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Abstract

Atmospheric depusitiun can be a significant source of phosphorus to South Florida's aquatic system. The weekly

total phosphorus (TP) concentrations in rainfall have been measured routinely in the region since W74, but the

historical data set has significant ga.ps dlue to instrumental failures and sample cointaniination. This study attempts to

develop a statistical model of rainfall-borne TP concentration to estimate missing data. The model is based on a

multivariate stochastic time-series theory. The model paraneters and noise covanances were calibrated using the
expectation maximization algorithm which is known to be eflicient for data sets with many gaps. Model verificauou

demonstrates that the calibrated model provides unbiased data estimates while preserving the statistcs of the raw

data. The data with gaps filled in are useful for computing the weekly TP loads. C 1999 Elsevier Science B.. All

rights reserved.

Keywords: Atmospheric deposition; Total phosphorus; Missing data Kabman filter; Time series model; Expectation-

maximizatio algorithm

1. Introduction ing concern resulting in Lhe need for accurateLC
monitoring and analyses of phosphorus distribu-

Phosphorus concentrations of aquatic systems tiorn in the region. The South Florida water man-

are directly related to eutrophication and to the agenent disLrict (District) has collected

situcture of the aquatic vegetation com unity. atmospheric deposition data in the region since

The management of phosphorus inputs Lo the 1974. The monitoring program was significantly
South Florida ecosystem has become an inicreas- improved in 1992 with the deployment of wet/dry

collectors (Aerochem Metrics Model 301 auto-

*Tel: +1-561-6876516; fax; +1-561-8876442: e-mail; matic wet/dry sampler) and adoption of a stan-

hoxung.ahn@sfwmd.gov, dard operating procedure for atmospheric daLa
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Fig. 1. Locations of the simospheriC deposiion mowihoring sites operated by the South Florida water managcment distric.

collection and processing, Currently, there are a phorus loads to the ecosystem can be accurately

total of 19 atmospheric deposition monitoring estimated at weekly time intervals since corre-

sites operated by the District (Fig. 1). Wet and spending rainfall is highly variable in space and

dry deposition data have been collected in weekly time. Although the gaps in the data are not

intervals and analyzed at the District's laboratory necessarily detrimental to quantifying monthly or

to determine the level of nutriems and major ions. yearly summary stati.ftics, they do preclude calcu-

However, there is a significant amount of miss- lation of weekly rainfall TP loads. If the physical

ing data in the measured nutrient data sets caused processes driving the occurrence and transporta-

by instrumental failure and sample contamination tion mechanism of atmospheric deposition are

due to bird droppings and other foreign matter: known, one could build a mathematical model to

About 64% of rainfall total phosphorus (TP) con- estirmate the data gaps. However, neither a nathe-

centration data collected on a weekly basis in the matical model nor supporting input data for the

region is missing from the historical data set., model on a regional scale are available. Alterna-
(Ahn, 1997)/ The amount of rainfall-borne phos- tivelv, one can adopt an empirical approach using
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a statistical model based on cutrcntly available (x, .)j at time F (= 1,...,T), where (nx) is

data to esLimnate the missing data. Thus the ob- the number of state sizes, T is the time span,
jeetive in this study wad to develop a statistical and ( ) denotes transpose of a matrix. With the

model to estimate the missing data in the phos- (ni) multiple covariate vector z, =(z..iez%'

phorus concentration of rainfall, which is measured completely and concurrenly,
This study uses a multivariate time-series the order-q multivariate autoregression model is

model with covariate terms since the data are given by:
measured at multiple sites. For complete (no
missing) data sets, a variety of numerical al- ,= -, + /fz,+ w, (1)
gorithms, such as Gauss-Newton method and -

