TECHNICAL MEMORANDUM WRE # 356

SURFACE WATER QUALITY MONITORING NETWORK SOUTH FLORIDA WATER MANAGEMENT DISTRICT

January, 1998

By

Guy J. Germain

Resource Assessment Division Water Resources Evaluation Department South Florida Water Management District

CONTENTS

÷

TABLE OF CO	NTENTS	Ι
LIST OF TABL	ÆS	V
LIST OF FIGU	RES	IX
INTRODUCTIC PURPOS REPOR DATA A	DN SE AND SCOPE Γ FORMAT AVAJLABILITY	1 1 3 4
ACKNOWLED	GEMENTS	5
SECTION 1 :	UPPER KISSIMMEE RIVER CHAIN OF LAKES AND TRIBUTARIES PROJECT CODES: UKCL and TUK	13
SECTION 2 :	KISSIMMEE RIVER PROJECT CODES: V, KREA, and TFWQ	19
SECTION 3 :	ARBUCKLE CREEK PROJECT CODE: ARCK	29
SECTION 4 :	LAKE ISTOKPOGA PROJECT CODE: ISTO	33
SECTION 5 :	LOWER KISSIMMEE RIVER BASIN PROJECT CODES: KREA and LKR	39
SECTION 6 :	TAYLOR CREEK NUBBIN SLOUGH PROJECT CODE: TCNS	51
SECTIÓN 7 :	INDIAN RIVER LAGOON PROJECT CODE: IRL	63
SECTION 8 :	ST.LUCIE ESTUARY PROJECT CODE: SE	75
SECTION 9 :	UPPER AND LOWER EAST COAST PROJECT CODE: WQM	81

	SECTION 10:	WORKS OF THE DISTRICT PERMIT COMPLIANCE PROJECT CODE: WOD
	SECTION 11 :	LAKE OKEECHOBEE MONITORING PROGRAMS PROJECT CODE: X = INFLOWS/OUTFLOWS PROJECT CODES: Y, YS, YGS, YN, YSRG, YNRG, and OLIT = LIMNETIC AND LITTORAL ZONES
	SECTION 12 :	CALOOSAHATCHEE RIVER PROJECT CODE: CR
	SECTION 13 :	EVERGLADES NUTRIENT REMOVAL PROJECT CODES: ENRR, ENRU, ENRP, ENRG
	SECTION 14 :	HOLEY LAND PROJECT CODE: HOLY
	SECTION 15 :	EVERGLADES PROTECTION AREA PROJECT CODE: EVPA
	SECTION 16:	BIG CYPRESS SEMINOLE INDIANS PROJECT CODE: SEMI
	SECTION 17 :	WATER CONSERVATION AREA INFLOWS AND OUTFLOWS, AND TAMIAMI BRIDGES PROJECT CODES: CAMB, TAMB
. <u>.</u>	SECTION 18 :	THE BISCAYNE BAY WATER QUALITY MONITORING PROGRAM PROJECT CODE: BISC
	SECTION 19 :	EVERGLADES NATIONAL PARK PROJECT CODES: ENP and EVER
	SECTION 20 :	ROUTINE PESTICIDE MONITORING NETWORK PROJECT CODE: PEST
	SECTION 21 :	ATMOSPHERIC DEPOSITION MONITORING PROGRAM PROJECT CODE: RAIN
	SECTION 22 :	MANATEE BAY / LONG SOUND PROJECT CODE: MBLS

.

SECTION 23:	SOUTH FLORIDA ESTUARINE WATER QUALITY MONITORING PROGRAM PROJECT CODES: FLAB, TTI, BISC, SWS	201
SECTION 24:	BIG CYPRESS NATIONAL PRESERVE WATER QUALITY MONITORING PROGRAM PROGRAM CODE: BCWQ	221
Appendix A ABBRE	VIATIONS	225
Appendix B CROSS NAMES	REFERENCE GUIDE FOR SAMPLING STATION	227

.

IV

TABLES

٠.

÷.

TABLE I.	List of Parameters and Units by Major Groupings	7
TABLE 2.	Pesticides Analyzed in Surface Water and Sediment Samples	9
TABLE 3.	Priority Pollutants for Water and Sediment	10
TABLE 4.	Summary of Sampling Station Locations and Frequency of Collection for the Upper Kissimmee River Chain of Lakes and Tributary Monitoring Program	16
TABLE 5.	Statistics for Select Parameters for the Upper Kissimmee River Chain of Lakes and Tributary Monitoring Program for Period of Record	18
TABLE 6.	Summary of Sampling Station Locations and Frequency of Collection for the Kissimmee River Monitoring Program	23
TABLE 7.	Statistics for Select Parameters for the Kissimmee River Monitoring Program for Period of Record	27
TABLE 8.	Summary of Sampling Locations and Frequency of Collection for the Arbuckle Creek Monitoring Program	31
TABLE 9.	Statistics for Select Parameters for the Arbuckle Creek Monitoring Program for Period of Record	32
TABLE 10.	Summary of Sampling Station Locations and Frequency of Collection for the Lake Istokpoga Monitoring Program	35
TABLE 11.	Statistics for Select Parameters for the Lake Istokpoga Monitoring Program for Period of Record	37
TABLE 12.	Summary of Sampling Station Locations and Frequency of Collection for the Lower Kissimmee River Basin Monitoring Program	42
TABLĖ 13.	Statistics for Select Parameters for the Lower Kissimmee River Valley Monitoring Program for Period of Record	48
TABLE 14.	Summary of Sampling Station Locations and Frequency of Collection for the Taylor Creek/Nubbin Slough Monitoring Program	55
TABLE 15.	Statistics for Select Parameters for the Taylor Creek/Nubbin Slough Monitoring Program for Period of Record	60

TABLE 16. Summary of Sampling Station Locations and Frequency of Collection for the Indian River Lagoon Monitoring Program	6
TABLE 17. Statistics for Select Parameters for the Indian River Lagoon MonitoringProgram for Period of Record7	3
TABLE 18. Summary of Sampling Station Locations and Frequency of Collection for the St. Lucie Estuary Monitoring Program 7	8
TABLE 19. Statistics for Select Parameters for the St. Lucie Estuary Monitoring Program for Period of Record 8	0
TABLE 20. Summary of Sampling Station Locations and Frequency of Collection for the Upper and Lower East Coast Monitoring Program	4
TABLE 21. Statistics for Select Parameters for the Upper and Lower East CoastMonitoring Program for Period of Record8	17
TABLE 22. Summary of Sampling Station Locations and Frequency of Collection for the Lake Okeechobee Inflow/Outflow Monitoring Program	8
TABLE 23. Summary of Sampling Locations and Frequency of Collection for theLake Okeechobee Limnetic and Littoral Zone Monitoring Program10)3
TABLE 24. Statistics for Select Parameters for the Lake Okeechobee Inflow/Outflow Monitoring Program for Period of Record)9
TABLE 25. Statistics for Select Parameters for the Lake Okeechobee Limnetic and Littoral Zone Monitoring Program for Period of Record 11	1
TABLE 26. Summary of Sampling Station Locations and Frequency of Collection for the Caloosahatchee River Monitoring Program	5
TABLE 27. Statistics for Select Parameters for the Caloosahatchee River Monitoring Program for Period of Record 11	16
TABLE 28. Summary of Sampling Station Locations and Frequency of Collection forthe Everglades Nutrient Removal Monitoring Program12	20
TABLE 29. Statistics for Select Parameters for the Everglades Nutrient Removal Monitoring Program for Period of Record	23
TABLE 30. Summary of Sampling Station Locations and Frequency of Collection for the Holey Land Monitoring Programs	27

TABLE 31.	Statistics for Select Parameters for the Holey Land Monitoring Program for Period of Record
TABLE 32.	Summary of Sampling Station Locations and Frequency of Collection for the Everglades Protection Area Monitoring Program
TABLE 33.	Statistics for Select Parameters for the Everglades Protection Area Monitoring Program for Period of Record
TABLE 34.	Summary of Sampling Station Locations and Frequency of Collection for the Big Cypress Seminole Indian Monitoring Program
TABLE 35.	Statistics for Select Parameters for the Big Cypress Seminole Indian Monitoring Program for Period of Record
TABLE 36.	Summary of Sampling Station Locations and Frequency of Collection for the Water Conservation Areas Inflows/Outflows, and Tamiami Bridges Monitoring Program
TABLE 37.	Statistics for Select Parameters for the Water Conservation Areas Inflow/Outflow, and Tamiami Bridges Monitoring Program for Period of Record
TABLE 38.	Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay Water Quality Monitoring Program
TABLE 39.	Statistics for select parameters from the Biscayne Bay Water Quality Monitoring Program for Period of Record
TABLE 40.	Summary of Sampling Station Locations and Frequency of Collection for the Everglades National Park (PARK) Monitoring Program
TABLE 41.	Summary of Sampling Station Locations and Frequency of Collection for the Interior of the Everglades National Park Monitoring Program
TABLE 42.	Statistics for Select Parameters for the Everglades National Park Monitoring Program for Period of Record
TABLE 43.	Statistics for Select Parameters for the Interior of the Everglades National Park Monitoring Program for Period of Record
TABLE 44.	Summary of Sampling Station Locations and Frequency of Collection for the Routine Pesticide Monitoring Program

TABLE 45.	Summary of Sampling Station Locations and Frequency of Collection for the Atmospheric Deposition Monitoring Program
TABLE 46.	Summary of Sampling Locations and Frequency of Collection for the Manatee Bay/Long Sound Monitoring Program
TABLE 47.	Statistics for Select Parameters for the Manatee Bay / Long Sound Monitoring Program for Period of Record
TABLE 48.	Summary of Sampling Locations and Frequency of Collection for the South Florida Estuarine Monitoring Program
TABLE 49.	Statistics for Select Parameters for the South Florida Estuarine Monitoring Program for Period of Record
TABLE 50.	Summary of Sampling Locations and Frequency of Collection for the Big Cypress National Preserve Monitoring Program
TABLE 51.	Statistics for Select Parameters for the Big Cypress National Preserve Monitoring Program for Period of Record

FIGURES

-

.

Figure 1.	WATER QUALITY MONITORING PROGRAMS
Figure 2.	LOCATION OF SAMPLING STATIONS FOR THE UPPER KISSIMMEE RIVER CHAIN OF LAKES AND TRIBUTARIES WATER QUALITY MONITORING PROGRAM
Figure 3.	LOCATION OF SAMPLING STATIONS FOR THE KISSIMMEE RIVER WATER QUALITY MONITORING PROGRAM
Figure 4.	LOCATION OF SAMPLING STATIONS FOR THE ARBUCKLE CREEK WATER QUALITY MONITORING PROGRAM
Figure 5.	LOCATION OF SAMPLING STATIONS FOR THE LAKE ISTOKPOGA WATER QUALITY MONITORING PROGRAM
Figure 6.	LOCATION OF SAMPLING STATIONS FOR THE LOWER KISSIMMEE RIVER BASIN WATER QUALITY MONITORING PROGRAM
Figure 7.	LOCATION OF SAMPLING STATIONS FOR THE TAYLOR CREEK / NUBBIN SLOUGH WATER QUALITY MONITORING PROGRAM 54
Figure 8.	LOCATION OF SAMPLING STATIONS FOR THE INDIAN RIVER LAGOON WATER QUALITY MONITORING PROGRAM
Figure 9.	LOCATION OF SAMPLING STATIONS FOR THE ST. LUCIE ESTUARY WATER QUALITY MONITORING PROGRAM
Figure 10.	LOCATION OF SAMPLING STATIONS FOR THE UPPER AND LOWER EAST COAST WATER QUALITY MONITORING PROGRAM
Figure 11.	LOCATION OF SAMPLING SITES FOR THE LAKE OKEECHOBEE INFLOW / OUTFLOW WATER QUALITY MONITORING PROGRAM 95
Figure 12.	LOCATION OF SAMPLING SITES FOR THE LAKE OKEECHOBEE LIMNETIC AND LITTORAL ZONE WATER QUALITY MONITORING PROGRAM
Figure 13.	LOCATION OF SAMPLING STATIONS FOR THE CALOOSAHATCHEE RIVER WATER QUALITY MONITORING PROGRAM
Figure 14.	LOCATION OF SAMPLING STATIONS FOR THE EVERGLADES NUTRIENT REMOVAL WATER QUALITY MONITORING PROGRAM 119

Figure 15.	LOCATION OF SAMPLING STATIONS FOR THE HOLEY LAND WATER QUALITY MONITORING PROGRAM
Figure 16.	LOCATION OF SAMPLING STATIONS IN WCAI FOR THE EVERGLADES PROTECTION AREA WATER QUALITY MONITORING PROGRAM 133
Figure 17.	LOCATION OF SAMPLING STATIONS IN WCA2 FOR THE EVERGLADES PROTECTION AREA WATER QUALITY MONITORING PROGRAM 134
Figure 18.	LOCATION OF SAMPLING STATIONS IN WCA3 FOR THE EVERGLADES PROTECTION AREA WATER QUALITY MONITORING PROGRAM 135
Figure 19.	LOCATION OF SAMPLING STATIONS FOR THE BIG CYPRESS SEMINOLE INDIAN RESERVATION WATER QUALITY MONITORING PROGRAM . 142
Figure 20.	LOCATION OF SAMPLING STATIONS FOR THE WATER CONSERVATION AREAS INFLOW / OUTFLOW WATER QUALITY MONITORING PROGRAM
Figure 21.	LOCATION OF SAMPLING STATIONS FOR THE TAMIAMI BRIDGES WATER QUALITY MONITORING PROGRAM
Figure 22.	LOCATION OF SAMPLING STATIONS FOR THE BISCAYNE BAY WATER QUALITY MONITORING PROGRAM
Figure 23.	LOCATION OF SAMPLING STATIONS FOR THE BISCAYNE BAY WATER QUALITY MONITORING PROGRAM
Figure 24.	LOCATION OF THE INFLOW / OUTFLOW SAMPLING STATIONS FOR THE EVERGLADES NATIONAL PARK WATER QUALITY MONITORING PROGRAM
Figure 25.	LOCATION OF THE INTERIOR SAMPLING STATIONS FOR THE EVERGLADES NATIONAL PARK WATER QUALITY MONITORING PROGRAM
Figure 26.	LOCATION OF SAMPLING STATIONS FOR THE ROUTINE PESTICIDE WATER QUALITY MONITORING PROGRAM
Figure 27.	LOCATION OF SAMPLING STATIONS FOR THE ATMOSPHERIC DEPOSITION MONITORING PROGRAM

Figure 28.	LOCATION OF SAMPLING STATIONS FOR THE MANATEE BAY / LONG SOUND WATER QUALITY MONITORING PROGRAM
Figure 29.	LOCATION OF SAMPLING STATIONS FOR THE SOUTH FLORIDA ESTUARINE WATER QUALITY MONITORING PROGRAM
Figure 30.	LOCATION OF SAMPLING STATIONS FOR THE SOUTH FLORIDA ESTUARINE WATER QUALITY MONITORING PROGRAM
Figure 31.	LOCATION OF SAMPLING STATIONS FOR THE BIG CYPRESS NATIONAL PRESERVE WATER QUALITY MONITORING PROGRAM

.

·-

· · · · · · · · ·

INTRODUCTION

The South Florida Water Management District (District) has the responsibility to manage water and related resources for the benefit of the public and in keeping with the needs of the region. The key elements of its mission are:

- 1. Protection and Enhancement of the Environment,
- 2. Water Supply,
- 3. Flood Protection and
- 4. Water Quality Protection.

The District uses various approaches to protect water quality. These approaches range from monitoring, testing and researching those water quality parameters related to the District's operations, land management activities, and regulatory functions. To meet the demands of these functions, the District collects and maintains an extensive database of surface water quality and hydrologic information in the Department of Water Resources Evaluation (WRE).

Three goals for Environmental Service programs administered by WRE are:

- 1. To provide water quality data and evaluations from a network of sampling stations to support water resource management decision-making;
- 2. To optimize the efficiency of data collection monitoring networks, and ensure data accuracy through rigorous quality control; and,
- 3. To develop and maintain a water quality database to provide efficient data access.

To address these goals, (40) major water quality monitoring programs are currently managed by the Water Quality Monitoring Division (WQMD), as well as other agencies, and some through contractual agreements. These programs encompass a wide variety of south Florida ecosystems, land uses and hydrologic systems. Monitoring points include lakes, rivers, canals, wetlands, dairies, the intracoastal waterway, estuaries, rainfall, and water control structures. Due to the dynamics of surface water flow in south Florida, the data from one monitoring program often augments data from another. Often data collected from routine monitoring programs are used to supplement more specific water quality studies.

PURPOSE AND SCOPE

This report presents the objectives and purpose of each monitoring program, the location of the monitoring sites, the types of parameters tested, the period of record, the frequencies of sampling, and basic statistics for some parameters. Other sources of information on these monitoring programs are listed at the end of each chapter under 'District Publications'.

There are 40 major water quality monitoring programs that incorporate 991 sampling locations. Depending on the specific program and/or parameter, the sampling frequencies range from weekly to biannually. In addition, some sampling is done only during storm events. The parameters analyzed include basic inorganics (nutrients, cations, anions and metals), organics (e.g. pesticides and the degradation products, base neutral/acid extractable, and purgeable compounds), and physical parameters such as (temperature, dissolved oxygen, pH, specific conductance, etc.).

The District follows strict QA/QC (Quality Assurance / Quality Control) procedures approved by the Florida Department of Environmental Protection (FDEP) for both the field and laboratory work. Any contractual laboratory has to have an FDEP approved laboratory QA Plan, and be certified by the department of Health and Rehabilitative Services.

The programs presented in this document directly support the following legislative acts, permits, agreements, and any other legal requirements:

- 1. Surface Water Improvement and Management (SWIM) Act of 1987.
- 2. Permits issued by the Florida Department of Environmental Protection(FDEP), and the Environmental Protection Agency(EPA).
- 3. Memorandum of Agreement (MOA) between the Everglades National Park (PARK), the District, and the United States Army Corps of Engineers(COE).
- 4. MOA's between the District and the Miccosukee and Seminole Indian Tribes of Florida.
- 5. MOA between the District, the United States Department of Agriculture, and the Environmental Protection Agency.

The areal extent of the surface water quality monitoring programs maintained by the District are shown in Figure 1. The 40 individual monitoring programs are grouped together under 24 main networks; 22 are geographic areas, and the other two; The Pesticide and Atmospheric Deposition monitoring programs are District wide. These networks are:

- 1. Upper Kissimmee Chain of Lakes and Tributaries
 - a. Upper Kissimmee River Chain of Lakes
 - b. Tributaries of the Upper Kissimmee
- 2. Kissimmee River
 - a. Kissimmee River
 - b. Tributaries of the Kissimmee River
- 3. Arbuckle Creek
- 4. Lake Istokpoga
- 5. Lower Kissimmee River Basin
- 6. Taylor Creek/Nubbin Slough
- 7. Indian River Lagoon
- 8. St. Lucie Estuary
- 9. Upper and Lower East Coast
- 10. Works of the District Compliance Monitoring
- Lake Okeechobee

 Inflows and Outflows
 Limnetic and Littoral Zones
- 12. Caloosahatchee River
- 13. Everglades Nutient Removal

- 14. Holey Landa. Permitted Inflows and Outflowsb. Interior Marsh Sites
- 15. Everglades Protection Area
- 16. Big Cypress Seminole Indian Reservation
- 17. Water Conservation Areas Inflows and Outflows
- 18. Biscayne Bay Monitoring
- Everglades National Park

 a. Inflows and Outflows
 b. Interior Monitoring
- 20. Routine Pesticide Monitoring Network
- 21. Precipitation Monitoring Network
- 22. Manatee Bay/Long Sound
- 23. South Florida Estuarine Monitoring Network
- 24. Big Cypress National Perserve

This report is an update to Technical Memorandum of the same title from June 1994 and provides basic information to researchers, consultants, and other persons regarding the availability of routine water quality data in the District's database. Because of the dynamic nature of monitoring programs, updates of this document will be done periodically. The location of the water quality stations are mapped, and the available data are summarized in table format. This allows data users to choose appropriate identification numbers and request any or all of the water quality data available for a given period or area. The time frame used in this publication is, whenever the program and monitoring locations were first sampled until September 30, 1996.

REPORT FORMAT

The report describes the purpose and scope of the surface water quality monitoring programs in geographic sequence from north to south, as shown in Figure 1. This is followed by tables 1,2, and 3 that list the parameters analyzed.

The subsequent sections provide details on each monitoring program. Following the discussion on each sampling program is a figure of sampling stations. Tables list the station identification number, latitude and longitude, a description of the site location (including location from a District structure), the period of record, types of parameters analyzed, and sample collection method. Other tables contain basic statistics on data for each monitoring location.

The data provide important sources of information for preparation of management plans required by SWIM Act's and other mandated or legal requirements. District publications resulting from these intensive monitoring programs are at the end of each section. The reader should refer to these publications for interpretations, analyses, and evaluations of the water quality data.

The appendix contains a list of the abbreviations and their descriptions, and a cross reference guide for sampling station names and project codes.

DATA AVAILABILITY

Data can be obtained either by using a modem or internet to access the Water Quality and Hydrologic databases via REMO, or sending in a written request. For more information about either of these contact Angela Chong at the address below or call at 561-687-6514.

Water Resources Evaluation Department South Florida Water Management District P. O. Box 24680 West Palm Beach, FL 33416-4680

Written requests should include the following information:

- 1. Requestor's name, address, and phone number.
- 2. Station identification or area of concern.
- 3. Period of record desired.
- 4. Parameters or parameter groups desired.
- 5. A brief explanation of how the data will be used (for documentation purposes).

The District may assess a charge for providing data to the public in keeping with the Public Records Act (Section 119.085FS) and the Electronic Record Keeping Rule (1B-26.033FAC).

ACKNOWLEDGEMENTS

I would like to acknowledge all the people that helped in the process of completing this document.

- 1. Larry Grosser, Joe Albers, and Cecelia Weaver for their help in reviewing and updating their appropriate sections in this document ;
- 2. Janet Wise for creating the maps;
- 3. District field staff who collected the samples for the monitoring programs documented in this report; and,
- 4. District laboratory staff who analyze the water samples collected from all the different monitoring programs.

FIGURE 1. Water Quality Monitoring Programs

TABLE 1. LIST OF PARAMETERS AND UNITS BY MAJOR GROUPINGS		
PHYSICAL/CHEMICAL	UNITS	
Temperature Dissolved Oxygen Specific Conductance pH Turbidity Color Total Suspended Solids Total Dissolved Suspended Solids Secchi Salinity Photosynthetically Active Radiation(PAR)	C mg/L umhos/cm pH units NTU Color units mg/L mg/L meters PPT umol s-1 m-2 per microamp	
NUTRIENTS	UNITS	
Nitrite Nitrate NOx Ammonia Inorganic Nitrogen Organic Nitrogen Total Nitrogen Total Kjeldahl Nitrogen Ortho Phosphorus Total Phosphorus Inorganic Phosphate Fractioning Organic Phosphate Fractioning Hydrolyzable Phosphate Alkaline Phosphatase(APA)	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	
MAJOR IONS	UNITS	
Alkalinity Chloride Silica Sulfate Sodium Potassium Calcium Magnesium	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	

TRACE METALS	UNITS
Total Aluminum	ug/L
Total Manganese	ug/L
Total Mercury	μg/Ĺ
Total Cadmium	µg/L
Total Copper	ug/L
Total Zinc	µg/L
Total Arsenic	μg/L
Total Lead	mg/L
Total Iron	μ g /L
Methyl Mercury	μg/L
Chromium VI	μg/L
Chromium III	µg/L
OTHER	UNITS
Chlorophyll	
Carotenoid	mg/m ³
Chlorophyll a	g my/m ³
Chiorophyll a2	mg/m ³
Chlorophyll b	mg/m ³
Chlorophyll c	mg/m ³
Pheophytin a	mg/m ³
Total Coliform	cfu/100ml
Fecal Coliform	cfu/100ml
Heterotrophic Plate Count	cfu/100ml
Fecal Streptococci	cfu/100ml
Fecal Coliform Most Probable Number(FCMPN)	mpn/100ml
Total Coliform Most probable Number(TCMPN)	mpn/100m1
Dissolved Inorganic carbon(DIC)	mg/L
Dissolved organic Carbon(DOC)	mg/L
Total Inorganic carbon(TIC)	ng/L
Total Organic carbon(TOC)	mg/L

- = No Units

TABLE 2. PESTICIDES ANALYZED IN SURFACE WATER AND SEDIMENT SAMPLES**							
2,4-D	ethion						
2,4,5-T	ethoprop						
2,4,5-TP (Silvex)	ethylene thiourea*						
acephate*	fenamiphos (nemacur)						
alachlor	fonophos (dyforate						
aldicarb	gamma BHC (lindane)						
aldrin	glyphosate*						
alpha BHC	heptachlor						
alpha endosulfan	heptachior epoxide						
ametryn	hexazinone*						
atrazine	linuron						
azinphos methyl (guthion)	malathion						
benomyl	metalaxyl*						
beta endosulfan	methamidaphos						
beta BHC	methomyl						
bromacil	methoxychlor						
butylate*	metolachlor						
carbaryl	metribuzin						
carbofuran	mevinphos						
carbophenothion (trithion)	mirex						
chlordane	monocrotophos (azodrin)						
chloropyrifos ethyl	naled						
chloropyrifos methyl	norflurazon*						
chlorothalonil	oxamyl						
delta BHC	paraquat						
demeton	parathion ethyl						
diazinon	parathion methyl						
dicofol (kelthane)	phorate						
dieldrin	p,p'-DDD						
dimethoate*	p,p'-DDE						
diquat	p,p'-DDT						
disulfoton	prometryn						
diuron	simazine						
endosulfan sulfate	toxaphene						
endrin	trifluralin						
endrin aldehyde	zine phosphide*						

* = Analyzed Only in Surface Water ** = Units are ug/l for water samples and ug/kg for sediment samples

TABLE 3. PRIORITY POLLUTANTS ANALYZED IN WATER AND SEDIMENT*

.

Base Neutral and Acid Extractable Compounds

acenanhthene	hexachlornhenzene
acenaphthylene	hexachlorobutadiene
anthracene	hexachloroethane
benzo(a)anthracene	indeno(1.2.3-cd)pyrene
benzo(h)fluoranthene	isophorone
benzo(k)fluoranthene	naphthalene
benzo(a)pyrene	nitrobenzene
benzo(g,h,i)perylene	n-nitrosodi-n-propylamine
bis(2-chloroethyl)ether	phenanthrene
bis(2-chloroethoxy)methane	pyrene
bis(2-cthylhexyl)phthalate	1.2.4-trichlorobenzene
bis(2-chloroisopropyl)ether	4-chloro-3-methylphenol
4-bromophenyl-phenyl-ether	2-chlorophenol
2-chloronaphthalene	2,4-dichlorophenol
4-chlorophenyl-phenyl ether	2,4-dimethylphenol
chrysene	2,4-dinitrophenol
dibenz(a,h)anthracene	2-methyl-4,6-dinitrophenol
di-n-butylphthalate	2-nitrophenol
1,3-dichlorobenzene	4-nitrophenol
1,2-dichlorobenzene	pentachlorophenol
1,4-dichlorobenzene	phenol
3,3'-dichlorobenzidine	2,4,6-trichlorophenol
diethyl phthalate	benzidine
dimethyl phthalate	hexachlorocyclopentadiene
2,4-dinitrotoluene	n-nitrosodimethylamine
2,6-dinitrotoluene	n-nitrosodiphenylamine
di-n-octylphthalate	1,2-diphenylhydrazine
fluoranthene	2,3,7.8-TCDD
fluorene	
Organochloring Bo	sticidae and DODIe
aldrin	PCB-1221
beta BHC	PCB-1232
delta BHC	PCB-1242
chlordane	PCB-1248
p,p'-DDD	PCB-1254
p,p'-DDE	PCB-1260
p,p'-DDT	toxaphene
dieldrin	endrin
endosulfan sulfate	alpha BHC
endrin aldehyde	gamma BHC
heptachlor	endosulfan alpha (I)
heptachlor epoxide	endosulfan beta (II)
PCB-1016	

* = Units are ug/l for water samples and ug/kg for sediment samples

TABLE 3(Continued). PRIORITY POLLUTANTS ANALYZED IN WATER AND SEDIMENT*

Purgeables							
acrolein acrylonitrile benzene bromodichloromethane bromoform bromomethane carbon tetrachloride chlorobenzene chlorobenzene chloroethane 2-chloroethylvinyl ether chloroform chloromethane dibromochloromethane 1,2-dichlorobenzene 1,3-dichlorobenzene 1,4-dichlorobenzene 1,2-dichloroethane	1,1-dichloroethene trans-1,2-dichloroethylene 1,2-dichloropropane cis-1,3-dichloropropene trans-1,3-dichloropropene ethyl benzene methylene chloride 1,1,2,2-tetrachloroethane tetrachloroethylene toluene 1,1,1-trichloroethane 1,1,2-trichloroethane trichloroethene trichlorofluoromethane vinyl chloride cis-1,2-dichloroethylene o-chlorotoluene						
	tals						
mercury antimony beryllium chromium copper nickel zinc aluminum iron arsenic cadmium lead selenium silver thallium Total Organic Carbon ** Particle Size ** CaCO3 analysis **							

* = Units are ug/l for water samples and ug/kg for sediment samples
 ** = Analyzed for only in sediment samples.

.

SECTION 1

UPPER KISSIMMEE RIVER CHAIN OF LAKES AND TRIBUTARIES PROJECT CODES: UKCL and TUK

Purpose and Scope

The Upper Kissimmee Chain of Lakes and Tributaries water quality monitoring program includes five major lakes and three tributaries in the Kissimmee Chain: East Lake Tohopekaliga, Lake Tohopekaliga, Lake Cypress, Lake Hatchineha, Lake Kissimmee, Boggy Creek, Reedy Creek, and Shingle Creek. The water quality monitoring program provides a water quality and nutrient loading data base for:

- 1. Applying eutrophication models to develop and refine nutrient loading targets for the five major lakes in the chain;
- 2. Determining the long and short term trends necessary to determine the effectiveness of basin management, and identifying potential problem areas in terms of water quality degradation and nutrient loadings;
- 3. Assessing the in-lake effects of basin management plan implementations and lake draw downs; and
- 4. Investigating the relationship between the lakes in the chain and the impact on downstream water bodies.

The program began in 1981 with 40 water quality monitoring sits. In June 1985 the program was reduced to 13 key locations for long term monitoring, and in 1991 the number of stations was increased to 16.

Sampling Locations and Descriptions

The locations of the 16 sites monitored under these programs are shown in Figure 2. Table 4 lists all station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 5 contain statistics for each monitoring location.

District Publications

- Fan, A. and S. Lin. (1984). Water Budget for Upper Kissimmee Chain of Lakes. SFWMD. Tech. Memo. July 1984. (DRE 186)
- Jones, B. L., P.S. Millar, T. H. Miller, D. R. Swift, A.C. Federico, (1983). Preliminary Water Quality and Trophic State Assessment of the Upper Kissimmee Chain of Lakes, Florida, 1981-1982. SFWMD. Tech. Memo. June 1983. (DRE 167)
- Milleson, J. (1975). Progress Report Upper Kissimmee River Chain of Lakes Water Quality and Benthic Invertebrate Sampling. SFWMD, Tech. Pub. No. 75-2. (DRE 55)
- SFWMD/East Central Florida Regional Planning Council (1988). Boggy Creek Water Quality Management Study. Final Report. January 1988. West Palm Beach Fla.
- James, R. T., K. O'Dell, B. Jones, (1992). Water Quality of Lake Tohopekaliga in Response to Lake Management. SFWMD. July, 1992 Manuscript. (DOR 100)
- James, R.T., K. O'Dell, Smith, (1993). Water Quality Trends in Lake Tohopekaliga, Florida USA: Responses to Watershed Management. SFWMD. December, 1993 Manuscript. (DOR 138)
- O'Dell, K., (1992). Pre and Post Diversion Water quality Assessment in the Shingle Creek Basin, Florida. SFWMD. November, 1992 Manuscript. (DOR 112)

FIGURE 2. Location of Sampling Stations for the Upper Kissimmee River Chain of Lakes and Tributaries Water Quality Monitoring program.

SFWMD					Physical		Мајот		
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	Ions	US/DS	G/A
E02	275601	811806	At channel marker No.9 at the north end of Lake Kissimmee.	1981 - P	М	М	QTR		G
E04	275301	811312	At channel marker No.7 on the east side of Lake Kissimmee.	1981 - P	м	М	QTR	-	G
D02	280056	812441	In the middle of Lake Hatchineba.	1981 - P	м	М	QTR		G
D03	280023	812153	Southeast portion of Lake Hatchineha at channel marker No. 13.	1981 - P	М	М	QTR	-	G
C03	280325	811850	Near the south end of Lake Cypress.	1981 - P	М	М	QTR	-	6
B02	281533	812321	North end of Lake Tohopekaliga.	1981 - P	м	М	QTR	-	G
B04	281348	812128	Near the east side of Lake Tohopekaliga.	1981 - P	м	М	QTR	-	G
B06	281123	812245	Taken from the middle of Lake Tohopekaliga.	1981 - P	м	М	QTR	-	G
B09	280844	812128	Near the south end of Lake Tohopekaliga.	1981 - P	М	М	QTR	-	G
BS-59	281558	811835	S-59 which is an outflow structure located at the south end of East Lake Tohopekaliga.	81-84/90-P	М	М	QTR	US	6
A01	281945	811437	Middle of Fells Cove near the north east side of Lake Tohopekaliga.	81-84/90-P	М		QTR	-	6
A03	281676	811770	1.0 mile out from the north west side of Lake Tchopekaliga.	81-84/90-P	М	М	QTR	-	G
A04	281927	811422	1.0 mile out from the boat ramp in St.Cloud, in East Lake Tohopekaliga.	1981 - P	М	М	QTR	-	G
ABOGG	282051	811911	Taken in Ramada Campground at Boggy Creek off State Road 5 upstream of the discharge point to East Lake Tohopekaliga.	1981 - P	м	М	QTR		G
BWSHNGLE	281600	812617	Taken from the bridge over Shingle Creek at State Road 531 upstream of the discharge point to Lake Tohopekaliga.	1981 - P	М	М	QTR	-	G

TABLE 4. Summary of Sampling Station Locations and Frequency of Collection for Upper Kissimmee River Chain of
Lakes and Tributaries Monitoring Program

TABLE 4 (Continued). Summary of Sampling Station Locations and Frequency of Collection for Upper KissimmeeRiver Chain of Lakes and Tributaries Monitoring Program

• .

SFWMD Sta⊥ JD	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	US/DS	G/A
CREEDYBR	280859	812628	Taken from the bridge over Reedy Creek at State Road 531 upstream of the discharge point to Lakes Hatchineha and Cypress.	1985 - P	М	М	QIR		G

١

TABLE 5.Statistics on Select Parameters for the Upper Kissimmee River Change of Lakes and tributaries Water
Quality Monitoring Program for Period of Record

.

.

SFWMD <u>Sta. ID</u>	Total Phosphorus			Ortho Phosphorus			Tot	Total Nitrogen			<u>Nitrite+Nitrate(NOx)</u>			
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>		
A01	0.0110	0.0278	0,1940	0.0020	0.0063	0.0340	0.4000	1.0939	1.9700	0.0040	0,0521	0.1400		
A03	-0.0080	0.0220	0.0440	0.0020	0.0068	0.1870	0.1000	0.7928	2.3500	0.0040	0.0194	0.1640		
A04	0.0050	0.0244	0.0550	0.0020	0.0055	0.0360	0.0001	0,8981	13.3100	0,0040	0.0166	0.1860		
B02	0.0230	0.1760	0.7030	0.0040	0.0985	0.6040	0.5400	1.4221	4.7600	0.0040	0.0538	0.3480		
804	0.0070	0.0723	0.4230	0.0020	0.0169	0.2140	0.0001	1,1259	6.3300	0.0040	0.0182	0,2100		
B06	0.0190	0.1204	0.7820	0.0010	0.0292	0.5410	0.5000	1.5709	4.1000	0.0040	0.0142	0.1670		
B09	0.0190	0.1361	0.8400	0.0010	0.0215	0.1980	0.5100	1.8621	10.5000	0.0040	0.0099	0.1300		
C03	0.0260	0.0965	0.3280	0.0020	0.0110	0.0800	0.5100	1.6215	9,0300	0.0040	0.0304	0.4240		
D02	0.0130	0.0505	0.1600	0.0010	0.0117	0.0820	0.0001	1.3704	6.6300	0.0040	0.0459	0.3520		
D03	0,0120	0.0778	0.2660	0.0010	0.0149	0.1080	0.0002	1.5682	6.6200	0.0040	0.0331	0.4190		
E02	0.0180	0.0622	0.2960	0,0010	0.0077	0.0670	0.0002	1,3884	4.8300	0.0040	0.0241	0.2640		
E04	0.0130	0.0442	0.1380	0.0010	0.0063	0.0730	0,0001	1.3448	2.6800	0.0040	0,0229	0.2340		
BS-59	0.0080	0.0307	0.1410	0.0030	0,0064	0.0560	0.0001	0.8622	2,7000	0.0040	0.0199	0.1490		
ABOGG	0.0300	0.0854	0.2620	0.0040	0.0532	0.2200	0,3800	0.8049	3.8900	0.0040	0,0313	0.1980		
BWSHINGLE	0.0310	0.1713	0,6030	0.0100	0.1309	0.5500	0,0001	1.1829	3.1300	0.0040	0,1332	1.3170		
CREEDYBR	0.0130	0.0840	1.1200	0.0040	0.0394	0.7710	0.5300	2.0129	6,8900	0.0040	0.0341	0.2320		

-

SECTION 2

KISSIMMEE RIVER PROJECT CODES: V, KREA, and TFWQ

Purpose and Scope

The Kissimmee River (C-38) water quality monitoring program extends along the river from the source at the southern end of Lake Kissimmee to the outfall at Lake Okeechobee. The water quality monitoring program established in 1972 provides a water quality and nutrient loading data base for:

- 1. Determining loadings to Lake Okeechobee from the Kissimmee River;
- 2. Determining the effectiveness of the lower Kissimmee River Best Management Practices in improving water quality along the river;
- 3. Implementing Lake Okeechobee Technical Advisory Committee's (LOTAC)'s recommendation for a comprehensive monitoring and research plan as described in the Department of Environmental Regulation's "Lake Okeechobee Monitoring and Research Plan";
- 4. Determining long and short term trends associated with the Kissimmee River restoration project;
- 5. Determining long and short term trends necessary to identify potential problem areas in terms of water quality degradation;
- 6. Assessing tributary and basin loading and concentration inputs to Lake Okeechobee which include the following:

a) Providing levels of Total Phosphorus at the inflows to Lake Okeechobee to compare with the 0.18 mg/l total phosphorus SWIM standard for the basin loading calculations.

b) Providing data that will delineate the relative importance of tributary loading within the basin, to the basin, and to the whole basin output.

c) Providing data that will help evaluate the efficacy of the Kissimmee River Restoration Project.

7. Developing basin and spatial scale models used to predict changes in loads to Lake Okeechobee as a function of land use. This includes:

a) Providing data for determining statistical or mechanistic relationships between rainfall, land use (or land type), and nutrient runoff into streams.

b) Providing data to help identify the reason for high episodic phosphorus events.

Sampling Locations and Descriptions

The location of the 35 sites monitored under these programs are shown on Figure 3. One sample is collected at each of the six structures on the Kissimmee River, and 29 samples are collected either in the major tributaries or in the river located in pools A through D of the Kissimmee River. Table 6 lists all station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 7 contain statistics for each monitoring location. Project TFWQ is a compliance monitoring program which will end in February 1998.

District Publications

- Federico, A. (1982). Water Quality Characteristics of the Lower Kissimmee River Basin, Florida. SFWMD, Tech. Pub. No. 82-3. (DRE 154)
- Goldstein, A. (1980). Upland Detention/Retention Demonstration Project 3rd Annual report to the Coordinating Council on the Restoration of the Kissimmee River Valley and Taylor Creek/Nubbin Slough Basin. SFWMD, Tech. Memo. July 1980. (DRE 104)
- Goldstein, A. (1982). Upland Detention/Retention Demonstration Project fourth Annual Report to the Kissimmee River Coordinating Council. SFWMD, Tech. Memo. Dec. 1982. (DRE 149)
- Goldstein, A. (1983). Engineering, Hydro and Water Quality Analysis of Detention/Retention Sites, Fourth Annual Report from SFWMD to the Coordinating Council on the Restoration of the Kissimmee River and Taylor Creek Nubbin Slough Basin Detention/Retention Demo Project. SFWMD, Report Dec.1983. (DRE 168)
- Goldstein, A. (1986). Upland Detention/Retention Demonstration Final Report. Impacts of Agriculture Land Use on Water Quality and Utilization of Wetlands for Detention/Retention in the Kissimmee River Basin. SFWMD, Tech. Pub. 86-2. (DRE 222)

Lake Okeechobee SWIM Plan, Planning Department, SFWMD.

- Milleson, J. (1976). Environmental Responses to Marsh land Re-flooding in the Kissimmee River Basin. SFWMD, Tech. Pub. No. 76-3. (DRE 70)
- Resource Planning Department Staff, (1974). Report on Progress of Hydrologic, Water Quality, and Land Use Studies in the Kissimmee River Watershed and Lake Okeechobee. SFWMD, Report April 1974. (DRE 32)
- Storch, W. (1975). Lake Okeechobee Kissimmee River Basin Water Quality Information (combined with Lake Okeechobee Proposals for Management Actions). SFWMD, Report, March 1975. (DRE 45)
- University of Miami, Civil Engineering Department (1973). Kissimmee River Basin Water Quality Model Study, July 1973 Report. (DRE 28)

Koebel, J., (1994). A Historical Perspective on the Kissimmee River Restoration Project. SFWMD, November, 1994 Manuscript. (DOR 196)

.

.

FIGURE 3. Location of Sampling Stations for the Kissimmee River Water Quality Monitoring Program
SFWMD Ste. ID	Lat	Long	Location	Por	Physical Parameters	Nutrients	Major Ions	Trace Metals	US/DS	G/A
S65	274820	811201	A large gate and boat lock structure located on the Kissimmee River (C-38) by State Road 60 at the south end of Lake Kissimmee. The water flows in a southerly direction through this structure. The automatic sampler collects daily composites.	1973 - P	BW	BW/W	BA	BA	US	G/A
S65A	273944	810803	A large gate and boat lock structure located on the Kissimmee River 10.5 miles south of S-65. The water flows southward through this structure. The automatic sampler collects daily composites.	1973 - P	BW	BW/W	BA	BA	US	G/A
\$65B	273003	811144	A large gate and boat lock structure located on the Kissimmee River 12 miles south of S-65A. The water flows southward through this structure. The automatic sampler collects daily composites.	1973 - P	BW	BW/W	BA	BA	US	G/A :
\$65C	272401	810657	A large gate and boat lock structure located on the Kissimmee River nine miles south of S-65B. The water flows southward through this structure.	1973 - P	BM	BW	BA	BA	US	G
\$65D	271845	810120	A large gate and boat lock structure located on the Kissimmee River nine miles south of S-65C. The water flows southward through this structure.	1973 - P	BW	₿₩	BA	ВА	US	G
S65E	271335	805742	This is the largest of the six structures on the Kissimmee River. It is also a large gate and boatlock structure that is located 7 1/2 miles south of S-65D, and 8 miles north of Lake Okecchobee. The water flows southward through this structure into Lake Okeechobee.	1973 - P	BW	BW	BA	BA	US	G

TABLE 6. Summary of Sampling Station Locations and Frequency of Collection for the Kissimmee River Monitoring Program

SFWMD					Physical		Major	Trace		
Sta. ID	Lat	Long	Location	Por	Parameters	Nutrients	lons	Metals	US/DS	G/A
KREA 61	272121	810149	Chandler Slough located just north of the railroad bridge in Pool D.	1986 - p	М	М	-	-	-	G
KREA 75	274650	811122	Buttermilk Slough located just north of the River Ranch Resort in Pool A.	1986 - P	М	М	QTR	-	-	G
KREA 76	274559	811019	Blanket Bay Slough in Pool A.	1986 - P	М	М	QTR	-	-	G
KREA 77*	274443	81 1039	River Ranch South just north of Ice Cream Slough (KREA 78) in Pool A.	1986 - P	BW	BW	-	-	-	G
KREA 78	274434	811023	Ice Cream Slough located in Pool A.	1986 - P	м	М	QTR	-	-	G
KREA 79	274302	810842	Bay Hammock Oxbow	86-91,96-P	М	М	QTR			G
KREA 80	274107	810835	Skeeter Slough located approximately 1/2 mile north of S- 65A in Pool A.	1986 - P	М	М	QTR	-	-	G
KREA 81	2739 58	810804	Armstrong Slough located just north of S-65A in Pool A.	1986 - P	М	М	QIR	-	-	G
KREA 82	273856	810826	Located in Pool B at Tick Island Slough just north of S-65B.	1986 - P	М	м	QTR	-	-	G
KREA 83	272742	810905	Starvation Slough	86-89,96-P	М	М	QTR			G
KREA 86	273629	810842	Located in Pool B, at Pine Island Slough upstream. Sample site is north of the third weir structure.	1986 - P	М	М	QTR	-	-	G

* Discontinued in 1996

24

SFWMD Sta. 1D	Lat	Long	Location	Por	Physical Parameters	Nutrients	Major Jons	Trace Metals	US/DS	G/A
KREA 87	273552	810834	Downstream area of Pine Island Slough located in Pool B.	1986 - P	М	М	QTR	-	-	G
KREA 88	273453	811036	Located in Pool B at Dark Hammock Stough. Sample tributary is located just south of the second weir structure.	1986 - P	М	М	QTR	•	-	G
KREA 89	274330	810945	At the gated structure in Rattlesnake Slough located in Pool A.	1987 - P	М	М	QTR	-	-	G
KREA91	274324	811003	Rattlesnake Oxbow	1996 - P	м	м	QTR	-	-	G
KREA92	274026	810843	Camp Hammock Oxbow	1996 - P	М	М	QTR	-	-	G
KRFA93	272741	811016	Hickory Hammock Oxbow	1996 - P	М	м	QTR		-	G
KREA94	272655	810907	Micco Bluff Ran	1996 - P	М	М	QTR	-	-	G
KREA95	272454	810133	Istokpoga Oxbow	1996 - P	М	М	QTR	-	-	ч. С
KREA96	272655	810851	Oak Creek	1996 - P	М	м	QTR	-	-	G
KREA97	274501	811037	River Ranch Oxbow	1996 - P	М	М	QTR	-	-	G
TFWQ01*	273223	811208	Mid C-38 canal at bouy upstream of weir 3.	1994 - P	QTR	QTR	-	-	-	G
TFWQ01A	273228	811205	Mid C-38 canal upstream of remnant river channel adjacent to the demo weir.	1994 - P	QTR	QTR	-	-	-	G
TFWQ01B	273202	811211	Mid C-38 canal downstream of weir at northern boundary of mixing zone.	199 4 - P	QTR	QTR	-	-	-	G
TFWQ01C	273102	811202	Mid C-38 canal immediately upstream of test fill plug.	1994 - P	QTR	QTR	-	-	-	G
TFWQ02	273119	811238	Mid channel of old river run at Governors Tree.	1994 - P	QTR	QTR	-	-	-	G
TFWQ03	273055	811211	Mid C-38 canal at buoy upstream of S65B.	1994 - P	QTR	QTR	-	-		G

SFWMD Sta. ID	Lai	Long	Location	Por	Physical Parameters	Nutrients	Major Jons	Trace Metals	US/DS	G/A
TFWQ04	273040	811156	Mid channel of old river run north of test full plug.	1994 - P	QTR	QTR	-	-	-	G
TFWQ05	273009	811146	Mid C-38 canal at S65B.	1994 - P	QTR	QTR	-	-	-	G
TFWQ06	272957	811140	Mid C-38 canal downstream of S65B, outside of mixing zone.	1994 - P	QTR	QTR	-	-	-	G

.

.

.

