(WIRE-257% -

ECOLOGICAL
% ‘ | MODELLING

ELSEVIER

Eeological Modelling 116 (1999 3)—44

Statistical modeling of total phosphorus concentrations
measured in south Florida rainfall

Hosung Ahn * -

Resources Assensmient Divaion, South Florida Water Management Diserict, 3301 Gue Club Roud, West Palm Beach,
FL 33406, (/54

Reeetvid 25 February 1998; accepled 19 August 1998

Abstract

Armmospheric deposition ¢an be a significant souree of phosphorus 1o South Floridu's ag watic gystem. The weekly
lolal phosphorus (TP) concenlrations in rainfall huve been measurcd routinely in the region since 1974, but the
historical data set has significant gaps due to instrumental [ailures and sample contamination. This study atempts o
develop a statistical model of rainfall-borne TP concentration to estimate missing data. The model is based on a
multivariate stochastic tme-series theory, The model parameters and noise ¢ovanances were calibrated using the
expectation muximization algorithm which is known w be elficient for data scts with many gaps. Model verification
demonstrates that the calibraled model provides unbiased data cstimates while preserving the statistics of the raw
daty. The data with gaps filled in are wseful for computing the weekly TP loads. © 1999 Elsevier Science BV, All
nighls reserved.

Keywords: Atmospheric deposttion: Total phosphorus; Missing dats; Kalman filter; Time series model; Expeetation—
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1. Introduction ing concern resulting in the need for accurule

monitoring and analyses of phosphorus distribu-

Phosphorus concentradons of wquatic systems
are directly related to eutrophication and tw the
structure of the wyuarie vegetation commiunity.
The management of phosphorus inpuls w the
South Florida ecosystem has begome an increas-

*lubs 4 1-560-6876518; fax:  + 1-561-0R76442:  c-mail;
hosung. alnydistwind . gov,

-tion in the region, The South Florida water man-

agement - district  (District)  has  collecred
atmospheric deposition date in the region since
1974, The monitoring program was significantly
improved in 1992 with the deployment of wet/dry
collectors (Aerochem Mertrics Model 301 aulo-
marie wet/dry sampler) and adopton ol a stan-
dard operating procedure [or atmospheric duta
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Fig. 1. Locations of the armespheric deposition monitoring sites operated by the Souh Florida water managemenl districl.

collection and processing. Currently, there are a
total of 19 atmospheric deposition monitoring
sites operated by the District (Fig. 1). Wet and
dry deposition dara have been collected in weekly
intervals and analyzed at the District’s laboratary
to detarmine the level of nurrients and major ions.

However, there is a signilicant amount of miss-
ing data in the measured nutrient duta sets caused
by instrumental [ailure and sample contamination
due to bird droppings and other foreign matter:
About 64% of ruinfall lotal phosphorus (TP) con-
centration data collected on a weekly basis o the
tegion is missing trom the historical data sets
{Ahn, 1997). The amount of raintall-borne phaos-

phorus loads to the ecosvstem can be accurately
pyttmmated at weekly time intervals since corre-
sponding rainfall is highly vanable in space and
time. Although the gaps in the data are not
necessarily detrimental o quantifying monthly or
yearly summary statistics, they do preclude culeu-
lation of weekly rainfall TP loads. [F the physical
processes driving the oceurrence and Lransporti-
tont mechanism of atmospheric deposition are
known, one could build a mathemarical model to
estimate the data gaps. However, neither a marthe-
maticu]l model nor supporting input data for the
modal on a regional scale are available, Alterna-
tivelv, one can adopt an empincal approach using



H. dfm | Ecefogiond Modetfing 116 {1999 13-4 35

a statistical model based on curtently available
data to estimate the missing datu. Thus the ob-
jective in this study was Lo develop a statistical
mode! to estimale the missing data in the phos-
phorus concentration of rainlall.

