Flow Rating Analysis for Pump Station S-331

Technical Publication ERA # 456

Mark Wilsnack

July, 2007

Stream Gauging, Engineering & Hydraulic Support Unit Operations & Hydro Data Management Division South Florida Water Management District

i

ii

Executive Summary

An improved rating equation based on the case 8 model was developed for S-331 using measured flow data that were acquired when static heads across the pump station were greater than zero. Comparisons were made between this rating and the existing rating equation that is based on the case 3 model. At a given static head and engine speed, the existing rating equation produces discharge rates that are significantly higher than the measured values. It was determined that flows computed with the existing rating equation deviate from measured flows by approximately 4 - 18 % at an engine speed of 1400 RPM. In contrast, discharges at this speed computed with the new equation differ from the corresponding measured values by about 2 - 11%. However, only one of the computed values deviates from the associated measured value by more than 2%. This measured flow rate is of a lower quality than the other two flows measured at this speed and is probably less indicative of the rating equation performance. At 1800 RPM, deviations from measured flows range from about 11 - 18% for the discharges computed with the existing rating equation are within 6% of the corresponding measured values. Given these results along with the fact that the existing rating cannot be substantiated, it is recommended that the new rating replace the current one.

Since flows through S-331 are often siphoned, a new rating curve for siphoned flows was also developed since no background information on the existing rating could be located. It was found that siphoned flows based on the existing rating were generally within the uncertainty limits of the corresponding flows determined with the new rating. Consequently, no revisions to the existing rating are recommended at this time.

An impact analysis of the revised rating for pumped flows was carried out over a ten-year period of record starting on June 1, 1997 and ending May 31, 2007. Using the historical break-point data, mean daily pumped flows were computed with both equations and compared. The new rating equation produced mean daily flows that averaged about 12% lower than those computed by the existing rating equation. A reload of computed flows into DBHYDRO is recommended.

iv

Table of Contents

Executive Summary
List of Figures(vi)
List of Tables(vii)
Introduction(1)
Objectives and Scope(1)
Station Design(1)
Rating Analysis : Siphoning Operations(1)
Rating Analysis : Pumping Operations(8)
Impact Analysis(12)
Stream Gauging Data Needs(12)
Summary and Conclusions
References
Appendix A. Head Loss Calculations(15)

v

List of Figures

Figure 1a. Cross section of S-331 pumps, intake bays and discharge conduits	(2)
Figure 1b. Elevation view of S-331, upstream side((3)
Figure 1c. Plan view of S-331 ((4)
Figure 2. Discharge conduit dimensions	(5)
Figure 3. Discharge vs static head for S-311 siphoning((6)
Figure 4. Existing and new rating curves for S-331 siphoning((7)
Figure 5. A comparison of the new and existing rating equations with measured flows (1	.0)
Figure 6. New rating equation at both negative and positive TSH	1)

List of Tables

Table 1. Data and parameters used in head loss calculations (7)
Table 2. Discharges measured during siphoning
Table 3. Flow coefficients for pumps at S331 in the existing Case 3 rating equation
Table 4. Measured flows during pumping (9)
Table 5. A comparison of the new and existing rating equations
Table 6. Stream gauging needs for siphoned flows (12)
Table 7. Stream gauging needs for pumped flows (13)
Table A1. Minimum head loss calculations
Table A2. Average head loss calculations
Table A3. Maximum head loss calculations

vii

Introduction

S331 is a three-unit pump station located in L-31N borrow canal near Homestead, Florida. According to Iteration 7 of the experimental program of water deliveries to ENP, this structure serves the purpose of controlling the stages in L-31N north of S-331 as a function of the water levels in the Rocky Glades residential area. It contains three Allis-Chalmers vertical flow pumps driven by diesel engines rated at 1800 RPM. This pump station is somewhat unique in that it frequently operates in both pumping and siphoning modes. Furthermore, pumping occurs under both positive and negative static heads.

Objectives and Scope

The primary purpose of this study was to upgrade the rating equation for S-331 pumped discharges from a case 3 model to an improved case 8 equation. This effort differs from the one completed previously by Wang and Imru (2006) in that the measured flow data set was further scrutinized and refined based on suggestions provided by stream gauging staff. Also taken into account were the uncertainties inherent to the measured flows. Additionally, the existing rating equation for forward siphoning was also evaluated and compared to available data.

Station Design

Each of the identical diesel engine-driven pumps has an impeller diameter of 96 inches and a design speed of approximately 100 RPM. A cross section of a pump along with its discharge conduit and intake structure is shown in figure 1a while figures 1b and 1c provide the associated elevation and plan views, respectively. Each pump discharges directly into a concrete tunnel whose dimensions are indicated in figure 2. Each tunnel has a submerged outlet. Additional details are provided in USACOE (1978).

Rating Analysis : Siphoning Operations

The existing rating equation for siphoning operations is shown in figure 3 and is expressed as:

where Q is the flow rate and TSH is the total static head across the pump station. No analysis or calculations substantiating this rating could be located. Hence, the relationship between siphoned flow and TSH was recomputed as part of this effort in order to evaluate the current rating. The associated head loss calculations are provided in appendix A while table 1 contains the relevant data and parameters used in the computations. In particular, data and methods provided by Miller (1990) were employed throughout.

Figure 4 shows the siphon rating curve developed in this effort along with the existing rating and the measured flow data given in table 2. Shown also is the estimated uncertainty of the new rating. Although the two rating curves are different, the existing rating falls within the estimated uncertainty limits of the new rating. Furthermore, the limited flow data do not substantiate either