TABLE 6 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Kissimmee River Monitoring Program

* Discontinued in 1994

•

TABLE 7.Statistics on Select Parameters for the Kissimmee River Water Quality Monitoring Program for
Period of Record

SFWMD												
<u>Sta. ID</u>	Tota	<u>l Phospho</u>	orus_	<u>Ortho</u>	Phosphe	<u>orus</u>	<u>Tot</u> :	<u>al Nitroge</u>	<u>en</u>	<u>Nitrite</u>	-Nitrate(N	NOx}
	MIN	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	MAX	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
\$65	0.0040	0.0521	0.6990	0.0010	0.0108	0.4880	0.0001	1.2845	3.5000	0.0030	0.0339	0.9 260
\$65A	0.0100	0.0516	0.3330	0.0010	0.0152	0.2430	0.0001	1.2886	4,3100	0.0040	0.0565	0.9370
S65B	0.0100	0.0510	0.2780	0.0020	0.0141	0.1500	0.0001	1,2978	3.4700	0.0040	0.0665	2.3110
\$65C	0.0020	0.0527	1,4180	0.0010	0.0166	0.1250	0.0001	1.2902	3,7700	0.0040	0.0800	1.5000
S65D	0.0200	0.0765	0.3740	0.0020	0.0373	0,2350	0.0001	1,3381	9.4000	0.0040	0.0852	1.5260
S6SE	0.0250	0.0974	0.5000	0.0020	0.0547	0.3730	0.0001	1.3412	5.6100	0.0040	0.0995	1.3690
KREA 61	0.0590	0.2472	0.9260	0.0280	0.2035	0.6880	0.5000	1.3038	4.8100	0.0040	0.0136	0.4780
KREA 75	0.0130	0.0525	0.1520	0.0040	0.0127	0.0690	0.8770	1.5534	2.5900	0.0040	0.0317	1,1850
KREA 76	0.0210	0.3634	1.4930	0.0040	0.2829	1,1790	0.0001	1.6584	13.0400	0.0040	0.0248	0.6540
KREA 77	0.0210	0.0829	1.0810	0.0010	0.0350	0.9240	0.0002	1.1822	1.9700	0.0040	0.0120	0.1340
KREA 78	0.0090	0.0437	0.1630	0.0040	0.0142	0.1050	0.0001	0.9865	1,9600	0.0040	0.0148	0.0790
KREA 79	0.0180	0.0467	0.1710	0.0040	0.0106	0.0670	0.0001	1.2516	2.4700	0.0040	0.0115	0.0880
KREA 80	0.0040	0.0599	0.2820	0.0010	0.0214	0.1550	0.0001	1,2180	3.1900	0.0040	0.0185	0.1260
KREA 81	0.0040	0.0787	0.3220	0.0040	0.0398	0.2630	0.0001	1.1346	2,5500	0.0040	0.0292	0.5140
KREA 82	8,0040	0.0487	0.1200	0.0030	0.0095	0,0330	0.5100	1,4096	3.3400	0.0040	0.0330	0.3760
KREA 83	0.0220	0.0669	0.4350	0.0040	0.0165	0.0490	0.6500	1.7328	6.6600	0.0040	0.0390	0.3000
KREA 86	0.0110	0.0461	1.0130	0.0010	0.0112	0.3450	0.0002	1.3510	3.8200	0.0040	0.0276	0.5570
KREA 87	0.0150	0.0439	0.1130	0.0040	0.0081	0.0400	0.6600	1,5685	5.0700	0.0040	0.0174	0.1610
KREA 88	0.0210	0.0541	0.2110	0.0040	0.0181	0.1610	0.0001	1.2362	3,6700	0.0040	0.0581	1.6720
KREA 89	0.0060	0.0457	0.1790	0.0040	0.0154	0.0580	0.0001	1.2731	2.5300	0.0040	0.0108	0.4110
KREA 91	0.0300	0.0480	0.0660	0.0040	0.0125	0.0210	0.5040	0.5725	0.6410	0.0040	0.0095	0.0150
KREA 92	0.0870	0.0870	0.0870	0.0060	0.0060	0.0060	1,4000	1.4000	1,4000	0.0130	0.0130	0.0130
KREA 93	0.0510	0.0510	0.0510	0.0160	0.0160	0.0160	1,2200	1.2200	1.2200	0,0410	0.0410	0.0410
KREA 94	0.0720	0.0720	0.0720	0.0180	0.0180	0.0180	-	-	-	-	-	-
KREA 95	0.0510	0.0510	0.0510	0.0180	0.0180	0.0180	0.9510	0,9510	0.9510	0.0570	0.0570	0.0570
KREA 96	0.1050	0.1505	0.1960	0,1690	0.1690	0.1690	1,4600	1.4600	1,4600	0.0440	0.0440	0.0440
SITE1	0.0590	0.0716	0.1310	0.0260	0.0260	0.0260	1.7200	1,7200	1,7200	0.0160	0.0160	0.0160
SITE2	0.0530	0.0617	0.0700	0.0220	0.0220	0.0220	2.4900	2,4900	2.4900	0.0110	0.0110	-0.0110
SITE3	0.0570	0.0607	0,0660	0.0140	0.0140	0.0140	1,8600	1.8600	1,8600	0.0080	0.0080	0.0080

4

TABLE 7.Statistics on Select Parameters for the Kissimmee River Water Quality Monitoring Program for
Period of Record

SFWMD	Τ	1 DL 1			<u> Դ</u> ես ստես		Tat	al Nitro re		Niterita	Nitwatar	IO ₂)
<u>Sta. 1D</u>	100	<u>Prospre</u>	orus	<u>Onno</u>	Phospac	DEUS	100	ai Muogo	<u>.n</u>	<u>INITITICA</u>		<u>10X</u>
	MIN	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
TFWQ01	0.0250	0.0428	0.0980	0.0090	0.0192	0.0350	1.1300	1.5452	2.0700	0.0040	0.0994	0.2600
TFWQ01A	0.0250	0.0454	0.0790	0.0040	0.0085	0.0260	0.7210	1.0545	1.7700	0.0040	0.0673	0.7930
TFWQ01B	0.0250	0.0460	0.0840	0.0040	0.0091	0.0270	0.7920	1.0873	1.8900	0.0040	0.0703	-0.7630
TFWQ01C	0.0260	0.0455	0.0820	0.0040	0.0096	0.0270	0.0001	1.1049	6.4400	0.0040	0.0563	0.2720
TFWQ02	0.0240	0.0434	0,0850	0.0040	0.0123	0.0280	0.0001	1.2138	2,3800	0.0040	0.0812	1.1270
TFWQ03	0.0240	0.0444	0.1290	0.0040	0.0129	0.0320	0.0001	1.2244	2.3800	0.0040	0.0679	-0.5830
TFWQ04	0.0250	0.0441	0.0890	0.0040	0.0127	0.0300	0.6970	1.2192	2.6700	0.0040	0.0647	0.2440
TFWQ05	0.0260	0.0427	0,0940	0.0040	0.0126	0.0260	0.0001	1.2003	2.3200	0.0040	0.0591	0.2330
TFWQ06	0.0230	0,0465	0.0730	0.0040	0.0140	0.1710	0.6000	1.0648	1.8400	0.0040	0.0507	0.1430

SECTION 3

ARBUCKLE CREEK PROJECT CODE: ARCK

Purpose and Scope

The Arbuckle Creek basin water quality monitoring program encompasses an area characterized by beef, intensive dairy cattle, and citrus operations. The basin is located in Highlands and Polk Counties. Water quality monitoring stations have been sampled since 1988.

The objectives of this program are:

- 1. Monitoring water quality in support of the FDEP's Dairy Rule by providing nutrient concentrations at the dairy outflows and providing information to evaluate the effectiveness of dairy BMP's.
- 2. Assessing tributary, basin loading, and concentration inputs to Lake Okeechobee. The data will delineate the relative importance of tributary loading within the basin, and to the whole basin output.
- 3. Developing basin and spatial scale models to predict changes in loads to Lake Okeechobee as a function of land use including the following:
 - a) Providing data for determining statistical or mechanistic relationships between rainfall, land use (or land type), and nutrient runoff into streams.
 - b) Providing data to help identify the cause of high episodic phosphorus events.

Data generated from this program also support the Lake Istokpoga water quality monitoring program and is integral in development of the Lake Okeechobee Water Quality Management Plan as required by the state's Surface Water Improvement and Management Legislation of 1987.

Sampling Locations and Descriptions

The locations of the 8 sites monitored under this program are shown in Figure 4. Table 8 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 9 contain statistics for each monitoring location.

District Publications

None.

FIGURE 4. Location of Sampling Stations for the Arbuckle Creek Water Quality Monitoring Program

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nurrients	G/A
ARCK 301	272840	811440	Bishop Dairy outfall culvert at Bishop Dairy Road.	1988-P	BW	BW	G
ARCK 302	272934	811514	Bishop Dairy outfall culvert at Scruhpens Road.	1988-P	BW	BW	G
ARCK 305	273175	812030	Triple G Dairy east outfall on Sandfort Harts Ranch.	1988-P	BW	BW	G
ARCK 306	273670	812693	Dressel Dairy outfall on Old Bombing Range Road.	1988-P	BW	BW	G
ARCK 308	274430	812839	In Reedy Creek at School Bus Road bridge.	1989-P	BW	BW	G
ARCK 310	274175	812685	C&C Dairy outfall where it enters Reedy Creek.	1988-P	BW	BW	G
ARCK 311	273137	812132	State Road 700A bridge (Arbuckle Creek Road) over Arbuckle Creek.	1989-P	BW	BW	6
ARCK 315	273241	812107	Triple G Dairy spray field outfall where it enters Arbuckle Creek.	1992-P	BW	BW	G

ч,

TABLE 8. Summary of Sampling Locations and Frequency of Collection for the Arbuckle Creek Monitoring Program

7 . . .

•

TABLE 9.Statistics on Select Parameters for the Arbuckel Creek Water Quality Monitoring Program for
Period of Record

.

SFWMD <u>Sta. ID</u>	<u>Total</u>	Phospho	<u>rus</u>	Ortho H	Phosphore	<u>us</u>	Total	Nitrogen	L	<u>Nitrite-</u>	-Nitrate(N	<u>IOx)</u>
	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	MEAN	<u>MAX</u>	MIN	MEAN	<u>MAX</u>
ARCK 301	0.0040	3,1884	9.3050	0.0010	3.4515	8.7370	0.5300	3.4295	10,3500	0,0100	0.8396	9.6630
ARCK 302	0.0180	0.2418	3,1350	0.0100	0.1860	2.4400	0.9900	1,6035	3.8600	0.0040	0.0090	0.0210
ARCK 305	0,3890	4.4684	11.3600	0.0012	5,1147	10.2850	0.0005	6.1903	16,9900	0.0040	0.0168	-0.1750
ARCK 306	0.0890	0.7594	2.9250	0.1050	0.6872	2.0910	0.0007	4.8969	16.6900	0.0040	1.7576	7.6950
ARCK 308	0.0280	0.0698	0.2200	0.0010	0.0265	0.1520	0,0001	1,4090	2,3400	0.0890	0.5267	1,1480
ARCK 310	0.3790	5,8636	9.9400	6.0200	7.4667	9.6250	4,4600	9.9800	16.6700	0.0250	0.3933	-1.0260
ARCK 311	0.0100	0.0868	0.3580	0.0040	0.0522	0.3030	0.0001	1.1450	7,6200	0.0040	0.1922	6.3820
ARCK 315	0.0160	0.5340	2.8390	0.0040	0.1250	0.2460	0.7700	0.9700	1.1700	0.0040	0.0065	0.0090

.

. **'**

SECTION 4

LAKE ISTOKPOGA MONITORING PROGRAM PROJECT CODE: ISTO

Purpose and Scope

The Lake Istokpoga water quality monitoring program encompasses the major inflow and outflow points to the lake as well as in-lake monitoring. The water quality monitoring program provides a water quality and nutrient loading data base for:

- 1. Consolidating information from all previous publications to establish historical trends;
- 2. Determining long and short term trends to identify potential problem areas of water quality degradation and nutrient loadings;
- 3. Producing a nutrient budget for the lake;
- 4. Note changes in water quality after herbicide treatments to the lake (Pre-treatment 1988, Post-treatment 1989 to present); and
- 5. Establishing acceptable nutrient loading limits using eutrophication models.

Water quality monitoring began in February 1988. Nutrient loadings are calculated by combining nutrient concentrations with flow data obtained at the major inflow and outflow points to the lake. These data can indicate trends in water quality and allow for better management of the system to monitor for environmental enhancement or degradation. Values that deviate significantly from established criteria may signal a concern requiring immediate attention.

Sampling Locations and Descriptions

The locations of the 12 sites monitored under this program are shown on Figure 5. Table 10 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the samples are collected upstream or downstream, and type of sample collection. Table 11 contain statistics for each monitoring location.

District Publications

Milleson, J.F. (1978). Limnological Investigations of Seven Lakes in the Istokpoga Drainage Basin. SFWMD, Tech. pub. No. 78-1. (DRE 83)

۰,

FIGURE 5. Location of Sampling Stations for the Lake Istokpoga Water Quality Monitoring Program.

TABLE 10. Summary of Sampling Station Locations and Frequency of Collection for the Lake Istokpoga Monitoring Program

SFWMD Sta. ID	Lau	Long	Execution	POR	Physical Parameters	Nutrients	Major Jons	Chlorophyli	US/DS	G/A
ISTK !	272603	811620	In Lake Istokpoga due east of the entrance to Arbuckle Creek, and half way to the eastern shore.	1988-P	ВМ	BM	Q	BM	-	G
I STK 2	272500	811730	In Lake Istokpoga north of Little Grassy Island half way to the edge of cattails.	1988-P	ВМ	ВM	Q	ВМ	-	G
ISTKƏ	272338	812007	In Lake Istokpoga 0.25 miles due east from the entrance to Josephine Creek.	1988-P	ВМ	ВМ	Q	ВМ		G
ISTK4	272034	811807	In Lake istokpoga half way between Bumblebee Island and the western shore.	1988-P	ВМ	BM	Q	BM		G
ISTK5	271835	811725	In Lake Istokpoga 0.5 miles out from the southern end of the lake.	19 88-P	ВМ	ВМ	Q	ВМ		G
ISTK6	272242	811428	In Lake Istokpoga half way between Istokpoga Canal and Big Island.	1988-P	ВМ	ВМ	Q	ВМ	-	G
IS TK6S	272142	811428	In Lake Lytokpoga one mile due south of ISTK6. Half way between Big Island and the eastern shore.	1990-P	ВМ	ВМ	Q	ВМ	-	G
ISTK7	272335	811657	In the middle of Lake Istokpoga half way between Big Island and Little Grassy Island.	1988-P	ВМ	BM	Q	ВМ	-	G
S68	271944	811508	Taken at the outflow structure from Lake Istokpoga (S- 68). Located on the southeast side of the lake on County Road 621 and the C-41A canal.	1988-P	ВМ	ВМ	Q	-	US	G

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrienu	Major Ions	Chlorophyll	US/DS	G/A
JOSNCR17	272225	812336	Taken from the bridge over Josephine Creek at State Road 17.	1988-P	ВМ	ВМ	Q		-	G
ISTKC621	272248	811224	Taken at the bridge on the Istokpoga Canal and County Road 621.	1988-P	ВМ	BM	Q	-	-	G
ARBKSR98	272633	811752	Taken from the bridge over Arbuckle Creek at State Road 98.	1988-P	ВМ	ВМ	Q	-	-	G

2.

TABLE 10 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Lake Istokpoga Monitoring Program

TABLE 11. Statistics on Select Parameters for the Lake Istokpoga Water Quality Monitoring Program forPeriod of Record

.

SFWMD <u>Sta, ID</u>	<u>Total</u>	Phosphor	rus	<u>Ortho l</u>	Phosphory	<u>18</u>	<u>Total</u>	<u>Nitrogen</u>		<u>Nitrite</u> -	-Nitrate(N	<u>IOx)</u>
	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
ARBKSR98	0.0210	0.0935	0.4100	0.0040	0.0577	0.3650	0.0001	1,1325	2.2300	0.0050	0.1981	0.8010
ISTK1	0.0090	0.0720	0.3500	0.0040	0.0312	0.1580	0.0001	1.0276	3,4700	0.0040	0.0486	0.2940
ISTK2	0.0270	0.0612	0.1530	0,0040	0.0213	0.3400	0.0001	0.9791	1.8000	0.0040	0.0406	0.2180
ISTK3	0.0190	0.0423	0.1220	0.0040	0.0074	0.0390	0.0001	0.9696	2.2100	0.0040	0.1091	0.4490
ISTK4	0.0160	0.0375	0.0690	0.0010	0.0057	0.0280	0.0001	0.9251	4,2300	0.0040	0.0079	0.0380
ISTK5	0.0110	0.0362	0.1060	0.0010	0.0055	0.0500	0.0001	0.8808	1.9500	0.0040	0.0106	0.1050
ISTK6	0.0100	0.0457	0.2110	0.0010	0.0100	0.1140	0,0001	0.9115	1.6300	0.0040	0.0137	0.1420
ISTK6S	0.0100	0.0354	0.0860	0.0010	0.0054	0.0180	0.0001	0.8925	1.4900	0.0040	0.0086	0.0690
ISTK7	0.0170	0.0536	0.2040	0.0040	0.0153	0.1060	0.5000	0.9660	1.8100	0.0040	0.0273	0.1570
ISTKC621	0.0220	0.0849	0.4690	0.0010	0,0336	0.3240	0.5000	1.1850	2.8200	0.0040	0.0141	0.0740
JOSNCR17	0,0100	0.0434	0.0850	0.0040	0.0159	0.0320	0.6600	1,1085	2.4200	0.0630	0.4274	1.7290
S68	0.0080	0.0297	0,0570	0.0030	0.0053	0.0520	0.0001	0.8568	1.7200	0.0040	0.0078	0.0360

.

SECTION 5

LOWER KISSIMMEE RIVER BASIN PROJECT CODE: KREA and LKR

Purpose and Scope

The Lower Kissimmee River Basin water quality monitoring program encompasses an area characterized by beef and intensive dairy cattle operations. Water quality monitoring stations have been established at locations throughout the Kissimmee River basin in Okeechobee and Highlands Counties.

•••

The objectives of the program are as follows:

- 1. Monitoring water quality in support of the FDEP's Dairy Rule by providing nutrient concentration measurements at the dairy outflows, and information to evaluate the effectiveness of dairy BMP's and the Dairy Buy-out program.
- 2. Assessing tributary, basin loading, and concentration inputs to Lake Okeechobee which include the following:
 - a) Providing concentration measurements from inflows to Lake Okeechobee to compare with the 0.18 mg/l total phosphorus SWIM standard, and for use in basin loading calculations.
 - b) Providing data that will delineate the relative importance of tributary loading within the basin to the whole basin output.
 - c) Providing concentration measurements that will help evaluate the efficacy of the Kissimmee River restoration project.
- 3. Developing basin and spatial scale models to predict changes in loads to Lake Okeechobee as a function of land use which includes:
 - a) Providing data for determining statistical or mechanistic relationships between rainfall, land use (or land type), and nutrient runoff.
 - b) Providing data to help identify the reason for high episodic phosphorus events.

Data generated by this program serve two additional purposes:

- i) To provide a data base in support of SFWMD funded contractual research with the University of Florida Institute of Food and Agricultural Sciences to evaluate the physical, chemical, and biological conditions and processes that govern phosphorus uptake, release, and movement through the soils in the basin; and
- ii) To fulfill the commitment by the District to provide water quality sampling and analysis support for the \$1.25 million federal Rural Clean Water Program (RCWP) grant for cost sharing of BMP implementation. The RCWP is administered by the United States Department of Agriculture and the Environmental Protection Agency.

Data gathered under this program are also integral in development of the Lake Okeechobee Water Quality Management Plan as required by the State's Surface Water Improvement and Management (SWIM) legislation of 1987.

Sampling Location and Description

The locations of the 46 sites monitored under this program are shown in Figure 6. Table 12 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 13 contain statistics for each monitoring location.

District Publications

- Federico, A. (1983). Water Quality Characteristics of the Lower Kissimmee River Basin, Florida. SFWMD, Tech. Pub. 82-3. (DRE 154)
- Goldstein, A. (1980). Upland Detention/Retention Demonstration Project 3rd Annual report to the Coordinating Council on the Restoration of the Kissimmee River Valley and Taylor Creek Nubbin Slough Basin. SFWMD, Tech. Memo. July 1980. (DRE 104)
- Goldstein, A. (1982). Upland Detention/Retention Demonstration Project fourth Annual Report to the Kissimmee River Coordinating Council. SFWMD, Tech. Memo. Dec.1982. (DRE 149)
- Goldstein, A. (1983). Engineering, Hydro and Water Quality Analysis of Detention/Retention Sites, Fourth Annual Report from SFWMD to the Coordinating Council on the Restoration of the Kissimmee River and Taylor Creek/Nubbin Slough Basin Detention/Retention Demo Project. SFWMD, Report Dec. 1983. (DRE 168)
- Goldstein, A. (1986). Upland Detention/Retention Demonstration Final Report. Impacts of Agricultural Land Use on Water Quality and Utilization of Wetlands for Detention/Retention in the Kissimmee River Basin. SFWMD, Tech. Pub. 86-2. (DRE 222)

Lake Okeechobee SWIM Plan, (1989), Planning Department, SFWMD.

- Miami, Civil Engineering Dept. (1973). Kissimmee River Basin Water Quality University of Miami Model Study. Report July 1973. (DRE 28)
- Resource Planning Department Staff, (1974). Report on Progress of Hydrologic, Water Quality and Land Use Studies in the Kissimmee River Watershed and Lake Okeechobee. SFWMD, Report April 1974. (DRE 32)
- Storch, W. (1975). Lake Okeechobee Kissimmee Basin Water Quality Information (combined with Lake Okeechobee Proposals for Management Actions). SFWMD, Report March 1975. (DRE 45)
- Gunsalus, B., E.G. Flaig, G. Ritter, (1992). Efectiveness of Agricultiral Best management Practices Implemented in the Taylor Creek/Nubbin Slough Watershed and the Lower Kissimmee River Basins. SFWMD. September, 1992 Manuscript. (DOR 108)

FIGURE 6. Location of Sampling Station for the Lower Kissimmee River Basin Water Quality Monitoring Program

SFWMD					Physical			
Sta. ID	1.84	Lmg	Location	POR	Parameters	Nutrients	US/DS	G/A
KREA 01	272736	805523	On N.W. 240th Street (Eagle Island Road). The samples are collected from the north side of the bridge at Fish Slough.	1986 - P	BW	BW	-	G
KREA 04	272258	805928	From Chandler Slough bridge on State Road 98 near Fort Bassinger.	1986 - P	BW	BW		G
KREA 06A	272350	805725	Off N.W. 144th Avenue (Lamb Island Road) on the Watford Beef Ranch at Cypress Slough.	1986 - P	BW	BW		G
KREA 07	272420	810347	Go 1.9 miles on NW 160th Drive (Micco Bluff Road) just west of Larson Dairy at the culverts draining under NW 160th Drive (Ash Slough).	1986 - P	BW	BW	-	G
KREA 08	272344	810254	Go 1.2 miles on NW 160th Drive just east of Larson Dairy at the culverts draining under NW 160th Drive (Ash Slough).	1986 - P	BW	BW	-	G
KREA 09	272432	810217	Off of NW 203rd Avenue (Old Peavine Trait). The sample is collected on the north side of the culvert at Ash Slough.	1986 - P	M	М	-	G
KREA 10B	271807	810320	Butler Dairy's spray field off C-721 at culvert under the spray field road which drains the spray field storm water retention pond runoff.	1988 - P	BW	BW	-	G
KREA 10D	271756	810302	At a set of three culverts on Boat Ramp Road just off County Road 721 which collects the outfall from Butler Dairy #1 outer outfall.	1991 - P	BW	BW	-	G

<u>,</u>т

SFWMD					Physical			
Sta. 1D	Lat	Long	Location	POR	Parameters	Nutrients	US/DS	G/A
KREA IOE	271820	810152	Culvert at the end of Silver Creek Lane off Boat Ramp Road, and collects outer pasture outfall from Butler Dairy #1.	1991 - P	ßW	BW		G
KREA 14	271651	810114	Oscar Clemons outfall culvert at pump off Larson Dairy Road	1986 - P	BW	BW	-	G
KREA 16	271808	805855	Go 1.6 miles on NW 56th Street southwest of Rucks Dairy. The sample is collected from a culvert on the south side of the road,	1986 - P	BM	BW	-	G
KREA 17A	271845	810005	On the access road to the Baptist Children's Home (Yates Marsh).	1987 - P	BW	BW	-	G
KREA 19	271442	810110	Maple River off HWY 70 west at Queen Bee Farms.	1986 - P	BW	BW	-	G
KREA 20	272020	805628	State Road 98 approximately 1/2 mile west of Flying "G" Dairy. Sample is collected on the south side of the bridge (Sandfly Gully).	1987 - P	м	м	- .	G
KREA 21	272705	805630	W.S. Rucks dairy outfall flume at Cypress Slough.	1987 - P	BW	BW	-	G
KREA 22	272754	810027	Gore Slough at corner of N.W. 240th ST. and C700A.	1987 - P	М	М	-	G
KREA 23	272755	810242	Ash Slough at Viking property weir.	1987 - P	М	м	: -	G
KREA 25	271926	805513	S.E. of Flying G Dairy at HWY 98 in Turkey Slough.	1987 - P	BW	BW	-	G
KREA 28	271630	805555	Popash Slough at SCL RR Bridge off Mitchel Road	1987 - P	М	М	-	G
KREA 30A	271432	805941	Culverts draining Popash Slough into the L-62 canal off C-70A.	1989 - P'	BW	BW	US	G
KREA 32B	271815	805335	Off State Road 98 at last entrance gate to Dry Lake Dairy #1. Sample is collected from culvert under dirt road which is the runoff from Dry Lake Dairy #1.	1988 - P	BM	BW	-	G
KREA 32C	271917	805241	Off State Road 98 on the east property line of Dry Lake Dairy and collects outer pasture runoff from Dry Lake Dairy #2 as it flows into Wolf Creek.	1991 - P	BW	BW	-	G

•

SFWMD					Physical			
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	US/DS	G/A
KREA 32D) 271954	805326	Off State Road 98 on the north property line of Dry Lake Dairy collects oncoming water from Rofra Dairy.	1991 - P	BW	BW	-	G
KREA 33	271722	805309	On State Road 98. Sample is collected just south of the entrance to Dry Lake Dairy #2.	1986 - P	BW	BW	-	G
KREA 40	271705	810121	North of Larson Dairy Road. Sampled at the flume that catches the outfall for Larson Dairy #2.	1987 - P	w	W	DS	G
KREA 40A	271715	810105	North of Larson Dairy Road sample is collected at a ditch downstream of, and perpendicular to the flume outfall ditch, and also catches outfall from Larson Dairy #2.	1991 - P	BW	BW	•	G
KREA 40B	3 271633	810104	At the end of Larson Dairy Road at the entrance to Clemons property. The site collects ranoff from Larson Dairy #2 outer pasture.	1991 - P	BW	BW	-	G
KREA 41	271732	810108	Off Boat Ramp Road. Sample catches the outfall for Butler Dairy #2.	1987 - P	BW	BW	-	G
KREA 41A	271726	810119	On Butler Dairy #2 just south of KREA 41. Ditch parallels the boundary between Butler Dairy #2 and Larson Dairy #2.	1987 - P	BW	BW	-	G
KREA 41B	271755	810118	East of Butter Dairy #2 on the culvert at the corner of Boat Ramp Road and Sheridan Palms Lane and collects runoff from barn #2.	1991 - P	BW	BW	-	G

SFWMD					Physical			
Sta. ID	Lat	Long	Location	POR.	Parameters	Nurrients	US/DS	G/A
KREA 42A	271904	805654	East of KREA 42 on Flying "G" Dairy at culvert which drains the first spray field.	1990 - P	BW	BW	-	G
KREA 42B	271847	805621	South of KREA 42 on Flying "G" Dairy at culvert which drains the spray field.	1990 - P	BW	BW	-	G
KREA 42D	271925	805515	On State Road 98 at the east property line of Flying "G" Dairy, and collects from the dairy.	1991 - P	BW	BW	-	G
KREA 43A	272530	815740	Southeast comer of C & M Dairy off nonthwest 240th street (Eagle Island Road).	1987 - P	BW	BW	-	G
KREA 44	272302	805920	Off of Lamb Island Road. This sample is collected at the culvert that drains Lamb Island Dairy into Cypress Slough.	1987 - P	BW	BW	-	G
KREA 44C	272302	805915	South of Lamb Island Road, site collects runoff from Lamb Island Dairy (Ferrell) Spray field.	1991 - P	BW	BW	-	G
KREA 46A	272050	805830	On C. Williamson Dairy off State Road 98. Sample is collected at culvert through which drains runoff from the dairy's stormwater retention pond.	1989 - P	BW	BW	-	G

.

.

_

SFWMD					Physical			
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	US/DS	G/A
KREA 46B	272150	805825	On State Road 98 just north of C. Williamson Dairy. Sample is taken at culvert which collects outfall from the dairy.	1990 - P	BW	BW	-	G
KREA 47A	272720	805927	South of Eagle Island Dairy off northwest 240th street (Eagle Island Road). Sample is taken at culvert which collects outfall from the dairy's storm water retention pond.	1990 - P	BW	BW	-	G
KREA 49	271745	805345	Dry Lake Dairies #1 and 2 ontfall located on State Road 98 approximately 200 yards nonh of the entrance to Dry Lake #2.	1 987 - P	BW	BW	-	G
KREA 66	272252	810604	Off State Road 98 at Four-E's Campground.	1986 - P	BW	BW	-	G
S65C	272401	810657	A large gate and boat lock structure located on the Kissimmee River nine miles south of S-65BB. The automatic sampler collects daily composites.	1987 - P	. W	w	US	A
S65D	271845	810120	A large gate and boat lock structure located on the Kissimmee River nine miles south of S-65C. The automatic sampler collects daily composites.	1987 - P	w	W	US	A

SFWMD					Physical			
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	US/DS	G/A
S65E	271335	805742	This is the largest of the six gate and beat lock structures on the Kissimmee River located 7 $1/2$ miles south of S-65D, and 8 miles north of Lake Okeechobee. The automatic sampler collects daily composites.	1987 - P	w	W	US	A
8154	271241	805506	A small gate type structure located on the north side of the Kissimmee River about half way between Lake Okeechobee and S- 65E. This structure allows water to flow from the L-62 canal into C-38. The automatic sampler collects daily composites.	1987 - P	Ŵ	W	US	A/G
S191	271135	804535	A large gate type structure on the north side of Lake Okeechobee at Nubbin Slough. Water is released into Lake Okeechobee through this structure. The automatic sampler collects daily composites.	1987 - P	w	W	US	G/A

.

. .

TABLE 13. Statistics on Select Parameters for the Lower Kissimmee River Basin Water Quality Monitoring Program for Period of Record

SFWMD												
<u>Sta. ID</u>	<u>Total</u>	Phospho	<u>rus</u>	Ortho) Phospho	orus	<u>Tota</u>	l Nitroge	<u>n</u>	<u>Nitrite-</u>	-Nitrate(l	<u>(xOv</u>
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
KREA 01	0.0040	0.1590	2.6500	0.0040	0.0957	0.6390	0.0002	1.5421	13.9700	0.0040	0,0285	0.3090
KREA 04	-0.0300	0.2172	1.1910	0.0250	0.1569	0.9650	0.0001	1,4691	3.5400	0.0040	0.0280	0.6270
KREA 06A	0.0430	0,2600	2,8810	0.0330	0.2209	1.1250	0.0001	2.2083	94.6200	0.0040	0.0469	1.3680
KREA 07	0.1480	1,0429	5.4800	0.0800	0.9105	4.1500	0.0001	2.7625	15.0600	0.0040	0.0532	2.4310
KREA 08	0.3410	1.6324	13.5200	0.1780	1.2734	5.0950	0.0003	3.5147	16.0700	0.0040	0.3617	7.3490
KREA 09	0.0900	0.5268	1.8400	0.0001	0.3383	1.1750	0.5600	2.2660	10.9700	0.0040	0.0277	0.2670
KREA 10B	0.0730	0.5265	2.8450	0.0040	0.1821	1.0900	1.1300	3.4580	9.2400	0.0040	0.0551	1.5950
KREA 10D	0.0330	0.9105	8.1720	-	-	-	-	-	-	-	-	-
KREA 10E	0.1970	2.4744	13.4730	-	-	-	-	-	-	-	-	-
KREA 14	0.0001	0.6881	6.7400	0,0040	0.6348	3.0200	1.0400	2.1154	7.9500	0.0040	0.0165	0.0970
KREA 16	0.0002	1.4119	21,3800	0.0870	0.9658	3.9550	0.8600	2.6699	11.6900	0.0040	0.0371	0.3940
KREA 17A	0.0260	0.2157	3.6900	0.0040	0.1214	0.6130	0,0002	1.7709	8.6800	0.0040	0.0211	0.2480
KREA 19	0.0490	0.9087	4.0050	0.0070	0.6687	3.7350	0.0001	2.9593	52,5800	0.0040	0.5164	5.9670
KREA 20	0.5920	3.5621	9.1800	0.0003	3.2194	8.0300	0.0002	3,1922	11.6700	0.0040	0.0273	0.2530
KREA 21	0.0040	0,5293	6,9200	0.0100	0,5473	3.2200	0.0001	1.4497	6.5700	0.0040	0.0315	1.2510
KREA 22	0.0100	0.0643	1.3950	0.0010	0.0316	1.2270	0.0001	1.3699	8.9800	0.0040	0.0156	0.3740
KREA 23	0.0040	0.0321	0.2170	0.0030	0.0111	0.4350	0.0001	1.3208	4.0800	0.0040	0.0103	0.0600
KREA 25	0.0019	2.3460	35.8600	0.1430	1.7883	10,4500	0.0003	3.4240	49.5400	0.0040	0.0398	0.8450
KREA 28	0.0002	1,7055	7,6750	0.0002	1.5135	7.4690	0.0003	2.2099	9.4100	0.0040	0.0222	1,5380
KREA 30A	0.2210	1.2834	3.9450	0.0440	1.2116	3.7500	0.0002	1.9521	7.5300	0.0040	0.0355	0.2430
KREA 32B	0.0006	2,9211	15,4400	0.6850	3.0091	13.8300	0.0003	5,1050	23.8700	0.0040	0.2166	11,4460
KREA 32C	1.0920	2.5656	4.4980	3.1350	3.1350	3.1350	3.3200	3,3200	3.3200	0.0110	0.0110	0.0110
KREA 32D	0.8370	2,7866	6.5520	-	-		-	-	-	-	-	-
KREA 33	0,3740	4.7596	34,5400	0.0740	1.2218	2.9150	1.8200	5.2197	13.8600	0.0090	0,2829	5.0280
KREA 40	0.0280	1.3945	15,7400	0.0002	1,2393	11,4700	0.0003	4,2053	50.0600	0.0040	0.3398	4.3430
KREA 40A	0.0350	2,5427	21,3600	0.0040	0.7124	4,9100	0.7900	3.7879	20.3700	0.0040	0.1939	3.0290
KREA 40B	1.2730	7.6630	13.4720	6.0250	6.0250	6.0250	3.6700	3.6700	3.6700	0.0110	0.0110	0.0110
KREA 41	0.0015	16.3081	87.2400	0,5550	5.0575	9.5600	3,1300	17,5200	31.9100	0.0170	0.0735	0.1300
KREA 41A	0.0540	0.7700	6.5470	0.0320	0.7468	2,4750	0.0002	2,5343	9,8800	0.0040	0.0893	0.9030
KREA 41B	4.1530	7.6670	12,4200	-	-		-	-	-	-	-	
KREA 42A	0.2460	2,9023	10,6920	1.1410	2,2816	3.7300	2.2000	3.7655	7.4700	0.0110	0.0449	0.3600

TABLE 13.Statistics on Select Parameters for the Lower Kissimmee River Basin Water Quality Monitoring Program for
Period of Record

•

SFWMD <u>Sta. ID</u>	1D <u>2 Total Phosphorus</u>		r <u>us</u>	Ortho	Phospho	<u>orus</u>	<u>Toța</u>	Total Nitrogen <u>Nitrite+Nitrate(NOx</u>				
	MIN	MEAN	MAX	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
KREA 42B	0.1290	2.7713	11.3800	0,8350	1.9680	3.2850	0.0023	3.9452	9,6600	0,0090	0.0858	0.5570
KREA 42D	0,0004	1.1989	2.9600	-	•	-	-	-	-	-	-	-
KREA 43A	0.0890	1,2508	8.9200	0.0120	1.3163	8,0700	0.0002	1.8786	6.3500	0.0040	0.0962	1.3130
KREA 44	0.0004	10.0070	40.4750	2,3240	9.2741	22.9560	0.0010	8.8190	22,4200	0.0160	0.1667	1,1290
KREA 44C	0.0590	0.7343	14.7170	0.1850	0.1850	0.1850	1.9500	1.9500	1.9500	0.0150	0.0150	0,0150
KREA 46A	0.0040	1.0465	6,4300	0.1150	1.3384	6.2150	0.0002	2.1893	4.0100	0.0040	0.0111	0.0230
KREA 46B	0.0280	2,0163	6.8500	0.0040	2.2513	5.8650	0.9700	3.3655	7.2100	0.0090	0.0140	0.0220
KREA 47A	0.1250	0.5731	4.4250	0.0250	0.2584	0.4910	0.5100	1.5671	2,2000	0.0040	0.0180	0.0630
KREA 49	0.0007	6.3554	34.8200	1.3750	5.6813	10,6900	0.0004	6.3445	23.8900	0.0050	0.1151	2,5120
KREA 66	0.0170	0.0669	0.3770	0.0040	0.0253	0.2170	0.0001	1.1801	4.7100	0.0040	0.0371	0.2420
\$154	0.0001	0.6982	2.9700	0.0001	0,5362	2.6050	0.0001	1.6735	4.9900	0.0040	0.0310	0.1910
\$191	0.0580	0.5562	9.6500	0.0310	0.4562	1.0730	0.0001	1,7772	32.2000	0.0040	0.2304	0.8710
S65C	0.0060	0.0549	0.4200	0.0030	0.0196	0.1300	0.0001	1.0970	2.5100	0.0040	0.0486	0.2820
\$65D	0.0040	0.0816	0.5020	0.0040	0.0413	0.3590	0.0001	1.1373	5,5100	0.0040	0.0551	0.2300
S65E	0.0110	0.1023	0.4410	0.0040	0.0612	0.3970	0,0001	1.1640	5,7600	0.0040	0.0719	0.2980

2

49

-.

.

.

. . .

.

·

SECTION 6

TAYLOR CREEK NUBBIN SLOUGH PROJECT CODE: TCNS

Purpose and Scope

The Taylor Creek/Nubbin Slough water quality monitoring program encompasses an area characterized by beef and intensive dairy cattle operations. The basin is located primarily in southeast and central Okeechobee County and parts of Martin County.

A water quality monitoring network has been sampled by SFWMD since 1979. This program was initiated as a means of identifying trends and quantifying changes in water quality due to changes in land use and/or implementation of BMPs on beef cattle ranches and dairy farms in the basin. This program is jointly funded by the state/federal Taylor Creek Headwaters/Rural Clean Waters Program. The program is part of the District's Lake Okeechobee Operating Permit, granted by the Florida Department of Environmental Protection.

It was recommended by the Kissimmee River Resource Planning Management (380), and the Lake Okeechobee Technical Advisory Committee to; identify trouble spots, inform individual landowners of the impacts of implementing BMPs to improve water quality, and to provide the state and federal agencies responsible for administering cost-share programs, a method of measuring the cost-effectiveness. The District intensified the monitoring effort in fiscal year 87/88, by approximately doubling the number of sampling sites. In fiscal year 91/92, the network design was again modified to provide more intensive and comprehensive monitoring.

The objectives of this program are:

- 1. Monitoring water quality in support of the FDEP's Dairy Rule, by providing chemistry data for the dairy outflows, and evaluating the effectiveness of dairy BMP's and the Dairy Buy-out program.
- 2. Assessing tributary, basin loading, and concentration inputs to Lake Okeechobee, including:

a) Providing levels of total phosphorus at the inflows to Lake Okeechobee to compare with the 0.18 mg/l total phosphorus SWIM standard for the basin loading calculations.

b) Providing data that will delineate the relative importance of tributary loading within the basin, to the whole basin output.

3. Developing basin and spatial scale models to predict changes in loads to Lake Okeechobee as a function of land use. This includes:

a) Providing data for determining statistical or mechanistic relationships between rainfall, land use (or land type), and nutrient runoff into streams.

b) Providing data to help identify the reason for high episodic phosphorus events.

This program fulfills the District's obligations to the Taylor Creek Headwaters and the Rural Clean Waters programs, also the legal obligations under the Lake Okeechobee Operating Permit. In addition, this program is integral in the development of the Lake Okeechobee Water Quality Management Plan as required by the state's SWIM legislation of 1987.

Sampling Location and Description

The locations of the 41 sites monitored under the Taylor Creek/ Nubbin Slough program are shown on Figure 7. Table 14 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 15 contain statistics for each monitoring location.

District Publications

- Federico, A. (1977). Investigations of the Relationships between Land Use, Rainfall, and Runoff Quality in the Taylor Creek Watershed. SFWMD, Tech. Pub. 77-03. (DRE 75)
- Goldstein, A. (1980). Upland Detention/Retention Demonstration Project 3rd Annual report to Coordinating Council on the Restoration of the Kissimmee River Valley and Taylor Creek Basin. SFWMD, Tech. Memo. July 1980. (DRE 104)
- Goldstein, A. (1982). Upland Detention/Retention Demonstration Project 4th Annual report to Coordinating Council on the Restoration of the Kissimmee River Valley and Taylor Creek Basin. SFWMD, Tech. Memo. Dec. 1982. (DRE 149)
- Goldstein, A. (1983). Engineering, Hydro and Water Quality Analysis of Detention/Retention Sites; Fourth Annual Report from SFWMD to the Coordinating Council on the Restoration of the Kissimmee River and Taylor Creek Nubbin Slough Basin Detention/Retention Demo Project. SFWMD, Report December 1983. (DRE 168)

Goldstein, A. (1986). Upland Detention/Retention Demonstration Final Report. Impacts of Agricultural Land Use on Water Quality and Utilization of Wetlands for Detention/Retention in the Kissimmee River Basin. SFWMD, Tech. Pub. 86-2. (DRE 222)

Lake Okeechobee SWIM Plan, (1989), Planning Department, SFWMD.

- Ritter, G. J. and H. Allen, Jr. (1982). Taylor Creek Headwaters Project Phase 1 Report; Water Quality. SFWMD, Tech. Pub 82-8. (DRE 159)
- Gunsalus, B., E.G. Flaig, G. Ritter, (1992). Effectiveness of Agricultural Best management Practices Implemented in the Taylor Creek/Nubbin Slough Watershed and the lower Kissimmee River Basin. SFWMD. September, 1992 Manuscript. (DOR 108)

FIGURE 7. Location of Sampling Stations for the Taylor Creek / Nubbin Slough Water Quality Monitoring Program

TABLE 14. Summary of Sampling Station Locations and Frequency of Collection for the Taylor Creek Nubbin SloughMonitoring Program

SFWMD					Physical		• •
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	G/A
TCNS 201	272337	805340	On HWY 68. The samples are collected from the bridge over N.W. Taylor Creek at the U.S.G.S. stage station.	1979 - P	BW	BW	G
TCNS 204	272309	805151	On N.W. 144th Drive (Potter Road). The samples are collected from the bridge over Little Bimini.	1979 - P	BW	₿₩	G
TCNS 206	272415	804835	East of State Road 441 approximately 0.5 miles behind a FP&L substation at Remilu Ranch, and collects runoff from McArthur Dairy Barns #1 and #2. Sample is collected above weir on Otter Creek.	1989 - P	BW	BW	G
TCNS 207	272403	804858	100 yands west of State Road 441 at S-13B bridge over Otter Creek on Wilson Rucks property.	1979 - P	BW	BW	G
TCNS 209	272240	805046	West of State Road 441 on Potter Road. The samples are collected at two large culverts on Potter Road at Ouer Creek.	1979 - P	BW	BW	0
TCNS 210	272300	805000	West of State Road 441 on Potter Road. The samples are collected at a tributary that runs across H & T Rucks Bam #3 at Potter Road.	1985 - P	₿₩	BW	G
TCNS 211	272228	804935	West of State Road 441 on Potter Road. The samples are collected at East Otter Creek and Potter Road at two large roadside culverts.	1979 - P	BW	BW	G
TCNS 212	272302	8 049 04	At East Otter Creek, just off State Road 441 above Remilu Ranch.	1988 - P	М	М	G

.

