TECHNICAL MEMORANDUM WRE # 354

5

Water Budget Analysis for the Everglades Nutrient Removal Project

(August 20, 1996 to August 19, 1997)

by

W. Abtew and V. Mullen

November 1997

Resource Assessment Division Water Resources Evaluation Department South Florida Water Management District West Palm Beach, Florida 33406

. .

EXECUTIVE SUMMARY

The Everglades Nutrient Removal Project (ENR) is a 1,544 hectare (ha) or 3,815 acre (ac) constructed wetland designed and operated for the demonstration of phosphorus (P) reduction from agricultural runoff/ drainage. The ENR is located in south Florida (26° 38' N, 80° 25' W) at the eastern edge of the Everglades Agricultural Area. The Everglades Agricultural Area is a 240,000 ha (593,000 ac) highly productive irrigation drainage basin with a major production of sugarcane. Ecological changes in the Everglades have been partially attributed to increase in phosphorus (P) concentrations in the inflow waters. Local, state and federal initiatives have been taken to reduce P load from agricultural runoff/ drainage. Agricultural runoff/drainage from the agricultural area flows to the south and southeast through four primary canals (Miami, North New River, Hillsboro, West Palm Beach).

A minimum of 25% of the P load in agricultural drainage/runoff is required to be removed at the farm level through the application of various agricultural Best Management Practices (BMPs). Further removal of P is to be achieved through constructed wetland treatment systems known as Stormwater Treatment Areas (STAs) to an initial outflow total P concentration of 0.05 milligrams per liter (mg L⁻¹). The ENR is a field scale prototype for the large scale STAs. It is built on farm land that is owned by the State of Florida and was previously leased (until 1988) to Knight's Farm for sugarcane and corn production. Construction of the ENR started in August 1992 and was completed in October 1993. Full operation started in August 1994 and it has been in operation for three years. This report summarizes a oneyear water budget analysis covering the period from August 20, 1996 to August 19, 1997. Water budget analysis for the previous two years of the project (August 19, 1994 to August 19, 1996) was reported in a South Florida Water Management District Technical Memorandum (SFWMD, 1996).

The total inflow through the inflow pump was 11,972 hectare-meters (ha-m) or 97,055 acre-feet (acft) and the total outflow through the outflow pump was 11,872 ha-m (96,244 ac-ft). Seepage inflow from the L-7 levec through the roadside culverts was a total of 431 ha-m (3,494 ac-ft). The seepage recirculation pump had a total flow of 3,385 ha-m (27,442 ac-ft) and there was no measured flow through culverts G-258 and G-259 as the gates were closed. Compared to the flows of the previous two years, this period had 39% lower inflow and outflow pumping. Seepage recycle pumping was only lower by 5% while L-7 levee estimate of seepage through road side culverts was down by 28% compared to the average of the previous two years. Total areal average rainfall for the study period was 136.5 centimeters (cm) or 53.7 inches (in) and the total areal average evapotranspiration was 130.1 cm (51.2 in) which is close to the average ET reported for the previous two years the project was in operation. Compared to the average areal rainfall for the previous two years, rainfall was lower by 28 cm (11 in). The remainders in the water balance, the sum of the errors and unknowns, was 3.8% of the inflows or the outflows of the system.

The mean hydraulic loading rate for the one-year period, based on the G-250 pump inflow, was 2.12 contimeters per day (cm d⁻¹) or 0.84 inches per day (in d⁻¹). The mean hydraulic retention time was computed as the ratio of the mean-estimated volume of the ENR and the total inflow pumping. The meanestimated volume was computed from the areaweighted (by cell) mean depth of 52 cm (20.5 in) and total area of 1544 ha (3,815 ac). The estimated mean hydraulic retention time was 24.5 days. The ENR is a new system with a relatively short period of hydrologic record. Longer periods of record are more favorable to characterize the operation and water balance of hydrologic systems. Groundwater modeling efforts will help in identifying and quantifying subsurface sources and sinks in the system.

ACKNOWLEDGEMENTS

Appreciation is extended to the Data Management Division of the Water Resources Evaluation Department for timely data processing and input to the database and to Kim Jacobs of the Resource Assessment Division for layout and graphics.

TABLE OF CONTENTS

.

.

INTRODUCTION	1
Background	1
Site Description	2
Vegetation Cover and Monitoring	2
SYSTEM HYDRAULICS AND OPERATION	4
System Hydraulics	4
Operation	4
HYDROLOGY AND HYDROLOGIC MONITORING	
Rainfall	5
Evapotranspiration	7
Flows	
Water Levels	9
WATER BUIGET COMPUTATIONS	10
Water Balance Model	10
Discussion	
SUMMARY	13
REFERENCES	
APPENDIX	15

TABLES

Table 1:	Site characteristics of the Everglades Nutrient Removal Project
Table 2:	Recommended water surface elevations and depths in the preliminary operation plan and observed stages
Table 3:	Rainfall stations in the ENR, database retrieval keys and Thiessen weights
Table 4:	ENR Project monthly flows and area weighted rainfall and ET
Table 5:	Flow control structures, stage recorders and database retrieval keys used in the water budget analysis of the ENR
Table 6:	Summary of the one-year water budget of the ENR
Table 7:	Comparison of ENR current year water budget components (ha-m) with the previous two years

FIGURES

Figure 1:	Location of the Everglades Nutrient Removal Project in South Florida 1
Figure 2:	ENR structures and monitoring network
Figure 3:	Daily distribution of areal average rainfall and evapotranspiration in the ENR 6
Figure 4a:	Daily pumping rates of inflow and outflow pumps
Figure 4b:	Daily pumping rates of the seepage pump and scepage flow through L-7 levee road- side seepage collection culverts
Figure 5a:	Daily mean water levels in the eastern cells of the ENR and the Buffer Cell
Figure 5b:	Daily mean water levels in the western cells of the ENR and the Buffer Cell9
Figure 6:	Schematic hydrologic model for the ENR 10
Figure 7:	Distribution of daily remainders (error and unknowns) from the ENR water balance

.

INTRODUCTION

Background

The Everglades Nutrient Removal (ENR) Project is a 1,544 hectare (ha) or 3,815 acre (ac) constructed wetland designed and operated for the demonstration of phosphorus reduction from agricultural runoff/ drainage. The project is located in south Florida (26° 38' N, 80° 25' W) at the eastern edge of the Everglades Agricultural Area (Figure 1). The Everglades Agricultural Area is a 240,000 ha (593,000 ac) highly productive irrigation drainage basin with a major production of sugarcane. Ecological changes in the Everglades has been partially attributed to increase in phosphorus concentrations in the inflow waters. Local, state and federal initiatives have been taken to reduce P load from agricultural runoff/drainage. Agricultural runoff/drainage from the agricultural area flows to the south and southeast through four

primary canals shown in Figure 1 (Miami, North New River, Hillsboro, and West Palm Beach).

A minimum of 25% of the P load in agricultural drainage/runoff is required to be removed at the farm level through the application of various agriculniral Best Management Practices (Whalen and Whalen, 1994). Further removal of P is to be achieved through constructed wetland treatment systems known as Stormwater Treatment Arcas (STAs). The ENR is a field scale prototype for the large scale STAs. It is built on farm land that was owned by the State of Florida and was previously leased (until 1988) to Knight's Farm for sugarcane and corn production. Originally, the land was part of the Everglades which consisted of wetland prairies, sloughs and stands of custard apple (Davis, 1943). Construction of the ENR started in August 1992 and was completed in October 1993.

Figure 1. Location of the Everglades Nutrient Removal Project in South Florida.

Site Description

The ENR Project area is primarily covered by Okeechobee muck soils with very small topographic relief and an average ground elevation of 3 meters (m) or 9.84 feet (ft) NGVD; a 1 to 2 m of peat overlies on several meters of carbonate rock (Jammal and Associates, Inc., 1991). To the east, the L-7 levee separates the ENR Project from the Loxahatchee Wildlife Refuge (Water Conservation Area 1 (WCA1)). The northern and western sides of the ENR are encompassed by a seepage canal that separates the ENR levee from agricultural fields. The narrow southern ENR levee runs along the Knight's Farm which currently is not under cultivation. A 12 km (7.5 mile) levce surrounds the ENR and internal levees separate the five interior cells. The Project consists of two patallel treatment trains of two cells each and a buffer (distribution cell). As shown in Figure 2, the upper two cells, Cell 1 and 2, are treatment cells. The lower two cells, Cell 3 and 4, are polishing cells. The eastern treatment train carries water from the Buffer Cell to Cell 1, then to Cell 3 and finally to the outflow pump. The western treatment train carries water from the Buffer Cell to Cell 2, then to Cell 4 and finally to the outflow pump. Average ground elevation and area for each cell is shown in **Table 1**.

Vegetation Cover and Monitoring

As part of the ENR monitoring plan, temporal and spatial changes of vegetation have been documented using quarterly aerial photography prior to 1995 and semiannually since 1995. Average vegetation cover for the Buffer Cell and Cells 1, 2, 3, and 4 estimated from an areal photograph of November 27, 1996, is shown in **Table 1**. The dominant cover is cattails (47.7%), followed by mixed vegetation (30.2%) and open water/submerged vegetation (22.1%).

	A	Atea	Average Gro	und Elevation	Land Cover*				
Cell	ha	ac	m NGVD	fi NGVD	cattails (%)	mixed veg. (%)	opcn water (%)		
Buffer	55	136	3.10	10.17	40.3	52.4	7.3		
Cell 1	525	1297	3.13	10,25	33.5	28.6	37.9		
Cell 2	414	1023	2.94	9.65	76.3	12.6	11 .1		
Cell 3	404	998	3.10	70,18	37.7	47.4	14.9		
Cell 4	146	361	3.00	9.83	3.4	3.3	93.3		
Total	1544	3815	3.05	10.03	47.7	30.2	22.1		

Table 1. She characteristics of the Everglades Nutrient Removal Pro-	viect
---	-------

* average land cover (based on November 27, 1996 observations)

Figure 2. ENR structures and monitoring network.

SYSTEM HYDRAULICS AND OPERATION

System Hydraulics

West Palm Beach canal water that would otherwise be pumped into the Loxahatchee Wildlife Refuge or WCA1 via the S5-A Pump Station is partially diverted to the ENR through five culverts and a 3.4 km (2.1 mile) supply canal. Inflow into the constructed wetland, outflow from the constructed wetland, and seepage recycling are performed with lift pumps. The inflow pump station (G-250) has six identical pumps with a total capacity of 16.98 cubic meters per second (m3 s-1) or 600 cubic feet per second (cfs). The inflow pumps lift water from the delivery canal into the Buffer Cell. The outflow pump station (G-251) has six identical pumps with a total capacity of 12.74 m³ s⁻¹ (450 cfs). The outflow pumps lift treated offluent from the ENR into the Loxahatchee Wildlife Refuge. Scepage from the seepage canal is pumped into the Buffer Cell by three identical pumps (G-2508) with a total capacity of 5.66 $m^3 s^{-1}$ (200 cfs). Pump discharge is computed as a function of head and tail water stages and pump totations per minute (rpm). Water surface elevation is monitored by automated stage recorders, and staff gages supplement stage readings for operation.