Figure 1a. Cross section of S-331 pumps, intake bays and discharge conduits

2

×

 \mathbf{X}

ς

Figure 1b. Elevation view of S-331, upstream side

×

Figure 1c. Plan view of S-331

Figure 2. Discharge conduit dimensions

S

×

Table 1. Data and parameters used in head loss calculations

	Pump Bay		I	itake Cham	ber		Pump	2	D	ischarge El	bow		Tunnel	10 X
parameter	value	source	parameter	value	source	parameter	value	source	parameter	value	source	parameter	value	source
Kent	0.02	Miller(1990)	Kent	0.18	Miller(1990)	K _{ent}	0.80	Daugherty & Franzini(1977)	¢(enf)	9.13	const-dwgs	K _{ount} @ent	0	Miller(1990)
bot elev	-11.00	const-dwgs	bot elev	-11.00	const-dwgs	bell ent Φ	12.00	const-dwgs	width(ext)	16.80	const-dwgs	width(enf)	7.15	const-dwgs
width	28.60	const-dwgs	top elev	2.00	const-dwgs	pump Φ	8.00	const-dwgs	hgth (ext)	5.50	const-dwgs	hgth (ent)	5.5	const-dwgs
approx HW	5.00	dbhydro	width	22.80	const-dwgs	K _{cont} (bell)	0.40	Miller(1990)	Kd	0.53	Miller(1990)	Smin (ff)	0.001	Hyd Inst(1990)
						% area open	34.00	(calibrated)	K.b	0.28	Miller(1990)	ε _{max} (ft)	0.01	Hyd Inst(1990)
						ď/D	0.58		Co	0.85	Miller(1990)	Kd	0.48	Miller(1990)
						Ce	0.76	Miller(1990)				width(ext)	8.75	const-dwgs
						Ko	8.24	Miller(1990)				hgth (ext)	7.00	const-dwgs
												length	27	const-dwgs

rating more than the other. Consequently, the existing rating should remain in use for the time being.

Figure 4. Existing and new rating curves for S-331 siphoning

Table 2. Discharges measured during siphoning

Measurement Date	(-)TSH (ff)	Q (cfs)	* Estimated uncertainty (<u>+</u> cfs)	Quality Tag
25-Apr-97	0.75	99.58	16.86	G
12-Jun-98	0.60	99.57	13.49	
09-Feb-83	0.80	124.00	insufficient data	Е
14-Dec-83	0.35	131.00	insufficient data	Е
18-Jan-84	0.74	112.00	insufficient data	Е
01-Feb-84	1.13	204.67	insufficient data	Е

Rating Analysis: Pumping Operations

Existing rating

The existing rating equation is based on the case 3 model (Otero, 1995) and expressed as

95% C.1. + 2% system:

where Q is associated with engine speed N while Q_{lwr} and Q_{upr} are the discharges at engine speeds N_{lwr} and $\mathrm{N}_{upr},$ respectively. Q_{lwr} and Q_{upr} are computed from

$$Q_{upr} = C_{20} + C_{21} H_{upr} + C_{22} H_{upr}^{2} + C_{23} H_{upr}^{3} \dots (3b)$$

In equations 3, C10 through C23 are regression coefficients while HIwr and Hupr are the static heads corresponding to Q_{lwr} and Q_{upr}, respectively. H_{lwr} and H_{upr} are obtained from pump affinity laws (Otero 1995) as follows:

In equations 4, H is the static head associated with engine speed N. The regression coefficients for each pump are given in Table 3.

Table 3. Flow coefficients for pumps at S331 in the existing Case 3 rating equation

Unit #	C ₁₀	C ₁₁	C ₁₂	C ₁₃	C ₂₀	C ₂₁	C ₂₂	C ₂₃	N _{lwr}	N _{upr}
1	370.37	2.87	-20.013	0.78	487.16	-17.47	-1.74	-0.56	1400	1800
2	370.37	2.87	-20.013	0.78	487.16	-17.47	-1.74	-0.56	1400	1800
3	370.37	2.87	-20.013	0.78	487.16	-17.47	-1.74	-0.56	1400	1800

New rating

The development of a hydraulic rating equation for pumping operations should, whenever possible, be based on both the manufacturer's pump performance curve and measured flows. When this information is available, head loss parameters would typically be adjusted so as to calibrate the pump station performance curve (i.e. the discharge versus static head relationship) to the measured data. Unfortunately, the manufacturer's pump performance data could not be obtained. Hence, a revised rating based on stream flow measurements alone was developed.

Table 4 lists the measured flow data that were determined to be adequate for the purposes of this rating analysis. The SAS nonlinear regression procedure NLIN was used to fit the case 8 rating model to these data. The basis of this model is given by Imru and Wang (2003) and expressed as

Where Q = the discharge (cfs), N = the measured engine speed (rpm), N₀= the design engine speed (rpm) and H = the measured static head (ft). A, B and C are coefficients to be determined through regression. The resultant values of these coefficients are A = 440, B = -25 and C = 1.5. As indicated previously, N₀ = 1800 RPM.

Measurement Date	# pumps operating	Pump Engine Speed (RPM)	TSH (ft)	Unit Q (cfs)	* Estimated uncertainty (<u>+</u> cfs)	Quality Tag
06-Feb-01	1	1400	-0.41	367.51	10.18	E
06-Aug-04	1	1400	0.92	342.25	28.64	F
06-Sep-04	1	1400	0.22	344.25	19.71	G
4-Jun-97	1	1400	0.92	301.63	14.48	Е
4-Jun-97	1	1600	1.03	361.26	30.74	F
06-May-98	2	1725	0.15	413.39	34.93	F
06-May-98	2	1800	0.32	435.44	19.72	G
14-Oct-98	1	1800	0.72	407.80	30.58	G
27-Oct-98	1	1800	0.73	400.48	44.29	F
22-Apr-98	2	1800	0.27	434.67	25.23	E
4-Jun-97	1	1800	1.15	395.98	31.05	G
* estimated uncertainty = 95% C.I. + 2% systematic error						

Table 4. Measured flows during pumping

Comparisons of the existing and proposed rating equations

Figure 5 displays the pump station rating curves given by each of the models along with the measured flows. Not included in this figure, however, is the measured discharge reflecting the negative static head since $H \ge 0$ in equation 5. At a given static head and engine speed, it is

evident that the existing rating equation produces discharge rates that are noticeably higher than the measured values. A comparison between each of the ratings and the measured data is provided in table 5. Flows computed with the existing rating equation deviate from measured flows by approximately 4 - 18 % at the lower engine speed and about 11 - 18% at the upper engine speed. In contrast, discharges at 1400 RPM computed with the new equation differ from

Figure 5. A comparison of the new and existing rating equations with measured flows