. iz 1

S

TABLE 14 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Taylor CreekNubbin Slough Monitoring Program

•

SFWMD Sta. ID	Lai	Long	Location	POR	Physical Parameters	Nutrients	G/A	
TCNS 213	272108	805154	West of State Road 441 on State Road 68 at Flying "G" Ranch. The samples are collected approximately 3.5 miles south into Flying "G" Ranch directly below the confluence of Otter Creek, Little Birnini, and NW Taylor Creek.	1979 - P	BW	BW	G	
TCNS 214	271804	804920	East of State Road 441 at Williamson Ditch at the Florida School for Boys. The samples are collected directly downstream of the treatment plant at the Boys School.	1979 - P	BW	BW	G	
TCNS 217	271644	804926	East of State Road 441, off Cemetary Road. Sample is collected from the weir on Wolf Creek.	1988 - P	BW	BW	G	
TCNS 218	271701	804459	Off State Road 70 on N.E. 80th Avenue at a county ditch above Larson Dairy #8.	1988 - P	М	М	G	
TCNS 219	271734	804456	North of State Road 70 on N.E. 80th Avenue at Hales Farms runoff above Larson Dairies #5, 6, 7, and 8.	1988 - P	М	М	G	
TCNS 220	271512	804613	On State Road 70 at Mosquito Creek. The samples are collected at the Mosquito Creek bridge.	1979 - P	М	М	G	
TCNS 222	271413	804053	On State Road 710 and Mosquito Creek. The samples are collected at the Mosquito Creek bridge.	1979 - P	BW	BW	G	-
TCNS 225	271235	804412	Off State Road 710 and collects ranoff from New Palm Dairy at culvert above Newcommer Dairy.	1988 - P	BW	BW	G	

TABLE 14 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Taylor CreekNubbin Slough Monitoring Program

SFWMD					Physical		
Sta. ID	Lai	Long	Location	POR	Parameters	Nutrients	G/A
TCNS 227	271245	804410	At Red Top Dairy off State Road 710. The samples are collected at a surface water ditch approximately 1/2 mile north of ARS 14A that drains several hay pastures into Nubbin Slough.	1987 - P	BW	BW	G
TCNS 228	271213	804445	On State Road 710 and Nubbin Slough. The samples are collected at the Nubbin Slough bridge.	1979 - P	BW	BW	G
TCNS 230	271029	804207	On State Road 710 at Henry Creek. The samples are collected at the Henry Creek bridge.	1979 - P	BW	BW	G
TCNS 231	271028	803910	Off Martin Grade Road and collects runoff from Underhill Dairy.	198 8 - P	BW	BW	G
TCNS 233	270956	804114	On State Road 710 at Lennee Creek. The samples are collected at the Lettuce Creek bridge.	1979 - P	₿₩	BW	G
TCNS 241	271500	804230	Off Berman Road and collects runoff from Davie Dairy Barn #1 and #2 below the spray field.	1988 - P	BW	BW	G
TCNS 243	272325	805101	Off State Road 68 and is the upstream site of Otter Creek, above H.T. Rucks & Sons Dairy #3.	1988 - P	М	М	G

TABLE 14 (Continued).	Summary of Sampling Station Locations and Frequency of Collection for the Taylor Creek
	Nubbin Slough Monitoring Program

SFWMD					Physical		
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	G/A
TCNS 249	271520	804142	On Berman Road approximately three miles south of State Road 70. The samples are collected at a culven where Nubbin Slough crosses Berman Road.	1979 - P	М	М	G
TCNS 252	271237	804337	Off State Road 710 on New Palm Dairy, Sample is taken at tributary culvert above New Palm Dairy.	1988 - P	М	М	G
TCNS 254	271105	803835	Off Martin Grade in Martin County, and is the oncoming tributary north of the Underhill Dairy barn.	1991 - P	М	М	G
TCNS 255	271211	8 04448	Off State Road 710 and collects ranoff from the cooling ponds of Newcomer Dairy going into Nubbin Slough.	1989 - P	BW	8W	G
TCNS 258	271102	804138	Off State Road 710 and collects nunoff from Enrico Dairy as it flows into Henry Creek.	19 8 9 - P	BW	BW	G
TCNS 260	272246	8 05056	The discharge from Rucks & Sons Dairy at Potter Road	1990 - P	BW	BW	G
TCNS 262	271605	804515	North of State Road 70 and collects runoff from Larson Dairy #7 at a culvert just south of Woody's Lane.	1990 - P	BW	BW	G
TCNS 263	271710	804515	North of State Road 70 and collects runoff from Larson Dairy #8 at a culven just north of Woody's Lane.	1990 - P	BW	BW	G

ι.
TABLE 14 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Taylor CreekNubbin Slough Monitoring Program

SFWMD					Physical		
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	G/A
TCNS 265	272 410	805155	Off State Road 68 at the culvert on Rucks Dairy Road that collects the outfall H.T. Rucks and Sons Dairy #1.	1991 - P	BW	BW	G
TCNS 268	271530	804248	On Davie Dairy on the southeast property line and collects oncoming water to the Dairy from the Lou Cox property.	1991 - P	М	М	°,
TCNS 271	271050	803838	Off Martin Grade Road along the Underhill Dairy access road and collects oncoming water to the dairy.	1991 - P	М	М	6
TCNS 272	271505	804625	The culvert north of Larson Dairy Barn #5 and collects oncoming water to Barn #5.	1992 - P	м	М	G
TCNS 273	271615	804625	At the outfall point at Larson Dairy Barn #5, at Mosquito Creek culvert on Woody's Lane.	1991 - P	BW	BW	G
TCNS 276	272438	805226	Off Calf Barn Road on the McAnhur Dairy property and collects runoff from McArthur Dairy Barns #4 & #5.	1991 - P	BW	BW	G
TCNS 277	271655	804557	North of Larson Dairy Barn #8 and collects runoff from the south spray field.	1992 - P	BW	BW	G
TCNS 280	271557	804645	Larson Dairy #5 east spray field outlet at riser.	1994 - P	BW	BW	G
TCNS 281	271610	804647	Larson Dairy #5 west spray field at culvert across from entrance to barn.	1994 - P	BW	BW	G
TCNS 282	271637	804457	Larson Dairy #8 north spray field drainage ditch at last culvert.	1995 - P	₿₩	BW	G

TABLE 15. Statistics on Select Parameters for the Taylor Creek Nubbin Slough Water Quality Monitoring Program for Period of Record

SFWMD												
<u>Sta, ID</u>	<u>Total Phosphorus</u>			<u>Ortho</u>	Phospho	<u>rus</u>	<u>Tota</u>	l Nitroge	n	<u>Nitrite-</u>	Nitrate()	NOx)
	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
TCNS 201	0.0090	0.4747	1.7350	0.1120	0.4040	1.3580	0.5000	1.3641	3.4900	0.0040	0.0594	0,3640
TCNS 204	0.0002	0.9476	5.5650	0.0970	0.9324	3.6350	0.0003	3.2607	8.8600	0.0040	1.3103	3,7250
TCNS 206	0.1150	1.4637	6.7860	0.0780	1.2950	4.1600	1,5700	4.8710	26.7700	0.0040	0.1363	0.9580
TCNS 207	0.0810	0.7921	5.8340	0.0540	0.6041	4.5350	0.0001	1.9934	22.0400	0.0040	0.1706	12.5670
TCNS 209	0.0001	0.7179	6.5400	0.0040	0.5377	3.2400	0.0001	1.7233	76.4600	0.0040	0.1783	3,5020
TCNS 210	0.0320	2.2384	16.5600	0.1850	1.6533	7.6120	0.0001	3.6120	17.2200	0.0050	0.0862	0.9050
TCNS 211	0.0280	0.3107	1.8840	0.0210	0.2307	1.3860	0.5000	1,3304	4,2800	0.0040	0.0195	0,2490
TCNS 212	0.0240	0,2174	2.2350	0.0040	0.1932	2.1110	0.0002	2.3181	15.0200	0.0040	0.0191	0.1470
TCNS 213	0.0390	0.5520	2.2020	0.0040	0,4519	2.3380	0.0001	1.5857	9.2700	0.0040	0.2275	2.5800
TCNS 214	0.0200	0.2485	2.0830	0.0040	0.1821	1.4520	0.0001	1.2020	4,7800	0.0040	0.0655	1.2430
TCNS 217	0.0670	0.5414	3.0450	0.0040	0.3958	2.3940	0.0002	1.7510	9.2800	0.0040	0,2540	2.5090
TCNS 218	0.0140	0.2900	2.4500	0.0010	0.1471	0.9520	0.0001	2.2491	9.1100	0.0040	0.0234	0.2990
TCNS 219	0.0120	0.3091	3.3450	0.0040	0.1709	1.1830	0.0001	2,3227	93.0500	0.0040	0.9064	91,2000
TCNS 220	0,2330	0.6484	3.0400	0.1860	0.5791	2.2850	0.0002	2.5354	5.7400	0,0040	0.5123	1.8710
TCNS 222	0.0790	0,6373	1.8290	0.0580	0.5692	1,9660	0.0001	1.8750	3.7100	0.0040	0.4524	1.7120
TCNS 225	0.0300	0.5976	6.5850	0.0340	1,3603	3.3100	0.5200	5.0227	15.8500	0.0040	0.0869	0.3700
TCNS 227	0.0370	0.6455	19.1000	0.0080	0.2144	1.8110	0,5100	2.3759	9.9000	0.0040	0.1315	1.8750
TCNS 228	0.0910	0.6666	6.6600	0.0490	0,4942	1.8160	0.0002	2.5756	18.8200	0.0060	0.5705	2.9520
TCNS 230	0.1390	0.5488	3.3400	0.0870	0.4696	3.1460	0.0001	1.8854	6.4200	0.0040	0.1293	0.7000
TCNS 231	0.1020	1.1355	13.9400	0.0540	1.1019	13.0540	0.7700	3.5911	45,4800	0.0040	0.0332	0.8110
TCNS 233	0.0690	0.4535	13.4600	0.0210	0.2894	1.1990	0.0001	1.7884	8.0600	0.0040	0.1299	0.9610
TCNS 241	0.0003	1.2587	6.0150	0.0001	1.2063	3.2630	0.9200	4.2523	24.4300	0.0060	0.9869	6.5370
TCNS 243	0.0130	0.2649	1.6400	0.0040	0.2360	1.1880	0.5900	3.7704	93,1300	0.0040	2.0364	91,6000
TCNS 249	0.0450	0.5175	2.0260	0.0270	0.4557	1.8530	0.0002	1.3148	3.7200	0.0040	0.0190	0.5000
TCNS 252	0.1560	0.8202	5.2000	0.0790	0.5615	2.0760	0.0001	2.7324	13.0700	0.0040	0.0387	0.1490
TCNS 254	0.1100	0.6720	2.8550	0.0850	0.5296	1.8380	0.8500	4,3945	51.7900	0.0040	1 1211	22.1700
TCNS 255	0.1440	2.6685	22.6200	0.2360	2.2431	4.1000	0.5200	4.3367	17.0300	0.0080	0.0796	0.4640
TCNS 258	0.1850	2,9359	11.4800	0.0800	4.8654	11.0650	1.9300	7,9062	19,2000	0.0040	0.1132	1.4900
TCNS 260	0.2470	2.8657	8.6650	0.0003	0.9826	2.6150	0.0002	2.2755	4,4900	0.0070	0.0302	0.1130
TCNS 262	0.0002	1.8775	5,7300	0.2870	1.9974	3,7100	1,9300	16 6189	81 3300	0,0080	0.0383	0.3120
TCNS 263	0.2090	1.2779	7.2400	0,1680	0.3997	3.3500	0.0001	1.8539	7.0900	0.0150	0.1327	0.5530

TABLE 15.	Statistics on Select Parameters for the Taylor	Creek Nubbin	Slough	Water	Quality	Monitoring	Program
	for Period of Record						

SFWMD <u>Sta. ID</u>	Total Phosphorus			<u>Ortho</u>	Ortho Phosphorus			Total Nitrogen			Nitrite	Nitrite+Nitrate(NOx)			
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	Ī	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	MAX		
TCNS 265	0,0110	0.4429	2.2020	-	-	-		-	-	-	-	-	-		
TCNS 268	0.0220	0.1765	1.0650	-	-	-		-	-	-	-	-	-		
TCNS 271	-0.0280	0.2816	2.0840	-	-			-	+	-	-	-	-		
TCNS 272	-0.1400	0.4490	2.2860	0,5430	0.5430	0.5430	1.4	500	1.4500	1.4500	0.1350	0.1350	0,1350		
TCNS 273	0.1810	0.5230	1.5530	-	-	-		-	-	-	-	-	-		
TCNS 276	-0.1800	0.7329	2.9300	-	-	-		-	-	-	-	-	-		
TCNS 277	0.0330	1.6094	3.9320	1,4750	1.4750	1.4750	$2.\epsilon$	6300	2.6300	2.6300	0.0160	0,0160	0.0160		
TCNS 280	0.0040	8,3698	14.3450	-	-	-		•	-	-	-	-	-		
TCNS 281	0.1570	0,9995	3.7550	-	-	-		-	-	-	-	•	-		
TCNS 282	0.9410	1.9743	4.0940	-	-	•		-	-	-	-	-	-		

· – į

SECTION 7 INDIAN RIVER LAGOON PROJECT CODE: IRL

Purpose and Scope

The Indian River Lagoon water quality monitoring program is a lagoon wide monitoring program that involves 5 agencies: South Florida Water Management District (SFWMD), St.Johns River Water Management District (SJRWMD), Volusia County, Brevard County, and Indian River County who took over the FDEP's responsibilities. The SFWMD jurisdiction encompasses a 40 mile stretch of the lagoon from Jupiter Inlet to the northern boundary of St. Lucie County. The water quality monitoring program was established to provide a water quality data base for:

- 1. Documenting known problem areas within the lagoon system, especially those that are located near urban areas and point source discharges;
- 2. Locating and reviewing existing stations monitored by state, regional and local environmental groups;
- 3. Locating and establishing monitoring stations in the lagoon and it's tributaries not currently being monitored;
- 4. Determining parameters that will best evaluate the water quality of the lagoon;
- 5. Establishing water quality assurance requirements for the field and laboratory; and
- 6. Documenting long term trends within the lagoon, especially in areas where good biological or water quality conditions currently exist.

This is a SWIM program that began in October, 1988. The collection and analysis of the samples were contracted out during the first two years of the study. In October 1990, the collection and analysis of the samples within the SFWMD boundaries were taken over by the SFWMD.

The data collected can indicate any changes in water quality, and allow for better management of the Indian River Lagoon for environmental enhancement, and prevention of any further degradation.

Sampling Locations and Descriptions

The locations of the 40 sites monitored under this program are shown in Figure 8. Table 16 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 17 contain statistics for each monitoring location.

District Publications

Indian River Lagoon SWIM Plan (1987), Planning Department, SFWMD.

Indian River Lagoon SWIM Plan (September 1994), SFWMD.

Moustafa, Z., B. Hammrick, Morton. (1996). Modeling Salinity Transport in the Indian River Lagoon. SFWMD. February, 1996 Manuscript. (DOR 237)

FIGURE 8. Location of Sampling Stations for the Indian River Lagoon Water Quality Monitoring Program

SFWMD Sta, ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	PAR	Chlorophyll	G/A
(RLOI	265726	800448	Indian River Lagoon in Martin County about 0.6 miles north of the Jupiter Inlet in the Intracoastal Waterway(ICWW) at channel marker #60.	1988 - P	QTR	QTR	QTR	QTR	G
IRL02	265843	800509	Indian River Lagoon in Martin County north of the Jupiter Inlet near Maxon Marina in the ICWW at channel marker #52.	1988 - P	QTR	QTR	QTR	QTR	G
R1.03	265939	800531	Indian River Lagoon in Martin County in the ICWW at channel marker #48.	1988 - P	QTR	QTR	QTR	QTR	G
IRL04	265957	800535	ladian River Lagoon in Martin County taken half way between channel Markers #42 and #44 in the ICWW.	1988 - P	QIR	QTR	QTR	QTR	G
IRL05	270118	800611	Indian River Lagoon in Martin County taken at channel marker #41 in the ICWW.	1988 - P	QTR	QTR	QTR	QTR	G
IRL06	270301	800648	Indian River Lagoon in Martin County taken approximately 50 yards out from the Jupiter Island Club docks.	1988 - P	QTR	QTR	QTR	QTR	G
IRL07	270350	800720	Indian River Lagoon in Martin County taken approximately 50 yards south of the State Road 707 bridge on the west side of the ICWW.	1988 - P	QTR	QTR	QTR	QTR	G

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	PAR	Chlorophyli	G/A
IRL08	270448	800748	Indian River Lagoon in Martin County taken at the mouth of the cove on the west side if the Jupiter Narrows (ICWW) just south of channel marker #28.	1988 - P	QIR	QTR	QTR	QTR	G
IRL09	270540	800815	Indian River Lagoon in Martin County taken in the Jupiter Narrows at channel marker #24 adjacent to a series of seven canals.	1988 - P	QTR	QTR	QTR	QTR	G
IRL10	270645	800838	Indian River Lagoon in Martin County taken in the Pecks Lake portion of the ICWW at channel marker #19.	1988 - P	QTR	QTR	QTR	QTR	. G
IRL11	270736	800903	Indian River Lagoon in Martin County taken at the north ead of the Pecks Lake portion of the ICWW at channel marker #16.	1988 - P	QTR	QTR	QIR	QTR	G
IRL 12	270850	800952	Indian River Lagoon in Martin County taken at channel marker #3, about 0.5 miles south of the St. Lucie Inlet in the ICWW.	1988 - P	QIR	QTR	QTR	QTR	G
IRL13	270913	801150	Manatee Pocket in Martin County in the middle of the cove leading to Crooked Creek.	1988 - P	QTR	QTR	QTR	QTR	G
TRL14	270851	8 01 1 40	Manatee Pocket in Martin County in front of the marina at the end of Manatee Pocket.	1988 - P	QTR	QTR	QTR	QTR	G

:.

:7

SFWMD Sta. ID	lat	Long	Location	POR	Physical Parameters	Nutrients	PAR	Chlorophylt	G/A
IRL15	271156	801228	In the middle of the St. Lucie River in Martin County under the A1A bridge.	1988 - P	QTR	QTR	QTR	QTR	G
IRL16	271057	801000	In Sailfish Point Marina in Martin County located just north of the St. Lucie Inlet. The sample is taken in the canal about 50 yards west of docks.	1988 - P	QTR	QTR	QTR	QTR	G
RL17	271233	801 106	Indian River Lagoon in Martin County by the Indian River Plantation Marina taken by marker #4. This is located just south of the A1A bridge, which is the first bridge north of the St. Lucie Inlet, on the east side of the ICWW.	198 8 - P	QTR	QTR	QTR	QTR	G
IRL18	271357	801302	Indian River Lagoon in Martin County at entrance Marker #10 to the Baily Boat Company Marina just north of the AIA bridge on the west side of the ICWW.	1988 - P	QTR	QTR	QTR	QTR	G
IRL19	271510	801239	Indian River Lagoon in Martin County at entrance marker #12 to the boat docks just south of HWY 707A on the east side of the ICWW. Second bridge north of the St. Lucie Inlet.	1988 - P	QTR	QTR	QTR	QTR	G
IRL20	271605	801230	Indian River Lagoon in St. Lucie County in the middle of the Waveland Trailer Park canal on the east side of the ICWW just north of HWY 707A.	1988 - P	QTR	QTR	QTR	QTR	G
IRL21	271707	801305	Indian River Lagoon in St. Lucie County by the boat docks on the east side of Nettles Island Trailer Park, north of HWY 707A on the east side of the ICWW.	1988 - P	QTR	QTR	QTR	QTR	G

.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	PAR	Chlorophyll	G/A
IRL22	271804	801431	Indian River Lagoon in St. Lucie County at channel marker #212 in the middle of the ICWW, north of Nettles Island.	1988 - P	QTR	Q1R	QTR	QTR	G
RL23	272057	801504	Indian River Lagoon in St. Lucie County in Rig Mud Creek 50 yards out from Hotchinson Island Power Plant.	1988 - P	QTR	QTR	QTR	QTR	G
IRL24	271542	801346	Indian River Lagoon in Martin County taken approximately 0.5 miles north of HWY 707A near the east side of the ICWW in 2.0 meters of water. About 300 yards straight out from a house with a black roof.	1988 - P	QTR	QTR	QTR	QIR	G
RL25	271540	801350	Indian River Lagoon in Martin County taken approximately 0.5 miles north of HWY 707A. This is a transect station to IRI.24. This sample is collected about 100 yards west of IRL24 in 1.0 meters of water.	1988 - P	QTR	QTR	QTR	QTR	G
IRL26	272047	801634	Indian River Lagoon in St. Lucie County near the west side of the ICWW opposite the Hutchinson Island Power Plant, about 200 yards south of the power lines in 2.0 meters of water.	1988 - P	QTR	QTR	QTR	QTR	G
IRL27	272257	801710	Indian River Lagoon in St. Lucie County near channel marker #198 in 2.0 meters of water taken from the west side of the channel.	1988 - P	QTR	QTR	QTR	QTR	G

.

:

r'

SFWMD		•	Teacher	DOD	Physical Paramatam	Nf	DAD	Chlanaball	C (4
Sta. ID	Lat	Long	Location	PUR	Falanciels	NUMBERIS	PAK	Спюторпун	0/A
IR1.28	272458	801828	Indian River Lagoon in St. Lucie County between channel markers #192 and #193 near the west side of the ICWW taken in 1.0 meter of water, straight out from the Virginia Avenue Canal discharge culverts in Ft. Pierce. This station is west of Hutchinson Island and is a transect station with IRL40.	1988 - P	QTR	QTR	QTR	QTR	G
IRL29	272531	801712	Indian River Lagoon in Sr. Lucie County off the south end of Hutchinson Island. The sample is collected in the middle of Bear Point Cove.	1988 - P	QTR	QTR	QTR	QTR	G
IRL30	272751	801746	Indian River Lagoon in St. Lucie County, just south of Ft, Pierce Inlet in Faber Cove on the east side of the ICWW. The sample is taken at the NO WAKE sign in the marina basin.	1988 - P	QTR	QTR	QTR	QTR	G
IRL3 1	272658	801727	indian River Lagoon in St. Lucie County just south of Ft. Pierce Inlet out from the Jaycees Park in Jennings Cove.	1988 - P	QTR	QTR	QTR	QTR	G
IRL32	272719	801858	Indian River Lagoon in St. Lucie County just south of the Ft. Pierce Inlet at the City of Ft. Pierce waste water treatment plant. The sample is collected at the outfall point to the Indian River Lagoon.	1988 - P	QTR	QTR	QTR	QĨR	G
IRL33	272705	801923	Indian River Lagoon in St. Lucic County just south of the Ft. Pierce Inlet on the west side of the ICWW at the entrance to Morris Creek in the middle of the marina by the power plant.	1988 - P	QTR	QTR	QTR	QTR	G

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	PAR	Chlorophyli	G/A
IRL34	272800	801940	Indian River Lagoon in St. Lucie County just north of the Ft. Pierce Inlet, on the east side of the ICWW between the two marinas at the entrance to Taylor Creek. Also known as the C- 25 canal.	1988 - P	QTR	QTR	QTR	QTR	G
IRL35	272915	801825	Indian River Lagoon in St. Lucie County just north of the Ft. Pierce Cut, in front of the second of three canals on the east side of the cut.	1988 - P	QTR	QTR	QTR	QTR	G
IRL36	272923	801951	Indian River Lagoon in St. Lucie County just north of the Ft. Pierce Inlet in the ICWW at channel marker #176.	1988 - P	QTR	QTR	QTR	QTR	G
IRL37	273203	802049	Indian River Lagoon in St. Lucie County north of the Ft. Pierce Inlet, half way down the canal leading to the Harbor Branch Oceanographic Institute, where the concrete seawalls start.	1988 - P	QTR	QIR	QTR	QTR	G
IRL38	273222	802026	Indian River Lagoon in St. Lucie County north of the Ft. Pierce Inlet between the two spoil piles on the east side of the ICWW just north of the Harbor Branch canal.	1988 - P	QTR	QTR	QTR	QTR	G
IRL39	273313	802055	Indian River Lagoon in St. Lucie County north of the Barbor Branch canal, west of channel marker #169 in line with the spoil piles.	1988 - P	QTR	QTR	QTR	QTR	G

.

SFWMD					Physical				~
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	PAR	Chlorophyll	G/A
IRL40	272455	801834	Indian River Lagoon in St. Lucie County just south of the Pt. Pierce Inlet, out from the Virginia Avenue Canal discharge culvents, collected in 2.0 meters of water. This is a transect station with IRL28.	1988 - P	QTR	QTR	QTR	QTR	G

TABLE 17. Statistics on Select Parameters for the Indian River Lagoon Water Quality Monitoring Program forPeriod of Record

SFWMD <u>Sta. ID</u>	Total Phosphorus			Ortho	Ortho Phosphorus			Total Nitrogen			<u>Nitrite+Nitrate(NOx)</u>			
	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>		
IRL01	0.0040	0,0184	0.0450	0.0040	0.0065	0.0160	0.5000	0.5537	0.9400	0.0040	0.0093	0.0310		
IRL02	0.0040	0.0230	0.0580	0.0040	0.0074	0.0180	0.5000	0.5435	0.8700	0.0040	0.0103	0.0510		
IRL03	0.0070	0.0262	0.0640	0.0040	0.0084	0.0280	0.5000	0.6268	2.3200	0.0040	0.0118	0.0630		
IRL04	0.0140	0.0297	0.0610	0.0040	0.0090	0.0300	0.5000	0.5570	0.9050	0.0040	0.0132	0.0610		
IRL05	0.0110	0.0315	0.0670	0.0040	0.0098	0.0350	0.0001	0.5170	0.7000	0.0040	0.0150	0.0620		
IRL06	0.0150	0.0404	0.0740	0.0040	0.0150	0.0510	0,5000	0.5817	0.9090	0.0040	0,0199	0.0680		
IRI.07	0.0250	0.0509	0.0910	0.0040	0.0224	0.0670	0.5000	0.6026	0.9500	0.0040	0.0224	0.0670		
IRL08	0.0220	0.0569	0.1150	0.0040	0.0272	0.0870	0.5000	0.6463	1.0300	0.0040	0.0242	0.0810		
IRL09	0.0280	0.0643	0.1240	0.0040	0.0310	0,0930	0.5000	0.6728	1.1100	0.0040	0.0288	0.0910		
IRL10	0.0260	0.0677	0.1430	0.0140	0.0377	0.1040	0.0001	0.6453	0.9100	0.0040	0.0290	0.1090		
IRL11	0.0310	0.0791	0.1650	0.0070	0.0415	0.1220	0,5000	0.6885	1.1300	0.0040	0.0304	0.1240		
IRL12	0.0270	0.0728	0.1570	0.0120	0.0418	0.1210	0.5000	0.6460	1.6100	0.0040	0,0289	0.1540		
IRL13	0.0490	0.0973	0.2000	0.0150	0.0553	0.1370	0.5200	0.7858	1.7300	0.0040	0.0462	0.1870		
IRL14	0.0440	0.1130	0.1700	0.0230	0.0616	0.1350	0,5300	0.9040	1.8900	0,0040	0.0628	0.4140		
IRL15	0.0490	0.1408	0.4480	0.0230	0.0979	0,2330	0.5000	0,9282	2.5000	0.0040	0.0734	0.2760		
IRL16	0,0210	0.0426	0.0730	0.0040	0.0217	0.0510	0,5000	0.5871	1.2400	0.0040	0.0114	0.0420		
IRL17	0.0330	0.0671	0.1700	0.0050	0.0352	0.1260	0.5040	0.6438	1.2900	0.0040	0.0200	0,1110		
IRL18	0.0120	0.0718	0.1850	0.0070	0.0300	0.0970	0.5000	0.9461	5.3100	0.0040	0.0209	0.0740		
IRL19	0.0450	0.0675	0.1300	0.0090	0.0340	0.1010	0.5000	0.6251	1.3400	0.0040	0.0189	0.0990		
IRL20	0.0450	0.0713	0.1330	0.0100	0.0374	0.0870	0.5040	0.7145	1.1500	0.0040	0.0244	0,1140		
IRL21	0,0430	0.0715	0.1270	0.0070	0.0346	0.0830	0.5000	0.6843	1.0900	0.0040	0.0143	0.0920		
IRL22	0,0400	0.0630	0.1150	0.0080	0.0300	0.0720	0.5000	0.6116	1.0600	0.0040	0.0164	0.0820		
IRL23	0.0260	0.0626	0.1990	0.0040	0.0346	0.1640	0.5000	0.7240	1.2000	0,0040	0.0111	0.0380		
IRL24	0.0440	0.0681	0.1020	0.0150	0.0283	0.0520	0.5000	0.7086	1.7200	0.0040	0.0170	-0.1310		
IRL25	0.0330	0.0638	0.1020	0.0110	0.0260	0.0450	0.5000	0.8382	3.8500	0.0040	0.0085	0.0470		
IRL26	0.0360	0.0669	0.1590	0.0050	0.0248	0.0560	0,5000	0.7378	1,7500	0,0040	0.0114	0.0560		
IRL27	0.0260	0.0600	0.1010	0.0100	0.0256	0.0560	0.5000	0.6860	1.3900	0.0040	0.0150	0.0720		
IRL28	0.0200	0.0641	0.1900	0.0040	0.0129	0.0480	0.5000	0,7498	1.6300	0.0040	0.0108	0.0610		
IRL29	0.0270	0.0488	0.1380	0.0040	0.0115	0.0370	0.5000	0.7270	1,2800	0.0040	0.0087	0.0370		
IRL30	0.0250	0.0381	0:0810	0.0040	0.0098	0.0270	0.5000	0.6680	1,2700	0.0040	0.0061	0.0150		
IRL31	0.0280	0.0380	0.0600	0.0040	0.0120	0.0330	0.5000	0.7377	2.4900	0.0040	0,0062	0.0270		

TABLE 17. Statistics on Select Parameters for the Indian River Lagoon Water Quality Monitoring Program for Period of Record

SFWMD															
<u>Sta. ID</u>	<u>Total Phosphorus</u>			<u>Ortho</u>	<u>Ortho Phosphorus</u>			<u>Total Nitrogen</u>			<u>Nitrite+Nitrate(NOx)</u>				
	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	MAX	MIN	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	MAX			
IRL32	0.0200	0.0422	0.0780	0.0040	0.0138	0.0450	0.5000	0.7885	2,1100	0,0040	0.0117	0.0390			
IRL33	0.0300	0.0499	0.0830	0.0040	0.0172	0.0380	0,5000	0.7206	1.7100	0.0040	0.0138	0.0650			
IRL34	0.0410	0.0953	0.1930	0,0160	0.0518	0.1390	0.5170	0.8166	1.8100	0.0040	0.0641	0.1950			
IRL35	-0.0300	0.0497	0,1000	0.0040	0.0158	0.0360	0.5000	0.6616	1.2900	0.0040	0.0073	0.0180			
IRL36	0.0250	0.0634	0.1480	0.0040	0.0244	0.0680	0.5040	0.7762	1,6400	0,0040	0.0137	0.0700			
IRL37	-0.0410	0.0759	0,1920	0.0040	0.0365	0,1060	0,5000	0.8523	2.8600	0.0040	0.0144	0.0620			
IRL38	0.0320	0.0770	0.2440	0.0040	0.0321	0.1340	0.5040	0.7958	1.5000	0,0040	0.0142	0.0920			
IRL39	0.0330	0.0783	0.1970	0.0040	0.0363	0.1240	0.5000	0.7837	1.6900	0.0040	0.0188	0.1100			
IRL40	0.0300	0.0506	0.1000	0.0040	0.0154	0.0400	0.0001	0.5724	1.0500	0,0040	0.0109	0.0530			

SECTION 8

ł,

ST. LUCIE ESTUARY PROJECT CODE: SE

Purpose and Scope

The St. Lucie Estuary is a major coastal resource of east central Florida. It supports a variety of commercial and recreational activities, and provides an important habitat for many aquatic organisms. This estuary is located at the east end of the Okeechobee Waterway which crosses south central Florida. It also acts as a navigational channel and outlet for discharges of excess fresh water from Lake Okeechobee and the St. Lucie canal basin.

The St. Lucie Estuary surface water monitoring program is part of a Surface Water Improvement and Management (SWIM) program that began in 1989. The areas of interest are the St. Lucie Inlet and both the north and south forks of the St. Lucie River.

The water quality monitoring program provides a water quality data base for:

- 1. Documenting problem areas within the St. Lucie Estuary system, and especially those that may be related to point source discharges;
- 2. Locating and reviewing any existing stations and data that might exist and comparing the data;
- 3. Locating and establishing monitoring stations in the estuary not currently being monitored;
- 4. Determining parameters that will best evaluate the water quality of the estuary; and
- 5. Documenting long term trends within the estuary, especially in areas where good biological or water quality data currently exists.

The SE project began in October 1989. The collection and analysis of the samples were contracted to a private firm during the first year of the study. In October 1990 the collection and analysis of the samples was taken over by the SFWMD.

The data can indicate changes in water quality and allow for better management of the estuary for environmental enhancement and prevention of any further degradation.

Sampling Locations and Descriptions

The locations of the 10 sites monitored under this program are shown on Figure 9. Table 18 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 19 contain statistics for each monitoring location.

District Publications

- Gove, C. (1989). Hydrodynamic and Salinity Analysis of a Proposed Navigation Channel in the St. Lucie Estuary. SFWMD, Special Report 6/89. (DRE 271)
- Haunert, D. and R. Startzman, (1980). Some Seasonal Fisheries Trends and Effects of a 1000 cfs Fresh Water Discharge on the Fisheries and Macroinvertebrates in the St. Lucie Estuary, Florida; January 1980. SFWMD, Tech. Pub. 80-03. (DRE 109)
- Haunert, D. and R. Startzman, (1985). Short Term Effects of a Freshwater Discharge on the Biota of St. Lucie Estuary, Florida. SFWMD, Tech. Pub. 85-01. (DRE 213)
- Haunert, D. (1988). Sediment Characteristics and Toxic Substances in St. Lucie Estuary, Florida. SFWMD, Tech. Pub. 88-10. (DRE 259)

Indian River Lagoon SWIM Plan, Planning Department, SFWMD.

- Morris, Fred. (1987). Modeling of Hydrodynamics and Salinity in the St. Lucie Estuary. SFWMD, Tech. Pub. 87-01. (DRE 232)
- Chamberlain, B., Hayward, (1995). Evaluation of Water Quality and Monitoring in the St. Lucie Estuary, Florida. SFWMD. February, 1995 Manuscript. (DOR 208)

FIGURE 9. Location of Sampling Stations for the St. Lucie Estuary Water Quality Monitoring Program.

TL

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	PAR	Chlorophyll	US/DS	G/A
SE 01	271048	801139	Out from Hell Gate Point near the mouth of the river, and collected from the middle of the river.	1990 - P	М	М	М	М	-	G
SE 02	271248	801254	At channel marker 21 out from Hoggs Cove north of the A1A bridge,	1990 - P	м	М	М	М	-	G
SE 03	271210	801533	Taken from the west side of the Roosevelt Bridge which is USI, and about 50 yards south of the channel.	1990 - P	М	м	М	M		G
SE 04	271205	801753	Taken below S48 in the C-23 canal, which is also called Bessy Creek.	1990 - P	М	М	М	М	DS	G
SE 05*	271271	801735	Taken in the middle of the river between Britt Creek on the east and Pendarvis Point on the west sides of the river. It is also near gauging station #4A.	90 - 96	М	М	м	М	·	G
SE 06	271617	801920	Taken from the south side of Kellstadt Bridge, which is up the north fork of the river. It is about 1 mile north of where the C-24 canal enters the river.	1990 - P	М	М	М	М		G
SE 07	271540	802128	Taken below S-49 on the C-24 canal.	1990 - P	М	М	м	М	DS	G
SE 08	271026	801536	Taken from the south side of the Palm City bridge about 50 yards east of the main channel. The Palm City bridge crosses the south fork of the St. Lucie river.	1990 - P	М	М	М	М		G

.'

TABLE 18. Summary of Sampling Station Locations and Frequency of Collection for the St. Lucie Estuary Monitoring Program

* Station discontinued in 1996.

78

TABLE 18 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the St. Lucie Estuary Monitoring Program

SFWMD					Physical					
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	PAR	Chlorophyll	US/DS	G/A
SE 09	270724	801546	Taken from that portion of the south fork that branches off of the main channel leading to the St. Lucie Lock and Dam (S80). The south fork branches off the main channel about 2 miles east of S80.	1990 - P	М	М	м	М	-	G
SE 10	270646	801704	Taken below the St. Lucie Lock and Dam (S80).	1990 - P	М	М	М	М	DS :	G
HR1	271340	801719	Telemetry station in the north fork of the St. Lucie River at gauging station 4A.	1994 - P	М	М	М	м	-	G

TABLE 19.Statistics on Select Parameters for the St. Lucie Estuary Water Quality Monitoring Program for
Period of Record

SFW	MD
-----	----

<u>Sta. ID</u>	Total Phosphorus			<u>Ortho Phosphorus</u>			<u>Total Nitrogen</u>			Nitrite+Nitrate(NOx)			
	<u>MiN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u> .	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	
HR1	0.0680	0.2055	0.4340	0.0260	0.1741	0.3990	0.5950	1.1894	2.0100	0.0040	0.0974	0.6760	
SE 01	0.0080	0.1202	0.3960	0.0040	0.0884	0.3270	0.0001	0.8527	2.3400	0.0040	0.0670	0.3080	
SE 02	0.0340	0.1463	0.4320	0.0110	0.1119	0.3680	0.5000	0.9749	2.6600	0.0040	0.0826	0.4030	
SE 03	0.0600	0.1789	0.5430	0.0230	0.1396	0.4510	0.0001	1.0443	3.3700	0.0040	0.0958	0.6950	
SE 04	0.0690	0.2488	0.7860	0.0430	0.1974	0.6120	0.0001	1.2202	2.8400	0.0040	0.0920	1.3340	
SE 05	0.0650	0,1969	0.6170	0.0280	0.1571	0.5150	0.0001	1.1171	4.6800	0.0040	0.1044	3.5240	
SE 06	0.1050	0.2255	0.4830	0.0560	0.1748	0.4470	0.5100	1.1492	2.6000	0.0040	0.1269	1.1270	
SE 07	0.0600	0.2258	0.7790	0,0280	0.1651	0.6460	0.0001	1.1836	2.3900	0.0040	0.0748	1.5890	
SE 08	0.0770	0.1793	0.4820	0.0360	0.1231	0.3050	0.0001	1.1850	2.0400	0.0040	0.1229	0.4680	
SE 09	0.0720	0.1641	0.4400	0.0210	0.1155	0.3500	0.0001	1.1417	2.2700	0.0040	0.1084	0.4410	
SE 10	0.0880	0.1838	0.4680	0.0320	0.1278	0.3700	0.7460	1,3046	2,3000	0,0040	0,1969	0,8140	

:

i.

SECTION 9

UPPER AND LOWER EAST COAST PROJECT CODE: WQM

Purpose and Scope

The Upper and Lower East Coast water quality monitoring program was initiated in 1979 and includes the coastal portions of St. Lucie, Martin, and Palm Beach Counties. The water quality monitoring program provides a water quality and nutrient loading data base for:

- 1. Determining loadings to the Indian River Lagoon, St.Lucie Estuary, Loxahatchee River, and Lake Worth Lagoon;
- 2. Determining long and short term trends;
- 3. Identifying seasonal and discharge related water quality trends;
- 4. Calculating material loads, basin-wide areal export rates, and flow-weighted concentrations; and
- 5. Implementing LOTAC's recommendation for a comprehensive monitoring and research plan as described in the Department of Environmental Protection "Lake Okeechobee Monitoring and Research Plan."

Sampling Locations and Descriptions

The locations of the 10 sites monitored under this program are shown on Figure 10. Table 20 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 21 contain statistics for each monitoring location.

. . .

District Publications

- Dickson, K. (1980). The SFWMD Water Quality Monitoring Network 1980 Annual Report. SFWMD, October 1980. (DRE 118)
- Federico, A. (1983). Upper East Coast Water Quality Studies. SFWMD, Tech. Pub. No. 83-1. (DRE 169)

Lake Okeechobee Monitoring and Research Plan, (1986), FDEP

Lutz, J. (1977). Water Quality Characteristics of Several Southeast Florida Canals. SFWMD, Tech. Pub. No. 77-4. (DRE 76)

FIGURE 10. Location of Sampling Stations for the Upper and Lower East Coast Water Quality Monitoring Program.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	US/DS	G/A
C15S40	262527	800428	S-40 is a spillway coastal structure on the C-15 canal. Water flows eastward through this structure.	1979 - P	М	М	QTR	BA	US	G
C155R809*	262533	800720	From the bridge on State Road 809 at C-15. The water can flow east or west, depending on stage levels.	79 - 96	MF	MF	QTR	BA	-	G
C16S41	263236	800330	S-41 is a spillway coastal structure on the C-16 canal. Water flows eastward through this structure.	1979 • P	М	М	QTR	BA	US	G
C16SR809*	263226	800727	From the bridge on State Road 809 at C-16. The water can flow east or west, depending on stage levels.	79 - 96	MF	MF	QTR	BA	-	G
C518155	263846	800925	S-155 is a spillway coastal structure on C-51 (West Palm Beach Canal). Water flows eastward through this structure.	1979 - P	М	М	QTR	BA	US	G
C17S44	264909	800459	S-44 is a spillway coastal structure on the C-17 canal. The water flows eastward through this structure.	1979 - P	м	М	QTR	BA	US	G

.

TABLE 20. Summary of Sampling Station Locations and Frequency of Collection for the Upper and Lower East Coast Monitoring Program

SFWMD Stal ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Tons	Trace Metals	US/DS	G/A
C17SR702*	264535	800515	A small weir structure located on C-17. The water flows northward toward S-44 into C-17 over this structure, and the water samples are collected from the 45th Street bridge upstream of weir.	79 - 96	MF	MF	QTR	ВА	US .	G
C18G92	265434	801033	G-92 is a small culvert type structure located on the C- i8 canal. Water flows toward the north through this structure out of C-18.	1982 - P	MF	MF	QIR	BA	US	G
C18546	265610	800833	S-46 is a spillway coastal structure on the C-18 canal about one mile east of the Florida Tumpike. The water flows northeast into the southwest fork of the Loxahatchee River.	1979 - P	М	М	QTR	ВА	US	G
CI8SR710*	265220	801451	A small weir structure located on C-18 at State Road 710. Water flows eastward over this structure.	79 - 96	MF	MF	QTR	BA	US	G
C44S80	270639	801706	S-80 is a large spillway and boat lock coastal structure located on the St. Lucie Canal and operated by the United States Army Corps of Engineers. The water flows northeast through this structure into the St. Lucie River.	1979 - P	М	М	QTR	BA	US	G
C23S48	271209	801805	S-48 is a large weir coastal structure located downstream of S-97 on C-23. The water flows east- ward over this structure and into the St. Lucie River.	1979 - P	М	M/W	QTR	BA	US	G/A

. .

.

: ·

.

TABLE 20 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Upper and Lower East Coast Monitoring Program

SFWMD Star ID	l at	Long	Location	POR	Physical Parameters	Numante	Majot Ions	Trace Metals	lisme	GU
	L2++	LVIE	110040101	TOR	1 0100000000	ta néticulta	10110	11144413	00,00	on
C23S97*	271218	802027	S-97 is a spillway on the C-23 canal about 1/2 mile west of the tumpike. Water flows east through this structure.	79 - 96	MF	MF	QTR	BA	US	G
C24S49	271549	802131	S-49 is a spillway coastal structure located on the C-24 canal in Port St. Lucie. This structure is about 1/2 mile west of the tumpike. The water flows toward the east through this structure and into the St. Lucie River.	1979 - P	М	M/W	QTR	BA	US	G/A
C25850	272818	802012	S-50 is a large coastal weir structure located on the C- 25 canal near Ft. Pierce, This structure is downstream of S-99 and is a coastal structure. Water flows eastward over this structure.	1979 • P	М	<u>М</u> /W	QTR	BA	US	G/A
C25S99*	272820	802848	S-99 is a spillway on the C-25 canal near Ft. Pierce. The water flow at this point is toward the east.	79 - 96	MF	MF	QTR	BA	US	G

TABLE 20 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Upper and Lower East
Coast Monitoring Program

* Stations discontinued in 1996.

80

TABLE 21. Statistics on Select Parameters for the Upper and Lower East Coast Water Quality Monitoring Program for
Period of Record

SFWMD <u>Sta. ID</u>	<u>Total Phosphorus</u>			Ortho Phosphorus			Tota	al Nitroge	<u>en</u>	<u>Nitrite+Nitrate(NOx)</u>				
	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>		
C15S40	0.0340	0.2073	0.7710	0.0040	0.1535	0.6130	0.0001	1.3780	5.4400	0.0040	0,2430	2,7390		
C15SR809	0.0310	0.2802	1.3240	0.0020	0.1979	1.1900	0.0001	1.7972	6.2700	0.0040	0.3166	3.5920		
C16S41	0.0300	0.1835	0.8100	0.0020	0.1251	0.5640	0.0001	1.3918	4.7400	0.0040	0.2028	2.0550		
C16SR809	0.0690	0.3431	1.1450	0.0170	0.2571	0.9980	0.5500	1.6830	3.3700	0.0040	0.2402	1.4340		
C17S44	0.0210	0.0726	0.2840	0.0020	0.0203	0.2130	0.0001	1.3775	6.6200	0,0040	0.1887	1,9800		
C17SR702	0.0150	0.0821	0.5050	0.0020	0.0169	0.2280	0.4100	1.5270	4.8700	0.0040	0,1624	1.0550		
C18G92	0.0100	0.0290	0.1450	0.0040	0.0083	0.0790	0.0001	0.9884	2.1500	0.0040	0.0469	0.7860		
C18S46	0.0080	0.0403	0.2460	0.0020	0.0162	0.1380	0.0001	1.0537	2.9800	0.0040	0.0449	1.0530		
C18SR710	0.0060	0.0338	0.2890	0.0020	0.0091	0.0830	0.0001	1,1873	4.2200	0.0040	0.0456	1.3650		
C23S48	0.0330	0.2029	0.5820	0.0060	0.1462	0.5240	0.0001	1.3446	4.0400	0.0040	0.1449	1,2880		
C23S97	0.0250	0.2292	0.6660	0.0040	0.1644	0.5120	0.5500	1.5632	4.9900	0.0040	0.1747	1.0830		
C24S49	0.0470	0.2583	0.7740	0.0040	0.1887	0.6470	0,0003	1.5793	10.5000	0.0040	0.1325	1.6360		
C25S50	0.0040	0.1058	1.0460	0.0020	0.0688	0,3130	0.0001	1.2121	2.6600	0.0040	0.1291	1,0710		
C25S99	0.0090	0.1438	0.8900	0.0020	0.0959	0.7100	0.5100	1.5303	11.5000	0.0040	0.1373	1.2930		
C44S80	0.0490	0.1306	0.3770	0.0050	0.0810	0.3420	0.0001	1,4826	6.1600	0,0040	0.2087	0.8220		
C51S155	0.0290	0.1108	0.3840	0.0040	0.0589	0.1990	0.0001	1.5213	3.6900	0.0040	0.2447	1.7680		

÷

.

...

. . .

88

.

-

SECTION 10

WORKS OF THE DISTRICT PERMIT COMPLIANCE PROJECT CODE: WOD

Purpose and Scope

The Works of the District Permit Compliance water quality monitoring program encompasses the Lake Okeechobee Drainage Basin. The water quality monitoring program was established by the Works of the District (WOD) Rule, Chapter 40E-61, F.A.C., for the purpose of:

- 1. Documenting permittee compliance with off site discharge total phosphorus concentration limitations established by the Lake Okeechobee SWIM Plan.
- 2. Each permitted parcel is evaluated for compliance with Rule 40E-61 Phosphorus concentration limitations.

Sampling Location and Descriptions

There are approximately 175 water quality monitoring stations which are sampled under the WOD Compliance program, however, this number will change continuously as the number of active permits change. The stations are located in Okeechobee, Highlands, Martin, and Glades counties.

Sample site locations are determined by the District's Regulation Department upon permit issuance.

A private laboratory is contracted to perform all analytical work.

Parameters and Sampling Frequencies

Water samples are collected biweekly at all active monitoring locations. Total phosphorus is the only parameter analyzed. Monitoring is performed for a minimum of 12 months. If the site is within compliance of the permit conditions after 12 months, the monitoring is discontinued. If the site exceeds permit conditions, monitoring is continued indefinitely.

District Publications

Albers, J., N. Aumen, J. Zhang, (1995). Potential for Phosphorus Load Reduction in Diary Runoff in the Lake Okechobee Watershed, Florida. September 1995 Manuscript. (DOR 229)

SECTION 11

LAKE OKEECHOBEE MONITORING PROGRAMS PROJECT CODE: X = INFLOWS/OUTFLOWS PROJECT CODES: Y, YS, YGS, YN, YSRG, YNRG, and OLIT = LIMNETIC AND LITTORAL ZONES

Purpose and Scope

The Lake Okeechobee Inflows and Outflows water quality monitoring program encompasses the entire perimeter of Lake Okeechobee. The Lake Okeechobee Limnetic and Littoral Zones water quality monitoring program lies wholly within the confines of the Lake Okeechobee levee. The water quality monitoring programs were established to provide a water quality and nutrient loading data base for:

- 1. Complying with monitoring requirements of the Lake Okeechobee Operating Permit #50-0679349 issued by the Florida Department of Environmental Protection (FDEP);
- 2. Determining effectiveness of the implementation of basin management plans in reducing nutrient loadings into the lake as specified in the Surface Water Improvement and Management Act of 1987;
- 3. Implementing the Lake Okeechobee Technical Advisory Committee's recommendation for a comprehensive monitoring and research plan as described in FDEP's "Lake Okeechobee Monitoring and Research Plan";
- 4. Determining long and short term trends necessary to identify potential problem areas in terms of water quality degradation, nutrient loadings, and tracking eutrophication of the lake; and
- 5. Applying eutrophication models in order to verify and refine the nutrient load targets for the lake and rank its trophic status.

Water quality data from Lake Okeechobee are also used to support Lake Okeechobee management reports as required by the Surface Water Improvement Management (SWIM) Act. Evaluation of the data is then used for:

- 1. Assessing the impact of operating permit management implementations;
- 2. Verifying water quality models;

- 3. Examining differences in water quality between the limnetic and littoral zones;
- 4. Monitoring possible algal blooms in the limnetic and littoral zones; and
- 5. Providing water quality data in support of nutrient dynamics studies.
- 6. Monitor for changes in water quality following basin management strategies

Water quality data are also used to establish nutrient budgets for Lake Okeechobee. Nutrient loadings are calculated from nutrient concentrations and flow data from the various inflow/outflow stations.

Historical data collected between 1973 and 1979 provide baseline water quality data prior to implementation of water quality management plans. Comparison with recent sampling data can indicate changes in water quality and allow for better management of the system for environmental enhancement or prevention of degradation. Values that deviate significantly from established criteria may signal a situation requiring immediate attention.

Sampling Locations and Descriptions

The location of the 35 sites monitored under project "X", 17 for project "YSRG" and "YNRG", 11 for project "OLIT", 14 for project "YN", and the 15 for project "YS" are shown in Figures 11 and 12. Tables 22 and 23 list all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 24 contain statistics for each monitoring location.

District Publications

- Davis, F. and M. Marshall, (1975). Chemical and Biological Investigations of Lake Okeechobee. January 1973 - June 1974 Interim Report. SFWMD, Tech. Pub. No.75-1. (DRE 54)
- Dickson, K. G., A. Federico, J. Lutz. (1978). Water Quality in the Everglades Agricultural Area and its Impact on Lake Okeechobee. SFWMD, Tech. Pub. No. 78-3. (DRE 85)
- Dickson, K. (1980). SFWMD Water Quality Monitoring Network 1980 Annual Report. SFWMD, October 1980. (DRE 118)
- Federico, A., K. Dickson, C. Kratzer, F. Davis, (1981). Lake Okeechobee Water Quality Studies and Eutrophication Assessment. SFWMD, Tech. Pub. No. 81-2. (DRE 128)
- Jones, B. L. (1982). Lake Okeechobee Water Quality, April 1980 to March 1981. SFWMD, Tech. Memo. March 1982. (DRE 139)
- Jones, B. L. (1983). Lake Okeechobee Water Quality. April 1981 to March 1982. SFWMD, Tech. Memo. January 1983. (DRE 160)
- Jones, B. and A. Federico, (1984). Phytoplankton, Chlorophyll <u>a</u>, and Primary Production in Lake Okeechobee. SFWMD, Tech. Pub. No. 84-4. (DRE 192)
- Lake Okeechobee SWIM Plan, (1989), Planning Department, SFWMD.
- Lake Okeechobee Monitoring and Research Plan, (1986), FDEP.
- Maceina, M. (1989). Lake Watch Report 1987: The Status of Algal Blooms on Lake Okeechobee in 1987. SFWMD, Tech. Memo. September 1989. (DRE 273)
- Maceina, M. (1989). Lake Watch Report 1988: The Status of Algal Blooms on Lake Okeechobee in 1988. SFWMD, Tech. Memo. December 1989. (DRE 282)
- Marshall, M. (1977). Phytoplankton and Primary Productivity Studies in Lake Okeechobee During 1974. SFWMD, Tech. Pub. No. 77-2. (DRE 74)
- Pfeuffer, R. J. (1985). Pesticide Residue Monitoring in Sediment and Surface Water Bodies within the South Florida Water Management District. SFWMD, Tech. Pub. No. 85-2. (DRE 214)

- Pfeuffer, R. J. (1989). Lake Okeechobee Pesticide Monitoring Report, 1987. SFWMD, March 1989 Tech. Memo. (DRE 269)
- Resource Planning Department, (1981). Water Quality Management Strategy for Lake Okeechobee. Executive Summary. SFWMD, Executive Summary. December 1981. (DRE 136)
- SFWMD, (1982). Executive Summary Addendum: Water Quality Management Strategy for Lake Okeechobee. SFWMD, March 1983. (DRE 146)
- Soballe, D. and B. Jones, (1990). Lake Okeechobee Water Quality Monitoring Program Annual Report Year Five. SFWMD, Tech. Memo. June 1990. (DRE 285)
- Water Quality. (1988). Lake Okeechobee Water Quality Monitoring Program Annual Report Year 3. SFWMD February 1988, Tech. Memo. (DRE 241)
- Water Quality. (1988). Lake Okeechobee Water Quality Monitoring Program Annual Report Year 4. SFWMD, August 1988, Tech. Memo. (DRE 247)
- Water Quality. (1990). Lake Okeechobee Water Quality Monitoring Program Annual Report Year 5. SFWMD, June 1990, Tech. Memo. (DRE 285)
- Worth, D. (1989). AVHRR Satellite Monitoring of Algal Blooms and Turbidity on Lake Okeechobee, Florida. SFWMD, Tech. Pub. No. 89-2. (DRE 276)
- Hanlon, C., Philips, Aldridge, (1993). Review of a Seventeen Year Chlorophyll Record a s it pertains to the Trophic Status of Lake Okeechobee, Florida, USA. SFWMD. January, 1993 Manuscript. (DOR 116)
- James, T., Bierman, (1993). A Preliminary Modeling Analysis of Phosphorus and Phytoplankton Dynamics in Lake Okeechobee, Florida: Calibration Results. October 1993 Manuscript. (DOR 134)
- James, T., Bierman, (1993). A Preliminary Modeling Analysis of Phosphorus and Phytoplankton Dynamics in Lake Okeechobee, Florida: Diagnostic and Sensitive Analyses.. October 1993 Manuscript. (DOR 135)
- Havens, C. (1993). Phosphorus Reduction Goals and Limiting Nutrient Status in Lake okeechobee, Florida USA. SFWMD. November 1993 Manuscript. (DOR 141)
- Havens, C. (1993). Relationships of Annual Chlorophyll <u>a</u> means, Maxima and Algal Bloom Frequencies in a Shallow Eutrophic Lake (Lake Okeechobee, Florida, USA). SFWMD. November 1993 Manuscript. (DOR 142)
- Flaig, E., C. Havens, (1994). Historical Trends in the Lake Okeechobee Ecosystem Partl. Land Use and Nutrient Loading, SFWMD. May 1994 Manuscript. (DOR 150)
- James, T., B. Jones, Smith. (1994). Historical Trends in the Lake Okeechobee Ecosystem Part 2. Nutient Budgets. SFWMD. May 1994 Manuscript. (DOR 151)
- James, T., B. Jones, Smith. (1994). Historical Trends in the Lake Okeechobee Ecosystem Part 3. Water Quality. SFWMD. May 1994 Manuscript. (DOR 152)
- Jones, B., C. Havens, Smith, Bierman. (1994). Historical Trends in the Lake Okeechobee Ecosystem Part 4. Nitrogen:Phosphorus Ratios, Cyanobacterial Dominace, and Nitrogen Fixation Potential. SFWMD. May 1994 Manuscript. (DOR 153)
- Havens, C., C. Hanlon, T. James. (1994). Historical Trends in the Lake Okeechobee Ecosystem Part 5. Algal Blooms. SFWMD. May 1994 Manuscript. (DOR 154)
- Philips, Aldridge, Hansen. (1994). Patterns of water chemistry, physical and biological parameters in a shallow subtropical lake (Lake okeechobee, Florida, USA). SFWMD. March 1994 Manuscript. (DOR 160)
- Havens, C., B. Walker, (1994). Relating Algal Bloom Frequencies to phosphorus Concentrations in Lake Okeechobee. SFWMD. August 1994 Manuscript. (DOR 185)
- Havens, C., (1996). Water Levels and Total phosphorus in Lake Okeechobee. SFWMD. February 1996. (DOR 236)

FIGURE 11. Location of Sampling Stations for the Lake Okeechobee Inflow / Outflow Water Quality Monitoring Program.