This study uses a  multivariate  time-series
model with covariate terms since the data are
measured at multiple sites. For complete (no
missing) data sets, a varety of numerical al-
gorithms, such as Gauss—Newton method and
scoring method (Box and Jenkins, 1976; Brock-
well and Davis, 1987, Harvey, 1990), are avail-
able 1o estimute paramelers in the time-series
models, but they ars not applicabls for an in-
complete data sct. For incomplete dava sets
which have some data gaps in them, It has been
known (Dempster et al., 1977 Shumway and
Stoffer, 1982; Stoffer, 1983, 1986) that an expec-
tation -maximization (EM) algorithm s suitable
for estimating parameters of time-series models.
A pre-condition o applying the EM ulgorithm is
to set the moedel nto state—space form 1o @sti-
mate Kalman fillering and smoothing estimates.
The Kalman filter and smoother recursions
provide a comvenient means for caleulating the
conditional expectations of both state and error
vectors. The reason for wsing smoothing in this

Ccase is to take advantage of the forwurd mea-
surement information and te give a Mast conver-
gence in the EM ulgorithm. The Kulman
filtering in conjuncrion with a stochastic time
series model has been widely applied for ecologi-
cal modeling and duta analyses (Padgett and Pa-
padopoulos, 1979; Chen and Papadopoulos,
1988; Tiwari and Ddenes, 1994; Boudjema and
Chau, 1996Y, but no specific work has been
found for dealing with incomplete escological
data sets. Thus the overall EM algorilhm ap-
plicd w the TP data observed from multiple
gites is introduced in the next section.

2. Method

2.1 Autoregressive model with covariate

Consider 2 multi-variate stale  vecror X, =

(%, 1aeens X o) at time 7 (= 1,...,T), where (nx) is
the number of sate sizes, T 1s the ume span,
and () denotes transpose of a matrix. With the
(nz) multiple covariale vector z,={z,j....Z)
which is measured completely and concurrently,
the order-y multivariate auntoregression model is
piven by

i
X = Z]fpxr—ﬁ-l_w:l_._wf (])
=
where ¢(nx = nx) and (nx = nz) are the regres-
sion parameters, and w, is the Gaussian white
naise with w, = (0, ). For wet TP concentra-
tion data, x, could represent a TP vector mea-
sured from nx multiple sites at time {, while z,
may be a concurrently measured covariate vector
having a size of nz.

To estimate the paramelers  {@, ¥, Q1.
an EM algorithm can be applied in conjunction
with the modificd Kalman smoolher esumators
o derive a simple recursive procedure. The EM
alparithm is known to be an alternative nou-lin-
gar optimization algorithm suitable (or estimat-
ing missing data (Dempster et al, 1977;
Shumway, 1988). To apply the Kalman filter re-
cursion, Eq. (1) should be sel into a state—spuce
form which consists ol state and measurcrnent
gquations, With an augmented vector X(r) =
[x,-X, ,..) the state cquation of Eq. (1) i3
the form oft

f#’l e rf)q‘-l [;bq (.-‘C,_ | IJI’
=1 7 R B Ul S 5 v
0 1o [x, K
o
0 o . .
[2]+ | . | =@x(=1+¥z0) +wlo) (2)
0

where @(ne = ne) and ¥F(nc = nz) are the aug-
mented matrices with a dimension of ne( = nx =
g), and 1 and O in the parameter matrices
denote the one and zero diagonal malness. To
allow for estimating the missing dafa, the mea-
surement equation is writlen by:
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Fig. 2. Schematics of flrering and smoothing of a multivariate awlorepressive model wilth covariute.
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where y,(nx = 1} 18 the state measurement vector
at t, M{r) is the (oxX = nc) measurement malrix m
which the diagonal clement {m,} is | if y, is
measured, or O otherwise. The measurement noise
v, is the Gaussizn white noisc having v, = N0, B).

2.2 The Kalman filtering and smuoothing

The problem of cstimaling x(z) in Eq. (2) can
be appreached by the expectation of it condition-
mg on the measurements (y,,...,»,) as:

xf = B g a¥eZiyeenZ,] (4)

where 5 18 the spun of the measurement, With the
state estimation error vector #, defined as the true
value minus the above estimated value, the error
covariance can be estimated by

Pi= E[EE, [ Fi oV B 2. )

The tfollowing problams occur when estimating
the »f and pf i =4, it iy called a filtering
problem; if ¢ <2 5, it is a smoothing problem. Fig. 2
shows a schemartic of filtering and smoothing (or
the given time-series model expressed by Eq. (1).