			Measu	red Flows		Existing Rating		New	% Difference	
TSH	RPM	Quality Tag	lower limit	estimated	upper limit	flow	% error	flow	% error	in Computed Flow
0.22	1400	G	324.54	344.25	363.96	370.04	7.49	337.96	-1.83	-8.67
0.92	1400	F	313.61	342.25	370.89	356.67	4.21	305.75	-10.66	-14.28
0.92	1400	E	287.14	301.63	316.11	356.67	18.25	305.75	1.37	-14.28
1.03	1600	F	330.52	361.26	392.00	410.38	13.60	358.04	-0.89	-12.75
0.15	1725	F	378.46	413.39	448.32	462.92	11.98	420.09	1.62	-9.25
0.27	1800	E	409.43	434.67	459.90	482.30	10.96	436.49	0.42	-9.50
0.32	1800	G	415.72	435.44	455.17	481.37	10.55	435.47	0.01	-9.53
0.72	1800	G	377.22	407.80	438.38	473.47	16.10	424.73	4.15	-10.29
0.73	1800	F	356.19	400.48	444.76	473.26	18.17	424.41	5.98	-10.32
1.15	1800	G	364.93	395.98	427.03	463.91	17.16	409.17	3.33	-11.80

Table 5. A comparison of the new and existing rating equations

the corresponding measured values by about 2 - 11%. However, only one computed value at this engine speed deviates from the associated measured value by more than 2%. This measured flow rate was assigned a quality tag of "Fair". The other two measured flows at this speed were

10

judged to be "Good" and "Excellent". Hence, they are probably more indicative of the rating equation performance at this speed. At the upper speed of 1800 RPM, deviations from measured flows range from about 11 - 18% for the case 3 computed discharges while all of the flows computed with the proposed case 8 equation are within 6% of the corresponding measured values. Given these results along with the fact that the existing rating cannot be substantiated, it is recommended that the new rating replace the current one.

Computing flows when TSH < 0

As mentioned previously, the case 8 rating model given by equation 5 can only be directly applied to situations where the static head across the pump station is nonnegative; that is, the tail water elevation is not less than the head water elevation. Unfortunately, pumping at S-331 is sometimes initiated when its head water elevation is higher than its tail water elevation. Imru and Wang (2004) encountered similar circumstances at S-13. Their suggestions for rectifying equation 5 to pumping against a negative static head are to (i) use the absolute value of H while reversing the sign of B, or (ii) set H = 0. The former approach seems more physically justified and was tested by comparing computed flows against measured flows under both negative and positive static heads. The results are shown in figure 6. Although the quantity of data is very

Figure 6. New rating equation at both negative and positive TSH

limited, it appears that the suggested approach for dealing with negative static heads leads to

realistic results. Its inclusion into the FLOW program is suggested, although further examination of this approach is recommended.

Impact Analysis

An impact analysis of the revised rating was carried out over a ten-year period of record starting on June 1, 1997 and ending May 31, 2007. Using the historical break-point data, mean daily flows were computed with both equations. Considering only the days when pumping occurred, the new rating equation produced mean daily flows that averaged about 12% lower than those computed by the existing rating equation. The maximum absolute difference was approximately 93%. If days with zero pumping are included, the absolute average difference decreases to about 7%.

Given the changes in mean daily flow values that will result from implementing the new rating, a reload of computed flows into DBHYDRO is recommended. However, this recommendation is ultimately based on the measured stream flow data used in the rating analysis. These data are dated June, 1997 and later. Prior to 1997, it is not clear as to how far back into the period of record these data will accurately reflect pump station performance. Consequently, the period of record that should be subject to data reload cannot be readily identified. Since S-331 only dates back to the early 1980's and the existing rating cannot be substantiated, it is nonetheless recommended that flows over the entire period of record for S-331 be recomputed and reloaded.

Stream Gauging Needs

Siphoning

Currently, only the siphoned flow measurement dated April 25, 1997 (table 2) resides in the QMEAS database and is substantiated by field notes. This measurement falls within a TSH range of -0.5 to -1.0 foot. Table 6 lists the desired siphoned flow measurements for various ranges of TSH. Five measurements are desired within each increment of static head.

Table 6.	Stream	gauging	needs t	for
	siphone	d flows		

(-) TSH Range (ft)	# Measurements
0-0.5	5
0.5 - 1.0	4
1.0 - 2.0	5
2.0-3.0	5

Pumping

Table 7 lists the desired flow measurements under pumping operations. Five measurements are desired within each increment of static head and engine speed.

TCU (ft)	Engine Speed (100 RPM)						
тэп (II)	14 - 15	15 - 16	16 - 17	17 - 18			
-(1.0 - 0.5)	5	5	5	5			
-(0.5 – 0.0)	4	5	5	5			
0.0 - 0.5	4	5	5	2			
0.5 - 1.0	4	5	5	3			
1.0 - 2.0	5	5	4	4			
2.0 - 3.0	5	5	5	5			

Table 7. Stream gauging needs for pumped flows

Summary and Conclusions

An improved rating equation based on the case 8 model was developed for S-331 using measured flow data that were acquired when static heads across the pump station were greater than zero. The new rating is based on measured flow data alone since the pump performance characteristics are not available. Comparisons were made between this rating and the existing rating equation that is based on the case 3 model. At a given static head and engine speed, the existing rating equation produces discharge rates that are significantly higher than the measured values. It was determined that flows computed with the existing rating equation deviate from measured flows by approximately 4 - 18 % at an engine speed of 1400 RPM. In contrast, discharges at this speed computed with the new equation differ from the corresponding measured values by about 2 - 11%. However, only one of the computed values deviates from the associated measured value by more than 2%. This measured flow rate is of a lower quality than the other two flows measured at this speed and is probably less indicative of the rating equation performance. At 1800 RPM, deviations from measured flows range from about 11 - 18% for the discharges computed with the existing equation while all of the flows computed with the proposed equation are within 6% of the corresponding measured values. Given these results along with the fact that the existing rating cannot be substantiated, it is recommended that the new rating replace the current one.

Since flows through S-331 are often siphoned, a new rating curve for siphoned flows was also developed since no information on the existing rating could be located. It was found that siphoned flows based on the existing rating were generally within the uncertainty limits of the corresponding flows determined with the new rating. Consequently, no revisions to the existing rating are recommended at this time.

An impact analysis of the revised rating was carried out over a ten-year period of record starting on June 1, 1997 and ending May 31, 2007. Using the historical break-point data, mean daily pumped flows were computed with both equations and compared. The new rating equation produced mean daily flows that averaged about 12% lower than those computed by the existing rating equation. A reload of computed flows into DBHYDRO is recommended.