FIGURE 12. Location of Sampling Stations for the Lake Okeechobee Limnetic and Littoral Zone Water Quality Monitoring Program.

TABLE 22. Summary of Sampling Station Locations and Frequency of Collection for the Lake Okeechobee Inflow/Outflow Monitoring Program

SFWMD					D4		Matur	T		
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	lons]	Metals	US/DS	G/A
S2	264200	804259	A South Florida Water Management District (SFWMD or District) controlled water pumping station located on the south side of Lake Okeechobee near Belle Glade. It is at the confluence of the Hillsboro and North New River Canals, and pumps into Lake Okeechobee. When water is let out of the lake it discharges through S351 which is next to S2. When this occurrs the sample is collected from the canal side of S351,however, the station code is written as S2 with a discharge code of 3.	1973 - P	BWF/M	W/BWF/M	QTR	QTR	US/DS	G/A ,
S3	264155	804827	A District controlled water pumping station located on the south side of Lake Okeechobee at Lake Harbor. Water is pumped from the Miami Canal into Lake Okeechobee. When water is let out of the lake it discharges through S354 which is next to S3. When this occurrs the sample is collected from the canal side of S354, however, the station code is written as S3 with a discharge code of 3.	1973 - P	BWF/M	W/BWF/M	QTR	QIR	US/DS	G/A
S4	264722	805743	A District controlled water pumping station on C-20 near Clewiston that pumps water into Lake Okeechobee.	1976 - P	BWF/M	W/BWF/M	QTR	QTR	US	G
INDUSCAN	264514	805508	Water samples from this station are collected from the bridge over the Industrial Canat in Clewiston on County Road 832.	1982 - P	BWF/M	BWF/M	QTR	QTR	-	G
877	265023	810518	A large spillway type structure and locks operated by the COE. It is located at the head of the Caloosahatchee River where water from Lake Okeechobee is discharged down the river.	1973 - P	BWF/M	BWF/M	QTR	QIR	US	G
FECSR78	265744	810715	Water samples from this station are collected from the bridge on State Road 78 where it crosses Fisheating Creek. Water can flow towards Lake Okeechobee or water can flow west in this canal at this point depending on water stages.	1973 - P	BWF/M	BWF/M	QTR	QTR		G

86

:

TABLE 22 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Lake Okeechobee Inflow/Outflow Monitoring Program

SFWMI Sta. ID	D Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	US/DS	G/A
\$71	270201	811811	A spillway type structure and pump station located near the west side of Lake Okeechobee on Harney Pond Canal (C-41) about 1.5 miles northwest of State Road 78.	1973 - P	BW	BW	QTR	QTR	US	G
S72	270532	810023	A gate type structure located near the northwest side of Lake Okeechobee, in C-40 about two miles northwest of State Road 78.	1973 - P	BWF/M	BWF/M	QTR	QTR	US	G
\$65E	271335	805742	A large gate and boat lock structure on the Kissimmee River, 8 1/2 miles northwest of Lake Okeechobee. This is the southernmost structure on the Kissimmee River, and it discharges water into Lake Okeechobee.	1973 - P	QTR	QTR	QTR	QTR	US	G
S84	271250	805830	A gate type structure where C-41A intersects the Kissimmee River. Water flows into the Kissimmee River through this structure.	1973 - P	BW	BW	QTR	QTR	US	G
S191	271135	804535	A large gate type structure on the north side of Lake Okeechobee at Nubbin Slough, Water flows into the lake through this structure. Water samples are collected from the north side of this structure.	1973 - P	B₩	BW	QTR	QTR	US	G
S308C	265904	803717	A COE gated structure and boat lock on the St. Lucie Canal (C-44) at Lake Okeechobee. Water can flow in or out of the lake through this structure. Water samples are collected from the lake side of this structure.	73-74/81-P	BWF/M	BWF/M	QTR	QTR	US	G

66

TABLE 22 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Lake Okeechobee Inflow/Outflow Monitoring Program

SFWM Sta. ID	1D) Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	US/DS	G/A
S352	265145	803755	S352(formerly HGS5) is a spillway gate structure operated by the United States Army Corps of Engineers (COE). S352 is on the east side of Lake Okeechobee near Canal Point. Water is released out of Lake Okeechobee through this structure, however, water can flow into the lake when lake levels are low. In 1989 the HGS5 structure was replaced and renamed S352.	1973 - P	BWF/M	BWF/M	QTR	QTR	DS	G/A
CULV	'4A 264056	804502	A small private pumping station on US-27, 2 1/2 miles west of Belte Glade that pumps water from the South Shore Drainage District into Lake Okeechobee via Culvert 4A. Water samples are collected from the upstream side of the pump. Water can gravity flow out of the Lake through this pump.	1979 - P	В₩Р/М	BWF/M	QIR	QTR	US	G
CULV	10 264753	804146	There are four private pump stations associated with	1979 - P	BWF/M	BWF/M	QIR	QTR	US	G
CULV	10A 265501	803650	CULV10, CULV10A, CULV12, and CULV12A. These sites	1987 - P	BWF/M	BWF/M	QTR	QTR	US	G
CULV	12 264455	804105	are located on the southeast side of Lake Okeechobee. The	1979 - P	BWF/M	BWF/M	QTR	QTR	US	6
CULV	'12A 264634	804137	pumps belong to East Beach Water Control District, Closter Farms, East Shore Drainage District, and East Shore Water Control District. Water is pumped into Lake Okeechobee through these four structures. Water can also gravity flow out of the Lake through these pumps. Water samples are collected from the upstream side of each pump station.	1979 - P	BWT/M	BWF/M	QTR	QTR	US	G
S127	270719	805346	A District controlled water pumping station and boat lock located on the Rim Canal on the northwest side of Lake Okeechobee. This station is located between C-40 and the Kissimmee River (C-38). Water is pumped through this structure into Lake Okeechobee. Water can also be allowed to gravity flow back through these pumps to let water out of the lake.	1973 - P	BWF/M	BWF/M	QTR	QIR	US	G

TABLE 22 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Lake OkeechobeeInflow/Outflow Monitoring Program

SFWMD	_	-		DOD	Physical	b	Major	Trace	ጠር ጥር	cu.
Sta. ID	Lat	Long	Location	PUK	Farameters	Intrients	Ions	(victa) s	03/03	0/A
S129	270147	810006	A District controlled water pumping station located on the Rim Canal on the northwest side of Lake Okeechobee. This structure is between C-41 and Indian Prairie Canal (C- 40). Water is pumped through this structure. Water can also be allowed to gravity flow back through these pumps to let water out of the lake.	1973 - P	BWF/M	BWF/M	QTR	QTR	US	G
S131	265843	810526	A District controlled water pumping station and boat lock located on the west side of Lake Okeechobee, north of Fisheating Creek. Water is pumped into the lake through this structure. Water can also gravity flow back through these pumps to let water out of the lake.	1973 - P	BWF/M	BWF/M	QTR	QIR.	US	G
S133	271228	804802	A District controlled water pumping station on the north side of Lake Okeechobee near Taylor Creek. Water is pumped into Lake Okeechobee through this structure. Water can also be allowed to gravity flow back through these pumps to let water out of the lake.	1973 - P	BWF/M	BWF/M	QTR	QTR	US	G
SI 35	270510	803941	A District controlled water pumping station and lock located on the northeast side of Lake Okeechobee. Water is pumped through the structure into Lake Okeechobee. Water can also be allowed to gravity flow back through these pumps to let water out of the lake.	1973 - P	BWF/M	BWF/M	QTR	QTR	ŲS	G
S154 ·	271241	805506	A small gate type structure located on the east side of the Kissimmee River about half way between Lake Okeechobee and S-65E. This structure allows water to flow from the L-62 canal into C-38.	1978 - P	BW	BW	QTR	QTR	US	G
\$169	264545	815730	A spillway gate structure near the boat ramp and the S-310 boat locks in Clewiston. This structure lets water flow east or west depending on water stage.	1985 - P	BWF/M	BWF/M	QTR	QIR	US	G
S236	264340	805111	A small pumping station on US-27 between S-3 and Clewiston that pumps water from the South Florida Conservancy District into Lake Okeechobee.	1979 - P	BWF/M	BWF/M	QTR	QTR	US	G

.

TABLE 22 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Lake Okeechobee Inflow/Outflow Monitoring Program

SFWMD					Discourse		Maina	Trans		
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	lons	Metals	US/DS	G/A
CULV5	265533	810722	A culvert and flap gate located on the west side of Lake Okeechobee near State Road 78, south of Fisheating Creek. The water samples are collected from the bridge on State Road 78.	1987,1989-P	BWF/M	BWF/M	QTR	QTR		G
161W	265806	8108 1	A culvert located at the west end of the L-61 canal where it meets the L-50 canal.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
L&1E	270158	8105 18	A culven located at the east end of the L-61 canal immediately down stream of S-71 on Hamey Pond canal.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
L60W	270157	810310	A culvert located at the west end of the L-60 canal immediately down stream of S-71 on the Harney Pond canal.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
L60E	270504	810128	A culven located at the east end of the L-60 canal immediately down stream of S-72 on the Indian Prairie canal.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
L59W	270625	805958	A culvert located at the west end of the L-59 canal immediately down stream of S-72 on the Indian Prairie canal.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
L59E	271130	805412	A gated structure located at the east end of the 159 canal at C-38.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
C38W	271159	805436	A gated structure located on the west side of C-38, three miles south of S-65E.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G
S154C	271237	805507	A gated structure located on the east side of C-38 next to S- 154.	1987,1989-P	BWF/M	BWF/M	QTR	QTR	US	G

TABLE 23.	Summary of Sampling Locations and Frequency of Collection for the Lake Okeechobee Limnetic and Littoral Zo	me
	Monitoring Program	

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chlorophylls	G/A
L001	270790	804730	North end of Lake Okeechobee 4 1/2 miles south of Taylor Creek Locks (S-193).	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
L002	270450	804725	Army Corps of Engineers(COE) tower on the north end of Lake Okeechobee about 7 1/2 miles south of Taylor Creek Locks (S-193).	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
L003	270250	804255	East side of Lake Okeechobee, west of Florida Power and Light Indian Town power plant smoke stacks.	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
E004	265870	804255	East side of Lake Okeechobee four miles due south of L003, west of the Port Mayaca bridge.	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
L005	265695	805783	COE tower on the west side of Lake Okeechobee, east of Fisheating Creek.	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
L006	264908	804684	COE tower at the south end of Lake Okeechobee.	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
L007	264620	804708	South end of Lake Okeechobee 3 1/4 miles south of L006.	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
L008	265695	805350	1.008 is about 4 1/2 miles due east of 1.005.	1972 - P	BW/M	BW/M	QTR	QTR	BW/M	G
1.72	271140	804954	City of Okeechobee potable water supply intake in Lake Okeechobee on the north side of the lake.	1978 - P	BW/M	BW/M	QTR	QTR	BW/M	G
KISSR0.0	270803	805037	KISSR0.0 is at the mouth of the Kissimmee River near the north side of Lake Okeechobee.	1986 - P	BW/M	BW/M	QTR	QTR	BW/M	G
KBARIN	270748	805052	At the north end of Kings Bar in the marsh near the north side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G

.

,

TABLE 23 (Continued). Summary of Sampling Locations and Frequency of Collection for the Lake Okeechobee Limnetic and Littoral Zone Monitoring Program

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Tons	Trace Metals	Chlorophylls	G/A
KBARMID	270802	805103	100 yards north of station KBARIN in the marsh near the north side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
KBAROUT	27082 1	805059	100 yards north of station KBARMID in the lake near the north side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
3RDPTIN	270414	805222	West of Kings Bar at Third Point in the marsh at the northwest side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
3RDPTMID	270394	805209	100 yards southeast of station 3RDPTIN in the marsh at the northwest side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
3RDPTOUT	270386	805193	100 yards southeast of station 3RDPTMID in the lake at the northwest side of Lake Okeechobee.	19 86 - P	TW	TW	QTR	QTR	TW	G
STAKEIN	270108	805652	1/2 mile southwest of Indian Prairie Canal (C-40) in the marsh on the northwest side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
STAKEMID	270100	805635	100 yards southeast of station STAKEIN in the marsh on the northwest side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
STAKEOUT	270097	805612	100 yards southeass of station STAKEMID in the lake on the northwest side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
TREEIN	265430	805863	On the east side of Observation Shoal out from a lone Cypress tree in the marsh near the west side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G

TABLE 23 (Continued). Summary of Sampling Locations and Frequency of Collection for the Lake Okeechobee Limnetic and Littoral Zone Monitoring Program

2.10

.

SFWMD Sta, ID	Lai	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chlorophylls	G/A
TREEMI	D 265434	805873	100 yards northeast of station TREEIN in the marsh near the west side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
TREEOU	T 265440	805836	100 yards northeast of station TREEMID in the lake near the west side of Lake Okeechobee.	1986 - P	TW	TW	QTR	QTR	TW	G
TREENO	UT 265544	805861	One mile northwest of TREEOUT near Observation Shoal, 100 yards off shore.	1988 - P	TW	TW	QTR	QTR	TW	G
PALMIN	264955	805686	South end of Observation Island in the marsh on the west side of the Lake, one mile north of Uncle Joe's Pass.	1986 - P	QTR	QTR	QTR	QTR	QTR	G
PALMMI	D 264955	805673	100 yards east of station PALMIN in the marsh near the west side of Lake Okeechobee.	1986 - P	QTR	QTR	QTR	QTR	QTR	G
PALMOU)T 264960	805659	100 yards east of station PALMMID in the lake near the west side of Lake Okeechobee.	1986 - P	QTR	QTR	QTR	QTR	QTR	G

. '

TABLE 23 (Continued). Summary of Sampling Locations and Frequency of Collection for the Lake Okeechobee Limnetic and Littoral Zone Monitoring Program

SFWMD					T1		Malaa	Тгасе		
Sta, ID	Lat	Long	Location	POR	Physical Parameters	Nurrients	.vtajor Ions	Metais	Chlorophylts	G/A
PLNIOUT	265062	805674	One mile northwest of PALMOUT, 100 yards off shore	1988 - P	QTR	QTR	QTR	QTR	QTR	G
PLN2IN	265170	805708	I mile north west of PLN1IN in the marsh near the western side of Lake Okeechobee near Observation Island.	1988 - P	TW	TW	QTR	QTR	TW	G
PLN2MID	265167	805696	100 yards east of PLN2IN in the marsh near the western side of Lake Okeechobee.	1988 - P	TW	TW	QTR	QTR	TW	G
PLN2OUT	265177	805682	100 yards east of PLN2MID in the lake near the western side of Lake Okeechobee.	1988 - P	TW	TW	QTR	QTR	TW	G
PLN3OUT	265276	805719	One mile south of PLN4OUT	1988 - P	QTR	QTR	QTR	QTR	QTR	G
PLN4OUT	26537B	805778	1.5 miles southeast of TREEOUT, just south of middle pole.	198 8 - P	QTR	QTR	QTR	QTR	QTR	G

TABLE 23 (Continued). Summary of Sampling Locations and Frequency of Collection for the Lake Okeechobee Limnetic and
Littoral Zone Monitoring Program

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chlorophylls	G/A
LZ30	264822	805150	Potable water supply intake for the city of Clewiston in Lake Okeechobee near the southwest side of the lake.	1978 - P	BW/M	BW/M	QTR	QTR	BW/M	G
POLE3S	264419	805024	One mile west of Ritta Island and north of S-3.	1994 - P	BW/M	BW/M	QTR	QTR	BW/M	G
RITAWEST	264410	804941	West side of Rita Island near the south end of Lake Okeechobee.	1986 - P	BW/M	BW/M	QTR	QTR	BW/M	G
RITAEAST	264327	804737	East side of Rita Island at the northern most channel marker near the south end of Lake Okeechohee.	1986 - P	BW/M	BW/M	QTR	QTR	BW/M	G
LZ25	264452	804522	100 yards west of Torry Island in the lake near the south end of Lake Okeechobee.	1978 - P	BW/M	BW/M	QTR	QTR	BW/M	G
PELMID	264629	804257	Middle of Pelican Bay, which is east of Kreamer Island, near the south end of Lake Okeechohee.	1986 - P	BW/M	BW/M	QTR	QTR	BW/M	G
TINOUT	270353	805301	At stage recorder platform in Tin House Cove.	1988 - P	QTR	QTR	QTR	QTR	QTR	G
POLESIN	270292	805459	In the marsh about 2 miles north east of Indian Prairie Canal near the north west side of Lake Okeechobee.	1988 - P	TW	TW	QTR	QTR	TW	G
POLESMID	270287	805447	100 yards south east of POLESIN in the marsh near the north west side of Lake Okeechobee.	1988 - P	TW	TW	QTR	QTR	TW	G
POLESOUT	270281	805439	100 yards south east of POLESMID in the lake near the north west side of Lake Okeechobee.	1988 - P	TW	TW	QTR	QTR	TW	G
IPOUT	270185	805483	0.5 miles northeast of Indian Prairie Canal, 100 yards off shore.	1988 - P	QTR	QTR	QTR	QTR	QTR	G

:

.

. · r

TABLE 23 (Continued). Summary of Sampling Locations and Frequency of Collection for the Lake Okeechobee Limnetic and
Littoral Zone Monitoring Program

j.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nurients	Major Ions	Trace Metals	Chlorophylis	G/A
LZ42N	270256	805345	0.5 miles out from the fittoral zone near the north west side of Lake Okeechobee.	1990 - P	BW/M	BW/M	QTR	QTR	BW/M	G
LZ42	265300	805500	2.5 miles out from the littoral zone near the south west side of Lake Okeechobee.	1990 - P	BW/M	BW/M	QTR	QTR	BW/M	G
LZ40	265408	804718	South central lake Okeechobee at instrument lower,	78-79,90,93- 95,96-P	8W/M	BW/M	QTR	QTR	BW/M	Ġ/ A
TIN8100	270514	805415	Tin House Cove, in the littoral zone at stage guage platform, 8100 feet out from the rim canal.	1996 - P	м	М	М	-	М	G
TIN13700	270426	805335	Tin House Cove, mid way through the littoral zone at stage guage platform, 13700 feet out from the rim canal.	1996 - P	М	М	М	-	М	G
TIN16100	270407	805319	Tin House Cove, outler edge of littoral zone at stage guage platform, 16100 feet out from the rim canal.	1996 - P	М	М	М	-	М	G
FEBOUT	265832	810032	Fisheating Bay outter station in open water.	1996 - P	М	М	М	-	М	G
FEBIN	265756	810417	Fisheating Bay in station in open water.	1996 - P	М	М	М	-	М	G
MBOXSOU	265427	815317	Unimpacted open water site southeast of the Monkey Box.	1996 - P	М	М	М		М	G
MH32000	265317	805950	Moore Haven transect, 32000 feet out from the rim canal.	1996 - P	М	М	М	-	М	G
MH24000	265237	810111	Moore Haven transect, 24000 feet out from the rim canal.	1996 - P	М	м	М	-	М	G
МН16000	265159	810225	Moore Haven transect, 16000 feet out from the rim canal.	1996 - P	М	М	М	-	М	G
MH12000	265141	810304	Moore Haven transect, 12000 feet out from the rim canal.	1996 - P	М	М	М	-	М	G
OISLAND	265347	810603	Observation Island.	1996 - P	М	М	М	-	М	G

TABLE 24.Statistics on Select Parameters for the Lake Okeechobee Inflow/Outflow Water Quality Monitoring Program for Period
of Record

SFWMD												
<u>Sta. ID</u>	<u>Total Phosphorus</u>		<u>Ortho</u>	Phosphot	<u>us</u>	<u>Tota</u>	al Nitroge	<u>n</u>	<u>Nitrite+</u>	Nitrate(N	<u>Ox)</u>	
	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	MEAN	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
C38W	0.0610	0.4019	0.9280	0.0040	0.1606	0.6460	0,0003	3.1012	10.0500	0.0040	0.0288	1.2090
CULV10	0,0190	0.2363	1.2720	0.0020	0,1339	0.8320	0.0003	4.5728	25.8900	0.0040	0.7377	16.1500
CULV10A	0.0190	0.1258	0.8220	0.0040	0.0541	0.7750	0.0002	2,2528	26.6000	0.0040	0.4069	21.4050
CULV12	0.0040	0.1181	0.4030	0.0020	0.0561	0.2730	0.0003	4.4496	24.2000	0.0040	1,1698	14.7320
CULV12A	0.0300	0,1939	0.9720	0.0020	0.1183	0.8120	0.0002	4.3852	16,9100	0.0040	0.3327	9.8770
CULV4A	0.0020	0.0775	0.2120	0.0020	0.0281	0.1490	0.8600	3.5799	20.1000	0.0040	0.5648	14.4200
CULV5	0.0120	0.0546	0.3960	0.0040	0.0128	0,1360	0.0003	1.6196	3.9500	0.0040	0.0274	0.3400
FECSR78	0.0260	0.1599	1.2800	0.0020	0.1021	1.0790	0.0001	1.7316	6.3600	0.0040	0.0438	1.8590
INDUSCAN	0.0340	0.1560	1.4460	0.0010	0.0881	1.3250	0.5100	2.8153	7.9700	0.0040	0.6795	4.2510
L59E	0.0400	0.2051	0.8050	0.0040	0,0905	0.3260	0.0001	2.2832	7.7100	0.0040	0.0557	0.9430
L59W	0.0500	0.1869	1.2870	0.0130	0.1266	0.8440	0.5100	1.6046	4.0700	0.0040	0.1013	0,7090
L60E	0.0500	0.1522	0.7280	0.0140	0.0899	0.3770	0.0001	1.5807	7.0900	0.0040	-0.1107	0.6880
L60W	0.0380	0.1309	0.6400	0.0110	0,0856	0.4830	0.8270	1.9311	5.0100	0.0040	0.5622	3.2240
L61E	0.0330	0.1270	0,4060	0.0040	0.0746	0.3200	0.0001	1.7619	4.0600	0.0040	0,4112	1,8050
L6IW	0.0320	0.0935	0.3100	0.0060	0.0347	0.1020	0.5000	1.5842	3.8400	0.0040	0.0515	0.9590
\$127	0.0220	0.2510	0.8310	0,0030	0.1677	0.7120	0,0002	2.2101	6.9200	0.0040	0.0797	3.4220
S129	0.0250	0.1200	0.7680	0.0020	0.0610	0.4440	0.0002	1.8459	4.7600	0.0040	0.0488	1.4210
S131	0.0001	0.0954	0.5680	0.0020	0.0465	0.3950	0.0002	1.6919	4.1000	0.0040	0,0559	0.8060
\$133	0.0310	0.2225	0.8800	0.0020	0,1352	0.6500	0.0001	1.9035	6.4000	0.0040	0.1240	4.0460
\$135	0.0020	0,0896	1.1050	0.0020	0.0336	0.3040	0.0002	1,7624	7.9600	0,0040	-0.0640	1,1220
S154	0.0510	0.6263	2,5900	0,0020	0.4722	2,3400	0.0002	1.9406	11,9600	0.0040	0.0431	0.6830
\$154C	0.0290	0.2600	1.6420	0,0040	0.1869	1.4030	0.0001	1.3547	6.4500	0.0040	0.0383	0.8690
S169	0.0250	0,1133	0.8930	0.0020	0.0412	0.7060	0.0002	2.0776	6.1600	0.0040	0.2916	3.3360
\$191	0.0100	0.7340	2.1080	0.0020	0.6099	I.4370	0.0001	2.0359	6.2400	0.0040	0.3954	4.9120
S2	0.0150	0,1330	0.8320	0.0020	0.0688	0.3960	0.0002	4,2848	18.7100	0.0002	1.3089	11,5590
S236	0.0250	0.0836	0.2940	0.0020	0,0277	0.1290	0.7300	4.0044	13.0800	0.0050	0.7184	8.6210
\$3	0.0030	0.1029	1.1200	0.0010	0.0475	0.8800	0.0002	3.7269	13.0700	0.0002	1.5960	8.9870
S308C	0.0100	0.1403	0,44 40	0.0020	0.0533	0.3450	0.0002	1.9060	7.1100	0.0040	0.2125	1.7190
S352	0,0580	0.1430	0.5690	0.0040	0.0635	0.5410	0.0002	2,0690	5.3200	0.0040	0.2726	1,5240
S4	0.0190	0,1762	1.4120	0.0020	0.1105	1.2470	0.0001	2.6395	21.2700	0.0040	0,3016	3.9830
\$65E	0.0240	0.1035	0.4900	0.0020	0.0590	0.3610	0.0001	1.4574	4.4100	0,0040	0.0905	0.9110

.

 TABLE 24.
 Statistics on Select Parameters for the Lake Okeechobee Inflow/Outflow Water Quality Monitoring Program for Period of Record

SFWMD <u>Sta. ID</u>	<u>Total</u>	Phosphon	<u>15</u>	Ortho	Phosphor	tus	Tot	al Nitroge:	<u>n</u>	Nitrite+	Nitrate(N(<u>(x)</u>
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
S71	0.0350	0.1712	0.7910	0.0020	0.1173	0.7560	0.0001	2,1488	7.4000	0.0040	0.5459	3.6030
S72	0.0180	0.1640	0.9170	0,0020	0.1046	0.7900	0.0001	1.9739	7.4000	0.0040	0.1592	1.2660
S77	0.0080	0.0833	0.5260	0.0020	0.0380	0.4700	0.0002	1.8243	7.7200	0.0040	0.0926	1.4720
S84	0,0090	0,0538	0.9100	0.0020	0.0220	0.3810	0.0001	1,2978	4.9000	0.0040	0.1025	1.2410

۰.

.

ċ

TABLE 25. Statistics on Select Parameters for the Lake Okeechobee Limnetic and Littoral Zone Water Quality Monitoring Program for Period of Record

SFWMD												
<u>Sta. ID</u>	Total Phosphorus		<u>Orthe</u>	Phospho	orus_	<u>Tot</u>	al Nitroge	en_	<u>Nitrite</u> -	-Nitrate()	NOx)	
	<u>MIN</u>	MEAN	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
3RDPTIN	0.0100	0.0773	0.6050	0.0040	0.0146	0.1630	0.5600	1.4433	4.2600	0.0040	0.0258	0.1580
3RDPTMID	0.0070	0.0550	0.1880	0.0040	0.0100	0.0640	0.0001	1.2999	2.1800	0.0040	0.0267	0.2310
3RDPTOUT	0.0080	0.0594	0.1580	0.0040	0.0114	0.0760	0.5500	1,3392	2.4300	0.0040	0.0257	0.2360
IPOUT	0.0270	0.0660	0.3050	0.0040	0.0080	0.0420	0.0002	1.3800	2.0300	0.0040	0.0186	0.1820
KBARIN	0.0110	0.0727	0.3750	0.0040	0.0177	0.1300	0.0001	1.3784	4.2100	0.0040	0.0256	0.2730
KBARMID	0.0100	0.0629	0.3260	0.0040	0.0185	0.2230	0.0001	1.2876	2,9800	0.0040	0.0341	0.2880
KBAROUT	0.0260	0.0813	0.3310	0.0040	0.0259	0.1950	0.0001	1.3568	2.8300	0.0040	0.0423	0.3400
KISSR0.0	0.0360	0.0968	0.2920	0.0040	0.0397	0.1890	0.0001	1,2998	2,4900	0,0040	0.0609	0.4240
L001	0.0190	0.0794	0.2460	0.0020	0.0188	0.1340	0.0001	1.5464	5.6800	0.0010	0.0777	0.5330
L002	0.0080	0.1940	10.1300	0.0020	0.0257	0.4040	0,0001	1,2854	8,9000	0,0010	0,1239	0.5750
L003	0.0140	0.0872	0.3020	0.0020	0.0226	0.0770	0.0002	1.6369	4.3600	0.0010	0.1346	0.9960
L004	0.0120	0.0925	0.2860	0.0020	0.0258	0.0850	0.0001	1.6336	3.6300	0.0010	0.1459	0.6350
L005	0.0040	0.2094	7.4900	0,0010	0.0127	0,1970	0,0001	2,4674	85,2000	0,0010	0,0660	1,2710
L006	0.0150	0.1193	0.6730	0.0010	0.0293	0.0990	0.0001	1.6754	8.8900	0.0010	0.1964	0.8370
L007	0.0100	0.0704	0.3650	0.0020	0.0227	0.0880	0.0001	1.5919	9.2400	0.0010	0.1551	0.6760
L008	0.0160	0.0867	0.2450	0.0020	0.0189	0.0970	0.2300	1.6854	4,0800	0.0010	0,1247	0.8970
LZ2	0.0200	0.0855	0.3450	0.0020	0.0220	0.2460	0.0002	1.4492	2,7200	0.0040	0.0380	0.3870
LZ25	0.0130	0.0688	0,3330	0.0020	0.0130	0.1210	0,5000	1,6111	8,9400	0,0040	0.0686	0,8080
LZ30	0.0130	0.0761	0.2440	0.0020	0.0219	0.0780	0.5200	1.4692	4.5900	0,0040	0.1254	0,5380
LZ40	0.0180	0.1531	1.3560	0.0020	0.0424	0.1340	0.0001	1.3125	4.5000	0.0040	0.1949	0.8310
LZ42	0,0260	0.0805	0.2420	0.0040	0.0195	0.0690	0.0001	1.3736	3.4100	0.0040	0.1172	0.5370
LZ42N	0.0220	0.0681	0.1600	0.0040	0,0141	0.1200	0.0001	1.3372	2,6200	0.0040	0.0460	0.3420
PALMIN	0.0040	0.0412	0.2530	0.0030	0.0068	0.0570	0.0001	1.4385	5.5200	0.0040	0.0178	0.2240
PALMMID	0.0080	0.0356	0.1390	0.0020	0.0063	0.0530	0.7200	1.4055	3.1000	0.0040	0.0143	0.2250
PALMOUT	0.0040	0.0404	0.1380	0.0010	0.0071	0.0620	0.0001	1.4876	4.6200	0.0040	0.0158	0.3980
PELMID	0,0120	0.0783	0.3050	0.0030	0.0218	0.0930	0.5150	1.5315	3.2300	0.0040	0.1347	1.0220
PLN10UT	0.0050	0.0360	0.1390	0.0030	0.0056	0.0540	0.5000	1.4594	2.4400	0.0040	0.0108	0.2310
PLN2IN	0.0060	0.0616	0.3390	0.0020	0.0114	0.0900	0.0001	1.4801	3.4800	0.0040	0.0253	0.3960
PLN2MID	0.0120	0.0468	0.1690	0.0020	0.0063	0.0500	0.7200	1.5648	10.6000	0.0040	0.0217	0.4080
PLN2OUT	0.0100	0.0391	0.1490	0.0010	0.0064	0.0480	0.0001	1.4173	2.8500	0.0040	0.0164	0.3990
PLN3OUT	0.0080	0.0358	0.1590	0.0010	0.0061	0.0440	0.5000	1.3792	2.1600	0.0040	0.0117	0.2490
PLN4OUT	0.0120	0.0385	0.1440	0.0020	0.0056	0.0370	0,5000	1,4269	2,1900	0.0040	0.0133	0,3580

TABLE 25.Statistics on Select Parameters for the Lake Okeechobee Limnetic and Littoral Zone Water Quality
Monitoring Program for Period of Record

SFWMD												
<u>Sta. ID</u>	<u>Total</u>	Phospho :	<u>rus</u>	Ortho	Phosphe	orus_	<u>Tot</u> i	al Nitroge	<u>n</u>	<u>Nitrite</u> 1	-Nitrate(I	<u>NOx)</u>
					-							
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
DOI 130	0.0170	0.0714	0 1050	0.0040	0.0125	0.0570	0.0200	1 4772	0.4700	0.0040	0.0007	0 5200
POLE3S	0.0170	0,0714	0,1950	0.0040	0.0135	0.0360	0.9520	1.4773	2.4700	0,0040	0.0837	0,3300
POLESIN	0.0160	0.0804	0.3160	0.0040	0.0181	0.1870	0.0002	1.3/49	3,7400	0.0040	0.0200	0,1420
POLESMID	0.0110	0.0550	0.1830	0.0040	0.0092	0.0670	0.0001	1.2705	2.6200	0.0040	0.0229	0.2140
POLESOUT	0.0200	0.0562	0.1840	0.0040	0.0096	0.1940	0.0002	1.3408	2.7000	0.0040	0.0161	0,2950
RITAEAST	0.0040	0.0426	0.1660	0.0030	0.0066	0.0550	0.0002	I.5199	3.4700	0.0040	0.0322	0.5990
RITAWEST	0,0040	0.0514	0.2000	0,0040	0.0079	0.0840	0.7000	1.5790	3.7600	0.0040	0.0385	1.2000
STAKEIN	0.0080	0.0490	0.2690	0.0040	0.0125	0.2920	0.0001	1.3326	3.1500	0,0040	0.0174	0.1830
STAKEMID	-0.0070	0.0459	0.1880	0.0040	0.0101	0.2250	0.0001	1.3240	4.6200	0.0040	0.0211	0,2040
STAKEOUT	-0.0140	0.0661	1.0600	0.0040	0.0168	1.1230	0,5000	1,4230	2.6500	0.0040	0.0231	0.3230
TINOUT	0.0120	0.0391	0.1420	0.0040	0.0069	0.0550	0.5900	1.3475	2,6600	0.0040	0.0119	0.1480
TREEIN	0.0140	0.0765	0.3560	0.0030	0.0178	0.1970	0.5000	1.6233	3.7000	0.0040	0.0256	0.4290
TREEMID	0.0150	0.0575	0.2540	0.0020	0.0090	0.0670	0.0001	1,5260	3,1900	0.0040	0.0236	0.4040
TREENOUT	0.0040	0.0410	0.1560	0.0020	0.0063	0.0390	0.0002	1.4719	2,7300	0.0040	0.0130	0.3370
TREEOUT	0.0100	0.0471	0.1560	0.0020	0.0088	0.0950	0.0001	1,5154	6.6000	0.0040	0.0232	0.3870
FEBIN	0.0480	0.1076	0,3600	0.0140	0.0491	0.1910	0.5150	1.1567	1.9500	0.0150	0.0406	0.1400
FEBOUT	0.0370	0.0778	0.1380	0.0040	0.0130	0.0310	1.0600	1.2233	1.5600	0,0110	0,0315	0,0850
MBOXSOU	0.0090	0.0180	0.0250	0.0040	0.0050	0.0080	0.5940	0.9112	1.2400	0,0150	0.0162	0.0200
MH12000	0.0050	0.0141	0.0300	0.0040	0.0044	0.0070	0.7480	1,1000	1.5900	0.0080	0.0233	0.0790
MH16000	0.0040	0,0099	0,0160	0.0040	0.0063	0.0180	0.7990	0.9704	1.2600	0.0060	0.0131	0.0150
MH24000	0.0070	0.0263	0.1090	0.0040	0.0046	0.0080	0.0001	0.8662	1,2300	0.0040	0.0129	0.0150
MH32000	0.0160	0.0219	0.0290	0.0040	0.0057	0.0140	0,9280	1,1006	1.2200	0.0150	0.0171	0.0270
OISLAND	0.0080	0.0311	0.0730	0.0040	0.0043	0.0050	0.7160	1.0596	1.5400	0.0080	0.0136	0.0160
TIN13700	0.0130	0.0250	0.0490	0.0040	0.0042	0,0050	0.5150	0.9471	1,3400	0.0040	0.0276	0.0660
TIN16100	0.0660	0.0907	0.1330	0.0040	0.0200	0.0490	0.5150	1,1702	1.8300	0.0150	0.0835	0.2830
TIN8100	0.0040	0.0111	0.0170	0.0040	0.0047	0.0070	0.8400	1.2114	1.4900	0.0080	0.0134	0.0150

ī,

.

SECTION 12

CALOOSAHATCHEE RIVER PROJECT CODE: CR

Purpose and Scope

The Caloosahatchee River water quality monitoring program was established in 1979, and extends from Lake Okeechobee west to the coastal structure that releases fresh water to the Caloosahatchee Estuary. The water quality monitoring program provides a water quality and nutrient loading data base for:

- 1. Determining loadings to the Caloosahatchee River estuary;
- 2. Assessing potential downstream impacts on the Caloosahatchee River estuary.;
- 3. Implementing LOTAC's recommendation for a comprehensive monitoring and research plan as described in the Department of Environmental Protection "Lake Okeechobee Monitoring and Research Plan"; and
- 4. Determining long and short term trends necessary to identify potential problem areas in terms of water quality degradation and nutrient loadings.

Water quality data from the Caloosahatchee River are also used to determine the effect of Lake Okeechobee discharges and tributary impacts on the Caloosahatchee River.

Sampling Locations and Descriptions

The locations of the four sites monitored under this program are shown on Figure 13. Table 26 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 27 contain statistics for each monitoring location.

District Publications

Lake Okeechobee Monitoring and Research Plan, 1986, FDEP.

- Miller, T. H., A. Federico, J. Milleson. (1982). A Survey of Water Quality Characteristics and Chlorophyll a Concentrations in the Caloosahatchee River System, Florida. July 1982. SFWMD, Tech. Pub. No. 82-4. (DRE 155)
- Scarlatos, P. (1988). Caloosahatchee River Estuary Dynamics. SFWMD, Tech. Pub. No.88-7 . (DRE 256)

FIGURE 13. Location of Sampling Stations for the Caloosahatchee River Water Quality Monitoring Program

114

TABLE 26.Summary of Sampling Station Locations and Frequency of Collection for the Caloosahatchee River Monitoring
Program

										1
SFWMD					Physical		Major	Trace		
Sta. fD	Lat	Long	Location	POR	Parameters	Nutrients	Ions	Metals	US/DS	G/A
CR-00.2T	265021	810509	A small culvert type structure (S-235) located near Moore Haven on the southwest side of Lake Okeechobee on LD-1 near S-77. Water flows westward through this structure into the Caloosabatchee River.	1979 - P	BM	ВМ	ВМ	BA	US	G
CR-04.8T	264834	810823	A small spillway gate structure (S-47D) located on C-19 south of US- 27 and west of Mcore Haven. The water flows southward through this structure and into the Caloosahatchee River.	1979 - P	BM	ВМ	BM	BA	US	G
S78	264722	811811	A large spillway gate and beat lock structure (Ortona Lock and Dam) located on the Caloosahatchee River operated by the United States Army Corps of Engineers (COE). Water flows toward the west through this structure.	1981 - P	BM	ВМ	ВМ	₿A	US	G
S 79	264314	814107	A large spillway gate and boat lock and coastal structure (W. P. Franklin Lock and Dam) located on the Caloosahatchee River operated by the COE. Water flows toward the west through this structure and is mixed with salt water on the downstream side of this structure.	1981 - P	ВМ	ВМ	ВМ	ВА	US	G

 TABLE 27.
 Statistics on Select Parameters for the Caloosahatchee River Water Quality Monitoring Program for

 Period of Record
 Period Select Parameters for the Caloosahatchee River Water Quality Monitoring Program for

SFWMD

<u>Sta. ID</u>	<u>Total Phosphorus</u>			Ortho Phosphorus			<u>Total Nitrogen</u>			<u>Nitrite+Nitrate(NOx)</u>			
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>Min</u>	<u>MEAN</u>	<u>MAX</u>	
CR-00.2T	0.0250	0,1412	0,4950	0.0020	0.0747	0.3350	0.0002	2.2953	6.0600	0.0010	0.2013	1,4480	
CR-04.8T	0.0420	0.3309	1.7370	0.0020	0.2348	1.5400	0.0002	2,4731	8,8000	0.0040	0.1634	1.3600	
S78	0.0390	0.1377	0.3390	0.0070	0.0859	0.3120	0.0001	1,6962	3.4600	0.0040	0.1532	1.0730	
S79	0.0510	0.1425	0.4600	0.0180	0.0934	0.2380	0.5800	1.6780	5.1800	0.0040	0,2639	0,8160	

.

SECTION 13

• -

EVERGLADES NUTRIENT REMOVAL PROJECT CODES: ENRR, ENRU, ENRP, ENRG

Purpose and Scope

The Everglades Nutrient Removal (ENR) Project is a "constructed", or man-made wetland designed to biologically remove phosphorus from agricultural runoff water before it enters the Arthur R. Marshall Loxahatchee National Wildlife Refuge, also known as Water Conservation Area 1.The total project size is 3,975 acres, with 3,680 acres of constructed wetlands.

The ENR Project is a crucial component of the Districts comprehensive Everglades restoration effort. The ENR project provides valuable information for the operation and management of the larger constructed wetlands, called Stormwater Treatment Areas (STAs). The 1993 Everglades Forever Act mandates that the District develop STA's as a method to restore the Everglades.

The objectives of the ENR Project are to reduce the phosphorus loads to Water Conservation Area 1, optimize STA operation for phosphorus removal, provide reasonable assurance to the Florida Department of Environmental Protection(FDEP) that the proposed conceptual design for STAs will meet the requirements of applicable Florida statutes, regulations, and standards, and provide cost avoidance.

The analysis of the water samples is split between the District, USGS, and private labs as follows:

- USGS: Analyzes Total Kjeldahl Nitrogen, Total Phosphorus, Nitrate + Nitrite, and Ammonia for the internal marsh sites collected by an automatic sampler. And they analyze bi-weekly and monthly grab samples for all sites, except permit sites for; physical parameters, nutrients, ions, and metals.
- Private: They analyze bi-weekly low level Total Suspended Solids on grab samples collected at all sites except permit sites, and Total and Methyl Mercury are analyzed for at some interior and levy sites, and at the permit sites bi-weekly and monthly.
- FDEP: Analyzes quarterly grab samples at the permit sites for pesticides and priority pollutants.
- SFWMD: Analyzes all remaining parameters listed in the permit, and those being collected for various research projects.

Sampling Locations and Descriptions

The locations of the 23 sites monitored under this program are shown in Figure 14. Table 28 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Table 29 contains statistics by parameter.

۰.,

District Publications

·

- Guardo, Fink, Fontaine, Newman, Bearzotti, Goforth, (1994). Large Scale constructed wetlands for nutrient removal from stormwater runoff: An Everglades Restoration project. SFWMD, June 1994 Manuscript (submitted). (DOR 174).
- Guardo, Abtew, Obeysekera, Roy, (1994). The Everglades Nutrient Removal Project: Hydrology, Hydrodynamics, and Operation. SFWMD, April 1994 Manuscript (published). (DOR 149)
- Koch, M.S., (1991). Soil and Surface Water Nutrients in the Everglades Nutrient Removal Project. SFWMD, Tech. Pub. No. 91-04. (DRE-302).
- Newman, S., Redfield, G., (1992). The Florida Everglades Nutrient Removal Project: A Prototype for Stormwater Treatment Areas. SFWMD, August 1992 Manuscript. (DOR 104), presented at a workshop.
- Newman, S., Roy, J. Obeysekera, J. (1993). The Everglades Nutrient Removal project. SFWMD. July 1993 Manuscript. (DOR 127)
- Abtew, W., M. Chimmney, T. Kosier, S. Newman, J. Obeysekera, M. Guardo, (1995). The Everglades Nutrient Removal Project: A Constructed Wetland Designed to Treat Agricultural Runoff/Drainage. SFWMD. May 1995 Manuscript. (DOR 214)

FIGURE 14. Location of Sampling Stations for the Everglades Nutrient Removal Water Quality Monitoring Program.

TABLE 28. Summary of Sampling Station Locations and Frequency of Collection for the Everglades Nutrient Removal MonitoringPrograms

SFWMD									Pesticides &	Total Coliform		
Sta. ID	ায়া	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Metals	Priority Pollutants		US/DS	G/A
ENR001	264059	802235	Located in the head waters of the supply canal at the C- 51 canal, which leads to the ENR project. This site is about 0.5 miles from pump station S5A and about 4.0 miles from the ENR project.	12/93 - P	BW	W/BW	BW	QTR				A ∕G
ENR002	263928	802345	Located at the inflow pump station to the ENR project. The inflow pump is located at the northeast corner of the ENR project. This is one of three permitted sites by FDEP.	12/93 - P	w	W/BW	W/BW	BW/ QTR	QTRH2O	BW	US	A/G
ENR004	263733	802508	Located in the L-7 canal about mid way between the inflow and outflow pumps. This is one of three permitted sites by FDEP.	3/94 - P	w	W/BW	W/BW	BW/ QTR	QTRH2O	BW		A/G
ENR011	263928	802349	Located in the seepage canal near the inflow pump(G- 250).	12/93 - P	BW	W/BW	BW	QTR			US	A/G
ENR012	263553	802635	Located at the outflow pump station to the ENR project. The outflow pump is located at the south end of the ENR project. This is one of three permitted sites by FDEP.	12/93 - P	W	W/BW	W/BW	BW/ QTR	QTRH2O	BW	US	A/G
ENR102	263846	802450	Located in the north central portion of Cell 1.	4/94 • P	BW	W/BW	BW	BW				A/G
ENR103	263813	802522	Located in the south central portion of Cell 1.	4/94 - P	BW	W/BW	BW	BW				A/G
ENR203	263830	802557	Located in the south central portion of Cell 2.	4/94 -P	м	М	М	М				A/G
ENR204	263856	802528	Located in the north central portion of Cell 2.	4/94 - P	М	М	М	М				A/G
ENR302	263718	802551	Located in the north central portion of Cell 3.	4/94 - P	М	М	М	М				A/G

TABLE 28 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Everglades Nutrient
Removal Monitoring Programs

SFWMD Sta. ID	Lau	Long	Location	POR	Physical Parameter	Nutrient	Major Ions	Metals	Pesticides & Priority Pollutants	US/DS	G/A
ENR303	263640	802619	, Located in the south central portion of Cell 3.	4/94 - P	м	Μ.	М	М			A/G
ENR305	263605	802635	Located in the eastern most collection canal which leads to the outflow pumps(G-251).	6/94 - P	вw	W/BW	W/BW	QTR			A,∕G
ENR306	263605	802640	Located in the center collection canal which leads to the outflow $pumps(G-251)$.	6/94 - P	BW	W/BW	BW	BW			A/ G
ENR401	263747	802624	Located in the center of Cell 4.	4/94 P	М	М	м	М			A/G
ENR402	263727	802632	Located in the south central portion of Cell 4.	4/94 - P	М	М	М	М			A/G
G252C	263923	802434	Located on the north side of the northern most levee in Ceil 1. Water flows through culverts under this levee into Ceil 1. This site is the western most site on this levee.	6/94 - P	BW	W/BW	BW	BW		US	A/G
G252G	263923	802412	Located on the north side of the northern most levee in Cell 1. Water flows through culverts under this levee into Cell 1. This site is the eastern most site on this levee.	6/94 - P	BW	W/BW	BW	BW		US	A/G
G253C	263738	802553	Located on the north side of the southern most levee in Cell 3. Water flows through culverts under this levee into Cell 3. This site is the western most site on this levee.	4/94 - P	BW	W/BW	BW	BW		US	A/G
G253G	263738	8 02534	Located on the north side of the southern most levee in Cell 3. Water flows through culverts under this levee into Cefl 3. This site is the eastern most site on this levee.	6/94 - P	BW	W/BW	BW	BW,		US	A/G
G254B	263840	8026 31	Located on the north side of the levee dividing Cell 2 and Cell 4. Water flows through culverts under this levee into Cell 4. This site is the western most site on this levee.	6/94 - P	BW	W/BW	BW	BW		US	∆/G [']

SFWMD					Physical		Maior		Pesticides & Priority		
Sta. ID	Lat	Long	Location	POR	Parameter	Nutrient	Ions	Metals	Pollutants	US/D	G/A
G254D	263840	802601	Located on the north side of the levee dividing Cell 2 and Cell 4. Water flows through culverts under this levee into Cell 4. This site is the eastern most site on this levee.	6/94 - P	BW	W/BW	₿₩	BW		US	A/G
G255	263926	802447	Located close to pump station S7 just inside WCA2A	6/94 - P	BW	W/BW	BW	BW			A/G
G256	263657	802642	3.0 miles west of State Road 27 and east of Long Tree Island. The site is located in the northeast corner of WCA3A.	6/94 - P	BW	W/BW	BW	BW			A/G

.....