Bascd on tho state—space form, the forward
recursion (= 1,....I) of the stale and error co-
varianee sre given (Jazwinski, 1970) by

xi~h=x! 2t 4+ Fz(1) (6)

pi = Qpl O b [g (ﬂ (7)
Ko=pi= ' MGY[M(tp, ' M) - R]™! (8)
xi=x{" + Ky — Mo ()
pl=p T K M(OpT! {10

Defining the expectations of state and error co-
vanances conditioning on all availuble mewsure-
ments (¥y,....¥p) a5

x;T=E[IU)|.J"h---7_VT= "T'l?""Ef] (11)
pT = E[%% | Yoy Srvetr) 12

respectively, the corresponding Kalmun smoother
in backward recuwsion {(1=7T,T—1,....1) 15 then
given (Jazwinski, 1970 by:

o =pi TP Y (13)
Plovs_z=Elxt_ — 2] Wxt ,— %] )
V1] a4
X/ =xisl T o (xf =D Y (15)
plov=piZi+d pl—pi W (16)
bloa=ps T el o = Op 2V s
(17}

where the Eq. (17) provides the lag-ong smoothed
error covariances needed for the expectation siep
{(Shumway and Stoffer, 1981).

2.3 Expectation-maximizarion aigorithem

A log likelihood, lnL(.x‘l,...,x,-|E)), based on a
complete data set (x,....x,;) can be estimated by
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an expectation conditioning on § which 13 the
parameter set of the model to be estimated. The
EM algorithm is designed to find # ieratively by
maximizing the expectation of the completc-data
log likelihood conditioned on the measnared data.
That is, the cxpectation step al the i-th iteration
computes the log-likelihood [uncuion of:

Fcl(f ] 8,) = EInL{x(1),...x(T},
Dpoesligs @ | PopeelipZyen 2y 8411 (1%)

The maximization step then chooses €, to max-
imize Fct(#|¢,) using one of the opuimization
techniques. Sinee the (x,,...,x7) process cannot he
mexsured directly, By, {(18) can be written in 2rms
of the Kalman smoothed astimators. The following
expectation terms (Stoffer, 1985) are needed (o
compute the maximizalion step:

"

A= z (p,[;_ | +.1C?-_ld\",?-_ IF)!

r=1
i

B= Z, (u.ur[!—l +x1T—l-’ch—1r).~

1=1
C= Y @ +xTx])),
re=1
T
F= 3 [x{-20)]
I
- .
G= > [x/z(:Y] and
=]
.4.:
H= 3} [z(nz(r)] {(19)
=l

where x7, is the first sub-vector in the x/' =
[x/)-.x T, 1], and the corresponding dimensions
are: A(ns = ns); B(nx = ns); C(nx = nx), F(ns =
ne); Ginx x ue); and H(ne x nc), with ne = (nx =
q). An incomplete-data log-likelihood function is
caleuluted (Gupta and Mehra, 1974; Shumway and
Sioffer, 1981} by:

- |
AnL(¥) = Y In|M(Opi = Mty

i

,
+ Y el VMGt MY = R]

[

gl {2n

1 t—1

with /=1 (p, — M(0x; 71, and x; ' and p;
are obtained from the forward recursion.

The muximization step is then obtained by max-
imizing Eq. (18) with respect to the purameters (2,
(2, and R, The resulting estimators (Shumway and
Stofter, 1982 Stoifer, 1983) are given by:

0. =B c;]["‘ F} @)

FOH
. B
Qt’-l- | =(C—H‘+[(ﬂ:|—[.b‘ G]Hn 11
J
4 F . ‘
+ Hi+ l[ﬁ" H—\{"J:+ ]);T {22)
I
R =?E Lo+ M(0p M{t)'} - (23)
c—1

wheare ¢, s the sstimation error vector exprassed by
g, =y, — M(Ox.

The iterative procedure of the EM algorithm
starty with an assumed initial parameler set,
{0y, Q(0), R(OY, where () indicates the initial
time step before iterations. On the i-th iteration,
the Kalman filtered and smoothed estimators are
computed using Eq. (6) through Bq. (17), with the
expeclation step given by Eq. (19), the log-likelh-
hood function by Eq. (200, and the muximization
step by Eq. (21) through Eq. (23). The procedure
continues until the minimum log-likelihood lunc-
tion was obtained.

