
WATER RESOURCES RESEARCH, VOL. 33, NO. 12, PAGES 2769-2780, DECEMBER 1997

Groundwater head sampling based on stochastic analysis

Hosung Ahn
Water Resources Evaluation Department, South Florida Water Management District, West Palm Beach

Jose D. Salas
Hydrologic Science and Engineering Program, Department of Civil Englcering, Colorado State University

Fort Collins

Abstract. The problem of determining a uniform sampling time interval for monitoring

serially correlated groundwater heads is the main subject discussed here. The problem is

approached by stochastic time series analysis and modeling. An autoregressive integrated

moving average model is assumed to fit the underlying series. Given that groundwater

head data can be sampled at different time intervals and that the same stochastic model

must represent the time series regardless of the sampling timescale, the parameters of the

underlying model for the series sampled at a given arbitrary time interval h are obtained

as a function of h and as a function of the model parameters for the series sampled at a

unit time interval. This is accomplished by linking the derived variances and

autocovariances at the two sampling scales. The derived equations and the sampling

design procedure are tested and illustrated using the groundwater head data of Collier

County, Florida.

1. Introduction

Historical groundwater head data are valuable for mapping

and mathematical modeling of groundwater systems. Many

government agencies collect groundwater data within their ju-

risdiction boundaries for planning and management of water

resources and environmental systems. However, in addition to

the high cost of building monitoring wells, the cost of main-

taining and operating a groundwater monitoring network is

expensive. For example, in South Florida. which extends from

the south of Lake Okeechobee to Key West, the groundwater

monitoring network consists of .- 1000 monitoring wells, and its

annual operation cost reaches -.1.4 x 106 dollars (based on the

1994 budget figures). Thus the design of a groundwater mon-

itoring system in the region becomes an important issue for

water managers who are concerned with an efficient ground-

water management program with a limited budget.

Two typical problems in groundwater monitoring design are

selecting monitoring sites and choosing sampling time inter-

vals. These problems have been commonly approached by sta-

tistical methods. The first problem related to the groundwater

monitoring network design has been tackled by several ap-

proaches, including the variance-based approach [Rouhani,

1985; Loraiciga, 1989], optimization approaches [C(ieniawski et

al., 1995; Wagner, 1995], and the heuristic approach based on

facility location [Hudak and o.naiciga. 19921. Likewise, the sec-

ond problem of sampling time intervals, in which the underly-

ing variable is serially correlated, has been studied especially in

relation to water quality variables [Lettenaier, 1976; Sanders

and Adrian, 1978; Loftis et al.. 19911, where the sampling in-

terval is determined as a function of the variance and autocor-

relograrms of the sample with the specified confidence interval

for estimating the mean of the sequence. However, specific

studies dealing with the groundwater head sampling interval,
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especially for serially correlated data, are lacking. Since the

sampling time interval is directly related to the estimation

accuracy and the annual operating cost of a monitoring pro-

gram, the groundwater head sampling interval should be de-

termined carefully.
It is generally known that groundwater head time series at

monthly or smaller time intervals are serially correlated mainly

because of the slow response time of groundwater flow as

compared with the response time of surface runoff. To account

for the serial correlation in determining the groundwater head

sampling intervals, a stochastic time series model can be used.

An example of choosing a sampling time interval for serially

correlated data based on a simple stochastic time series model

applied to a chemical manufacturing process for design of a

discrete control scheme is given by Box and Jenkins [1976].

.The main purpose of this paper is to develop a method for

determining the sampling time interval of groundwater moni-

toring wells. Assuming a stochastic model to represent the

groundwater head time series, the method finds a relationship

between the model parameters at two different timescales and

selects a sampling time interval for an allowable noise variance.

The assumed stochastic model is the autoregressive integrated

moving average (ARIMA) model. In section 2, the variance

and the autocovariance equations for five low-order ARIMA

models defined at arbitrary subsample intervals of h are de-

rived as a function of the ARIMA model parameters at key

sample intervals of H. Section 3 presents an application of the

suggested method to determine the sampling time intervals of

the selected groundwater wells in Collier County, Florida.

2. Methodology Based on the ARIMA Model

Measurements of groundwater head data are subject to sev-

eral errors, including randomt errors, instrumental errors, data

processing errors, and space-time interpolation errors. The

magnitude of each error varies depending on many factors

such as type of instruments, data collecting and processing
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tor, 0(B) = (1 "- 0B, - 82  -. -- 4,,B") is the
stationary moving average operator, p and q are the orders of
autoregressive and moving average terms, respectively, and a,
is a white noise process having a mean of zero and a variance
of (o = E[af ], where E[ ] denotes expectation.

Low-order ARIMA models have been widely used in the
field of water resources (see, for instance Salas et al. [1980] and
Stedinger and Vogel [19841). Thus five low-order models,
namely ARIMA(0, 1, 1), ARIMA(0, 1, 2), ARIMA(1, 1, 0),
ARIMA(2, 1, 0), and ARIMA(1, 1, 1) were chosen in this
study.

2.1. ARIMA(0, 1, 1) Process

Let us assume that a time series z, sampled at a unit time
interval (H = 1) is available. The series is fitted by the
ARIMA(0, 1, 1) process

Figure 1. Schematic of a key sample series z, (H
and a subsample series M, (h = 3 units).

1 unit)

methods, and estimation methods. Among these errors, the
errors caused by sampling a continuous data into discrete data
points may be quite significant but inevitable because of the
cost associated with groundwater monitoring. This type of er-
ror can be quantified by assuming a certain stochastic model
and by estimating the corresponding noise variance.

One can assume that the underlying continuous process has
an inherent noise variance. If the continuous process is dis-
cretized by a short (uniform) time interval, one would expect
that the noise variance of the discretized process will he very
close to that of the continuous process. However, as the sam-
pling intervals increase, the degree of accuracy of the informa-
tion decreases, and as a result, the noise variance increases.
The concept that will be applied here is to find the noise
variance of the underlying model for a serics sampled at any
arbitrary time intervals ofh based on the model parameters for
a series defined at another time interval H. This will be ac-
complished by linking the variance and the autocovariance
properties of the process sampled at both time intervals. A
relationship between the noise variance versus time interval
will be established, which can be used for determining the
sampling time interval given a predetermined allowable noise
variance. This method is developed assuming that the ground-
water head time series can be modeled by an ARIMA model.