TABLE 28 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Everglades Nutrient
Removal Monitoring Programs

.

.

.

· · · ·

TABLE 29. Statistics on Select Parameters for the Everglades Nutrient Removal Water Quality Monitoring Program for
Period of Record

SFWMD												
<u>Sta. ID</u>	<u>Total</u>	Phospho	<u>Jrus</u>	<u>Ortho</u>	Phosph	orus	<u>Total</u>	Nitroge	<u>n</u>	<u>Nitrite+</u>	Nitrate(N	<u>IOx)</u>
	<u>MiN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
ENR001	0.0040	0,1166	0.5210	0.0040	0.0590	0.2850	1.0600	2.8481	5.4700	0.0240	0.3408	0.7930
ENR002	0.0080	0.0972	0.2910	0.0040	0.0420	0.2160	0.0002	2.9213	7.6500	0.0100	0.4742	3.3520
ENR004	0.0040	0.0863	0.5640	0.0040	0.0431	0.1530	0.5060	2.6293	8,4600	0.0040	0.3624	4.8300
ENR011	0.0100	0.0375	2.1880	0.0020	0.0058	0.0420	1,7700	3.3793	4.7100	0.0040	0.0341	0.0880
ENR012	0.0020	0.0301	0.6300	0.0040	0.0090	0.0500	0.0001	2.1102	3.8300	0.0040	0.0294	0.2070
ENR102	0.0200	0.1138	2,1000	0.0020	0.0283	0.0800	0.0003	1.8842	2.9600	0.0040	0.0245	0.1570
ENR103	0.0150	0.0764	0.5160	0.0020	0.0220	0.1530	1.2400	2.5592	3,4000	0.0040	0.0263	0.1660
ENR203	0.0040	0.0384	0,1420	0.0040	0.0121	0.0820	2,2800	3.1200	3.5500	0.0040	0.2101	1,9000
ENR204	0.0030	0.0386	0.2330	0.0040	0.0124	0.1100	2.1300	2.6100	3,3500	0.0060	0.0998	0.6830
ENR302	0.0010	0.0952	2,4000	0.0020	0.0106	0.0910	2.7900	3.2122	3.6700	0.0040	0.0600	0.2890
ENR303	0.0200	0.0853	0.4900	0.0020	0,0121	0.0720	2,4300	4.1733	5.4200	0.0040	0.0719	0.5900
ENR305	0.0100	0.0497	0.7800	0.0020	0.0133	0.0860	1.7300	1.8067	1,9100	0.0250	0.0690	0.1360
ENR306	0.0100	0.0380	0.7240	0.0020	0.0098	0.0770	1.4100	1.7225	2.2800	0.0100	0.0610	0.1700
ENR401	0.0100	0.0872	1.7000	0.0020	0.0148	0.1120	2.6800	4.3367	6.9200	0.0080	0.0250	0.0710
ENR402	0.0100	0.0686	0.9900	0.0020	0.0061	0.0370	0.0004	3.0401	4.7400	0.0040	0.0256	0.0600
G252C	0.0140	0.0932	1.9700	0.0040	0.0420	0.1580	1.2700	1.5650	1.9200	0.0370	0.2568	0.4040
G252G	0.0230	0.0789	0.1730	0.0040	0.0433	0.1210	0.8740	1,4685	1.9700	0.0540	0.2364	0.3600
G253C	0.0040	0.0509	0.1880	0.0040	0.0208	0.0930	1,5100	2,7240	3,8000	0.0060	0.1255	0.9760
G253G	0.0090	0.0401	0.2350	0.0020	0.0123	0.0740	0.9960	1.1965	1.3300	0.0400	0.0836	0.1360
G254B	0.0100	0.0415	0.1960	0.0030	0.0130	0.1220	0.0001	0.8167	1,3400	0.0040	0.0090	0,0150
G254D	0.0050	0.0516	0.3400	0.0040	0.0138	0.1140	0.5580	1.0827	1.3700	0.0040	0,0237	0.0580
G255	0.0120	0.0874	0.2100	0.0040	0.0477	0.1190	1.3800	2,5350	4,8000	0.1910	0.4065	0.8710
G256	0.0020	0.0284	0.1920	0.0020	0.0069	0.0340	0.5240	1,2410	2.0600	0.0090	0.0380	0.0760

123

. 1.

.

.

.

.

SECTION 14

HOLEY LAND PROJECT CODE: HOLY

Purpose and Scope

In 1983 a Memorandum of Agreement between the Florida Department of Environmental Regulation (FDEP), the Board of Trustees of the Internal Improvement Trust Fund (BTIITF), the South Florida Water Management District, and the Florida Game and Fresh Water Fish Commission (G&FWFC) was established to design and construct a restoration plan for the Holey Land and Rotenberger Tracts as well as a portion of the Seminole Indian Reservation.

In 1990 a Memorandum of Agreement between the SFWMD and G&FWFC was established to begin the monitoring of the Holey Land. The water quality monitoring program involves collecting data, and documenting conditions to better understand the hydrology and environmental resources in achieving the goals of the Holey Land Restoration Project.

Project HOLY was established specifically to meet the requirements of FDEP Permit #06 500809209.

Sampling Locations and Descriptions

The Holey Land monitoring program includes project "HOLY" which monitors seven surface water inflow and outflow structures and four interior sediment sites. The location of these stations are shown in Figure 15. Table 30 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 31 contain statistics for each monitoring location.

Parameter and Sampling Frequencies

Prior to July 1992 project HOLY was sampled weekly for total phosphorus only. The FDEP permit requires the District to monitor surface water on a quarterly basis, and sediment semi-annually.

District Publications None

FIGURE 15. Location of Sampling Stations for the Holey Land Water Quality Monitoring Program.

126

TABLE 30. Summary of Sampling Station Locations and Frequency of Collection for the Holey Land Monitoring Programs

SFWMD Sta. 1D	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Metals	Organic Priority Pollutants	US/DS	G/A
G200	262500	804700	This is a pump station located at the N.W. corner of the Holey Land. It pumps water from the Miami Canal (L-23) into the Holey Land.	1989 - P	QTR/BW/ W	QTR/BW /W	QTR	QTR	QTR	US	G/A
G200SD	262500	804658	This is a pump station located at the N.W. comer of the Holey Land close to G200. It pumps water from the seepage ditch that runs along the north side of the Holey Land, back into the Holey Land.	1989 - P	QTR	QTR	QTR	QTR	QTR	US	G
G201	262000	803800	This is a pump station located at the S.E. comer of the Holey Land. It pumps water from the scepage ditch which runs along the east side of the Holey Land, back into the Holey Land.	1989 - P	QTR	QIR	QIR	QIR	QTR	US	G
G204	261954	804554	This is a set of culverts located on the L-5 levee near pump station S8. These culverts discharge water from the Holey Land into Water Conservation Area 3A.	1989 - P	QTR	QTR	QTR	QTR	QTR	US	G
G205	261956	804300	This is a set of culverts located on the L-5 levee half way between pump station S8 and G201. These culverts discharge water from the Holey Land into Water Conservation Area 3A.	1989 - P	QTR	QTR	QTR	QTR	QTR	US	G
G206	261958	803909	This is a set of culverts located on the L-5 levee near the S.E. corner of the Holey Land. These culverts discharge water from the Holey Land into Water Conservation Area 3A.	1989 - P	QTR	QTR	QTR	QTR	QTR	US	G
S8	261953	804628	This is a District operated pump station. Water is pumped in a southerly direction down the Miami Canal.	1989 - P	QTR	QTR	QTR	QTR	QTR	US	G
HOLYSD1 *	262480	804650	Same location as HS9 in table 44	1989 - P	-	-	-	BA	BA	-	G

.

TABLE 30 (Continued).	Summary of Sampling Station Locations and Frequency of Collection for the Holey Land Monitoring	Ş
	Programs	

SFWMD Sta, ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Metals	Organic Priority Pollutants	US/DS	G/A
HOLYSD2 *	262480	804250	Same location as HS13 in table 44	1989 - P	-	-	-	BA	BA	-	1 G
HOLYSD3 *	262130	804450	Same location as HS29 in table 44	1989 - P	-	-	-	BA	BA	-	G
HOLYSD4 *	262130	804060	Same location as HS31 in table 44	1989 - P	•	-		BA	BA	-	G

* = Sediment sampling locations

TABLE 31.Statistics on Select Parameters for the Holy Land Water Quality Monitoring Program for
Period of Record

SFWMD <u>Sta, ID</u>) <u>Total Phosphorus</u>			Ortho Phosphorus			<u>Total Nitrogen</u>			<u>Nitrite+Nitrate(NOx)</u>			
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	
G200	0.0050	0.0583	0,2370	0.0040	0.0312	0.1000	0.8500	2,7263	6,9900	0,0080	0.8936	4.5550	
G200SD	0.0050	0.0135	0.0460	0.0040	0.0051	0.0150	1,2600	1,8537	3.0700	0.0080	0.1737	1.0680	
G201	0.0040	0.0091	0.0210	0.0040	0.0050	0.0140	0.5400	1.4511	2,6600	0.0040	0,1204	1.0150	
G204	0.0090	0.0522	0.3250	0.0040	0.0164	0.0690	0.8300	1.8533	3,5500	0.0040	0.0891	0.7070	
G205	0.0100	0.0496	0.3940	0.0040	0.0219	0.2700	0.0001	1.7020	5.8100	0.0040	0.0456	0.4810	
G206	0.0040	0.0277	0.3900	0.0040	0,0086	0.0750	0.5370	1.4361	3.1200	0.0040	0.0645	0.5110	
S8	0.0130	0.0763	0.1910	0.0040	0.0414	0.1600	0.9500	2.3620	6.0600	0.0130	0.6195	3,2200	
SECTION 15

EVERGLADES PROTECTION AREA PROJECT CODE: EVPA

Purpose and Scope

The Everglades Protection Area Project (EVPA) consists of all three Water Conservation Areas (WCA1,2,&3), and is designed to monitor the physical, chemical and biological quality of the Everglades Protection Area. The water, sediment, and tissue quality data obtained under this program will be used to:

- 1. Evaluate water quality status and trends;
- 2. Assess compliance with federal and state water quality statutes, the Everglades Forever Act; and the Everglades Settlement Agreement;
- 3. Aid in the translation of narratives to numerical water quality criteria and in the development of site-specific alternative criteria;
- 4. Guide mid and long term resource management decision making to restore the ecological structure and function of the Everglades; and
- 5. Minimize the duplication effort between monitoring programs, ensure uniformity of monitoring methods and data interpretation, and provide a comprehensive framework for data interpretation.

The sampling of inflows, outflows, biological, sediments, organics, and rain within the EVPA are addressed in other sections of this publication.

Sample analyses for all parameters except Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC) are performed by USGS laboratory in Ocala under a contractual agreement. TOC and DOC are analyzed by SFWMD laboratory. Pesticides are analyzed by FDEP laboratory.

Sampling Locations and Descriptions

The locations of the 30 sites monitored under this program are shown in Figures 16, 17, and 18. Table 32 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the samples are collected up stream or down stream, and type of sample collection. Table 33 contains statistics by parameter.

District Publications

- Gleason, P., (1974). Chemical Quality of Water in Conservation Area 2A and Associated Canals. SFWMD, Tech. Pub. No. 74-1. (DRE-39).
- Jensen, Rutchey, Koch, Narumalani, (1994). Inland Wetland Change Detection in the Everglades water Conservation Area 2A Using a Time Series of Normalized Remotely sensed Data. SFWMD, Jan. 1994 Manuscript. (DOR-140).
- Lin, S., Gregg, R./WR, (1988). Water Budget Analysis Water Conservation Area 1. SFWMD, Tech. Memo. 6/88. (DRE-245)
- Lutz, J., (1977). Water Quality and Nutrient Loadings of the Major Inflows from the Everglades Agricultural Area to the Conservation Areas, Southeast Florida. SFWMD, Tech. Pub. No. 77-6. (DRE-78).
- Pfeuffer, R.J., (1985). Pesticide Residue Monitoring in Sediment and Surface Water Bodies within the South Florida Water Management District. SFWMD, Tech. Pub. No. 85-2. (DRE-214).
- Swift, D.R., (1981). Preliminary Investigation of Periphyton and Water Quality Relationships in the Everglades Water Conservation Areas. SFWMD, Tech. Pub. No. 81-5. (DRE-131).
- Swift, D.R., Nicholas, R., (1987). Periphyton and Water Quality Relationships in the Everglades Water Conservation Areas. SFWMD, Tech. Pub. No. 87-2. (DRE-233).
- Water Chemistry Div., (1984). North New River Back pumping Water Quality Impact Study Report No.1, Preconstruction and Initial Operation. SFWMD, Tech. Memo. March 1984. (DRE-179).
- Worth, D.F./ES, (1988). Environmental Response of WCA-2A to Reduction in Regulation Schedule and Marsh Draw down. SFWMD, Tech. Pub. No. 88-02. (DRE-250)

FIGURE 16. Location of Sampling Stations in WCA1 for the Everglades Protection Area Monitoring Program.

FIGURE 17. Location of Sampling Stations in WCA2 for the Everglades Protection Area Monitoring Program.

FIGURE 18. Location of Sampling Stations in WCA3 for the Everglades Protection Area Monitoring Program.

SFW) Sta. I	MD Ð Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Metals	Pesticides	US/DS	G/A
LOX3	3 263545	í 802120	5 miles west of pump station L40-2. The site is located in the northern area of WCA1.	1/94 - P	М	м	М	QTR			0
LOX4	4 263545	í 801702	0.75 miles south of pump station L40-2. The site is located near the northeast side of WCA1.	1/94 - P	М	М	М	QTR			G
LOXS	5 263312	802120	3 miles south of LOX3. The site is located in the north central area of WCA1.	1/94 - P	М	М	М	QTR			G
LOXé	6 262950	3 801345	0.5 miles northwest of G94B. the site is located on the east side of WCA1.	2/94 - P	М	М	М	QTR			G
LOX	7 26304:	5 801628	5.5 miles south of L40-2. The site is located in the east central area of WCA1.	1/94 - P	М	М	М	QTR			G
LOX	8 263312	801924	Located in the center of WCA1.	1/94 - P	М	М	м	QTR	ASED		6
LOX	9 263129	802300	North Northeast of pump station S-6. The site is located in the western central area of WCA1.	1/94 - P	М	М	М	QTR			6
LOX	10 263129	802551	0.5 miles east of the L-7 levee. The site is located on the west side of WCA1.	1/94 - P	М	М	М	QTR	ASED		G
LOXI	11 262740	801728	This site is located at gauging station #1-9 located in the southeast central portion of WCA1.	2/94 -P	М	М	М	QTR			G
LOX	12 26252:	5 802245	1.5 miles east of the L-39 levee and north of S10D. The site is located near the southwest side of WCA1.	1/94 - P	М	М	М	QTR			G
LOXI	13 262500	801730	0.2 miles west of Big Lake Tree Island and north of S-39. The site is located near the south side of WCAI.	1/94 - P	М	М	М	QTR			G
LOX	14 262356	801450	1.0 miles northwest of G-94A. The site is located near the southeast corner of WCA1.	1/94 - P	М	М	м	QTR			G

TABLE 32. Summary of Sampling Station Locations and Frequency of Collection for the Everglades Protection Area Monitoring
Programs

_

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameter	Nutrient	Major Ions	Metals	Pesticides	US/D	G/A
LOXIS	262215	802210	1.0 miles east of S10D. The site is located near the south end of WCA1.	1/94 - P	М	М	М	QTR			G
LOX16	262210	801800	1.3 miles north of S39 and northeast of S10A. The site is located at the south end of WCA1.	1/94 - P	М	М	М	QTR			G
S5AD	264101	802205	Downstream side of SSA, a District controlled water pumping station located at the northern most end of WCA1 near State Road 80, S5A pumps water from the EAA, L-8, and C-51 basins into WCA1.	1/94 - P	М	М	М	QTR		DS	G
S6D	262822	802650	Downstream side of S6, which is located about 16 miles southwest of S5A on the Hillsboro Canal at the intersections of the Hillsboro Canal(L-15), L-6, and L-7. Water is pumped in a southerly direction through this pump station down the Hillsboro Canal into WCA1.	1/94 - P	М	М	М	QTR		: DS	G
Fl	262153	-802230	Transect site between S10C and S10D 1.0 miles south of the L-39 levee. The site is located near the northeast side of WCA2.	5/94 - P	₿₩	₿₩	8W	QTR	ASED		G
F2	262048	802237	Transect site between S10C and S10D 2.0 miles south of F1. The site is located near the northeast side of WCA2.	5/94 - P	BW	BW	BW	QTR			G
F4	261903	802313	Transect site between SIOC and SIOD 3.0 miles south of F2. The site is located near the northeast side of WCA2.	5/94 - P	BW	BW	BW	QTR			G
СА215	261716	802446	Transect site between S10C and S10D 5.0 miles south of F5. The site is located near the northeast side of WCA2.	5/94 - P	BW	BW	BW	QTR	ASED		G
CA29	261952	802836	3.5 miles east of pump station S7. The site is located in the western side of WCA2A.	7/94 - P	BW	BW	BW	QTR		•••	G

TABLE 32 (Continued).Summary of Sampling Station Locations and Frequency of Collection for the Everglades Protection AreaMonitoring Programs

TABLE 32 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Everglades Protection Area Monitoring Programs

SFWMD											
Sta. ID	Lat	Long	Location	POR	Physical Parameter	Nutrient	Major Ions	Metals	Pesuicides	US/D	G/A
CA27	262204	803040	About 3.0 miles northeast of S7. The site is located near the $L-6$ levee on the northwest side of WCA2A.	6/94 - P	BW	BW	BW	QIR			G
CA28	262003	803201	Located close to pump station S7 just inside WCA2A	6/94 - P	BW	BW	BW	QTR			G
CA32	261400	803131	3.0 miles west of State Road 27 and east of Long Tree Island. The site is located in the northeast comer of WCA3A.	7/94 - P	BW	BW	BW	QTR		·	G
CA33	2617 58	803753	At District gauge #3-2, which is located 2 miles east of the hunting camp and about 4 miles southeast of pump station S8. The site is located at the northern end of WCA3A.	5/94 - P	BW	BW	BW	QTR	ASED		G
CA34	261018	803602	2.0 miles northeast from the intersection of the Mianti Canal and 1-75(SR84), and west of the Lonesome Tree. The site is located in the central portion of WCA3A.	6/94 - P	BW	BW	₿₩	QTR			G
CA36	261407	804146	Located next to the Miami Canal about half way between pump station S8 and 1-75(SR84). This site is located in the northern portion of WCA3A.	6/94 - P	BW	₿W	BW	QTR		• .	G
CA38	261025	804429	About 1.5 miles north of 1-75(SR84) about half way between pump station S140 and the Miami Canal. This site is located in the northwest central portion of WCA3A.	6/94 - P	BW	BW	BW	QTR			G
CA311	260621	804206	About 2.5 miles south of 1-75(SR84) about half way between pump station S140 and the Miami Canal. This site is located in the central portion of WCA3A.	6/94 - P	BW	BW	BW	QTR			G
CA315	255812	804103	Located about half way between the L-28 Tieback levee and the L-67A levee. This site is located in the south central portion of WCA3A.	6/94 - P	BW	BW	BW	QTR	ASED		G

SFWMD N Ortho Phosphorus Total Nitrogen Nitrite+Nitrate(NOx) **Total Phosphorus** Sta. ID **MEAN** MEAN MIN MEAN MAX MIN MEAN <u>MAX</u> MIN MAX MIN MAX CA215 0.0030 0.0014 0.3200 0.0010 0.0086 0.24401.7600 2.2475 2.5100 0.00200.0320 0.31700.0830 0,0030 0.03002.0260 2.9500 CA27 0.0050 0.0125 0.00100.7200 0.0020 0.0161 0.3660 0.0599 0.2050 0.0003 1.2129 2.5000 0.0001 0.0647 0.3350 CA28 0.0220 0.1118 0.4100 0.0020CA29 0.0900 0.02000.6800 1.7583 3.0700 0.0020 0.0020 0.0089 0.0020 0.0029 0.0296 0.2090CA311 0.0200 0.0060 0.7700 0.9967 0.0020 0.0109 0.07000.00200.00610.0010 0.00221.2000CA315 0.0020 0.00680.0390 0.0010 0.00340.06200.77001,0422 1.2700 0.0020 0.0211 0.2270CA32 0.00400.0102 0.0940 0.0010 0.0023 0.0070 0.8920 1.3205 1,9000 0.0020 0.0172 0.1770CA33 0.0140 0.0620 0.0024 0.0090 1.2967 1,4100 1.2000 0.00200.01080.09400.0050 0.0010 CA34 0.0030 0.0100 0.0430 0.0010 0.0023 0.0060 0.66000.98881.4200 0.00200.0105 0.1380 CA36 0.0090 0.02780.1010 0.00100.00770.0850 1.5600 1.7375 1.9000 0.0020 0.0052 0.0250 0.0400 0.5300 0.7007 0.0029 0.0020 0.0087 0.0800CA38 0.0020 0.0106 0.1030 0.00100.9480 LOX10 0.0124 0.0430 0.0094 0.1180 0.6800 0.9700 1.2600 0.0020 0.0187 0.1510 0.00400.0010LOX11 0.0200 0.0070 0.7135 0.8300 0.0040 0.0083 0.00100.00220.5970 0.00200.00980.0300LOX12 0.0021 0.0040 0.6400 0.7810 0,8530 0.00200.0547 0.46000.00400.0065 0.01800.0010LOX13 0.00200.0040 0.00010.5640 0.0001 0.0112 0.0470 0.00400.00780.0200 0.0010 0.9200 0.0040 0.0119 LOX14 0.0040 0.0078 0.0200 0.0010 0.0022 0.5230 0.5877 0.6800 0.00200.0500 0.6090 0,0216 LOX15 0.0020 0.0079 0.0200 0.0010 0.0022 0.00400.9697 1,20000.00200.1000LOX16 0.0780 0.0023 0.00800.5700 1,0700 1,5700 0.00200.0742 1.0070 0.00400.0106 0.0010 LOX3 0.0040 0.0500 0.0050 0.8900 1.2633 1.5400 0.0020 0.0024 0.0210 0.1290 0.0117 0.0010 LOX4 0.00401.8000 2.1150 2.4300 0.0020 0.0077 0.0050 0.0097 0.0230 0.00200.00230.0270 LOX5 0.0040 0.0111 0.08000.0010 0.00210.0040 0.8500 1.0375 1,2500 0.00200.0151 0.10300.9580 0.0042 LOX6 0.00400.0200 0.00400.00740.02000.00100.00210.8340 1.10000.0020LOX7 0.0020 0.0093 0.0390 0.0040 0.0072 0.0130 0.00200.0040 1.0400 1.0400 1.0400 0.0010 0,0020 0.0195 LOX8 0.0040 0.0086 0.0330 0.00100.0114 0.1780 0.8800 0.9107 0.9400 0.1510 0.9300 0.0020 0.0046 0.0180 LOX9 0.0040 0.0094 0.0340 0.0010 0.00210.0040 0.82001.0300 \$5AD 0.1250 0.00021.7600 0.0020 0.04000.0994 0.2500 0.0583 2,6200 0,30071.12000.0040 S6D 0.02000.0584 0.2100 0.00500.0460 0.19000.0004 1.70012.80000.0020 0.3343 1.9000

É.

 TABLE 33.
 Statistics on Select Parameters for the Everglades Protection Area Water Quality Monitoring Program for

 Period of Record
 Period of Record

SFWMD <u>Sta. ID</u>	Total Phosphorus		<u>rus</u>	Ortho	Phospho	<u>rus</u>	Total Nitrogen			<u>Nitrite+Nitrate(NOx)</u>						
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>				
F1 F2 F4	0.0250 0.0170 0.0060	0.0998 0.0774 0.0154	0.9820 0.4520 0.1200	0.0020 0.0020 0.0010	0.0973 0.0554 0.0029	0.9600 0.3800 0.0200	0.0002 1.8500 1.6000	2,8620 2,4600 2,1080	6,4100 3.5600 2.9800	0.0020 0.0020 0.0020	0.0310 0.0441 0.0335	0.5400 0.5000 0.3340				

SECTION 16

Big Cypress Seminole Indians PROJECT CODE: SEMI

Purpose and Scope

The Big Cypress Seminole Indian Reservation is west of Water Conservation Area 3A. The monitoring is being done in response to an agreement between the District and the Seminole Indian Tribe of Florida. The monitoring covers the inflow points to the Big Cypress Seminole Indian reservation.

The objectives of this program are:

- 1. To determine the quality of water delivered to the Big Cypress Indian Reservation through the L-28 Borrow canal before and after the diversion of all or a portion of the C-139 Basin;
- 2. To determine the quality of water delivered to the Big Cypress Indian Reservation through the North and West Feeder Canals.

Sampling Locations and Descriptions

The locations of the 2 sites monitored under the SEMI project are shown in Figure 19. Table 34. lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the samples are collected upstream or downstream, and type of sample collection.

District Publications

None

FIGURE 19. Location of Sampling Stations for the Big Cypress Seminole Indians Water Quality Monitoring program.

TABLE 34.Summary of Sampling Station Locations and Frequency of Collection for the Big Cypress Seminole IndiansWaterQuality Monitoring Programs

SFWMD Sta. ID	. Lat	Long		Location	POR	Physical Parameters	Nutrients	Major Ions	Metals	US/DS	G/A
NFEED	262020	805446	A canal station situated the North Feeder Canal Snake Road, on the nor Seminole Indian Reserv southward at this site, c	on a platform on the west side (, approximately two miles north them border of the Big Cypress vation. Water flow is typically owards spillway S-190.	ด์ 1996-P of		W	-	-		G/A
WFEED	261809	810428	A canal station situated the West Feeder Canal, Feeder Weir. The Weir Road, 5.6 miles west of Seminole Indian Reserv this site, towards spillw	on a platform on the south side immediately upstream of the W is located on West Boundary I Snake Road in the Big Cypres ration. Water flow is eastward at ay S-190.	of 1996 - P est s	-	W	-	-		G/A

٠

÷.,

.

TABLE 35.Statistics on Select Parameters for the Big Cypress Seminole Indians Water Quality Monitoring Program for
Period of Record

SFWMD <u>Sta. ID</u>	<u>Total</u>	Phosphor	<u>'us</u>	Orthe	o Phospho	orus	Tota	d Nitroge	<u>en</u>	Nitrite+Nitrate(NOx)					
	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	MEAN	<u>MAX</u>			
NFEED WFEED	0.0870 0.0360	0.2539 0.0610	1.2960 0.1060	-	-	-	0.7130 0.7370	1.8636 1.3536	5.3300 2.3300	0.0150 0.0150	0.0301 0.0294	0.0810 0.0470			

SECTION 17

WATER CONSERVATION AREA INFLOWS AND OUTFLOWS AND TAMIAMI BRIDGE CULVERTS

PROJECT CODES: CAMB, TAMB

Purpose and Scope

The Water Conservation Area (WCA) Inflows and Outflows, and the Tamiami Bridge Culverts water quality monitoring programs encompasses an area of over 1,300 square miles of Everglades marsh that receive waters from a variety of land uses, such as; agricultural, native and improved pastures, and urban and rural communities. The water quality monitoring program provides a water quality and nutrient loading data base for:

- 1. Complying with monitoring requirements of the Everglades National Park (TENP) Memorandum of Agreement (MOA) between the National Park Service, the South Florida Water Management District (SFWMD or District), and the United States Army Corps of Engineers (COE);
- 2. Implementing the Lake Okeechobee Technical Advisory Committee's (LOTAC)'s recommendation for a comprehensive monitoring and research plan as described in the Department of Environmental Protection's "Lake Okeechobee Monitoring and Research Plan";
- 3. Determining long and short term trends necessary to identify the downstream impacts of LOTAC's Surface Water Improvement and Management (SWIM) implementation plan for the Everglades Agricultural Area (EAA); and
- 4. Determining effectiveness of the implementation of basin management plans in reducing nutrient loadings to the WCA.

Water quality data are also used to establish nutrient budgets for the WCA. Monitoring of nutrients and other water quality parameters is important in the quantification of the effect of inflows on the ecology of the marsh. With the implementation of the SWIM Act, the data collected will be instrumental in evaluating downstream impacts of the Interim Action Plan and other possible management alternatives for the EAA.

These data can indicate trends in the changes in water quality, allow for better management of the system, and monitor for environmental enhancement or degradation. Values that deviate significantly from established criteria may signal a concern requiring immediate attention.

Sampling Locations and Descriptions

The locations of the (45) sites monitored under the CAMB program and the 20 sites monitored under project TAMB are shown in Figures 20 and 21. Table 35 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection for each program respectively. Table 36 contain statistics for each monitoring location for each program. In October 1996, upon approval of the Technical Oversite Committee(TOC), the TAMB sites were seperated out from the CAMB program, and reduced from 19 sites to 11. The parameter list and frequencies have been modified under the TAMB program. See table 35 for the modifications made to this program.

District Publications

- Gleason, P. (1974). Chemical Quality of Water in Conservation Area 2A and Associated Canals. SFWMD, Tech. Pub. No. 74-1. (DRE 39)
- Lutz, J. (1977). Water Quality and Nutrient Loadings of the Major Inflows from the Everglades Agricultural Area to the Conservation Areas, Southeast Florida. SFWMD, Tech. Pub. No. 77-6. (DRE 78)
- Pfeuffer, R.J. (1985). Pesticide Residue Monitoring in Sediment and Surface Water Bodies within the South Florida Water Management District. SFWMD, Tech. Pub. No. 85-2. (DRE 214)
- Swift, D.R. (1981). Preliminary Investigation of Periphyton and Water Quality Relationships in the Everglades Water Conservation Areas. SFWMD, Tech. Pub. No. 81-5. (DRE 131)
- Swift, D.R. and R. Nicholas. (1987). Periphyton and Water Quality Relationships in the Everglades Water Conservation Areas. SFWMD, Tech. Pub. No. 87-2. (DRE 233)
- Water Chemistry Div. (1984). North New River Backpumping Water Quality Impact Study Report No.1, Preconstruction and Initial Operation. SFWMD, Tech. Memo. March 1984. (DRE 179)

FIGURE 20. Location of Sampling Stations for the Water Conservation Areas Inflow / Outflow Water Quality Monitoring Program.

FIGURE 21. Location of Sampling Stations for the Tamiami Bridge Culverts Water Quality Monitoring Program.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chi.	US/DS	G/A
S5A	264101	802205	A District controlled water pumping station located at the northern most end of WCA1 near State Road 80. S-5A pumps water from the EAA, L-8, and the C-51 basin into WCA1.	1974 - P	WF/M	WF/M	QTR	ВА	М	US	G/A
SSAS	264101	802151	A gate type structure located at the north end of WCA1 near S-5A and State Road 80. Water flows out of WCA1 into the L-8 canal.	1979 - P	BWF	BWF	QTR	BA	-	US	G
SSAE	264104	802150	A small gate type structure located at the intersection of the C-S1 and L-8 canal near S-SAS and State Road 80. Water can flow either east through this structure into the C-S1 canal, or west into the L-8 canal.	1982 - P	BWF	BWF	QTR	BA	-	US	G
S5AW	264105	802153	A small gate type structure located at the intersection of the L- 13 and L-8 canal near S-5AS and State Road 80. Water can flow either west through this structure into the L-13 canal, or east into the L-8 canal.	1991 - P	BWF	BWF	QTR	BA	-	US	G
S 6	262822	802650	S-6 is located about 16 miles southwest of S-5A on the Hillsboro Canal at the intersection of Hillsboro Canal (L-15), L-6, L-39, and L-7. Water is pumped in a southerly direction through this pump station down the Hillsboro Canal into WCA1.	1974 - P	₩F/M	WF/M	QTR	BA		US	G/A
S 7	262007	803213	S-7 is located approximately 11 miles southwest of S-6 at the intersection of North New River Canal (L-18), L-5, and L-6, along US-27. Water is pamped in a southerly direction down the North New River Canal into WCA2. There is also a sluice gate that can be open to let water gravity flow northward.	1974 - P	WF/M	WF/M	QTR	ВА	-	US	G/A
S8	261953	804628	S-8 is located about 15 miles west of S-7 at the intersection of Miami Canal (L-23), L-4, and L-5. Water is pumped in a southerly direction down the Miami Canal into WCA3. There is also a sluice gate that can be opened to let water gravity flow northward.	1973 - P	WF/M	WF/M	QTR	BA	-	US	G/A

. .

SFWMD Sta, ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chl.	US/DS	G/A
S 9	260340	802638	A District controlled water pumping station located along US- 27 on the South New River Canal (C-11). Water is pumped from C-11 into WCA3.	1978 - P	BWF/M	W/BWF/M	QTR	BA	-	US	G/A
SIOA SIOC SIOD SIOE	262133 262216 262317 262733	801846 802110 802256 802614	These are all gate type structures except S10E which are gated culverts. They are all located along L-39 between WCA1 and WCA2A on the Hillsboro Canal. S10A,S10C, and S10D are one, three, and six miles west of S-39 on L-39, respectively. S10E is about 1/4 mile south of S6 on L-39. Water flows from WCA1 into WCA2A through these structures.	1978 - P 1978 - P 1978 - P 1978 - P 1985 - P	BWF BWF BWF/M BWF	BWF BWF BWF/M BWF	QTR QTR QTR QTR	BA BA BA BA	- - -	US US US US	6 6 6
SI1A SI1B SI1C	261036 261208 261345	802656 802716 802737	These are gate type structures located along US-27 beginning approximately two miles north of State Road 84, and are spaced approximately two miles apart. Water flows from WCA2A into WCA3A through these structures.	1978 - P 1978 - P 1978 - P	BWF BWF BWF/M	BWF BWF BWF/M	QTR QTR QTR	BA BA BA	- • -	US US US	G G ⊷G
S34	260858	802634	A small gate type structure located on the North New River Canal along US-27 about 1/4 mile north of State Road 84. Water flows in an easterly direction down the North New River Canal.	1978 - P	BWF	BWF	QTR	BA	-	US	G
\$38	261344	801756	A small gate type structure located at the southeast corner of WCA2A at the intersection of L-36 and L-35B seven miles west of State Road 7, water flows eastward into C-14 canal.	1978 - P	BWF/M	BWF/M	QTR	BA	-	US	0
S38B	261700	801752	A set of four culverts under the L-36 levee half way between S-38 and S-39. The water samples are collected from the WCA-2A side of the culverts.	1990 - P	BWF	BWF	QTR/F	BAÆ		DS	G
S39	262119	801752	A small gate type structure located at the south end of WCA1 at the intersection of L-36 L-39, and L-40 eight miles west of State Road 7, on the Hillsboro Canal. This is an outflow point from WCA1 where water flows eastward, down the Hillsboro Canal.	1978 - P	BWF/M	BWF/M	QIR	BA	-	US	G

Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	CPT	US/DS	G/A
S144	261304	802353	These are all single gated culverts located along L-35B which	1978 - P	BWF	BWF	QTR	BA		US	G
S145 S146	261317 261330	802158 802001	divides WCA2A from WCA2B. They are five, seven, and nine miles east of US-27, respectively. Water flows from WCA2A through these structures into WCA2B.	1978 - P 1978 - P	BWF/M BWF	BWF/M BWF	QTR QTR	BA BA		US US	G G
S150	262004	803223	A series of gated culvents located west of S-7 across US-27. Water flows southward through this structure into WCA3A.	1978 - P	BWF/M	W/BWF/M	QTR	BA		US/DS	G/A
1.3	261952	804956	A canal station located at the intersection of the L-4 and L-28 canals, approximately three miles west of pump station S-8. The water flows southward into WCA3A.	78 - 96	BWF/M	BWF/M	QTR	BA			G
L3BRN	262600	805650	This sample is collected from the Deer Fence Canal bridge on L-3, which is the third wooden bridge north along L-3. Water flows in a southerly direction at this point.	84 - 96	BWF/M	BWF/M	QTR	BĄ			G
L281	260954	804943	This water sample is collected from the bridge of State Road 84(175) at the L-28 Interceptor Canal, about four miles west of pump station S-140. The water flow is toward the south at this point.	78 - 96	BWF	BWF	QTR	BA			G
\$140	261017	804940	A District controlled water pumping station located at the west side of WCA3A on the L-28 canal near State Road 84(175). Water is pumped eastward through this structure into WCA3A down C-60.	78 - 96	BWT/M	BWF/M	QTR	BA		US	G
S151	260040	803037	A series of gated culverts located in WCA3A at the intersection of L-67A and the Miami Canal. Water flows in a southeasterly direction through this structure, down the Miami Canal.	1978 - P	BWF/M	BWF/M	QTR	BA		US	G

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chil.	US/DS	G/A
\$333	254542	804027	A gate type structure located at the southeast comer of WCA3A, 1/4 of a mile east of S-12D along US-41. The water flows eastward from WCA3A down the L-29 canal.	1978 - P	BWF/M	BWF/M	BWF/M	М	М	US	G
SI2D SI2C SI2B SI2A	254542 254542 254541 254541	804055 804338 804611 804917	These are all gate type structures located along US-41 at the south end of WCA3A. They are 1/4, 2, 6, and 9 miles west of S-333, respectively. Water flows southward from WCA3A through these structures into the ENP.	1978 - P 1978 - P 1978 - P 1978 - P	BWF/M BWF/M BWF/M BWF/M	BWF/M BWF/M BWF/M BWF/M	BWF/M BWF/M BWF/M BWF/M	M M M	М М М	US US US US	G G G
G123	260859	802634	A District controlled water pumping station located on the North New River Canal along US-27 about 1/4 of a mile north of State Road 84. Water is pumped toward the north through this structure and then is released into WCA3A through S-142.	1982 - P	8WF	BWF	QTR/F	BA/F		ŬS	G
S31	255633	802625	A series of gated culverts located on the east side of WCA3A on the Miami Canal near US-27. Water flows southeast through this structure down the Miami Canal.	1987 - P	BWF/M	BWF/M	QTR	BA		US	G
S190	261701	805805	A gate type structure located on the L-28 Intercepter Canal about 2 $1/2$ miles south of State Road 833 along the north feeder canal that lets water into the L-28 Intercepter Canal, which is located within the Big Cypress Seminole Indian Reservation.	87 - 96	BWF/M	BWF/M	QTR	BA		ŲS	G 1.
L3BRS	261950	805253	This water sample is collected from the Oil Well Bridge, which is located 6 1/2 miles west of pump station S-8 at the intersection of the L-3 and L-4 levees near the northwest corner of WCA3A.	87 - 96	BWF/M	BWF/M	QTR	BA		-	G

SFWMD Stal ID -	لها	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	Chi.	US/DS	G/A
L40-1** L40-2**	263629 263535	801717 801617	Pump stations on the NE side of WCA-1 owned and operated by the Acme Improvement District. L40-1 pumps water into WCA-1. L40-2 can pump water into WCA-1 or take water out of WCA-1 for irrigation.	78-80,89-P 78-80,89-P	BWF/M BWF/M	BWF/M BWF/M	QTR QTR	BA BA		US US	' G G
C123SR84	260845	803758	This sample is collected from the Miami Canal where it crosses under State Road 84(175). Water flows in a southerly direction at this point.	1988 - P	BWF/M	BWF/M	QTR	BA	-	•	G
C139DFC	262555	805648	A canal station situated on a platform on the east side of the L3 Canal, 100 yards south (downstream) of the Dear Fence Canal bridge.	1996 - P	BWF/M	W/BWF/M	QTR	BA	-	-	G/A
G136	263960	805658	A gated culvert structure located at the intersection of the L-1 and L-2 levees in Hendry Co. Water flows eastward through this structure.	1996 - P	BWF/M	W/BWF/M	QTR	BA		US -	G/A
USL3BRS	261958	805258	A canal station situated on a platform on the west side of the L3 canal, approximately 200 yards north of Oit Well Bridge(L3BRS). Water flows southward at this site.	1996 - P	BWF/M	W/BWF/M	QTR	BA	-	-	G/A
USSO	261948	805255	A canal station situated on a platform on the west side of the L28 Borrow Canal, immediately downstream of a gated culvert operated by US Sugar Corp. This structure is located 50 yards west of Oil Well Bridge.	1996 - P	BWF/M	W/BWF/M	QTR	BA	-	DS	G/A
TAMBR6	254538	803317	Culvert under US Highway 41, 3.3 miles west of District spillway S-334.	1991 - P	BWF/M	BWF/M	QTR	BA	-	-	G
FROGETTY	254538	803550	Culvert under US Highway 41, 6.0 miles west of District spillway S-334.	1991 - P	BWF/M	BWF/M	QTR	ВА		-	0

** As of February 1997 these sites will be re-named to: ACME1DS for L40-1, and G94D for L40-2.

SFWMD Sta ID Lat Long		_			Physical	Total	
Sta. ID	Lat	Long	Location	POR	Parameters	Phosphorus	G/A
TAMBRI	254538	803023	Culvert under US Highway 41, 0.3 miles west of District spillway S-334.	1991-P	BWF	BWF	G
TAMBR2	254538	803053	Culvert under US Highway 41, 0.8 miles west of District spillway S-334.	1991-P	BWF	BWF	G
TAMBR3	254538	803134	Colvert under US Highway 41, 1.5 miles west of District spillway S-334.	1991-P	BWF	BWF	G
TAMBR4	25453 8	803215	Culvert under US Highway 41, 2.2 miles west of District spiłłway S-334.	1991-P	BWF	BWF	G
TAMBR5	25453 8	803241	Cuivert under US Highway 41, 2.7 miles west of District spillway S-334.	1991-P	BWF	BWF	G
COOPERTN	254538	803340	Culven under US Highway 41, 3.7 miles west of District spillway S-334.	1991-P	BWF	BWF	G
TAMBR7*	254538	803347	Culvert under US Highway 41, 3.85 miles west of District spillway S-334.	91 • 96	WF	WF	G
TAMBR8*	254538	803420	Culvert under US Highway 41, 4.4 miles west of District spillway S-334	91 - 96	WF	WF	G
GLADER	25453 8	803453	Culvert under US Highway 41, 5.0 miles west of District spillway S-334.	1991-P	BWF	BWF	G

.

* Discontinued in 1996.

. * *

÷

-

SFWMD

Sta. ID	Lat	Long	Location	POR	Physical Parameters	Total Phosphorus	G/A
TAMBR9*	254538	803508	Culvert under US Highway 41, 5.3 miles west of District spittway S-334.	91 - 96	WF	WF	G
TAMBR10*	254538	803630	Culvert under US Highway 41, 6.7 miles west of District spillway S-334.	91 - 96	WF	WF	G
TAMBR11*	254538	803659	Culvert under US Highway 41, 7.2 miles west of District spillway S-334.	91 - 96	WF	WF	G
SAFARI	254538	803735	Culvert under US Highway 41, 7.9 miles west of District spillway S-334.	1991-P	BWF	BWF	G
TAMBR12*	254538	803800	Culvert under US Highway 41, 8.35 miles west of District spillway S-334.	91 - 96	WF	WF	G
TAMBR13*	254538	803836	Culven under US Highway 41, 8.95 miles west of District spillway S-334.	91 - 9 6	WF	WF	G
TAMBR14*	254538	803920	Culvert under US Highway 41, 9.7 miles west of District spillway S-334.	91 - 96	WF	WF	G
TAMBR15*	254538	804004	Culvert under US Highway 41, 10.5 miles west of District spillway S-334.	91 - 96	WF	WF	G
\$333DS	254542	804027	A gate type structure located at the southeast corner of WCA3A, 1/4 of a mile east of S-12D along US-41. The water flows eastward from WCA3A down the L-29 canal. Samples collected from the downstream side of structure,	1991 - P	BWF	BWF	G

* Discontinued in 1996.