- Daugherty, R. L. and Franzini, J. B. 1977. *Fluid Mechanics with Engineering Applications*, 7th *Ed.* McGraw-Hill, New York.
- Hydraulic Institute. 1990. Engineering Data Book, Second Edition. Hydraulic Institute, Cleveland, Ohio.
- Imru, M. and Y. Wang. 2003. Flow Rating Analysis Procedures for Pumps. Technical Publication EMA # 413, South Florida Water Management District, West Palm Beach, Florida, 34 pp.
- Imru, M. and Y. Wang. 2004. Flow Rating Analysis Procedures for Pump Station S13. Technical Publication EMA # 416, South Florida Water Management District, West Palm Beach, Florida, 23 pp.
- Miller, D. S. 1990. Internal Flow Systems. Gulf Publishing Company, Houston, TX.
- Otero, J. M. 1995. Computation of Flow Through Water Control Structures. Technical Publication No. 95-03. Hydrology and Hydraulics Division, South Florida Water Management District, West Palm Beach, Florida, 83 pp.
- Sanks, R. L. 1989. Pumping Station Design. Butterworth Publishers, Stoneham, MA.
- USACOE. 1978. Plans for the Construction of Pumping Station 331 and Canal 103 Enlargement.
- Wang, Y. and M. Imru. 2006. Rating Analyses for Pump Stations S140, S331, S6, S7, S8. Technical Publication EMA # 436, South Florida Water Management District, West Palm Beach, Florida, 33 pp.

Appendix A. Head Loss Calculations

South Fiorida Water Management District OPERATIONS & HYDRO DATA MANAGEMENT DIVISION Calculations Fano 30230 Rev. 11.07 5-331 HEAD LASS WILSNACK 10 STADIONI RATING Sheet No._____ __ 0í ... Project Job No. / Program Code: ______ Date: _____Z Checked By:_____ Subject: Engineer: _ ENTERING THE RINGP BAY HERO LOSS (T)Faul ~ 1 \bigcirc 1.5 L 151 $P_{1} \approx (28.6 + 5) [5 - 4] = 0$ 537.8 A ~~~ 53466-- 4526 F² \$ = = 0,03 j 28.6

South Florida Water Management District
OPERATIONS & HYDRO DATA MANAGEMENT DIVISION
Calculations
Project 5-331 SIGHON RATIVIC sheat NO. 3 of 10
Subject HEAD Lass Calculational Job No. 1 Project Coor &
Engineer WILSWACK Date CALCULATION & NO. 92
FROM F16. 14-14 OF OS MILLSR, KNO.92
He = K
$$\frac{V_{12}}{2g}$$

CONTRACTION Lass ENTRUME INTER CHAMBER:
VELOW
VELO

South Florida Water Management District OPERATIONS & HYDRO DATA MANAGEMENT DIVISION Calculations Faret \$0230 Fare 15-97 <u>4</u>_____ot _____ Project <u>5-331 STRHON RATING</u> Subject <u>HEAD LOSS CALCULATIONS</u> Engineer: W.R. SNACK Sheet No.___ Job No. / Program Code: <u>R</u> Date: <u>47/97</u> Checket By: ENTRANCE LOSS & PROTANDING PUMP JUCTION BELL Ke \approx 0.8 FROM DANGHORTY + FRANZINI, BRATER+KING THE V C BELL ENTRANCE, $A = \frac{TY(D)^2}{7} = 36 TT R^2$ FON MACTION LOSS WITHIN THE SUCTION RELL Constant 12 - -----From Fig. 14.12 or 05 million, For 4/d = 025, e or, K ≈ 0.54 $\sum_{k=0.39}^{\infty} \approx 0.4$ e 45°, K ≈ 0.24 $\sum_{k=0.39}^{\infty} \approx 0.4$

South Florida Water Management District OPERATIONS & HYDRO DATA MANAGEMENT DIVISION Calculations Fars #3230 Flax:13/97 Project <u>S-331 SIPBON RATING</u> Subject <u>HEAO LASS CALCULATIONS</u> Engineer: WILSNACK Job No. / Program Code: ______ Date: 4/7/97 Checked By:_____ HEAD LOSS THRU PUMP: e 6-335, APPROX 26% OF THE INFERNAL RUMP ARSA WAS FOUND TO BE GREETLY OPEN TO SIPDONS FLOW, USE THES AS A STRATTICE Y'S HELE, DOSUT TO MATCH STACKAM FUND DATA. REASCING TO FIG. 14:2 & DJ. MILLER, $\frac{d}{D} = \int \partial_{1} Z_{0}^{2} = \partial_{1} F_{1}^{2} \rightarrow C_{1}^{2} = A^{2} \partial_{1} Z_{0}^{2}$ $k_{0} = \left[1 - \left(\frac{d}{d}\right)^{2} c_{0} \right]^{2} \left[\frac{d}{d} \right]^{2} c_{0}^{2} \left[\frac{d}{d} \right]^{2} c_{0}^{2} \right]^{2} \left[\frac{d}{d} \right]^{2} c_{0}^{2} c_{0}^{2}$ $= \left[1 - (6.7)^{2} (6.76)^{2} \right] = 16.47$ ADJUST 4/0, C. AND K. TO MAXIMIZE A GREEMENT WITH STREAM FLOW DATA.

South Florida Water Management District
OPERATIONS & HYDRO DATA MANAGEMENT DIVISION
Calculations
Project
$$\frac{5-331}{2600}$$
 SIMPAN AATIMIC Sheet No. 7 or 70
Subject $\frac{5-331}{2600}$ LASS COLOURTIONS
Engineer: Will SUNACK Deter (2000 ULATIONS)
Kdc = 1 - Cd (1 - Kd) (K (11.5)), OS MULLAR
= 1 - 1.04 (1 - 0.55) = 0.53
TAKE KJ = 0.53 CRE \rightarrow Regimes & CORRECTION
DETERMINE Kb (BEND LOSS COERFICIENT):
ELBOW LENGTH = 13 FF (95°, \Rightarrow $1 = \frac{13}{172}$
 $= 3.3 F5$
 $\frac{1}{4} = \frac{8.3}{9.13} = 0.9$ \Rightarrow $K_{b}^{T} \approx 0.23$ (Fr6 9.2)
C DISCHARGE CHURE BECHNING, $A = (2)(5.5)(2.15) = 78.61^{24}$
 $= 10.57 GRE = 11.25^{24}$
 $= 10.57 GRE = 11.25^{24}$
 $= 10.57 GRE = 10.53$ ($\pi = 0.53$)
 $= 0.53 F5$
 $\frac{1}{4} = \frac{10.53}{9.13} = 0.9$ \Rightarrow $K_{b}^{T} \approx 0.23$ (Fr6 9.2)
 $= 0.50 HARGE CHURE BECHNING, $A = (2)(5.5)(2.15) = 78.61^{24}$
 $= 11.25^{24}$
 $= 11.25^{24}$
 $= 11.25^{24}$
 $= 11.25^{24}$
 $= 11.25^{24}$$