Groundwater head time series for small time intervals such
as several days are generally nonstationary due to long-term
variations (seasonality and year-to-year changes) which can be
eliminated by differencing the time series. Thus an ARIMA
model is considered here. Let us suppose that z, denotes a
discrete time series at time t having uniform sampling intervals
of H (key sample). Without loss of generality but for mathe-
matical convenience, the key sample series is assumed to have
a unit time interval (H - 1). In addition, let us define a
backward shift operator 8 as B-, = z, 1; hence B"'z - z,_,,,
for any integer mn. Also, let us define a backward difference
operator V as Vz, = z, - z_, - (1 - h)z,, so that V", -
(1 - B)"tz for any integer d. Then, the ARIMA(p, d, q)
process is given by [ien and Jenkins, 1976]

Vz, = (1 - B)z, - z, - z,.., = a, - 01a, I

where the model parameters arc 8, and tr). Suppose now that
a subsample time series M, is taken from the z, series at a time
interval h - H. (Figure 1 illustrates the case in which H = 1
and h = 3.) Then, the first-order backward difference of the
M, series can be expressed in terms of the z, series as [Box and
Jenkins, 1976]

VM, = z, - Zr, h = , + Vz-i ,+ + Vz-i+4

- (a, + al+- + a,_h.)

- 0 1(at-1 + a,-2 + ' ' . + t-ih)

= A, - 614,_1

VM,_, = z,-, - _z, = Vz,,h t Vz, ;, 1 + Vz,-,,

= (a,-h + a,-h t + ' ' + t-2h11)

- 0O(a, _-, + a,..h , + - - + a, _)

- A,_. - 0 A,_,,_1

where A, k = (a, k + a,-k-1 + . . a,__-k-,+) is tlhe
back-sum of h white noise terms for any time k. Now the
variance and the lag-h autocovariance for the VM, process
may be obtained as a function of the parameters of the Vz,
process as

YVM() - E[VM,VM] = E[AA,J - E[A,,_t]

- QtE[A, IA,] + 0E[.A,_4,_-]

- htr - 2 0 (A - 1)oa2 + 81ho§

= {h(l ,) - 2(h -- 1)8,}<r)

yTM(h) = E[VM,VM,_,] = E[A,_,,] - 0,E[A,_,,4,..,J

- 0,E[AA,_,,] + O fE[A,,A -h I

= 0 - OtE[au,-a,_h,] - 0 + 0 = -01r

and y-,w(k) for k > h (k = 2h, 3h, 4h ... ) is zero.
In addition. an ARIMA(0, 1, 1) model for the VM, series

can be written as

VM, = a, - Ohat i

in which d is the differencing order, 4(B) = (1 - ,B -
4-,B2 -'' -- (pt') is the stationary autoregressive opera-

where H,,, and ra,, represent the model parameters of the
series sampled at time interval h. That is, it is assumed that the

'j(B)V"z, = 0(B)a,

4 ) 0 / 0 Y
1 3
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sampling of an ARIMA(0, 1, 1) process defined at time inter-

val H produces another ARIMA(0, 1, 1) process at time in-

terval h. Thus the variance and the lag-h autocovariance for

the VM, process as a function of the parameters 0,1, and aTh
are given by [fLx. and Jenkins, 1976]

yvM(0) = E[VM,VM,] = (1 + O,)ra,

y,vM(h) = E[MVM,VM,,]- = -0 h,,cr

100.0-

10.0 -

(9) b

Now equating the variances of equations (5) and (8) and the

lag-h autocovariances of equations (6) and (9), the following
expressions are obtained:

(1 , r,) = ) -(r -

(I . t 0 h(1 2(h)-2(h-l),
Hlj, .01

AA

01-

(11a)

These two expressions are useful for determining the noise

variance ao, at any arbitrary sampling interval h given the

parameters of the model for the series sampled at time interval

H. That is, for.h > H, the above two equations can be solved

for 01,, and a r, as a function of 0, and or. On the other hand,

for h < H, equations (10) and (Ila) can still be used after

switching 0i, -' and 0k,,, o{,, respectively, and replacing h by

1/h. In this case, equation ( 1a) becomes

(1 + Oi) (1/h)(1 + H8h) - 2(1/h - 1)9h (].b)

01 O, ,

For example, let us suppose that the variable z, has been

sampled at time interval H = 1 and fitted by an ARIMA(0, 1,

1) process with parameters 0, = 0.5 and .r - 1.0. Since the

model order remains the same for the series sampled at time

interval h = 2, equations (10) and (lla) give ,0,, , - 0.5

and (1 + 0 ,)0/,, - 3.0, which in turn give 0,h = 0.382 and

c-'h = 1.309. Likewise, for h = 1/2, 01 = 0.5, and r, =

1.0, equations (10) and (11b) give #t, = 0.61 and r,%, =

0.82. Figures 2 and 3 show t1h versus h and cr,/<r versus h,

respectively, in logarithmic scale, for o' = 1, 01 ranging from

0.1 to 0.9 and h ranging from 0.025 to 60.

LO -

0.6-

0.4-

012-

0.0 -
S ' I . . .. TI . . .

0.01 0.l0 LOO 10.00 100.00

Sampling Interval h

Figure 2. Parameter 8h,, versus sampling interval h for an

ARIMA(0, 1, 1) model with parameters 08 and cr' defined at

H = 1, in which cr, -= 1.0 and 0, ranging from 0.1 to 0.9.

100.000.01 0.10 LOO 10.00

Sampling Interval bh

Figure 3. Scaled noise variance r versus sampling in-

terval h for the Figure 2 conditions.