Inter-cell flows are regulated with risers through 16.7 m (55 ft) long and 1.83 m (6 ft) diameter culverts. In

the eastern treatment train, water flows from the buffer Cell into Cell 1 through ten culverts (G252A-J) and from Cell 1 to Cell 3 through ten culverts (G253A-J). Water from Cell 3 is directed to the outflow pump through collection canals. In the western treatment train, water flows from the Buffer Cell into Cell 2 through five culverts (G255A-E) and from Cell 2 to Cell 4 through five culverts (G254A-E). Outflow from Cell 4 moves through five culverts (G256A-E) into a discharge canal that leads to the outflow pump. Water can be recirculated from Cell 2 and Cell 4 via the seepage canal by being released through culverts (G-258 and G-259, respectively) in the western levee. Water can be transferred from Cell 1 to Cell 4 through culvert G-257 when necessary. Flow through culverts is being monitored with Ultrasonic Velocity Meters (UVMs). ENR structure locations and monitoring network are shown in Figure 2.

Operation

A preliminary operation plan was developed for the ENR by Guardo and Kosier in 1993. The early startup and late start-up water depths and stages which were recommended in this plan are presented for each cell in **Table 2**. The seepage pump started operation in December 1993. Pumping was mainly to recirculate water from the seepage canal and reroute

	T					_								
	E	arly Sta	rt-up P	'lan	I	Later Start-up Plan				Observed Stages				
Cell	Target Stage Target Depth		Target Stage Target Depth		Min	Minimum Maximum			Mean					
	m	ft	cm	in	m	fit	çm	'n	m	ß	m	A	m	ft
	NGVD		FVD		NGVD			NGVD		NGVD		NGVD		
Buffer	3.78	12.40	67	26.4	3.78	12,40	67	26,4	3.43	11.25	4.17	13.70	3.66	12.01
Cell 1	3.63	11.91	49	19.3	3.66	12,00	52	20.5	3.42	11.22	3.91	12.84	3.62	11.88
Cell 2	3.54	រាស	58	22.6	3.63	11.91	67	26.4	3.40	11.15	4.13	13.56	3.60	11.82
Cell 3	3.51	1151	40	15.8	3.57	14.71	46	18.1	3.39	11.13	3.79	12.45	3.51	11.53
Cell 4	3.29	10.79	30	41.8	3.57	31. 71	58	22.8	3.25	10.66	3.86	12.66	3.51	11.50

 Table 2. Recommended water surface elevations and depths in the preliminary operation plan and observed stages.

water from cell to cell. The inflow and outflow pumps started operating on August 19, 1994, marking the beginning of full scale operation of the ENR. Inflow and outflow regulations have been a result of many conditions, such as the stage in each Cell, S-5A pump station status, seepage tests, construction operations, pump maintenance and others. Information on ENR operations is available in the periodic summary of ENR site observations by site managers (Memorandums by Tom Kosier and Richard Meeker, SFWMD).

HYDROLOGY AND HYDROLOGIC MONITORING

Rainfall

South Florida has a subtropical climate with relatively high rainfall frequency of occurrence and magnitude. On the average, 34% of the annual rainfall occurs in the dry season (November to May), with the remaining 66% occurring in the wet season (June to October). Mean annual rainfall for the area is 133 centimeters (cm) or 52 inches (in) as reported in Abtew and Khanal (1994). Frontal rainfalls occur in the dry season and have relatively lower spatial variation. Rainfall during the wet season is associated with daily convective and tropical systems which have high spatial variations.

Based on the high variation of summer rainfall observations in the area, a ten-gage rainfall network was established as a pilot network to evaluate the optimum gage density needed for the project area. Network analysis of the first wet season daily rainfall showed that five gages were sufficient for the area (Abtew et al., 1995). As a result, three gages were removed. However, a seven-gage network is maintained because two of the gages are associated with two weather stations, and four gages (one at the middle of each cell) are part of the monitoring network required by the operating permit. Table 3 lists all the rainfall gaging stations and the corresponding database keys, while Figure 2 shows the gage locations. Areal average rainfall on the project site was computed as a Thiessen-weighted average of the sevengage network (Table 3). Stations with greater than three consecutive days of data gaps were excluded from arcal rainfall averaging for that specific period. The daily distribution of areal average rainfall for the study period (August 20, 1996 to August 19, 1997) is depicted by Figure 3. Monthly summary of areal average rainfall is shown in Table 4. The total areal average rainfall for the study period was 136.5 cm (53.7 in). Compared to the yearly average areal rainfall for the previous two years, rainfall was lower by 28 cm (11 in).

Station	DBKEY		Thiessen	Weights	
ENR101	15851	0.160	0.160	0.198	0.197
ENR105	15861	0.143	0.143	0.192	0.192
ENR106	DU515	0.107	0,106	****	****
ENR203	15874	0.183	0.226	0.203	0.246
ENR301	15877	9;224	0.228	0.224	0.228
ENR308	15888	0.072	0.137	0.072	0.137
ENR401	15862	D.414	****	9:111	***

Table 3. Rainfall stations in the ENR, database retrieval keys and Thiessen weights

**** station is taken out of areal rainfall calculation due to data gaps

Figure 3. Daily distribution of areal average rainfall and evapotranspiration in the ENR.

Month Year		Inflow Outflow G-250 G-251		Rainfall		1	ET	Seepage Pump G-250_s	Recirculation G-258+G-259	Seepage L-7 culverts
		ha-m*	ha-m	cm	m	слī	Ър	ha-in	ha-m	ha-m
Aug.**	1996	376.89	237.51	7.37	290	4.11	2.08	152.48	0	7.38
Sep.	1996	1473.27	1517.58	18.26	7.19	11.31	4.45	332.53	0	41.43
Oct.	1996	2585.74	1986.69	10.40	411	7.68	3.02	280.59	0	59.50
Nov.	1996	1352.51	1745.76	0.79	031	7.56	2.98	2 44.27	0	53.39
Dec.	1996	1268.00	1127.10	4.29	1.69	8.57	3.37	253.55	0	39.90
Jan.	1997	686.89	620.17	6.83	2.69	10.12	3.96	263.80	0	36.13
Feb.	1997	762.23	766.49	2.82	1.11	11.42	4.50	217,84	0	30.70
March	19 97	586.91	461.82	7.7 2	3.04	11.35	4.47	239.69	0	30.00
April	1997	502.75	450.10	13.44	5.29	12.7 <u>2</u>	5.01	227.67	0	26.27
May	1997	468.53	533.54	13.00	5.12	13.91	5.47	264.00	0	9.82
June	1997	703.83	781.61	18.06	7.11	13.09	5.15	300.94	0	32.29
July	1997	911.06	874.69	15.93	6.27	13.61	5.36	368.49	0	22.54
Aug.***	1997	293.27	7 69 .04	17.42	6.86	7.63	3.01	239.53	0	36.78

Table 4. ENR Project monthly flows and area weighted rainfall and ET.

* ha-m = 8.1068 ac-ft

** 12 days

*** 19 days

Evapotranspiration

Daily evapotranspiration is computed from high resolution weather data using two models. A complete weather station is located in Cell 1 (ENR105) and another is located in Cell 3 (ENR308). Based on initial observations, the Penman-Monteith model for cattails and mixed-marsh vegetation, and the Penman-Combination equation for shallow open water conditions were calibrated (Abtew and Obeysekera, 1995; Abtew, 1996). For the water budget analysis of the ENR, areal average daily ET was computed based on percent type of land cover (Table 1) and the area of each cell. Distribution of daily areal $\mathbb{E} \mathrm{T}$ from the ENR, for the study period (August 20, 1996 to August 19, 1997), is presented in Figure 3, while the monthly summary of areal ET is shown in Table 4. The areal average ET for the year was 130.1 cm (51.2 in) which is close to the average ET of the previous two years the project was in operation.

Flows

Database keys for the flow structures and daily stage gages are listed in Table 5. For the study period, the inflow pump (G-250) and the outflow pump (G-251) were in operation 57% and 90% of the time, respectively. The seepage return pump (G-250S) operated every day except one during the study period. The daily pumping rates of the inflow and outflow pumps are shown in Figure 4a. Culverts G-258 and G-259 were closed through out the period. Figure 4b shows the estimated seepage from L-7 levee flowing through the road side culverts and the daily scepage recycling pumping. The L-7 seepage through the roadside culverts was estimated using a regression equation developed from 42 data points. A relationship was developed between the seepage from L-7 through the roadside culverts and the stage risc in WCA 1 above 4.57 m (15 ft) NGVD, and the difference in stages between WCA 1 and the eastern cells

Table 5. Flow control structures, stage recorders and database retrieval keys used in the water budget analysis of the ENR

Station	Description	Location	DBKEY	Remark
G250_ P	hamb.	Feeder Canal/Buffer Cell	15847	inflow
G2505_P	pamp	Seepage Canal/Buffer Cell	15846	seepage tetura
G251_P	pump	Cell 4/WCA 1	15848	outflow
G258_C	culvert	Cell 3/Scopage Canal	15940	recycle
G259_C	culvert	Cell 4/Scepage Ganal	15939	reșele
G252ER_H	stage	Buffer Cell/Cell 1	15891	head water
G255_H	stage	Buffer Cell/Cell 2	15908	head water
G252EF_T	stage	Buffer Cell/Cell 1	15892	tail water
ENRI01	stage	Cell 1	15850	center of cell
G255EF_H	slage	Cell 1/Cell 3	15697	head water
G255_T	stage	Buffer Cell/Cell 2	15909	head water
ENR203	stage	Cell 2	15873	center
G254C_H	stage	Cell 2/Cdl 4	15903	head water
G253EF_T	stage	Cell 1/Cell 3	15898	tail water
ENR301	stage	Cell 3	15876	center
ENR012	stage	Cell 3	15849	upstream of G251_P
G254€_T	slage	Cell 2/Cell 4	15904	tail water
ENRAÚI	stace	Cell 4	15727	center of cell
G256_H	stage	Cell 4B/Discharge Canal	15910	head water
ENR003	stage	East end of Buffer Cell	15812	WCA1
ENRO04	stare	L7 canal at junction of BNR	15842	WCA4
ENR005	61307	1.7 capal near G 251	15843	WCAT

of the ENR (Guardo, 1996). The regression fit had a coefficient of determination (\mathbb{R}^2) of 0.93 and a standard error of 0.30 m³ s⁻¹. The equation is given as follows:

$$L - 7seepage = 0.217 \Delta WCA^{1.311} \times \Delta h^{2.025} \quad (1)$$

where L-7 seepage is in $m^3 s^{-1}$; Δ WCA is the rise in stage in WCA 1 above 4.57 m (15 ft) NGVD and Δ h

is the difference in stage between WCA 1 and the eastern cells of the ENR. Monthly flow data for the study period are presented in **Table 4**. Compared to the previous two years flows, this period had 39% lower inflow and outflow pumping. Seepage recycle pumping was only lower by 5% while L-7 levee estimate of seepage through road side culverts was down by 28% compared to average of the previous two years.

