not used in the AM and FM
models, can be uged to provide better estimates of misszing
concentrations and to reduce uncertainties. Linear Regression (LR)
iz one of the simplest of such models. A simple regression model
can e established using daily data, such as discharges, ag& the

independent variable. With a complete set of daily discharge data,



sach miszzing daily concentration can then be estimated by the
regression equation. Draper and Smith (1981, pp86-87) provide a
clear treatment of how to establish such a model. To find the
variance of the load estimated as the product of a flow-volume arnc
the g¢oncentration, however, one must c¢onsider the variance-
covariance of multiplying two correlated random wvariables. We
followed Kendall and Stuart (1977, pp26l-262) to calculate the
variance of the esztimated load denoted herein as the SVLR (single-
variable linear regression) model.

The PLI model, when established, also bkelongs to this
category. One can use time or distance as the independent variable
in PLI, to reduce the covariance problem in further mathematical

operations.

Fiece-wise linear interpolation (PLI) model

Due to its simplicity, linear interpolation from two adjacent
known points is widely used to estimate missing data. Since 1t is
defined by a deterministic equation, uncertainty iz often ignored.
To cur knowledge, no other procedures have been established to
quantify the variance of PLI. Without such a wvariance
cuantification procedure, PLI is simply a protocol and is not
comparable to other models that provide gquantitative wvariance
analysis. Because some regulatory agencies have adopted PLI as
their standard in nutrient load calculations, it iz imperative that
a variance analysis procedure be developed for this method.

Given a set of data (y,, t.) for k=1, 2, ., K, where y, 13 an



independently measured walue of a random wvariable Y at some
abscigsa £, such ag time, a mi==sing value z;, at t; where £, < £, «
£, may be egtimated bhased on the two adjacent known polints y, and

Ve uEing the following linear interpolation equation:

2 =Y b W " ¥ g

The wariable Y iz assumed to be satationary for the first two
moments. It can be seen that when t; = t,, then z, = yy; similarly,
when t; = t,,, then =z, = v.,. Qur guestion is, what is the
uncertainty or variance of the estimated z,7? This uncertainty
regults from the inability of Equaticon [(5) to predict the true
value of z,, not from the measurement errors of vy, and 3y..;.

Equation {(5) can be rewritten into a linear combination form as

follows:
Z, =W, Vet Wz,j Yin (6)
P S (7)
i -
2 tk+1 tjc Al * Az
1 _
i ey~ by A+ A,

where W, ; and W,; are the weight factors of v, and v,
respectively. It is clear from equations (7) and (8) that W, , and

W, ; satisfy the following constraint of unbiasedness:
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Therefore, the weights are determined when the +t; is known.
Equation (6) can be expanded to include linear combinations of
three or more known data points.

To evaluate the variance of z, and thus the variance of the
calculated load, we have usaed a modified version of the kriging
proce=s as follows:

(1) An appropriate theoretical semi-variogram (Skrivan and
Karlinger, 1980) is selected which is a function of the
variable A,

{(2) The =selected theoretical semi-variogram is calibrated by
crosg-validation (Hjorth, 1994, pp 24-57) under the constraint
that the variance produced with the semi-variogram agrees with
the variance produced by linear interpolation of the K known
points. In this step, a two-point kriging procedure (Journel,
1989) iz followed to determine the variances of the estimates.
Steps (1) and (2) are repeated until a satisfactory semi-
variogram is obtained.

(3} Variance of the 1load i= ealculated using the calibrated
theoretical semi-variograrm.