South Florida Water Management District OPERATIONS & HYDRO DATA MANAGEMENT DIVISION Calculations Farm 80230 Fan.11/97 Project <u>5-331 SIPHON PATING</u> Subject <u>HEAD LASS CALCOLATIONS</u> Engineer: WILSNACK Sheet No. 8 of 73 Job No. / Program Code: 8 Date: 47/02 Checked By.____ $\frac{27}{2.97} = \frac{27}{2.97} = 3.4 \text{ with } \frac{1}{5} = 2.8$ Frien R6 9.4, $c_0 \approx 0.85$ $K = 0.53 c_{46} + (0.13)(0.85) c_{46}$ ϕ_{ij}

South Florida Water Management District OPERATIONS & HYDRO DATA MANAGEMENT DIVISION Calculations Fero 40030 Bay 31/97 HEAD LOSSES THAN DISCHARGE CAUTE . (i) CONTRACTION LOSS & BEFANNING : And $0.5, a^2$ shorts $a^2 = 92.4 B^2$ $p_{1} = 97.4 - (2.3)(5.5) = 72.65 \, \text{e}^{2}$ $\frac{H_2}{P_1} = \frac{7867}{47.4} = 0.85$ $P_{201} = \sqrt{\frac{3}{4}} \frac{1}{10} \frac{1}{10}$ = 10.15A = 1 5 12.4 R69441NF TO FIG. 14.14, $\frac{1}{q} = \frac{3.46}{13} = 0.35$ K < 0,02 mg Mercer (2) FRIEDON LOSS TAKE EMON = 0.001 IS EMANY = 0.01 PS (FROM HYD. INST., 1890, FUR CONCRESE) - compare 105565 IN 1/2 TURNER For 2/2

Form 1523D Porm 1523D Perr 1527	South Florida Water Management District OPERATIONS & HYDRO DATA MANAGEN Calculations	/ENT DIVISION
Project Subject Engineer:	S-331 SIPHON RATING HERO LOSS CALCULATIONS WILSNACK	Sheet No. 70 of 73 Job No. / Program Code: 8 Date: 77/97 Checked By:
s,r	.5. 6.40	<u> 25 640</u>
	7.15	d . >
bylanist AR =	$\frac{(2) \times 2}{(2)} = 1, 5$	$\frac{N}{W_{1}} = \frac{27}{7.5} = 3.7.3$
Frong	FILLIE 11.3, KJ A	0.48
oémin KJ =	C_{RE} From Fig 11.7 $K_{d}^{*} + (K_{d}^{*} - \frac{1}{RC}) C_{R}$	(i) e en (11.6)
<u>647</u> (255 V645 2-92	