Figure 4b. Daily pumping rates of the seepage pump and seepage flow through L-7 levee roadside seepage collection culverts.

Water Levels

Daily water levels in each cell of the ENR are dependent on rainfall, evapotranspiration, scepage and daily operational decisions. Water levels have been regulated based on water depth, operation status of the S-5A pump station, pump maintenance, and other activities in ENR such as seepage studies and construction operations. The minimum, maximum, and mean of the daily average stage observations for the study period are shown in **Table 2**. The mean observed stage in the ENR was 5.5 cm (2.2 in) lower than the average stage in the previous two years. Average daily water level observations in the eastern treatment train of the ENR are shown in **Figure 5a**, while those in the western treatment train are shown in **Figure 5b**

Figure 5a. Daily mean water levels in the eastern cells of the ENR and the Buffer Cell.

Figure 5b. Daily mean water levels in the western cells of the ENR and the Buffer Cell.

WATER BUDGET COMPUTATIONS

Water Balance Model

The schematic hydrologic model for the ENR is depicted in Figure 6. The influent pumped through the G-250 pump station accounts for about 82.5% of the known inflow to the system. The known inflows to the system are the G-250 pump station inflows, rainfall, and seepage through the roadside 1-7 levee culverts (L-7a). Rainfall accounts for 14.5% and scepage through the roadside culverts (L-7) accounts for 3%. Outflow pumping (G-251) accounts for 82.3% of the outflows, with evapotranspiration constituting 13.9% of the total outflows. The unknowns in the system are subsurface inflows, outflows and errors. The schematic model (Figure 6) and the following set of water balance equations represent the hydrologic system of the ENR for water budget analysis purposes.

where INFLOW is the amount of water that enters the system from external sources, and OUTFLOW is water that leaves the system boundary and is not recirculated. ΔS is the change in storage in the system during the time interval of interest. Sum of all errors is represented by $\varepsilon_{\rm T}$ Because all inflow and outflow can not be entirely quantified, the following equation is introduced to represent the remainders, errors and unknowns:

$$REMAINDERS = \varepsilon_{\tau} + UNKNOWNS \qquad (3)$$

Figure 6 shows the possible inflows and outflows to and from the ENR system. The seepage canal which encompasses the northern and western sides of the ENR was designed and is operated to capture seepage from the ENR to the neighboring farms.

When opened, and/or through leakage, G-258 and G-259 culverts release water into the seepage canal.

Figure 6. Schematic hydrologic model for the ENR

$$INFLOW - OUTFLOW = \Delta S + c_T$$
(2)

Seepage through the western and northern ENR levees is represented in the model by SEEPAGE 2, regardless of the magnitude. SEEPAGE 3 represents the two seepage possibilities into or out of the scepage canal from or to the surrounding farms, regardless of the magnitude. SEEPAGE 1 represents the possible seepage loss through the southern ENR levee into the Knight's Farm. The unmeasured scepage flow from WCA 1 into the ENR is represented by L-7b.

In computing the water balance for the HNR, the objectives are to identify quantifiable variables from unquantifiable variables, making reasonable assumptions to reduce the quantity of unknowns as much as possible. Since the purpose of the scepage canal is to recirculate scepage and recycled water, it is assumed that the scepage return pump flows (G-250S) are recirculations in the system as designed. This scenario is described or represented in the following equation:

$$S_{P} = \text{SEEPAGE } 2 + G258 + G259 + e_{R}$$
 (4)

where Sp is seepage return pump flows (G-250S); SEEPAGE 2 is seepage from ENR to the seepage canal; G-258 and G-259 are flows through the respective culverts from ENR to the seepage canal; and ε_R is error in assumption and all other errors including measurement errors and calibration errors. The error term also includes the net effect of unknown variable SEEPAGE 3 which is the net subsurface flow of water from the seepage canal to the adjacent farms (west and north) or from the farms to the seepage canal. Also, SEEPAGE 1 (seepage through the southern levce of the ENR) and L-7b (subsurface seepage from WCA 1 that is not captured by the roadside culverts) are also unknowns. Equation 2 is expanded as follows:.

$$\Delta S = G250 + R + L7a + L7b - G251 - ET$$
(5)
- SEEPAGE 1 + $\varepsilon_R + \varepsilon_I + \varepsilon_Q$

where ΔS is change in storage in the system; G-250 is inflow pump flows; R is rainfall; L-7a is seepage flows from WCA 1 through the roadside culverts; L-7b is unknown seepage subsurface flow from WCA 1 into the ENR; ET is evapotranspiration losses; SEEPAGE 1 is seepage loss through the southern levee of the ENR; ε_R represents errors in accounting for the recirculation water in the system; $\varepsilon_{\rm I}$ represents critics in inflow terms; and $\varepsilon_{\rm O}$ represents errors in outflow terms. The total error in the system is expressed as follows:.

$$\epsilon_{\tau} = \epsilon_{R} + \epsilon_{I} + \epsilon_{O} \tag{6}$$

Daily change in storage for the ENR was computed as a sum of storage changes in each of the five cells (Buffer Cell, Cell 1, Cell 2, Cell 3 and Cell 4). Change in storage volume in each cell was computed from the area of the cell and change in stage. Change in stage was computed as the difference between the beginning-of-day and end-of-day instantaneous stage readings averaged from two or three locations in each cell (**Table 5**).

The remainders in the computation of daily water balances are the sum of all errors and unknowns in the system. Daily remainders were computed for the one-year study period based on the following equation:

$$REMAINDERS = \epsilon_T + SEEPAGE + L7b \quad (/)$$

where \mathcal{E}_{T} is the sum of all errors, SEEPAGE 1 is seepage from the ENR through the southern levee, and L-7b is scepage from WCA 1 into the ENR that is unaccounted for in the water budget.

Discussion

The total inflow through the inflow pump was 11,972 ha-m (97,055 ac-ft) and was almost equivalent to total outflow through the outflow pump which was 11,872 ha-m (96,244 ac-ft). Scepage inflow from the L-7 levee through the roadside culverts was a total of 431 ha-m (3,494 ac-ft). There was no measured flow into the scepage canal through culverts G-258 and G-259 as the culverts were closed. The seepage recirculation pump had a total flow of 3,385 ha-m (27,442 ac-ft). Total average areal rainfall for the study period was 136.5 cm (53.7 in) and the total average areal evapotranspiration was 130.1 cm (51.2 in).

For the study period, the mean daily remainders (errors and unknowns) was -1.5 hectare-meters per day (ha-m d⁻¹) or -12.2 acre-feet per day (ac-ft d⁻¹) with the total remainders being -547 ha-m (-4,434 acft). The standard deviation of the remainders is 15.86

Figure 7. Distribution of daily remainders (error and unknowns) from the ENR water balance.

ha-m d⁻¹ (128.6 ac-ft d⁻¹) which signifies high variation. Figure 7 depicts the daily remainders distribution. The negative remainder indicates that there is an overall outflow from the system through unidentified directions. The remainder is 3.8% of the inflows or the outflows. Summary of the one-year water budget is shown in Table 6. Details of the water balance terms and calculations are shown in Appendix I.

The mean hydraulic loading rate for the two-year period, based on the G-250 pump inflow, was 2.12

centimeters per day (cm d⁻¹) or 0.84 inches per day (in d⁻¹). The mean hydraulic retention time was computed as the ratio of the mean-estimated volume of the ENR and the total inflow pumping. The meanestimated volume was computed from the areaweighted (by cell) mean depth of 52 cm (20.5 in) and total area of 1544 ha (3,815 ac). The estimated mean hydraulic retention time was 24.5 days. Comparison of the current year ENR water budget components and the previous two years is shown in **Table 7**.

INFLOWS	$\mathrm{ha} ext{-m}^{\#}$	Percent of Total	OUTFLOWS	ha-m	Percent of Total
Inflow Pump	11,972	82.5%	Outflow Pump	31,872	82,3%
Rain	2,108	14.5%	ET	2,008	13.9%
L-7 Culvert (L7a)	431	3%	Remainders	547	3,8%
Total	14,511	100%	'Total	14,427	100%
Change in Storage	83				
$#h_{2} = 21000 + 0$		·		<u> </u>	

Table 6. Summary of the one-year water budget of the ENR.

#ha-m = 8.1068 ac-ft

	8/19/94 to 8/19/96 (2 years)	8/20/96 to 8/19/97 (1 year)
INFLOWS		
Inflow Pump	39,000	11,972
Rain	5,068	2,108
)7 Culverts (L7a)	1,198	431
Total	45,266	14,511
OUTFLOWS		
Outflow pump	38,802	11,872
ET	4,050	2,008
Remainders	2,781	547
Total	45,633	14,427
Change of Storage	-363	83
Scepage recirculation		
Seepage pump	7,143	3,385
Loading rate (cm d ⁻¹)	3.45	2.12
Average depth (cm)	57.5	52
Retention time (days)	17	24.5

Table 7. Comparison of ENR current year water budget components (ha-m) with the previous two years.

SUMMARY

The ENR has been in full operation for the last three years. This water budget study covers the one-year period from August 20, 1996 to August 19, 1997. For the period of analysis, the total inflow through the inflow pump was 11,972 hectare-meters (ha-m) or 97,055 acre-feet (ac-ft) and the total outflow through the outflow pump was 11,872 ha-m (96,244 ac-ft). Scepage inflow from the L-7 levee through the roadside culverts was a total of 431 ha-m (3,494 ac-ft). The seepage recirculation pump had a total flow of 3,385 ha-m (27,442 ac-ft) and there was no measured flow through culverts G-258 and G-259 as the gates were closed. Compared to the previous two years flows, this period had 39% lower inflow and outflow pumping. Seepage recycle pumping was only lower by 5% while L-7 levec estimate of seepage through road side culverts was down by 28% compared to average of the previous two years. Total areal average rainfall for the study period was 136.5 centimeters (cm) or 53.7 inches (in) and the total areal average evapotranspiration was 130.1 cm (51.2 in) which is close to the average ET of the previous two years the project was in operation. Compared to the average areal rainfall for the previous two years, rainfall was lower by 28 cm (11 in). The remainders in the water balance, the sum of the errors and unknowns, was 3.8% of the inflows or the outflows of the system.