3. Application
3.1, Formulbuting model structure

Four of the sites located in the Everglades
nutrient removal (ENR) project area (ENR-101,
2203, 301, -401) were not included in the modeling
because of having an excessive amount ol missing
duta. This study vsed the weekly rainfall-borme TP
concentration data collected from 13 other moni-
toring sites for the maximum period of record from
April 1992 - November [996. The actual periods of
record vary from sile to site due to periodic
expansion of the monitoring program. Cenerally,
it would not be technically dillicult to build one
multivariate time-serics model for all 15 sices,
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Talle 1

Composition of ime-series models and periods of record of the histarical dula wsed lor moded calibration

Madel 1D Zites (MNumber of sires) Periods of record Number af Covariate sites
(month/day/year) data points
Modal.[ 5-65A. 8.7 (2) 477192-11/5/96 240 ENR. QKEEFS, 5-140 (3)
Model-LI ENMR, OKEEFS, 5-140 (3) 477782, 11/5/96 24l 5-63A, 57 (D)
Movdel-111, 5-308, 53100 47792 -11/5/9% 240 ENR, QKEETS, 5-7 ()
Model -V 5-127, 3-13(, BGI, BG2. ENPROC (5) QTI-1002296 led OKELTS, 5-308. 3.310 (3)
G-16, L-67A, L6 (3)

Model-V

B/22/95-10/22/96 62

ENR, ENPRC. OKEEFS (3}

making it somewhat more cfficient to estimate
model paramerers and values for missing data.
However, developing such a model in this case
was not possible because of the varying periods of
record and the lack of covariate informalion other
than the TP dara from adjacent sites. Because of
these limitations, this study constructed five sepu-
rate models (Table 1),

In the time-series model deseribed by Eq. (1),
the state veclor x, at tme [ is a function of both
the time-lapped state x,_, and the concurrently
measured covarate z,, Without knowing proper
covariates for the wet TP daty, the concurrently
measured wet TP duata collected from sites adja-
cent to the one being modeled were used as the
covariates in each model, While inter-sile correla-
von of coneurrently measured data is stronger
than aulo-correlation (correlation in time), select-
ing sites for the =, vector is very important. Be-
cause z, does not allow for gaps in the dala, the
moede! structure was designed to estimate model
parameters and missing data in x, sequentially by
taking the state estimates (with filled-in data) of
the previous model in Tuble 1 und applying it to
z, of the current model. Considering the cross-co-
variance, periods of record, and the distance from
the state site, several wlternative models with dif-
ferent combinations of covariates were tried from
which an optimal model was selecied for esach
case by maximizing the log-likelihood function. 1o
parbcular, to oblain a complete covariate data set
for Model-I, Model-IT without the z, term was
initially used to estimats the missing data in x, =
{ENR, OKEEF%, 5-140}.

The order g in Eq. (1) was determined using
Akaike information criteria (ALC) (Shumway,

1988) which chooses the model order g that mini-
mi7es:

-
AlC(g) = 111( Y wiw,;’T) + 2nx%g/T. (24
r=1

Based on the AIC statistics, 4 =1 was dominant
in all fve models. For example, the compuied
AlIC's for Model-II with ¢ ranging tfrom one to
three ars AIC{1)= - 3714; AIC(I2) = —3324;
and AIC(3)= — 3449, from which g=1 was se-
lected.

3.2, Parameter evtimation

After setting up the meusurement matrix in
gach model based on the availability of data, the
parameters of the five models were sequentially
estimaled using the EM algorithm. Sinee the dis-
tnbution of the data before estimating values for
gaps were positively skewed (with skewness coetfi-

10000 600
500
E 000 the 2nd tergp=" |
= 1400 2
= \ /y )
=1
ﬁ 4] ., 300 =
E
. 1 200 =
(jf. -5000 Zinl.
' ‘ 1 100
- the 180 erm
-10000 0
i} 5 10 15 0
[teration

