

RATING DEVELOPMENT FOR FLOW THROUGH CULVERTS UNDER SR9336 IN THE EVERGLADES NATIONAL PARK II: RATING CALIBRATION

BY

Qinglong Wu Muluneh Imru

April 2005

South Florida Water Management District 3301 Gun Club Road West Palm Beach, FL 33406

EXECUTIVE SUMMARY

This report summarizes the results of field study, flow monitoring and rating analysis for the culverts along the State Road (SR) 9336 in the Everglades National Park.

Field study has corrected all errors in old records on the location and elevation of culverts along SR 9336. A new GIS map is created with the updated information. Inspection results of site conditions have been documented. Thirteen culvert sites are chosen for flow and water level measurement. Flow monitoring covered measurements of flow, head water and tail water. Totally, 135 flow measurements were made, along with 144 pairs of water level data. Following the procedures in Part I of this report, we estimate the discharge coefficients for 13 representative culverts. We find that discharge coefficients exhibit a linear relationship with the head water level. By using rated discharge coefficients, we calculated flows and compared them with the measurements. Calculated and measured flows compare well.

i

TABLE OF CONTENTS

LIST OF FIGURES III
LIST OF TABLES IV
LIST OF ACRONYMS AND ABBREVATIONSV
ACKNOWLEDGEMENTS
INTRODUCTION1
OBJECTIVE AND SCOPE1
EQUATIONS DEPICTING CULVERT FLOW IN ENP
SIZE OF CULVERTS UNDER SR 93363
MANNING'S ROUGHNESS COEFFICIENT4
FLOW MEASUREMENT ALONG SR 93364
ESTIMATION OF DISCHARGE COEFFICIENTS
RATING EQUATIONS AND CALIBRATION
CONCLUSIONS
REFERENCES
APPENDIX I – SITE CONDITIONS OF 178 CULVERTS ALONG SR 9336
APPENDIX II – BASIC INFORMATION ON CULVERTS ALONG SR 9336 IN ENP
APPENDIX III – CULVERT TAG ELEVATION VERSUS MILEAGE ALONG SR 9336 IN ENP55
APPENDIX IV – SURVEY SUPPORT FOR STAFF GAUGE INSTALLATION ALONG SR 9336 IN THE EVERGLADES NATIONAL PARK
INTRODUCTION
APPENDIX V – SURVEY SUMMARY SHEET FOR CULVERTS ALONG SR 9336 IN ENP63
APPENDIX VI – COMPARISON OF ELEVATION VALUES ON THE CULVERT TAGS WITH LAND SURVEY RESULTS OF THIS PROJECT
APPENDIX VII – FLOW MEASUREMENT RECORDS FOR CULVERTS ALONG SR 9336 IN ENP66
APPENDIX VIII – WATER LEVEL MEASUREMENT RECORDS AT REPRESENTATIVE CULVERTS ALONG SR 9336 IN ENP

ii

LIST OF FIGURES

Figure 1. Monitoring culvert sites along SR 9336 in ENP	2
Figure 2. Typical ADFM installation	4
Figure 3. Time process of mean sectional velocity and total discharge of an ADFM measurement	6
Figure 4. C_d versus h_l/D for Culvert 24	
Figure 5. Calculated and measured flows for Culvert 24	13
Figure 6. C_d versus h_l/D for Culvert 30	13
Figure 7. Calculated and measured flows for Culvert 30	
Figure 8. C _d versus h ₁ /D for Culvert 34	14
Figure 9. Calculated and measured flows for Culvert 34	
Figure 10. C _d versus h ₁ /D for Culvert 43	15
Figure 11. Calculated and measured flows for Culvert 43	16
Figure 12. C _d versus h ₁ /D for Culvert 59	
Figure 13. Calculated and measured flows for Culvert 59	
Figure 14. C _d versus h ₁ /D for Culvert 69	
Figure 15. Calculated and measured flows for Culvert 69	18
Figure 16. C _d versus h ₁ /D for Culvert 77	18
Figure 17. Calculated and measured flows for Culvert 77	19
Figure 18. C _d versus h ₁ /D for Culvert 89	19
Figure 19. Calculated and measured flows for Culvert 89	
Figure 20. C _d versus h_1/D for Culvert 108	20
Figure 21. Calculated and measured flows for Culvert 108	21
Figure 22. Cd versus h ₁ /D for Culvert 118	21
Figure 23. Calculated and measured flows for Culvert 118	22
Figure 24. C _d versus h ₁ /D for Culvert 143	22
Figure 25. Calculated and measured flows for Culvert 143	23
Figure 26. C_d versus h_1/D for Culvert 170	23
Figure 27. Calculated and measured flows for Culvert 170	24
Figure 28. Culvert tag elevation versus mileage along SR 9336 in ENP ⁺	
Figure 29. Water level versus mileage along SR 9336 in ENP (Observation 1)	
Figure 30. Water level versus mileage along SR 9336 in ENP (Observation 2)	78
Figure 31. Water level versus mileage along SR 9336 in ENP (Observation 3)	
Figure 32. Water level versus mileage along SR 9336 in ENP (Observation 4)	
Figure 33. Water level versus mileage along SR 9336 in ENP (Observation 5)	79
Figure 34. Water level versus mileage along SR 9336 in ENP (Observation 6)	
Figure 35. Water level versus mileage along SR 9336 in ENP (Observation 7)	
Figure 36. Water level versus mileage along SR 9336 in ENP (Observation 8)	80
Figure 37. Water level versus mileage along SR 9336 in ENP (Observation 9)	80
Figure 38. Water level versus mileage along SR 9336 in ENP (Observation 10)	81
Figure 39. Water level versus mileage along SR 9336 in ENP (Observation 11)	
Figure 40. Water level versus mileage along SR 9336 in ENP (Observation 12)	
Figure 41. Water level versus mileage along SR 9336 in ENP (Observation 13)	82
Figure 42. Water level versus mileage along SR 9336 in ENP (Observation 14)	82
Figure 43. Water level distribution along SR 9336 in different dates in ENP (Comparison 1)	83
Figure 44. Water level distribution along SR 9336 in different dates in ENP (Comparison 2)	
Figure 45. Water level distribution along SR 9336 in different dates in ENP (Comparison 3)	
Figure 46. Water level distribution along SR 9336 in different dates in ENP (Comparison 4)	84
Figure 47. Water level distribution along SR 9336 in different dates in ENP (Comparison 5)	
Figure 48. Water level distribution along SR 9336 in different dates in ENP (Comparison 1)	85
Figure 49. Water level distribution along SR 9336 in different dates in ENP (Comparison 2)	
Figure 50. Water level distribution along SR 9336 in different dates in ENP (Comparison 3)	
Figure 51. Water level distribution along SR 9336 in different dates in ENP (Comparison 4) Figure 52. Water level distribution along SR 9336 in different dates in ENP (Comparison 5)	87
Figure 32. water rever distribution atong SK 9556 in different dates in ENP (Comparison 5)	ð/

iii

LIST OF TABLES

Table 1. A typical ADFM flow measurement record	5
Table 2. Determination of coefficient of discharge for Culvert 11	
Table 3. Determination of coefficient of discharge for Culvert 24	7
Table 4. Determination of coefficient of discharge for Culvert 30	7
Table 5. Determination of coefficient of discharge for Culvert 34	
Table 6. Determination of coefficient of discharge for Culvert 43	8
Table 7. Determination of coefficient of discharge for Culvert 59	8
Table 8. Determination of coefficient of discharge for Culvert 69	8
Table 9. Determination of coefficient of discharge for Culvert 77	9
Table 10. Determination of coefficient of discharge for Culvert 89	9
Table 11. Determination of coefficient of discharge for Culvert 108	9
Table 12. Determination of coefficient of discharge for Culvert 118	
Table 13. Determination of coefficient of discharge for Culvert 143	10
Table 14. Determination of coefficient of discharge for Culvert 170	10
Table 15. Discharge coefficients for 13 representative culverts and estimation for the rest sites	24
Table 16. Location and geometric properties of 178 culverts along SR 9336 in ENP	
Table 17. Elevation where the tag is punched onto the top of each of 178 culverts along SR 9336 ⁺	
Table 18. Staff gauge sites and closest benchmarks	
Table 19. Benchmarks along SR 9336 in the Everglades National Park	
Table 20. Survey summary for the culverts and staff gauge tubes in the selected monitoring sites	
Table 21. Comparison of elevation values on the culvert tags with the results of survey in 2004	
Table 22. Flow measurement records at Culvert 11	
Table 23. Flow measurement records at Culvert 24	
Table 24. Flow measurement records at Culvert 30	
Table 25. Flow measurement records at Culvert 34	
Table 26. Flow measurement records at Culvert 43	67
Table 27. Flow measurement records at Culvert 59	
Table 28. Flow measurement records at Culvert 69	
Table 29. Flow measurement records at Culvert 77	68
Table 30. Flow measurement records at Culvert 89	
Table 31. Flow measurement records at Culvert 108	
Table 32. Flow measurement records at Culvert 118	
Table 33. Flow measurement records at Culvert 143	
Table 34. Flow measurement records at Culvert 170	
Table 35. Water level versus mileage along SR 9336 in ENP (Observation 1)	
Table 36. Water level versus mileage along SR 9336 in ENP (Observation 2)	71
Table 37. Water level versus mileage along SR 9336 in ENP (Observation 3)	72
Table 38. Water level versus mileage along SR 9336 in ENP (Observation 4)	
Table 39. Water level versus mileage along SR 9336 in ENP (Observation 5)	
Table 40. Water level versus mileage along SR 9336 in ENP (Observation 6)	73
Table 41. Water level versus mileage along SR 9336 in ENP (Observation 7)	74
Table 42. Water level versus mileage along SR 9336 in ENP (Observation 8)	74
Table 43. Water level versus mileage along SR 9336 in ENP (Observation 9)	
Table 44. Water level versus mileage along SR 9336 in ENP (Observation 10)	75
Table 45. Water level versus mileage along SR 9336 in ENP (Observation 11)	
Table 46. Water level versus mileage along SR 9336 in ENP (Observation 12)	
Table 47. Water level versus mileage along SR 9336 in ENP (Observation 12)	
Table 48. Water level versus mileage along SR 9336 in ENP (Observation 14)	

iv

LIST OF ACRONYMS AND ABBREVATIONS

v

CERPComprehensive Everglades Restoration ProjectENPEverglades National ParkRECOVERREstoration, COordination, and VERificationSR 9336State Road 9336

Acknowledgements

The authors would like to acknowledge Matahel Ansar, Zhiming Chen, Emile Damisse, Juan Gonzalez, and Garth Redfield for their review of the draft and valuable comments. Robin Campbell and Kathy Conner are gratefully acknowledged for assistance in coordinating the review and production of this document.

vi

INTRODUCTION

In the Everglades National Park (ENP), a 40 mile main park road SR 9336, running from the visitor center to Flamingo, divides the park into two major parts: Shark Slough on the north and west side, Taylor Slough on the south and east side. Under the road, 178 culverts connect the water flow between the two sides. To support RECOVER (REstoration, COordination, and VERification) and CERP (Comprehensive Everglades Restoration Project) efforts, accurate flow computations through the culverts under SR 9336 are needed for regional water balance and flow modeling studies, as well as for evaluating the hydrological well-being of the Everglades.

Even though there was flow and water level monitoring historically along SR 9336, this is the first project designed and implemented for rating development so that flow through all culverts can be properly estimated.

A research proposal was submitted to ENP and a one year work permit was granted to this project. To understand site conditions and select representative culverts for flow monitoring, all culverts along the 40 mile main park road have been identified, marked and labeled. A field investigation report is written on all the culverts titled "Site Conditions of 178 Culverts along SR 9336", which is a reference for flow studies along SR 9336. Information sheets on the culverts along SR 9336 are produced. Some of these sheets are listed in the Appendix.

Thirteen culvert sites were chosen for stream gauging to represent all 178 culverts along SR 9336. They are culverts 11, 24, 30, 34, 43, 59, 69, 77, 89, 108, 118, 143 and 170 (Figure 1Error! Reference source not found.). By coordinating with USGS Miami Facility, thirteen pairs of staff gauge tubes were installed at the selected culvert sites. A survey company was hired to determine reference elevations at the staff gauge sites and flow structures. Major survey results are listed in the Appendix.

During the wet season in 2004, extensive field measurements were made in ENP to collect flow and water level data. Data collected includes flow, up stream and down stream gauge readings at each representative culvert site. Flow is measured either by an Acoustic Doppler Flow Meter (ADFM) or a mechanical pygmy flow meter depending on depth and velocity of flow. Depending on the availability of water, some sites have more flow measurement records and some have less. The total number of flow measurements is 135 and that of water level pair measurements is 144. Rating analyses in this report are a result of this field study.

OBJECTIVE AND SCOPE

The objective of this report is to document observations from the field study and perform rating calibration for representative culvert sites along SR 9336 in ENP. The discharge coefficients of the 13 representative culverts are to be used for all the 178 culverts, with each monitoring culvert representing a group with similar characteristics under a segment of SR 9336.

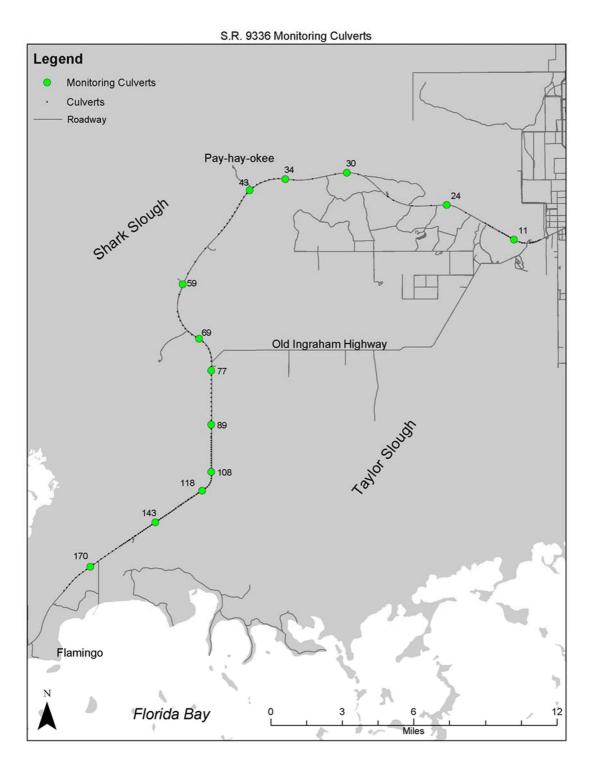


Figure 1. Monitoring culvert sites along SR 9336 in ENP

EQUATIONS DEPICTING CULVERT FLOW IN ENP

In the first volume of this report, flow through culverts along SR 9336 was classified as type 3 and type 4. The following two equations are used to calculate flow for these two types using head difference and discharge coefficient.

$$Q = C_3 A_3 \sqrt{\frac{2g(HW - TW)}{1 + \frac{2gC_3^2 A_3^2 L}{K_2 K_3}}}$$
(1)

$$Q = C_4 A_0 \sqrt{\frac{2g(HW - TW)}{1 + \frac{2gC_4^2 A_0^2 L}{K_0^2}}}$$
(2)

Where

 $\begin{array}{l} Q = \mbox{discharge through culvert,} \\ HW = \mbox{head water, that is the staff gauge reading in the upstream side,} \\ TW = \mbox{tail water, that is the staff gauge reading in the down stream side,} \\ C_3, C_4 = \mbox{coefficients of discharge for type 3 and type 4 flows respectively,} \\ A_3 = \mbox{area of section of flow at culvert exit,} \\ K_2, K_3 = \mbox{conveyance of sections at culvert entrance and exit respectively,} \\ L = \mbox{length of culvert barrel,} \\ g = \mbox{acceleration of gravity,} \\ A_0 = \mbox{area of culvert barrel,} \\ K_0 = \mbox{conveyance of full culvert barrel.} \end{array}$

SIZE OF CULVERTS UNDER SR 9336

Except three culverts with a diameter of 3 ft, all the culverts under SR 9336 have a diameter of 2 ft. Culvert diameters are from as-built documents. They are assumed fairly accurate to be used directly to represent the culverts in the field. Direct field measurements show that culvert diameters range from 2 ft to 2.1 ft. For the 13 representative culverts, the measured diameters are used for the rating development. Based on the analysis conducted in Volume I of this report, an error of 5% in diameter will cause an error of around 5% in the calculated flow. Although flow calculation is sensitive to the culvert diameter, this factor will not create a significant discrepancy to the calculated flow when 2 ft is widely used to represent the culvert size along SR 9336.