Table A1. Minimum head loss calculations

8 Read	12H	00	00	90	00	(1))	9.9	02	13	136	14	0.50	10	ų M	136	660	n	۵ï	90	93	136	%	1.10	10	240
1	ich cu	000	00	000	00	000		(0)	00	00	0	00	0	40	00	40	00	00	00	100	10	90	90	90	106
	berli(t) et	100	100	80	00	80	80	100	(00	(0)	(0)	(00	(00	002	002	003	00	00	00	00	900	004	002	00	90
	det 11.6] d1	KD	12	63	0.0	63	13	13	649	60	64)	640	640	80	649	640	64	64	64	64	69	649	640	64)	69
	Mercu: K	060	90	020	(14)	003	000	025	022	020	133	9(0	970	W)	976	9(0	970	970	90	9/0	970	90	970	976	90
	6m)l(m)	100	80	80	80	80		80	100	80	80	80	10.0	80	80	0.01	80	80	80	80	80	80	0.0	00	00
	M. W	1001	100	8	8	100			100	000	80	000	000	000	000	000	(00)	80		(00)	000	800	000	000	100
	ę	10200	0000	1020	0005	MCOD	1600	0035	((0)	0.00	100	6000	300	106	000	000	1900	600	1001	900	002	000	100	100	(90)
	N ₁₆) 9E-04	DIEN	1XE-IA	036404	194E-04	0.2E4M	SD-900	205-05	(OFHOS	316-05	13E+05	91E+05	(DE-10)	20E+05	36+05	SIEHUS	SD-31C	ME-05	@E+05	SDF-300	30E405	40E+05	6E+05	00E403
ge Tutel	0.23(II)	000	00	100	100	100	00	0	(00	(0)	00	00	(00	00	00	003	00	00	00	100	00	002	002	000	900
Mer Dichs	V ₆ (IM) Y	10	9X	13	80	00	(\$)	13	16	80	80	60	80	9	K(12	00	60	æ	35	0(18(38	ũ (
8	щ	1000	100	100	1000	1000	100	100	1000	1000	000	000	000	1000	1000	000	1000	800	1000	1000	1000	100	1000	1000	100
	و	00200	0770	0000	60.03	06.00	00.00	9003	0002	64(10	8000	6006	2000	(900	85(00	0033	((1))	6000	90)54	6600	00)52	00)52	(())	96000	0000
	Ka	M+3%(0.0E-M	590E-M	190E-04	938F+M) /0E+00	3646	Ø+9%(C TEMPE	36415	2 20 E+05	2 30 E-415	2 SIE46	2 DE405	2 96E+05	D XEND	D.WEND	3 SE405	0.056405	0.95E405	106405	136405	4 SE405	46656
	V. B(II)	100	80	80	80	00	00		00	00	00	00	004	104	902	900	900	00	800	600	8	8	0)7	60	K0
	Y _o (IM)	6.0	13	13	03)	190	9.0	18	Ø(×	0	140	13	90	33	(6)	10	11	13	14	13	16)	131	10	199
	initeaction (d)	00	00	80	80	100	80	00	W	100	00	00	MO	100	00	000	80	00	00	W0	80	00	00	00	00
	V1.08(0)	80	8	8	8	8	8	8	8	(8)	70	00	9	9	10	104	8	99	8	8	8	8	60	8	8
	Y ₁ (06)	(()	111	60	00	N0	99	W0	(20	160))	500	NC(()(131	161	E.	18	56(206	114	11	131	149	234
ler .	K Vhy (0)	00	8	8	80	00	8	0	0	00	00	00	00	100	10	0.0	0.0	90	00	10	90	0.0	0.0	(1))	12
	K	10(160	126	085	127	60	60	033	ED.	UD	0.D	ED.	U)	UU	0.0	UU	60	Œ0	U)	60	£0	UU	UU	60
	brok (a (e) 1]	10			8(8(8	W(Ø,	00(90	W(90	90(Ø,	×.	Ø,	90(90	ă	Đ(Ņ	8
Elbin & Dill	beiX.rr 04/01	N(8(×.	8(8	8	8	8	8	×.	8)0(8)0(00(8	×.	8	8	8	8	8	8	8
10 Dickinge	ditercut Op 11 YU)40	125	111	115	N(90	2	90	W(W.	100	W(W(W(DOC.	M	×	Ň	W(Ð,	×	W(W(W(
4	z	396+415	1196-415	4)86405	5 58E+05	6936405	\$10EHDS	0.066-015))2E+06)26E+06)))9E+W	3.53E+06)()E+06)3)E46)95E+W	209E+M	120646	101E+16	150E+W	265E+06	1.19E+W	193E+W	3076+06	J206-W	328E+M
	Y1,R3(0)	000	10	8	00	8	8	00	003	00	90	900	002	900	00	003	600	8	032	00	Ň	90	80	60	020
	(a) ¹ A	97 D	0	#	90	9,0	12	Ē.	121	ñ	8	363	8	66(1)4	129	244	160	235	290	36	33	306	35)	339
	ontrins (00	100	00	900	600	Ň	60	K0	00	80	940	0.55	99	K0	0.55	60	K(1	E(30)(18(20	131
Prep	Y ² ₽3@	000	00	8	60	003	00	9	004	902	900	00)	600	8	073	0)4	¥0	80	020	123	025	63	000	60	904
_	K Y _P (IM)	1X0	14	80	RD	60	80	10	19	K(66(239	139	139	13	2%	3%	33	33	33	38	43	43	48	46
	(seelinge ()	000	000	000	000	000	(00	(00	(00	(00	003	005	00	00	104	904	002	002	900	(0)	(00	003	600	0(0	000
	YPB(00	8	8	8	00	9	8	100	90	90	00	0.0	K0	0.2	K0	11	×0	103	020	02	62	1C 0	0.0	K0
up Bell	W K W	020	040	990	030	660	80	((66(K (66(2.3	139	19	239	193	J.K	33	33	33	39	4 %	433	48	46
•	(II) e fir bis	0.0	00	80	000	000	00	00	000	(0)	8	(00	00	())	(00	003	00	8	00	00	00	8	900	900	900
	1) Yach23	101	8	8	60	80	8	8	00	00	8	00	00	10	00	00	9	10	80	10	90	90	(0)	90)	00
_	(1) Yes (1)	600	13	033	035	044	030	00	(())	130	035	660	900	302	124	133	(9)	150	650	360	111	386	395	20	208
aber	g enrine	00	8	8	80	8	8	8	80	8	8	80	00	8	8	80	8	8	8	8	8	8	00	8	8
Irabe Cha	P ¹ 230	000	8	88	000	000	000	8	000	000	000	80	000	100	000	000	100	8	8	8	8	8	8	8	8
_	(M) A (M)	00	00	8	0.3	0.0	03	K0	0.3	100	K0	0.0	6.41	140	040	0.50	K0	0.50	00	064	00	0.0	K.O	20	0.3
	i entime	8	8	8	8	80	8	8	8	00	80	100	8	80	80	8	80	8)	80	00	100	80	8	8	8
Prop8.	1 1200	000	100	100	MO	MO	00	000	00	100	100	000	000	100	000	000	100	W	100	100	100	000	MO	W	00
8	(RI)A	00	100	00	600	(1))	0.0	0.5	0.0	KD .	02	ND.	936	13	03)	80	0.05	00	60	0 -0	40	40	148	60	03)
- 8) - 9	Flum(ch	×	R	R	4	R	8	R	100	6	×	00	NX	10	¥	160	×	100	100	16	W	201	MZ	MZ	205