Fig. 3. Convergence of the log-lkelihood (unciuon (M) for
Model-T by lhe expectation-maxinuzaton algorithm. wih
those (or the first { 4-) and the second (O) rerms.
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clents ranging from 0.34 to [.43), the data were
log-transtormed Dbefore the modeling was ap-
plied. For instance, for Maodel-Il (where x| =
[ENR, OKELEFS, 5-140) and =} = [5-634A, 8-7] are
the Top-transtormed wet TP concentrations in
ug/1), the calibrated model 18 given by

X1, 009 002 002 | [x, .,
Xa, | = 002 003 —003| |x,,_,
X, 004 004 —006 | | x5,
0.30 .49 T [wy,
+ 026 05 {:“I + | wa,

0.12 0.68| L5 wy, | (29)

with the diagonal terms in @ and R mainces
being [0.49, 0.67, 0.30] and [0.0021, 0.0035,
0.0029], tespectively. As shown by Eg. (25) und
by the resulis of the other four models {which
are not presented here), the regression coeffi-
glents for z, are higher than those of x,. That is,
the wmrter-site correlation of concurrently mea-
sured TP values are higher than the time-lapged
gorrelation of the dara.

An interesting observation made during
parameter estimation by the EM algorithm was
that the values of the ML function diverged af-
ter certain convergence was achieved (Fig. 3).
That 15, the ML (unclion decreascd constantly at
the initial iterations, after which 11 began o o0s-
cillate with the amplitude of oscillation increas-
ing dramancally. The optimal parameter set in
each model wus obtained at the minimum MI

value. Smoothing estimates, x; and p/, were
considered optimal at this minimum ML. As
shown in Fig. 3 and the other cascs which are
not presented here, the secoud ferm in Eq. (23)
which represents measurement errot covariance
s mot significant to the overall ML function. [t
was also observed during the parameter cahbra-
tion that the larger the aize of missing darta, the
fuster the divergence comes. As a result, the
maodel for a small stale dimension (probably 2 -4
sites) gives more accurate esomates for missing
data than a larger ons. This fact also justified
development of five separate models instead of
one lumped model. The initial parameter set
1O, (M, R(0)} wus not sensitive to the final
estimation result, which was considered to be
another advantage of the EM algonihm as u
parameler estimation method for a time-series
model,

4, Summary siatistics and trends

After filling in the duls gaps with estimated
values, the summary statistics for each site were
computed und compared. That is. the final dara
consisted of direct observations i they were
avallable and smoothing sstimates given by Eqg.
(15) il they were missing (Fig. 4). Plots in Fig 3
compare some statstics of the data before and
after estimation, where the censonnog ratio is the
probahility ol the data being = below detection
limit (BDL) of 3.5 pg/l. R¥s of the censoring

30

: , 40

_|(8) Censoring Rm:: {(h) Mean { /1) (&) 8D (ugls /
., N .

- 20 . -

g 0.2 - 20 ~

2 10 ]

e | // 10—

W " ——— T

00 01 02 03 04 0 20 a0 D o 20 20 40

(Observed

Obaerved

Ohserved

Fig. 5. Comparison of tainfall total phosphorus conceniration values before and after filling-in missing data for () censoring ratio;

{(h) mecan; and (¢) standard deviation,
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Tahle 2

Summary slatistics for wer weal phusphoms concentration (ug/l) dara afier filling 0 gaps

Sire Mame

Esumated Errar

Sample size BDL mean Mean S0
B( 134 224 825 966 1.69
B2 134 2.28 10.26 13.20 1.75
ENPR 143 2,33 1.72 100,49 2.67
EMR 206 274 10135 10.49 144
3-36 18 1.97 16.26 2116 1.76
L-67A 43 173 5.52 317 1.37
L-6 42 2,50 177 6.02 1.a4%
OKERTS 204 .70 6.78 317 1.67
8-127 132 222 19.02 3595 2.50
g-131 132 2.37 1075 17.64 2.1
5-140 197 1.64 .00 733 .47
5-3508 139 204 17.04 ' 14.87 2.44
8- 137 i H 9.3l 13.50 1.97
5-63A 196 264 13.07 16.64 213