For example, we can select an exponential function az the

theoretical gsemi-variogram in step (1}):
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y(A) =0, A=0

R (10)
Y{(A) =w(1 -¢e*% +c, A> 0
where w, @, and c are coefficients to be rcalibratvred. The maximum
of the above function i the =si1ll (w+c, when A — o), The

parameter ¢ is called the "nugget effect" that creates a jump of
uncertainty if not exactly at the measured data point. Step (2) 1is
to calibrate the three coefficients by cross—-wvalidation. In this
process, the inner (K-2) known pointg, vy, (k=2, 3, ..., K-1), are

first egtimated cne at a time using Equation (4) as follows:
B =W Ve Y W Vi (11)

where 2, is the estimate of y,. Non-neighboring points can also be
used as leong as their weights are correctly calculated. In most
cases, however, it is desivable that the selected semi-variocgram he
valid for small A's. Therefore, it iz advantageous to use the
nearest points in Equation (11). The =um of the =cquared cross-
validation error i=s calculated using the following eduation:

5,= 3 (v, - £,)° (12)

k=2

The variance ig:

Equation (13) is comparable to variances of other models when the
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variances are defined as the average of the sum of squared
differences between observed and predicted errors. Eguations (12)
and (13) are immediately known for a given data set after the
weights are defined. The sum of squared errors in Equation (12) is
used as the constraint to calibrate the coefficients in  the
theoretical semi-variogram.

Let y(w.®,c;A) be the semi-variogram in Egquation (10}. The
congtraint in step (2) requires that the sum of variance produced
with the theoretical semi-variogram agrees with equation (12). We
now express the residual of the estimate 2, in terms of the semi-

variogram, From Eguation (11):

922,. =1 Yy © [Wl.kyk—1+wz,kyk-»1] }? {14)

Expanding Equation (14} and considering W, , + W;, = 1,

(¥ Vi) (Y3 ey} (Vies "V
2 i Y k-1 ke Yea’ k-1 Yk 15
€ Ek_zwl.k 2 *2W, k 2 20 Wk 2 (1)

Based on the semi-variogram,

Y(A) = ZVarliy, - vead = 5 7 ~ i) (16)

Therefore, the expected wvalues of the =scquared differences in
Equation (15) can be approximated by the theoretical semi-variogram

v(A) az the following:

022, = Ewl,kY(A:L,k) + ?‘Wz,kY (Az,k} - Ewl.sz,kY(Ai,k"-Az,k) (17)

12
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Equation (17) is the wvariance produced with the semi-variogram.

The imposed constraint becones:

Yo -, (18)

The coefficients, 0w, o, and c, for rthe theoretical
semi-variogram y(w,®,c;A) are calibrated to satigfy Equation (18).
A two-point kriging procedure is fellewed to derive a get of raw
seml-variance data at selected intervals from a given data set.
The theoretical semi-variogram is fitted to this data set by least
sguares to obtain the initial values of the coefficients, w,., o,
and c,. The initial values are then adjusted so that Equation (18)
i3 satisfied. Another constraint uged in the cross-validation is
that the sill is kept constant during the coefficient adjustment,
i.e., W+ = wy+¢,. Keeping the =11l constant for a monitoring site
ensures that the variance of a calculated leoad is only dependent on
the number and szseguence cof missing data points.

Once the coefficients are determined for the theoretical semi-
variogram, proceed to step (3) to calculate the variance of the
estimated load, An edquation similar to Edquation (17} is used,
except that the subszcript k (indicating known points) is replaced
by i (indicating missing points) and the sgquation is multiplied by

a factor equal to the squared discharge volume:

var(1,) =2v® [w, y({A, )+W, .vy(A, )-w W, y{A ;+A )] (19)

I 3 1,1 2;i 1,1 2a

If the time interval, t,, i=s one day, then the above variance is

it
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the variance of the calculated daily load. The variance of the

calculated yvearly load then is expanded as:

var (L) = f:Varui) + i:i:vivj [(w+rc)-y(A, )1 ; i+ 3 (20)
i=1 1=1 j=1 !

where n is the number of missing concentrations. The upper bound
of the variance in Equation (Z0) iz the s5ill ©+c, and A; 5 is the
time difference in days hetween day 1 and day j. The second term
on the right-hand side of Eguation (20) is the sum of the
covariances betwesn estimated concentrations, i.e.,
Cov (C;,C;)=(w+c) -y (A ;4). Eguations (15} through (20) define a PLI
model that is denoted as the Single Variance Linear Interpolation

(3VLI) model.