Table A2. Average head loss calculations

Ø	Name Real	9	80	700	2000	010	016	83	5	00	83	990	8	89	115	8	180	184	212	240	273	900	30	88	8
tel Beat	Loss	(0)	00	00	600	605	(7)	029	60	(4)	83	(1)	034	660	×.	())49	69(389	1))	111	151	182	308	322
-	icition	100	80		80	00		9	00	00			00	80	100	100		00		10	80	90	90	8	-
1	e NGI el	8	8	8	8	8	8	2	8	8	9	8	8	8	8	8	9	8	8	3	9	2	8	8	8
	qual dite	N S	21	5	2			5									*	- 14							
	ndar Kol	0 0			-		-	5	1 0										9	9			9		9
	NOI 01	0 0		-	9	1		1	0	1			-				-			1				-	0
	bicdon	0	0		0	0			0	0	0	0	0		0	8	0	0	0	0		0	0	0	
	n,	100	000	000	100	100		8	100	100	100	8	000	100		ě.	00	00	00	00	00		00	00	
	6	200 W	00 10	00 N	00.00	00 N	00 00	00 00	00 90	6 00	00 00	00 000	00 00	6 00	00 00	00 900	6 00	6 00	00 90	00 900	6 10	000	00 90	6 00	00 00
-	M Nuc) 59E+	3))F	40(F	635F+	194E+	932F+	Ð(())21E+)(DF	-165 ())]5F4	-30E-	206F+	111F	133F+	154F	20F	236F+	302F+	3))F	300F	349F	J65 F	311 F
ictarye Ta	VoR3	00	80	80	80	80	80	8	00	00	00	8	00	90	90	90	00	00	99	90	90	90	90	8	90
DiffeerD	Vo(RM)	108	900	0.24	033	(10)	048	151	165	003	132	060	198)00	¥(()11	<u>(</u>)19	(Þ(155	(9)	33)8()33)92
	ħ	000	1000	1000	1000	1000	1000	000	1000	1000	000	000	1000	100	000	1000	1000	1000	100	1000	1000	000	000	1000	000
	ف	000	KOD	00	003	(0)	000	003	103	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600	600
	Å) (SE44	395E44	590EM4	19)Edd	9335404	306405	CIENCS (336405) TEHUS	SHIR (2 ME45	2016405	250E405	170E415	296E415	JNENS	306HIS	336643	376645	395E415	435E415	4066405	4.055405	464E405
	Y, A3(11)	000	100	00	000	(0)	(1)	8	003	00	00	603	104	104	603	900	900	00	108	600	00	0	1)]	60	10
	Y, (M)	0.0	20	80	020	190	10	80	ā	X	Ē		12	9(2	6	30	216	13	10	134	26	28	10	199
	inireer lee (r)	60	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	99	8
	V ¹ , Ag (II)	100	100	80	00	100	00	00	(00	(00	60	003	00	00	M	MO	002	00	900	00	00	100	600	KD	ĸ
	Y ₁ (N)	(1)	03	80	90	45	99	% 0	(2)	60	ă	6.(10	(1)	11	7	8(5 5(96(206	216	11	13	149	234
	۲ ³ هو (۱)	0.00	00	80	80		0	9	00	00	80	90	100	90	99	90	00	00	60	ND	00	0.0	0.0	605	0.5
1	K	00(190	136	135	132	60	60	(1)	00	01	60	60	011	60	60	60	033	60	60	60	013	60	60	01
	teriting (ref.1]	30(90		8	80			80)0		8	10(8		8	90	8	8		90	8	8	8	80
htmr: A Dille	1000.00 (8) (3)	R(8		8	8	×	8	8	Ø,	8	8	8	8	8		8	8			8	8			
Dictarge E	ditert.	140	135	111	315	NC.	90	e,	10(10	10	10(10(×		10		×	00	10(00	100	×	10(
Pro	N,	QH-36C (2796405	4)(E+4)	558E+05	697E+45	STIF+OS	0-3VE-02))]E+06	304392(10H36C()))))E+06	90-3C9(38)EHM	195E+0K	2096+06	2206-06	2016-06	250E+06	2655-06	2796-06	290E+06	301E+06	3236466	3235-06
	V, ng (1)	00	80	80	00	00	00	9	00	00	10	100	99	99	00	30	60	ĸ	03	0.0	N	80	11	60	80
	V ₁ (NI)	92	60	(#	00	9X)	00	0	12	11	13	3 9(18	66(3X	13	34	16	115	167	36	30	336	35)	159
	tir hus (1)	(00	101	00	100	60	018	035	033	(9)	(2)	(90	8	086	660	×	100	146)64	10	202	22	245	16	28
Put	P_P(l) 01	00	80	9	00	00	00	8	10	90	99	60	60	8	17	×.	99	a X	63	13	03	63	10	8	13
	y (M) Y	K0	191	90	130	60	80	60	66(8.(66(239	538	139	338	29	3%	33	33	33	3%	4%	43	25	46
	torious (t)	00	000	000	000	(0)	(00	00	005	00	402	00	004	004	003	900	900	(0)	003	600	00	0	033	00	P()
	P. P. (1) con	10.0	0.0	00	00	00	00	00	100	90	900	00	60.0	0.0	0 12	×	9.9	1 %	N.D	12	12	120	N.D	00	K0
-	y (M)	10	14	160	131	60	6(60	66(6(66	13	131	19	13	1%	3%	33	38	33	3%	4.8	43	48	463
AupBe	chase (II)	000	000	00	000	000	80	80	(0)	00	0	00	(0)	00	00	600	00	00	9	900	900	900	002	902	905
1	Ag (II) e fi	W1	W	W	100	N	W	9	0				003	003	003	8	8	80	80	8	90	8	90	99	
	«(M) V.	600	116	03	939	14	00	96	0.0	181	132	60	30	919	N	8	9	160	66	36		180	96	20	20
-	y, (i) tel	101		2			2	8		W	W	8		2	8	2	2	801	8	2	8	8	8	8	W
Oanter	ta (i)	001	-	100	80	10	100	90	00	101	00	90			90	8	0	10	0	0	0	10	0	0	(0)
at at	1/A (MI)	9	.0		9 (1		9 E.	9 KL	9 (2)		, KI	. (1)		9 9	9 01		9 5	131 6	9 (9)	191	9 (9)		N K	1	9 84
H	Y(()) 14	0 0															8		8		8	8			0 8
18	g(0) entrk	é N	é	M N	é N	ý R	ų.	é N	é N	é	M Ø	e N	é	é R	é N	é	é	ý W	é N	é	é	é N	é N	é	10 M
Peep	6) V ² 23	10 U	N 00	10 U	10 6	00 00	1) (I	8 00	10 6	90 10	10 00	N 00	10	90 A	0 00	00	5 04	70 00	60 60	7 00	M 00	¥ 00	20 2	90 B	00 6
- 6	WA (12	8	. 00	00	00	(0	0	0	6	0	1 02	1 03	1 03	1 03	1 03	10	1 01	1 03	1 03	1 04	1 04	1 04	1 04	1 05	1 05
	Í.	×	N	æ	\$	5	9	Ħ	10	6	ŝ	8	M	Ø	흇	20	99	M	N.	100	W.	100	20	10	25