Most of the culverts have a length ranging from 40 to 50 ft. So on average, 45 ft is used to represent the length of the culverts under SR 9336. This is justified since errors in determining the culvert length do not affect the calculated flow significantly from the analysis in Volume I of this report.

MANNING'S ROUGHNESS COEFFICIENT

The culverts under SR 9336 in ENP are made of normal concrete. A typical Manning's roughness coefficient of 0.013 (Bodhaine, 1968; Lindeburg, 2003) for ordinary concrete pipes is used to represent these culverts. Based on the sensitivity analysis presented in Volume I of this report, a deviation of 25% from n=0.013 causes a change of about 5% in the calculated flow, which is less severe than that caused by the change in discharge coefficient.

FLOW MEASUREMENT ALONG SR 9336

Stream gauging was conducted at the 13 selected sites along SR 9336 in ENP. Flow structures under SR 9336 in ENP are mostly circular culverts. To facilitate measuring flow through the culverts, ADFM (Acoustic Doppler Flow Meter) was adopted. The ADFM consists of a transducer assembly mounted in the culvert, a signal processing unit and an interface cable. Figure 2 shows a typical ADFM installation for measuring open channel flow in a pipe. A transducer assembly is mounted on the invert of a pipe or channel. Piezoelectric ceramics emit short pulses along narrow acoustic beams pointing in different directions. Echoes of these pulses are backscattered from material suspended in the flow. As this material has motion relative to the transducer, the echoes are Doppler shifted in frequency. Measurement of this frequency enables the calculation of the flow speed. A fifth ceramic mounted in the center of the transducer assembly, and aimed vertically, is used to measure the depth (MGD Technologies Inc., 2000 & 2005).

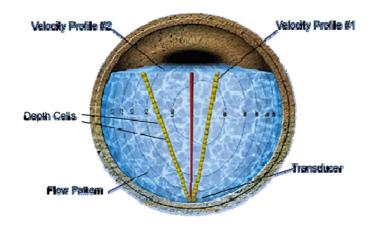


Figure 2. Typical ADFM installation

To hold the ADFM transducer in the flow, a mounting frame was fabricated for the project. The frame consists of a compression band and a flat beam. The band can be compressed or expanded to make a tight contact with the culvert wall. The flat beam is about 3 ft in length. One end is

attached to the compression band; the other end with the ADFM transducer fastened is stretched into the culvert along the bottom of the barrel.

ADFM requires a minimum flow depth of about 8 inches (or 0.67 ft). When the depth of flow is shallower than this, a pygmy meter was used in this project to measure the flow. Since size of the monitoring culverts is 2 ft and depth of flow is less than 2.5 ft, the sixth-tenths-depth (0.6-depth) method is used to measure the flow (Buchanan, et al, 1969).

Table 1 is a sample ADFM measurement record. The sample interval used is one minute, which is the minimum value that can be set for ADFM. The items Avg. Vel, Qmain, Area represent the sectional mean velocity, discharge and area of section of flow respectively. Figure 3 shows the time process of mean sectional velocity and total discharge of Table 1. There are fluctuations with the mean sectional velocity and total discharge measured by the ADFM. Treating all the measured values of every one minute from one measurement as a random sample, probability analysis reveals that the sample follows a standard normal distribution. The means of the samples, displayed as horizontal lines in Figure 3, are used to represent the mean velocity and mean discharge through a culvert during one measurement.

Table 1. A typical ADFM flow measurement record

Date/Time	Minutes	Depth	Avg. Vel	-	Area	Vbm1Ava	Vbm2Avg		Qmva	HC VarN	HC FixedN
		(ft)	(ft/s)	(ft ³ /s)	(ft ²)	(ft/s)	(ft/s)	(ft ³ /s)	(ft ³ /s)		
9/22/2004 14:13	0:00	1.473	1.52	3.944	2.595	1.348	1.89	4.338	3.944	1.658	1.403
9/22/2004 14:14	0:01	1.463	1.42	3.658	2.576	1.342	1.512	3.658	3.568	1.554	1.313
9/22/2004 14:15	0:02	1.473	1.383	3.589	2.595	1.64	1.368	4.517	3.589	1.508	1.277
9/22/2004 14:16	0:03	1.48	1.279	3.334	2.607	1.476	1.391	4.598	3.334	1.391	1.179
9/22/2004 14:17	0:04	1.48	1.519	3.96	2.607	1.48	1.798	1	3.96	1.652	1.401
9/22/2004 14:18	0:05	1.463	1.72	4.431	2.576	2.008	1.545		4.431	1.882	1.59
9/22/2004 14:19	0:06	1.48	1.517	3.954	2.607	1.516	1.266	1	3.954	1.65	1.398
9/22/2004 14:20	0:07	1.463	1.437	3.702	2.576	1.617	1.322	4.055	3.702	1.573	1.329
9/22/2004 14:21	0:08	1.473	1.733	4.498	2.595	1.969	1.473	4.669	4.498	1.89	1.6
9/22/2004 14:22	0:09	1.467	1.274	3.291	2.582	1.22	1.713		3.291	1.393	1.178
9/22/2004 14:23	0:10	1.476	1.284	3.341	2.602	1.289	1.404	3.67	3.341	1.399	1.185
9/22/2004 14:24	0:11	1.476	1.479	3.848	2.602	1.434	1.578		3.848	1.611	1.365
9/22/2004 14:25	0:12	1.473	1.772	4.596	2.594	1.841	1.591	4.596	4.711	1.932	1.635
9/22/2004 14:26	0:13	1.47	1.785	4.622	2.589	2.201	1.447	4.78	4.622	1.949	1.649
9/22/2004 14:27	0:14	1.463	1.549	3.989	2.576	1.637	1.411	3.989	4.066	1.694	1.432
9/22/2004 14:28	0:15	1.47	1.052	2.724	2.589	0.902	1.729		2.724	1.149	0.972
9/22/2004 14:29	0:16	1.47	1.414	3.661	2.589	1.745	1.339	4.32	3.661	1.544	1.306
9/22/2004 14:30	0:17	1.467	1.604	4.141	2.582	1.503	1.798		4.141	1.753	1.482
9/22/2004 14:31	0:18	1.473	1.41	3.66	2.595	1.598	1.421	4.086	3.66	1.538	1.302
9/22/2004 14:32	0:19	1.47	1.796	4.649	2.589	1.893	1.591	5.028	4.649	1.961	1.659
9/22/2004 14:33	0:20	1.483	1.279	3.343	2.613	1.014	1.585	3.913	3.343	1.39	1.179
9/22/2004 14:34	0:21	1.467	1.34	3.46	2.582	1.299	1.562	3.88	3.46	1.465	1.238
9/22/2004 14:35	0:22	1.473	1.476	3.83	2.595	1.424	1.522	4.887	3.83	1.61	1.363
9/22/2004 14:36	0:23	1.473	1.71	4.438	2.595	1.535	1.87	4.732	4.438	1.865	1.579
9/22/2004 14:37	0:24	1.467	1.47	3.797	2.582	1.654	1.355		3.797	1.607	1.359
9/22/2004 14:38	0:25	1.47	1.058	2.74	2.589	0.912	1.388	3.148	2.74	1.156	0.978
9/22/2004 14:39	0:26	1.463	1.219	3.139	2.576	1.401	1.194	3.927	3.139	1.334	1.127
9/22/2004 14:40	0:27	1.473	1.709	4.433	2.594	1.614	1.667	4.433	4.362	1.863	1.577
9/22/2004 14:41	0:28	1.463	1.445	3.722	2.576	1.791	1.257	4.284	3.722	1.581	1.336
9/22/2004 14:42	0:29	1.473	1.968	5.108	2.595	1.841	1.808	4.259	5.108	2.147	1.817
9/22/2004 14:43	0:30	1.476	1.304	3.392	2.602	1.217	1.621		3.392	1.42	1.203
9/22/2004 14:44	0:31	1.463	1.734	4.466	2.576	1.814	1.804		4.466	1.897	1.603
9/22/2004 14:45	0:32	1.47	1.726	4.467	2.589	2.133	1.601	5.224	4.467	1.884	1.594

Date/Time	Minutes	Depth	Avg. Vel	Qmain	Area	Vbm1Avg	Vbm2Avg	QPro	Qmva	HC VarN	HC FixedN
		(ft)	(ft/s)	(ft³/s)	(ft ²)	(ft/s)	(ft/s)	(ft ³ /s)	(ft ³ /s)		
9/22/2004 14:46	0:33	1.473	1.699	4.409	2.595	1.621	1.581		4.409	1.853	1.568
9/22/2004 14:47	0:34	1.473	1.701	4.414	2.595	2.188	1.486	4.934	4.414	1.855	1.57
9/22/2004 14:48	0:35	1.47	1.734	4.489	2.589	1.814	1.791		4.489	1.893	1.601
9/22/2004 14:49	0:36	1.467	1.509	3.897	2.582	1.581	1.457		3.897	1.649	1.394
9/22/2004 14:50	0:37	1.47	1.562	4.044	2.589	1.713	1.414	4.252	4.044	1.705	1.443
9/22/2004 14:51	0:38	1.473	1.405	3.645	2.595	1.532	1.467	4.13	3.645	1.532	1.297
9/22/2004 14:52	0:39	1.47	0.897	2.321	2.589	1.155	1.047		2.321	0.979	0.828
9/22/2004 14:53	0:40	1.463	1.542	3.971	2.576	1.722	1.512	4.821	3.971	1.687	1.425
9/22/2004 14:54	0:41	1.463	1.182	3.046	2.576	1.161	1.414	3.747	3.046	1.294	1.093
9/22/2004 14:55	0:42	1.47	1.283	3.321	2.589	1.027	1.568		3.321	1.4	1.185
9/22/2004 14:56	0:43	1.47	1.751	4.531	2.588	1.736	1.654	4.531	4.455	1.911	1.617
9/22/2004 14:57	0:44	1.473	0.953	2.474	2.595	0.636	1.519		2.474	1.04	0.88
9/22/2004 14:58	0:45	1.48	1.687	4.397	2.607	1.824	1.69		4.397	1.835	1.555
9/22/2004 14:59	0:46	1.473	1.675	4.347	2.595	1.759	1.604		4.347	1.827	1.547
9/22/2004 15:00	0:47	1.47	1.372	3.552	2.589	1.677	1.391	4.308	3.552	1.498	1.267
9/22/2004 15:01	0:48	1.467	1.584	4.091	2.582	1.739	1.299		4.091	1.731	1.464

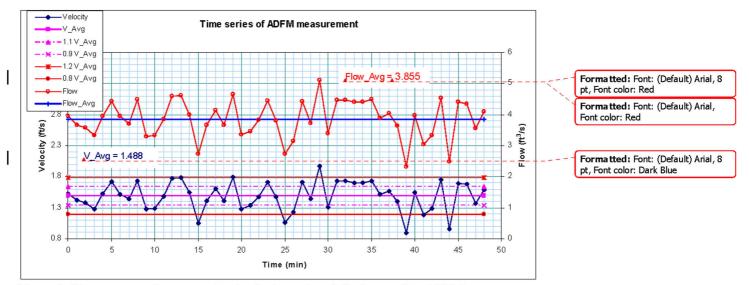


Figure 3. Time process of mean sectional velocity and total discharge of an ADFM measurement

ESTIMATION OF DISCHARGE COEFFICIENTS

The Stream gauging records collected at the 13 selected sites along SR 9336 during the year 2004 are tabulated in Appendix VII. Using the procedures stipulated in "Part I: Concepts and Methods" of this report, we conduct rating analyses to estimate the discharge coefficients. The results are listed in Table 2 to Table 14. Some flow measurements are omitted due to unsatisfactory quality of data, which are not suitable for estimation of discharge coefficient.

Table 2. Determination of coefficient of discharge for Culvert 11

		Head	Tail	Head –			h ₂ -z													h ₁ - h ₄ -	
Date	Flow	water	water	Tail	h ₁	h4	$(h_2 = 0.95 h_1)$	Θ ₂	A ₂	P ₂	R_2	K ₂	Θ3	A ₃	P ₃	R ₃	K ₃	h₁/D	h _{f2,3}	h _{r2,3}	C _{d3}
	(ft ³ /s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)		(ft)	(ft)	
2004-08-04	3.321	2.950	2.880	0.070	1.690	1.399	1.61	2.128	2.841	4.469	0.636	240.138	1.910	2.451	4.010	0.611	201.773	0.805	0.01024	0.060	0.691

Notes:

Each row in the table corresponds to one flow measurement. The notations of variables of Θ_2 , A_2 , P_2 , R_2 , K_2 , Θ_3 , A_3 , P_3 , R_3 , K_3 , etc are the same as those in Part I of this report.

Table 3. Determination of coefficient of discharge for Culvert 24

Date	Flow (ft ³ /s)	Head water (ft)	Tail water (ft)	Head – Tail (ft)	h ₁ (ft)	h ₄ (ft)	$h_2 - z$ ($h_2 = 0.95 h_1$) (ft)	Θ ₂ (rad)	A ₂ (ft ²)	P ₂ (ft)	R ₂ (ft)	K ₂ (ft ³ /s)	Θ ₃ (rad)	A ₃ (ft ²)	P ₃ (ft)	R ₃ (ft)	K ₃ (ft ³ /s)	h₁/D	h _{f2,3} (ft)	h ₁ - h ₄ - h _{f2,3} (ft)	C _{d3}
2004-08-04	2.290	4.030	3.960	0.070	2.280	1.96	2.00	3.142	3.142	6.283	0.500	226.224	2.858	3.127	5.716	0.547	239.050	1.140	0.0044	0.066	0.356
2004-08-18	1.031	3.960	3.880	0.080	2.210	2	2.00	3.142	3.142	6.283	0.500	226.224	3.142	3.142	6.283	0.500	226.224	1.105	0.0009	0.079	0.146
2004-10-19	1.128	3.980	3.900	0.080	2.230	2	2.00	3.142	3.142	6.283	0.500	226.224	3.142	3.142	6.283	0.500	226.224	1.115	0.0011	0.079	0.159

Table 4. Determination of coefficient of discharge for Culvert 30

Date	Flow (ft ³ /s)	Head water (ft)	Tail water (ft)	Head – Tail (ft)	h ₁ (ft)	h4 (ft)	$h_2 - z$ ($h_2 = 0.95 h_1$) (ft)	Θ ₂ (rad)	A ₂ (ft ²)	P ₂ (ft)	R ₂ (ft)	K2 (ft ³ /s)	⊖₃ (rad)	A₃ (ft²)	P ₃ (ft)	R₃ (ft)	K3 (ft ³ /s)	h₁/D	h _{f2,3} (ft)	h ₁ - h ₄ - h _{f2,3} (ft)	C _{d3}
2004-08-11	0.409	3.710	3.680	0.030	1.850	1.73	1.76	2.310	3.096	4.851	0.638	262.303	2.275	3.053	4.778	0.639	258.824	0.881	0.00011	0.030	0.097
2004-08-18	0.666	4.070	4.050	0.020	2.210	2.09	2.10	3.142	3.464	6.597	0.525	257.658	3.003	3.462	6.307	0.549	265.252	1.052	0.00029	0.020	0.171
2004-08-27	0.245	3.660	3.640	0.020	1.800	1.67	1.71	2.251	3.020	4.726	0.639	256.130	2.202	2.954	4.625	0.639	250.366	0.857	0.00004	0.020	0.073
2004-09-01	0.303	3.705	3.690	0.015	1.845	1.72	1.75	2.304	3.088	4.838	0.638	261.721	2.263	3.036	4.752	0.639	257.494	0.879	0.00006	0.015	0.102