RESULTS AND DISCUSS5TON

The models discussed above were applied to a sample data set
from water control structures located near the southern end of
Florida over a 13-year period (1978-19%0). Characteristics of this
data get are described in Table I. The data set haz complete daily
discharge (no missing data) but incomplete daily concentration
data. In the SVLR model, a simple equation (C = a, + a,V) using
daily discharge as the independent wvariable, was used to estimate
mizzing daily concentrations. In the SVLI model, the exponential
function in Eguation (10) was used as the semi-variogram.

Yearly loads were algo calculated wuging each model. To

compare the load wvariances, we also defined and calculated the
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following dimensionless coefficient of load variation,

JVEIELS (21}

QR
1
t1l

where Var(L) is the load wvariance and L is the calculated load.
Results are plotted in Figures 1, 2 and 3.

Differences among the loads calculated by these models are
small in magnitude (Figure 1). In 1982, many high concentration
values were recorded on low discharge days. Therefore, the 5SVAM
model gave a 60% higher estimate than the cother three models in
that year.

The G values from different models are significantly different
{Figure 2)., G value=s from the SVAM and SVLER models were much lower
than those from the SVFM and SVLT models. The ¢ walues of a single
model also varied annually. One reason for this variation is that
the uncertainty of a model is data dependent, i.e., differences in
data values and in the number of missing data will result in
different G values for different years. Ancother reason is that the
uncertainties of missing concentrations propagate differently in
different models into the final load variance, Var(L). The SVLI
and SVLR models tend to magnify the wvariance of missing data
estimates, while the variance ¢of SVAM and SVFM models depends more
on the variation of gollected data.

The G wvalues from the different models showed a similar
pattern of change over time (Figure 2). This was because all of
these models used the game data, so that the number of data

available in each year was the same. We expect a good load model
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to be data-driven.

To understand how different models behave, a numeric index 1is
needed to compare the uncertainties attributable to each model.
Uncertainty of missing data estimates can be represented by the
coefficient of wvariation (CV) of model predictions, which is

Jdefined as follows:

J)z (22)

where C, iz the observed concentrations, C,; is the model predicted

value of C,, ¢, is the arithmetic mean of C;, and K is the total

number of observations. The error magnification due to the
miltiplication by flow-volume can be specified as the difference
between G and CV. For this purpose, the DG coefficient is defined

as follows to indicate model behavior:

1
DG = — G, - ¢ (23)
Mii; (G,-CV,)
where M is the number of years (13 in this study). Calculated CV

values for the three models are shown in Fig. 3. Comparing Figures
2 and 3, it is clear that a small wvariance in the missing data
estimates does not necessarily correspond to a small variance in
the calculated load. Variance of load calculations depends upon
model-error and multiplication pattern. DG, as an overall model
performance indicator, is shown in Table 2.

The SVLI gives the smallest DG value, which means that the

16



variance of the load by thiz model waries the least from the
variance attributable to data source. Therefore, PLI is the
preferred approcach. DG iz a useful index for model comparisons,
and 1s perhaps also applicable to two-variance cases when both flow
and concentration measurements contaln missing data.

In the SVLI model, interpolation weights are determined prior
o the calculation of the load wvariances. Cther linear
interpolation methods with fixed weights have been used by
inveztigators (Scheider et al., 1978). For the purpose of
comparison, the following three commonly used fixed-weight linear
interpolation methods were also investigated.

a) The mid-point method uses chgerved data asg the midpoints of
corresponding intervals to interpolate miszs=ing concentrations
(equivalent to assigning W, = 1 and W, = 0) .

) The equal-weights method interpolates missing
concentrations by the arithmetic mean of the two adjacent known
points (eguivalent to assigning W, = W, = 0.5) .

£) The three-points method interpolates missing concentrations
by the three nearest neighboring points with fixed weights W, =
0.25, W, = 0.5, and W, = 0.25.