2.2. ARIMA(O, 1, 2) Process

The ARIMA(0, 1, 2) model of the series sampled at time

interval 11 = 1 is given by

Vz,= (1 - B)z,= z, - z,- = a, 0-. -a,_Z -

where 0,, 0, and cr are the model parameters. Similar to the

ARIMA(0, 1, 1) model, the first-order difference of the series

M,, which is sampled at time interval h, can be expressed in

terms of the z, process as

VM, = z, - z,_- = V'z, + Vz,_, + ' * Vz,_;.,

= (a, i a,_ + ... + ,- ah, I)

- 8,(a,_ + a,_ + ' ' -I a ,_;,)

S 1(a,.2 + a, _ 3 + ' -+ a,-i. )

= A, - BA, - 0A,. 2

VM,-H = z, ,-h - z.., = (a,_,h + a,._ + ' a,,~,.t)

- Oi(a,_h_ + a,_,,_2 + , , , i- a-2_s)

- 2.(a,_h y. a,-_-3 - + a,.. 2, )

- Ae-h. - O4,-.ut- O_'A,-1,-2

VM,_2h = z-2 - -=r3 = (a, , , + (I,.2 I + - -" + a t 3h-l)

- 01(a, .:,-I + a,1 h-2 + . a,-;,)

- 0(a, ,h, + a ?J,-. + . ... ' a-71-1)

= A,- 2,, - O A- ,-,-.

Then, the variance and the lag-h autocovariance of the VM,

series are

YV(O) = (1 i- 0 J + )E[A,4,] .. 20,E[A,1, ,]

- 20 2E[.A,,_, + OO,2L[A, ,A,_,]

= i(l + Of - 2(h - 1)(0, + H2 -0,18) - 28,.}

__

vl--v~

1 ' """1 """I ' """I ' ' ""'I

.

-- ------------ ;-
' ". ' ' " " "
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yVM(h) - - ,EII A,,- h] - OE[A, , ,,]

+ 8,2E[A,-A, -h- ,]

= -0tta - (020, + 0,0-) + Oo:r,:

= (H1., - t - 202)ra

in which E[A, , ] = (h - i - i)o-,. However, since

y,M(k) - 0 for k :- 1, the above variance and autocovari-
ance equations are not sufficient to estimate three parameters
of the ARIMA(0, 1, 2) model. Thus one may use the second
best model whenever the ARIMA(0, 1, 2) model is selected as
the best model for a given key sample series.

Alternatively, the model parameters can be estimated by the
variance, the lag-h autocovariance, and the second partial au-
tocorrelation coefficient of the ARIMA(0, 1, 2) model. Denot-
ing q,,, (k = 1, --*, q) as the kth partial autocorrelation
coefficient in an order q moving average model and p. =

yvM(k)/yv(0) as the kth autocorrelation coefficient, the
first two Yule-Walker equations for thile ARIMA(0, 1, 2) model
are written as

,2 , + pifaz = pI
S2 1 T I o =P

Pi'i2 + 422 = P2

Since y,m( 2 h) of the VM, process is zero, the lag-2h partial
autocorrelation coefficient of the VM, series is given by

"V -yvu(h)
2

p2 = = . (19)1 - pi Yvr(0) - y7,(h)'

where both yvM(0) and y,r(h) are obtained by equations
(16) and (17), respectively.

Also, an ARIMA(0, 1, 2) model for the VM, series may be
written as

VM, = a, - Oh,,a,, -- 0,,a, 2h

where a,,: H,,, and rar, are the parameters. T'he variance, the
lag-h autocovariance, and the lag-2h partial autocorrelation
coefficient of the above VM, series written in tenns of the
parameters H,,, ,,,, and uti,, are given by [Box and Jenk.irns,
1976]

YvM(O) = (I + 9t + O8L,),,

Yvu(h) = (t,,2, - ,)ora1 , (22)

(1 d ,0-, h 2,

S +-- 1 + ,,) , ) (23)

Then, the parameters 0,,,, O,,,, and cr,, can be obtained as a
function of the parameters 01, 9,, and a ; by equating equations
(16) and (21), (17) and (22), and (19) and (23), respectively.

2.3. ARIMA(I, 1, 1) Process

The ARIMA(1. 1, 1) process of the series defined at time
interval H - 1 is given by

Vz, - 4,Vz,.. t- a, - B0,a, (24a)

where b , 0,, and cr are the model parameters. The corre-
sponding ARIMA(1, 1, 1) model for the M, series sampled at
time interval h from the underlying series z, is expressed as

VM, - 4bVAM, t a, - O,,,a, ,, (24b)

where #,,, 01,,, and cr,,, are tile parameters. Following a
similar approach as in the previous cases, the variance and the
lag-h and lag-2h autocovariances of VM, series are obtained as
a function of the ARIMA(1, 1, 1) model parameters of the Vz,
series as

l 1 K1
,VM(0) = i h( + O: - 2a,,) + 26(t - 40,)

- [h(l + 0 ) - 2(h - 1)q - 2h4,0Q]

-
- 24p(il - oiKJa 0

y~~h=(~*~j~l~HI

[ , + ('- -I)]- 0p,2(, - 1) 2)o

<W (r ? ( - 1)'(1 - 4~0 )
yvu(2h) = ( (1 - 1)2(- i) + ;" p ( ( 1)

(1 - 601) of

where K, = p[P3(#-" - l) - h + 2], K, = /3[(,b-' - 1) -
h + 1], @= I, - B, 0 = .4/(t - 1), and = 0 forh =
2 or ( = 1 for h > 2. Full derivations of the above equations
are shown in Appendix A.

In addition, the variance and the lag-h and lag-2h autoco-
variances of VM, in terms of the parameters #¢,,, 8,,, and or,
are [Box and Jenkins, 1976]

1 + O~, - 2#lheih aTa(0) = - -,,,

1 - th

Yv( 2 h) = 6bhyvM(h)

As before, equations (25)-(30) can be used to determine the

parameters #11,, 0,,,, and ;o,, as a function of the parameters
B,, 0, and ;r.