Table 5. Determination of coefficient of discharge for Culvert 34

Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	h ₂ – z (h ₂ = 0.95 h ₁)	Θ2	A ₂	P ₂	R ₂	K ₂	Θ₃	A3	P3	R₃	K₃	h₁/D	h _{f 2,3}	h ₁ - h ₄ - h _{12,3}	C _{d3}
	(ft ³ /s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)		(ft)	(ft)	
2004-08-06	5.29	2.38	2.31	0.070	1.980	2.05	1.88	2.484	3.272	5.216	0.627	274.053	2.832	3.442	5.947	0.579	273.282	0.943	0.017	0.053	0.830
2004-08-11	3.71	2.26	2.21	0.050	1.860	1.959	1.77	2.322	3.111	4.877	0.638	263.441	2.617	3.363	5.496	0.612	277.107	0.886	0.008	0.042	0.674
2004-08-18	5.48	2.57	2.5	0.070	2.170	2.1	2.06	2.870	3,449	6.027	0.572	271.761	3.142	3.464	6.597	0.525	257.658	1.033	0.019	0.051	0.877
2004-09-01	2.87	2.24	2.18	0.060	1.840	1.93	1.75	2.298	3.081	4.826	0.638	261.132	2.565	3.332	5.386	0.619	276.474	0.876	0.005	0.055	0.459
2004-09-16	0.24	1.96	1.94	0.020	1.560	1.66	1.48	1.995	2.613	4.189	0.624	218.012	2.191	2.937	4.600	0.638	248.852	0.743	0.000	0.020	0.071
2004-09-23	1.49	2.1	2.07	0.030	1.700	1.81	1.62	2.139	2.858	4.492	0.636	241.710	2.380	3.175	4.998	0.635	268.143	0.810	0.002	0.028	0.347

2004-10-01	1.72	2.12	2.08	0.040	1.720	1.83	1.63	2.161	2.892	4.537	0.637	244.789	2.408	3.203	5.057	0.633	270.059	0.819	0.002	0.038	0.342
2004-10-05	0.66	2.03	2.01	0.020	1.630	1.74	1.55	2.065	2.738	4.338	0.631	230.287	2.288	3.068	4.804	0.639	260.120	0.776	0.000	0.020	0.190
2004-10-19	5.60	2.582	2.5	0.082	2.182	2.1	2.07	2.914	3.455	6.119	0.565	269.793	3.142	3.464	6.597	0.525	257.658	1.039	0.020	0.062	0.812
2004-11-05	1.01	2.115	2.09	0.025	1.715	1.83	1.63	2.155	2.883	4.526	0.637	244.028	2.408	3.203	5.057	0.633	270.059	0.817	0.001	0.024	0.251

Table 6. Determination of coefficient of discharge for Culvert 43

													<u>v</u>								
Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	h ₂ – z (h ₂ = 0.95 h ₁)	Θ2	A ₂	P ₂	R ₂	K ₂	Θ3	A ₃	P ₃	R₃	K₃	h₁/D	h _{f 2,3}	h ₁ - h ₄ - h _{f2,3}	C _{d3}
	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)		(ft)	(ft)	
2004-07-28	4.62	1.690	1.580	0.110	1.290	1.25	1.23	1.739	2.099	3.651	0.575	165.832	1.762	2.149	3.701	0.581	171.000	0.614	0.034	0.076	0.972
2004-08-06	5.61	1.86	1.70	0.160	1.460	1.29	1.39	1.898	2.427	3.985	0.609	199.358	1.802	2.233	3.785	0.590	179.604	0.695	0.040	0.120	0.903
2004-08-20	7.83	2.09	1.84	0.250	1.690	1.41	1.61	2.128	2.841	4.469	0.636	240.138	1.916	2.463	4.023	0.612	202.974	0.805	0.057	0.193	0.901
2004-08-26	5.98	1.99	1.83	0.160	1.590	1.43	1.51	2.025	2.667	4.252	0.627	223.365	1.945	2.520	4.085	0.617	208.727	0.757	0.035	0.125	0.836
2004-10-19	8.31	2.245	2.02	0.225	1.845	1.588	1.75	2.304	3.088	4.838	0.638	261.721	2.109	2.810	4.428	0.635	237.188	0.879	0.050	0.175	0.881

Table 7. Determination of coefficient of discharge for Culvert 59

1		Head	Teil	llaad			- L -		1	1	1		0			1	1	1		b b	
_	_	Head	Tail	Head -			h ₂ -z			_	_				_	_				h ₁ - h ₄ -	
Date	Flow	water	water	Tail	h ₁	h ₄	$(h_2 = 0.95 h_1)$	Θ ₂	A ₂	P ₂	R ₂	K ₂	Θ3	A ₃	P ₃	R 3	K3	h1/D	h _{f2,3}	h f2,3	C _{d3}
	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft²)	(ft)	(ft)	(ft³/s)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)		(ft)	(ft)	
2004-06-16	2.75	0.40	0.27	0.13	1.24	1.20	1.18	1.693	2.000	3.555	0.563	155.782	1.718	2.054	3.608	0.569	161.286	0.590	0.014	0.116	0.489
2004-07-23	2.66	0.42	0.32	0.10	1.26	1.20	1.20	1.711	2.039	3.594	0.568	159.804	1.712	2.042	3.596	0.568	160.016	0.600	0.012	0.088	0.548
2004-08-06	7.83	0.89	0.54	0.35	1.73	1.47	1.64	2.172	2.908	4.560	0.638	246.294	1.979	2.584	4.156	0.622	215.145	0.824	0.052	0.298	0.692
2004-08-12	5.61	0.70	0.52	0.18	1.54	1.45	1.46	1.975	2.576	4.148	0.621	214.375	1.962	2.551	4.119	0.619	211.856	0.733	0.031	0.149	0.710
2004-08-20	11.15	1.21	0.76	0.45	2.05	1.68	1.95	2.596	3.351	5.451	0.615	276.936	2.211	2.965	4.643	0.639	251.409	0.976	0.080	0.370	0.771
2004-08-26	8.74	1.08	0.80	0.28	1.92	1.71	1.82	2.400	3.195	5.039	0.634	269.503	2.249	3.019	4.724	0.639	255.992	0.914	0.050	0.230	0.752
2004-09-15	4.88	0.69	0.57	0.12	1.53	1.47	1.45	1.965	2.558	4.127	0.620	212.537	1.977	2.580	4.152	0.621	214.760	0.729	0.023	0.097	0.758
2004-09-22	3.86	0.75	0.61	0.14	1.59	1.47	1.51	2.025	2.667	4.252	0.627	223.365	1.983	2.592	4.165	0.622	215.913	0.757	0.014	0.126	0.522
2004-10-01	2.30	0.74	0.70	0.04	1.58	1.53	1.50	2.015	2.649	4.231	0.626	221.595	2.042	2.698	4.289	0.629	226.403	0.752	0.005	0.035	0.565
2004-10-06	2.49	0.62	0.58	0.04	1.46	1.43	1.39	1.898	2.427	3.985	0.609	199.358	1.939	2.508	4.072	0.616	207.545	0.695	0.007	0.033	0.678
2004-10-12	2.02	0.60	0.55	0.05	1.44	1.40	1.37	1.878	2.389	3.945	0.606	195.506	1.907	2.445	4.004	0.611	201.170	0.686	0.005	0.045	0.482
2004-10-21	11.02	1.32	0.93	0.39	2.16	1.77	2.05	2.838	3.443	5.960	0.578	273.044	2.325	3.114	4.883	0.638	263.676	1.029	0.076	0.314	0.788

Table 8. Determination of coefficient of discharge for Culvert 69

Head Tail Head –	h ₂ -z	h1 - h4 -
Date Flow water water Tail h ₁	h_4 $(h_2 = 0.95 h_1)$ Θ_2 A_2 P_2 R_2 K_2	0 ₃ A ₃ P ₃ R ₃ K ₃ h ₁ /D h ₁₂₃ h ₁₂₃ C _{d3}

	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft²)	(ft)	(ft)	(ft³/s)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)		(ft)	(ft)	
2004-07-23	0.61	0.15	0.14	0.01	1.05	1.03	1.00	1.544	1.594	3.165	0.504	115.329	1.576	1.661	3.230	0.514	121.812	0.512	0.001	0.009	0.485
2004-07-29	4.54	0.62	0.52	0.10	1.52	1.43	1.44	1.992	2.485	4.083	0.608	203.947	1.973	2.451	4.044	0.606	200.631	0.741	0.023	0.077	0.831
2004-08-05	4.92	0.71	0.57	0.14	1.61	1.40	1.53	2.085	2.641	4.275	0.618	218.991	1.944	2.400	3.986	0.602	195.574	0.785	0.025	0.115	0.755
2004-08-19	5.15	0.73	0.58	0.15	1.63	1.50	1.55	2.107	2.675	4.319	0.619	222.148	2.050	2.584	4.203	0.615	213.598	0.795	0.025	0.125	0.703
2004-08-26	3.66	0.59	0.50	0.09	1.49	1.43	1.42	1.962	2.431	4.021	0.605	198.675	1.979	2.462	4.057	0.607	201.741	0.727	0.015	0.075	0.677
2004-09-15	1.65	0.38	0.34	0.04	1.28	1.24	1.22	1.758	2.040	3.604	0.566	159.500	1.778	2.080	3.645	0.571	163.542	0.624	0.005	0.035	0.526
2004-09-16	1.53	0.35	0.31	0.04	1.25	1.18	1.19	1.730	1.982	3.547	0.559	153.720	1.723	1.967	3.531	0.557	152.196	0.610	0.004	0.036	0.513
2004-09-22	2.20	0.40	0.36	0.04	1.30	1.27	1.24	1.777	2.078	3.643	0.570	163.341	1.808	2.140	3.707	0.577	169.577	0.634	0.008	0.032	0.715
2004-10-07	0.72	0.22	0.20	0.02	1.12	1.13	1.06	1.609	1.730	3.298	0.525	128.650	1.672	1.863	3.428	0.543	141.825	0.546	0.001	0.019	0.352
2004-10-12	1.04	0.18	0.16	0.02	1.08	1.07	1.03	1.572	1.652	3.222	0.513	121.011	1.611	1.734	3.302	0.525	129.054	0.527	0.003	0.017	0.572
2004-10-21	7.76	0.94	0.71	0.23	1.84	1.60	1.75	2.354	2.998	4.825	0.621	249.556	2.162	2.757	4.431	0.622	229.692	0.898	0.047	0.183	

Table 9. Determination of coefficient of discharge for Culvert 77

Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	$h_2 - z$ ($h_2 = 0.95 h_1$)	Θ2	A ₂	P ₂	R ₂	K ₂	Θ3	A ₃	P ₃	R ₃	K3	h₁/D	h _{f2,3}	h ₁ - h ₄ - h _{f2,3}	C _{d3}
	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft²)	(ft)	(ft)	(ft³/s)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)		(ft)	(ft)	
2004-08-05	4.87	0.52	0.33	0.19	1.29	1.16	1.23	1.798	2.018	3.597	0.561	156.917	1.728	1.884	3.457	0.545	143.624	0.645	0.047	0.143	0.854
2004-08-20	3.12	0.37	0.25	0.12	1.14	1.07	1.08	1.654	1.737	3.308	0.525	129.187	1.638	1.705	3.276	0.520	126.072	0.570	0.027	0.093	0.747
2004-08-26	2.47	0.31	0.21	0.10	1.08	1.04	1.02	1.592	1.613	3.184	0.507	117.203	1.610	1.649	3.220	0.512	120.636	0.538	0.019	0.076	0.679
2004-09-15	3.52	0.35	0.25	0.10	1.12	1.07	1.06	1.635	1.699	3.270	0.520	125.488	1.644	1.717	3.288	0.522	127.239	0.560	0.035	0.065	1.003
2004-10-20	5.18	0.59	0.44	0.15	1.36	1.27	1.29	1.867	2.146	3.734	0.575	169.611	1.844	2.104	3.688	0.570	165.444	0.680	0.043	0.105	0.947

Table 10. Determination of coefficient of discharge for Culvert 89

Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	$h_2 - z$ ($h_2 = 0.95 h_1$)	Θ ₂	A ₂	P ₂	R ₂	K ₂	Θ3	A ₃	P ₃	R ₃	K3	h₁/D	h _{f2,3}	h ₁ - h ₄ - h _{f2,3}	C _{d3}
	(ft ³ /s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)		(ft)	(ft)	
2004-09-16	3.40	0.31	0.10	0.22	1.04	0.97	0.99	1.559	1.547	3.118	0.496	110.811	1.543	1.515	3.086	0.491	107.757	0.520	0.044	0.171	0.676
2004-09-23	2.75	0.24	0.10	0.14	0.97	0.94	0.92	1.492	1.414	2.984	0.474	98.226	1.506	1.441	3.012	0.478	100.756	0.485	0.034	0.106	0.731
2004-10-06	2.28	0.21	0.06	0.15	0.94	0.90	0.89	1.464	1.357	2.927	0.464	92.936	1.470	1.369	2.939	0.466	94.044	0.470	0.027	0.123	0.590
2004-10-13	2.37	0.15	0.02	0.13	0.88	0.87	0.84	1.406	1.244	2.812	0.442	82.587	1.439	1.310	2.879	0.455	88.539	0.440	0.034	0.096	0.728
2004-10-20	3.24	0.41	0.27	0.14	1.14	1.10	1.08	1.649	1.727	3.298	0.524	128.262	1.670	1.768	3.340	0.529	132.307	0.568	0.028	0.107	0.698
2004-11-05	1.65	0.11	-0.02	0.13	0.84	0.83	0.79	1.363	1.160	2.725	0.426	75.061	1.404	1.240	2.808	0.442	82.231	0.418	0.020	0.110	0.499

Table 11. Determination of coefficient of discharge for Culvert 108

Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	h ₂ – z (h ₂ = 0.95 h ₁)	Θ2	A ₂	P ₂	R ₂	K ₂	Θ3	A3	P3	R₃	K₃	h₁/D	h _{f 2,3}	h ₁ - h ₄ - h _{12,3}	C _{d3}
	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)		(ft)	(ft)	
2004-08-12	0.37	-0.100	-0.120	0.020	0.95	1.01	0.90	1.440	1.411	2.989	0.472	97.848	1.544	1.634	3.204	0.510	119.186	0.458	0.001	0.019	0.203
2004-08-19	0.80	-0.090	-0.130	0.040	0.96	1.00	0.91	1.450	1.431	3.008	0.476	99.693	1.535	1.613	3.184	0.507	117.163	0.463	0.002	0.038	0.320
2004-08-26	0.51	-0.100	-0.140	0.040	0.95	0.96	0.90	1.440	1.411	2.989	0.472	97.848	1.496	1.530	3.104	0.493	109.143	0.458	0.001	0.039	0.212
2004-09-16	2.99	0.230	0.160	0.070	1.28	1.13	1.22	1.744	2.059	3.618	0.569	161.673	1.663	1.889	3.451	0.547	144.459	0.617	0.017	0.053	0.858
2004-09-23	2.38	0.180	0.140	0.040	1.23	1.10	1.17	1.697	1.962	3.522	0.557	151.824	1.632	1.822	3.386	0.538	137.833	0.593	0.012	0.028	0.978
2004-10-06	1.90	0.165	0.110	0.055	1.22	1.10	1.15	1.684	1.933	3.493	0.553	148.867	1.630	1.818	3.382	0.538	137.420	0.586	0.008	0.047	0.600
2004-10-13	1.54	0.110	0.070	0.040	1.16	1.04	1.10	1.633	1.825	3.388	0.538	138.040	1.568	1.686	3.254	0.518	124.269	0.559	0.006	0.034	0.622
2004-11-05	0.74	0.060	0.030	0.030	1.11	1.03	1.05	1.587	1.726	3.293	0.524	128.258	1.564	1.675	3.244	0.516	123.250	0.535	0.002	0.028	0.327