TABLE 37.Statistics on Select Parameters for the Water Conservation Areas and Tamiami Bridge Culverts Water
Quality Monitoring Program for Period of Record

SFWMD												
<u>Sta. ID</u>	<u>Total</u>	Phosphor	rus	<u>Ortho</u>	Phospho	<u>orus</u>	Tota	al Nitrog	<u>en</u>	<u>Nitrite-</u>	-Nitrate()	<u>10x)</u>
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
C123SR84	0.0070	0.0465	0.2620	0.0040	0.0136	0.0670	0.0001	1,6018	5.3000	0.0040	0.1202	3.4470
C139DFC	-0.0180	0.1376	1.1850	-	-	-	0,0002	1.5028	3.4700	0.0040	0.0655	0.3360
G123	0.0040	0.0195	0.0800	0.0040	0.0066	0.0720	0.0001	1.8220	3.0700	0.0040	0.0863	0.6000
G136	0.0110	0.0773	0.4150	0.0040	0.0429	0.2530	0.8550	1.7619	8.2000	0.0040	0.1205	0.9970
L28]	0.0120	0.0583	0.6660	0.0020	0.0237	0.4720	0.0001	1.3055	3.6200	0.0040	0.0369	0.8040
L3	0.0020	0.1101	0.8600	0.0020	0.0617	0.5860	0.0002	1.7062	5.9300	0.0040	0.1004	3.4470
L3BRN	-0.0180	0.1136	0.4850	0.0040	0.0623	0.3790	0.5000	1.5372	3.0900	0.0040	0.0909	1.1910
L3BRS	0.0200	0.1203	0.5140	0,0040	0.0759	0.3590	0.6400	1.5147	7.5100	0.0040	0.1093	1.0280
L40-1	0.0110	0.0598	0.4100	0.0020	0.0224	0.2940	0.0002	2,8906	9.1700	0.0040	0.3423	4.2450
L40-2	0.0090	0.0815	0.3830	0.0020	0,0347	0,2250	0.0003	2.7025	9.3600	0.0040	0.3808	4.5710
S10A	0.0070	0.0559	0.1620	0.0020	0.0290	0.1580	0.0002	2.3554	11,5400	0.0040	0.3211	6.0430
S10C	0.0100	0,1095	3.4350	0.0020	0.0607	1.2900	0,6600	3,3530	22.8400	0.0040	0.5248	5.0830
\$10D	0.0080	0.1095	1.3470	0.0020	0.0623	1,2740	0.0004	3.3100	14.7300	0.0040	0.5316	6,3300
S10E	0.0320	0.1073	0.4930	0.0040	0.0582	0.3520	0.8400	3.0486	7.6700	0.0040	0.4528	3.2270
S11A	0.0030	0.0258	0,1920	0.0020	0.0099	0.1630	0.0001	2.1375	6.2900	0.0040	0.1163	1.4600
S11B	0.0020	0.0454	0.4460	0.0020	0.0235	0.4120	0.0002	2.3953	6.2300	0.0040	0.2815	3,1850
SHIC	0.0070	0.0540	0.5560	0.0020	0.0254	0.3450	0.0001	2.3700	6,9600	0.0040	0.3026	4.4050
S12A	0.0020	0.0154	0.2530	0.0020	0.0051	0.0720	0.0001	1.4505	7.8500	0.0040	0.0253	0.4950
S12B	0.0020	0.0150	0.5930	0.0020	0.0050	0.0570	0.0001	1.4701	5.5300	0.0040	0.0399	1.5410
\$12C	0.0020	0.0137	0.1420	0.0020	0.0052	0.0680	0.0002	1.6049	9.1300	0.0040	0.0600	2.0910
S12D	0.0020	0.0144	0,1320	0.0020	0.0051	0.0610	0.0002	1.6836	5,4100	0.0040	0.0847	2.4800
S140	0.0040	0.0643	0.6880	0.0020	0.0285	0.5010	0.0001	1.5244	7.3000	0.0040	0.0722	5.4630
S144	0.0020	0.0180	0.1480	0.0020	0.0055	0.0530	0.0002	2.2765	9.6100	0.0040	0.0730	2.2670
S145	0.0020	0.0158	0.1220	0.0020	0.0062	0.0970	0.8320	2.1245	6.0100	0.0040	0.0683	2.6910
S146	0.0020	0.0165	0,1010	0.0020	0.0054	0.0400	0.0002	2.0850	4,9000	0.0040	0.0485	0.8710
S150	0.0080	0.0589	0.2020	0.0020	0.0274	0.1300	0.0002	2,5568	7.8500	0.0040	0.4909	5.3490
S151	0.0040	0.0253	0.1710	0.0020	0.0083	0.0930	0.0002	1.9643	5.0500	0.0040	0.1440	2.0890
S190	0.0110	0.0743	0.2790	0.0040	0.0351	0.2220	0.0001	1,1912	2.4100	0.0040	0.0642	1.4450
\$31	0,0040	0.0211	0.1410	0.0040	0.0088	0.1490	0.6900	1,5461	3.3100	0.0040	0.0826	1.8360
S333	0.0030	0.0155	0.1670	0.0020	0.0060	0,0770	0.0002	1.6937	5.8000	0.0040	0.0959	1.8510
\$333DS	0.0040	0.0124	0.0600	0.0040	0.0040	0.0040	1.4700	1.4700	1.4700	0.2830	0,2830	0.2830

TABLE 37.Statistics on Select Parameters for the Water Conservation Areas and Tamiami Bridge Culverts Water
Quality Monitoring Program for Period of Record

SFWMD			•										
<u>Sta. ID</u>	<u>Total</u>	Phospho	rus	<u>Orthe</u>	Phospho	<u>)rus</u>	<u>Tot</u>	al Nitrog	en	Nitrite+Nitrate(NOx)			
	MIN	<u>MEAN</u>	MAX	MIN	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	
S34	0.0020	0.0200	0.1120	0.0020	0.0045	0.0400	1.1200	2.2011	6.0200	0.0040	0.0809	1.2250	
\$352	0,0560	0.1583	0.5000	-	-	-	0.0002	1.7970	3,6000	0.0260	0.1704	0.5200	
S38	0.0020	0.0206	0.1320	0.0020	0.0059	0.0680	0.0002	2,1208	7.6500	0.0040	0.0634	2,1020	
S38B	0.0080	0.0290	0.1450	0.0040	0.0050	0.0120	0.8700	1 4285	3.2000	0.0040	0,2155	0.8350	
S39	0.0060	0.0558	0.2800	0.0020	0.0228	0,2380	0,0004	2.4397	10.9600	0.0040	0.2030	5.9450	
S5A	0.0040	0.1579	0.5810	0.0020	0.0916	0.5240	0,0003	4.8965	18.6800	0.0100	1.4891	12.1560	
S5AE	0.0110	0.1052	0.5600	0.0040	0.0533	0.3760	0.0005	2,1365	6.1300	0.0040	0.3130	2.6840	
S5AS	0.0300	0.1537	0.4560	0.0020	0.0939	0.3970	0.0002	3.3325	12.0900	0.0040	0.4824	4,7870	
S5AW	0.0270	0.0675	0.3230	0.0040	0.0248	0.0840	0.7500	1.5308	3.5300	0.0050	0.2026	1.2290	
S6	0.0020	0.0875	0.8720	0.0020	0.0514	0.8490	0.0003	3.8251	17.0400	0.0001	0.8266	10.3130	
S7	0.0060	0.0745	1.0300	0.0020	0,0402	0.9220	0.0002	3.0152	10.6700	0.0001	0.7336	6.6600	
S8	0.0050	0.0991	0.9330	0.0010	0.0429	0.5960	0.0001	3.0272	17.4000	0.0002	0.8268	8.9000	
S9	0.0020	0.0173	0.1720	0.0020	0.0056	0.1000	0.0002	1.8987	8,7100	0.0030	0.0641	0.8340	
USL3BRS	0.0210	0.1374	0.4870	0.0480	0.0480	0.0480	0.5560	1.4861	2.7000	0.0040	0.1044	0.4090	
USSO	0.0400	0.1706	1.2120	0.0080	0.0496	0.0980	0.0002	1.5896	4.7800	0.0150	0.0331	0.1300	
COOPERTN	0.0040	0.0111	0.0340	-	-	-	-	-	-	-	-	-	
FROGCITY	0.0040	0.0101	0.0180	-	-	-	-	-	-	-	-	-	
GLADER	0.0040	0.0110	0.0370	-	_		-	-	-	-	-	-	
SAFARI	0.0040	0.0112	0.0370	-	-	-	-	-	-	-	-		
TAMBR1	0.0040	0.0135	0.4350	-	-	-	-	-	-	-	-	-	
TAMBR10	0.0050	0.0101	0.0170	-	-	_	-	-	_	-	-		
TAMBR11	0.0040	0.0107	0.0550	-	-	_	-	-	-	-	-	-	
TAMBR12	0.0040	0.0112	0.0450	-	-	-	-	-	-	-	-	-	
TAMBR13	0.0050	0.0126	0.0980	-	-	-	-	-	-	-	-	-	
TAMBR14	0.0050	0.0105	0.0180	-	-		-	-	-	-	-	-	
TAMBR15	0.0040	0.0122	0.0410	-	-	-	-	_	_	-	-	-	
TAMBR2	0.0040	0.0115	0.0490	-	-	-	• -	-	-	-	-	-	
TAMBR3	0.0040	0.0113	0.0560	-	-	-	-	-	-	-	-	-	
TAMBR4	0.0040	0.0111	0.0730	-	-	-	-	-	-	-	-	-	
TAMBR5	0.0040	0.0111	0.1040	-	-	-	-	-	-	-	-	-	

1

TABLE 37.Statistics on Select Parameters for the Water Conservation Areas and Tamiami Bridge Culverts Water
Quality Monitoring Program for Period of Record

SFWMD <u>Sta. ID</u>	FWMD ta. ID <u>Total Phosphorus</u>			Ortho Phosphorus			<u>To</u>	<u>tal Nitrog</u>	en	Nitrite	<u>Nitrite+Nitrate(NOx)</u>				
	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	MEAN	<u>MAX</u>	MIN	<u>MEAN</u>	MAX	MIN	MEAN	<u>MAX</u>			
TAMBR6	0.0040	0.0104	0.0230	-	-	-		-	-	-	-	-			
TAMBR7	0.0130	0,0130	0.0130	-	-	-	-	-	-	-	-	-			
TAMBR8	0.0040	0.0102	0.0270	-	-	-	-	-	-	-	-	-			
TAMBR9	0.0050	0.0109	0.0220	•	-	-	-	-	-	-	-	-			

SECTION 18

THE BISCAYNE BAY WATER QUALITY MONITORING PROGRAM PROJECT CODE: BISC

Purpose and Scope

This cooperative program with Dade County Department of Environmental Resources Management (DERM) consists of monthly surface water quality monitoring in Biscayne Bay and its major tributaries. DERM began routine monitoring of Biscayne Bay surface water quality in March 1979. The original program consisted of 48 fixed stations distributed throughout the Bay and at the mouths of most major tributaries. Over the years, sampling stations were added and the parameter matrix was modified. The most significant changes occurred when the District began funding the Program in 1988 as part of the Biscayne Bay Surface Water Management and Implementation (SWIM) Plan. Degradation of water quality in Biscayne Bay was a primary factor that influenced the State legislature to place Biscayne Bay on the initial SWIM priority list. Stations were added primarily in the tributaries and the parameter matrix was expanded in an effort to 1) detect spatial, seasonal and interannual trends and possible impacts on the health of the bay ecosystem; and 2) identify areas of potential degradation. These data have been instrumental in documenting a variety of impacts to surface water quality in Biscayne Bay and continue to give direction for investigations and remedial actions. The data are regularly used by academic institutions, private sector organizations and public agencies.

Monthly surface water quality monitoring at 25 sites in Biscayne Bay is also conducted by Florida International University as part of the South Florida Estuarine Water Quality Monitoring Program described in Section 23.

Sampling Locations and Descriptions

The routine water quality monitoring network consists of 90 stations at which monthly samples are collected and analyzed for a variety of physical, chemical and biological parameters to characterize the water quality. Figures 22 and 23 depict the sampling locations. Table 37 lists the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and the type of sample collection. Table 38 contains basic summary statistics for select parameters at each monitoring location.

District Publications

Biscayne Bay SWIM Plan. (1989). Planning Department, SFWMD.

Biscayne Bay SWIM Plan. (1995). Planning Department, South Florida Water Management District.

FIGURE 22. Location of Sampling Stations for the Biscayne Bay Water Quality Monitoring Program.

FIGURE 23. Location of Sampling Stations for the Biscayne Bay Water Quality Monitoring Program.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Metals	Bacteria	US/DS	G/A
AC01	255400	800838	Mouth of New Arch Creek	1979-P	м	М	-	м	DS	G
AC02	255337	800915	Arch Creek southern mouth west of Bayshore Dr. bridge	1988-P	м	М	-	М	DS	G
AC03	255358	800941	Arch Creek south side of foot bridge at Enchanted Forest Park	1988-P	м	М	В	М	US	G
AR01	251523	802515	Mouth of Aerojet Canal (C-111)	1989-P	М	м	В	м	DS	G
AR03	251725	802640	East side of U.S. 1 bridge on Aerojet Canal (C-111)	1989-P	м	м	в	М	US	G
B B 01	255808	800725	Intracoastal Waterway at Dade Broward line	1979-P	М		-	М	DS	G
BB02	255638	800745	Intracoastal Waterway at green marker no. 49; Near center of Dumfoundling Bay	1979-P	М	М	В	М	DS	G
BB03	255543	800754	Mouth of Oleta River at Intracoastal Waterway	1979-P	м	-	-	м	DS	G
BB04	255501	800737	Intracoastal Waterway at red marker no. 4	1979-P	М	м	•	м	DS	G
BB06	255400	800759	Intracoastal Waterway at red marker no. 9	1979-P	м	м	-	м	DS	G
BB07	255358	800730	Thirty meters west of A1A bridge in Haulover Inlet	1979-P	м	-		м	DS	G
BB09	255215	800922	Intracoastal Waterway at red marker no. 18	1979-P	м	м	-	м	DS	G
BB10	255207	800842	West of Biscayne Point at red marker no. 2	1979- P	м	-	-	м	DS	G
BB11	255047	801001	Ten meters south of Pelican Harbor Park pier	1979- P	м	-	-	м	DS	G
B814	254938	800927	North of Julia Tuttle Causeway; 2 km. east of Intracoastal Waterway green marker no. 31	1979-P	М	М	В	М	DS	G
B815	254851	801032	Intracoastal Waterway at green marker no. 39	1979-P	м	-	-	М	DS	G

TABLE 38. Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay Water Quality
Monitoring Program.

.

.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Metals	Bacteria	US/DS	G/A
BB16	254733	801051	Intracoastal Waterway at green marker no. 45	1979-P	м	-	-	м	DS	G
BB17	254801	800943	Midway between Julia Tuttle Causeway and San Marino Is.; 1 km. north of San Marino Is.	1979-P	М	М		М	DS	G
BB18	254711	800951	Midway between San Marino Island and Hibiscus Island	1979-P	М	-		М	DS	G .
BB19	254630	801059	Intracoastal Waterway thirty meters south of Dodge Island bridge	1979-P	М	-		м	DS	G
BB22	254527	801020	Midway between Miami Marine Stadium and NOAA slip at Dodge Island ; 1.4 km. east of Intracoastal Waterway green marker no. 67	1979-P	М	М	В	М	DS	G
BB23	254600	801000	Fisherman's Channet green marker no.13	1979-P	М	-	-	М	DS	G
BB 24	254553	\$00812	Miami Main Ship Channel red marker no. 16	1979-P	М		-	М	DS	G
8825	254524	800844	Norris Cut midway between Virginia Key and Fisher Island	1979-P	М	-		М	DS	G
BB26	254447	801110	North side of Rickenbacker Causeway bridge and 30 meters west of Intracoastal Waterway	1979-P	М		-	М	DS	G
BB27	254411	801100	Intracoastal Waterway green marker no. 71	1979-P	М	М	-	М	DS	G
BB28	254347	800934	Bear Cut thirty meters west of center bridge span	1979-P	м	-	-	м	DS	G
BB29	254247	801222	Dinner Key Channel green marker no. 1	1979-P	М	М	-	М	DS	G
B B31	254134	801228	Midway (3 km.) east from mouth of Coral Gables Waterway to Key Biscayne	1979-P	м	М	В	М	DS	6
BB32	254106	801102	West of Cape Florida at red channel marker no. 4	1979-P	м	-	-	м	DS	6

TABLE 38 (Continued).Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay
Water Quality Monitoring Program.

· .

SFWMD Sta. ID	Lai	Long	Location	POR	Physical Parameters	Nutrients	Metals	Bacteria	US/DS	G/A
BB34	253902	801530	Two kilometers east of mouth of Snapper Creek (C-2)	1979-P	М	-	-	М	DS	G
BB35	253842	801139	West of Safety Valve shoals at green marker no. 1	1979-P	М	М	•	М	ÐS	G
BB36	253557	801415	At mid bay red marker no. 2	1979-P	М	М	-	М	DS	G
BB37	253412	801130	West of Ragged Keys at green marker no. 1B	1979-P	м	-	-	М	DS	G
BB38	253202	801420	At southern entrance to the Featherbed Bank channel at marker no. 5	1979-P	М	М	-	М	DS	G
BB41	252812	8 01706	Entrance to Turkey Point Channel; marker no. 1	1979-P	М	М	-	М	ÐS	G
BB42	261643	801134	Fifty meters west of entrance to Elliou Key Harbor	1979-P	М	-	-	М	DS	G
BB43	252343	801402	Caesar's Creek mid channel opposite Adams Key Park Service pier	1979-P	М	-	-	М	DS	G
BB44	252359	801510	Intracoastal Waterway at red marker no.8	1979-P	М	М	-	М	DS	G
BB45	252203	801652	Intracoastal Waterway at Cutter Bank red marker no. 14	1979- P	м	-	-	М	DS	G
BB46	252002	801614	Angelfish Creek at red channel marker no. 10	1979-P	М		•	М	DS	G
BB47	251959	801848	Center of Card Sound four kilometers south of Catter Bank	1979-P	М	М	В	М	DS	G
BB48	251848	802040	Intracoastal Waterway in Card Bank Channel at green marker no. 17	1979-P	М	-	-	М	DS	G
BB50	251430	802210	Barnes Sound Intracoastal Waterway midway between Card Sound bridge and lewfish Creek	1989-P	М	М	-	М	ÐS	G

TABLE 38 (Continued).Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay
Water Quality Monitoring Program.

.

SFWMD Sta. 1D	Lat	Long	Location	POR	Physical Parameters	Nutrients	Metals	Bacteria	US/DS	G/A
BB51	251510	802450	Center of Manatee Bay 500 meters north of Aerojet Channel	1989-P	М	М	-	М	DS	G
BLOI	253206	801934	Mouth of Black Creek (C-1) and Goulds Canat	1979-P	М	М	В	М	DS	G
BL02	253229	801948	Black Creek (C-1) at entrance bridge (S.W. 87 Ave.) to Black Point Marina	1988-P	М	М	-	М	DS	Յ
BL03	253310	802107	Black Creek (C-1) east side of 97 Ave, bridge	1988-P	М	М	В	М	US	G
BL12	253940	802950	Black Creek (C-1) east side of Krome Ave. (S.W. 177 Ave.) bridge	1991-P	М	М	₿	М	US	G
BS01	255218	800955	Mouth of Biscayne Canal (C-8)	1979-P	М	М	В	М	DS	G
BS04	255224	801054	Biscayne Canal (C-8) at footbridge near N.W. 107 St.	1988-P	М	м	В	М	US	G
BS10	255512	801926	Biscayne Canal (C-8) east side of bridge of Palmetto Expressway access road	1991-P	м	м	B	М	US	G
CD02	253637	801836	Cutler Drain (C-100) east side of Old Cutler Road bridge	1990-P	М	М	В	М	US	G
CD09	253955	802430	Cutler Drain (C-100) east side of S.W. 134 Ave. bridge	1991-P	М	м	В	М	US	G
CG01	254211	801448	Month of Coral Gables Waterway (C-3)	1979-P	м	М	-	М	DS	G
CG07	254430	801840	Coral Gables Waterway (C-3) east side of S.W. 72 Ave.	1991-P	м	М	в	М	US	G
GL02	253213	801957	Goulds Canal just east of earthen plug	19 88-P	М	М	-	М	DS	G
GL03	253212	802039	North side of bridge at Goulds Canal and L-31E confluence	19 88-P	М	М	-	М	US	G

-

.

TABLE 38 (Continued).Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay
Water Quality Monitoring Program.

SFWMD Sta. ID	Lai	Long	Location	POR	Physical Parameters	Nutrients	Metals	Bacteria	US/DS	G/A	
I R0I	255035	801027	Northern mouth of Little River (C-7)	1979-P	М	м	В	М	DS	G	
LR03	255046	801046	Little River (C-7) at the intersection of the northern and southern discharge points near Belle Mead Is.	1988-P	М	М	-	М	ÐS	G	
LR06	255109	801128	Little River (C-7) east side of N.W. 2 Ave, bridge	1990-P	М	М	в	М	US	G	
LR10	255209	802022	Little River (C-7) north side of Galloway Rd. (N.W. 87 Ave.) bridge	1991-P	М	М	В	М	US	G	
M103	252920	802145	Military Canal west side of S.W. 107 Ave. bridge	1988-P	м	М	В	М	US	G	
MR01	254614	801114	Miami River Canal outfall to Biscayne Bay	1979-P	М	М	в	М	US	G	
MR02	254606	801152	Miami River thirty meters upstream of N.W. 2 Ave. bridge	1984-P	М	М	-	М	DS	G	
MR03	254641	801226	Miami River midway between mouth of Wagner Creek and 5 St. bridge	1984-P	М	М	В	М	DS	G	
MR04	254656	801255	Miami River thirty meters upstream of N.W. 12 Ave. bridge	1984-P	М	М	-	М	DS	G	
MR05	254709	801336	Miami River thirty meters downstream of mouth of Comfort Canal (C-5)	1984-P	м	М	-	М	DS	G	
MR06	254741	801440	Miami River thirty meters downstream from mouth of Tamiami Canal (C-4)	1984-P	М	М	в	М	DS	G	
MR07	254824	801544	Miami River ten meters downstream of salinity control structure (S-26)	L984-P	М	М	-	М	DS	G	
MR08	254829	801544	Miami Canal (C-6) east side of Le Jeune Rd. (N.W. 42 Ave.) bridge	1988-P	М	М	В	М	US	G	
MR 15	255343	802246	Miami Canal (C-6) west side of N.W. 138 St. bridge	1991 P	M	М	В	М	US	G	

TABLE 38 (Continued).Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay
Water Quality Monitoring Program.

.

:.
SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nurieots	Metals	Bacteria	US/DS	G/A
MW01	252809	802027	Mouth of Mowry Canal (C-103)	1979-P	М	М	-	м	DS	G
MW04	252825	802345	Mowry Canal (C-103) east side of S.W. 117 Ave. bridge	1991-P	м	М	В	М	US	G
MW13	253100	803235	Mowry Canal (C-103) east side of S.W. 217 Ave. bridge	1991-P	М	М	В	М	US	G
PR01	253107	802006	Month of Princeton Canal (C-102)	1990-P	М	М		М	DS	G
PR03	253110	802150	Princeton Canal (C-102) east side of S.W. 97 Ave. bridge	1991-P	М	М	B	М	US	G
PR08	253511	803040	Princeton Canal (C-102 west side of S.W. 197 Ave. bridge	1991-P	М	М	В	-	US	G
SK01	255545	800902	Mouth of Snake Creek (C-9)	1988-P	М	М	-	М	DS	G
SK02	255544	809010	Snake Creek (C-9) east side of Biscayne Blvd, bridge	1988-P	м	М	в	М	US	G
SK09	255750	801840	Snake Creek (C-9) east side of Ludlam Rd. (N.W. 67 Ave.) bridge	1991-P	М	М	В	М	US	6
SP01	253925	801606	Mouth of Snapper Creek (C-2)	1979-P	М	М	В	М	DS	0
SP04	254121	801705	Snapper Creek (C-2) south side of footbridge along Red Rd. (S.W. 57 Ave.) and south of Killian Dr. (S.W. 104 St.)	1991-P	М	М	В	М	US	G
SP08	254436	802304	Snapper Creek (C-2) west side of Snapper Creek Canal Dr. bridge	1991-P	М	М	В	М	US	G
TM02	254738	801523	Tamiami Canal (C-4) east side of Douglas Rd. (N.W. 37 Ave.) bridge	1988-P	М	Μ	-	М	DS	G

TABLE 38 (Continued).Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay
Water Quality Monitoring Program.

.

SFWMD Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Metals	Bacteria	US/DS	G/A
TM03	254735	801551	Tamiami Canal (C-4) east side of Le Jeune Rd. (N.W. 42 Ave.) bridge	1988-P	М	М	В	М	US	G
TM08	254539	802852	Tamiami Canal (C-4) west side of Krome Ave. (S.W. 177 Ave.) bridge	1991- P	М	М	В	М	US	G
WC02	254701	801233	Mouth of Seybold Canal	1987-P	М	М	-	М	DS	G
WC03	254711	801244	Wagner Creek south side of N.W. 14th St. bridge	1988-P	М	М	-	М	DS	G
WC04	254737	801315	Wagner Creek south side of N.W. 20th St. bridge	1988-P	М	М	В	М	DS	G

:.

TABLE 38 (Continued).Summary of Sampling Locations and Frequency of Collection for the Biscayne Bay
Water Quality Monitoring Program.

..

SFWMD <u>Sta. ID</u>	Total	Total Phosphorus			io Phosph	<u>orus</u>	<u>To</u>	otal Nitrog	<u>en</u>	<u>Nitrite-</u>	Mitrite+Nitrate(NOx MIN MEAN M/ 0.0100 0.0615 0.4 0.0100 0.0942 0.2 0.0100 0.0942 0.2 0.0100 0.1169 0.5 0.0100 0.0312 0.1 0.0100 0.0661 0.2 0.0100 0.0481 0.2 0.0100 0.0297 0.1 0.0100 0.0336 0.1 0.0100 0.0336 0.1 0.0100 0.0336 0.1		
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	
AC01	0.0010	0.0127	0.0540	-	-	-	-	-	-	0.0100	0.0615	0.4000	
AC02	0.0030	0.0171	0.0730	-	-	-	-	-	-	0.0100	0.0942	0,2900	
AC03	0.0330	0.1475	0.9250	-	-	-	-	-	-	0.0100	0.1169	0.5400	
AR01	0.0010	0.0087	0.0400	-	-	-	-	-	-	0.0100	0.0312	-0.1800	
AR03	0.0010	0.0061	0.0300	-	-	-	-	-	-	0.0100	0.0661	0.2500	
BB01	0,0060	0.0327	0,1220	-	-	-	-	-	-	-	-	-	
BB02	0.0020	0.0177	0.0650	-	-	-	-	-	-	0.0100	0.1114	-2.4000	
BB03	0.0020	0.0218	0.0540	-	-	-	-	-	-	-	-	-	
BB04	0.0010	0.0137	0.0570	-	-	-	-		-	0.0100	0.0481	0.2500	
BB06	0.0010	0.0106	0.0460	-	-	-	-	-	-	0.0100	0.0297	0.1900	
BB07	0.0010	0.0117	0.1150	-	-	-	-	-	-	-	-	-	
BB09	0,0010	0,0122	0.0630	-	-	-	-	-	-	0.0100	0.0336	0.1800	
BB10	0.0010	0.0129	0.1020	-	-	-	-	-	-	-	-	-	
BB11	0.0010	0.0132	0.0450	-	-	-	-	-	-	-	•	-	
BB14	0.0010	0.0097	0.0630	-	-	-	-	-	-	0.0100	0.0285	0.1500	
BB15	0.0010	0.0123	0.2380	-	-	-	-	-	-	-	-	-	
BB16	0.0010	0.0091	0.0800	-	-	-	-	-	-	0.0100	0.0390	0.1300	
BB17	0.0010	0.0103	0.0530	-	-	-	-	-	-	0.0100	0.0347	0.1500	
BB18	0.0010	0.0077	0.0200	-	-	-	-	-	-	-	-	-	
BB19	0.0010	0,0091	0.0660	-	-	-	-	-	-	-	-	-	
BB22	0.0010	0.0089	0.0550	-	-	-	-	-	-	0.0100	0.0289	0.1700	
BB23	0.0010	0.0076	0.0200	-	-	-	-	-	-	-	-	-	
BB24	0.0010	0.0081	0.0300	-	-	-	-	-	-	-	-	-	
BB25	0.0010	0.0076	0.0230	-	-	-	-	-	-	-	-	-	
BB26	0.0010	0.0096	0.0590	-	•	-	•	-	-	-	-	-	
BB27	0.0010	0.0093	0.0750	-	-	-	-	-	-	0.0100	0.0320	0.2700	
BB28	0.0010	0.0082	0.0600	-	-	-	-	-	-	-	-	-	
BB29	0.0010	0.0057	0.0820	-	-	-	-	-	-	0.0100	0.0294	0.1400	
BB31	0.0010	0.0066	0.0500	-	-	-	-	-	•	0.0100	0.0289	0.3500	
BB32	0.0010	0.0079	0.0620	-	-	-	-	-	-	0.0200	0.0200	0.0200	

TABLE 39.Statistics on Select Parameters for the Biscayne Bay Water Quality Monitoring Program for
Period of Record

TABLE 39.Statistics on Select Parameters for the Biscayne Bay Water Quality Monitoring Program for
Period of Record

SFWMD

<u>Sta. ID</u>	<u>Total Phosphorus</u>			Orth	o Phosph	orus	<u>To</u>	tal Nitrog	en	<u>Nitrite-</u>	+Nitrate(I	<u>(xOv</u>
	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	MEAN	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
BB34	0.0010	0.0080	0.0740	-	-	-	-	_	-	0.0100	0.0292	0.2200
BB35	0.0010	0.0071	0.0450	-	•	-	-	-	-	0.0100	0.0264	0.2300
BB36	0.0010	0.0064	0.0390	-	-	-	-	-	-	0,0100	0.0322	0.4000
BB37	0.0010	0.0070	0.0520	-	-	-	-	-	-		-	-
BB38	0.0010	0.0072	0.0660	-	-	-	-	-	-	0.0100	0.0266	0.1800
BB41	0.0010	0.0066	0.0580	-	-	-	-	-	-	0.0100	0.0436	0.3400
BB42	0.0010	0.0058	0.0250	-	-	-	-	-	-	-	-	-
BB43	0.0010	0.0084	0.1680	-	-	-	-	-	-	-	-	-
BB44	0.0010	0.0067	0.0390	-	-	-	-	-	-	0.0100	0.0261	0.2200
BB45	0.0010	0.0066	0.0410	-	-	-	-	-	-	-	-	-
BB46	0.0010	0.0067	0.0230	•	-	-	-	-	-	-	-	-
BB47	0.0010	0.0073	0.0440	-	-	-	-	-		0.0100	0.0354	0.4800
BB48	0.0010	0.0068	0.0450	-	-	-	-	•	-	0.0200	0.0267	0.0300
BB50	0.0010	0.0038	0.0200	-	-	-	-	-	-	0.0100	0.0263	0.1400
BB51	0.0010	0.0040	0.0200	-	-	-	-	-	-	0.0100	0.0228	0.1600
BL01	0.0010	0.0158	0.1100	-	-	-	-	-	-	0.0100	0.1006	0.8200
BL02	0.0010	0.0127	0.0490	-	-	-	-	-	-	0.0100	0.1234	0.8100
BL03	0.0010	0.0098	0.0550	-	-	-	-	-	-	0.0100	0.1818	0.8700
BL12	0.0010	0.0089	0.0400	-	-	-	-	-	-	0.0100	0.0215	0.1000
BS01	0.0010	0.0164	0,0600	-	-	-	-	-	-	0,0100	0,0628	0,5200
BS04	0.0050	0.0219	0.1620	-	-	-	-	-	-	0.0100	0.2478	1.7500
BS10	0.0050	0.0152	0.0440	-	•	-	-	-	-	0.0100	0.2449	0.4300
CD02	0.0010	0.0114	0.0360	-	-	-	-	-	-	0.0100	0.1145	0.3800
CD09	0.0010	0.0077	0.0400	-	-	-	-	-	-	0.0100	0.1295	0.4300
CG01	0.0010	0.0109	0.0540	-	-	-	-	-	-	0.0100	0.0479	0.2900
CG07	0.0110	0.0477	0.2100		-	-	-	-	-	0.0100	0,2668	1.3100
GL02	0.0070	0.0219	0.0790	-	-	-	-	•	-	0.0100	0.1187	0.6800
GL03	0.0020	0.0150	0.0520	-	-	-	-	-	-	0.0002	1.6881	3,9500
LR01	0.0010	0.0157	0.0720	-	-	-	-	-	-	0.0100	0.0596	1.7100
LR03	0.0030	0.0232	0.0580	-	-	-	-	-	-	0.0100	0,1024	0.4000

۰.

SFWMD Sta. ID	Total	Phospho	rus	Orth	o Phosph	orus	To	tal Nitrog	<u>en</u>	<u>Nitrite-</u>	-Nitrate(I	NOx)
	MIN	MEAN	MAX	MIN	MEAN	MAX	MIN	MEAN	MAX	<u>MIN</u>	MEAN	MAX
LR06	0.0040	0.0274	0.0660	-	-		_	_	_	0.0200	0.2476	0.5500
LR10	0.0020	0.0123	0.0670	-	-	_	-	-	-	0.0100	0.0403	0.1200
MI03	0.0020	0.0152	0.1000	-	-	_	-	-	-	0.0001	0.6446	1,9000
MR01	0.0010	0.0136	0.0970	-	-	-	-	-	-	0.0100	0.0461	0.3100
MR02	0.0020	0.0217	0.0720	-	-	-	-	-	-	0.0100	0.1333	0.4000
MR03	0.0030	0.0235	0.0800	-	-	-	-	-	-	0.0100	0.1555	0.5200
MR04	0.0060	0.0241	0.0720	-	-	-	-	-	-	0.0200	0.1554	0.5200
MR05	0.0050	0.0246	0.0800	-	-	_	-	-	-	0.0200	0.1582	0.5700
MR06	0.0040	0.0294	0.2000	-	-	-	-	-	-	0.0100	0.1407	0.4600
MR07	0.0050	0.0321	0.1280	-	-	_	-	-	-	0.0100	0.0973	0,4700
MR08	0.0010	0.0155	0.0510	-	-	-	-	-	-	0.0100	0,1406	0.5700
MR15	0.0010	0.0092	0.0500	-	-	-	-	-	-	0.0100	0.0346	0.4500
MW01	0.0010	0.0121	0.0790	-	-	-	-	-	-	0.0001	0.3226	2,2000
MW04	0.0020	0.0065	0.0480	-	-	-	-	-	-	0.0002	2.0334	4.6400
MW13	0.0010	0.0080	0.0430	-	-	_	-	-	_	0.0100	0.1244	2,4100
PR01	0.0010	0.0119	0.1000	_	_	_	-	-	-	0.0002	1.4372	3,6200
PR03	0.0010	0.0063	0.0360	-	-	-	-	-	-	0.0004	3.7498	4.8600
PR08	0.0010	0.0108	0.1030	-	-	-	-	-		0.0100	0.2022	2.8100
SK01	0.0030	0.0172	0.0760	-	-	-	-	-	-	0.0100	0.1569	0.4500
SK02	0.0010	0.0132	0.0770	-	-	-	-	-	_	0.0100	0.2529	0.6800
SK09	0.0010	0.0086	0.0300	_	_	_	_	_	-	0.0100	0.0641	0.2000
SP01	0.0010	0.0109	0.0530	-	-	-	-	-	-	0.0100	0.0491	0.4400
SP04	0.0010	0.0100	0.0370	-	-	_	_	_	-	0.0300	0.1525	0.3600
SP08	0.0030	0.0120	0.1240	-		-	-	-	-	0.0100	0.0627	0.2700
TM02	0.0030	0.0219	0.0900	-	-	-	-	-	-	0.0100	0.2160	0.5000
TM03	0.0010	0.0169	0.1210	-	-	-	-	-	-	0.0100	0.2679	0.6100
TM08	0.0010	0.0081	0.0400		-	_	-	_	-	0.0100	0.0320	0.1200
WC02	0.0100	0.0644	0.2730		-	-	-		-	0.0100	0.1265	0.2900
WC03	0.0100	0.0932	0.3810	-	-	-	-	*	-	0.0100	0.1232	0.3900
WC04	0.0500	0.2011	0.7900	-	-	-	-	_	-	0.0100	0.0751	1.2200

TABLE 39. Statistics on Select Parameters for the Biscayne Bay Water Quality Monitoring Program for
Period of Record

ı.

-

· ·

.

SECTION 19

EVERGLADES NATIONAL PARK PROJECT CODES: ENP and EVER

Purpose and Scope

The Everglades National Park (PARK) water quality monitoring programs were established to address the quality of water entering and leaving the PARK as well as the interior of the PARK. In January 1979, the South Florida Water Management District (SFWMD or District), the National Park Service and the United States Army Corps of Engineers (COE) entered into a joint Memorandum of Agreement (MOA) with the intent to establish non-degradation standards for water quality parameters for waters delivered to the PARK through water control structures along L-67A, L-31W and C-111. In October 1985, the District agreed to take over the responsibility for analyzing the samples collected from the interior of the PARK. The collection of the water samples from the interior of the PARK are collected by the PARK personnel. All appropriate sampling supplies are provided by the District.

These water quality monitoring programs provide a water quality and nutrient loading data base for:

- 1. Determining long and short term trends necessary to identify the downstream impacts of the Lake Okeechobee Technical Advisory Committee (LOTAC) / Surface Water Improvement and Management (SWIM) plan implementation for the Everglades Agricultural Area.
- 2. Implementing LOTAC's recommendation for a comprehensive monitoring and research plan as described in the Department of Environmental Regulation's "Lake Okeechobee Monitoring and Research Plan."
- 3. Comparing standards that were established for inflow water quality to the PARK. These standards are based on historical (1970-1978) average annual concentrations. At least annually, the District, PARK, and the COE meet to discuss any violations of the standards. As stated in the MOA, "Should water quality criteria not be met and a clear and present danger to water quality been determined by the parties, appropriate actions or such legal processes as may be necessary to restore or protect the quality of water entering the PARK shall be taken by the COE, National Park Service, and the District." The data analyzed by the District are forwarded to the PARK and the COE on a monthly basis.

Sampling Locations and Descriptions

The locations of the 17 sites monitored under these programs are shown on Figures 24 and 25. Project ENP consists of eight inflow/outflow sites, and project EVER consists of nine interior sites. There are 10 additional watershed monitoring sites associated with this program, these are; S-12D, S-12B, S-333, L3BRN, L-28I, S-140, S-11C, S-7, S-8, and S-9 which are shown on Figure 20, and are described in Section 17. Table 39 and 40 list all the station ID's, latitudes and longitudes, brief station descriptions, the period of record, the frequency of collection for each parameter group, whether the sample is collected upstream or downstream, and type of sample collection. Tables 41 through 42 contain statistics for each monitoring location.

District Publications

Everglades SWIM Plan. (1990), Planning Department, SFWMD.

Lake Okeechobee Monitoring and Research Plan. (1986), FDEP.

MacVicar, T. K. (1985). A Wet Season Field Test of Experimental Water Deliveries to Northeast Shark River Slough. SFWMD, Tech. Pub. No. 85-3. (DRE 215)

....

FIGURE 24. Location of the Inflow / Outflow Sampling Stations for the Everglades National Park Water Quality Monitoring Program.

FIGURE 25. Location of the Interior Sampling Stations for the Everglades National Park Water Quality Monitoring Program.

TABLE 40. Summary of Sampling Station Locations and Frequency of Collection for the Everglades National Park (ENP)Monitoring Program

SFWMD Sib. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Major Ions	Trace Metals	US/DS	Chł.	G/A
S18C	2 5195 0	803203	A gate type structure located on C-111 south of SR-9336. The water flows southward through this structure.	1983 - P	BWF/M	BWF/M	BWF/M	М	US	М	G
8175	252501	803425	A gated culvert type structure located on the L31W levee about one mile SE of S332. Water flows southward through this structure.	1995 - P	BWF/M	BWF/M	BWF/M	М	US	М	G
S176	252855	803345	A gate type structure located at the head of the C-111 immediately upstream of C-113 west of Homestead. Water flows southward through this structure.	1983 - P	BWF/M	BWF/M	BWF/M	BA	US	м	G
S177	252407	803329	A gate type structure located on C-111 and SR-9336 southwest of Homestead. The water flows southward through this structure.	1983 - P	BWF/M	BWF/M	BWF/M	BA	US	М	G
S178	252427	803127	A gate type structure located at the head of C-111E and SR- 9336 southwest of Homestead. The water flows southward through this structure.	1983 - P	BWF/M	BWF/M	BWF/M	BA	US	М	G
\$332	252524	803524	A District controlled water pumping station located on the east boundary of the ENP on the L-31W levee at Taylor Slough southwest of Homestead. The water is pumped into the ENP through this structure.	1983 - P	BWF/M	BWF/M	BWF/M	М	US	М	G
TAMBR105	255049	805705	This sample is taken from bridge No. 105 on US-41 (Tamiami Trail) located 12 miles northwest of S-12A. Water flows southward under this bridge.	1985 - P	BWF/M	BWF/M	BWF/M	М	-	М	G
US41-25	254621	805023	This sample is taken from bridge No. 25 on US-41 (Tamiami Trail) located two miles northwest of S-12A. Water flows southwest through a box culvert under a bridge on US-41.	1984 - P	BWF/M	BWF/M	BWF/M	М	-	М	G

.

SFWMD					Physical		Major	Ттасе	
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	lons	Metals	G/A
P33	253630	80413 0	This station is located at stage recorder NP-33, which is located in Shark Slough just west of the southern end of the L-67X levee.	1985 - P	M	М	М	M	G
P34	253630	805530	This station is located at stage recorder NP-34, which is located west of Shark Slough near the southern boundary of the Big Cypress Basin.	1986 - P	М	М	М	м	G
P35	252739	805156	This station is located at stage recorder NP-35, which is located near the south west end of Shark River Slough.	1985 - P	М	м	М	м	G
P36	253139	804745	This station is located at stage recorder NP-36, which is located in the middle of Shark River Slough.	1985 - P	М	M	М	М	G
P37	251708	804119	This station is located at stage recorder NP-207, which is located in the middle of Taylor Slough.	. 1985 - P	М	М	М	М	G
NE1	254150	803805	This station is located at stage recorder NESRS1, which is located about 5 miles south of Cooper Town which is on US 41.	1986 - P	М	М	М	М	G
NP201	254305	804333	This station is located at stage recorder NP-201, which is located about 4 miles south of S-12C which is on US 41.	1986 - P	М	М	М	М	G
EP	251609	803017	This station is located at stage recorder EP SW/GW, which is located about 4 miles south of S-18C near the southeast comer of the ENP boundary.	1986 - P	М	М	М	М.,	G
TSB	252405	803625	This station is located at the bridge crossing Taylor Slough on the main road SR-9336 going through the ENP.	1985 - P	М	М	М	М	G

.

TABLE 41. Summary of Sampling Station Locations and Frequency of Collection for the Interior of the Everglades NationalPark Monitoring Program

TABLE 42. Statistics on Select Parameters for the Everglades National Park Monitoring Program for period of Record

.

SFWMD <u>Sta. ID</u>	<u>Total Phosphorus</u>			<u>Ortho</u>	Ortho Phosphorus			al Nitroge	<u>en</u>	<u>Nitrite-</u>	<u>Nitrite+Nitrate(NOx)</u>				
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>			
S175	0.0040	0.0050	0.0130	0.0040	0.0041	0.0060	0.5150	0.6848	1,3500	0.0040	0.0357	0.1520			
S176	0.0040	0.0134	0.1030	0.0030	0.0051	0.0300	0.0001	1.3352	4.0100	0.0040	0.0900	1.6800			
S177	0.0040	0.0098	0.0460	0.0040	0.0046	0.0140	0.0001	1,1173	3.0700	0.0040	0,0879	1.3310			
S178	0.0040	0.0285	0.2030	0.0020	0.0095	0.2190	0.0001	0.9503	3.6400	0.0040	0.0782	2.2440			
\$18C	0.0010	0.0086	0.0590	0.0040	0.0049	0.0490	0.0001	0.8973	3.1900	0.0040	0.0656	0.7600			
S332	0.0010	0.0114	0,2910	0.0040	0.0047	0.0210	0.0001	0.9876	3.2700	0.0040	0.0754	2.1050			
TAMBR105	0.0040	0.0391	0.3130	0.0040	0.0155	0,2000	0.0001	1.0258	4.5300	0.0040	0.0601	1.4130			
US41-25	0.0030	0.0201	0.2560	0.0010	0.0060	0.0360	0.0001	1.0962	4.1000	0.0040	0.0422	0.7300			

•

TABLE 43. Statistics on Select Parameters for the Interior of the Everglades National Park Water Quality MonitoringProgram for Period of Record

SFWMD												
Sta. ID	Tota	l Phosph	orus	Ortho	Phosphe	rus	<u>Tot</u> :	al Nitrog	<u>en</u>	Nitrite	-Nitrate(P	VOX)
		-					-			_		
	MIN	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u> MAX</u>
EP	0.0020	0.0065	0.0340	0.0040	0.0052	0.0170	0.0002	1.3184	5.5100	0.0040	0,0235	0.7670
NE1	0.0040	0.0107	0.0450	0,0040	0.0052	0.0290	0.0003	1.9767	4,2900	0.0040	0.0215	0.5830
NP201	0.0030	0.0082	0.1170	0.0040	0.0053	0.0340	0.0001	1,4300	5.7100	0.0040	0.0238	0.4080
P33	0.0030	0.0126	0.5460	0.0040	0.0053	0.0400	0.0001	1.7129	21.1300	0.0040	0.0279	0.5760
P34	0.0040	0.0067	0.0290	0.0040	0.0048	0.0150	0.5100	1,1080	3.7500	0.0040	0.0425	2.0300
P35	0.0030	0.0141	0.1370	0.0040	0.0052	0.0630	0.0001	1,9317	40.8400	0.0040	0.0501	0,4490
P36	0.0030	0.0403	1.1370	0,0040	0.0058	0.0460	0.5100	2.2039	17.7000	0.0040	0.0355	1.0490
P37	0.0040	0.0072	0.0740	0.0040	0.0047	0.0140	0.5000	1.1276	7.7700	0.0040	0.1984	6.9010
TSB	0.0010	0.0121	0.1330	0.0040	0,0055	0.0520	0.0001	0.9079	4.3600	0.0040	0,0964	3.0600

SECTION 20

÷

ROUTINE PESTICIDE MONITORING NETWORK PROJECT CODE: PEST

Purpose and Scope

The Routine Pesticide monitoring network encompasses most of the area covered by the SFWMD. The pesticide monitoring program was established to provide a water quality data base for:

- 1. Complying with monitoring requirements of the Lake Okeechobee Operating Permit #50-0679349 issued by the Florida Department of Environmental Regulation (FDEP);
- 2. Complying with the Memorandum of Agreement (MOA) between the Miccosukee Tribe of Florida and the South Florida Water Management District (District);
- 3. Complying with the MOA between TENP, District, and Army Corps of Engineers (COE);
- 4. Implementing Lake Okeechobee Technical Advisory Committee (LOTAC)'s recommendation for a comprehensive monitoring and research plan as described in FDEP's "Lake Okeechobee Monitoring and Research Plan"; and
- 5. Determining long and short term trends necessary to identify potential problem areas in terms of pollution by organic contaminants (herbicides and pesticides).

Data have been collected since 1980. Initially only a few stations were collected for a narrow range of pesticides. The routine network was significantly expanded in 1984 and again in 1988, to form the framework of the current monitoring program. These data can indicate trends in the changes in water quality and allow for better management of the system. The presence of any detectable amount of pesticide may be of environmental concern, and is being documented to establish baseline levels, and to initiate follow up action by the appropriate state or federal agency.

The analyses are done contractually with FDEP laboratory in Tallahassee.

Sampling Locations and Descriptions

The locations of the 27 sites monitored under this program are shown in Figure 26. Table 43 lists all the station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection of pesticides, whether the sample is collected upstream or downstream, and type of sample collection.

Pesticide Sampling Frequency

Prior to 1991 water and sediment samples were collected quarterly. In 1991 the frequency was changed to that shown on Table 58.

District Publications

Lake Okeechobee Monitoring and Research Plan. (1986), FDEP.

- Pfeuffer, R. J. (1985). Pesticide Residue Monitoring in Sediment and Surface Water Bodies Within South Florida Water Management District. SFWMD, Tech. Pub. No. 85-2. (DRE 214)
- Pfeuffer, R. J. (1989). Lake Okeechobee Pesticide Monitoring Report, 1987. SFWMD, Tech. Memo. March 1989. (DRE 269)
- Pfeuffer, R. J. (1991). Pesticide Residue Monitoring in Sediment and Surface Water Within the SFWMD, Volume 2. SFWMD, Tech. Pub. No. 91-1. (DRE 293)

FIGURE 26. Location of Sampling Stations for the Routine Pesticide Water and Sediment Monitoring Program.

TABLE 44. Summary of Sampling Station Locations and Frequency of Collection for the Routine Pesticide Monitoring Program

۰.

.

SFWMD					Pesticide		
Sta. ID	Lat	Long	Location	POR	Species	US/DS	G/A
FECSR78	265744	810715	Collected from the bridge on State Road 78 where it crosses Fisheating Creek. Water can flow towards Lake Okeechobee or water can flow west in this canal at this point depending on water stages.	1987-P	QTR/H2O,BA/SED		G
L3BRS	261950	805253	Collected from Oil Well Bridge, which is located 6 1/2 miles west of pump station S-8 at the intersection of the L-3 and L-4 levees 3 1/2 miles west of WCA3A.	1987-P	QTR/II2O,BA/SED	-	G
S2	264200	804300	A South Florida Water Management District (SFWMD or District) controlled water pumping station located on the south side of Lake Okeechobee near Belle Glade. It is at the confluence of the Hillsboro and North New River Canals, and pumps into Lake Okeechobee.	1984-P	QTR/H2O,BA/SED	US	G
S3	264155	804825	A District controlled water pumping station located on the south side of Lake Okeechobee between Belle Glade and Clewiston. Water is pumped from the Miami Canal into Lake Okeechobee.	1984-P	QTR/H2O,BA/SED	US	G
S 4	264722	805743	A District controlled water pumping station on C-20 near Clewiston that pumps water into Lake Okeechobee.	1984-P	QTR/H2O,BA/SED	US	G
S5A	264101	802205	A District controlled water pumping station located at the northern most end of WCA1 at State Road 80. S-5A pumps water from the EAA, L-8, and the C-51 basin into WCA1.	1987-P	QTR/H2O,BA/SED	US	G

TABLE 44 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Routine Pesticide Monitoring Program

.

SFWMD					D		
Sia. ID	Lat	Long	Location	POR	Species	US/DS	G/A
S6	262822	802650	S-6 is located about 16 miles southwest of S-5A on the Hillsboro Canal at the intersection of Hillsboro Canal (L-15), L-6, L-39, and L-7. Water is pumped in a southerly direction through this pump station down the Hillsboro Canal into WCA1.	1984-P	QTR/1120,BA/SED	US	G
S7	262007	803213	S-7 is located approximately 11 miles southwest of S-6 at the intersection of North New River Canal (L-18), L-5, and L-6, along US-27. Water is pumped in a southerly direction down the North New River Canal into WCA2. There is also a sluice gate that can be opened to let water gravity flow northward.	1984-P	QTR/H2O,BA/SED	US	G
S8	261953	804628	S-8 is located about 15 miles west of S-7 at the intersection of Miami Canal (L-23), L-4, and L-5. Water is pumped in a southerly direction down the Miami Canal into WCA3. There is also a sluice gate that can be opened to let water gravity flow northward.	1984-P	QTR/II2O,BA/SED	US	G
S 9	260340	802638	A District controlled water pumping station located along US-27 on the South New River Canal (C-11). Water is pumped from C-11 into WCA3.	1985-P	QTR/H2O,BA/SED	US	G
S12C	254542	804338	A gate type structure located along US-41 at the south end of WCA3A. It is 2 miles west of S-333. Water flows southward from WCA3A through this structure into the ENP.	1984-P	QTR/H2O,BA/SED	US	G
S18C	251950	803203	A gate type structure located on C-111 south of SR-27. The water flows southward through this structure.	1980-P	QTR/H2O,BA/SED	US	G
S31	255633	802624	A series of gated culverts located on the east side of WCA3A on the Miami Canal near SR-997. Water flows southeast through this structure down the Miami Canal.	1987-P	QTR/H2O,BA/SED	US	6

TABLE 44 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Routine Pesticide Monitoring Program

SFWMD	T -+	1	T	DOD	Pesticide	Heme	<i>a</i> u
214-11-	Lai	Long	Locator	FUK	apenes	03/03	U/A
\$65E	271335	805742	A large gate and lock structure on the Kissimmee River, 8 1/2 miles northwest of Lake Okeechobee. This is the southernmost structure on the Kissimmee River, and it discharges water into Lake Okeechobee.	1987-P	QTR/H2O,BA/SED	US	G
S176	252855	803345	A gate type structure located at the head of the C-111 near C-113 west of Homestead. Water flows southward through this structure.	1984-P	QTR/H2O,BA/SED	US	G
S177	252407	803329	A gate type structure located on C-111 and SR-9336 southwest of Homestead. The water flows southward through this structure.	1984-P	QTR/H2O,BA/SED	US	G
S178	252427	803127	A gate type structure located at the head of C-111E and SR-9336 southwest of Homestead. The water flows southward through this structure.	1984-P	QTR/H2O,BA/SED	US	G
S190	261701	805805	A gate type structure located on the L-28 Intercepter Canal about 2 $1/2$ miles south of County Road 833. Water comes from the north feeder canal and is released into the L-28 Intercepter Canal, which is located within the Big Cypress Seminole Indian Reservation.	1987-P	QTR/H2O,BA/SED	US	G
\$191	271135	804535	A large gate type structure on the north side of Lake Okeechobee at Nubbin Slough. Water flows into the Lake through this structure. Water samples are collected from the US-441 bridge on the northeast side of this structure.	1987-P	QTR/H2O,BA/SED	US	G
S332	252524	803524	A District controlled water pumping station located on the east boundary of the ENP on the L-31W levee at Taylor Slough west of Homestead. The water is pumped into the ENP through this structure.	1980-P	QTR/H2O,BA/SED	US	G

.