2,.4. ARIMA(2, 1, Q) Process

The ARIMA(2, 1, 0) model for the series sampled at time
interval H - 1 and the corresponding one sampled at time
interval h are respectively given by

7V, - 4CWV, , - qZV7z,_2 + a,

VM, = #,,,VM,_h + #, VM,-h - a,

where {4,, (0, and , } and {v,, c4 and and ,} are the param-
eters for both time intervals H and h, respectively. Appendix B
gives the derivation of the variance and lag-h and lag-2h au-
tocovariances of the VM, series. They are summarized here as

)vu(O)= h I (-- I ') Z. wj)
i-1 I-I

ii, r - I .,h-I h-i

+ 2, 7 y ,(j) + 24, 3 3 yv ,(j - 1)
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+ 2., Y (j - 1 )
hz i-1

(33)

h h-i-I

'YM~)= (i i-t) = (j)

--'h#& 3 3TYvz(J -

i- 1 i-i

-1 h-lI

&2- 3d Yv:g(i - 1)+3

h h+i-!

1)+
2. 'v(j + 1)
r-i ;-,

h+i 1

Yv(j - 1)
j-i

YwM(2h) = ((- d2) d Yv (h +j)
i-I -

{ h-t-I h hi-I

(1,1 41 Z Yv:(h + j - 1)+ yv,(h + j + 1)
i-t 2 -i i I=y

h hti-1 h I h+1-I

+ i yv,(h + j - 1)+ 23 yvz(h +j - 2)
i-1 j(- i-1 1=

(35)

where yv:(k) and Yvr,,(k) are defined in Appendix B. In

addition, the variance and autocovariances of the series. VM, in

terms of the parameters 01,, 4 ,2h, and th, are [Box and

Jenkins, 1976

YVM(0) = (1 - #-2h)aIX (36)

yvu i(h) = 0hri/JA (37)

yvM(
2 h) = (01h + 0-j, - 44$) ,/JA (38)

with A = (1 + (2h)[(1 - J)' - ibh], Equations (33)-

(38) can be used to determine the parameters (bz;,, z;,, and

r,;, as a function of 6, 6b, and a2.

2.5. ARIMA(1, i, 0) Process

The variance and the lag-h autocovariance of the sampled

process which results from the ARIMA(, 1, 0) process are

h-I n-i
,w(0) = ,oI hy,,(0) + 2 v--i (J) I )] ho-

i -2 i- 1

+ 26o-l,(T h 1 + big (39)
i-I i

h h+i-I h h'it

Tv(h) = ( 1,1 YV3(J) +  4 3 ,2 -' t (40)
:-I 1 i f -

Since yvz(0) = rja/(1 - 44) and yv(j) = c ryv,(0) forj ::-

0, the above equations simplify to

Figure 4. Location cmap showing the selected groundwater

monitoring wells.

M(0) = t (h + 2K,) + h - 2(h - 1),, + 2l K a I

(41)

(h)=' - i7'YVM,) = (i- )( "2

where K,, K 2, and 4 are the sanle as for the ARIMA(1, 1, 1)

model. Likewise, yVM( 0 ) and YVM(h) written in terms of the

parameters (,,, and o-,, arc [Box and Jenkils, 1976]

yvM(O) = o',,/(1 - (fn)

YVM(h) = 0YTVM(0)

Finally, as in previous cases, one can find the parameters ibbh

and tr~, as a function of the parameters 4,$ and r by equating

equations (4J) and (43) and equations (42) and (44), respec-

tively,

3. Application to Groundwater Head Data

This section illustrates an application of the modeling ap-

proach suggested herein to a groundwater head monitoring

problem. For this study, seven sets of daily groundwater head

time series (1985-1990) measured from the surficial aquifer

monitoring wells located in Collier County, Florida, were used.

Figure 4 shows the location of the selected wells. The area is

characterized by moderately drained sandy soil with extensive

agricultural and urban development so that the short-term

groundwater fluctuation in the region is largely induced by

local rainfall and groundwater pumping. Each well has a digital

water level recorder which automatically logs groundwater

head. The accuracy of the digital water level recorder is about

z3 mm (0.01 feet) [Lierz et al., 19941.

3.1. Model Order Versus Sampling Time Interval

First of all, the key sample series of daily groundwater head

in each well was fitted by ARIMA models. The daily time

series of all seven sites (plots are not presented here) appear to

be nonstationary so that differencing of the key sample series
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Table 1. Some Statistics and the Estimated ARIMA Model Parameters for the Selected Groundwater Time Series

Statistics/Parameters W1 W2 W3 W4 W5 W6 W7

Mean, for d = 0, m 1.788 1.489 1.760 3-323 2,021 2,126 6.908
Variance, for d = 0, m' 0.268 0.187 0.274 0.085 0.064 0.203 0.480
Variance, for d 1, m' 0.00122 0.00328 0.00317 0.00631 0.00297 0.00132 0.02873
Selected ARIMA order (1, 1, 0) (0. 1. 2) (1, 1,0) (1 1, ) (2, 1, 0) (1, , 1) (0, 1, 2)
Parameters estimated by the

maximum likelihood method
4, 0.314 NA 0.237 0.826 0.137 0.499 NA
2 NA NA NA NA -0.122 NA NA
0, NA 0.035 NA 0.907 NA -0.080 -0,007
04 NA 0.112 NA NA NA NA 0.1626
cr (m') 0.00110 0.00325 0.00299 0.00619 0.00289 0.00091 0.02817

AIC --8696,7 -6329.9 -6510.1 -4916.5 -6587.9 -9109.9 -1599.4

H = 1 day: NA, nonapplicablc; AIC, Akaike information criterion,

was necessary for making the data stationary. Ten low-order
ARIMA models were fitted for each data, namely (0, 1, 1),
(0, 1, 2), (1, 1, 1), (1, 1, 0), (2, 1, 0), (0, 2, 1), (0, 2, 2), (1, 2, 1),
(1, 2, 0), and (2, 2, 0). Then, the best fitted ARIMA model in
each well was selected based on the Akaike information crite-
rion (AIC) [Salas et al., 1980]. Also, the Bayesian information
criterion and a criterion based on the minimum noise variance
were investigated as alternative model selection criteria, but
the results by both of these statistics were nearly identical to
those obtained by the AIC statistic. Table 1 presents the best
fitted ARIMA model in each well with its model parameters
which were estimated by the least squares method.