The mean hydraulic loading rate for the one-year period, based on the G-250 pump inflow, was 2.12 centimeters per day (cm d⁻¹) or 0.84 inches per day (in d⁻¹). The loading rate for this study period was significantly lower than the previous two years. The mean hydraulic retention time was computed as the ratio of the mean-estimated volume of the ENR and the total inflow pumping. The mean-estimated volume was computed from the area-weighted (by cell) mean depth of 52 cm (20.5 in) and total area of 1544 ha (3,815 ac). The estimated mean hydraulic retention time was 24.5 days. The ENR is a new system with a relatively short period of hydrologic record. Longer periods of record are more favorable to characterize the operation and water balance of hydrologic systems.

In the ENR, all hydrologic parameters, with the exception of seepage through the system, are well monitored. Since the direction of seepage is not in one direction, the remainders (errors and unknowns) could not be allocated to one variable. Groundwater modeling efforts will help in identifying and quantifying subsurface sources and sinks in the system. Improvement in stage-volume relationships will also increase the accuracy of water balance analysis.

REFERENCES

Abtew, W. 1996. Evapotranspiration Measurements and Modeling for Three Wetland Systems in South Florida. Water Resources Bulletin. Vol. 32(3):465-473.

Abtew, W. and N. Khanal. 1994. Water Budget Analysis for the Everglades Agricultural Drainage Basin. Water Resources Bulletin Vol. 33(3):429-439.

Abtew, W. and J. Obeysekera. 1995. Lysimeter Study of Evapotranspiration of Cattails and Comparison of Three Estimation Methods. Transactions of the ASAE Vol. 38(1):121-129.

Abtew, W., J. Obeysekera and G. Shih. 1995. Spatial Variation of Daily Rainfall and Network Design. Transaction of ASAE. Vol. 38(3):843-845.

Davis, J.H. 1943. Vegetation of the Everglades and Conservation from the Point of View of the Ecologist. Soil Science Society of Florida Proceedings V-A:105-115.

Guardo, M. and T. Kosier. 1993. Preliminary Operation Scheme for the ENR Project. South Florida Water Management District, West Palm Beach, FL. Guardo, M. 1996. Hydrologic Balance of a Subtropical Wetland Constructed for Nutrient Removal. Presented at AWRA 32nd Annual Conference and Symposium on GIS and Water Resources. September 22-26, 1996.

Jammal and Associates, Inc. 1991. Geotechnical Services SFWMD Everglades Nutrient Removal Project. Draft Report Submitted to the South Florida Water Management District. West Palm Beach, FL.

SFWMD. 1996. Water Budget Analysis for the Everglades Nutrient Removal Project (August 19, 1994 to August 19, 1996). Technical Memorandum WRE # 347.

Whalen, B.M. and P.J. Whalen. 1994. Nonpoint Source Regulatory Program for the Everglades Agricultural Area. ASAE Paper FL94-101.

APPENDIX

Appendix 1. Everglades Nutrient Removal Project water balance terms with calculated remainders. ha-m = 8.1068 ac-ft

Г	Dare	Change in	Inflow	Seepage	Outflow	Culvert	Culvert	Scepage	Rain	ITI'	Remainders
		Storage	րսոր	pump	թսութ						
		(ha-m)	G-250	G-250_S	G-251	G-258	G-259	J7a			
			(ha-m)	(ha-m)	(ha⊶m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)
								0.600	aa 707	4 1 6 7	5 992
8	/20/96	57.234	75.011	6.599	31.868	0.000	0.000	0.52.5	23.1 2 1 6 863	4.10/	-3.992
θ	/21/96	98.959	113.547	12.835	16.630	0.000	0.000	0.530	0.602	3.330 8.549	-0.013
8	/22/96	78.747	124.232	5.383	16.422	0.000	0.000	0.526	4.070	4 100	28.096
8	3/23/96	76.269	64.101	13.919	16.483	0.000	0.000	0.570	4.072	4.100	20.000
8	3/24/96	-0.338	0.000	14.103	0.000	0.000	0.000	0.515	2.2/3 E 0/2	3.721 4 950	2.755
8	3/25/96	0.937	0.000	15.302	3,898	0.000	0.000	0.469	3.040	4.230	3 428
8	8/26/96	-15.401	0.000	15.461	16.476	0.000	0.000	0.394	74 254	3 970	5 305
8	3/27/96	10.738	0.000	15.701	16.351	0.000	0.000	0.709	13 050	6.051	-0.960
8	3/28/96	-16.514	0.000	11.025	25.315	0.000	0.000	0.755	0.079	6.053	-0.700
8	3/29/96	-45.118	0.000	13,178	32.637	0.000	0.000	0.008	0.070	6 050	1 172
ε	3/30/96	-14.551	0.000	15.762	32.054	0.000	0.000	0.770	0.000	6.551	14.675
8	1/31/96	-22.533	0.000	13.215	31.379	0.000	0.000	0.722	0.000	9.351	4 610
	9/1/96	-17.019	0.000	13.479	13.968	0.000	0.000	0.710	0.076	7 500	3 051
	9/2/96	-18.824	0.000	13.330	15.079	0.000	0.000	0.715	0.000	7.30y 6.072	11 800
	9/3/96	13.907	0.000	13.283	16.471	0.000	0.000	0.080	24.004	0.972 7.694	1 4 1 8
	9/4/96	-19-254	0.000	13.584	14.426	0.000	0.000	0.090	0.745	7 200	-6 133
	9/5/96	-27.431	5.285	8.620	19.980	0.000	0.000	0.087	49.077	6 727	-0.155
	9/6/96	27.091	0.000	9.616	38.670	0.000	0.000	Q.(1) 0.709	40.477	5 305	-10 603
	9/7/96	-36.586	0.000	12.833	52.536	0.000	0.000	0.798	07.405	3,303	40.000
	9/8/96	124.071	39.062	13.719	51.102	0.000	0.000	0.815	97.493	4,973	70.299
	9/9/96	-18.785	63.128	16.285	59.847	0.000	0.000	1.107	9.177	2.121	-30.207
9	9/10/96	-36.317	10.401	13.518	60.510	0.000	0.000	1.694	18.4.30	6 105	-4.025
9	9/11/96	-53.796	0.000	8.167	49.663	0.000	0.000	2.1/3	1.529	3.140 7.107	-2.710
\$	0/12/96	-49.532	0.000	7.624	46.280	0.000	0.000	2,544	0.000	0.107	12 202
9	9/13/96	19.765	88.686	24.161	31.531	0.000	0.000	2.351	0.118	/.030	32.20.3
Ş	0/14/96	70.523	110.697	8.642	31.680	0.000	0.000	1.988	0.000	0.96.3	-3,499
9	9/15/96	91.743	139.494	9.346	37.413	0.000	0.000	1.759	0.000	0.053 5 4 9 1	-0.444 0.110
ç	9/16/96	92.792	152.741	10.589	54.273	0.000	0.000	1.598	0.745	5.081	-2.330
Ş	9/17/96	73.138	148.099	6.577	65.173	0.000	0.000	1.433	0.000	0.007	-4.004
9	0/18/96	-34.665	133.243	10.443	67.108	0.000	0.000	1.335	1.137	0.073	-90.59/
9	9/19/96	-24.941	46.776	9.457	67.387	0.000	0.000	1.3.34	0.000	/.016 //25	1.2.34 CO 553
1	9/20/96	-61.118	59.602	. 8.869	66.900	0.000	0.000	1.368	0.000	4.000	
9	9/21/96	-33.649	0.000	18.955	66.176	0.000	0.000	1.4/0	20.590	0.420	0.007
1	9/22/96	-0.176	58.777	9.075	65.195	0.000	0.000	1.594	6.236	4.525) <u>3.440</u> 1.005
ļ	9/23/96	80.302	143.057	10.154	61.075	0.000	0.000	1.548	0.000	6.513	5.063
	9/24/96	5 93.600	151.481	8.847	59.440	0.000	0.000	1.381	0.000	6.490	0.008
	9/25/96	-31.019	122.737	11.155	72.320	0.000	0.000	1.264	0.000	5.696	5 -77.004 - 1.107
	9/26/96	-95.191	0.000	7.712	86.726	0.000	0.000	1.335	0.000	5.614	-4.180
	9/27/96	-101.193	0.000	7.595	85.818	0.000	0.000) 1.4/8	5.373	3.34.) -18,885
	9/28/96	-63.299	0.000	9.965	66.176	0.000	0.000) 1.558	0.000	5.332	2 0.051
1	9/29/90	6 -66.108	0.000	0 7.069	48.053	0.000	0.000) 1.594	0.275	5.011	(-14.913 \ 10.001
I	9/30/96	5 -24.802	0.000	9.865	i 46.600	0.000	0.000) 1.640	10.393	3.129	12.894
	10/1/96	5 34.476	42.634	9.892	32.027	0.000	0.000	1.684	0.667	4.342	25,860
	10/2/90	5 27.418	73.932	2 7.519	31.110	0.000	0.000) 1.603	0.000	3.77(J -13.237
	10/3/96	5 2.172	53.108	8 8.424	l 35.436	5 0.000) 0.000) 1.527	0.000	3.240) -13.787