57 18! 1.68

B.00 6.37 1.92

ratio, mean, and standard deviation for the data
belore and after Glling-in are .70, 0.93, 0.92,
respectively. These comparisons demonstratc that
both the cemsomng ratios and means wers pro-
served in average sense (unhiased) after gaps in
the dara were filled in; however the variance af
cach site was slightly lower than that of the
original data. This underestimation was mainly
caused by the increased sample size of the data.
Unlike other sites, the mean and variance ol the
data from %-127 site {the right-most dol at each
plot) were quite underestimated because of the
presence of unusually high TP concentration val-
ucs in the data set

Table 2 summarizes the statistics of the data
after filling in duta gaps. The mean und standard
deviation tor cach site, as well as the BDL mecans,
were computed by the censored statisticul method
(Abm, 1998) bevause the data were censored, Es-
pecially, the estimated BDL means can be useful
for computing weekly TP loads based on the wet
TP concentralions, where all BDL dara points
could be replaced by the BDL mean to get unbi-
ased load estimates. From this table, the pooled
meun and standard deviation for the 15 sites after
filling-in data gaps are 10.6 and 12.1 pg/l, respee-
tively, while an average eslimation errot (sguare
. rool of the smoothed error covariunce) of missing
portion is = 1.9 pg/l. The mean TP concentra-

tions in rainfall were very low in the water conser-
vation arcas (WCA 1, WCA 2, and WCA 3) and
increased slightly from the southern rim of Lake
Okeechobes 1o the north.

Plots in Fig. 6 show the monthly average time-
series of the TP data after filling in missing data
at three arbitrarly selectad sites, along with a
lincar trend line and a 6-month moving average
series. The linear trend line in each plot shows
that there is no temporal trend in the data during
the period ol record, while the 6-month moving
average fluctuates due to abnormal high TP con-
centrations that appear randomly in time. The
other sites have the same pattetns but are not

" presented here. To investigate the seasomality in

the duta, the monthly TP concentration values
from all 15 sites were pooled, and the statistics [or
each month of the year were computad (Fig. 7).
This analysis confirms that the month-to-month
variation of the data is very weak, almost negligi-
ble, compared to the estimation error (the last
column in Table 2).

5. Summary

Since the rainfall phosphorus concentration
daty sets in South Florida bave numerous data
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gaps s the result of sample contamination, an multivariate tme-scrics models were developed

allempt was made to estimate values for the miss- frem historical data collected from 15 monitoring
ing information with a statistical model. Five sites, The model parameters and the missing data



H. Afn / Ecological Modelling 118 (1999) 33-44 43

T T T T ¥+ T T 1T 171
Feb Apr Jun Ang Ot Dec

Month

Fig. 7. Box and whisker plots of the mondhly total phosphorus
concentrations from 135 sites in $outh Florida, The solid line
represents the monthly meany of 15 gites, while Lhe middle,
butlom, and top edges of each hox are the median, 25, and
755, percentiles, and the botrom and top of whiskers are the
low and high exieemes, respectively.

were estimated simultaneously by an expeclation—
maximization algorithm. In order to compute the
expectation step, the tme-series model was set
into u state—spuce form and the Kalman filtering
and smoothing algorithms were applied.

As a verification of the model, the statistics of
the data after filling-in the paps were computel
and compared with those for the original data sct.
The resulis werc quite satisfactory in that the
censoring ratio and mean of the data (after filling-
in gaps) were not biased. However, the variance
was slizhtly undercstimated compared to that of
the original data. The average concentration (x +
) of wet TP data collected from the 15 sites was
estimated to be 10,6 £12.1 pg/l, with an average
estimation arror of 1.9 (1.6 ~3.7) pg/l. There is
neither a temporal trend nor u seasonality m the
wet TP concentration data. Instead, random noise
in the data appears to be the main cause of
long-term irregular fluctyations in the data. In
general, the inter-site correlation ol the data i3
stronger Lhan temporal correlation,

Undoubtedly, the TP concentrations resultng -

from applying this methodology to estimate miss-
ing data can be useful for calculating the weekly
TF load input from the atmosphere. Alternatively,
the load could be calculated for a lomger Time
interval (monthly or yearly), but it would be less
accurale than weekly since the spatial and empo-
ral variability of the weekly rainfall is very signifi-
Gunt.
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