Table 12. Determination of coefficient of discharge for Culvert 118

								_				_	<u> </u>								
Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	$h_2 - z$ ($h_2 = 0.95 h_1$)	Θ2	A ₂	P ₂	R ₂	K ₂	Θ3	A ₃	P ₃	R ₃	K₃	h₁/D	h _{f 2,3}	h ₁ - h ₄ - h _{f2,3}	C _{d3}
	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)		(ft)	(ft)	
2004-08-12	0.21	-0.080	-0.090	0.010	0.61	0.59	0.58	1.130	0.760	2.284	0.333	41.709	1.142	0.779	2.307	0.338	43.192	0.302	0.001	0.009	0.353
2004-08-19	0.36	-0.090	-0.100	0.010	0.60	0.57	0.57	1.120	0.743	2.262	0.328	40.385	1.120	0.743	2.262	0.328	40.385	0.297	0.004	0.006	0.755
2004-08-26	0.28	-0.110	-0.120	0.010	0.58	0.55	0.55	1.099	0.708	2.220	0.319	37.792	1.098	0.706	2.218	0.319	37.658	0.287	0.002	0.008	0.562
2004-09-23	1.69	0.22	0.17	0.050	0.91	0.84	0.86	1.421	1.300	2.871	0.453	87.615	1.405	1.267	2.837	0.446	84.561	0.448	0.017	0.033	0.922
2004-10-13	0.84	0.15	0.12	0.035	0.84	0.81	0.80	1.359	1.177	2.746	0.429	76.519	1.366	1.191	2.760	0.432	77.754	0.416	0.005	0.030	0.508
2004-11-04	0.69	0.09	0.06	0.025	0.78	0.81	0.74	1.296	1.056	2.619	0.403	65.913	1.368	1.195	2.764	0.432	78.107	0.384	0.004	0.021	0.495

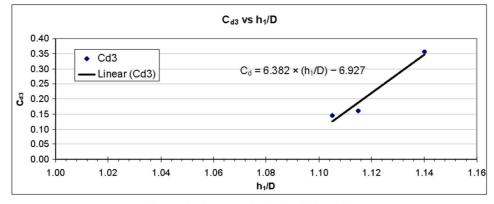
Table 13. Determination of coefficient of discharge for Culvert 143

Date	Flow (ft ³ /s)	Head water (ft)	Tail water (ft)	Head – Tail (ft)	h ₁ (ft)	h₄ (ft)	h ₂ – z (h ₂ = 0.95 h ₁) (ft)	⊖₂ (rad)	A ₂ (ft ²)	P ₂ (ft)	R ₂ (ft)	K ₂ (ft ³ /s)	⊖₃ (rad)	A ₃ (ft ²)	P ₃ (ft)	R₃ (ft)	K ₃ (ft ³ /s)	h₁/D	h _{f2,3} (ft)	h ₁ - h ₄ - h _{f2,3} (ft)	C _{d3}
2004-08-19	0.12	-0.105	-0.130	0.025	0.515	0.29	0.49	1.007	0.613	2.116	0.290	30.673	0.761	0.289	1.599	0.181	10.555	0.245	0.002	0.023	0.354
2004-08-26	0.09	-0.120	-0.150	0.030	0.500	0.28	0.48	0.991	0.588	2.082	0.282	28.912	0.748	0.275	1.570	0.175	9.814	0.238	0.001	0.029	0.238
2004-09-16	0.95	0.26	0.20	0.060	0.880	0.62	0.84	1.366	1.286	2.868	0.448	86.072	1.149	0.855	2.413	0.354	48.917	0.419	0.010	0.050	0.615
2004-09-23	0.58	0.19	0.14	0.050	0.810	0.56	0.77	1.300	1.150	2.731	0.421	73.838	1.085	0.741	2.279	0.325	40.093	0.386	0.005	0.045	0.462
2004-10-06	0.57	0.185	0.145	0.040	0.805	0.55	0.76	1.296	1.140	2.721	0.419	72.988	1.074	0.723	2.256	0.320	38.695	0.383	0.005	0.035	0.525
2004-11-04	0.34	0.07	0.025	0.045	0.690	0.45	0.66	1.186	0.923	2.490	0.371	54.473	0.963	0.544	2.021	0.269	25.937	0.329	0.004	0.041	0.383

Table 14. Determination of coefficient of discharge for Culvert 170

Date	Flow	Head water	Tail water	Head – Tail	h ₁	h4	h ₂ – z (h ₂ = 0.95 h ₁)	Θ2	A ₂	P ₂	R ₂	K ₂	Θ3	A₃	P ₃	R₃	K₃	h₁/D	h _{f 2,3}	h ₁ - h ₄ - h _{f2,3}	C _{d3}
	(ft³/s)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(rad)	(ft ²)	(ft)	(ft)	(ft³/s)	(rad)	(ft ²)	(ft)	(ft)	(ft ³ /s)		(ft)	(ft)	
2004-07-30	0.20	0.100	0.090	0.010	0.730	0.68	0.69	1.241	0.983	2.545	0.386	59.573	1.228	0.957	2.516	0.380	57.388	0.356	0.001	0.009	0.262
2004-09-16	0.27	0.28	0.27	0.010	0.910	0.83	0.86	1.414	1.323	2.898	0.456	89.626	1.379	1.253	2.828	0.443	83.246	0.444	0.000	0.010	0.275
2004-09-23	0.20	0.27	0.26	0.010	0.900	0.83	0.86	1.404	1.303	2.879	0.453	87.855	1.379	1.253	2.828	0.443	83.246	0.439	0.000	0.010	0.203
2004-09-30	2.17	0.52	0.485	0.035	1.150	1.03	1.09	1.637	1.789	3.355	0.533	134.415	1.579	1.667	3.236	0.515	122.413	0.561	0.013	0.022	1.087
2004-10-06	0.26	0.28	0.27	0.010	0.910	0.82	0.86	1.414	1.323	2.898	0.456	89.626	1.369	1.233	2.807	0.439	81.424	0.444	0.000	0.010	0.267
2004-10-13	0.73	0.38	0.37	0.010	1.010	0.911	0.96	1.507	1.516	3.089	0.491	107.834	1.459	1.417	2.992	0.474	98.432	0.493	0.002	0.008	0.734
2004-10-20	0.55	0.395	0.385	0.010	1.025	0.932	0.97	1.521	1.545	3.118	0.496	110.633	1.480	1.460	3.034	0.481	102.478	0.500	0.001	0.009	0.502

RATING EQUATIONS AND CALIBRATION


From the calculation results shown in the above tables, we relate the coefficient of discharge C_d with h_1/D . The ratio h_1/D is that of upstream water level above the inlet invert to the culvert diameter. Under SR 9336 in ENP, the culverts are used to connect water on both sides of the road so that natural flow is not blocked. The difference of elevation of culvert inverts on both sides is minimal. So, h_1/D is close to $(h_1 - z)/D$. z = inlet invert elevation - outlet invert elevation.

We find that C_d exhibits a linear relationship with h_1/D and it increases with h_1/D . The characteristic of C_d being increasing with h_1/D is related to how Manning's roughness coefficient changes with depth of water in culvert. According to Lindeburg's citation (Lindeburg, 2003), the Manning's roughness coefficient, n, varies with depth. The ratio of n to n_{full} (the n value when culvert is full) has a maximum value of about 1.28 when relative depth of water d/D in culvert is between 0.2 and 0.3. When d/D is larger than 0.3, n/n_{full} decreases gradually. When the culvert is full (d/D = 1), n/n_{full} is back to 1. Most flow measurements of this study conducted in the Everglades correspond to d/D > 0.3. With h_1/D increases, d/D increases and thus the roughness coefficient, n, decreases. This makes the barrel friction become less important and the discharge coefficient C_d become larger.

Using the rated discharge coefficients, we calculate flows using observed head water and tail water. Displaying calculated and measured flows in a plot shows the quality of rating analyses. The following figures display the relationships of C_d versus h_1/D and the difference between calculated and measured flows. It should be noted that all measured flows are compared with the corresponding calculated ones even though they may not be used to estimate discharge coefficients. The figures show a reasonably good match between measured and calculated flows.

Culvert 11

Only one calculation can be conducted on C_d . No plot of C_d versus h_1/D is drawn.

Culvert 24

Figure 4. C_d versus h₁/D for Culvert 24

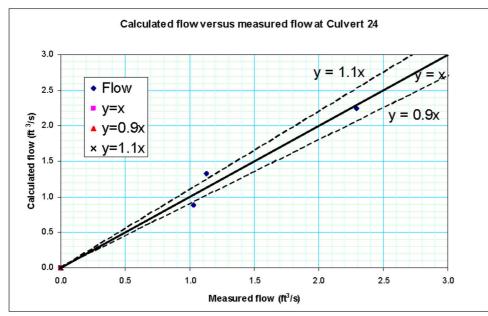


Figure 5. Calculated and measured flows for Culvert 24

Culvert 30

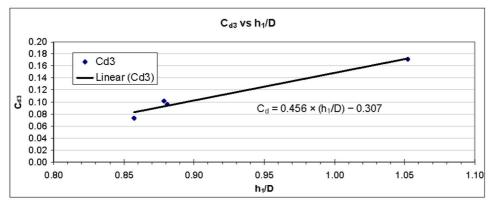


Figure 6. Cd versus h_1/D for Culvert 30

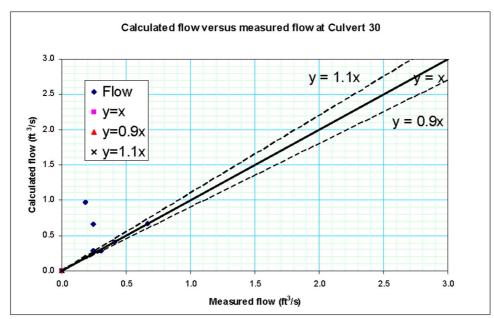


Figure 7. Calculated and measured flows for Culvert 30

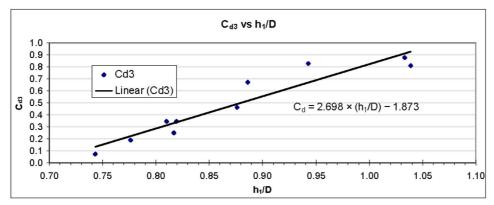


Figure 8. C_d versus h_1/D for Culvert 34

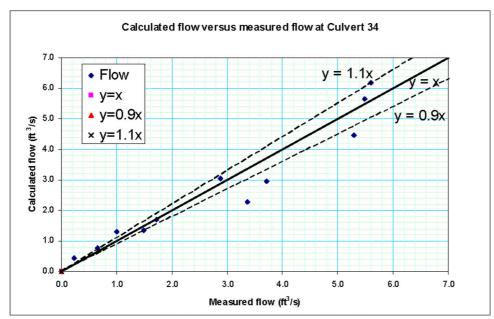


Figure 9. Calculated and measured flows for Culvert 34

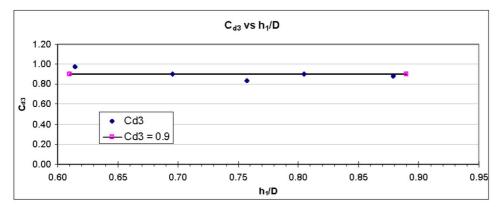


Figure 10. C_d versus h_l/D for Culvert 43

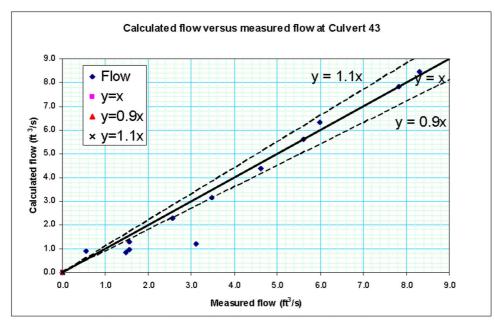
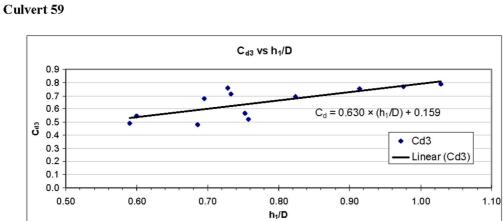



Figure 11. Calculated and measured flows for Culvert 43

.....