Date	Change in	Inflow	Seepage	Outflow	Culvert	Culvert	Seepage	Rain	ET	Remainders
	Storage	թսութ	րսութ	րստր						
	(ha-m)	G-250	G-250_S	G-251	G-258	G-259	L-7a			
		(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(իթ-տ)	(ha-m)
10/4/96	51.397	84.005	10.792	38.736	0.000	0.000	1.533	0.078	2.740	7.257
10/5/96	21.97 <u>2</u>	85.459	7.922	44.657	0.000	0.000	1.482	0.627	3.906	-17.033
10/6/96	-1.799	77.595	8.128	52.758	0.000	0.000	1.467	9.216	1.315	-36.004
10/7/96	12,189	80.401	9.824	55.215	0.000	0.000	1.766	5.608	2.212	-42,537
10/8/96	13.959	10.641	12.725	59.093	0.000	0.000	2.205	53.061	0.932	8.077
10/9/96	15.904	55.504	8.204	56.404	0.000	0.000	2.536	0.314	5.055	19.009
10/10/96	73.06 7	153.037	7.027	52.878	0.000	0.000	2.157	0.000	6.573	-22.676
10/11/96	53.165	129.783	11.032	66.587	0.000	0.000	1.904	0.000	5.144	-6.771
10/12/96	56.901	126.860	9.645	78.941	0.000	0.000	1.748	4.196	2.888	5.926
10/13/96	108.926	140.984	12.263	82.092	0.000	0.000	1.795	33.296	1.818	16.761
10/14/96	-35,398	121.746	8.693	81.847	0.000	0.000	2.073	3.647	3.861	-77.156
10/15/96	-94.408	0.000	10.511	82.606	0.000	0.000	2.254	1.059	3.627	-11.485
10/10/90	-47.111 43 700	50,202	9.547	50.005 70.105	0.000	0.000	2.566	5.177	3.202	-5.025
10/19/96	10.700	50,302	10 790	79.323	0.000	0.000	2.743	40.394	1.835	1.499
10/10/96	-30.039	78 380	0.567	70.030	0.000	0.000	2.005	1.050	1.000	-0.080
10/20/96	-29.740	01 1 20	7.920	74.695	0.000	0.000	4.900 0.610	0.000	4.020	-2.000
10/21/96	-15 764	76.090	6 812	74.02J 68.187	0.000	0.000	2.0.02	0.000	J.555 4 017	-43.512
10/22/96	-18.816	76 355	8 911	69.107	0.000	0.000	1.047	0.000	4.917	-20.933
10/23/96	-21.343	58.472	8.387	62 102	0.000	0.000	1 826	0.000	4.617	-14 022
10/24/96	32.971	104.543	10.655	62.090	0.000	0.000	1.757	0.000	5.619	-5 620
10/25/96	44 177	117.609	0.000	64.439	0.000	0.000	1.634	0.000	4.232	-6.395
10/26/96	64.753	105.845	8.622	37.486	0.000	0.000	1.548	0.000	3.571	-1.583
10/27/96	37.967	102.507	8.842	47.092	0.000	0.000	1.487	0.000	4.796	-14.139
10/28/96	47.979	126.160	10.063	81.740	0.000	0.000	1.419	0.000	4.634	6.774
10/29/96	16.178	108.543	8.216	83.680	0.000	0.000	1.358	0.000	4.114	-5.929
10/30/96	32.251	125.781	11.977	84,375	0.000	0.000	1.328	0.000	4.325	-6.158
10/31/96	-58.033	44.090	9.530	84.854	0.000	0.000	1.358	0.000	4.673	-13.954
11/1/96	-93.110	0.000	9.995	80.749	0.000	0.000	1.507	0.118	4.244	-9.742
11/2/96	45.392	127,295	11.448	82 .770	0.000	0.000	1.486	0.000	4.007	3.388
11/3/96	33.291	127.058	8.769	82.574	0.000	0.000	1.382	0.078	4.656	-7. 99 7
11/4/96	30.074	126.573	7.724	83.325	0.000	0.000	1.355	0.000	3.802	-10.727
11/5/96	90.007	77.319	13.068	81.639	0.000	0.000	1.485	95.730	1.090	-1.798
11/6/96	-86,004	0.431	12.427	83.873	0.000	0.000	1.811	3.294	2.776	-4.891
11/7/96	-92.797	0.000	7.702	83.156	0.000	0.000	2.023	4.236	3.686	-12.214
11/8/96	65.749	23.554	7.7 41	81.062	0.000	0.000	2.258	0.863	4.290	-7.072
11/9/96	7.799	108.521	9.371	79.222	0.000	0.000	2.129	0.078	7.097	-16.610
11/10/96	44.191	126.945	9.302	75.217	0.000	0.000	1.951	0.000	4.564	-4.924
11/11/96	41.168	128.411	8.634	80.272	0.000	0.000	1.784	0.000	4.807	-3.948
11/12/96	40,364	128.651	/.5/0	81./86	0.000	0.000	1.681	0.000	3.726	-4.456
11/15/90	41.470	128.04.3	7.990	53.355	0.000	0.000	1.62/	0.039	3.175	-2.309
11/14/90	-104.204	0.040	3,393	82.322 62.776	0.000	0.000	1.782	0.000	2.514	-21.196
11/15/90	-72727 62107	0.000	4.904 7 820	00.770 40.050	0.000	0.000	1,991	0.007	4.225	-8.394 10 500
11/17/04	-61 961	0.000	7.054 7.499	47.930	0.000	0.000	2.037	0.000	3-113 1017	0.100
11/18/94	-18 247	33/071	6 509	44 082	0.000	0.000	2.019	0.000	4.0J/ 4.5.1/	-7.1.30
11/10/96	59 559	106 346	6 445	47 557	0.000	0.000	2.093	0.000	1 400	-4,733 2467
11/20/96	27 598	88 474	12 870	47 393	0.000	0.000	1 897	0.000	4 040	4104 -11 971
11/21/96	-36.774	21.213	6.985	49 059	0.000	0.000	1 820	0.000	4 741	-6 516
11/22/97	-54.976	0.000	7.174	44.139	0.000	0.000	1.822	0.000	3.873	-8.786
11/23/96	-65.219	0.000	9,190	48.687	0.000	0.000	1.870	0.000	4.711	-13.691
11/24/96	-40,499	0.000	8.436	39.867	0.000	0.000	1.928	0.000	2.509	-0.051

. .

Date	Change in	Inflow	Secpage	Outflow	Culvert	Colvert	Scepage	Rain	ET	Remainders
	Storage	pump	pump	pump C. 254	C 050	C 250	T 7a			
	(ha-m)	(1 -250	G-250_5	G-251 (h-aa)	(G-258 (ha m)	(ba.m)	1/21 (hauma)	(പം-സ)	(ha-m)	(ha-m)
		(na-m)	(na-m)	(114-111)	(na-m)	(113-111)	(114-111)	(na-ny	(114-111)	(
11/25/96	-44.409	0.000	4.769	32.150	0.000	0.000	1.978	0.000	3.659	-10.578
11/26/96	5 -25.741	0.056	6.562	21.952	0.000	0.000	1.938	1.020	3.201	-3.602
11/27/96	-26.001	0.000	7.815	22.774	0.000	0.000	1.896	0.039	4.472	-0.690
11/28/96	-20.309	0.000	6.692	16.190	0.000	0.000	1.909	0.000	3.505	-2.523
11/29/96	5 - 29.165	0.000	5.581	16.156	0.000	0.000	1.923	0.000	3.685	-11.247
11/30/96	-12.029	0.000	7.670	11.363	0.000	0.000	1.940	0.275	3.648	0. 7 67
12/1/96	5 1.894	0.000	8.106	0.000	0.000	0.000	1.898	0.000	3.980	3.976
12/2/96	6 8.202	0.000	8.260	0.000	0.000	0.000	1.793	0.000	2.000	8.409
12/3/96	5 22.814	17.178	5.774	0.000	0.000	0.000	1.728	0.000	3.650	7.558
12/4/90	2.386	26.606	8.483	12.331	0.000	0.000	1.669	0.000	3.465	10.093
12/5/96	5 10.316	26.510	8.541	16.234	0.000	0.000	1.705	0.902	3.065	0.498
12/6/96	5 12.476	26.54 7	7.507	15.064	0.000	0.000	1.640	0.824	4.846	3.375
12/7/90	5 20.399	29.953	6.552	16.388	0.000	0.000	1.625	4.785	4.028	4.452
12/8/96	59.386	68.731	9.063	15.475	0.000	0.000	1.481	0.275	5,167	9.541
12/9/90	5 2.715	56.027	6.69 7	21.171	0.000	0.000	1.343	0.000	6.226	-27.258
12/10/96	5 3.749	26.554	6.523	29.407	0.000	0.000	1.366	0.000	4.901	2.6.39
12/11/90	5 48.088	69.810	7.264	32.644	0.000	0.000	1.364	0.000	4.326	1.3.684
12/12/90	s 67. 15 0	104.431	9.119	30.312	0.000	0.000	1.274	0.000	4.324	-3.919
12/13/90	5 49.972	104.213	9.530	48.682	0.000	0.000	1.194	0.000	4.215	-2.538
12/14/90	5 28.382	104.110	7.778	63.167	0.000	0.000	1.121	0.039	5.890	-7.831
12/15/90	5 33.021	103.467	7.7 1 4	67.028	0.000	0.000	1.074	0.000	4./00	0.206
12/16/90	5 32.272	104.301	7.487	66.135	0.000	0.000	1.032	0.000	4.2/3	-2.031
12/17/90	5 31.293	104.105	9.640	68.870	0.000	0.000	1.005	0.000	3.804	-1,145
12/18/90	6 41.036	39.984	9.562	69.288	0.000	0.000	1.006	0.000	2.507	110.2.31
12/19/90	6 -78.180	0.000	7.790	63.321	0.000	0.000	1.064	0.000	2.660	12.660
12/20/90	6 -57.124	33.148	7.661	75.559	0.000	0.000	1.050	0.000	4.11/9	-13.000
12/21/90	6 1.037	52.974	8.838	54.963	0.000	0.000	1.116	0.000	5 6 7 5	4303
12/22/90	6 2.383	53.123	9.437	50.534	0.000	0.000	1.110	0.000	5.724	0.548
12/23/9	6 -1.549	53.123	8.138	50.605	0.000	0.000	1.109	0.000	5 9 1 5	5.429
12/24/9	6 -21.520 6 -20.760	38.731	/.8/8 • • • • • •	50,500	0.000	0.000	1.077	0.000	5 771	-9 245
12/25/9	6 -39.709 7 40.010	24.372	: 8.007 N 0.745	30.202	0.000	0.000	1.077	0.000	5 221	4.023
12/26/9	6 -40.019	0.000) 9.743) 7.766	22.001	0.000	0.000	1 1 5 4	2 824	2.612	3.561
12/2//9	6 28.994	0.000	///00 \ 9,630	· 33.721	0.000	0.000	1 1 80	0.078	5 1 4 4	-2.658
12/28/9	6 -38.1/3 4 - 14 - 200	0.000	/ 0.0.02 V 0.602	10.029	0.007	0.000	1.100	1 887	3 375	3.967
12/29/9	6 -16-200 7 16-015	0.000	/ 0.090 \ 0.205	12,073 16,905	0.000	0.000	1.204	0.157	5 376	3.953
12/30/9 12/31/0	0 -10.200 6 17.011	0.000	/ Y.200 \ 9.000	I 10.070 I 16.995	0.000	0.000	1 1 213	0.078	5.618	4.201
12/31/9	0 -17.011 7 - 72.057	0.000	/ 0.0≟0) 7.144	1 10.00.1	0.000	0.000	1.213	0.196	5.036	-3.519
1/1/9	7 -23.932 7 10.345	0.000	רדיני, ג לאפיד ו	- 10.009 - 13.000	0.000	0.000	1187	0.000	4.664	1.878
1/2/2	7 3.34J	0.000) (1207) (1718	0.000	0.000	0.000	1.163	0.078	5.260) 7.285
1/3/2	7 <u>4</u> 037	0.000	, <u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, 0,000 , 0,000	0.000	0.000	1.148	0.078	5.918	3 8.929
1/1/2	7 1.207 7 1.202	0.000) 8336	, 0.000 5 0.000	0.000	0.000) 1.117	0.000	6.401	6.570
1/6/0	7 3071	0.000) 7.692	0.000	0,000	0.000	1.090	0.076	6.049) 1.810
1/7/0	7 _5.071	0.00		2 0.000	0.000	0.000) 1.064	0.078	5.91	3 -0.351
1/9/0	·	0.000) 9457	- 0.000 7 0.000	0.000	0.000) 1.033	0.078	5.220	1 3.779
1/0/2	7 19.289	0.000	, 2.– J 9.607	5 0.000	0.000	0.000) 1.072	13.177	5.89	3 9.933
1/10/9	7 24 3R1	25 94	7 8.669) 16.860) 0,000	0.000) 1.054	2,784	6.01	3 17.469
1/11/0	7 3575	26.604	5 7 <u>2</u> 90) 11.573	0.000	0.000) 1.038	0.000	5.07	8 -7.41
1/12/9		26.60	5 7.32 1	6.014	0.000	0.000) 0.967	0.000	3.34	B 2.790
1/13/9	54.700	35.65	6 9.217	7 17.540) 0.000	0.000	0.979	17.569	1.75	0 19.786
1/14/9	-5.307	42.49	0 10.810) 33.251	0.000	0.000) 1.413	6.275	2.05	0 -20.184
1/15/9	2.425	0.00	0 9.217	7 33.104	0.000	0.000) 1.524	23.374	1.16	0 6.941