scoring method (Box and Jenkins, 1976; Brock- where #(nx x nx) and fr(nx x n.) are the regres-
well and Davis, 1987; Harvey, 1990), are avail- sion parameters, and w, is the Gaussian white
able to estimate parameters in the tine-series uoise with w, : N(0, Q). For wet TP concentra-
models, but they are not applicable for an in- ton data, x, could represent a TP vector mea-
complete data set. For incomplete data sets sured from nx multiple sites at tine 1, while z,
which have some data gaps in them, it has been may be a concurrently measured covariate vector
known (Dempster et al., 1977; Shumway and having a size of nz.
Stoffer, 1982; Stoffer, 1985, 1986) that an expec- To estimate the parameters {#, 0, Q h
tation -maximization (EM) algorithm is suitable an EM algorithm can be applied in conjunction
for estimating parameters of time-series models. with the modified Kalnan smooLher estimators
A pre-condition to applying the EM ilgorithl is to derive a simple recursive procedure. The EM
to set the model into state-space formi to esti- algorithm is known to he an alternative non-lin-
mate Kalman filtering and smoothing estimates. ear optimization algorithm suitable for estimat-
The Kalman filter and smoother recursions ing missing data (Dempster et al., 1977;
provide a convenient means for calculating the Shumway, 1988). To apply the annan filter re-
conditional expectations of both state and error cursion, Eq. (1) should be set into a state-space
vectors. The reason for using smoothing in this form which consists of state and measurement
case is to take advantage of the forward mea- equations. With an augmented vector X(r) =
surement information and to give a fast conver- [x,...,x, J the state equation of Eq. (1) is
gence in the EM algorithm. The Kaiman the form of:
filtering in conjunction with a stochastic time
series model has been widely applied for ecologi-

cal modeling and data analyses (Padgett and Pa- 0 ... # . , #r x, .

padopoulos, 1979; Chen and Papadopoulos, 1 0 0 x _.

1988; Tiwari and Dienes, 1994; Boudjema and <) =

Chau, 1996), but no specific work has been 0 1 0 _ _, 0
found for dealing with incomplete ecological
data sets. Thus the overall EM algorithm ap-
plied to the TP data observed from multiple , l)+T()+w) (2)

sites is introduced in the next section. ;

0

where Dl(nc x ne) and Y(nc x nz) are the aug-
mented matrices with a dimension of no( = nx x

q), and I and 0 in the parameter matrices

2.1. Autoregressive model with covariale denote the one and zero diagonal matrices. To

allow for estimating the missing data, the nea-

Consider a multi-variate ntate vector -xr = surement equation is written by:
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Fig, 2, Schematics of filtering and smoothing of a multivariate autoregresrive model with cavariate.

X Q D
x,; p ' p; D' p (7)

yr= [m,..] + 92 M(t )x(t)+v,
x,M ), (3) K p -.. )(t)'[M.(t)p1 ' -f()'+R]-' (8)

x, =x -x + K,[y-M()x -'] (9)
where y,(nx x 1) is the state measurement vector p, =p,-' -+K,M()p- 1  (10)
at r, M(t) is the (nx x nc) measurement matrix in
which the diagonal clement {m, is 1 if y, is Defining the expectations of state and error co-

measured, or 0 otherwise. The measurement noise variances conditioning on all available measure-

v, is the Gaussian white noise having t, N(0, R). ments (yI-..YT) as:

rx= E~x(t)|yt,...,yr, ai.---,z,] (11)
2.2. The KaIran filtering and smoothing r = .

The problern of estimating x(t) in Eq. (2) can respectively, the corresponding Kalrmnn smoother
be approached by the expectation of it condition- in backward recursion (t= T, T - 1,...,1) is then
ing on the measurements (y,.-.,y,) as: given (Jazwinski, 1970) by:

X- = E[x(t ) (4) J, - =P Pc(pt 1)1 (13)

where s is the span of the measurement. With the z-ii- - - 2)(x*... - - k )

state estimation error vector x, defned as the true YiYy] (14)
value minus the above estimated value, the error
covariane can be estimated by: - i = - J, _ t(x f - <Dx-1) (15)

=E~. rC =er -i+.1, .. 1(Pr -P' ')"', (16)

pT-_1_ pJ- ,_iph_+J -p -z]A',_-,
The following problems occur when estimating (17)
the x and p§: if t = s, it is called a filtering
problem.; if r <s, it is a smoothing problem. Fig. 2 where the Eq. (17) provides the lag-one smoothed

shows a schematic of filtering and smoothing for error covariances needed for the expectation step
the given time-series model expressed by Eq. (1). (Shumway and Stoffer, 1981).