Figure 12. Cd versus h_1/D for Culvert 59

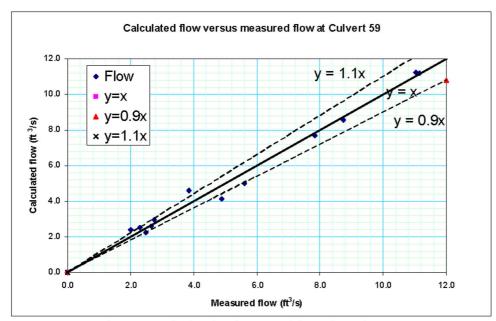


Figure 13. Calculated and measured flows for Culvert 59

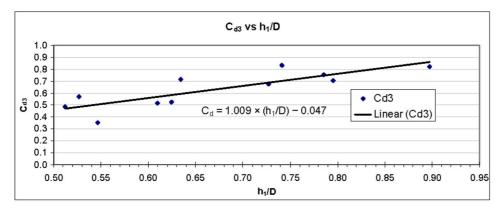


Figure 14. C_d versus h_1/D for Culvert 69

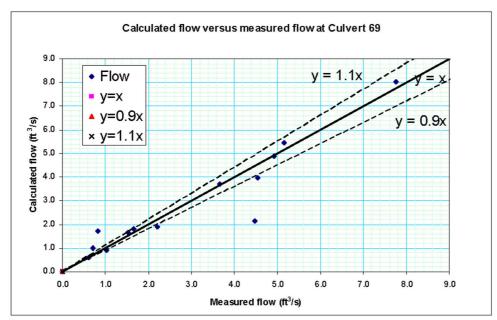


Figure 15. Calculated and measured flows for Culvert 69

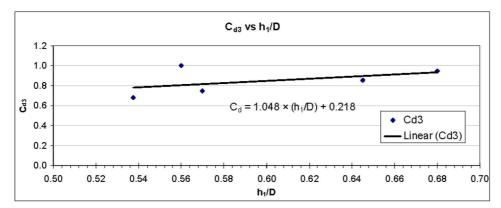


Figure 16. C_d versus h_1/D for Culvert 77

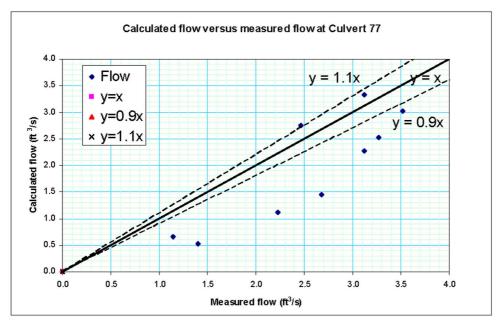


Figure 17. Calculated and measured flows for Culvert 77

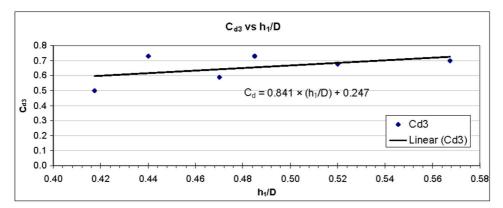


Figure 18. C_d versus h_1/D for Culvert 89

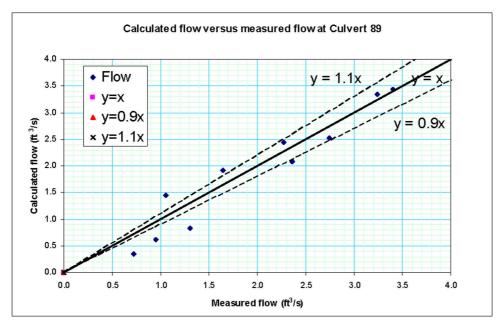


Figure 19. Calculated and measured flows for Culvert 89

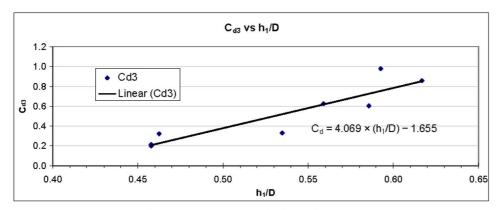


Figure 20. C_d versus h_l/D for Culvert 108

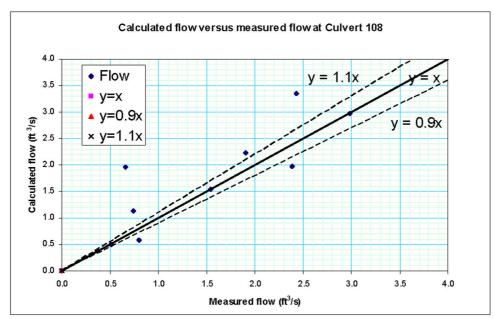


Figure 21. Calculated and measured flows for Culvert 108

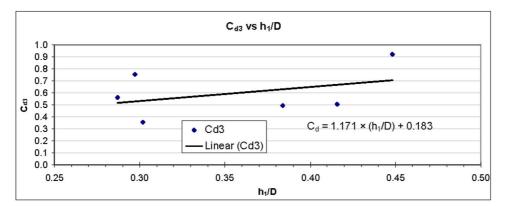


Figure 22. C_d versus h_1/D for Culvert 118

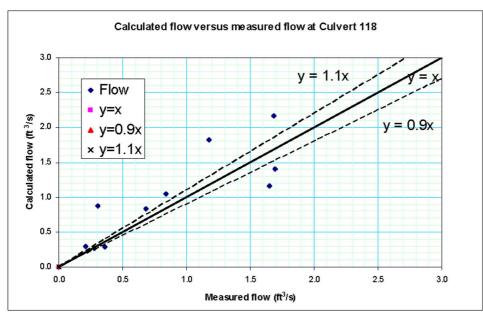


Figure 23. Calculated and measured flows for Culvert 118

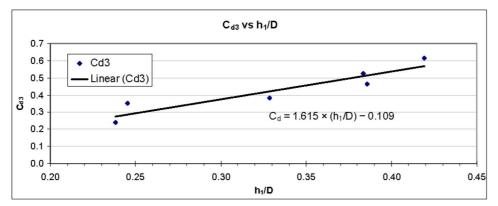


Figure 24. C_d versus h_l/D for Culvert 143

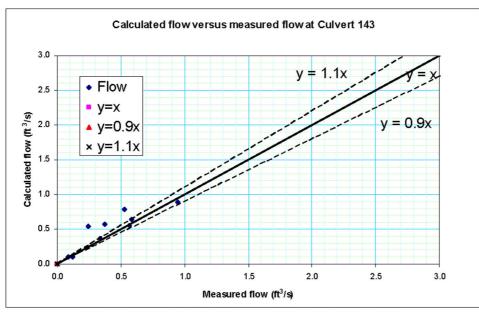


Figure 25. Calculated and measured flows for Culvert 143

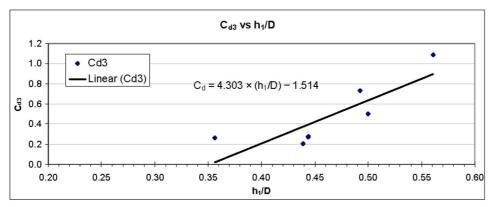


Figure 26. C_d versus h_1/D for Culvert 170

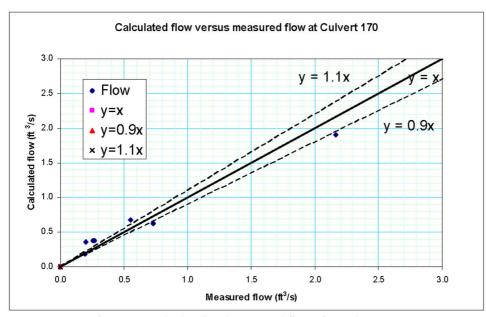


Figure 27. Calculated and measured flows for Culvert 170

Table 15 lists the linear regression equations of discharge coefficients for 13 representative culverts. We use the results shown in the table to estimate the remaining 165 culverts. Due to the large number of flow structures along SR 9336 and the complexity of site conditions, this attempt gave approximate results and needs to be refined based on further site study and flow monitoring. Further study is needed to examine how well the proposed rating relationships and coefficients can be used to estimate flows for all culverts across SR 9336. Further rating equations can be developed depending on the data collected.

Culvert No	Cd	Limits of C _d	Culverts with same C_d
11	$C_{d} = 0.7$		1 to 17, 20, 21.
24	$\begin{array}{c} {\rm C}_{\rm d} = 6.382 \times (h_{\rm 1}/{\rm D}) - \\ 6.927 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	22 to 28
30	$\begin{array}{l} C_{d} = 0.456 \times (h_{1}/D) - \\ 0.307 \end{array}$	$C_{d} (min) = 0.1$ $C_{d} (max) = 1.0$	29 to 33
34	$\begin{array}{l} C_{d} = 2.698 \times (h_{1}/D) - \\ 1.873 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	34 to 42
43	$C_{d} = 0.9$		43 to 54
59	$\begin{array}{l} C_{d} = 0.630 \times (h_{1}/D) + \\ 0.159 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	55 to 63
69	$\begin{array}{l} C_{d} = 1.009 \times (h_{1}/D) - \\ 0.047 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	64 to 73

Table 15. Discharge coefficients for 13 representative culverts and estimation for the rest sites

77	$\begin{array}{c} C_{d} = 1.048 \times (h_{1}/D) + \\ 0.218 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	74 to 85
89	$\begin{array}{ c c } C_d = 0.841 \times (h_1/D) + \\ 0.247 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	86 to 100
108	$\begin{array}{ c c } C_d = 4.069 \times (h_1/D) - \\ 1.655 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	101 to 114
118	$\begin{array}{c} {\rm C}_{d} = 1.171 \times (h_{1}/{\rm D}) + \\ 0.183 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	115 to 135
143	$\begin{array}{c} C_d = 1.615 \times (h_1/D) - \\ 0.109 \end{array}$	$C_{d} (min) = 0.15$ $C_{d} (max) = 1.0$	136 to 160
170	$\begin{array}{c} C_{d} = 4.303 \times (h_{1}/D) - \\ 1.514 \end{array}$	$C_{d} (min) = 0.20$ $C_{d} (max) = 1.0$	161 to 178

Notes:

Culverts 18, 19 are replaced by the new bridges;

Cd: discharge coefficient describing culvert flow;

h₁: depth of water above the culvert invert in the upstream side;

D: diameter of a culvert barrel;

If the calculated discharge coefficient from the above equation is less than the defined minimum C_d , then C_d is set to $C_d(min)$. If the calculated discharge coefficient is larger than the defined maximum C_d , then C_d is set to $C_d(max)$.

CONCLUSIONS

Flow data was collected at 13 representative culvert sites along SR 9336 in ENP. Rating analyses show that discharge coefficients have a linear relationship with the head water level. By using rated discharge coefficients, we calculate flows and compare them with the measurements. The results show a good match between calculated and measured flows.

Discharge coefficient can vary significantly from site to site or under different flow conditions. It is recommended that further flow monitoring and field study be conducted to examine how well the proposed rating relationships can be applied to estimate flows through the remaining 165 culverts.

REFERENCES

- Bodhaine, G.L. (1968). Measurement of Peak Discharge at Culverts by Indirect Methods. Techniques of Water Resources Investigations of the United States Geological Survey, Book 3, Applications of Hydraulics.
- Buchanan, T.J., Somers, W.P. (1969). Discharge Measurements at Gaging Stations. Techniques of Water Resources Investigations of the United States Geological Survey, Book 8, Applications of Hydraulics.
- 3. Lindeburg, M.R. (2003). Civil Engineering Reference Manual for the PE Exam, Ninth Edition, Professional Publications Inc, Belmont, CA.

- 4. MGD Technologies Inc. (2000). ADFM Acoustic Doppler Flow Meter Technical Manual.
- 5. MGD Technologies Inc. Web site: <u>http://www.mgdinc.com/products.htm</u> as of March 31, 2005.
- Wu, Q., Imru, M. (2005). Rating Development for Flow through Culverts under SR9336 in the Everglades National Park I: Concepts and Methods, South Florida Water Management District, West Palm Beach, FL.

APPENDIX I – SITE CONDITIONS OF 178 CULVERTS ALONG SR 9336 (Field study conducted in December 2003 & January 2004)

	Π/		,
Culvert No.	Tags/ NGVD 29 (ft)	Observation	Conditions for flow monitoring
		Locating the first culvert: When driving along SR 9336 to the Everglades National Park, one can see an "L-31W" sign just in front of a bridge. A canal is under the bridge. Passing the bridge, there is a "GLEN GARRETT MEMORIAL PARK" sign on the left hand side of the road (south side). Then just 100 feet in the front, there is an "EVERGLADES NATIONAL PARK" sign on the right hand side (north side). Then IMMEDIATELY passing a stretch of road with lots of bushes and trees on both sides, it is culvert 1.	
1	Yes 3.99	Open on the north side; bushes face the culvert on the south side. One staff gauge on each side of the road. Pipeline type culvert. No water/no flow	Poor ³
		There is one box culvert between culvert 1 & 2. Newly constructed. Still water/no flow	
2	Yes 4.25	Both sides are open. Pipeline type culvert. Shallow water/no flow	Good
3	4.50	Both sides are open. Pipeline type culvert. No water/no flow	Good
4	Yes ¹ 4.77	The culvert is long due to the division of SR 9336 into the road to the visitor center. On the visitor center side, there is a big pond; on the other side, it is open grass land. Pipeline type culvert.	Poor
5	Yes	Right face the visitor center. Pipeline type culvert.	Acceptable
6	4.79 No	Both sides are dry/no flow. On the visitor center side, there are lots of bushes and trees; on the other side, it is open.	Poor
	4.05	Pipeline type culvert. No water/no flow	

7	5.10	Can not be seen due to thick vegetation	Poor
8	5.10	Located before the entrance gate to the park (around	
		100 feet).	Poor
	4.26	On the south side, culvert is half buried in the soil; on	
		the north side, it can not be seen due to thick	
		vegetation. Long/useless culvert.	
		Pipeline type culvert.	
9	Yes ¹	First culvert after the park entrance. Right after the	
		Sign: "Campground – Long Pine Key 6 miles (10km) –	Poor
	4.33	Flamingo 38 miles (61km)"	
		Culvert buried in woods. Longer than usual.	
		Pipeline type culvert.	
10		Both sides are dry. No water/no flow	1 1
10	No 4 72	Pipeline type culvert.	Acceptable
11	4.73	Both sides are dry. No water/no flow	A
11	No 4 87	Pipeline type culvert.	Acceptable
12	4.87 Yes ¹	Both sides are dry. No water/no flow	A a a antala la
12	4.84	Pipeline type culvert. Both sides are dry. No water/no flow	Acceptable
13	Yes ¹	Pipeline type culvert.	
1.5	105	Both sides are dry. No water/no flow	Acceptable
	4.75	There are some grasses around the culvert on the south	Acceptable
	4.75	side	
14	Yes	Pipeline type culvert.	Acceptable
	5.07	Both sides are dry. No water/no flow	r to op doite
15	Yes	Pipeline type culvert.	Acceptable
	4.75	Both sides are dry. No water/no flow	1
16	No	Pipeline type culvert.	Acceptable
	4.69	Little water on both sides. No flow.	-
17	Yes	1 st culvert before the 1 st bridge along SR 9336.	
		On the north side, lots of grass around culvert; on the	Acceptable
	4.03	south side, less grass.	
		This is a 3 feet culvert.	
		Pipeline type culvert.	
		Culvert is 90% full with water. No flow.	
		1 st bridge	
18		Destroyed due to the bridge being built.	
10	5.03		
19	5 11	Destroyed due to the bridge being built.	
	5.11	There is such as a loss of 4 and $1 = 4$ and $1 = 1$	
		There is one box culvert/tunnel after the 1 st bridge from	
		the park entrance.	
		There are 2 staff gauges just after the box culvert. Flow is slow inside the box culvert.	

1	1		1
		Then it's the 2 nd bridge (Taylor Slough Bridge). There	
		is a staff gauge on each side of the bridge.	
		There is a box culvert just after the 2 nd bridge.	
		Flow is slow in north to south direction.	
		Then there is a "Royal Palm Turn Off $-\frac{1}{4}$ mile (0.4	
		km)" Sign	
20	Yes	Pipeline type culvert.	Good
	4.37	Flow is in north to south direction	
		Then around 100 feet down the road, there is a box	
		culvert.	
		Flow is slow.	
		There are 2 staff gauges after this box culvert (60 feet	
		down the road after the box culvert).	
		There is a benchmark K432 on the north side of the	
		road (15 feet after the staff gauges).	
21	Yes	Pipeline type culvert.	Acceptable
	4.25	Almost no flow	reception
	7.25	Then there is a Sign: "Royal Palm $- \leftarrow$ Anhinga Trail $-$	
		Gumbo Limbo Trail – Flamingo 36 mi ↑"	
22	Yes	Too many grasses and trees around the culvert.	Poor
44	165	Pipeline type culvert.	P 001
	4.05		
	4.25	No flow	Dese
23	Yes	Lots of trees around the culvert.	Poor
	C C 1	Pipeline type culvert.	
	5.51	Culvert half full/no flow	
24	Yes	There is a staff gauge on the south side.	
		A groundwater table recorder on the north side.	Good
	5.43	Pipeline type culvert.	
		No flow	
		Then there is a Sign: "← Long Pine Key – Flamingo	
		34 mile"	
25	No	First culvert after the road to Long Pine Key.	
		Culvert top broken on the south side.	Poor
	5.48	Tag fallen from the culvert and picked up from the site.	
		Lots of grasses and trees around the culvert.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
26	Yes ¹	Culvert structural condition is good.	Good
		Pipeline type culvert.	
	5.48	Culvert is dry/no flow.	
27	Yes	Culvert structural condition is good.	
		Lots of trees on the south side.	Poor
	5.55	Pipeline type culvert.	
		Culvert is dry/no flow.	
		Then there is a Sign: "Pine Land \rightarrow – Flamingo 32	
		mile"	
1	1	*****	I

	37		
28	Yes ¹	Culvert is just after the above "Pine Land" sign.	5
	5.00	Culvert structural condition ok.	Poor
	5.80	There are small palm trees on the north side and large	
		pine trees on the south side.	
		Pipeline type culvert.	
	37	Culvert is dry/no flow.	
29	Yes	Both sides are open.	Good
	< 00	Pipeline type culvert.	
20	6.00	Culvert is dry/no flow.	A (11
30	No	Pipeline type culvert.	Acceptable
	5.60	Culvert is dry/no flow.	
31	No	There are many trees just in front of the culvert mouth	
		on the north side. The area is open on the south side.	Poor
	5.60	Pipeline type culvert.	
		Culvert is dry/no flow.	
32	Yes	On the north side, the area is ok. On the south side,	
		there is a bunch of trees just facing the culvert.	Poor
	5.17	Pipeline type culvert.	
		Both sides are dry. No flow in the culvert.	
33	No	Pipeline type culvert.	Acceptable
	5.34	Both sides are dry. No flow in the culvert.	
34	No	On the north side, culvert top is broken.	
		The culvert is right before the "Rock Reef Pass" sign.	Acceptable
	4.22	Pipeline type culvert.	
		There is water on both sides, but no flow in the culvert.	
		Then there is a Sign: "Rock Reef Pass – Elevation 3	
		feet – 0.9 meter"	
35	Yes	Located right after the "Rock Reef Pass" sign.	
		There are some trees on both sides. Water can not flow	Acceptable
	4.21	very freely.	
		Pipeline type culvert.	
		Still water/no flow.	
36	No	The culvert is just in front of a wood stairway outlook.	
		Some grasses and trees on the north side. Open on the	Acceptable
	4.25	south side.	
		Tag fallen from the culvert and picked up from the site.	
		Pipeline type culvert.	
		Still water/no flow.	
37	Yes	Culvert top broken on the south side.	Poor
		Pipeline type culvert.	
	4.33	Still water/no flow.	
38	Yes ¹	Some grasses and trees on the north side. Open on the	Good
		south side.	
	4.25	Pipeline type culvert.	
		Still water/no flow.	