TABLE 44 (Continued). Summary of Sampling Station Locations and Frequency of Collection for the Routine Pesticide Monitoring Program

.

SFWMD					Destinida		
Sta. ID	Lat	Long	Location	POR	Species	US/DS	G/A
US41-25	254621	805023	This sample is taken from bridge No. 25 on US-41 (Tamiami Trail) located two miles west of S-12A. Water flows southward through this small culvert that runs under US-41.	1984-P	QTR/H2O,BA/SED	-	G
S235	265021	810509	A small culven type structure located near Moorehaven on the southwest side of Lake Okeechobee on LD-1 near S-77. Water flows westward through this structure into the Caloosahatchee River.	1987-P	QTR/H2O,BA/SED	US	G
S78	264722	811811	A large gate and boat lock structure (Ortona Lock and Dam) located on the Caloosahatchee River operated by the United States Army Corps of Engineers (COE). Water flows toward the west through this structure.	1988-P	QTR/H2O,BA/SED	US	G
S79	264314	814107	A large gate and boat lock and coastal structure (W. P. Franklin Lock and Dam) located on the Caloosahatchee River operated by the COE. Water flows toward the west through this structure and is mixed with salt water on the downstream side of this structure.	1988-P	QTR/H2O,BA/SED	US	G
CR-33.5T	264233	813330	Collected in the Townsend Canal on the north side of the State Road 80 bridge.	1988-P	QTR/H2O,BA/SED	-	G
S80	270639	801706	S-80 is a large spillway and boat lock coastal structure located on the St. Lucie Canal and operated by the United States Army Corps of Engineers. The water flows nontheast through this structure into the St. Lucie River.	1988-P	QTR/H2O,BA/SED	US	G
S99	272820	802 8 48	S-99 is a spillway on the C-25 canal near Ft. Pierce. The water flow at this point is toward the east.	1988-P	Q1R/H2O,BA/SED	US	G

SECTION 21

ATMOSPHERIC DEPOSITION MONITORING PROGRAM PROJECT CODE: RAIN

Purpose and Scope

The Wet/Dry Atmospheric Deposition monitoring program encompasses an area from the northern end of the Kissimmee River, south to the Everglades National Park. From 1974 to 1987 bulk rain collectors were used to collect rain water samples. In 1987 the District switched to Areochem Wet/Dry precipitation collectors, and in March of 1992, based on recommendations from the USGS, the District changed its protocol for the Wet/Dry precipitation collectors to that used by the National Atmospheric Deposition Program (NADP).

The rain program was established to provide a water quality data base for:

- 1. Determining nutrient concentrations in wet and dry atmospheric deposition;
- 2. Determining nutrient loading rates;
- 3. Refine trend analysis; and
- 4. Determining spatial variability.
- 5. Permit compliance for the ENR project.

Sampling Locations and Descriptions

The locations of the 19 wet/dry atmospheric monitoring locations are shown on Figure 27. Table 44 lists all the station ID's, latitude and longitude, a brief station description, the period of record, and the frequency of collection for each parameter group.

District Publications

- Abtew, Wossenu., J. Obeysekera, G. Shih. (1992). Spatial Analysis for Monthly Rainfall in South Florida. SFWMD. Manuscript, December 1992. (DOR 115)
- Khanal, N., R. L. Hamrick. (1971). A Stochastic Model for Daily Rainfall Data Synthesis. SFWMD. Tech. Memo. August 1971. (DRE 13)
- Khanal, N., R. L. Hamrick. (1982). Long Term Tropical Storm Incidence Kissimmee River Basin Rainfall Analysis. SFWMD. Tech. Memo. April 1982. (DRE 142)

- MacVicar, T.K. (1983). Rainfall Averages and Selected Extremes for Central and South Florida. SFWMD. Tech. Pub. No. 83-02. (DRE 170)
- Sculley, S., Water Resources. (1986). Frequency Analysis of SFWMD Rainfall. SFWMD. Tech. Pub. No. 86-6. (DRE 226)
- Shih, G. (1983). Data Analysis to Detect Rainfall Changes in South Florida. SFWMD. Tech. Memo. May 1983. (DRE 165)
- Shih, G., Resource Planning Department. (1984). A Time Series Analysis of South Florida Rainfall Records. SFWMD. Tech. Memo. May 1984. (DRE 182)

FIGURE 27. Location of Sampling Stations for the Atmospheric Deposition Monitoring Program.

TABLE 45. Summary of Sampling Station Locations and Frequency of Collection for the Atmospheric Deposition Monitoring Program

·

		,
•		ş

SPWMD					Bassical		h faint	
Sta. ID	Lat	Long	Location	POR	Parameters	Nutrients	lons	Metals
S65AWET S65ADRY	273944	810803	On the grounds near S65A, which is located on the Kissimmee River 10.5 miles south of Lake Kissimmee.	I - 2661	M	×	×	
L63WET L63DRY	271509	804710	This site is breated at the intersection of the L63 levee, and State Road 710 .	1994 - P	M	M	M	ı
G36WET G36DRY	270944	804303	N.E. side of Lake Okeechobee just south of the Henry Creek Lock	1993 - P	M	м	Ŵ	'n
SI 27WET SI 27DR Y	270719	805340	At pump station S-127 on the N.W. side of Lake Okeecholsee between the Harney Poud Canal and the Kissimmee Rivver.	4 - 7861	M	×	w	ı
SI31WET SI31DRY	265842	810520	At pump station S-131 on the west side of Lake Okeechobee and north of Fisheating Creek.	993 - P	M	×	w	ï
S308WET S308DRY	265859	803713	COE structure at Lake Okeechobee and the ST. Latrie canal (C44) hocated on the east side of the Lake.	993 - P	W	м	M	,
S310WET S310DRY	264537	805505	On the south side of Lake Okeechobee, and cast of the S-310 lock in Clewiston.	1993 - P	M	м	м	
BGIWET BGIDRY BG2WET BG2DRY	264245	804327	S.E. corner of Lake Okeechobee near Belle Glade on Torry Island. BG2WFT and BG2DRY is a replicate collector at the same location as BG1WET and BG1DRY.	1993 - P	ж	M	×	
ENRWET GNRDRY	263900	802516	This site is located within the Everglades Nutrient Removal Project(ENR), which is located about 2 miles SW of District pump station S-5A off the L-7 levce.	1992 - P	æ	×	3	
ENRIOLW ENRIOLD	263832	802504	This site is located in the middle of cell one in the ENR project, which is about five miles S.W. of pump station S-5A.	1994 - P	W	M	м	A
ENR203W ENR203D	263835	802601	This site is located in the middle of cell two in the ENR project, which is about five miles S.W. of pump station S-5A.	1994 - P	M	×	ж	ж
ENR301W ENR301D	263705	802602	This site is located in the middle of cell three in the ENR project, which is about five miles S.W. of pump station S-5A.	1994 - P	ж	A	M	M
ENR401W ENR401D	263747	\$02624	This site is located in the middle of cell four in the ENR project, which is about five miles S.W. of pump station S-5A.	1994 - P	Ŵ	¥	*	*

...

TABLE 45(Continued). Summary of Sampling Station Locations and Frequency of Collection for the Atmospheric Deposition Monitoring Program

SFWMD Sta. ID	Lat	gno.l	Location	POR	Physical Parameters	Nurcients	Major Ions	Metals
L6WET L6DRY	262547	\$02827	This site is located about 3.5 miles S.W. of purup station S-6 on the L6 levee.	1995 - P	×	æ	M	
S7 WET S7 DRY	262007	\$03213	50 yards north of pump station S-7, which is just off US-27 at the intersection of the North New River Canal (L-18), L-5, and L-6.	1 - 2661	м	M	м	·
S140WET S140DRY	261017	804940	About 50 yards north of District pump station S-140, which is located near the west side of Water Conservation Area 3A, on the L-28 canal near I-75.	d - 5661	M	M	м	·
L67AWET L67ADRY	254802	804006	About 2.5 miles N.E. of S-333 (US-41) on the east side of the L67A layee.	I - 2661	ж	M	M	ı
ENPRCWET ENPRCDRY	254621	805023	This site is located on the grounds of the Everglades National Park Research Center, which is located in the Everglades National Park.	9.144P	м	M	ж	ı

-

• -

.

,

SECTION 22

MANATEE BAY / LONG SOUND PROJECT CODE: MBLS

Purpose and Scope

The MBLS water quality monitoring program is conducted in the C-111 canal, Manatee Bay, Barnes Sound, and Long Sound areas. This monitoring program is conducted in conjunction with the C-111 monitoring and operation permit # 131654749. Water quality monitoring occurs when at least 3 of the 13 culverts are opened at S-197. Various biological and hydrological monitoring will occur at the same time. Other environmental monitoring is conducted in these same areas by TENP and DERM. The MBLS water quality monitoring program provides a data base for:

- 1. Determining Manatee Bay/ Barnes Sound salinity responses to storm related discharges at S-197;
- 2. Establishing salinity gradients in Northeast Florida Bay associated with normal flow diversions through the C-111 gaps;
- 3. Monitoring any additional influx of nutrients in the TENP eastern panhandle resulting from through the gaps;
- 4. Monitoring salinity and water quality impacts downstream of S-21 (C-1W diversions); and
- 5. Establishing spatial impacts on salinity gradients, and how quickly they are re-established following a discharge event.

Sampling Locations and Descriptions

The location of the 22 sites monitored under this program are shown on Figure 28. Currently nutrients and physical parameters are sampled for at 8 of the 22 sites, and only physical parameters are sampled at the remaining 14 sites. Table 45 lists all station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 46 contain statistics for each monitoring location.

District Publications

Monitoring and Operating plan for C-111 Interim Construction Project. Permit # 131654749, (1991), SFWMD, Department of Research.

Location of Sampling Stations for the Manatee Bay / Long Sound Water Quality Monitoring Program. FIGURE 28.

SFWMD								
Sta. ID Lat Long		Long	Location	POR	Physical Parameters	Nutrients	Chlorephylis	G/A
								-
MBLS01	251453	802647	NE comet of Long Sound in small bay.	19 85 - P	STE	-	-	-
MBLS02	251423	802649	NE corner of Long Sound proper.	1985 - P	STE	STE	STE	G
MBLS03	251244	802614	Central Little Blackwater Sound.	1985 - P	STE	STE	STE	G
MBLS04	251340	802423	West Central Barnes Sound.	1986 - P	STE	STE	STE	G
MBLS05	251407	802432	NW of MBLS04, 100 yards off East Island.	1991 - P	STE	-	-	-
MBLS06	251319	802447	Western Barnes Sound just S.E. of Little #6 Island.	1991 - P	STE	-	-	-
MBLS07	251316	802510	N.W. of MBLS06 at marker #2.	1988 - P	STE	-	-	-
MBLS08	251422	802456	S.W. Manatee Bay.	1991 - P	STE	-	-	-
MBLS09	251429	802415	Southern Manatee Bay, N. side of East Island. 200 yards N.E. of platform.	1986 - P	STE	-	-	-
MBLS10	251541	802415	N.E. of MBLS09 in Manatee Bay, 1/4 mile west of cut in key.	1985 - P	STE	-	-	-
MBLS11	251539	802353	Western Barnes Sound, east of MBLS10, through cut in key 200 yards out.	1991 - P	STE	-	-	-
MBLS12	251604	802440	N.E. Manatee Bay in small bay N.W. of MBLS10.	1991 - P	STE	-		
MBLS13	251544	802502	Northern Manatee Bay S.W. of MBLS12.	1986 - P	STE	STE	STE	G

TABLE 46. Summary of Sampling Locations and Frequency of Collection for the Manatee Bay / Long Sound Monitoring Program

. . .

-

TABLE 46 (Continued).	Summary of Sampling Locations and Frequency of Collection for the Manatee	Bay / Long
	Sound Monitoring Program	

SFWMD								
Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
MBLS14	251553	802509	Northern Manatee Bay in small bay, just north of MBLS13.	1991 - P	STE	-	-	-
MBLS15	251554	802515	N.W. of MBLS13 in Northern Manatee Bay, in small bay.	1991 - P	STE	-	-	-
MBLS16	251524	802521	N.W. Manatee Bay at end of C-111 canal, at matker #6.	199 1 - P	STE	•	-	-
MBLS17	251540	802538	C-111 canal where road ends on east side of canal.	1985 - P	STÉ	-		-
MBLS18	251712	802630	Downstream side of S-197.	1985 - P	STE	•	•	· -
MBLS19	251420	802519	S.W Manatee Bay, two platforms at this site, one is a stage recorder.	1991 - P	STE	STE	STE	G
MBLS20	251625	802349	N.E. Barnes Sound	1991 - P	STE	STE	STE	6
MBLS21	251722	802347	N.E. Manatee Bay, also N.E. of MBLS20.	1991 - P	STE	STE	STE	G
MBLS22	251405	802725	N.E. Long Sound, just west of MBLS02. Recorder at this site.	1991 - P	STE	STE	STE	G

.

· · · ·

. ... • •

- . . .

SFWMD	<i>m</i> . 1			0.1	DI (~ ·	1.57%		BT1. 1	NT:	
<u>Sta. ID</u>	<u>l otal</u>	Phospho:	<u>rus</u>	<u>Ortho</u>	Phosphe	<u>orus</u>	<u>10ta</u>	u Nitroge	<u>n</u>	Nitrite	- <u>INItrate(r</u>	\underline{AOX}
	<u>MIN</u>	<u>MEAN</u>	MAX	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>
MBLS01	0.0040	0.0080	0.0170	0.0040	0.0045	0.0080	-	-	_	-	-	-
MBLS02	0.0040	0.0076	0.0420	0.0040	0.0048	0.0100	-	-	-	-	-	-
MBLS03	0,0040	0.0080	0.0590	0.0040	0.0063	0.0330	0.6000	0.6700	0.7400	0.0040	0.0495	0.0950
MBLS04	0.0040	0.0108	0.0850	0.0040	0.0063	0.0140	0.5000	0.6050	0.7100	0.0040	0.0600	0.1160
MBLS07	0.0140	0.0140	0,0140	0.0080	0.0080	0.0080	-	-	-	-	-	-
MBLS09	0.0040	0.0089	0.0190	0.0040	0.0107	0.1220	0.6000	0.7300	0.8600	0.0230	0.1195	0.2160
MBLS10	0.0090	0.0090	0.0090	0.0040	0.0040	0.0040	-	-	-	-	-	-
MBLS13	0.0040	0.0094	0.0390	0.0040	0.0053	0.0140	0.7500	0.8350	0.9200	0,0070	0.0195	0.0320
MBLS14	0.0080	0.0080	0.0080	0.0040	0.0040	0.0040	-	-	-	-	-	-
MBLS17	0.0040	0.0091	0.0160	0.0040	0.0042	0.0060	-	-		-	-	-
MBLS18	0.0040	0.0103	0.0310	0.0020	0.0045	0.0070	0,8400	0,8750	0,9100	0.0570	0.1520	0.2470
MBLS19	0.0040	0.0098	0.0230	-	-	-	-	-	-	-	-	-
MBLS20	0.0040	0.0109	0.0400	-	-	-	-	-	-	-	-	-
MBLS21	0.0040	0.0089	0,0220	-	-	-	-	-	-	-	-	-
MBLS22	0.0040	0.0066	0.0130	-	-	-	-	-	-	-	-	-

.

÷ .

TABLE 47. Statistics on Select Parameters for the Manatee Bay Long Sound Water Quality Monitoring Program for
Period of Record

200

÷

SECTION 23

THE SOUTH FLORIDA ESTUARINE WATER QUALITY MONITORING PROGRAM PROJECT CODE: FLAB, SWS, TTI, BISC

Purpose and Scope

This collaborative program with the Everglades National Park (ENP) and Florida International University (FIU) consists of surface water quality monitoring networks in the Shark Slough estuaries, Florida, Whitewater and Biscayne Bay, the Ten Thousand Islands, and the southwest Florida Shelf. This program has two components: 1) continuous data collection from fixed stations by ENP; and 2) discontinuous "grab sample" data collection by FIU.

The ENP continuous data collection project includes three elements: 1) the marine monitoring network (MMN); 2) the C-111 and Joe Bay network; and 3) the telemetric data network. The MMN, maintains and collects continuous physical-chemical data from 28 fixed stations within the Park. As ENP expands the MMN network on the Gulf Coast will be reported. The second element consists of continuous data collection from the Joe Bay meteorological tower and four C-111 stations in Manatee Bay and Barnes Sound, which are jointly operated and maintained by the ENP and the District. The third element consists of data that are telemetered daily from 15 MMN sites and the Joe Bay tower.

The discontinuous data collection or "grab sample" project operated by FIU consists of 149 stations, of which 100 are sampled monthly and the 49 that are located along five transects in the Gulf of Mexico are sampled quarterly. These 49 sites change slightly each trip, but are sampled along the same transect each time. Because of the slight change in location each trip, the station name changes each time. All of the sites are monitored for a variety of physical, chemical, and biological parameters to characterize water quality.

The objectives of these monitoring networks are to 1) better understand the potential for southwest Florida Shelf waters to impact Florida Bay and the Florida Keys National Marine Sanctuary, 2) assess the impacts of upstream water management practices on the receiving waterbodies, 3) detect trends in the health of the resource, and 4) fulfill requirements of legal mandates.

The data collected under this cooperative program are compiled in databases and used effectively in preparing District reports. They are submitted to FDEP to fulfill permit requirements and are used to evaluate impacts of proposed structural and operational modifications to the system. These data are also used to address questions concerning freshwater inflow, water clarity, salinity, and nutrient availability patterns, and will remain an integral component of the effort to restore the south Florida ecosystem.

Sampling Locations and Descriptions

÷÷

This monitoring program consists of 182 sites, and covers the estuarine waters from Biscayne Bay south through Florida and Whitewater bays, and up the southwest Florida coast to the Ten Thousand Islands. The sampling locations are shown in Figures 29 and 30. Table 47 lists all station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 48 contains basic summary statistics for select parameters at each monitoring location. **District Publications:** None

FIGURE 30. Location of Sampling Stations for the South Florida Estuarine Water Quality Monitoring Program

Ϋ́,

SFWMD								
Sta. ID	Lai	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
FI.AB01	251625	8 02229	Card Sound Bridge	1991 - P	М	М	м	G
FLAB02	251706	802342	Middle Bay	1991 - P	М	М	м	G
FLAB03	251504	802455	Manatee Bay	1991 - P	м	М	М	G
FLAB04	251318	802318	Barnes Sound	1991 - P	М	М	М	G
FLAB05	251027	802523	Blackwater Sound	1991 - P	М	М	м	G
FLAB06	251225	802625	Little Blackwater Sound	1991 - P	М	М	М	G
FLAB07	251513	802639	Highway Creek	1991 - P	М	М	М	G
FLAB08	251339	802742	Long Sound	1991 - P	М	м	м	G
FLAB09	251037	8029 30	Duck Key	1991 - P	М	М	М	G
FLAB10	251328	803211	Joe Bay	1991 - P	М	М	М	G
FLAB11	251031	803737	Little Madeira Bay	1991 - P	М	м	М	G
FLAB12	250825	804258	Terrapin Bay	1991 - P	М	м	М	G
FLAB13	250529	804517	Whipray Bay	1991 - P	М	м	М	G
FLAB14	250902	804833	Garfield Bight	1991 - P	М	м	М	G
FLAB15	250717	804810	Rankin Lake	1991 - P	М	М	м	G
FLAB16	250706	805622	Murry Key	1991 - P	м	М	м	G
FLAB17	250233	805453	Johnson Key Basin	1991 - P	м	М	М	G

Lai	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
250009	805400	Rabbit Key Basin	1991 - P	M	м	м	G
245840	804513	Twin Key Basin	1991 - P	М	м	М	G
245546	804502	Peterson Key	1991 - P	М	м	м	G
250024	804053	Porpoise Lake	1991 - P	м	М	м	G
250224	803651	Captain's Key	1991 - P	м	М	М	G
250705	803559	Park Key	1991 - P	М	м	М	G
250606	803153	Battemut Key	1991 - P	М	м	М	G
250501	810450	East Cape	1991 - P	м	М	м	G
245851	810006	Oxfoot Bank	1991 - P	м	М	М	G
245507	805606	Sprigger bank	1991 - P	м	м	м	G
245202	804826	Old Dan Bank	1991 - P	м	М	М	G
253316	811101	First Bay	1992 - P	м	м	М	G
253449	810715	Third Bay	1992 - P	м	м	М	G
253403	810417	Big Lostman's Bay	1992 - P	м	м	М	G
253146	810236	Cabbage Island	1992 - P	м	м	М	G
252959	810256	- Broad River Bay	1992 - P	м	м	М	G
252910	810640	Middle Broad River	1992 - P	м	м	М	G
	Lai 250009 245840 245546 250024 250705 250606 250501 245851 245507 245202 253316 253449 253449 253449 253449	LatLong250009805400245840804513245546804502250024804053250224803651250705803559250606803153250501810450245851810006245851810006245202804826253316811101253449810715253146810236252959810256252959810256252910810640	LatLongLocation250009805400Rabbit Key Basin245840804513Twin Key Basin245840804502Peterson Key250024804053Porpoise Lake25024803651Captain's Key250705803559Park Key250706803153Burternut Key250501810450East Cape245851810006Oxfoos Bank245507805606Sprigger bank245507805606Sprigger bank245202804826Old Dan Bank2531681101First Bay253449810715Hird Bay253443810417Big Lostman's Bay253146810236Cabbage Island252910810640Middle Broad River	Lat Long Location POR 250009 805400 Rabbit Key Basin 1991 - P 245840 804513 Twin Key Basin 1991 - P 245840 804502 Peterson Key 1991 - P 250024 80453 Porpoise Lake 1991 - P 250224 803651 Captain's Key 1991 - P 250705 803559 Park Key 1991 - P 250606 803153 Butternut Key 1991 - P 250501 810450 East Cape 1991 - P 250501 810450 East Cape 1991 - P 245507 805606 Sprigger bank 1991 - P 245507 805606 Sprigger bank 1991 - P 245507 804826 Old Dan Bank 1991 - P 25316 81101 First Bay 1992 - P 253403 810417 Big Lostman's Bay 1992 - P 253403 810417 Big Lostman's Bay 1992 - P 253404 810236 Cabbage Island </td <td>Lu Log Location POR Physical Perameters 250009 805400 Ratbit Key Basin 1991 - P M 245840 804513 Twin Key Basin 1991 - P M 245546 804502 Peterson Key 1991 - P M 250024 804503 Porpoise Lake 1991 - P M 25024 803651 Captain's Key 1991 - P M 250254 803651 Captain's Key 1991 - P M 250265 80353 Park Key 1991 - P M 250506 803153 Butternut Key 1991 - P M 250505 803153 Butternut Key 1991 - P M 250506 803153 Butternut Key 1991 - P M 245810 810450 Dato Bank 1991 - P M 245807 805666 Sprigger bank 1991 - P M 253408 810115 First Bay 1992 - P M 253403 810417<!--</td--><td>LatLongLocationPORPhysical ParametersNutrients250009805400Rabbit Key Basin1991 - PMM245840804513Twin Key Basin1991 - PMM245846804502Peterson Key1991 - PMM250024804533Porpoise Lake1991 - PMM25024803651Captain's Key1991 - PMM25025480353Part Key1991 - PMM25026480353Butenut Key1991 - PMM25026580353Butenut Key1991 - PMM250206803153Butenut Key1991 - PMM250501810450East Cape1991 - PMM250502803666Sprigger bank1991 - PMM250503805666Sprigger bank1991 - PMM2531681101First Bay1992 - PMM2531681101First Bay1992 - PMM25316810236Cabbage Island1992 - PMM253146810236Cabbage Island1992 - PMM253146810236Cabbage Island1992 - PMM253146810236Gatakiver Bay1992 - PMM25310810640Middle Broad River1992 - PMM</td><td>LatLorgLocationPORPhysical ParametersNutsiensChlorophylls250009805400Rabbit Key Basin1991 - PMMM245840804513Twin Key Basin1991 - PMMM245846804502Peterson Key1991 - PMMM250024804633Porpoise Lake1991 - PMMM2502480351Captain's Key1991 - PMMM25070580359Park Key1991 - PMMM25070580359Park Key1991 - PMMM25070580359East Cape1991 - PMMM25070580450Oxfoor Baak1991 - PMMM25070580566Sprigger bank1991 - PMMM25370580566Sprigger bank1991 - PMMM2531681101First Bay1992 - PMMM2531681101First Bay1992 - PMMM253449810715Inin Bay1992 - PMMM25346810266Cabage Island1992 - PMMM25316810407Big Lostman's Bay1992 - PMMM25316810405Cabbage Island1992 - PMMM25316810405Kotyee Island1992 - PMMM</td></td>	Lu Log Location POR Physical Perameters 250009 805400 Ratbit Key Basin 1991 - P M 245840 804513 Twin Key Basin 1991 - P M 245546 804502 Peterson Key 1991 - P M 250024 804503 Porpoise Lake 1991 - P M 25024 803651 Captain's Key 1991 - P M 250254 803651 Captain's Key 1991 - P M 250265 80353 Park Key 1991 - P M 250506 803153 Butternut Key 1991 - P M 250505 803153 Butternut Key 1991 - P M 250506 803153 Butternut Key 1991 - P M 245810 810450 Dato Bank 1991 - P M 245807 805666 Sprigger bank 1991 - P M 253408 810115 First Bay 1992 - P M 253403 810417 </td <td>LatLongLocationPORPhysical ParametersNutrients250009805400Rabbit Key Basin1991 - PMM245840804513Twin Key Basin1991 - PMM245846804502Peterson Key1991 - PMM250024804533Porpoise Lake1991 - PMM25024803651Captain's Key1991 - PMM25025480353Part Key1991 - PMM25026480353Butenut Key1991 - PMM25026580353Butenut Key1991 - PMM250206803153Butenut Key1991 - PMM250501810450East Cape1991 - PMM250502803666Sprigger bank1991 - PMM250503805666Sprigger bank1991 - PMM2531681101First Bay1992 - PMM2531681101First Bay1992 - PMM25316810236Cabbage Island1992 - PMM253146810236Cabbage Island1992 - PMM253146810236Cabbage Island1992 - PMM253146810236Gatakiver Bay1992 - PMM25310810640Middle Broad River1992 - PMM</td> <td>LatLorgLocationPORPhysical ParametersNutsiensChlorophylls250009805400Rabbit Key Basin1991 - PMMM245840804513Twin Key Basin1991 - PMMM245846804502Peterson Key1991 - PMMM250024804633Porpoise Lake1991 - PMMM2502480351Captain's Key1991 - PMMM25070580359Park Key1991 - PMMM25070580359Park Key1991 - PMMM25070580359East Cape1991 - PMMM25070580450Oxfoor Baak1991 - PMMM25070580566Sprigger bank1991 - PMMM25370580566Sprigger bank1991 - PMMM2531681101First Bay1992 - PMMM2531681101First Bay1992 - PMMM253449810715Inin Bay1992 - PMMM25346810266Cabage Island1992 - PMMM25316810407Big Lostman's Bay1992 - PMMM25316810405Cabbage Island1992 - PMMM25316810405Kotyee Island1992 - PMMM</td>	LatLongLocationPORPhysical ParametersNutrients250009805400Rabbit Key Basin1991 - PMM245840804513Twin Key Basin1991 - PMM245846804502Peterson Key1991 - PMM250024804533Porpoise Lake1991 - PMM25024803651Captain's Key1991 - PMM25025480353Part Key1991 - PMM25026480353Butenut Key1991 - PMM25026580353Butenut Key1991 - PMM250206803153Butenut Key1991 - PMM250501810450East Cape1991 - PMM250502803666Sprigger bank1991 - PMM250503805666Sprigger bank1991 - PMM2531681101First Bay1992 - PMM2531681101First Bay1992 - PMM25316810236Cabbage Island1992 - PMM253146810236Cabbage Island1992 - PMM253146810236Cabbage Island1992 - PMM253146810236Gatakiver Bay1992 - PMM25310810640Middle Broad River1992 - PMM	LatLorgLocationPORPhysical ParametersNutsiensChlorophylls250009805400Rabbit Key Basin1991 - PMMM245840804513Twin Key Basin1991 - PMMM245846804502Peterson Key1991 - PMMM250024804633Porpoise Lake1991 - PMMM2502480351Captain's Key1991 - PMMM25070580359Park Key1991 - PMMM25070580359Park Key1991 - PMMM25070580359East Cape1991 - PMMM25070580450Oxfoor Baak1991 - PMMM25070580566Sprigger bank1991 - PMMM25370580566Sprigger bank1991 - PMMM2531681101First Bay1992 - PMMM2531681101First Bay1992 - PMMM253449810715Inin Bay1992 - PMMM25346810266Cabage Island1992 - PMMM25316810407Big Lostman's Bay1992 - PMMM25316810405Cabbage Island1992 - PMMM25316810405Kotyee Island1992 - PMMM

.

τ.

SFWMD	•				-			
Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nurrients	Chlorophylls	G/A
FLAB35	252830	810930	Mouth Broad River	1992 - P	М	м	м	G
FLAB36	252442	810829	South Mouth Harney River	1992 - P	м	м	М	G
FLAB37	252554	8 10 4 57	Hamey River Junction	1992 - P	М	м	М	G
FLAB38	252502	805954	Tarpon Bay	1992 - P	М	М	М	G
FLAB39	252244	810151	Gunboat Island	1992 - P	м	М	м	G
FI.AB40	252059	810728	Ponce De Leon Bay	1992 - P	М	М	М	G
FLAB41	251952	810728	Oyster bay	1992 - P	м	М	М	G
FLAB42	251933	810052	North of Marker 36	1992 - P	М	М	М	G
FLAB43	251710	810125	West of Marker 34	1992 - P	М	М	М	G
FLAB44	251955	805901	Watson R. Chickee	1992 - P	м	М	М	G
FLAB45	251803	805737	Mouth of the North River	1992 - P	М	М	М	G
FLAB46	251706	805833	Midway Keys	1992 - P	М	М	М	6
FLAB47	251 6 47	805539	Mouth of Roberts River	1992 - P	М	М	М	G
FLAB48	251427	805729	West of Marker 18	1992 - P	м	м	М	G
FLAB49	251342	805559	Southeast of Marker 12	1992 - P	М	м	м	G
FLAB50	251127	805451	Coot Bay	1992 - P	М	м	М	G

.

SFWMD								
Sta, ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
TTI51	254827	812058	Chokoloskee	1994 - P	М	м	М	G
TFI52	254612	812300	Rabbit Key Pass	1994 - P	м	М	м	G
Tf153	254703	811956	Lopez Bay	1994 - P	м	М	М	G
TTISI	254708	811833	Lopez River	1994 - P	М	м	M	G
TTI 55	254746	811648	Sunday Bay	1994 - P	М	м	М	G
TTI 56	254511	811520	Huston Bay	1994 - P	м	м	м	G
TTI:57	254303	811350	Upper Chatham River	1994 - P	М	М	м	G
TT158	254228	811508	Watson Place	1994 - P	м	М	М	G
TT159	254130	811755	Gun Rock Point	1994 - P	М	М	М	G
TT:60	254353	811705	Huston Bay	1994 - P	м	м	М	G
TTI61	254255	811225	Chevelier Bay	1 994 - P	м	М	M ·	G
TT162	254013	811007	Alligator Bay	1994 - P	м	М	М	G
TT163	253800	810842	Lostman's Five Bay	1994 - P	м	м	М	G
T TI 64	255112	812336	Barron River	1994 - P	М	м	М	G
TTI65	254938	812628	Indian Key Pass	1994 - P	м	М	М	G
TT166	254817	812745	Indian Key	1994 - P	м	м	М	G
T TI6 7	254949	813010	West Pass	1994 - P	М	м	М	G

ч,

SFWMD								
Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylla	G/A
T T168	255058	813232	Panther Key	1994 - P	М	м	М	G
TT169	255227	813058	Paka Union Pass	1994 - P	М	М	м	G
TTI70	255300	813058	Faka Union Bay	1994 - P	м	М	М	G
T 117 1	255200	813429	White Horse Key	1994 - P	М	М	М	G
TT172	255340	813332	Dismal Key	1994 - P	М	м	М	G
TT173	255255	813623	Long Rock	1994 - P	М	М	М	G
T TI 74	255440	813655	Shell Key	1994 - P	М	М	М	G
TT175	255547	813601	Blackwater River	1994 - P	М	М	м	G
BISC101	252842	801915	Convoy Point	1993 - P	М	М	М	G
BISC102	253245	8 01741	Black Point	1993 - P	М	М	М	G
BISC103	253424	801712	Near Black Ledge	1993 - P	М	М	М	G
BISC104	253606	801315	BNP Marker C	1993 - P	М	М	М	G
BISC108	253409	801113	Marker G-1B	1993 - P	М	М	м	G
BISC109	253351	801406	North Midbay	1993 - P	м	М	М	G
BISC110	253018	801715	Fender Point	1993 - P	М	м	м	G
BISCIN	253057	801424	Featherbed Bank	1993 - P	М	м	М	G

Sta. ID	Lau	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
BISC112	252918	801118	Sands Cut	1993 - P	м	М	М	G
BISC113	252630	801324	Elliot Key	1993 - P	М	М	М	G
BISC116	252300	801518	Rubicon Keys	1993 - P	м	М	М	G
BISC121	252118	801730	North Card Sound	1993 - P	М	М	М	G
BISC122	252513	801839	West Arsenicker	1993 - P	М	М	М	G
BISC123	252642	801700	Pelican Bank	1993 - P	м	М	М	G
BISC124	252821	801400	South Midbay	1993 - P	м	М	М	G
BISC126	254018	801218	BNP Marker B	1996 - P	м	М	м	6
BISC127	253748	801500	Shoal Point	1996 - P	М	М	м	G
BISC128	254118	801400	Matheson Beach	1996 - P	М	м	м	G
BISC129	254412	801100	Marker G-71	1996 - P	М	М	М	G
BISC130	254548	801018	South Dodge Island	1996 - P	М	М	м	G
BISC131	254800	801000	North Venetian Basin	1996 - P	м	М	М	G
BISC132	254900	801000	North I-195 Basin	1996 - P	М	М	М	G
BISC133	255200	800900	North Normandy Isle	1 996 - P	М	м	М	G
BISC134	255418	800800	Oleta River Park	1996 - P	М	М	М	G
BISC135	251900	801900	South Card Sound	1996 - P	М	М	М	G
SW\$351	244130	814730	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G

.

. .

.

SFWMD

- -

SFWMD								
Sta. ID	Lat	Long	Location	POR	Physical Parameters	Nutrients	Chlorephylis	G/A
SW\$352	244633	814659	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS353	245130	814636	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS354	245629	814607	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS355	250129	814545	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS356	250628	814514	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS357	251128	814443	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	6
SWS358	251629	814417	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QIR	QTR	QTR	G
SWS359	252130	814348	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS360	252628	814316	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS361	253129	814254	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QIR	QTR	QTR	G
SWS362	253631	814224	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QIR	G
SW\$363	254131	814154	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G

SFWMD								
Stal ID	I ∎t	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
SWS364	254130	813200	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SW\$365	253631	813222	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS366	253134	813256	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QIR	QTR	QTR	G
SWS367	252633	813318	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS368	252131	813348	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS369	251632	813419	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS370	251131	813445	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QIR	QTR	G
SWS371	250630	813513	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTK	QTR	G
SWS372	250130	813543	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS373	245632	813611	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QIR	qir	G
SWS374	245132	813639	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS375	244632	813704	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G

.

....

-

ч.

SFWMD								
Sta. ID	La:	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
SWS376	245036	812618	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTTR	QTR	QTR	G
SWS377	245606	812554	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 • P	QIR	QTR	QTR	G
SWS378	250100	812457	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS379	250600	812432	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS380	251100	812400	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS381	251600	812342	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QIR	QTR	G .
SWS382	252100	812312	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS383	252557	812240	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS384	253056	812212	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS385	253601	812147	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS386	253320	812026	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS387	253022	811901	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QIR	G

1

÷...

SFWMD								
Sta. ID	Lai	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
SWS388	252530	8) 1749	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS389	252030	811637	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS390	251536	811537	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS391	251030	811419	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SW\$392	250530	811454	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS393	250030	811512	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G .
SWS394	245530	811536	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS395	245242	811130	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	6
SWS396	245000	810742	West of the ENP boundary in the Galf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS397	245500	810706	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS398	250000	810636	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR	G
SWS399	250500	810558	West of the ENP boundary in the Gulf of Mexico collected along one of five transects.	1995 - P	QTR	QTR	QTR .	G

.

SFWMD									
Sta. ID	tهـ آ	Long		Location	POR	Physical Parameters	Nutrients	Chiorophylls	G/A
ENPWW	253512	810239	Willy Willy		[997 *	м	-	-	G
ENPLO	253320	811007	Lostmans River		1997 •	М	-		G
ENPWP	254233	811453	Watson Place		1997 *	М	-	-	G
ENPCA	254205	811110	Cannon Bay		1997 •	М	-		G
ENPBD	252909	810640	Broad River Lower		1996 - P	м	-	-	G
ENPHR	252526	810336	Hamey River		1996 - ₽	М		-	G
ENPGI	252240	800146	Gunbeat Island		1996 - P	м	•	-	G
ENPTE	252635	805752	Tarpon Bay East		1996 - P	м	-	-	G
ENPSR	252112	810557	Shark River		1996 - P	М	-		G
ENPCW	251746	810047	Clearwater Pass		1996 - P	М	-		G
ENPLN	251703	805338	Lane River		1996 - P	М	-	-	G
ENPWE	251352	805613	Whitewater Bay East		1995 - P	М	-	-	G
ENPBA	250133	804055	Bob Allen		1988 - P	М		-	G
ENPBK	250715	805002	Buoy Key		1988 - P	М	-	-	G
ENPBN	250508	803106	Buttemut Key		1988 - P	м		-	G
ENPBR	252840	805923	Broad River		1990 - P	М	-	-	G
ENPBS	251042	802618	Blackwater Sound		1991 - P	М	-		G
ENPCN	252518	805633	Cane Patch		1990 - P	QTR	-	-	G

* Estimated to begin sampling in 1997

· .

۰.

.

Lat	Long	Location	POR	Physical Parameters	Nutrients	Chlorophylls	G/A
251046	802923	Duck Key	1988 - P	м			G
251514	802641	Highway Creek	1988 - P	М	-	-	G
251326	803229	Joe Bay	1988 - P	М	-	-	G
250307	805413	Johnson Key	1988 - P	М	-	•	G
251248	802600	Little Blackwater Sound	1991 - P	М	-	-	G
251031	803756	Little Maderia	1988 - P	М	-	-	G
245852	804933	Little Rabbit Key	1988 - P	М	-	-	G
251405	802727	Long Sound	1988 - P	М	-	-	G
250620	805632	Murray key	1988 - P	М	-	•	6
252023	805441	North River	1990 - P	М	-	-	G
245505	804446	Peterson Key	1988 - P	М	-	-	G
250936	804330	Тепаріл Вау	1991 - P	М	-	-	G
251244	803201	Ттои Соче	1988 - P	М	-	-	G
251328	803911	Taylor River	1988 - P	М	-	-	G
250441	804339	Whipray Basin	1988 - P	м	-	-	G
	Lat 251046 251514 251326 250307 251248 251031 245852 251405 250620 252023 245505 250936 251244 251328 250441	LatLong251046802923251514802641251326803229250307805413251248802600251031803756245852804933251405802727250620805632252023805441245505804446250936804330251244803201251328803911250441804339	LatLongLocation251046802923Duck Key251514802641Highway Creek251326803229Joe Bay250307805413Johnson Key251248802600Little Blackwater Sound251031803756Little Maderia245852804933Little Rabbit Key251405802727Long Sound250620805632Murray key25023805441North River25036804466Peterson Key250936804330Terrapin Bay251244803201Troot Cove251328803911Taylor River25041804339Whipray Basin	Lat Long Location POR 251046 802923 Duck Key 1988 - P 251514 802641 Highway Creek 1988 - P 251326 803229 Joe Bay 1988 - P 250307 805413 Johnson Key 1988 - P 251031 803505 Little Blackwater Sound 1991 - P 251031 803756 Little Maderia 1988 - P 25162 804933 Little Rabbit Key 1988 - P 251620 805632 Marray key 1988 - P 250620 805434 North River 1990 - P 251035 804446 Peterson Key 1988 - P 250936 804330 Terrapia Bay 1991 - P 251244 803201 Troat Cove 1988 - P 251328 803911 Taylor River 1988 - P 250441 804339 Whipray Basin 1988 - P	Lat Long Location POR Physical Parameters 251046 802923 Duck Key 1988 · P M 251514 802641 Highway Creek 1988 · P M 251326 803229 Joc Bay 1988 · P M 250307 805413 Johnson Key 1988 · P M 251034 802600 Little Blackwater Sound 1991 · P M 251031 803756 Little Maderia 1988 · P M 251031 803756 Little Maderia 1988 · P M 251030 802727 Long Sound 1988 · P M 250620 80532 Murray key 1988 · P M 250620 80541 North River 1990 · P M 250620 80541 North River 1998 · P M 250620 80541 North River 1998 · P M 250620 80446 Peterson Key 1988 · P M 250936 804446	LatLongLocationPORPhysical ParametersNutrients251046802923Duck Key1988 · PM-251514802641Highway Creek1988 · PM-251326803229Joe Bay1988 · PM-250307805413Johnson Key1988 · PM-251248802600Little Blackwater Sound1991 · PM-251031803756Little Maderia1988 · PM-251405802727Long Sound1988 · PM-251405802727Long Sound1988 · PM-25140580541North River1988 · PM-25062080542Marray key1988 · PM-2505280446Peterson Key1988 · PM-2505380446Peterson Key1988 · PM-2505480300Terrapin Bay1991 · PM-2512880301Troat Cove1988 · PM-2512880311Taylor River1988 · PM-2512880311Taylor River1988 · PM-2512880331Taylor River1988 · PM-2512880331Taylor River1988 · PM-2512880331Taylor River1988 · PM-2512880331Taylor River1988 · PM-2512	LatLongLocationPORPhysical ParametersNutriersChlorophylis251046802923Duck Key1988 · PM251514802601Highway Creek1988 · PM25132680329Joe Bay1988 · PM250307805413Johanon Key1988 · PM251046802600Little Blackwater Sound1918 · PM251031803756Little Maderia1988 · PM251045804933Little Aubit Key1988 · PM251045804933Little Aubit Key1988 · PM251045805632Marray key1988 · PM250203805414North River1990 · PM250505804465Peterson Key1988 · PM250526804303Terrapia Bay1991 · PM25053680430Terrapia Bay1991 · PM251244803201Totat Cove1988 · PM25124580311Terupia Bay1991 · PM25124580311Totat Cove1988 · PM251246803201Totat Cove1988 · PM251246803201Totat Cove1988 · PM-

.

. .

TABLE 49. Statistics on Select Parameters for the South Florida Estuarine Water Quality Monitoring Program forPeriod of Record

SFWMD <u>Sta. ID</u>	<u>Tetal</u>	Phospho	<u>rus</u>	Orthe	Phospho	<u>orus</u>	<u>To</u>	<u>tal Nitrog</u>	en	<u>Nitrite-</u>	Nitrate(N	<u>NOx)</u>
	MIN	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	MEAN	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>
FLAB01	0.0020	0.0083	0.0200	0.0001	0.0010	0.0044	-	-	-	0.0010	0.0298	0.0870
FLAB02	0.0010	0.0087	0.0260	0.0002	0.0013	0.0035	-	-	-	0.0010	0.0139	0.0678
FLAB03	0.0010	0.0083	0.0220	0.0001	0.0015	0.0050	-	-	-	0.0010	0.0151	0.1120
FLAB04	0.0030	0.0078	0.0180	0.0003	0.0015	0.0040	-	-	-	0.0010	0.0121	0.0607
FLAB05	0.0040	0.0080	0.0204	0.0002	0.0014	0.0043	-	-	-	0.0010	0.0159	0.0630
FLAB06	0.0033	0.0099	0.0320	0.0001	0.0017	0.0045	-	-	-	0.0010	0.0182	0.0660
FLAB07	0.0027	0.0156	0.0400	0.0001	0.0021	0.0047	-	-	-	0,0010	0.0094	0.0510
FLAB08	0.0040	0.0120	0.0350	0.0002	0.0018	0.0043	-	-	-	0.0010	0.0252	0.1230
FLAB09	0.0040	0.0078	0.0170	0.0001	0.0014	0.0044	-	-	-	0.0004	0.0481	0.1630
FLAB10	0.0065	0.0152	0.0247	0.0001	0.0019	0.0050	-	-	-	0.0011	0.0322	0.1130
FLAB11	0.0043	0.0093	0.0190	0,0001	0.0013	0.0039	-	-	-	0.0015	0.0238	0.0600
FLAB12	0.0052	0.0191	0,0560	0.0001	0.0013	0.0040	-	-	-	0.0010	0.0105	0.0610
FLAB13	0.0044	0.0198	0.0460	0.0001	0.0014	0.0043	-	-	-	0.0010	0.0082	0.0443
FLAB14	0.0051	0.0385	0.1300	0.0002	0.0018	0.0057	-	-	-	0.0010	0.0064	0.0446
FLAB15	0.0053	0.0292	0.0870	0.0002	0.0016	0,0039	-	-	-	0.0004	0.0067	0.0440
FLAB16	0.0040	0.0270	0.0790	0.0004	0,0016	0.0058	-	-	-	0.0004	0.0152	0.1146
FLAB17	0.0058	0.0223	0.0533	0.0002	0.0011	0.0057	-	-	-	0.0008	0.0052	0.0570
FLAB18	0.0030	0.0180	0.0805	0.0001	0.0010	0.0055	-	-	-	0.0006	0.0041	0.0320
FLAB19	0.0027	0.0129	0.0312	0.0001	0.0012	0.0050	-	-	-	0.0008	0.0040	0.0166
FLAB20	0.0026	0.0091	0.0200	0.0000	0.0011	0.0050	-	-	-	0,0010	0.0087	0.0390
FLAB21	0.0030	0.0108	0.0290	0,0001	0.0014	0.0053	-		-	0.0010	0.0053	0.0187
FLAB22	0.0030	0,0091	0,0220	0.0002	0.0014	0.0041	-	-	-	0.0020	0.0121	0.0329
FLAB23	0.0010	0.0078	0.0450	0.0002	0,0014	0.0051	-	-	-	0,0030	0.0251	0.0850
FLAB24	0.0020	0.0080	0.0700	0,0001	0.0012	0.0062	-	-	-	0.0053	0.0451	0.1270
FLAB25	0.0029	0.0199	0.0550	0.0002	0.0010	0.0054	-	-	-	0.0004	0.0090	0.0340
FLAB26	0.0021	0.0233	0.0969	0.0002	0.0011	0.0053	-	-	-	0.0006	0.0357	1,3860
FLAB27	0.0030	0.0163	0.0890	0,0001	0.0013	0.0122	_	-	-	0.0004	0.0320	1.3860
FLAB28	0.0020	0.0081	0.0260	0.0002	0.0011	0.0087	-	-	-	0.0004	0.0320	1.3860
FLAB29	0.0150	0.0280	0.0500	0.0007	0.0026	0.0069	-	-	-	0.0014	0.0253	0.0660
FLAB30	0.0114	0.0289	0.0740	0.0001	0,0014	0.0064	-	-	-	0,0006	0.0164	0.0720

۰.

.

TABLE 49. Statistics on Select Parameters for the South Florida Estuarine Water Quality Monitoring Program for
Period of Record

SFWMD													
<u>Sta. ID</u>	<u>Total</u>	Phospho	rus	<u>Ortho</u>	Phosphe	<u>rus</u>		<u>To</u>	<u>tal Nitrog</u>	en	Nitrite	+Nitrate(I	<u>NOx)</u>
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>	<u>M</u>	IN	<u>MEAN</u>	<u>MAX</u>	MIN	MEAN	<u>MAX</u>
FLAB31	0.0057	0.0206	0.0413	0.0001	0.0010	0.0048		-	-	-	0,0010	0.0116	0.0390
FLAB32	0.0091	0.0233	0.0622	0.0001	0.0010	0.0038		-	-	-	0.0010	0.0131	0.0480
FLAB33	0.0071	0.0249	0.0544	0.0001	0.0012	0.0038		-	•	۳	0.0011	0.0206	0.0900
FLAB34	0.0094	0.0305	0.0630	0.0001	0.0022	0.0095		-	-	-	0.0025	0.0393	0,1271
FLAB35	0.0110	0.0379	0.0756	0.0005	0.0046	0.0128		-	-	-	0.0034	0,0290	0.0996
FLAB36	0.0007	0.0382	0.0920	0.0012	0.006I	0.0118		-	-	-	0.0030	0.0215	0.1050
FLAB37	0.0101	0.0318	0.0560	0,0002	0,0045	0.0181		-	-	-	0.0020	0.0371	0,1200
FLAB38	0.0087	0.0233	0.0467	0,0001	0.0013	0.0033		-	-	-	0.0022	0.0322	0.1500
FLAB39	0.0088	0.0221	0.0400	0,0002	0,0026	0.0081		•	-	-	0.0039	0.0348	0.1340
FLAB40	0.0040	0.0194	0.0439	0.0008	0.0050	0.0092		-	-	-	0.0020	0.0287	0.1261
FLAB41	0.0090	0,0225	0.0439	0,0002	0.0031	0.0067		-	-	-	0.0019	0.0288	0.1444
FLAB42	0.0080	0.0228	0.0944	0.0004	0.0019	0.0056		-	-	-	0.0011	0,0185	0.1551
FLAB43	0.0090	0.0236	0.0469	0.0002	0.0026	0.0078		-	-	-	0.0012	0.0179	0.2483
FLAB44	0.0090	0.0248	0.0631	0.0007	0.0019	0.0053		-	-	-	0.0016	0.0219	0.1003
FLAB45	0.0090	0.0221	0.0560	0.0001	0.0020	0.0102		-	-	-	0.0015	0.0240	0.1262
FLAB46	0.0030	0.0225	0.0530	0,0002	0.0027	0.0208		-	-	-	0.0007	0.0252	0.2744
FLAB47	0.0080	0.0209	0.0635	0.0001	0.0016	0.0060		-	-	-	0.0011	0.0346	0.1239
FLAB48	0.0070	0.0242	0.0744	0.0002	0.0025	0.0089		-	-	-	0.0008	0.0290	0.2289
FLAB49	0.0110	0.0271	0,0830	0.0002	0.0027	0.0106		-	-	-	0.0009	0.0293	0.2034
FLAB50	0.0170	0.0407	0.1010	0.0002	0.0034	0.0136		-	-	-	0.0008	0.0345	0.3322

....