Based on the state-space form, the forward
recursion (r = 1,...,T) of the staL and orror co- 2-1- FXpcCwi -rnzcimtarion algorithm
variance arc given (Jazwinski, 1970) by

A log likelihood, 1nL(xt,..,xr|80), based on a
xt -' = (Dx, - + Wz(1) (6) complete data set (x...... can be estimated by
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an expectation conditioning on 6 which is the with c-' (y, - M(t)x'-'), and x' ' and p,-'

parameter set of the model to be estirnated. The are obtained from the forward recursion.

EM algorithm is designed to find 0 iteratively by The maximization step is then obtained by max-

maximizing the expectation of the complete-data imizing Eq. (18) with respect to the parameters 0,

log likelihood conditioned on the measured data. Q, and R. The resulting estimators (Shumway and

That is, the expectation step at the i-rh iteration Stoffer, 1982; Stoffer, 1985) are given by:

computes the log-likelihood function of: -A (

.Fet.(0 |6) Ejin/ {x(1),..,x(T), 'F H

1,,..,ir; 0 y -,-ye...z*r; B )1- (18) Q = (C - [j -{B G]r ,

The maxirization step then chooses 8+, to max- -

imize Fct.(610,) using one of the optimizatlon + 6  A /Flw T (22)
techniques. Since the (x,,...,XT) process cannot be F1 H 1+1
neasured directly, Eq. (18) can be written in terms 1 T

of the Kalman smoothed estimators. The following R, + - Y {e1e + M(Q)p[M(r)'} (23)

expectation terms (Stoffer, 1985) are needed to

compute the maximization step: where e, is the estimation error veeLor expressed by
, -Y, - M( x;".

_ + ) The iterative procedure of the EM algorithm
X_ , [starts with an assumed initial parameLer set,

{ (0), Q(0), R(0)}, where (0) indicates the initial
B = (p § _. + x 2_ ix T_ d) rime step before iterations. Ohn the l-th iteration,

the Kahnan filtered and smoothed estirators are

computed using Eq. (6) through Eq. (17), with the
C - + xT x expeclation step given by Eq. (19), the log-likeli-

T hood function by Eq. (20), and the maxirnization

F= Z[xr iz(t)] step by Eq. (21) through Eq. (23). The procedure
F- continues until the minimum log-likelihood fanc

r tion was obtained.
G= Z[x z(t)'] and

H = Z [(r)(r)'] (19) 3. Application

where x[, is the first sub-vector in the x, = 3.1. Formulating modelFtructure

[xl',.xx i], and the corresponding dimensions Four of the sites located in the Everglades
are: A(nS x os); B(nx x as): C(nx TI); F(ns x

nc); G(nx x n); and H(x nc) with nx (n x nutrient removal (ENR) project area (EN R-101,

q) An incomplete-data log-likelihood function is -203, -301, -401) were not included in the modeling

canuatrd (Gupta and Mera, 1974; Shumway and because of having an excessive amount of missing

S toffer, 1981) by: data. This study used the weekly rainfall-borne TP
concentraLion data collected from 15 other moni-

T(Y ltoring sires for the mnaximun period of record from
2lnL( Y) ~ In MQ)p - 'M(r)' April 1992-- November 1996. The actual periods of

T record vary from site to site due to periodic

+ -e'[M(r)p; -IM(ry - R1 expansion of the monitoring program. Generally,
-1 - it would not be technically difficult to build one

(20) inultivariate time-series model for all 15 sites,
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Table 1
Composition of time-series models and periods of record of the histnrical dula used for mode calibration

Model 1D Sites (Number of sites) Periods of record Number of Covariate sites
(month/day/year) data points

Model.I S-65A. S-7 (2) 4/7/92-1 I/5/96 240 ENR. OKEEFS, S-140 (3)
Modcl-11 ENR, OKEEFS, 8-140 (3) 4/7/92. 11/5/96 240 s-65A, -7 (2)
MoLLel-ILl -308 5-310 (2) 4/7/92 -11/5/96 240 ENk, OK8FPS, S-7 (3)
Model-[V S-127, S-L31, BGI, BG2. ENPRC (5) 9/7/93-10/22/96 164 OKEEFS, 5-308. 5-310 (3)
ModeL-V G-36, L-67A, L-6 (3) 8/22/95-10/22/96 62 ENR, ENPRC. OKEEFS (3)

making it somewhat more efficient to estimate 1988) which chooses the model order q that mini-
modul parameters and values for missing data. mizes:

However, developing such a model in this case r
was not possible because of the varying periods of AIC(q)=ln 1 w w,/T +2nx'q/T. (24)
record and the lack of covariate information other
than the TP data from adjacent sites. Because of Based on the AIC statistics, q = I was dominant
these limitations, this study constructed five sepa- in all five models. For example, the computed

rate models (Table 1). AIC's for Model-II with q ranging from one to

In the time-series model described by Eq. (1), three are AIC(l) = 3714; AIC(2) = - 3324:
the state vector x, at time 1 is a function of both and A IC(3)= -3449, from which q = 1 was se-
the time-lagged state x,- and the concurrently lected.
measured covariate z,. Without knowing proper
covariates for the wet TP data, the concurrently 3.2. Paraeznter estimadon

measured wet TP data cullected from sites adja-
cent to the one being modeled were used as the After setting up the neasurerment matrix in
covariates in each model. While inter-siLe correla. each model based on the availability of data, the
tion of concurrenttly measLred data is stronger parameters of the live models were sequentially
than auto-correlation (correlation in time), select- estimated using the EM algorithm. Since the dis-
ing sites for the z, vector is very important. Be- tribution of the data before estimating values for

cause z, does not allow for gaps in the data, the gaps were positively skewed (with skewness coeffi-

model tructure was designed to estimate model
parameters and missing data in x, sequentially by
taking the state estimates (with filled-in data) of 10000 600
the previous model in Table 1 and applying it to Sop
Z, of the current model. Considering the cross-co- 500 the 2nd te r . 400 e
variance, periods of record. and the distance Fron
the state site, several alternative models with dif- . - - 300
ferent combinations of covariates were tried from
which an optimal model was selected for each 5, I 200 -
case by maximizing the log-likelihood function. in ' r-100
particular, to obtain a complete covariate data set -loom L _______leI_

-[0000
for Model-I, Model-II without the z, term was a 5 1o 15 20
initially used to estimate the missing data in x, = [eration

(ENR., OKEFS, S-140} Fig. 3. Cnvcrgence of the Iug-ikelihood function (0) fbr
The order q in Eq. (1) was determined using Model-t by the expectarion*-maximizaion algoritm. with

Akaike information criteria (AIC) (Shumwa.y, those for the first ( r ) and the second (C) cerms.
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cients ranging from 0.34 to 1.45), the data were value. Smoothing estimates, x and pi, were
log-transformed before the modeling was ap- considered optimal at ihis minimum ML. As
plied. For instance, for Model-I (where x;- shown in Fig. 3 and the other cases which are
[ENR, OKEEFS, S-140] and : = [S-65A, S-7] are not presented here, the second term in Eq. (23)
Lhe log-transformed wet TP concentrations in which represents measurement error covariance
jig/l), dhe calibrated model is given by: is not significant to the overall ML function. It

was also observed during the parameter calibra-

S0,09 0.02 0.02 x , tion that the larger the size of missing data, the

x = 0.02 0.03 -0.03 x faster the divergence comes. As a result, the
.- 2 jmodel for a small state dimension (probably 2-4

XI" 0.04 0.04 -0.06 xsites) gives more accurate estimates for missing

0.30 0.49 - w data than a larger one. This fact also justilied

+ 0.26 0.59 + w development of five separate models instead of
z -- one lumped model The initial parameter set

0.12 0.68 . - w J (25) {r r),o(0),R0)} was not sensitive to the final

with the diagonal terms in Q and R matines estimation result, which was considered to be

being [0.49, 0.67, 0.30] and [0.0021, 0.0035, another advantage of the EM algorithm as a

0.00291, respectively. As shown by Eq. (25) and paramerLC estimation method for a time-series

by the results of the other four models (which model.

are not presented here), the regression coeffi-
cients for z, are higher than those of x,. That is,
the inter-site correlation of concurrently mnea- 4. Samnary statistics and trends
sured TP values are higher than the time-lagged
correlation of the data. After filling in the data gaps with estimated

An interesting observation made during values. the summary statistics for each site were
parameter estimation by the EM algorithm was computed and compared. That is. the final data
that the values of the ML function diverged af- consisted of direct observations if they were
ter certain convergence was achieved (Fig. 3), available and smoothing estimates given by Eq.
That is, the ML funcLion decreased constantly at (15) if they were missing (Fig. 4). Plots in Fig. 5
the initial iterations, after which it began to os- compare some statistics of the data before and
cillate with the amplitude of oscillation increas- after estimation, where the censoring ratio is the
ing dramatically. The optimal parameter set in probability of the data being < below detection
each model was obtained at the minimum ML limit (BDL) of 3.5 gg/l. R's of the censoring