39	No	Culvert top broken on the north side. South side can be	
		selected for flow monitoring.	Acceptable
	4.41	Pipeline type culvert.	
- 10	27	Slow water flows from north to south.	
40	No	Pipeline type culvert.	Good
	4.40	There is water on both sides. Water flows slowly/half	
	4.48	full in north to south direction.	
41	Yes	Open on the south side; ok on the north side.	Good
	2.04	Pipeline type culvert.	
- 10	3.94	Still water/no flow.	
42	No	Just before the Pahayokee Overlook.	
	1.00	North side open; trees face the culvert on the south	Good
	4.29	side.	
		Pipeline type culvert.	
		Still water/no flow.	
		Then there is a Sign: "Pa-hay-okee" pointing to the	
40	37	Pahayokee Road.	
43	Yes	First culvert after Pahayokee Road.	Good
		There is one staff gauge on each side of the road.	
	4.22	Pipeline type culvert.	
	.	Culvert half full/no flow.	
44	No	Culvert is buried deep beneath the highway.	
	2.20	Culvert top broken.	Poor
	2.38	Pipeline type culvert.	
		Culvert is totally submerged.	
45	٦T	Still water/no flow.	
45	No	Culvert is buried deep beneath the highway.	Deser
	2.52	One tree fallen down on the west side.	Poor
	2.32	Sand and gravel inside culvert.	
		Pipeline type culvert.	
		Culvert submerged. Still water/no flow.	
46	No	Culvert is buried deep beneath the highway.	
40		Culvert top broken on the west side. A tree grows just	Poor
	2.55	in the mouth of culvert on the east side.	
	2.35	Sand and gravel inside culvert.	
		Pipeline type culvert.	
		Culvert submerged.	
		Still water/no flow.	
47	No	Culvert is buried deep beneath the highway.	
, T,		Culvert top broken on the west side.	Acceptable
	2.61	Sand and gravel inside culvert.	
	2.01	Pipeline type culvert.	
		Culvert submerged.	
		Still water/no flow.	
L	1		

40	NL	Culment is burning down how on the time birtherese	
48	No	Culvert is buried deep beneath the highway.	C 1
	200	Sand and gravel inside culvert.	Good
	2.66	Pipeline type culvert.	
		Culvert submerged.	
		Still water/no flow.	
49	No	Culvert is buried deep beneath the highway.	
		Easily accessible on the west side. Hard to access on	Acceptable
	2.68	the east side due to being surrounded by bushes and	
		trees.	
		Pipeline type culvert.	
		Culvert submerged.	
		Still water/no flow.	
50	No	Just in front of the "Dwarf Cypress Forest" sign.	
		Culvert is buried deep beneath the highway.	Poor
	2.28	Sand and gravel inside culvert.	
		Open on both sides. Overall, a bad site.	
		Pipeline type culvert.	
		Still water/no flow.	
		Then there is the sign "Dwarf Cypress Forest – Elev.	
		4ft (1.2m)".	
51	No	Culvert is buried deep beneath the highway.	
		A big tree just outside the culvert on the east side. On	Poor
	2.60	the west side, there are trees but the flow is ok.	
		Pipeline type culvert.	
		Still water/no flow.	
52	No	Culvert is buried deep beneath the highway.	
		On the west side, there are lots of trees that the culvert	Poor
	2.16	can not be seen. Ok on the east side.	
		Pipeline type culvert.	
		Still water/no flow.	
53	No	Culvert is buried deep beneath the highway.	
		On the west side, a tree grows right from the side of the	Poor
	2.26	culvert mouth. Site is clear on the east side, but the	
		culvert top is broken on this side.	
		Pipeline type culvert.	
		Culvert submerged.	
		Still water/no flow.	
54	No	Culvert is buried deep beneath the highway.	
		On the east side, culvert is covered by thick grasses and	Poor
	2.16	bushes. Culvert mouth is far away from road side.	
		Situation better on the west side, but still not very	
		visible.	
		Pipeline type culvert.	
		Still water/no flow.	

55	No	Both sides are totally surrounded by thick woods.	Very poor
55	110	Pipeline type culvert.	very poor
	2.94	Still water/no flow.	
56	Yes	On both sides, trees are growing right in front of the	
	105	culvert.	Poor
	3.32	Pipeline type culvert.	1001
		Still water/no flow.	
57	No	Both sides are open.	Good
		Pipeline type culvert.	
	3.82	Still water/no flow.	
		0.2 mile after Culvert 57, there is a groundwater table	
		recorder on each side of the road.	
58	No	There are some bushes growing on the bank beside the	Acceptable
		culvert. Other than that, the site is ok.	-
	3.24	Pipeline type culvert.	
		Still water/no flow.	
59	Yes	On the west side, there are many trees, which are away	
		from the culvert. There is a staff gauge on this side.	Good
	3.10	Open on the east side. There exists a tube to measure	
		the water level, which should be a staff gauge.	
		Pipeline type culvert.	
		Should be selected for the continuity of previous	
		monitoring work.	
60	Yes	Culvert top broken on the east side.	Acceptable
		Pipeline type culvert.	
	3.75	Shallow slow water flow from east to west.	
61	No	Open on the east side. Top of culvert is broken.	
		On the west side, a small tree is beside the culvert.	Acceptable
	3.14	Pipeline type culvert.	
	27	Shallow slow water flow from east to west.	
62	No	On the east side, there are trees just in the course of	
		water way. The situation is ok on the west side.	Poor
	3.04	Pipeline type culvert.	
	37	Shallow slow water flow from east to west.	A (11
63	Yes	Open on the east side. 2 trees just out facing the culvert on the west side.	Acceptable
	2.04		
64	3.04	Pipeline type culvert.	
04	No	Both sides are high pine tree forest. East side, bushes growing right on top of the culvert.	Poor
	2.78	Pipeline type culvert.	
	2.70	No water/no flow.	
65	No	Both sides are open.	
		There is a snake on the west side.	Acceptable
	2.94	Pipeline type culvert.	
	2.77	No water/no flow.	

	1		
		Then down the road less than 0.1 mi, there is a Sign:	
		"Mahagany Hammock → – Flamingo 18 mi ↑"	
66	Yes	Culvert is just after the "Speed Limit 55" Sign.	
		Open on the east side. Far away is pine tree forest.	Acceptable
	3.15	West side, pine trees not far away.	
		Pipeline type culvert.	
		Both sides are dry/no flow.	
67	Yes	Open on the east side.	
		A tree growing right on top of the culvert on the west	Poor
	3.08	side.	
		Pipeline type culvert.	
		No water/no flow.	
68	Yes	Open on both sides.	
		West side, trees are a little bit around the culvert.	Acceptable
	2.76	Pipeline type culvert.	
		No water/no flow.	
69	Yes	Both sides are open.	Very good
		Pipeline type culvert.	
	3.03	Shallow water inside culvert/no flow.	
70	Yes	East side: open.	
		West side: bushes and grasses around the culvert.	Acceptable
	3.02	Pipeline type culvert.	-
		Almost still water/no flow.	
71	Yes	East side: open.	
		West side: basically ok. There are just some trees	Acceptable
	2.86	around.	-
		Pipeline type culvert.	
		No water/no flow.	
72	No	East side: open.	
		West side: lots of big trees just in front of the culvert.	Poor
	2.86	Pipeline type culvert.	
		Still water/no flow.	
73	Yes	East side: not very visible.	
		West side: bushes and grasses are around the culvert.	Poor
	2.76	Pipeline type culvert.	
		Still water/no flow.	
74	Yes	Both sides are heavily surrounded by trees; worse on	
		the west side.	Poor
	2.96	Pipeline type culvert.	
		Still water/no flow.	
75	Yes	After 75, the road is becoming very straight like a line.	
		Both sides are surrounded by trees; worse on the east	Poor
	3.06	side.	
		Pipeline type culvert.	
		Still water/no flow.	
			1

76	No	West side: it is a land with many trees growing.	
		East side: open.	Acceptable
	3.67	Culvert is constructed inside the reinforced concrete	
		body. It is stronger than the pipeline type culvert, but	
		shorter in length.	
		Still water/no flow.	
77	No	West side: surrounded by trees. But flow can move	
		smoothly.	Good
	3.66	East side: open.	
		Concrete type culvert.	
		Still water/no flow.	
78	No	West side: Some trees around.	
		East side: Open outside but bushes beside the culvert.	Acceptable
	3.55	Concrete type culvert.	-
		Still water/no flow.	
79	No	West side: a bush growing right beside the culvert.	
		East side: open.	Poor
	3.58	Concrete type culvert.	
		Shallow water/no flow.	
80	Yes	West side: grasses and a palm tree around.	
		East side: open out in the field. Grasses and bushes	Poor
	3.67	around the culvert.	
		Concrete type culvert.	
		Still water/no flow.	
81	No	Both sides are covered by thick woods and grasses.	
		Concrete type culvert.	Poor
	3.99	Still water/no flow.	
82	Yes	West side: lots of grass around the culvert.	
		East side: a tree just beside the culvert. Open out in the	Poor
	3.53	field.	
		Concrete type culvert.	
		Still water/no flow.	
83	Yes	Tag can not be accessed.	
		West side: a big tree is growing right from the center of	Very Poor
	3.72	the culvert.	
		East side: a palm tree beside the culvert.	
		Concrete type culvert.	
		Still water/no flow.	
84	Yes	West side: open.	
		East side: trees growing beside the culvert.	Poor
	3.75	Concrete type culvert.	
		Slow water flow from east to west.	
L	1		1

0.5	v _1	3774	1
85	Yes ¹	West side: open.	
	2.47	East side: 2 trees growing just inside the culvert	Poor
	3.47	blocking the water flow.	
		Concrete type culvert.	
		Still water/no flow.	
86	No	West side: small trees growing beside the culvert.	
		East side: open.	Acceptable
	3.78	Concrete type culvert.	
		Shallow slow water flows from east to west.	
87	Yes	West side: grasses around the culvert.	
		East side: open.	Acceptable
	3.50	Concrete type culvert.	
		Shallow slow water flows from east to west.	
88	No	Both sides are covered by tall thick trees; even worse	
		on the west side.	Poor
	3.56	Concrete type culvert.	
		Shallow slow water flows from east to west.	
89	Yes	Right before the "Paurotis Pond" Sign.	
		West side: thick trees beside and inside the water way.	Acceptable
	3.81	East side: clear and open except that a small palm tree	
		is beside the culvert.	
		A staff gauge is just outside the culvert on each side.	
		Trees must be cleared off to some extent for proper	
		ADFM flow measurement.	
		Concrete type culvert.	
		Shallow water flows from east to west.	
		Then there is a Sign: "Paurotis Pond – Flamingo 14 mi	
		↑ ²⁷ .	
90	Yes	Both sides are clear just in the close vicinity of the	
		culvert. Lots of trees are outside in the front.	Poor
	3.66	Concrete type culvert.	
		Slow flow from east to west.	
91	Yes	West side: trees grow right from the culvert mouth.	
		East side: about 6 feet away, trees grow in front of the	Poor
	3.53	culvert blocking the flow.	
		Concrete type culvert.	
		Still water/no flow.	
92	Yes	Both sides are similar. Culvert is visible, but heavy	
		trees block the flow path.	Poor
	3.53	Concrete type culvert.	
		Still water/no flow.	
93	No	Water flow is visible, but there are trees growing in	
		front of or around the culvert.	Acceptable
	3.65	Concrete type culvert.	
		Shallow water flows slowly from east to west.	

94	No	Both sides are similar. Palm trees beside the culvert.	
	- · -	Water flow is visible, but there are lots of trees 10 feet	Acceptable
	3.58	away outside.	1
		Stones at the bottom of the culvert.	
		Concrete type culvert.	
		Shallow water flows slowly from east to west.	
95	Yes	Trees grow in the water way. Flow visible.	Acceptable
		Concrete type culvert.	1
	3.68	Shallow water flows slowly from east to west.	
96	Yes	Lots of trees around and in front of the culvert on both	
		sides. East side more visible than west side.	Poor
	3.41	Concrete type culvert.	
		Shallow still water/no flow.	
97	Yes	Lots of grasses and trees on both sides.	
		Flow almost invisible.	Poor
	3.71	Concrete type culvert.	
		Almost dry/no flow.	
98	Yes	West side: a tree grows right in front of the culvert.	
		Lots of grass around.	Very poor
	3.31	East side: Too many grasses and trees to make the	
		culvert totally invisible.	
		Concrete type culvert.	
		Still water/no flow.	
99	Yes ¹	Each side has a palm tree beside the culvert. East side	
		is more visible than west side.	Poor
	3.62	Concrete type culvert.	
		Still water/no flow.	
100	No ²	West side: almost invisible due to grass and palm trees.	
		East side: better. But a small tree beside the culvert.	Poor
	3.57	Concrete type culvert.	
		Still water/no flow.	
101	No ²	West side: better than the east. But there are grass and	
		trees beside the culvert.	Acceptable
	3.80	East side: trees face the culvert 6 feet away in the front.	
		Flow visible on both sides.	
		Concrete type culvert.	
		Slow flow east to west.	
102	Yes	Both sides are heavily covered by grass and woods.	
		Water is little visible.	Poor
	3.71	Concrete type culvert.	
	37	Still water/no flow.	
103	Yes	Lots of tall grasses, some bushes on both sides.	
	2.40	More visible on the east side than the west side.	Poor
	3.48	Concrete type culvert.	
		Shallow water/slow flow east to west.	

104	No ²	West side: a big bush makes the culvert invisible.	
		East side: better.	Poor
	3.54	Concrete type culvert.	
		Slow flow east to west.	
105	No ²	Both sides are similar. Water visible, but heavy trees in	
		front of the culvert about 6 feet away.	Poor
	3.64	Impossible to set up staff gauges at this site.	
		Concrete type culvert.	
		Shallow water flows east to west.	
106	No	Heavy grass and woods on both sides.	
		Water little visible.	Poor
	4.13	Concrete type culvert.	
		Still water/no flow.	
107	Yes ¹	East side is better than west side: more visible, less	
		grass.	Poor
	3.71	10 feet away, lots of trees on both sides.	
		Can conduct ADFM flow measurement by some	
		efforts, but hard to set up staff gauges.	
		Concrete type culvert.	
		Still water/no flow.	
108	No ²	Just before the "Nine Mile Pond" sign.	
		West side is better than east side: more visible, less	Acceptable
	3.46	trees around culvert.	1
		Can conduct ADFM flow measurement on the west	
		side.	
		Concrete type culvert.	
		Still water/no flow.	
		Then it is the sign "← Nine Mile Pond – Flamingo 11	
		mi".	
109	No	Both sides are heavily covered by grass and trees.	Very poor
	- · -	Water and culvert totally invisible.	·) F
	3.78	Concrete type culvert.	
110	3.78 No ²	Heavily covered by trees on both sides.	Poor
		West side: culvert like a concrete type.	2.001
	3.82	East side: culvert like a pipeline type.	
		Culvert is dry/no flow.	
111	No ²	West side: Heavily covered by a big tree and its roots.	
		East side: visible around culvert. But not far away, lots	Poor
	3.24	of trees in the front.	
		Looking north, we can feel the road is changing	
		direction. This observation can be used to verify the	
		correctness of the GIS map.	
		Concrete type culvert.	
		Still water/no flow.	
		Solit water no now.	