Table A3. Maximum head loss calculations

Bar		•	5	5	11	×	×	×	\$	55	8	22	0	ŋ	9	9	34	×	35	61	16	R	2	25	
2	Nog L		8	8	8	8	8	•	-	-	-	-	9		8	8	8	-	8	3	2	=	=	*	90
	3(1) eli	0 0	-	-	-	0	0	-	-	0	0	-	0	0	0	0			9	9		-	-		0 0
	16] dib <i>acı</i>		=	8	8	8		=	=	00	3	=			3		8	90	-	00		=	=	3	0.0
	Kebel	15	132	15	0.9	0.0	60	60	14	14	14	14	14	14	14	149	0.49	8	14	14	14	14	14	14	14
	ditter C	160	90	60	8	80	01	0.05	03	03	10	80	×0	¥0	80	×0	¥0	%	80	80	×0	80	8	¥0	¥0 -
	tictor N	100	8	8	80	8	000	80	00		8	8	8	00	100	000	80	8	00	00	00	8	0	(00	00
	н	800	000	000	000	1000	000	8	000	1000	800	000	000	000	800	000	000	800	88	000	8	800	80	000	000
	ß	000	0.065	1000	000	0.035	000	1000	0.033	0.035	NO0	0.00	0.02)	0.030	003	800	003	000	N.00 0	0035	0.003	003	((@))	((@))	((@0
	N ₁₆) 91E+04	3 MEHM	4.965-04	6.055-04	194E+04	9 S2E+M	9H)(() 2)E+05	0H0() 9E+00) 16HB	0+316 (2 06E+05	12E+05	236+05	2 ME+05	1.0FH0	2 %E+05	3@E+@	3.015-05	3.0E+05	348E+05	365+05	3 DE+05
ge Turel	r623(l)	W	W	W	W	W	W	00	(10	9	(0)	(0)	(00	00	003	003	00	00	00	MO	M	002	902	W0	MU
Iner Dick	V ₆ (h))	800	9(1)	024	(1)	(14)	640	13)	165	60	132	060	860	90(W(111	(()	60 (CP(155	90	((()8()33	192
3	NI.	1000	MOD	MON	1000	1000	1000	1000	1000	1000	1000	100	1000	MON	100	1000	MOD	100	100	MOD	NO D	100	1000	1000	(0)
	g	5820	0920	CMS	030	003	(21)	026	020	623	623	023	024	024	024	024	024	620	623	(23)	620	633	623	(23)	(23)
	4	SE-M 0	SE-M 0	DEM 0	NEW 0	SE-M 0	BEAUS 0	SENS 0	SE405	SE405 0	SE-US 0	DE-US 0	DE-05 0	DE405	DE-US 0	SE4US 0	SE405 0	SHIS 0	SE415 0	SE405 0	SE415 4	SE402 0	5E-05	SE405 0	IE-US 0
	\$ (I)	6(10	0 39	00 59	0 39	0 93	0	0))	0)5	0)]	0)9	0 2)	QK 23	04 25	(1)	06 29	06 3)	0 33	Ø 35	0 33	M 39	() 4)	2 4J	30 45	X 46
	(M) V.	8	5	-	•	-		-	8	×				9 9			-	*	8	8		9			
	crian γ _o	0	8	-		8	M		-	-		~ 8	-	-		-	1 2	3	1	1	1	1 2	3	3	0 2
	2(1) inten	•		•		0	• •	•	•	•	2	9	•	9 0	4	4	5	5	9	0	1	8	6	•	0 0
	4) V ₁ 2	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	99	8	90	8	9	0
-	1,0	0	07	0	96	0	96	0	02	60	*	~	2	×	33	36		3(6	20	1	11	13	14	15
	к ^л в	00	ŝ	ŝ	8	8	8	8	8		10	6	8	ð	.00	80	100	õ	9		õ	G	9	ē	0)(0
	K	00	160	036	035	120	60	60	6	6	6	60	6	60	6	6	60	60	5	6	10	60	5	03	00
Siliner	(e(1)	SD(0	00	00	00 (N)	1 0	00	00	(90	00	() ()	W (0		90(0	00	90(00	0	M(10(
e Elbind C	trooter 0543	8	00	00	×	8		8	80	90X	Đ.	90(0	<u>00</u>	2		80	00	00	00	90 0	8	00	90(200
unp Dischar	dilleer (, (hg 1110)	14	135	.)))	135	KC 1	90	0(80	80		8(8(80		8(8(8(8	80	8()	80	80	8()	8(]
	N,) 39E+0	2.79E+0	4)8640	538E40	693E+0	\$37E+0	9366-07))2540)26E+0) J9E+04) 50E+0) 67E+0) 3)E+0)95E+04	209E+00	223E+00	100E+0	255540	265E+0	1796-00	293E+W	307E+0	320E+0	J28E+0
	Y1,02(1)	80	80	8	8	0	00	00	00		80	80	90	90		90	600	10	62	63	×	80	80	6.0	03
	(III) I	90 Q	8	\$	(9)	90	660	Ő	122	Ĕ	8(8	(2)	66(2)4	129	244	10	116	191	90	33)	306	35)	19
	ontrins ()	00	9	90	80	90	C 10	(0)	040	650	00	60	(60	10(NI(141	191	8(205	13	151	239	300	335	349
fung.	VP23(0)	8	8	8	8	003	003	60	909	99	900	(0)	600	00	00	¥()	9(1)	80	030	032	075	033	00	00	904
	Υ _P (Mi)	NO	190	190	100	660	93	60	950	80	6	239	239	239	139	191	318	333	35	338	393	413	438	455	468
	Concilions (1)	000	80	80	000		0	100	003	00	8	104	104	009	900	00	103	600	10	0	103	N)	8	9(0	0.0
	YP, \$3(0)	80	000	00	(00	003	00	00	90	005	900	100	600	MD	03	ND	9.0	113	070	022	025	033	000	80	KI
2	(FI) ⁴	020	040	000	101	660	6.(13	6(61.(66(239	139	159	13	1%	3%	133	153	373	393	438	43	43	463
Prop	ár bu (i)	80	80	80	80	80	80	90	00	8	60	00	90	40	40	90	00	98	80	80	90	90	90	900	00
	ac/23(ft) e	80	80	80	8	8	8	8		00	00	00	00	00	00	00	00	80	80	80	9	90	8	99	00
	ν.(III) γ	80	18	63	03	*	13	0Ø	0))	18)	13	60	×.	9.8	R(8	90	18	66 (30(U ()%(98	20	10
	ir hen (1)	100	100	80	100	100	100	80	100	100	80	100	100	100	80	100	100	100	100	100	100	80	100	100	100
e Clamber	123(11) et	8	80	80	8	8	8	80	00	8	8	80	8	80	00	00	00	9	9	0	0	00		8	(0)
8	1(10)	00	00	80	(I)	60	NU	NU	120	03	KO	00	191	144	(4)	(2)	NO	60	90	190	90	00	NO.	11	60
-	chas (10)	00	000	000	000	000	100	000	000	000	80	000	000	000		000	000	00	000	000	000	80	000	000	80
ap Bay	tag en	100	000	100	100	000	100	000	100	100	100	000	000	000	100	000	000	000	000	000	100	100	000	000	100
P.	(M) VI	107	104	101	Y 601	2	10	1)5 (1)	133	120	121	124 1	126 1	1 11	1)	1 001	135 1	1) (()	Y 601	142 1	144	146	143	150 1	1 (5)
	γ(Ē	÷	ė R	÷ R	•	-	•	•	•		e R	9		-	50 U	9 6	3) (30 0.	ė R	÷ R	3		35 0.
	E.	ſ^	•	1	*	~	*	۲	*	•	×	~	*	8	2	~	*	×	*	×	34	33	12	3	33