0.4 (a) Censoring Ratio / (h) Mean (p /L) (c) S.D. ( g/L)

0.9 U 30 -
20-2

~0.2- . . - 20-

01 10-A "

0.0-' 0- 0-
| I I J I | ' |I ' | ' |

0.0 0.1 0.2 0.3 0.4 0 10 20 30 0 10 20 30 40
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Fig, 5, Comparison of rainfall total phosphorus concentration values before and after tilling-in iLssing data for (a) cenmoring ratio;
(h) mea; and (c) standard deviation.
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Table 2
Summary slatistics for wcT total phosphorus concentration (g/l) data afer filling in gaps

Sie Name Sample size BDL mean Mean S.D. Estirnated Error

Bel 134 2.24 8,25 9.66 1.69
BG2 134 2.28 10.96 13.21 1-75

ENPRC 143 2.33 1.72 10.49 2,67

ENR 206 2.16 10.35 10.49 1.89

(-16 38 1.97 16.26 21.16 1.76

L-61A 43 2173 5.52 3.17 1.37

L-6 42 259 7.77 6.02 1.9

1:)KrnS 204 2.70 6.78 5.17 1.67

S-127 132 2.22 19.02 25.98 2.51

S-131 132 2.37 10,75 17.64 2.11

S-140 197 2,64 .000 7,33 1.47

S-30H 139 2.65 17.04 14.87 2.44

8-310 137 2.38 9.31 13.50 1.97

S-65A 196 2.64 13.07 16.64 2.13

S-7 i91 2.68 B.00 6.37 1.92

ratio, mean, and standard deviation for the data tions in rainfall were very low in the water conser-

before and after filling-in are 0.70, 0.93, 0.92, vation areas (WCA 1, WCA 2, and WCA 3) and

respectively. These comparisons demonstrate that increased slightly from the southern rim of Lake

both the censoring ratios and means were pre- Okeechobee to the north.

served in average sense (unbiased) after gaps in Plots in Fig. 6 show the monthly average time-

the data were filled in; however the variance at series of the TP data after filling in missing data

each site was slightly lower than that of the at three arbitrarily selected sites, along with a

original data. This. underesnimation was mainly linear trend line and a 6-month moving average

caused by the increased sample size of the data. series. The linear trend line in each plot shows

Unlike other sites, the mean and variance of the that there is no temporal trend in the data during

data from S-127 site (the right-most dot at each the period of record, while the 6-month moving

plot) were quite underestimated because of the average fluctuates due to abnormal high TP con-

presence of unusually high TP concentration val- cenurations that appear randomly in time. The

ues in the data set. other sites have the same patterns but are not

Table 2 summarizes the statistics of the data presented here. To investigate the seasonality in

after filling in data gaps. The mean and standard the data, the monthly TP concentration values

deviation for each site, as well as the BDL means, from all 15 sites were pooled. and the statistics f or

were computed by the censored statistical method each month of the year were computed (Fig. 7).

(Ahn, 1998) because the data were censored. Us- This analysis confirms that the month-to-month

pecially, the estimated BDL means can be useful variation of the data is very weak, almost negligi-

for computing weekly TP loads based on the wet ble, compared to the estimation error (the last

TP concentrationS, where all BDL data points column in Table 2).

could be replaced by the BDL mean to get unbi-

ased load estimates. From this table, the pooled

mean and standard deviation for the 15 sites after

filling-in data gaps are 10,6 and 12.1 [g/l, respee- 5. Summary

uvely, while an average estimation error (square

root of the smoothed error covariance) of missing Since the rainfall phosphorus concentration

portion is , 1.9 ugjl. The mean TP concentra- data sets in South Florida have numerous data
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Fig. 6. Seasonal and yearly trcrds oF the wet total phosphorus darn for three selected sites.

gaps as the result of sample contamination, an multivariate time-series models were developed
atterrpt was made to estimate values for the miss- from historical data collected from 15 monitoring
ing information with a statistical model. Five sites. The model parameters and the missing data
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