To predict the noise variance of a subsample series defined
at a uniform sampling time interval h given a key sample series
at H, an appropriate ARIMA model structure needs to be
assumed. The main assumption used in the derivation of the
variance and the autocovariance equations of two different
time intervals is that the ARIMA model order remains the
same regardless of the time intervals of the series. While this
assumption must hold based on mathematical arguments, one
may question whether such an assumption is valid or not for
the actual data. Thus a further stochastic analysis was made in
order to verify to what degree the groundwater head data at
various timescales can be fitted by the same order model. For
this verification, several subsample series at arbitrary uniform
sampling intervals were taken from each well's daily ground-
water head data, and each of them were fitted by the ARIMA
models. When subsample series at time intervals of h are taken
from a key sample at H = 1, h different subsamples may arise.
For instance, for h = 2, two possible subsamples from a key
sample series are x, x, x 5, xs, and.c-, x, x6, .* " . Thus, for

Table 2. Best (Second Best) Fitted ARIMA Models Based
on AIC Statistics for Various Sampling Intervals

days W1. W2 W3 W4 W5 W6 W7

I A (E) E (B) A (B) C (E) B (E) C (i) E (C)
2 C (B) B (E) B (E) C (E) C (E) C (E) E (C)
4 C (B) A (D) D(A) C (E) C (E) C (D) B (D)
5 C (B) E (B) A (D) E (C) C (E) A (B) D (C)

10 A (D) C (A) A (D) A (D) D (B) B (C) D (B)
20 A (E) E (B) A (D) C (D) C (D) D (A) A (D)
30 E (B) E (B) E (B) E (D) C (E) E (D) E (B)
60 E (B) E (B) E (B) n (D) C (E) E (D) E (B)

A, ARIMA(1, 1, 0) model: B, ARIMA(2, 1, 0); C, ARIMA(l. 1, 1);
D, ARIMA(0, 1. 1); E, ARIMA(0, 1, 2).

eight arbitrary timescales, namely, h = 1, 2, 4, 5, 10, 20, 30,
and 60 days, a total of 132 subsamples of groundwater head
series were available for analysis of each well. Then, for each
well and each sampling interval h, the referred 10 ARIMA
models were fitted from which the best model for each time
series was selected based on the AIC statistics. Since the se-
lected models for different subsamples may be different, the
"best" model and the "second best" model selected in each
case was that with the highest frequency.

'fTable 2 lists the best and the second best fitted ARIMA
model orders for each time interval h. Table 2 shows that for
all seven wells, the first-order differencing ARIMA models are
always better than the second-order differencing models. The
results of Table 2 may be analyzed in various ways. For in-
stance, if the criteria are based on the frequency in which the
best model (criterion a) or either the best or the second best
model (criterion b) selected for the key sample series (H = 1)
is also the best or the second best model for the other time-
scales h, the following values in Table 3 are obtained.

The results are quite good given that 10 different low-order
models were considered. Furthermore, if the criteria are based
on the frequency of the best model (given preference to the
model having shorter time intervals) to be also the best (cri-
terion a) or the best or the second best (criterion b) throughout
all timescales, one gets the values shown in Table 4. The two
sets of results in Table 4 confirm reasonably well the fact that
the same model is valid for any sampling interval h. In addi-
tion, if one considers the likelihood that the best model for a
given time interval is also the best or the second best for any
adjacent time interval (for example, h = 1 and h - 2, or h =
5 and h = 10), the resulting frequencies are 45% (22 out of
49) and 69% (34 out of 49), respectively, both of which are
significantly larger than 10% (that is, the theoretical likelihood
when 10 low-order models are considered).

Table 3. Frequency in Which the Order of Subsample
Model is the Same as That of Key Sample Model

Critcria

Frequency, %

W1 W2 W3 W4 WS W6 W7
a 29 5 43 43 0 29 4

a 29 57 43 43 0 29 43
b 57 71 100 86 86 43 57

Criterion a, best model; criterion b, best or second best model.
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Table 4. Frequency of Being the Selected Best Model Order

Frequency, %

WI W2 W3 W4 WS W6 W7

(1,1, ) (0, 1, 2) (1 1 ) (1, 1, 1) (1,1,1) (1, .,1) ( 1, 2)

38 63 50 50 75 38 50

38 75 63 63 75 50 50

3.2. Noise Variance Versus Sampling Time Interval

On the basis of the ARIMA model parameters determined
for the key sample series at time intervals of H = 1 day, the

"derived" noise variances cr,h at arbitrary sampling intervals

ranging from 2 to 60 days were computed using the derived
variance and autocovariance equations. The implicit systems of

nonlinear equations that must be solved for unknown param-
eters of the subsampled process were solved by a modified
Powell algorithm with the parameters of key sample series as
the initial input [International Mathenustics and Statistics Li-

braries, 19911. The modified Powell algorithm provided good
convergent solutions in this case without experiencing any par-
ticular numerical problems. Although the best fitted ARIMA

model order at each well was identified in subsection 3.1, the
noise variances 2r,, for the five low-order ARIMA models
discussed in section 2 were estimated for comparison. The
results of cr3, versus h for wells W2, W3, and W4 are plotted
in Figures 5, 6, and 7, respectively (the results of the other four
wells are similar but not presented here). Figures 5-7 also

include the "estimated" noise variances o,, versus ht which
were obtained by fitting the best ARIMA model in each well
(listed in Table 2) with the h interval subsample series taken

from the daily key sample series. Since the variation of noise
variances for all different h interval series taken from a daily

series was nearly negligible compared to the variation of the
noise variances resulting from different ARIMA models, the

1.000

0,100 -

0-010 -

fcot -,

- ARIMA(0J) W & H=1
--- A IMA(0,1.2)
------ ARIMA(1,1,0)
.- -. ARTMA(1,t))

SARIMA(U1,0) ,
* * Estimated j

A

' I L '''''11

Samplhng Interval (h days)

Figure 5. Noise variance c-,, versus sampling interval ht ob-

tained from the derived variance and autocovariance equations

with the groundwater head data at well W2, in which 11 = 1

day was used. In addition, the estimated noise variance (dots)

were obtained from the best fitted ARIMA model to the

groundwater head series sampled at each time interval h.

estimated noise variance of each time interval h here is that
obtained from an arbitrary selected series among h different
series.