112	Yes	West side: a middle size tree grows right at the culvert	
		mouth. Lots of grass around. Little visible.	Poor
	3.46	East side: condition ok around the culvert.	
		Concrete type culvert.	
		Still water/no flow.	
113	Yes	Lot of grass around culvert on both sides. Lots of large	
		trees and branches in front of culvert.	Poor
	3.04	Situation is a little better on the east side.	
		Concrete type culvert.	
		Almost dry/no flow.	
114	Yes ¹	West side: covered with grasses. If cleared off, can be	
		used for flow monitoring.	Poor
	3.48	East side: grass, trees are even closer to the culvert.	
		Concrete type culvert.	
		Culvert totally dry/no flow.	
115	Yes	East side more open than west side.	
		About 4 feet away, lots of trees on both sides.	Poor
	3.72	Concrete type culvert.	
		Still water/no flow.	
116	No ²	Both sides are open. Clear only within 4 feet from the	
		culvert. East side is a little better than west side.	Acceptable
	3.79	Can be a site for ADFM flow measurement, but hard to	
		put the staff gauge.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
117	Yes ¹	West side: it is tree land about 6 feet away.	
		East side: grass land about 9 feet away. More visible on	Acceptable
	3.57	this side.	
		Can be a site for ADFM flow measurement, but hard to	
		put the staff gauge.	
		Concrete type culvert. Not that strong.	
		Still water/no flow.	
118	Yes ¹	Both sides are similar. 6 feet away, it is tree land. East	
		side is less dense than west side.	Good
	3.72	A little hard to put staff gauges, especially in the west	
		side.	
		Concrete type culvert.	
		Still water/no flow.	
119	No	Both sides are clear. Water can be seen out in the front.	
		If grass is cleared off around the culvert, the site can be	Acceptable
	2.10	used for ADFM flow monitoring.	
		A benchmark point is close to the culvert.	
		Pipeline type culvert.	
		Still water/no flow.	

120	No	West side is more visible than east side.	Acceptable
		Pipeline type culvert.	-
	2.83	Still water/no flow.	
121	Yes	Even though visible, both sides are surrounded by	
		heavily growing trees, which block the flow.	Poor
	2.90	Pipeline type culvert.	
		Still water/no flow.	
122	No	Same situations as Culvert 121.	Poor
		Pipeline type culvert.	
	2.87	Still water/no flow.	
123	No	Both sides are heavily covered by trees and tree roots.	
		Culvert almost invisible.	Very poor
	2.81	Pipeline type culvert.	
		Still water/no flow.	
124	No	West side: big trees on the side of culvert.	
		East side: tree roots in front of culvert.	Acceptable
	2.97	Visible on both sides, with better situation on the west	
		side. Relatively easy to put staff gauges on this side.	
		Pipeline type culvert.	
		Shallow water/slow flow east to west.	
125	No	West side: open, but lots of trees very close to culvert	
		(< 2 feet).	Poor
	2.94	Situation better on the west side.	
		Pipeline type culvert.	
		Shallow water/slow flow east to west.	
126	No	West side: heavily covered by trees.	
		East side: visible.	Poor
	2.96	Pipeline type culvert.	
		Shallow still water/no flow.	
127	No	East side: visible and conditions ok. Trees are out	
		around the culvert.	Poor
	3.05	West side: bad. Can conduct flow measurement if this	
		side is cleared off a little bit.	
		Pipeline type culvert.	
		Slow flow east to west.	
128	No	West side: covered by lots of trees. Little visible.	
		East side: visible, open. Generally ok.	Poor
	2.98	Pipeline type culvert.	
		Still water/no flow.	
		Then it is the Sign " \leftarrow Noble Hammock".	
129	No	About 300 feet down the road from the "Noble	
		Hammock" sign.	Very Poor
	2.70	Both sides totally covered by heavy trees. Hardly	
		visible.	
		Pipeline type culvert.	
		Still water/no flow.	

130	No	West side: totally covered by trees and grasses.	Poor
		East side: visible, but lots of trees in front of the	
	2.82	culvert.	
		Pipeline type culvert.	
		Shallow still water/no flow.	
131	No ²	West side: covered by heavy trees and bushes.	
		East side: outside water visible.	Poor
	2.91	Pipeline type culvert.	
		Shallow still water/no flow.	
132	No	West side: covered by lots of trees and grasses. Culvert	
		top broken.	Poor
	2.44	East side: outside water visible, site accessible.	
		Pipeline type culvert.	
		Still water/no flow.	
		Then it is the "Hell's Bay" sign.	
133	Yes ¹	Site visible on both sides. Some grasses around the	
		culvert. 6 feet away, there are lots of tree roots.	Good
	2.46	A relatively good site for flow monitoring in this part	
		of the road.	
		Pipeline type culvert.	
		Still water/no flow.	
134	No	West side: tree roots right in the middle of culvert. Lots	
		of trees surrounding the culvert outside.	Poor
	2.60	East side: visible and accessible.	
		Pipeline type culvert.	
		Still water/no flow.	
135	No	West side: lots of grasses and trees around the culvert.	
		East side: visible and accessible.	Poor
	2.54	Pipeline type culvert.	
		Still water/no flow.	
136	Yes ¹	East side: visible and accessible. Lots of tree roots 6	
		feet away from the culvert.	Acceptable
	2.67	West side: less favorable than the other side. Grasses	
		and trees in the vicinity of the culvert.	
		Ok to measure flow, but hard to put staff gauges.	
		Pipeline type culvert.	
		Still water/no flow.	
137	No	West side: almost invisible and inaccessible. Totally	
	_	covered by high trees.	Poor
	2.81	East side: visible and accessible. But about 6 feet	
		outside, it is tall tree forest.	
		Pipeline type culvert.	
		Still water/no flow.	

138	No	East side: more open and visible than the other side.	A securtable
	2.50	West side: efforts required to measure flow.	Acceptable
	2.59	Pipeline type culvert. Still water/no flow.	
139	Yes ¹	West side: big tree roots just outside the culvert.	
137	165	East side: visible, but lots of trees in the vicinity of the	Poor
	2.72	culvert.	1001
	2.72	Pipeline type culvert.	
		Still water/no flow.	
140	No	Both sides have many trees just in front of the culvert	
		blocking the flow.	Poor
	2.58	West side more accessible than east side.	
		Pipeline type culvert.	
		No water/no flow.	
141	No	Culvert in good conditions. No stones/gravels, etc	
		inside.	Poor
	3.32	West side: a big tree is in the front with some branches	
		hanging over.	
		East side: medium dense grasses around.	
		Acceptable site for flow measurement, but hard to put	
		staff gauges.	
		Pipeline type culvert.	
142	No	No water/no flow. Culvert in good situations. Both sides have trees out in	
142	INO	the front.	Acceptable
	3.43	West side: open and accessible.	лесерианс
	5.15	East side: grasses around culvert.	
		Pipeline type culvert.	
		No water/no flow.	
143	No	Culvert in good conditions.	
		West side: accessible and open to the road, but there	Acceptable
	3.50	are trees and grasses in the very front (3 feet away)	_
		blocking the flow.	
		East side: grasses around. Lots of trees 6 feet away in	
		the front.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
144	No	Accessible on both sides, but not very open. Lots of	A a a ar-t-1-1
	202	trees around.	Acceptable
	2.82	Acceptable to measure flow, but hard to put staff gauges.	
		Pipeline type culvert.	
		Shallow water/no flow.	

145	No	West side: heavy trees and tree roots inside, beside and	_
		outside the culvert blocking the flow.	Poor
	2.48	East side: Lots of grass around the culvert. Dense trees	
		outside.	
		Pipeline type culvert.	
146	No	Culvert is dry/no flow.	
146	NO	West side: dense trees and tree roots blocking the flow.	Poor
	1.80	East side: better than the west side, but still big trees very close surrounding the culvert.	POOI
	1.60	Pipeline type culvert.	
		Culvert is dry /no flow.	
147	No	West side: dense trees and tree roots around and facing	
1 77	110	the culvert, blocking the flow.	Poor
	2.41	East side: better than the other side just in the sense	1001
	2.11	that trees are a little away from the culvert.	
		Pipeline type culvert.	
		No water/no flow.	
148	No	Both sides are similar. Lots of tree roots, sand inside	
		culvert. Also lots of trees just outside blocking the	Poor
	2.73	flow.	
		Pipeline type culvert.	
		No water/no flow.	
149	No	West side: culvert top broken. Lots of sand deposit and	
		dead tree roots inside culvert. Many trees and tree roots	Poor
	2.69	very close to culvert blocking the flow.	
		East side: very dense bushes and trees outside the	
		culvert (< 3 feet away).	
		Pipeline type culvert.	
150	No	No water/no flow. Heavily dense trees cover the culvert on both sides,	
150	INU	making the culvert almost invisible and inaccessible.	Poor
	2.28	Pipeline type culvert.	1 001
	2.20	No water/no flow.	
151	No	West side: very dense trees making the culvert almost	
		invisible and inaccessible. Very big tree roots growing	Very poor
	2.68	right from the culvert, almost blocking the whole	5 F
		culvert.	
		East side: accessible from the road. But just in front of	
		the culvert, dense large trees block the flow.	
		Pipeline type culvert.	
		Still water/no flow.	
152	No	Trees growing inside culvert on both sides. Lots of	_
		dense trees also outside the culvert. Culvert almost	Poor
	2.39	invisible.	
		Pipeline type culvert.	
		Still water/no flow.	

153	No	West side more accessible than east side. Site is ok in	
		terms of visibility.	Poor
	2.46	West side: thick tree roots $2 \sim 3$ feet away in front of	
		the culvert.	
		East side: trees growing from and around the culvert.	
		Impossible to put staff gauges.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
154	No	Site is visible and easily accessible. But there are thick	
		trees and tree roots around the culvert.	Acceptable
	2.37	Both sides are very close to outside large water bodies.	
		Acceptable for flow measurement, but hard to put staff	
		gauges.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
155	No	Both sides are open and accessible. 5~6 feet away is	
		the tall thick forest.	Acceptable
	3.56	The site is good for measuring flow, but hard to put	
		staff gauges.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
		Then about 100 feet ahead, it is the Sign: "← West	
		Lake – Flamingo 7 mi ↑"	
156	No	West side: culvert hidden inside woods. Hardly seen.	
		East side: better than the other side. But trees are just in	Poor
	2.35	front of culvert.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
157	No	West side: trees surround and cover the culvert.	
		East side: similar, just a little more accessible.	Poor
	2.48	Pipeline type culvert.	
		Culvert is dry/no flow.	
158	No	Visible and accessible on both sides. 5~6 feet away, it	
		is dense tree forest.	Acceptable
	3.68	Can well conduct flow monitoring, just a little hard to	
		put staff gauges.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
159	No	Culvert visible on both sides. But big tree trunks are	
	<u> </u>	over the culvert.	Poor
	2.47	Accessibility just so-so.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	

160	No	West side: culvert top broken. Site open and visible.	
100	110	East side: covered by grasses.	Acceptable
	3.87	5~6 feet away, it is forest land on both sides.	Theophaolo
	2.07	Ok to measure flow, but hard to put staff gauges.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
161	No ²	West side: covered by thick trees. Hardly visible and	
		accessible.	Poor
	3.34	East side: some grasses growing inside and around	
		culvert. 5~6 feet away, lots of trees around. Situations	
		better than the west side.	
		Pipeline type culvert.	
		Culvert is dry/no flow.	
162	Yes	There are open areas on both sides. But just 5~6 feet	
		away, it is dense forest land.	Acceptable
	4.48	Can conduct flow measurement, but hard to put staff	
		gauges.	
		Concrete type culvert.	
1.02	<u>рт</u>	Culvert is dry/no flow.	
163	No	Both sides are open and easily accessible. 8-9 feet	01
	4.1.2	away, it is tree forest land.	Good
	4.13	Easy to measure flow, ok to set up staff gauges.	
		Concrete type culvert. Culvert is dry/no flow.	
164	No ²	Both sides are open and accessible. Even better on east	
104	110	side.	Good
	4.14	Can easily conduct flow monitoring.	0004
		About setting up staff gauge,	
		West side: acceptable; east side: good.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
165	Yes ¹	West side: 2~3 feet away, big tree roots face the	
		culvert, blocking the flow.	Acceptable
	3.83	East side: site open and accessible. Very good for	
		setting up the staff gauge.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
166	No	West side: 5~6 feet away, it is tree forest. A little bit	
	4.05	hard to set up staff gauge.	Acceptable
	4.02	East side: 8~9 feet away, it is tree forest. Easy to install	
		staff gauge.	
		Good for flow measurement.	
		Concrete type culvert.	
		Culvert is dry/no flow.	

-		1	I
167	No	West side: open and accessible. Trees are 3 feet away	
		from the culvert. Good to measure flow; a little hard to	Acceptable
	3.43	install staff gauge.	
		East side: open and accessible. It is forest land 8~9 feet	
		away, but trees are not that thick in the flow way as on	
		the other side.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
168	No	East side: open and accessible. 5~6 feet away, it is tree	
		forest land.	Acceptable
	3.86	West side: similar to east side. Grass inside & around	
		culvert. 6 feet away, big tree roots face the culvert, a	
		little bit blocking the flow.	
		Conditions to install staff gauge: just so-so.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
169	Yes ¹	West side: totally covered by big tree trunks.	
		Inaccessible.	Poor
	3.36	East side: open, visible and accessible. Trees are 6 feet	
		away.	
		Concrete type culvert.	
		Still water/no flow.	
170	No	Both sides are open and accessible. Trees are not very	
		dense. Relatively easy to install staff gauges. It is clean	Good
	3.87	inside culvert.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
171	No ²	West side: visible and accessible, though there are big	
		tree trunks over in front of the culvert (5~6 feet away).	Good
	3.77	Space to measure flow and flow path are ok.	
		East side: more open and accessible than the other side.	
		Relatively easy to install staff gauge.	
		Overall, a good site, but not as good as Culvert 170.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
172	No	East side: open and accessible. Good for both	
		measuring flow and installing staff gauge.	Acceptable
	3.63	West side: less favorable than east side, but still ok.	
		Tree roots twisted in the front. The flow direction will	
		change to some extent due to the setting around the	
		culvert. Measuring flow: ok. Installing staff gauge: so-	
		so.	
		Concrete type culvert.	
		Culvert is dry/no flow.	

173	Yes ¹	Both sides are open and accessible. Around 6~9 feet	
1,5	105	away from the road, it is tree forest land.	Good
	3.84	Good site to conduct flow measurement. Regarding	
		installing staff gauge:	
		West side: ok (place covered with water)	
		East side: a little hard (moderately dense trees)	
		Concrete type culvert.	
		Culvert is dry/no flow.	
174	No	West side: very hard to access. Tree branches block the	
		culvert.	Poor
	3.78	East side: open and accessible. Around 8~9 feet away,	
		it is tree forest.	
		Overall, a bad site.	
		Concrete type culvert.	
		Still dead water inside culvert/no flow.	
175	Yes ¹	East side: lots of tree branches growing down in the	
		water way to the culvert, blocking the flow. Dense	Poor
	3.37	trees in front of the culvert.	
		West side: better conditions than East side. But 5~6	
		feet away, there are dense trees.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
		Around 0.1 mile ahead, it is the "Mrazek Pond" Sign.	
176	No	West side: totally covered by tree branches. Poor	
		accessibility.	Poor
	2.92	East side: open and accessible. Culvert directly	
		connected to Mrazek Pond.	
		Concrete type culvert.	
		Culvert is dry/no flow.	
177	No	East side: totally covered by trees.	
		West side: a little better, but still heavily covered by	Poor
	4.02	trees.	
		Poor accessibility on both sides.	
		Concrete type culvert.	
		Culvert is dry/no flow.	