•

٠

Date	Change in	Inflow	Seepage	Outflow	Culvert	Culvert	Seepage	Rain	ET	Remainders
	Storage	թսութ	pump	pump						
	(ha m)	G-250	G-250_S	G-251	G-258	G-259	L-7a			
		(lia m)	(lıa-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha•m)	(ha-m)	(ha-m)
1/16/97	99.827 5.222	92.652	8.025	24.147	0.000	0.000	1.414	0.275	5.552	35.185
1/17/27	-3.4.)2	17 100	9.020	32.438 45.074	0.000	0.000	1.242	0.000	5.122	-32.922
1/10/97	-30.170	0.000	0.085	45.001	0.000	0.000	1.193	0.000	5.149	-4.167
1/19/97	-42.428	0.000	0.755	.34.8.30	0.000	0.000	1.222	0.000	4.839	-5.005
1/20/9/	17.784	31.374 オカリフタ	7.135	32,321	0.000	0.000	1.25.3	0.000	5.327	22.805
1/21/9/	11.000	40.970	0.244	25.189	0.000	0.000	1,195	0.000	5.922	-16.904
1/22/07	11.057	40.87Z	7.244	31.200	0.000	0.000	1.220	0.000	5.954	0.901
1/23/97	70 997	20.371	7.240	22.217	0.000	0.000	1.190	0.000	0.10Z	-0.059
1/24/9/	-20.337	24.134 26.576	0.320 7 490	22.28U 24.271	0.000	0.000	1.200	0.000	5.774	4.049
1/25/97	-0.344	20.570	7.460	20.275	0.000	0.000	1.201	0.000	5.701	3./13
1/20/97	-4.374 1.064	20.590	0.004	49.495	0.000	0.000	1.1.57	0.039	5.000	2.929
1/29/97	2 0 9 2	20.370	0.001	20.000	0.000	0.000	1.101 4.4 A A	0.000	3.347	1.088
1/20/97	2.70± 12.701	20.390	0.007 0.021	23.700	0.000	0.000	1,148	0.941	0.745	4./40
1/30/97	-12.791	20.575	0.471	20.004	0.000	0.000	1.110	0.000	5.980	-9.710
1/31/07	-6.057	20.371 26 KON	0.002	21.000	0.000	0.000	1.000	0.510	3.720	10.07.2
2/1/97	1174	26.590	7 105	10 226	0.000	0.000	1.030	0.510	2,104	-4.028
2/2/97	-1 212	26.520	7.061	74 303	0.000	0.000	1.047	0.000	6 772	-1.991
2/3/07	-12 770	14 903	0.001	17 040	0.000	0.000	1.030	0.000	0,775	4.047
2/4/97	-23.095	0.000	9.457	21.003	0.000	0.000	1.010	0.000	4.030	-4.747
2/5/97	52 076	18 / 18	5.500	16.073	0.000	0.000	1.010	0.072	4.030	1.420
2/6/97	87.143	124 188	6 5 2 3	17 751	0.000	0.000	1.072	0.070	4-374	55.615 14.546
2/0/97	-35.618	24.100	0.525 8 771	26 3 3 4	0.000	0.000	1.031	0.000	2.779	-14.540
2/8/07	-36.266	0.000	8770	34.058	0.000	0.000	1.004	0.027	6.030	-19.202
2/9/97	-21 620	12 202	7.001	33.036	0.000	0.000	1.004	0.000	0.920	1 99.4
2/10/97	-15 745	14 453	7.091	32.752	0.000	0.000	0.094	0.078	5 136	1.004
2/11/97	-38 365	0.000	8.077	25.1.55	0.000	0.000	0.764	0.070	.1.1.90 6 700	*2-J/ 7 195
2/12/97	-21.010	0.000	8 842	16 978	0.000	0.000	1 019	0.000	6.837	1 786
2/13/97	-20.589	0.000	8.894	16.858	0,000	0.000	1.070	0.000	6 435	1.634
2/14/97	-5.354	0.000	7 781	8 989	0.000	0.000	1.088	0.000	6 344	1.0J4 8.813
2/15/97	53.340	24.741	5.686	4 791	0.000	0.000	1.019	7 647	2 966	27.690
2/16/97	94 541	109 322	7 007	16.965	0.000	0.000	0.978	1.569	3.460	3.007
2/17/97	58.835	103.146	9 1 5 3	26 212	0.000	0.000	0.932	0.118	6 402	-12 747
2/18/97	-1.981	61.904	7.274	45.629	0,000	0.000	0.952	0.118	3 1 5 8	-16 168
2/19/97	45.365	67.397	8.069	54.574	0.000	0.000	1.026	30.987	3 633	4 167
2/20/97	14.597	70.333	9.045	54.968	0.000	0.000	1.213	0.667	5 364	2.716
2/21/97	47.013	26.948	8.698	55.239	0.000	0.000	1 270	0.000	5.082	-14 910
2/22/97	-65.311	0.000	7.382	50.370	0.000	0.000	1.216	0.157	5.956	-10.358
2/23/97	-34.517	1,192	7.176	36.490	0.000	0.000	1.194	0.000	4.674	4.261
2/24/97	-30.002	15.267	9.214	33.569	0.000	0.000	1.247	0.745	4.554	-9 138
2/25/97	-19.205	0.000	8.189	23.829	0.000	0.000	1.284	0.078	4.962	8.224
2/26/97	-27.380	0.000	6.114	16.814	0.000	0.000	1.321	0.000	5.963	-5 924
2/27/97	-30.352	0.000	6.760	16.755	0.000	0.000	1.345	0.000	5.406	9.536
2/28/97	-24.200	0.000	8.527	16.709	0.000	0.000	1.323	0.000	5.718	-3.096
3/1/97	7.776	0.000	8.730	0.528	0.000	0.000	1.289	0.000	5,815	12.830
3/2/97	-2.621	0.000	7.436	0.000	0.000	0.000	1.250	0.000	5.729	1.858
3/3/97	-13.336	0.000	6.910	0.034	0.000	0.000	1.197	0.392	5.423	-9,468
3/4/97	6.084	0.000	8.686	0.000	0.000	0.000	1.144	0.196	5.610	10.354
3/5/97	17.649	0.000	7.010	0.000	0.000	0.000	1.131	0.000	5.560	-13.220
3/6/97	-0.698	0.000	9.231	0.000	0.000	0.000	1.042	0.000	6.715	4.975
3/7/97	-1.536	0.000	9.006	0.000	0.000	0.000	1.028	0.118	5.252	2.570
3/8/97	-6.197	0.000	6.949	0.000	0.000	0.000	1.036	0.000	6.282	0.951

4

. .