For wells W2 and W3, there are good agreements between
the derived and the corresponding estimated noise variances,
For well W4 (Figure 7), some differences between the derived
and the estimated noise variances are observed especially for
large values of h even though the results are good for h < 10

days. For well W4, one may be able to get better results for

large values of h if the key sample time interval H is greater
than 1 day. Therefore the relation £r,, versus h shown in

Figure 8 was computed considering the key sample series for

11 = 5 days taken from the daily time series. The result shown
in Figure 8 indicates that except for h 1 and ht = 60 days,
reasonably good correspondence exists between the derived
and the estimated noise variances throughout the rest of the
time intervals.

Also, it should be noted that the alternative solution ap-

proach for the ARTMA(0, 1, 2) model given by equations (19)
and (23) gives reasonable estimations of noise variances in

most cases; Especially, Figures 5 and 8 clearly demonstrate

that for ht "t=- H case, the result based on the alternative
solution approach for the ARIMA(0, 1, 2) model is better than

the approach based on the second best ARIMA model.
The foregoing analyses indicate that the derived variance

and autocovariance equations in section 2 may provide useful

estimates of noise variances over a wide range of sampling

timescales. The relation o,, versus h (shown graphically, for

instance, in Figure 8) also demonstrates that the noise variance

(r;,, of subsamplc series for both h > H and ht < 11 cases may

1.000 -. - _-. -_-
-__ ARIMA(0,1) wa & H= t

- -- ARIMA(0.1,2)
. r ATT A11 fl

-rrr

a)

0

z

Sampling Interval (h days)

Figure 6. Same as Figure 3, but well W3 and H - 1 dlay.

Criteria

Rest model
order

a
b

1

i m

0.00-



AHN AND SALAS: GROUNDWATER HEAD SAMPLING

L000

0100

0.010

0.001

110 100

Sampling Interval (h days)

Figure 7, Same as Figure 3, but well W4 and II = 1 day.

be easily obtained on the basis of model parameters deter-
mined for a key sample series at H interval. The case <: H
is especially important when the subsamplec series for time
interval h is not available.

The relations rr', versus h as in Figures 5-8 can be applied
for determining the groundwater head sampling interval at
each well. That is, under a specified allowable noise variance,
the corresponding sampling interval at each well can be read
from the o,, versus h curves. The allowable noise variance
might be either a constant throughout a region or a variable
depending on the regional condition. For example, the sam-
pling intervals which are obtained from the <ra, versus h curves
(marked by dots in Figures 5-8) for two arbitrary allowable
noise variances are shown in Table 5.

As one may expect, the well having the highest sample vari-
ance (W7) needs to be sampled more frequently, while the one
with the smallest variation (W5) needs less frequent sampling.
Note that even though the variances of two wells are nearly
identical (i.e., W1 and W3 for d - 0, or W2 and W3 for d = 1),
the sampling time intervals obtained by the proposed method

00ooo--

0.100 -

0.010-

0.001 -

W4 & H-5ARTMA(0,1,1)
--- AluMA(,1,2)

-- ARIIA(1,1,0)
- - ARIMA,II)

' -

Sampling Interval (h days)

Figure 8. Same as Figure 3, but well W4 and H = 5 days.

Appendix A: Variance and Autocovariances for the
ARIMA(1, 1, 1) Model With Sampling Interval h

For the ARIMA(1. 1, 1) model of equation (24a) the cross
covariance of Vz, and a, is given by y,,,,(k) = Cov (Vz,,
a,_ ) = F[Vz,a,_,] since E[Vz,] = ELa,j = 0. Such cross
covariances are given by yv,_,,( 0) - E[Vz,a,] - EI( ,Vz,_,
I a, Hoa,_,)a,] - <r; and y,.,,(k) = LE[V ,a, J =

LI[Vz,_ 1 a, .,] = , l 'o fork - 1, with qi= t 04
and yo,,(k) - 0 for k < 0.

From equations (24a) and (24b) the VM, series at sampling

'Table 5, Suggested Groundwater Head Sampling Intervals

Sampling Interval h, Days
Allowable Noise

Variance cr, W1 W2 W3 W4 W5 W6 W7

0.04 m' 15 16 9 10 30 10 1
0.10 mr  30 45 20 90 100 25 5

are different as a result of the effect of serial correlation of the
data.

4. Concluding Remarks
An approach for determining a uniform sampling time in-

terval for serially correlated groundwater heads using stochas-
tic time series analysis has been presented herein. The pro-
posed approach involves fitting an ARIMA model to the
available time series sampled at a given time interval H (key
sample series), finding the parameters of the model for the
series sampled at any arbitrary time interval hI (subsample
series), and establishing a relationship between the noise vari-
ance t<ri, and time interval It. from which one can determine
the sampling time interval h given a predetermined allowable
noise variance for the well at hand. The main contribution of
this paper has been linking the properties of the stochastic
models of series sampled at two different time intervals and
establishing a sampling criterion based on the noise variance.