Uzing the same data set, it was found that these three fixed-
weight linear interpolation methods gave very similar vearly load
estimates to these provided by the SVLI model, but had higher G
and DG values. DG valued for the three-pointsz method was 0.05Z2,

for the mid-point method was 0.169.



SUMMARY AND COMNCLUSTONS

In this paper, we propose a model to guantify the variance in
piece-wise linear interpolation (PLI) and apply the model to
nutrient load caleculations. This model provides a method for
regulatory agencieg that use PLI to compare their regults with
those from other models. The PLI uncertainty analysis procedure
consicsts of the following steps:

a. Estimate missing data using PLI with Equation (6). The
load ¢an be determined hefore the variance analysis is conducted.

b. Select a theoretical semi-variogram based on properties of
the data and calibrate it for each year by cross-validation until
the convergence reguirement in Equation (18) 1is met. Thig
convergence requirement ensures that the variances derived from the
model are comparable to those obtained from other models.

c. Compute variance of the caleculated yearly load using
ecuation (20).

By comparing the SVLI model with other models, we concluded:

1. Load estimates derived by applying different models to the
sample data zet were not significantly different.

2. Uneertainties in misggsing data estimationg were dependent
upon the type of model used and data properties.

3. The dimensionless coefficient of load variation, G, 1in
Equation (21) was a convenient way to compare the uncertainties in
loading estimations among different models, especially when both
discharge and concentratinn measurements contained missing values.

Thisz coefficient also provides information on error magnification,
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esulting from error propagation within a particular model.

4, The DG coefficient defined in Eguation (23) can be used to
gelect a numerically robust model. A smaller DG suggests less
magnification of the uncertainty in the misszing data estimation.
Consequently, a perturbation in data will not significantly change
the loading estimation result of a model if its DG value is small,
The SVLI model gave the smallest DG wvalue and thus was the most
desirable model for the data set that was used in this study.

5. Other fixed-weight linear interpolation models were
comparable to the SVLY model in terms of calculated loads and load
variances. The three-points model, in particular, provided
»elatively smoother transgitions from point to point.

6. Since the modelz are data dependent, there is no guarantee
that the best model for one data set will also be best for another
set. Model selection depends on how well the model describes the
inherent propertiesz of the data.

One may argue that since caleculated leoads from different
models are often very close to each other, it doesn't matter which
model ig used. Statistically this is true. However, in the
context of a regulatory program, specific numeric limits are often
set as leoading threshelds. In such cases, knowing the uncertainty
or confidence interval of an estimated load may be critical to
regulatory agencies in their determination of whether a loading

estimate ig, or is not, in compliance with establizhed criteria.
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APPENDIX II. NOTATION

The following symbols are used in this paper.
concentration

coefficient of semil-variogram

yvearly mean concentration

co-wvariance

coefficient of wvariation

coefficient of deviation of G from CV

time increment

Coefficient of load variation, dimensionless
total number of known data points

vearly load

dally load

mean daily load

total number of days of calculation period
total number of missing data points
discharge

sum of squared errors

time

discharge volums

variance

mean daily dis=charge volume

weight of interpolating point

predicting or known point in linear interpolation
predicted value of a variable by linear regression method

predicted value of a migsing data by linear interpolation
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predicted value of a known data point

an estimated wvalue, inﬁDlving variange
coefficient of zZemi-variogram

difference in sampling dates of two zamples,
semi-variogram

variance

coefficient of semi-variogram

1=
[N

normally in days
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A Description of Data Used in the Example.

Mcdel FPerformance Indicabtor, DG.

Loads from the four load caleulation models.
& values from the four load calculation models.
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Table 2. Model Performance Indicator, DG.

—_——— . —————————————— ]

Model : DG

SVLI: single-variable Linear Interpelation 0.040
SVLR: single-varibale Linear Regression 0.189
SVFM: single-variable Flow-weighted Mean 0.238
SVAM: single-variable Arithmetic Mean 0.328
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