Date	Change in	Inflow	Seepage	Outflow	Culvert	Culvert	Seepage	Rain	ЕТ	Remainders
	Storage	րսաթ	pump	րսութ						
	(ha-m)	G-250	G-250_S	G 251	G-258	G-259	L-7a			
		(ha-m)	(ha-m)	(ha-m)	(ha m)	(ha-m)	(ba-m)	(ha-m)	(ha-m)	(ha-m)
<u> </u>					0.000	0.000	1 019	0.000	4 550	-10 518
3/9/97	-14.059	0.000	6.430	0.000	0.000	0.000	0.000	0.000	6 100	1 326
3/10/97	-3.775	0.000	9.038	0.000	0.000	0.000	0.999	0.000	5 829	9.420
3/11/97	4.563	0.000	8.950	0.000	0.000	0.000	0.974	0.000	6 367	-6 190
3/12/97	-11.623	0.000	6.080	0.000	0.000	0.000	0.234	0.000	3 705	8 5 1 1
3/13/97	15.265	0.000	9.562	0.000	0.000	0.000	1 727	47.610	1 108	44 (191
3/14/97	136.583	44.758	8.759	0.000	0.000	0.000	1.494	0.431	5 5 3 3	-44 516
3/15/97	10.803	48.247	0.52.5	10.859	0.000	0.000	1.740	0.000	6.127	15.249
3/16/97	30.819	37.265	7.311	16.076	0.000	0.000	1 171	0.000	4.938	-16.724
3/1//9/	/ ·/.002	20.074	3.042 5.046	10.940	0.000	0.000	1 183	1 333	6.619	-11.002
3/18/9/	/ -30./93	0.000	0.940 V 59%	16 880	0.000	0.000	1 158	0.000	5.003	-2.528
3/19/9/	/ - <u>23.2</u> 3.3 / 50.411	47 300	9.000	16.836	0.000	0.000	1.119	0.157	5.582	32.480
3/20/97	/ 38.035 / 127.195	47.504	00L.6 A 056	16.953	0.000	0.000	1.021	38,316	4.103	-3.488
3/21/9/	7 137,165	עלט אח ערט אח	7 919	35 355	0.000	0.000	0.903	0.157	6.067	-30.326
3/22/97	/ 20,190 / 43,0 50	90.070	7.042	40 \$63	0.000	0.000	0.910	0.000	6.366	-15.150
3/23/9/	/ 43.200 7 43.000	20.911	7.944	49.303	0.000	0.000	0.932	4.039	4.876	3.281
3/24/9:	7 -45,009 7 3,001	0.000	7.104	37 122	0.000	0.000	1.003	14.903	3.957	11.898
3/23/9/	7 3.901	76.230	7.507	33 703	0.000	0.000	0.974	0.549	6.607	2,481
2/20/9. 1/07/01	7 20.621	40.963	8 314	33.887	0.000	0.000	0.971	0.000	7.271	-21.397
3/2//91 2/29/01	7 47331	0.000	0.014	37 425	0.000	0.000	0.963	0.000	7.304	-3.565
2/20/21 2/20/01	7 38004	0.000	8 162	33 202	0.000	0.000	0.948	0.000	7.679	0.939
3/29/9	7 29688	0.000	6.883	20.621	0.000	0.000	0.944	0.000	7.941	-1.070
3/30/9	7 25.113	0.000	. 0.000 1 7.032	17 105	0.000	0.000	0.870	0.588	6.277	-3.189
4/1/0	7 _37 570	0.000	. 8.270	17.022	0.000	0.000	0.861	0.000	8.007	-8.352
4/1/9	7 4530	0.000) <u>8</u> 346	9.337	0.000	0.000	0.866	0.000	6.879	10.818
4/2/9	7 -6.025	0.000	6440	0.000	0.000	0.000	0.837	0.000	5.510	-1.352
4/3/9	7 1.677	12 605	5.870	0.000	0.000	0.000	0.804	0.000	6.738	-8.348
4/5/9	7 14.111	7.032	8.343	0.000	0.000	0.000	0.802	0.000	7.486	i 13.763
4/6/9	7 .4 676	9 7 82	8.451	0.000	0.000	0.000	0.760	0.000	6.913	-8.305
4/3/9	7 -8.851	0.998	5.910	i 0.000	0.000	0.000	0.695	0.000	5.980	5 -4.558
4/8/9	7 6.149	0.000) 7.548	6.976	0.000	0.000	0.608	19.609	5.899	-1.193
4/9/9	7 15 975	0.000) 9.461	17.078	0.000	0.000	0.588	4.667	4.128	3 0.026
4/10/9	7 1.495	0.000) 8.439	5.669	0.000	0.000	0.588	3.647	3.173	6.102
4/11/9	7 -2.983	0.000) 7.290	5 0.000	0.000	0.000	0.666	0.118	4.953	3 1.186
4/12/9	7 55.057	14.450) 6.601	0.000	0.000	0.000) 0.71 5	12.824	3.910	5 30.984
4/13/9	7 21.323	37.920	S. 7. 13 2	2 4.365	0.000	0.000) 0.911	16.942	5.821	7 -24.264
4/14/9	7 139.177	74.36	3 10.93	7 27.562	0.000	0.000) 1.062	93.691	2.443	2 0.065
4/15/9	7 18.331	70.97	7 9.213	2 45.281	0.000	0.000) 1.614	0.549	2.32	R -7.200
4/16/9	7 -41.750	12.39	5 9.809	9 48.783	s 0.000	0.000	0 1.912	6.942	1.90	6 -12.310
4/17/9	7 17.312	31.86	6 7.693	2 37.904	i 0.000) 0.00(0 1.736	0.196	6.88	6 28-304
4/18/9	7 47.069	47.43	0 6.07:	3 31.905	5 0. 000	0.000	0 1.226	0.000	8,17	3 -25.647
4/19/9	7 -52.849	0.00	0 8.32	9 34.780	0.000	0.00	0 1.104	0.000	8.25	0 -10.923
4/20/9	-27.452	0.00	0 9.65	7 24.954	4 0.000	0.00	0 1.007	0.000	7.69	3 4.188
4/21/9	-22.261	0.40	6 6.89.	2 17.149	0.000	0.00	0 0.94 2	0.000	6.57	3 0.113
4/22/9	7 -38.374	0.00	0 4.90	6 16.733	3 0.000) 0.00	0 0.880) 0.000	8.39	5 -14.126
4/23/9	33.259	4.97	7 6.71	6 7.984	4 0.000) 0.00	0 0.827	20.550	5.67	9 20.568
4/24/5	-35.089	16.85	1 3.86	1 17.139	0.000	0.00	0 0.697	0.392	8.67	3 -27.217
4/25/9	-2.180	0.00	0 7.42	8 7.861	1 0.000	0.00	0 0.678	3 0.118	4.06	9 8.954
4/26/5	7 44.667	31.02	9 6.22	2 8.80	I 0.000	0.00	0 0.614	17.256	5 2.36	1 6.930
4/27/9	07 2.783	52.57	7 6.23	2 14.590	0.000	0.00 (0 0.695	3 0.000) 5.35	5 -30.542
4/28/9	97 64.381	49.22	3 8.02	0 8.97	7 0.000	n 0.00	0 0.630	0 10.040) 4.39	3 17.858
4/29/9		27.86	3 8.65	6 17.31.	5 0.00	0.00 0	0 0.491	0.000) 8.15	8 -23.467

8

ŧ

Date	Change in	Inflow	Seepage	Outflow	Colvett	Culvert	Scepage	Rain	EI	Remainders
	Storage	pump	pump	րստը						
	(ha-m)	G-250	$G-250_S$	G-251	G-258	G-259	L-7a			
		(lua-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(ha-m)	(lua-m)	(ha-m)
4/20/08						_				
4/30/97	-28.254	0.000	8.918	21.937	0.000	0.000	0.458	0.000	8.483	1.708
5/1/9/	-20.902	0.000	0.577	10.450	0.000	0.000	0.405	0.000	7.079	-3./98
5/3/07	30.400	0.000	/.ZOU 0.775	17.055	0.000	0.000	0.350	0.000	6.964	-12.141
5/3/97	9774	0.000	0./35	0.234	0.000	0.000	0.273	6.040	/.140	11.833
5/5/97	-20.507	0.000	0.072	1 5 9 5	0.000	0.000	0.149	0.118	4.995	-4.531
5/6/97	10.773	1 441	6 499	0.000	0.000	0.000	0.127	0.000	7.957	6.964
5/7/97	19 882	0.000	0.425	0.000	0.000	0.000	0.144	0.000	8.000	-4-352
5/8/97	-10.002	0.000	9.170	0.000	0.000	0.000	0.140	0.000	6.400 0.050	-10.016
5/9/97	-3.189	0.000	7 (0)5	0.000	0.000	0.000	0.120	0.000	0.000	3.282 5.404
5/10/97	-14 665	0.000	6 212	0.000	0.000	0.000	0.112	0.000	6.70Z	5.401 6.179
5/11/97	-12 100	0.000	7 / 20	0.000	0.000	0.000	0.07.3	0.000	6.300	-0.178
5/12/97	142 145	23.276	11 073	6 6 6 9 7	0.000	0.000	0.001	0.279 92.404	0.303 0.773	-7.133
5/13/97	86 995	06 158	8 070	17.577	0.000	0.000	0.080	00.494 4705	0.77.3	42.705
5/14/97	88.471	124 700	0.272	18722	0.000	0.000	0.170	4.700	0.360	9.729
5/15/97	-41.055	37 801	9,107	15 343	0.000	0.000	0.176	0.000	0.//0 7.007	-9.000
5/16/97	.47 533	0.000	0.517	44 607	0.000	0.000	0.157	0.000	1.702	-50.062
5/17/97	14 215	0.000	10 514	30.475	0.000	0.000	0.134	50.040	4.740 3.005	1-/38
5/18/97	73 640	69 176	12.006	35 204	0.000	0.000	0.100	20.04Z 8.510	2,993 4 202	7.40.3
5/19/97	26.077	96.038	8.698	40378	0.000	0.000	0.666	2667	4.373	28.052
5/20/97	-51.810	22.752	10 100	47 870	0.000	0.000	0.000	4 3 5 3	7534	-20.0.12
5/21/97	-39 180	0.000	0 231	47.470	0.000	0.000	0.545	0.000	0.005	-24.400
5/22/97	.48 172	0.000	7 41 8	34 557	0.000	0.000	0.730	0.000	9.00,9	E 120
5/23/97	-31 548	0.000	7 296	28 147	0.000	0.000	0.542	3.765	5.027	-1.1.1.0
5/24/97	-23.727	0.000	9 351	17 401	0.000	0.000	0.331	0.000	6.686	-2.222
5/25/97	-22.215	0.000	8.745	17.357	0.000	0.000	0.400	0.000	6 3 9 8	-0.128
5/26/97	-1.149	0.000	7 027	14 345	0.000	0.000	0.430	24.110	8.015	7.009
5/27/97	-3.147	0.000	10.014	12.077	0.000	0.000	0.459	12 589	0.215	-2.4J8 5 274
5/28/97	-13.252	2.087	8.877	12.728	0,000	0.000	0.404	0.118	8 307	5 250
5/29/97	-22.772	0.000	7.117	7.966	0.000	0.000	0.373	0.000	7.213	-7.966
5/30/97	-9.308	0.000	8.943	0.000	0.000	0.000	0.346	0.078	6 594	-3.138
5/31/97	-7.635	0.000	9.841	6.824	0.000	0.000	0338	0.000	6 991	-5.130 5.842
6/1/97	81.579	0.000	8.882	11.103	0.000	0.000	0.446	87 377	4 882	9 741
6/2/97	20.917	13.951	13.254	19.175	0.000	0.000	1.128	13.922	6.832	17 923
6/3/97	38.167	8.677	12.892	16.650	0.000	0.000	1.557	28 864	6 352	71 871
6/4/97	-42.459	0.000	10.450	20.315	0.000	0.000	1.528	0.039	9.284	-14 427
6/5/97	-9.694	0.000	9.530	16.701	0.000	0.000	1.523	7.530	6.805	4.759
6/6/97	-34.041	0.869	8.549	17.110	0.000	0.000	1.273	0.157	9.002	-10.228
6/7/97	-14.419	0.000	10.457	14.790	0.000	0.000	0.919	0.000	8.393	7.845
6/8/97	-6.310	0.000	10.910	11.933	0.000	0.000	0.609	0.588	3.470	7.896
6/9/97	56.145	35.864	9.400	7.458	0.000	0.000	0.473	18-942	1.865	10.189
6/10/97	63.023	61.921	11.336	15.510	0.000	0.000	0.777	10.197	6.249	11.887
6/11/97	-12.954	27.562	9.249	17.269	0.000	0.000	0.557	1.412	6.650	18.566
6/12/97	-23.456	0.000	9.721	24.827	0.000	0.000	0.509	12.981	4.817	-7.302
6/13/97	-3.843	11.480	9.158	19.065	0.000	0.000	0.948	1.608	7.047	8.233
6/14/97	77. 093	56.969	11.617	23.361	0.000	0.000	1.113	20.197	6.289	28.464
6/15/97	12.400	49.920	13.513	27.002	0.000	0.000	1.432	9.883	6.667	-15.166
6/16/97	41.027	0.000	10.616	32.710	0.000	0.000	1.879	1.529	8.025	-3.700
6/17/97	68.360	27 .897	11.575	31.418	0.000	0.000	1.862	41.022	8.505	37.502
6/18/97	-21.604	32.691	12.747	33.004	0.000	0.000	1.841	0.000	6.189	-16.943
6/19/97	-36.292	0.000	9.305	34.738	0.000	0.000	1.996	3.569	3.915	-3.204
6/20/97	21.614	35.167	8.754	29.64 7	0.000	0.000	1.860	0.745	8.489	21.978

.