The derived equations and overall sampling design proce-
dure have been tested for the groundwater head data collected
from Collier County, Florida. In general, the noise variances
computed from the derived equations match reasonably well
the corresponding estimated variances obtained from the ac-
tual data. In cases where some departures are observed, the
approach is still useful by selecting a key sample series at
different time intervals. The suggested approach can be imple-
mented for determining a groundwater monitoring program
throughout a region. For instance, a sampling criteria may be
specified such that the same error variance is maintained
throughout the region. This case was illustrated in subsection
3.2 where the allowable error variance oa,, was set and the
unifonn sampling time interval It at each well was determined
from the derived oh,, versus h relations. In addition, the pro-
posed method may be attractive for multilayered aquifer sys-
tems where the serial correlations of groundwater heads may
be different from one layer to another. In such cases, it may be
possible to design a sampling scheme for obtaining uniformity
of measurement errors in groundwater monitoring throughout
layers based solely upon the temporal correlations of the
groundwater head data.
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time interval h can be expressed in terms of the z, series at
sampling interval H = 1 as

VMt = , - ,- . = 
Vz, + Vz, 1  + +VZ,-h±I

= *l(Vz, 1 + Vz,- 2 + ' + Vz, ;)

+ (a, + at- +" -... a,.) - OI(ar- + a, a +''-+ ar-)

= OIVZ,, + A, - 1A,- (Al)

VM,-h = z,-_, - z,-,h = ek4(Vz,_-,_1 -+ z__ + .+ ' Vz,_J,)

+ (a, + a,-h- + ' '' + a-2+1)

- Oe,(a,_;, + a;,_ -• - + a,-a,)

= 4,1VZ,- + A,-l, - 8 1A,_-h (A2)

VM,-22 = z,-2 - z, 3~ = ,(Vz,-2 , + Vtz, 2 .+ "+ Vz,.-,)

+ (u,-2h+ a,- , + . - + at-31 )

- 0 1(a- 2h 1 
+ " a

,_h
- 2 

+ -. + a,-3h)

= 1VZ,- ,- + A, - O- ,-2h- (A3)

where VZ,_k - (z,_k + Z,--1 Zr-k-h , ) and

Ar_.& = (a,_k + ak-i + ' -. + a,-k-h±) have h back-

sum terms.
'then, the variance of the series VM, expressed as a function

of the parameters of the Vz, series is given by

YVM(O) = E[VM,VM,J = 44E[VZ,_1VZ,_i]

+ 24,E[VZ,./,] - 24,,lE[VZ,_A,_I]

- 20,E[AA,_t] + (1 + O)E[, A,-_,] (A4)

Since the variance and autocovariancees of Vz, are given by

Yv,,() = (1 f+ - 2 0,)fai(1 - ,), 7 ,(1) = (1 -
ki 9)Pac#'/(1 - 4(b), and Yvr(k) = cpt-'1 .(l) fork > 1

[Box and Jenkins. 1976], the first expectation term in equation
(A4) is determined by

E[VZ, ,VZ,_]

Yv,(O) +yv,(1) +... +yr(h - 1)

+yv(1) -yv,(O) +. - +y,,(h - 2)

+y,,(h 1) +yv(h - 2) +'- +Yv,(O)

h h-i

S1 h( + O - 2 2 ) + 2t (1 - 101)

The second expectation in equation (A4) is given by1)]

The second expectation in equation (A4) is given by

(0 +1 + +439 +-
+(0 +0 i- +, +'

E[VZ, I1 i, -

+(0 + 0 + 0 +0 +. 0)r,

h-2 h-i-1

= h - 1 + -2 A-i

= oh - 1 + [p(4 - 1) - (h - 2)]

in which , = 0 for h = 2 and g = 1 for h > 2, and /( - 1).
Likewise, the other expectation terms are given by

(1 + 41P cil, + "'

+(0 + 1 +1P ---
E[VZ,_,_, ] =

+(0 + 0 +0 +* "

a; h + -
-1 j-1

=< h+ [p(3(- -1)-(h - 1)]

E[A,] , - E[Ar,_Ai] = her~

E[AA,_] - (h - 1)o'

Rearranging equation (A4) with the above expectation terms
results in equation (25). Also, the lag-h autocovariance of VM,
as a function of the parameters of Vz, becomes

Ty,(h) = E[VMVM,M,,] = E[VZ,-IVZ,-hI]

+ 4,E[Vz,. A,-hl - 4 101E[VZ,-tA, A--I

- O9E[A,_ A,_;,] (A5)

in which the expectation terms are computed by

R[VZ,-IVZ,-h-_i]

7Yv(h) +Yf(h - 1) - - - +Yv,(1)

+yv,(h + 1) +y,,(h) +. . +Y,:( 2)

+Yv:(2h - 1) +yv:(2h - 2) +'" , +Yv 2(h)

h i- ( - 1) (1 - # <O0 )S v (j) = ',t ( - )
i-1 J 1I

E[vz,_A,-,1

{ (4,Ji- +4 +. +4 + 1)o a

+(,-'q + +-p- . -+- +1' + ,)a-

+(44h-" +4, "-", .- .. ,

r 1 + 4 '+ 1 l-
=1 -I -i

= 1- -(O ' - 1) 1 + ( d; -1)]j



AH-N AND SALAS: GROUNDWATER HEAD SAMPLING

E[A, E[A,.,J = A

+( -4, -+ ,, - ' + .

I+(,PIt, "-€'- '"

h h--I

= <per C = oP (4'{ - 1)2/c1
i-i i-i

Substituting the foregoing expectations into equation (A5)
yields equation (26).

In addition, the lag-2h autocovariance of VM, is given by

yva (
2h) = E[VM,VM,_2;,,] = O'E[VZrVZ,2;_]

+ 4,E[VZ,-iA,4,] - 48,1E[VZ,-A,_-2t-, ] (A6)

where the expectation terms are computed by

E[VZ,_1VZ,-_.,_z]

Syv(2h) +yv (2h - 1) +.. +y~v(h + 1)

+tvy,(2h + 1) +yv .(2h) - - +y;(h + 2)

+y:(3h - 1) +yv.(3h - 2) - -- +yv,(2h)

(0i-1 1)'(1 " - 101

= C (h +j) = ]lso- (4 - 1)2(1 - 4)
i-I i-i

E[VZ, 1 ,_]

+( 4 ,j 4 ~''4, +

(t h+i,-

( i '>24
+(4)j '4'

o= :-t'4' -(44 - 1)2

+ c, '-3
I -,

-,l-',1,N) ,

1, )

+j6 Z4)oi'

h h' 1-

I j-i

Replacing the above expectation terms into equation (A6)
results in equation (27).