218

SFWMD <u>Sta. ID</u>	<u>Total</u>	Phosphor	<u>rus</u>	Orthe	<u>Phospho</u>	orus	<u>To</u>	tal Nitrog	en	<u>Nitrite-</u>	Nitrate(?	<u>NOx)</u>
	<u>MIN</u>	MEAN	MAX	MIN	<u>MEAN</u>	MAX	MIN	<u>MEAN</u>	<u>MAX</u>	MIN	<u>MEAN</u>	<u>MAX</u>
TTI51	0.0339	0.0373	0.0422	0.0055	0.0059	0.0062	-	-	-	0.0044	0.0076	0.0095
TTI52	0.0274	0.0325	0.0367	0.0061	0.0066	0.0069	-	-	-	0.0031	0.0043	0.0060
TTI53	0.0307	0.0329	0.0369	0,0053	0.0059	0.0071	-	-	-	0.0093	0.0151	0.0253
TTI54	0.0307	0.0357	0.0429	0.0022	0.0033	0.0040	-	-	•	0.0054	0.0101	0.0180
TT155	0.0244	0.0294	0.0373	0.0016	0.0019	0.0022	-	-	-	0.0019	0.0062	0,0135
TT156	0.0249	0.0304	0.0333	0.0006	0.0019	0.0040	-	-	-	0.0015	0.0052	0.0112
TT I57	0.0352	0.0416	0.0477	0.0008	0.0018	0.0038	-	-	-	0.0026	0.0066	0.0104
TTI58	0.0386	0.0446	0.0513	0,0025	0.0033	0.0042	-	-	-	0.0103	0.0114	0.0135
TTI59	0,0250	0.0346	0.0442	0.0019	0.0041	0.0060	-	-	-	0.0050	0.0058	0.0067
TTI60	0.0329	0.0411	0.0501	0.0009	0.0018	0.0027	-	-	-	0.0023	0.0075	0.0110
TTI61	0.0393	0.0449	0.0550	0,0004	0.0012	0.0023	-	-	-	0.0015	0.0052	0.0123
TT162	0.0192	0.0200	0.0214	0.0003	0.0010	0.0019	-	-	-	0.0013	0.0035	0.0070
TT163	0.0105	0.0168	0.0206	0.0006	0.0013	0.0025	-	-	-	0.0022	0.0090	0.0179
TT164	0.0233	0.0354	0.0487	0.0063	0.0100	0.0150	-	-	-	0.0053	0.0138	0.0198
TTI65	0.0385	0.0422	0.0493	0.0095	0.0145	0.0205	-	-	-	0.0070	0.0119	0.0168
TTI66	0.0359	0.0405	0.0452	0.0071	0.0108	0.0171	-	-	-	0.0023	0.0067	0,0143
TTI67	0.0291	0.0365	0.0504	0.0068	0.0107	0.0167	-	-	-	0.0012	0.0075	0.0127
TT168	0.0339	0.0417	0.0536	0.0028	0.0091	0.0163	-	-	-	0.0073	0.0082	0.0091
TT169	0.0336	0.0422	0.0534	0.0058	0.0093	0.0134	-	-	-	0.0007	0.0070	0.0125
TTI70	0,0191	0.0340	0.0531	0.0020	0,0066	0.0105	-	-	-	0.0057	0.0109	0.0188
TTI71	0.0319	0.0427	0.0556	0.0026	0.0083	0.0143	-	-	-	0.0007	0.0045	0.0066
TTI72	0.0409	0.0630	0.0853	0.0047	0.0173	0.0257	-	-	-	0.0005	0.0097	0.0170
TT173	0.0434	0.0485	0.0536	0.0067	0.0131	0.0213	-	-	-	0.0013	0.0051	0.0077
TT174	0.0418	0.0555	0.0692	0.0052	0.0097	0.0128	-	-	-	0,0011	0.0054	0.0081
TT175	0.0594	0.0675	0.0816	0.0149	0.0218	0.0260	-	-	-	0.0035	0.0059	0.0082

TABLE 49. Statistics on Select Parameters for the South Florida Estuarine Water Quality Monitoring Program forPeriod of Record

_

ч

TABLE 49. Statistics on Select Parameters for the South Florida Estuarine Water Quality Monitoring Program for Period of Record

1

101

.

SFWMD												
Sta. ID	Total	Phospho	rus	Ortho	Phospho	rus	Tot	al Nitroge	en	Nitrite	-Nitrate(I	NOx)
·								_				
	<u>MIN</u>	<u>MEAN</u>	<u>MAX</u>									
BISC101	0.0019	0.0057	0.0170	0.0001	0,0010	0.0029	0.2609	0.5528	1.2555	0.0006	0.1088	0.8350
BISC102	0.0026	0.0063	0.0104	0,0000	0.0009	0.0024	0.2200	0.5380	1.1476	0.0007	0,0922	0,7430
BISC103	0.0024	0.0050	0.0080	0.0000	8000.0	0.0025	0.1960	0.4167	0.6857	0.0010	0.0503	0.2656
BISC104	0.0024	0.0049	0.0086	0.0000	0.0006	0.0019	0,1501	0.2405	0.4972	0.0011	0.0090	0.0503
BISC108	0.0017	0.0048	0.0094	0.0001	0.0004	0.0013	0.0936	0.1835	0.3141	0.0002	0.0030	0.0150
BISC109	0.0019	0.0043	0.0084	0.0000	0.0006	0.0024	0,1360	0.2134	0.3814	0.0006	0.0089	0.0538
BISC110	0,0027	0,0052	0.0099	0.0000	0.0009	0.0039	0.2023	0.4148	1.0257	0.0023	0.0837	0,4727
BISC111	0.0020	0.0044	0.0082	0.0000	0.0004	0.0016	0.1330	0.2292	0.4353	0.0009	0.0086	0.0821
BISC112	0.0027	0.0048	0.0085	0.0000	0.0005	0.0016	0.1083	0.1933	0,3832	0.0005	0,0032	0.0128
BISC113	0.0020	0.0045	0.0079	0,0000	0.0005	0.0018	0.1502	0.2528	0.4592	0.0019	0.0109	0.0505
BISC116	0.0018	0.0047	0.0081	0.0000	0.0006	0.0019	0.1092	0.2448	0.3902	0.0027	0.0121	0,0464
BISC121	0.0018	0.0055	0.0130	0.0000	0.0006	0.0022	0.1241	0.3266	0.5777	0.0017	0.0173	0.0938
BISC122	0.0029	0.0055	0.0096	0.0000	0.0008	0.0026	0.2125	0.3522	0.6627	0.0008	0.0308	0.3116
BISC123	0.0019	0.0047	0.0081	0.0000	0.0008	0.0032	0.1698	0.3189	0.4964	0.0029	0.0389	0.1470
BISC124	0.0009	0.0040	0.0060	0.0000	0.0006	0.0019	0.1400	0.2612	0.4754	0.0007	0.0109	0.0941
BISC126	0.0020	0.0038	0.0053	0.0003	0.0006	0.0009	0.2400	0.2633	0.2800	0.0052	0.0073	0.0103
BISC127	0.0031	0.0034	0.0036	0.0005	0.0005	0.0005	0.2500	0.3033	0.3300	0.0019	0,0060	0.0099
BISC128	0.0035	0.0039	0.0043	0.0005	0.0006	0.0007	0.3100	0.3400	0.3600	0.0025	0.0066	0.0116
BISC129	0.0050	0.0053	0.0057	0.0007	0.0007	0.0007	0.2700	0.2767	0.2900	0,0021	0.0062	0.0096
BISC130	0.0055	0.0080	0.0113	0.0005	0.0005	0.0005	0.2400	0.2633	0.2800	0.0163	0.0176	0.0192
BISC131	0.0057	0.0071	0.0084	0.0004	0.0007	0.0009	0.3300	0.3367	0.3400	0.0246	0.0297	0.0345
BISC132	0.0061	0.0070	0.0080	0.0015	0.0015	0.0015	0.3200	0.3500	0.3900	0.0129	0.0213	0.0340
BISC133	0.0091	0.0105	0.0126	0,0010	0.0010	0.0010	0.2900	0.3400	0.3700	0.0058	0.0151	0.0293
BISC134	0.0056	0.0080	0.0099	0.0005	0.0008	0.0011	0.2200	0.2667	0.3100	0.0019	0.0079	0.0121
BISC135	0.0032	0.0040	0.0053	0.0009	0.0010	0.0010	0,3400	0.3733	0.4000	0.0078	0,0121	0.0179

SECTION 24

BIG CYPRESS PRESERVE WATER QUALITY MONITORING PROGRAM PROJECT CODE: BCWQ

Purpose and Scope

The Big Cypress National Preserve(BCNP) is located in Southwest Florida within the Big Cypress Swamp. The 729,000-acre Preserve consists of predominantly wetlands habitat. The surface waters within the Preserve are designated as Outstanding Florida Waters(Florida Administrative Code (F.A.C.) 62-302.700). No degradation of water quality, other than allowed in Rule 62-4.242(2) and F.A.C. is permited.

A hydrologic monitoring program was established by the BCNP in 1987 to ensure the protection and preservation of preserve waters.

Interpretive data reports are submitted to the District annually and progress reports are submitted semiannually. The data provide information to identify freshwater flows that are critical to the survival of the Big Cypress watershed and Everglades National Park.

Sampling Locations and Descriptions

Under a continuing cooperative agreement with the District, the Preserve maintains a hydrologic monitoring network of 14 sites at which both water stage and quality are measured. The locations of these 14 sites are shown on Figure 31. Water stage is recorded continuously by the Preserve at 12 of the 14 sites, and the USGS maintains the other two. Water quality samples are collected by the Preserve and analyzed by the Districts Laboratory. Table 50 lists all station ID's, latitude and longitude, a brief station description, the period of record, the frequency of collection for each parameter group, and type of sample collection. Table 51 contains basic statistics for select parameters at each monitoring location.

District Publications

None

Figure 31. Location of Sampling Stations for the Big Cypress National Preserve Water Quality monitoring Program.

TABLE 50. Summary of Sampling Station Locations and Frequency of Collection for the Big Cypress National Preserve Monitoring Program

	Q/A	0	Ð	υ	ტ	Ċ	Ċ	Ċ	c	U	9	Ċ	0	Ċ	Ð
Trace	Metals	BM	ı	BM	BM	BM	,		i	BM	BM	I	BM	BM	BM
Major	ions	BM	I	BM	BM	BM	i	ł	ı	BM	BM	,	BM	BM	BM
	Nucrients	ВМ	ı	BM	BM	BM	I	ı	·	BM	BM	i	BM	BM	ВМ
Physical	Parameters	M	M	BM .	BM	BM	W	M	М	ΒM	BM	W	BM	BM	BM
	POR	1994 - P	1994 - P	d - Þ661	1994 - P	1994 - P	1094 - P	1994 - P	1994 - P	1994 - P	4 - Þ661	1994 - P	1994 - P	1994 - P	1994 - P
	Location	North Bear Island, located at the northwest corner of the Preserve.	East Hitson Marsh, about four miles northwest of SR 34 and County Rd. 839.	East Crossing Strand, about one mile south of 175, and about four miles east of County Rd. 839.	Monument Road, in the middle of the Preserve.	Racoon Point, near the mid point along the eastern boundry of the Preserve.	Bridge 105 on US-44 (Tamianni Trait) located 12 miles northwest of S-12A.	Bridge 84, near the intersection of US41 and County Rd. 839.	Bridge 83, where the Thmer River crosses under US41.	Finecrest Hammock, about two miles north of Loop Road and approximately five miles west of US41.	Gunt Slough, about five miles south of Loop Road.	Roberts Lake Strand, due south of Montroe Station on Loop Road.	Kissimmee Billy Strand, about two miles north of 175 about half way through the Preserve.	Mullet Slough, about six miles south of 175 about half way through the Preserve.	Deep Lake Strand, about half way between County Rd. 29 and 839, about four miles north of County Rd. 837.
	Long	811914	811719	810314	810614	805535	805852	811544	811613	805444	810119	810600	810512	811319	811800
	Lat	261433	261146	250534	255726	255806	255107	255312	255325	254642	254249	254721	261129	260923	260240
SFWMD	Sta. ID	BCWQA1	BCWQA2	всмола	BCWQA4	HCWQA5	BCWQA6	BCWQA7	BCWQA8	всwда9	BCWQA10	BCWQA11	BCWQA12	BCWQA13	BCWQA14

TABLE 51. Statistics on Select Parameters for the Big Cypress Basin Water Quality Monitoring Program for Period of Record

SFWMD												
<u>Sta. ID</u>	Total]	<u>Phosphor</u>	IIIS	Ortho	<u>Phospho</u>	SUT	Tota	<u>l Nitroge</u>	되	<u>Nitrite+</u>	-Nitrate(N	<u>IOX)</u>
	MIN	MEAN	MAX	NIW	MEAN	MAX	NIN	MEAN	MAX	NIM	MEAN	MAX
BCWQAI	0.0050	0.0370	0.1850	0.0040	0.0145	0.0850	0.9230	2.1037	5.9200	0.0040	0.0531	0.2540
BCWQA10	0.0040	0.0108	0.0270	0.0040	0,0060	0.0120	0.5090	0.8710	1.4000	0,0040	0.1002	0.6880
BCWQA12	0.0040	0.0227	0.0870	0.0040	0.0040	0.0040	0.5410	0.9481	2.0900	0.0040	0.0644	0.4200
BCWQA13	0.0040	0.0229	0.0770	0.0040	0.0044	0.0070	0.6680	1.1744	2.7900	0.0040	0.0404	0.2290
BCWQA14	0.0040	0.0139	0.0370	0.0040	0.0042	0.0060	0.5040	0.7416	1.4000	0.0040	0.0443	0.2820
BCWQA2	0.0330	0.0330	0.0330	0.0040	0.0040	0.0040	1.5000	1.5000	1.5000	0:0050	0.0050	0.0050
BCWQA3	0.0040	0.0140	0.0360	0.0040	0.0057	0.0190	0.8060	1.3812	2.1900	0.0040	0.0374	0.1610
BCWQA4	0.0040	0.0240	0.1230	0.0040	0.0045	0.0080	0.6820	1.1378	3.7500	0.0040	0.0261	0.0850
BCWQA5	0:0050	0.0201	0.0520	0.0040	0.0054	0.0130	0.5040	1.3599	3.8500	0.0040	0.0426	0.1290
BCWQA9	0.0050	0.0312	0.0980	0.0040	0.0041	0.0050	0.5940	060610	1.2200	0.0040	0.0369	0.1530

÷

224

Appendix A

:

ABBREVIATIONS

A:	Automatic Water Sampler	Sta.ID:	Station Identification
BA:	Biannually	STD:	Standard Deviation
BM:	Bimonthly	STE:	Storm Event
	-	SWIM:	Surface Water Improvement and
			Management
BMP:	Best Management Practices	TA:	Triannually
BTIITF:	Board of Trustees of the Internal	TW:	Triweekly
	Improvement Trust Fund		•
BW;	Biweekly	μg/L:	Micrograms per Liter
BWF:	Biweekly when flowing	µg/kg	Micrograms per Kilogram
C:	Centigrade	umhos/cm:	Micromhos per Centimeter
CHL:	Chlorophyll	US:	Upstream
COE:	U.S. Army Corps of Engineers		-
DERM:	Dade County Department of	USGS:	United States Geological Survey
	Environmental Resource Management		
DS:	Downstream	W:	Weekly
EAA:	Everglades Agricultural Area	WCA:	Water Conservation Area
ENR:	Everglades Nutrient Removal	WF:	Weekly when flowing
FDEP:	Florida Department of Environmental		
	Protection		
G:	Grab Samples		
G&FWFC:	Game and Fresh Water Fish Commission		
ICWW;	Intracoastal Waterway		
Lat:	Latitude		
Long:	Longitude		
LOTAC:	Lake Okeechobee Technical Advisory		
	Committee		
M:	Monthly		
MAX:	Maximum		
MEAN:	Average		
MF:	Monthly when flowing		
MIN:	Minimum		
mg/L:	Milligram per Liter		
MOA:	Memorandum of Agreement		
NADP [,]	National Atmospheric Deposition		
1421121	Рюдетат		
NTU	Nenhelometric Turbidity Units		
P	Present		
PAR	Photosynthetically Active Radiation		
POR	Period of Record		
OA/OC	Quality Assessment / Quality Control		
0TR·	Onarterly		
RCWP	Rural Clean Water Program		
SED	Sediment		
SEWAM	South Florida Water Management District		
STA:	Stormwater Treatment Area		
JIG.	Somwast francis Mea		

.

Appendix **B**

·-.

CROSS REFERENCE GUIDE

....

Code. Data can	be Retrieved from t	the Water Quality D	atabase.
STATION	SECTION	PAGE #	PROJECT CODE
E02	1	15	UKCL
E04	1	15	UKCL
D02	1	15	UKCL
D03	1	15	UKCL
C03	1	15	UKCL
B02	1	15	UKCL
B04	1	15	UKCL
B06	1	15	UKĊL
В09	1	15	UKCL
BS-59	1	15	UKCL
A01	1	15	UKCL
A03	1	15	UKCL
A04	1	15	UKCL
ABOGG	1	15	TUK
BWSHNGLE	1	15	TUK
CREEDYBR	1	15	ТИК
S65	2, 5	21, 40	V, LKR
S65A	2, 5	21, 40	V, LKR
S65B	2, 5	21, 40	V, LKR
\$65C	2, 5	21, 40	V, KREA, LKR
865D	2, 5	21, 40	V, KREA, LKR
S65E	2, 5, 11, 20	21, 40, 92, 182	V, KREA, LKR, X, PEST(1)
KREA 61	2	21	KREA
KREA 75	2	21	KREA

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

Cross Reference Code. Data can b	Guide Between Sta e Retrieved from (ations, Section of Rej the Water Quality D	port, Page #, and Project atabase.
STATION	SECTION	PAGE #	PROJECT CODE
KREA 76	2	21	KREA
KREA 77	2	21	KREA
KREA 78	2	21	KREA
KREA 79	2	21	KREA
KREA 80	2	21	KREA
KREA 81	2	21	KREA
KREA 82	2	21	KREA
KREA 83	2	21	KREA
KREA 86	2	21	KREA
KREA 87	2	21	KREA
KREA 88	2	21	KREA
KREA 89	2	21	KREA
KREA91	2	21	KRÉA
KREA92	2	21	KREA
KREA93	2	21	KREA
KREA94	2	21	KREA
KREA95	2	21	KREA
KREA96	2	21	KREA
KREA97	2	21	KREA
TFWQ01	2	21	TFWQ
TFWQ01A	2	21	TFWQ
TFWQ01B	2	21	TFWQ
TFWQ01C	2	21	TFWQ
TFWQ02	2	21	TFWQ

STATION	SECTION	PAGE #	PROJECT CODE
TFWQ03	2	21	TFWQ
TFWQ04	2	21	TFWQ
TFWQ05	2	21	TFWQ
TFWQO6	2	21	TFWQ
ARCK 301	3	31	ARCK
ARCK 302	3	31	ARCK
ARCK 305	3	31	ARCK
ARCK 306	3	31	ARCK
ARCK 308	3	31	ARCK
ARCK 310	3	31	ARCK
ARCK 311	3	31	ARCK
ARCK 315	3	31	ARCK
ISTKI	4	35	ISTO
ISTK2	4	35	ISTO
ISTK3	4	35	ISTO
ISTK4	4	35	ISTO
ISTK5	4	35	ISTO
ISTK6	4	35	ISTO
ISTK6S	4	35	ISTO
ISTK7	4	35	ISTO
S68	4	35	ISTO
JÓSNCR17	4	35	ISTO
ISTKC621	4	35	ISTO
ARBKSR98	4	35	ISTO

G

Cross Reference Code. Data can	e Guide Between Sta be Retrieved from	ations, Section of Re the Water Quality E	port, Page #, and Project)atabase.
STATION	SECTION	PAGE #	PROJECT CODE
KREA 01	5	41	KREA
KREA 04	5	41	KREA
KREA 06A	5	41	KREA
KREA 07	5	41	KREA
KREA 08	5	41	KREA
KREA 09	5	41	KREA
KREA 10B	5	41	KREA
KREA 10D	5	41	KREA
KREA 10E	5	41	KREA
KREA 14	5	41	KREA
KREA 16	5	41	KREA
KREA 17A	5	41	KREA
KREA 19	5	41	KREA
KREA 20	5	41	KREA
KREA 21	5	41	KREA
KREA 22	5	41	KREA
KREA 23	5	41	KRÉA
KREA 25	5	41	Ř REA
KREA 28	5	41	KREA
KREA 30A	5	41	KREA
KREA 32B	5	41	KREA
KREA 32C	5	41	KREA
KREA 32D	5	41	KREA
KREA 33	5	41	KREA

ĮĽ,

STATION	SECTION	PAGE #	PROJECT CODE
KREA 40	5	41	KREA
KREA 40A	5	41	KREA
KREA 40B	5	41	KREA
KREA 41	5	41	KREA
KREA 41A	5	41	KREA
KREA 41B	5	41	KREA
KREA 42A	5	41	KREA
KREA 42B	5	41	KREA
KREA 42D	5	41	KREA
KREA 43A	5	41	KREA
KREA 44	5	41	KREA
KREA 44C	5	41	KREA
KREA 46A	5	41	KREA
KREA 46B	5	41	KREA
KREA 47A	5	41	KREA
KREA 49	5	41	KREA
KREA 66	5	41	KREA
TCNS 201	6	52	TCNS
TCNS 204	6	52	TCNS

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database. ۰<u>_</u>`

Code. Data can be Retrieved from the Water Quality Database.				
STATION	SECTION	PAGE #	PROJECT CODE	
TCNS 206	6	52	TCNS	
TCNS 207	6	52	TCNS	
TCNS 209	6	52	TCNS	
TCNS 210	6	52	TCNS	
TCNS 211	6	52	TCNS	
TCNS 212	6	52	TCNS	
TCNS 213	6	52	TCNS	
TCNS 214	6	52	TCNS	
TCNS 217	6	52	TCNS	
TCNS 218	6	52	TCNS	
TCNS 219	6	52	TCNS	
TCNS 220	6	52	TCNS	
TCNS 222	6	52	TCNS	
TCNS 225	6	52	TCNS	
TCNS 227	6	52	TCNS	
TCNS 228	6	52	TCNS	
TCNS 230	6	52	TCNS	
TCNS 231	6	52	TCNS	
TCNS 233	6	52	TCNS	
TCNS 241	6	52	TCNS	
TCN5 243	6	52	TCNS	
TCNS 249	6	52	TCNS	
TCNS 252	6	52	TCNS	
TCNS 254	6	52	TCNS	

STATION	SECTION	PAGE #	PROJECT CODE	
TCNS 255	6	52	TCNS	
TCNS 258	6	52	TCNS	
TCNS 262	6	52	TCNS	
TCNS 263	6	52	TCNS	
TCNS 265	6	52	TCNS	
TCNS 268	6	52	TCNS	
TCNS 271	6	52	TCNS	
TCNS 272	6	52	TCNS	
TCNS 273	6	52	TCNS	
TCNS 276	6	52	TCNS	
TCNS 277	6	52	TCNS	
TCNS 280	6	52	TCNS	
TCNS 281	6	52	TCNS	
TCNS 282	6	52	TCNS	
IRL01	7	64	IRL	
IRL02	7	64	IRL	
IRL03	7	64	IRL	
IRL04	7	64	IRL	
IRL05	7	64	IRL	
IRL06	7	64	IRL	
IRL07	7	64	IRL	
IRL08	7	64	IRL	
IRL09	7	64	IRL	
IRL10	7	64	IRL	

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
IRL11	7	64	IRL
IRL12	7	64	IRL
IRL13	7	64	JRL
IRL14	7	64	IRL
ÍRL15	7	64	IRL
IRL16	7	64	IRL
IRL17	7	64	IRL
IRL18	7	64	IRL
IRL19	7	64	IRL
IRL20	7	64	IRL
IRL21	7	64	IRL
IRL22	7	64	IRL
IRL23	7	64	IRL
IRL24	7	64	IRL
IRL25	7	64	IRL
IRL26	7	64	IRL
IRL27	7	64	IRL
IRL28	7	64	IRL
IRL29	7	64	IRL
IRL30	7	64	IRL
IRL31	7	64	IRL
IRL32	7	64	IRL
IRL33	7	64	IRL
IRL34	7	64	IRL

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
IRL35	7	64	IRL
IRL36	7	. 64	IRL
IRL37	7	64	IRL
IRL38	7	64	IRL
IRL39	7	64	IRL
IRL40	7	64	IRL
SE 01	8	76	SE
SE 02	8	76	SE
SE 03	8	76	SE
SE 04	8	76	SE
SE 05	8	76	SE
SE 06	8	76	SE
SE 07	8	76	SE
SE 09	8	76	SE
SE 10	8	76	SE
HR1	8	76	SE
C15S40	9	82	WQM
C15SR809	9	82	WQM
C16S41	9	82	WQM
C16SR809	9	82	WQM
C51S155	9	82	WQM
C17S44	9	82	WQM
C17\$R702	9	82	WQM
C18G92	9	82	WQM

<u> 1998</u>

Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
C18S46	9	82	ŴQM
C18SR710	9	82	WQM
C44S80	9, 20	82, 182	WQM, PEST(1)
C23S48	9	82	WQM
C24S49	9	82	WQM
C25850	9	82	WQM
C25899	9, 20	82, 182	WQM, PEST(1)
\$2	11, 20	92, 182	X, PEST(1)
S 3	11, 20	92, 182	X, PEST(1)
S4	11, 20	92, 182	X, PEST(1)
INDUSCAN	11	92	X
S77	11	92	X
FECSR78	11, 20	92, 182	X, PEST(1)
S71	11	92	Х
S72	11	92	X
S65E	11	92	X
S84	11	92	X
\$191	5, 11, 20	40, 92, 182	X, KREA, LKR, PEST(1)
S308C	11	92	x
S352	11	92	X
CULV4A	11	92	X
CULV10	11	92	X
CULV10A	11	92	X
CULV12	11	92	X

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

STATION	SECTION	PAGE #	PROJECT CODE	
CULV12A	11	92	x	
\$127	11	92	X	
S129	-11	92	x	
\$131	11	92	x	
\$133	11	92	X	
\$135	11	92	X	
\$154	5, 11	40, 92	X, KREA, LKR	
S169	11	92	x	
\$236	11	92	x	
CULV5	11	92	x	
L61W	11	92	x	
L61E	11	92	x	
L60W	11	92	X	
L60E	11	92	x	
L59W	11	92	X	
L59E	11	92	x	
C38W	11	92	X	
S154C	11	92	x	
L001	11	92	Y, YNRG	
L002	11	92	Y, YGS, YNRG	
L003	11	92	Y, YNRG	
L004	11	92	Y, YNRG	
L005	11	92	Y, YGS, YNRG	
L006	11	92	Y, YGS, YS, YSRG	

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.
Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
L007	11	92	Y, YS, YSRG
L008	11	92	Y, YNRG
LZ2	11	92	Y, YN, YNRG
KISSR0.0	11	92	Y, YN, YNRG
KBARIN	11	92	Y, YN
KBARMID	11	92	Y, YN
KBAROUT	11	92	Y, YN
3RDPTIN	11	92	Y, YN
3RDPTMID	11	92	Y, YN
3RDPTOUT	11	92	Y, YN
STAKEIN	11	92	Y, YN
STAKEMID	11	92	Y, YN
STAKEOUT	11	92	Y, YN
TREEIN	11	92	Y, YS
TREEMID	11	92	Y, YS
TREEOUT	11	92	Y, YS
TREENOUT	11	92	Y, YS
PALMIN	11	92	Y, YS
PALMMID	11	92	Y, YS
PALMOUT	11	92	Y, YS
PLN1OUT	11 .	92	Y, YS
PLN2IN	11	92	Y, YS
PLN2MID	11	92	Y, YS
PLN2OUT	11	92	Y, YS

STATION	SECTION	PAGE #	PROJECT CODE
PLN3OUT	11	92	Y, YS
PLN4OUT	11	92	Y, YS
LZ30	11	92	Y, YS, YSRG
POLE3S	11	92	YS, YSRG
RITAWEST	11	92	Y, YS, YSRG
RITAEAST	11	92	Y, YS, YSRG
LZ25	11	92	Y, YS, YSRG
PELMID	11	92	Y, YS, YSRG
TINOUT	11	92	Y, YN
POLESIN	11	92	Y, YN
POLESMID	11	. 92	Y, YN
POLESOUT	11	92	Y, YN
IPOUT	11	92	Y
LZ42N	11	92	Y, YNRG
LZ42	11	92	Y, YS, YSRG
LZ40	11	92	Y, YGS, YSRG
TIN8100	11	92	OLIT
TIN13700	11	92	OLIT
TTN16100	11	92	OLIT
FEBOUT	11	92	OLIT
FEBIN	11	92	OLIT
MBOXSOU	11	92	OLIT
MH32000	11	92	OLIT
MH24000	11	92	OLIT

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code, Data can be Retrieved from the Water Quality Database

.:

Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
MH16000	11	92	OLIT
MH12000	11	92	OLIT
ÓISLAND	11	92	OLIT
CR-00.2T/S235	12, 20	114, 182	CR, PEST(1)
CR-04.8T	12	114	CR
S78	12	114, 182	CR, PEST(1)
S 79	12	114, 182	CR, PEST(1)
ENR001	13	118	ENRP
ENR002	13	118	ENRP, ENRG(1)
ENR004	13	118	ENRP, ENRG(1)
ENR011	13	118	ENRP
ENR012	13	118	ENRP, ENRG(1)
ENR102	13	118	ENRP
ENR103	13	118	ENRP
ENR203	13	118	ENRP
ENR204	13	118	ENRP
ENR302	13	118	ENRP
ENR303	13	118	ENRP
ENR305	13	118	ENRP
ENR306	13	118	ENRP
ENR401	13	118	ENRP
ENR402	13	118	ENRP
G252C	13	118	ENRP
G252G	13	118	ENRP

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
G253C	13	118	ENRP
G253G	13	118	ENRP
G254B	13	118	ENRP
G254D	13	118	ENRP
G255	13	118	ENRP
G256	13	118	ENRP
G200	14	126	HOLY
G200SD	14	126	HOLY
G201	14	126	HOLY
G204	14	126	HOLY
G205	14	126	HOLY
G206	14	126	HOLY
S8	14	126	HOLY
HOLYSD1	14	126	HOLY(1)
HOLYSD2	14	126	HOLY(1)
HOLYSD3	14	126	HOLY(1)
HOLYSD4	14	126	HOLY(1)
LOX3	15	132	EVPA
LOX4	15	132	EVPA
LOX5	15	132	EVPA
LOX6	15	132	EVPA
LOX7	15	132	EVPA
LOX8	15	132	EVPA
LOX9	15	132	EVPA

Cross Reference Code. Data can	e Guide Between Sta be Retrieved from	ations, Section of Re the Water Quality D	port, Page #, and Project Database.
STATION	SECTION	PAGE #	PROJECT CODE
LOX10	15	132	EVPA
LOX11	15	132	EVPA
LOX12	15	132	EVPA
LOX13	15	132	EVPA
LOX14	15	132	EVPA
LOX15	15	132	EVPA
LOX16	15	132	EVPA
S5AD	15	132	EVPA
S6D	15	132	EVPA
F1	15	132	EVPA
F2	15	132	EVPA
F4	15	132	EVPA
F5	15	132	EVPA
U3	15	132	EVPA
U5	15	132	EVPA
CA2-7	15	132	EVPA
CA2-8	15	132	EVPA
CA3-2	15	132	EVPA
CA3-3	15	132	EVPA
CA3-4	15	132	EVPA
CA3-6	15	132	EVPA
CA3-8	15	132	EVPA
CA3-11	15	132	EVPA
CA3-15	15	132	EVPA

Cross Reference Code. Data can	e Guide Between Sta be Retrieved from	ations, Section of Re the Water Quality D	port, Page #, and Project Database.
STATION	SECTION	PAGE #	PROJECT CODE
NFEED	16	142	SEMI
WFEED	16	142	SEMI
S5A	17, 20	146, 182	CAMB, PEST(1)
S5AS	17	146	CAMB
S5AE	17	146	САМВ
S5AW	17	146	САМВ
\$6	17	146, 182	CAMB, PEST(1)
S7	17	146, 182	CAMB, PEST(1)
S8	17	146, 126, 182	CAMB, PEST(1), HOLY
S 9	17	146, 182	CAMB, PEST(1)
S10A	17	146	САМВ
S10C	17	146	САМВ
SIOD	17	146	САМВ
\$10E	17	146	САМВ
S11A	17	146	CAMB
SHIB	17	146	САМВ
S11C	17	146	САМВ
\$34 ·	17	146	САМВ
S38	17	146	САМВ
S38B	17	146	CAMB
\$39	17	146	САМВ
S144	17	146	CAMB
S145	17	146	САМВ
S146	17	146	САМВ

Б

STATION	SECTION	PAGE #	PROJECT CODE
S150	17	146	САМВ
L3	17	146	CAMB
L3BRN	17	146	САМВ
L28I	17	146	САМВ
S140	17	146	CAMB
8151	17	146	САМВ
S333	17	146	САМВ
S12D	17	146	САМВ
S12C	17, 20	146, 182	CAMB, PEST(1)
S12B	17	146	CAMB
S 12A	17	146	САМВ
G123	17	146	САМВ
\$31	17, 20	146, 182	CAMB, PEST(1)
S 190	17, 20	146, 182	CAMB, PEST(1)
L3BRS	17, 20	146, 182	CAMB, PEST(1)
L40-1	17	146	CAMB
L40-2	17	146	САМВ
C123SR84	17	146	CAMB
USL3BRS	17	146	САМВ
USSO	17	146	САМВ
C139DFC	17	146	САМВ
G136	17	146	САМВ
TAMBR6	17	146	ТАМВ
FROGCITY	17	146	ТАМВ

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
TAMBR1	17	146	ТАМВ
TAMBR2	17	146	ТАМВ
TAMBR3	17	146	ТАМВ
TAMBR4	17	146	ТАМВ
TAMBR5	17	146	ТАМВ
COOPERTN	17	146	ТАМВ
TAMBR7	17	146	ТАМВ
TAMBR8	17	146	ТАМВ
GLADER	17	146	ТАМВ
TAMBR9	17	146	ТАМВ
TAMBR10	17	146	ТАМВ
TAMBR11	17	146	ТАМВ
SAFARI	17	146	ТАМВ
TAMBR12	17	146	ТАМВ
TAMBR13	17	146	ТАМВ
TAMBR14	17	146	ТАМВ
TAMBR15	17	146	ТАМВ
\$333D\$	17	146	ТАМВ
AC01	18	160	BISC
AC02	18	160	BISC
AC03	18	160	BISC
AR01	18	160	BISC
AR03	18	160	BISC
BB01	18	160	BISC

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
BB02	18	160	BISC
BB03	18	160	BISC
BB04	18	160	BISC
BB06	18	160	BISC
BB07	18	160	BISC
BB09	18	160	BISC
BB10	18	160	BISC
BB11	18	160	BISC
BB14	18	160	BISC
BB15	18	160	BISC
BB16	18	160	BISC
BB17	18	160	BISC
BB18	18	160	BISC
BB19	18	160	BISC
BB22	18	160	BISC
BB23	18	160	BISC
BB24	18	160	BISC
BB25	18	160	BISC
BB26	18	160	BISC
BB27	18	160	BISC
BB28	18	160	BISC
BB29	18	160	BISC
BB31	18	160	BISC
BB32	18	160	BISC

STATION	SECTION	PAGE #	PROJECT CODE
BB 34	18	160	BISC
BB35	18	160	BISC
BB 36	18	160	BISC
BB37	18	160	BISC
BB38	18	160	BISC
BB41	18	160	BISC
BB42	18	160	BISC
BB43	18	160	BISC
BB44	18	160	BISC
BB45	18	160	BISC
BB46	18	160	BISC
BB47	18	160	BISC
BB48	18	160	BISC
BB50	18	160	BISC
BB51	18	160	BISC
BL01	18	160	BISC
BL02	18	160	BISC
BL03	18	160	BISC
BL12	18	160	BISC
B\$01	18	160	BISC
BS04	18	160	BISC
BS10	18	160	BISC
CD02	18	160	BISC
CD09	18	160	BISC

Ī

Cross Reference Code. Data can t	Guide Between Sta	tions, Section of Repo he Water Quality Dat	rt, Page #, and Project abase.
STATION	SECTION	PAGE #	PROJECT CODE
CG01	18	160	BISC
CG07	18	160	BISC
GL02	18	160	BISC
GL03	18	160	BISC
LR01	18	160	BISC
LR03	18	160	BISC
LR06	18	160	BISC
LR10	18	160	BISC
MI03	18	160	BISC
MR01	18	160	BISC
MR02	18	160	BISC
MR03	18	160	BISC
MR04	18	160	BISC
MR05	18	160	BISC
MR06	18	160	BISC
MR07	18	160	BISC
MR08	18	160	BISC
MR15	18	160	BISC
MW01	18	160	BISC
MW04	18	160	BISC
MW13	18	160	BISC
PR01	18	160	BISC
PR03	18	160	BISC
PR08	18	160	BISC

STATION	SECTION	PAGE #	PROJECT CODE
SK01	18	160	BISC
SK02	18	160	BISC
SK09	18	160	BISC
SP01	18	160	BISC
SP04	18	160	BISC
SP08	18	160	BISC
T'M02	18	160	BISC
TM03	18	160	BISC
TM08	18	160	BISC
WC02	18	160	BISC
WC03	18	160	BISC
WC04	18	160	BISC
\$18C	19, 20	174, 182	ENP, PEST(1)
\$175	19	174	ENP
S176	19, 20	174, 182	ENP, PEST(1)
S177	19, 20	174, 182	ENP, PEST(1)
S178	19, 20	174, 182	ENP, PEST(1)
\$332	19, 20	174, 182	ENP, PEST(1)
TAMBR105	19	174	ENP
U\$41-25	19, 20	174, 182	ENP, PEST(1)
P33	19	174	EVER
P34	19	174	EVER
P35	19	174	EVER
P36	19	174	ÉVER

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

STATION	SECTION	PAGE #	PROJECT CODE
P37	19	174	EVER
NE1	19	174	EVER
NP201	19	174	EVER
EP	19	174	EVER
TSB	19	174	EVER
S65AWET S65ADRY	21	190	RAIN
OKEEFSW OKEEFSD	21	190	RAIN
G36WET G36DRY	21	190	RAIN
S127WET S127DRY	21	190	RAIN
S131WET S131DRY	21	190	RAIN
S308WET S308DRY	21	190	RAIN
S310WET S310DRY	21	190	RAIN
BGIWET BGIDRY BG2WET BG2DRY	21	190	RAIN
ENRWET ENRDRY	21	190	RAIN
ENR101W ENR101D	21	190	RAIN
ENR203W ENR203D	21	190	RAIN

Cross Reference Guide Between Stations, Section of Report, Page #, and Project

STATION	SECTION	PAGE #	PROJECT CODE
ENR301W ENR301D	21	190	RAIN
ENR401W ENR401D	21	190	RAIN
L6WET L6DRY	21	190	RAIN
S7 WET S7 DRY	21	190	RAIN
S140WET S140DRY	21	190	RAIN
L67AWET L67ADRY	21	190	RAIN
ENPRCWET ENPRCDRY	21	190	RAIN
MBLS01	22	196	MBLS
MBLS02	22	196	MBLS
MBLS03	22	196	MBLS
MBLS04	22	196	MBLS
MBLS05	· 22·	196	MBLS
MBLS06	22	196	MBLS
MBLS07	22	196	MBLS
MBLS08	22	196	MBLS
MBLS09	22	196	MBLS
MBLS10	22	196	MBLS
MBLS11	22	196	MBLS
MBLS12	22	196	MBLS

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.				
STATION	SECTION	PAGE #	PROJECT CODE	
MBLS13	22	196	MBLS	
MBLS14	22	196	MBLS .	
MBLS15	22	196	MBLS	
MBLS16	22	196	MBLS	
MBLS17	22	196	MBLŚ	
MBL\$18	22	196	MBLS	
MBLS19	22	196	MBLS	
MBLS20	22	196	MBLS	
MBLS21	22	196	MBLS	
MBLS22	22	196	MBLS	
FLAB01	23	202	FLAB	
FLAB02	23	202	FLAB	
FLAB03	23	202	FLAB	
FLAB04	23	202	FLAB	
FLAB05	23	202	FLAB	
FLAB06	23	202	FLAB	
FLAB07	23	202	FLAB	
FLAB08	23	202	FLAB	
FLAB09	23	202	FLAB	
FLAB10	23	202	FLAB	
FLAB11	23	202	FLAB	
FLAB12	23	202	FLAB	
FLAB13	23	202	FLAB	
FLAB14	23	202	FLAB	

Code. Data can be Retrieved from the Water Quality Database.				
STATION	SECTION	PAGE #	PROJECT CODE	
FLAB15	23	202	FLAB	
FLAB16	23	202	FLAB	
FLAB17	23	202	FLAB	
FLAB18	23	202	FLAB	
FLAB19	23	202	FLAB	
FLAB20	23	202	FLAB	
FLAB21	23	202	FLAB	
FLAB22	23	202	FLAB	
FLAB23	23	202	FLAB	
FLAB24	23	202	FLAB	
FLAB25	23	202	FLAB	
FLAB26	23	202	FLAB	
FLAB27	23	202	FLAB	
FLAB28	23	202	FLAB	
FLAB29	32	202	FLAB	
FLAB30	23	202	FLAB	
FLAB31	23	202	FLAB	
FLAB32	23	202	FLAB	
FLAB33	23	202	FLAB	
FLAB34	23	202	FLAB	
FLAB35	32	202	FLAB	
FLAB36	23	202	FLAB	
FLAB37	23	202	FLAB	
FLAB38	23	202	FLAB	

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

Code. Data can be Retrieved from the Water Quality Database.				
STATION	SECTION	PAGE #	PROJECT CODE	
FLAB39	23	202	FLAB	
FLAB40	23	202	FLAB	
FLAB41	23	202	FLAB	
FLAB42	23	202	FLAB	
FLAB43	23	202	FLAB	
FLAB44	23	202	FLAB	
FLAB45	23	202	FLAB	
FLAB46	23	202	FLAB	
FLAB47	23	202	FLAB	
FLAB48	23	202	FLAB	
FLAB49	23	202	FLAB	
FLAB50	23	202	FLAB	
TT151	23	202	TTI	
TTI52	23	202	TTI	
TT153	23	202	TTI	
TTI54	23	202	ТТТ	
TT155	23	202	ТТТ	
TT156	23	202	TTI	
TTI57	23	202	TTI	
TT158	23	202	ТТТ	
TTI59	23	202	TTI	
ТТІ60	23	202	ТТІ	
TTI61	23	202	TTL	
ТТІ62	23	202	ТТТ	

STATION	SECTION	PAGE #	PROJECT CODE
TTI63	23	202	TTI
TT164	23	202	ТТТ
ТТІ65	23	202	TTI
TTI66	23	202	TTI
TTI67	23	202	TTI
TT168	23	202	ТТІ
TT169	23	202	TTI
TT I70	23	202	TTI
TTI 71	23	202	TTI
TT172	23	202	TTI
TTI73	23	202	ТТТ
TTI 74	23	202	TTI
TT175	23	202	TTI
BISC101	23	202	BISC
BISC102	23	202	BISC
BISC103	23	202	BISC
BISC104	32	202	BISC
BISC108	23	202	BISC
BISC109	23	202	BISC
BISCI10	23	202	BISC
BISCI11	23	202	BISC
BISC112	23	202	BISC
BISC113	32	202	BISC
BISC116	23	202	BISC

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.				
STATION	SECTION	PAGE #	PROJECT CODE	
BISC121	23	202	BISC	
BISC122	23	202	BISC	
BISC123	23	202	BISC	
BISC124	23	202	BISC	
BISC126	23	202	BISC	
BISC127	23	202	BISC	
BISC128	23	202	BISC	
BISC129	23	202	BISC	
BISC130	23	202	BISC	
BISC131	23	202	BISC	
BISC132	23	202	BISC	
BISC133	23	202	BISC	
BISC134	23	202	BISC	
BISC135	23	202	BISC	
SWS351	23	202	SWS	
SWS352	23	202	SWS	
SWS353	23	202	SWS	
SWS354	23	202	SWS	
SWS355	23	202	SWS	
SWS356	23	202	SWS	
SWS357	23	202	SWS	
SWS358	23	202	SWS	
SWS359	23	202	SWS	
SWS360	23	202	SWS	

Code. Data can be Retrieved from the Water Quality Database.			
STATION	SECTION	PAGE #	PROJECT CODE
SWS361	23	202	BISC
SWS362	23	202	BISC
SWS363	23	202	BISC
SWS364	23	202	BISC
SWS365	23	202	BISC
SWS366	23	202	BISC
SWS367	23	202	BISC
SWS368	23	202	BISC
SWS369	23	202	BISC
SWS370	23	202	BISC
SWS371	23	202	BISC
SWS372	23	202	BISC
SWS373	23	202	BISC
SWS374	23	202	BISC
SWS375	23	202	SWS
SWS376	23	202	SWS
SWS377	23	202	SWS
SWS378	23	202	SWS
SWS379	32	202	SWS
SWS380	23	202	sws
SWS381	23	202	SWS
SWS382	23	202	SWS
SWS383	23	202	SWS
SWS384	23	202	SWS

STATION	SECTION	PAGE #	PROJECT CODE
SWS385	32	202	BISC
SWS386	23	202	BISC
SWS387	23	202	BISC
SWS388	23	202	BISC
SWS389	23	202	BISC
SWS390	23	202	BISC
SWS391	23	202	BISC
SWS392	23	202	BISC
SWS393	23	202	BISC
SWS394	23	202	BISC
SWS395	23	202	BISC
SWS396	23	202	BISC
SWS397	23	202	BISC
SWS398	23	202	BISC
SWS399	23	202	SWS
ENPWW	23	202	(2)
ENPLO	23	202	(2)
ENPWP	23	202	(2)
ENPCA	23	202	(2)
ENPBD	23	202	(2)
ENPHR	23	202	(2)
ENPGI	23	202	(2)
ENPTE	23	202	(2)
ENPSR	23	202	(2)

STATION	SECTION	PAGE #	PROJECT CODE
ENPCW	23	202	(2)
ENPLN	23	202	(2)
ENPWE	23	202	(2)
ENPBA	23	202	(2)
ENPBK	23	202	(2)
ENPBN	23	202	(2)
ENPBR	23	202	(2)
ENPBS	23	202	(2)
ENPCN	23	202	(2)
ENPDK	23	202	(2)
ENPHC	23	202	(2)
ЕNPJB	23	202	(2)
ENPJK	23	202	(2)
ENPLB	23	202	(2)
ENPLM	23	202	(2)
ENPLR	23	202	(2)
ENPLS	23	202	(2)
ENPMK	23	202	(2)
ENPNR	23	202	(2)
ENPPK	23	202	(2)
ENPTB	32	202	(2)
ENPTC	23	202	(2)
ENPTR	23	202	(2)
ENPWB	23	202	(2)

STATION	SECTION	PAGE #	PROJECT CODE
BCWQA1	24	223	BCWQ
BCWQA2	24	223	BCWQ
BCWQA3	24	223	BCWQ
BCWQA4	24	223	BCWQ
BCWQA5	24	223	BCWQ
BCWQA6	24	223	BCWQ
BCWQA7	24	223	BCWQ
BCWQA8	24	223	BCWQ
BCWQA9	24	223	BCWQ
BCWQA10	24	223	BCWQ
BCWQA11	24	223	BCWQ
BCWQA12	24	223	BCWQ
BCWQA13	24	223	BCWQ
BCWQA14	24	223	BCWQ

Cross Reference Guide Between Stations, Section of Report, Page #, and Project Code. Data can be Retrieved from the Water Quality Database.

(1) Data can be retrieved from the Organics Database

(2) Data can be retrieved from the DBHYDRO database

.

and the second second second

.

т<mark>-</mark>,