- ₁ -)ate	Chanec in	Inflow	Scepage	Outflow	Culvert	Culvert	Seepage	Rain	ET -	Remainders
		Storage	քսութ	րսութ	թսութ						
		(ha-m)	G-250	G-250_S	G-251	G-258	G-259	L-7a			_ 、
		1 F	(ha-m)	(ha-m)	(ha m)	(ha-m)	(һа-т)	(ha∘m)	(ha-m)	(ha-m)	(ha-m)
	(** /**		10 117	0 5 5 0	00.459	0.000	0.000	1 575	2 549	6.707	-24.103
6	/21/97	-25,827	0.000	9.332	29,430	0.000	0.000	1312	0.039	7.000	-6.609
6	/22/97	-36.651	70.000	0.711	20.59.5	0.000	0.000	1 146	9.883	3.477	29.456
0	/23/97	84.404	/2.100	10.310	24.704	0.000	0.000	1 038	2 981	6.217	-5.019
6	/24/97	05.137	102.815	10.342	54 111	0.000	0.000	0.883	0.392	7.651	4.497
0	/25/97	40.070	102.500	0.838	50.041	0.000	0.000	0.723	0.000	7,907	-26.638
U v	/ 20/ 97	-51.090	0.007	10212	47 280	0,000	0.000	0.496	0.000	8.492	6.137
0	(21/97 (29/07	-49,137 40 574	0.000	7 316	37 104	0.000	0.000	0.367	0.000	8.430	-4.407
0 2	(20/97) (20/07)	41 320	0.000	g 307	32.969	0.000	0.000	0.284	2.353	8.380	-2.608
6	(30/07	20.966	0.000	11 350	24.205	0.000	0.000	0.234	0.000	8.129	11.134
u	7/1/07	-27.461	0.000	7.996	17.655	0.000	0.000	0.237	0.000	8.751	-1.292
	7/1/2	-30 397	0.000	8.529	17.555	0.000	0.000	0.278	2.549	6.589	-9.080
	7/3/07	51 784	42 852	10.078	17.445	0.000	0.000	0.294	10.197	8.668	24.554
	7/4/97	52.827	53.118	9.310	14.998	0.000	0.000	0.288	16.903	6.946	4.462
	7/5/97	88.396	63.788	11.005	25,375	0.000	0.000	0.505	49,767	5.951	5.662
	7/6/97	-27 173	27.919	14.034	43.123	0.000	0.000	0.844	6.392	4.803	-14.402
	7/7/97	23.609	41.922	10.235	35.967	0.000	0.000	0.875	0.039	8.147	24.887
	7/8/97	32.321	78.376	11.524	35.587	0.000	0.000	0.855	0.000	8.295	-3.028
	7/9/97	16.971	64.419	8.806	44.951	0.000	0.000	0.599	4.353	5.906	-1.543
-	/10/97	63.466	69.068	13.386	2.143	0.000	0.000	0.545	1.608	6.175	0.563
-	7/11/97	58.602	0.000	12.420	0.000	0.000	0.000	0.652	49.806	7.643	15.787
	7/12/97	-1.610	0.000	16.261	8,111	0.000	0.000	0.738	0.000	7.699	13.462
-	7/13/97	-1.918	0.000	11.798	2.310	0.000	0.000	0.684	2.784	8.875	5.799
-	7/14/97	-4. <u>2</u> 11	0.000	13.087	26.804	0.000	0.000	0.567	2.431	7.582	27.177
	7/15/97	-5.470	0.000	13.002	0.732	0.000	0.000	0.738	0.627	6.630	0.527
-	7/16/97	-2.110	0.000	12.909	0.262	0.000	0.000	0.750	0.000	6.123	3.525
	7/17/97	29.784	0.000	11.685	6.738	0.000	0.000	0.558	35.570	5.165	5.559
-	7/18/97	12.961	0.000) 16.236	7.232	0.000	0.000	0.710	7.020	6.079	18.542
-	7/19/97	20.902	0.000) 13.036	11.730	0.000	0.000	0.832	27.688	6.746	10.858
	7/20/97	-15.571	0.000) 13.026	17.763	0.000	0.000	0.902	3.412	7.113	4.991
-	7/21/97	-45.869	0.000) 12.723	38.174	0.000	0.000	1.020	0.039	5.472	-3.282
	7/22/97	-33.312	0.000) 12.789	41.905	0.000	0.000	1.075	9.961	4.932	2.489
	7/23/97	-75.344	0.000) 10.834	57.204	0.000	0.000	1.273	0.078	7.944] 1.047
	7/24/97	-64.636	0.000) 10.768	52.228	0.000	0.000	1.296	0.000	7.15) 5.040	-0.3/3
	7/25/97	7 18.158	43.417	9.985	36.948	0.000	0.000	0.947	0.000	5.84%	7 1494
	7/26/91	39.998	78.987	12.591	37.821	0.000	0.000	0.753	4.90Z	15.1107. E 477	1736
	7/27/97	7 -5.872	43.089) 12.772	2 47.726	0.000	0.000	עכי (U.VOV	5,020	0.474 5.96/	, -1.750 1 .2.409
	7/28/9	7 18.759	77.16	7 12.747	50.953	0.000	0.000) U.//9 N 0./75	0.059	5.00° 5.081	+ ·2.50
	7/29/97	7 25.294	76.213	3 13.05?	52.316	5 0.000 0.000	0.000) 0.675	0.059	5.60	-7.014
	7/30/97	7 0.695	77. 79 0	5 12.845	5 65.205	5 U.OOU) 0.000 0.476	0.000 4 7 8 5	0.01	s 8.842
	7/31/93	7 20.483	72.92	4 9.019) 57.728	s 0.000) 0.070) 0.076	73.455	7.87	38 200
	8/1/9	7 101.768	59.55	1 14.034) 62.490 . fa.470) 0.000 L 0.000) 0.950 N 1.042	2.1.7 7.3.8 A	4 40	0 12.847
	8/2/9	7 16.345	52,47	0 15.70. D 15.70	1 5 <u>2</u> .477 7 50.577	0.000) 1.042	2 706	5.53	7 8.630
	8/3/9	/ 2.618	48.11	4 15./5 c 46.000	/ 32.30U 3 74 401	, U.U.M. 2. 0.000	0.000	ער גער גער גער גער גער גער גער גער גער ג	0.119	6.25	4 .7.473
	8/4/9	7 -77.651	10.98	0 13.80. 0 13.99) /0.323 4 /4.144) 0.000 D 0.000	, 0.000 1 0.000		0.549) 6.42	1 -4.814
	8/5/9	/ -72.875	0.00	U 12.884 5 10.094	+ 0/1.104 E 52:047	7 0.000 1 0.000	, 0.000) 0.001	0 1974	17 217	4.77	9 1.294
	8/6/9	/ -38.209	2.99	э 12,98; о 4≎77	ספי ב איז מידע א	0.000. 1 0.000	, 0.001) 0.001	0 1.831	5 843	5.75	9 7.567
	8/7/9	7 -20.549	17.92	U 12.0/0 -) A.745	い 47575. 3 まつすい	ι 0.000 ι 0.000	, 0.000) 0.000	0 2.027	0.116	6.72	3 -21.047
	8/8/9	/ -68.9/1	8.70	7 9.74. K 13.011	ם בעניים ב- זייריא ב-	2 0.000 1 0.000) A004	0 2134	31.130	5.15	7 34.707
	8/9/9	/ 24.440) <u>5.80</u> . 070	10.01 0 10.01 0	(46.20) 9 46.744	5 0.000 h 0.000	, 0.00 1 0.00	0 2.72	5 569	4.62	4 10.949
	8/10/9	/ -45.635) 8.09) 10.29	ס ו∠.61. א 11 סס	o 40-74) 6 1.6.42)	> 0.000 ງ ດ.0/W	, 0.02) 0.00	0 2.394	20.119	6.30	4 11.956
	8/11/9	7 2.110	10.58	+ 11.24	U .30.43	2 0.000	, 0.00	~		5.50	

•

_

Date	Change in Storage (lia-m)	Inflow pump	Scepage pump	Outflow pump	Culvert	Culvert	Seepage	Rain (ha-m)	ET (ha-m)	Remainders (ha-m)
		G-250 (ha-m)	G-250_S (ha-m)	G-251 (ha-m)	G-258 (ha•m)	G-259 (ha-m)	L-7a (ha-m)			
8/12/97	-34.547	10.147	10.291	31.631	0.000	0.000	2.584	0.863	6.503	-10.007
8/13/97	2.075	8.913	9.990	18.774	0.000	0.000	2.482	0.000	8.864	18.318
8/14/97	-43.895	10.925	11.884	26.796	0.000	0.000	2.268	0.078	7.688	-22.682
8/15/97	2.266	8.473	8.877	18.825	0.000	0.000	2.078	8.275	7.896	10.161
8/16/97	74.774	13.579	13.866	19.623	0.000	0.000	1.839	80.122	3.464	2.321
8/17/97	5.963	8.833	16.391	21.189	0.000	0.000	1.931	16.040	4.826	5.174
8/18/97	-21.861	5.253	12.791	21.308	0.000	0.000	2.150	0.000	7.250	-0.706
8/19/97	-28.768	3.406	8.796	20.369	0.000	0.000	2.250	0.118	7.538	-6.655

.

3

.

۶,

. .