Appendix B: Variance and Autocovariances of the
ARIMA(2, 1, 0) Model With Sampling Interval h

For the ARIMA(2, 1, 0) model of equation (31), the cross
covariances of Vz, and a, can be expressed as y,v,,(O) -

E[VG,a,] = E[( 19Vz,.. + i,Vz, 2 + a,)a] = ,
Yvra(l) _ E[Vz,a,_1 ] - E[(blVz,_1 4 27Vz,_ 2 +
a,)a,-11 = 4,E[Vz,_,a,_,] - 4,1 -, and y,,,(k) =
E[Vzat-kJ = 1 ilYva,(k -- 1) + k2 Yvza(k - 2) fork - 1.

From equations (31) and (32), the VM, series can be ex-
pressed in terms of the z, series as

VM,= Vzt - VZ-,h = Vz, + Vz, + - - + Vz,-h+t

- ,(Vz,-I + Vz,_, + ... + Vz, ,)

d,(Vz,- + Vz,-3 + " ' + Vz,-,,)

(a, + tU,_ + .- +' ,-1.+1)

= 4LVZ,. + 427Z,-2 + A, (B1)

VM, h = Vz,_,, - Vt, ;,

= r(V-.h1 + Vh-2 + Vz + VZt- 2f)

+ 42(Vz,_;,i2 + Vz,-h-. + - - + Vz,),-)

+ (ar_, + a ,-h-"+ . .+ a_,-1)

= 407Z,,, -1 + ?27% --- 2 + .A,_, (B2)

VMr-, = VzI-U, - Vz,_,

= 1(Vz, z~ + Vz,_..h + *. + Vz,-3,)

+ 42(Vz,_2h .2 -V , 2 -3 + .. t+ zt-3h-)

+ (a,2 + aU,_h.,- + " " + a,-_+)

= 4,jZt-2-h- + 2C Zt-2,-2 + A,.h. (B3)

Then, the variance of the VM t series written in terms of the

parameters of the Vz, series becomes

YVM(0) = E[VM,VM,J = (&} + ' ) [VZ,_ V, - ]

+ E[Aj4,] + 24,E[VZ,_-$,]

+ 2,S 2E[VZ,_zVZ,_, ] + 20zE[VZ,_.A,] (B4)

where E[VZ,_IVZ_l] and E[A,A,1] are the same as for the
ARIMA(1, 1, 1) model, and the remanining expectation terms
are determined by

E[VZ, /i,]

0 + 0 +- yv,(O) +yv,~i) +--- +yv,(h - 3)
+0 + + 0 +yva(0) +' ' +yv:,(h - 4)

+0 + 0 I- 0 t0 +' - +0

h-2 h-i-I

- Z yv,,,(I - 1)
i-I j-I

E[VZ,_,VZ,_,1

Yv.:(1) yv,(0) +--- +yv.(h - 2)

+yv(O) +yv(l) +-- +y(h 3)

+ty,(h - 2) -Ty,(h 3) +- - - yv,(1)
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h 3-,-1

it j-i-2

E[VZ,_-A,]

0 + yva,(0)
+0 + 0

+0+0

E[VZ ,_4, hJI

vy.(h 2) +Y,,1 (h -- 3)

+yv,(h - 1) +~y,,,(h - 2)

+y,,(2h - 3) +y%,(2h - 2)+ Yva,( 0 )

+ 'v.(0)

I ... - yova(0)

+- - - +y,,,(h - 2)

h- I h-I h+i-I

- r S (i- )+ 3 3 Y,=(j - ).
+0 + ''

h-I h-i

= 3 Yv.(j - 1),.
z=, j-t

Then, equation (33) results by replacing the above expectation
terms into equation (B4).

Also, the lag-h autocovariance of the VM, series is obtained

by

yvM,(h) - E[VM,VM,_,,] - (b +,- #)E[VZ,_IVZ , th-I

+ 4,:4E[VZ,..,VZ, -h, + 4,E[VZ,IvZ-h-Z,

+ OE[Vz,_ 1 A, ,] + d,iE[VZ,_,A_-, (B5)

where the termE[VZ,_-VZ-I,_ ] is the same as that for the

ARIMA(1, 1, 1) model, and the other expectation terms are

computed by

E[VZ, avZ,_,,]

yv.(h - 1) +yv,(h - 2) +. . +yv,(O)

+ +y~.(h) +Yvr(h - 1) +- , +Yv,(1)

+,vr(2h - 2) +v ,(2h - 3) +. - -+ v(h - 1)

h h-1-I

EVZ, --VZi

vr,(h + 1)
+=y,(h + 2)

+ yv(2h)

+yv(h) +- -- + y( 2 )

+yv,(h + 1) +- * - +vy(3)

+y v(2h 1) .... +y,(h 1- 1)

h hri- i

S3 v2 y(.J + 1)

E[VZ- A,-i]

+yv,,(h - 2)

+y.,,,h - 1)

yv(h - 1)

+ Yva(h)

t yv,(2h - 2)

.4-- -

+yv,,,(2h - 3) +. -

+ 7vA,()

+y, (h - 1)

h hli; 1

=- yv.a(j - 1)
i-I ._,-

In addition, the lag-2h autocovariance of the VM, series is

given by

yv(
2 h) = E[ V MtVM, -,] = (C; + c b) E[VZ,-IVZ,-2-]

+- c, 142E[VZ, 2V Z,-Zh_ + rkc 2E[VZ, ,VZ,_1h-J

+ ,E[[Z, ,A,-W + #2E[VZ, -A,--1 (B6)

in which the expectation terms are

h h-i-I

EIVZ,_,VZ,_3,, I = 3 yv:(h + j)
i-1 j-1

A h+r-I

E[VZI 2VZ,_,i,, = 3 3 y(fh i+ j - 1)
i-I i-i

E[V ,.VZ,_, 2,] = 23 y:(h + j + 1)

i-I i-i

i h+i-I

E[VZ ,.I,_1  ] = y,,(h .j - 2)
l=1 1-i
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