178	No	West side: 5~6 feet away, big tree roots in front of the culvert, blocking the flow. Far away, it is forest land	Acceptable
	3.20	with dense tall big tree roots, forming very special scenery not seen in other places along SR 9336. East side: 8~9 feet away, big tree roots in the front. Far away, it is forest land with dense tall big tree roots, which is similar to the other side.	-
		Flow monitoring: ok. Relatively hard to put staff gauge, especially on the west side. Concrete type culvert. Still water inside culvert/no flow.	
		Then just down the road, it is the "Coot Bay Pond \rightarrow " Sign.	

Notes:

- 1: Tag is actually found in the field, which is however incorrectly recorded as "No" on an old GIS map.
- 2: Tag can not found in the field, which is however incorrectly recorded as "Yes" on an old GIS map.
- 3: Condition "Good" means that it is a favorable site to conduct ADFM flow measurement and minor vegetation clearing-off may be required to install staff gauges on the site. Condition "Acceptable" means some efforts may be required in conducting flow measurement or some vegetation clearing-off may be required in installing staff gauges or both. Condition "Poor" means it is not a favorable site to conduct ADFM flow measurement. Major efforts and vegetation clearing-off are required if the site is chosen for flow measurement.

APPENDIX II – BASIC INFORMATION ON CULVERTS ALONG SR 9336 IN ENP

CUL_ NO	X_ COORD	Y_		TAGS	TAG	CUL_ DIAM	CUL_ TYPE	REMARKS	
	542458.95		0.25			_		Next to R158	
	542337.57	2808668.63		Yes	3.99	24	B1		After "EVERGLADES NATIONAL PARK" sign
2		2808611.48 2808555.64	0.33	Yes	4.25 4.50	24 24	B1 P1	Before entrance station	
3	342 190.02	2000333.04	0.42	No	4.00	24	B1	This culvert is twice as long due to split in road after entrance	
4	542065.67	2808512.33	0.51	Yes	4.77	24	B1	station.	
5	541947.57	2808483.35	0.59	Yes	4.79	24	B1	Has a double culvert on NE side. In front of Visitor center.	
6	541797.01	2808458.07	0.68	No	4.05	24	B1	Visitor center	
7	541419.01	2808467.96	0.95	No	5.10	24	B1	Culvert thick with vegetation	
8	541253.43	2808467.63	1.04	No	4.26	24	B2	Culvert is buried on North side, useless	First culvert after the park entrance
9	541107.33	2808514.58	1.12	Yes	4.33	24	B1	Long culvert cannot see through	
10	540851.84	2808610.54	1.29	No	4.73	24	B1	A Taylor Slough Culvert	
11	540716.68	2808681.43	1.38	No	4.87	24	B1	A Taylor Slough Culvert	
12	540583.75	2808756.71	1.48	Yes	4.84	24	B1	A Taylor Slough Culvert	
13	540462.92	2808825.18	1.56	Yes	4.75	24	B1	A Taylor Slough Culvert	
14	540321.29	2808906.19	1.67	Yes	5.07	24	B1	A Taylor Slough Culvert	
15	540184.77	2808982.53	1.76	Yes	4.75	24	B1	A Taylor Slough Culvert	
16	540052.84	2809057.79	1.86	No	4.69	24	B1	A Taylor Slough Culvert	
17	539921.02	2809132.76	1.95	Yes	4.03	36	B1	A Taylor Slough Culvert	1st culvert before the 1st bridge along SR 9336
18	539703.47	2809254.08	2.11	No	5.03	24	C1	A Taylor Slough Culvert	Destroyed due to the bridge built
19	539257.76	2809505.56	2.43	No	5.11	24	C2	A Taylor Slough Culvert	Destroyed due to the bridge built
20	539100.15	2809596.34	2.54	Yes	4.37	36	B1	A Taylor Slough Culvert	After "Royal Palm Turn Off – ¼ mile (0.4 km)" sign
21	538994.22	2809656.82	2.61	Yes	4.25	36	B1	A Taylor Slough Culvert	
22	538758.08	2809796.10	2.78	Yes	4.25	24	B2	A Taylor Slough Culvert	After "Royal Palm – ← Anhinga Trail" sign
23	537489.40	2810509.70	3.69	Yes	5.51	24	B2	A Taylor Slough Culvert. After road to Royal Palm.	
24	536202.74	2811021.52	4.59	Yes	5.43	24	B2	Next to Nts14. A year 94' BM next to culvert	
25	535137.33	2810983.43	5.18	No	5.48	24	B2	After road to Long Pine Key	After "← Long Pine Key – Flamingo 34 mile" sign
26	533859.40	2810967.83	6.02	Yes	5.48	24	B2		
27	532586.63	2811349.75	6.85	Yes	5.55	24	B2		
28	532199.98	2811588.06	7.13	Yes	5.80	24	B2		After "Pine Land → – Flamingo 32 mile" sign
29	530217.24	2813096.87	8.65	Yes	6.00	24	B2		
30	529445.83	2813200.77	9.12	No	5.60	24	B2		
31	528659.15	2813100.16	9.65	No	5.60	24	B2		

Table 16. Location and geometric properties of 178 culverts along SR 9336 in ENP

CUL_ NO	X_ COORD	Y_ Coord	MILES	TAGS	TAG ELEV_	CUL_ DIAM_	CUL_ TYPE	REMARKS	Locating culvert by Landmark
32	527107.12	2812782.49	10.66	Yes	5.17	24	B2	After old road to P-44	
33	525835.24	2812710.56		No	5.34	24	B2		
34	525275.50	2812775.18	11.81	No	4.22	24	B2	Right before Rock Reef sign	
35	525115.16	2812795.30	11.91	Yes	4.21	24	B2		After "Rock Reef Pass – Elevation 3 feet – 0.9 meter" sign
36	524810.50	2812804.05	12.18	No	4.25	24	B2		
37	524506.63	2812784.00	12.37	Yes	4.33	24	B2		
38	524174.43	2812726.50	12.59	Yes	4.25	24	B2		
39	523909.87	2812649.24	12.76	No	4.41	24	B2		
40	523600.70	2812522.40	12.85	No	4.48	24	B2		
41	523357.44	2812393.78	13.04	Yes	3.94	24	B2		
42	523104.33	2812221.28	13.16	No	4.29	24	B2	Before Pahayokee vista area	
43	522872.21	2812026.20	13.42	Yes	4.22	24		After Pahayokee	After "Pa-hay-okee" sign
44	522655.03	2811805.27	13.61	No	2.38	24	B2		
45	522471.75	2811570.90	13.79	No	2.52	24	B2		
46	522304.32	2811309.76	13.98	No	2.55	24	B2		
47	522180.17	2811083.63	14.16	No	2.61	24	B2		
48	522029.56	2810820.82	14.34	No	2.66	24	B2		
49	521857.91	2810533.84	14.53	No	2.68	24	B2		
50	521694.93	2810276.63	14.73	No	2.28	24	B2		
51	521525.23	2810023.61	14.92	No	2.60	24	B2		After "Dwarf Cypress Forest – Elev. 4ft (1.2m)" sign
52	521349.12	2809776.30	15.11	No	2.16	24	B2		
53	521162.31	2809534.38	15.30	No	2.26	24	B2		
54	520969.88	2809297.20	15.49	No	2.16	24	B2		
55	520768.27	2809063.84	15.68	No	2.94	24	B2		
56	519864.96	2808099.38	16.50	Yes	3.32	24	B2	After Sisal Pond	
57	519171.62	2807212.96	17.20	No	3.82	24	B2		
58	518690.92	2806431.05	17.77	No	3.24	24	B2		
59	518340.06	2805689.48	18.28	Yes	3.10	24	B2		
60	518087.15	2805000.68	18.74	Yes	3.75	24	B2		
61	517981.81	2803830.98	19.49	No	3.14	24	B2		
62	518060.77	2803502.00	19.68	No	3.04		B2		
63	518166.09	2803231.09	19.86	Yes	3.04	24	B2		
64	518342.25	2802923.66	20.08	No	2.78	24	B2		
65	518497.62	2802703.55	20.25	No	2.94	24	B2		
66	518714.16	2802484.67	20.44	Yes	3.15	24		Right after Mahogoney Hammock vista area	After "Mahagany Hammock → – Flamingo 18 mi †" sign
67	518947.57	2802293.71	20.63	Yes	3.08	24	B1		

CUL_ No	X_ COORD	Y_ Coord	MILES	TAGS	TAG ELEV_	CUL_ DIAM_	CUL_ TYPE	REMARKS	Locating culvert by Landmark
68	519216.34	2802140.05	20.82	Yes	2.76	24	B1		
69	519441.25	2802014.31	20.98	Yes	3.03	24	B1		
70	519715.09	2801800.74	21.20	Yes	3.02	24	B1		
71	519920.99	2801576.79	21.39	Yes	2.86	24	B1		
72	520080.96	2801326.29	21.54	No	2.86	24	B1		
73	520184.13	2801068.98	21.75	Yes	2.76	24	B1		
74	520254.57	2800772.84	21.94	Yes	2.96	24	B1		
75	520269.47	2800505.88	22.11	Yes	3.06	24	B1		After 75, the road is becoming very straight like a line
76	520267.96	2800152.84	22.33	No	3.67	24	A1	Culvert is right after old pump house road.	
77	520266.79	2799864.66	22.51	No	3.66	24	A1		
78	520269.10	2799557.98	22.70	No	3.55	24	A1		
79	520269.56	2799251.39	22.88	No	3.58	24	A1		
80	520267.84	2798946.87	23.07	Yes	3.67	24	A1		
81	520269.41	2798643.62	23.26	No	3.99	24	A1		
82	520268.32	2798336.80	23.45	Yes	3.53	24	A1		
83	520268.61	2798032.88	23.64	Yes	3.72	24	A1	BM 94 NL. side	,
84	520267.91	2797729.95	23.83	Yes	3.75	24	A1		
85	520265.71	2797418.11	24.02	Yes	3.47	24	A1		
86	520272.82	2797119.41	24.21	No	3.78	24	A1		
87	520269.01	2796816.69	24.40	Yes	3.50	24	A1	Has a 71' BM at culvert	
88	520270.36	2796507.03	24.59	No	3.56	24	A1		
89	520268.97	2796200.18	24.78	Yes	3.81	24		Has a '71 BM at culvert	
90	520271.45	2795896.44	24.97	Yes	3.66	24		Right after Paurotis Pond	After "Paurotis Pond – Flamingo 14 mi ∱" sign
91	520268.63	2795596.02		Yes	3.53	24	A1		
92	520268.84	2795421.61	25.26	Yes	3.53	24	A1		
93	520270.82	2795293.85		No	3.65	24	A1		
94	520270.07	2795137.61	25.44	No	3.58	24	A1		
95	520270.79	2794989.21	25.54	Yes	3.68	24	A1		
96 07	520270.96	2794835.35	25.64	Yes	3.41	24	A1		
97 00	520271.13	2794681.48		Yes	3.71	24			
98	520269.63	2794538.26			3.31	24	1.00		
99 100	520270.12	2794377.55		Yes	3.62	24	A1		
100	520269.91	2794205.20	26.02	No	3.57		A1		
101	520270.12	2794080.53	26.11	No	3.80 2.71	24 24			
102	520269.49	2793920.97	26.20	Yes	3.71 2 40		A1		
103	520269.75	2793771.53	26.29	Yes	3.48	24	A1		

CUL_ No	X_ COORD	Y_ COORD	MILES	TAGS	TAG ELEV_*	CUL_ DIAM_	CUL_ TYPE	REMARKS	Locating culvert by Landmark
104	520269.28	2793616.48	26.39	No	3.54	24	A1		
105	520266.65	2793439.97	26.50	No	3.64	24	A1		
106	520270.82	2793281.96	26.60	No	4.13	24	A1		
107	520270.49	2793125.87	26.69	Yes	3.71	24	A1		
108	520266.66	2793011.22	26.76	No	3.46	24	A1		
109	520270.64	2792868.07	26.85	No	3.78	24	A1		After "← Nine Mile Pond – Flamingo 11 mi" sign
110	520274.82	2792732.69	26.94	No	3.82	24	A1		
111	520268.39	2792569.57	27.04	No	3.24	24	A1	After nine mile pond	Road direction is changing to south west
112	520237.51	2792402.63	27.15	Yes	3.46	24	A1		
113	520184.98	2792261.53	27.24	Yes	3.04	24	A1		
114	520108.59	2792133.35	27.34	Yes	3.48	24	A1		
115	520008.37	2792012.94	27.43	Yes	3.72	24	A1		
116	519891.74	2791918.79	27.53	No	3.79	24	A1		
117	519765.08	2791834.20	27.63	Yes	3.57	24	A1		
118	519637.29	2791749.40	27.71	Yes	3.72	24	A1		
119	519505.31	2791661.09	27.81	No	2.10	24	B2		
120	519360.64	2791565.26	27.90	No	2.83	24	B1		
121	519271.20	2791499.81	27.99	Yes	2.90	24	B1		
122	519092.97	2791384.47	28.13	No	2.87	24	B1		
123	518954.48	2791287.98	28.23	No	2.81	24	B2		
124	518890.40	2791247.67	28.27	No	2.97	24	B1		
125	518753.61	2791154.82	28.38	No	2.94	24	B1		
126	518664.10	2791096.97	28.44	No	2.96	24	B1		
127	518542.86	2791013.44	28.54	No	3.05	24	B1		
128	518361.12	2790890.48	28.67	No	2.98	24	B2		
129	518240.43	2790810.94	28.77	No	2.70	24	B2		After "← Noble Hammock" sign
130	518176.07	2790767.44	28.81	No	2.82	24	B2		
131	518054.26	2790688.31	28.90	No	2.91	24	B2		
132	517875.20	2790566.61	29.04	No	2.44	24	B2		
133	517730.74	2790471.68		Yes	2.46	24	B2	After Hells Bay canoe trail.	After "Hell's Bay" sign
134	517626.95	2790400.29	29.26	No	2.60	24	B2		
135	517490.36	2790304.74	29.32	No	2.54	24	B2		
136	517378.72	2790230.55	29.41	Yes	2.67	24	B2		
137	517237.27	2790136.26	29.51	No	2.81	24	B2		
138	517108.86	2790050.13	29.61	No	2.59	24	B2		
139	516984.47	2789969.92	29.70	Yes	2.72	24	B2		

CUL_ No	X_ COORD	Y_ Coord	MILES	TAGS	TAG ELEV_	CUL_ DIAM_	CUL_ TYPE	REMARKS	Locating culvert by Landmark
140	516855.64	2789882.73	29.80	No	2.58	24	B2		
141	516742.27	2789802.04	29.88	No	3.32	24	B1		
142	516624.18	2789724.69	29.97	No	3.43	24	B1		
143	516476.62	2789625.41	30.08	No	3.50	24	B2		
144	516352.67	2789540.40	30.18	No	2.82	24	B2		
145	516227.61	2789452.73	30.27	No	2.48	24	B1		
146	516098.82	2789369.15	30.37	No	1.80	24	B2		
147	515975.32	2789284.55	30.46	No	2.41	24	B2		
148	515846.05	2789200.77	30.56	No	2.73	24	B2		
149	515720.35	2789115.92	30.65	No	2.69	24	B2		
151	515469.53	2788943.95	30.75	No	2.28	24	B2		
150	515594.33	2789028.71	30.84	No	2.68	24	B2		
152	515339.36	2788860.70	30.93	No	2.39	24	B2		
153	515157.57	2788735.55	31.07	No	2.46	24	B2		
154	515101.71	2788700.80	31.12	No	2.37	24	B2		
155	514936.85	2788588.42	31.24	No	3.56	24	B1		
156	514759.11	2788469.24	31.37	No	2.35	24	B1		After "← West Lake – Flamingo 7 mi ↑" sign
157	514683.38	2788417.54	31.43	No	2.48	24	B1		
158	514582.11	2788350.61	31.50	No	3.68	24	B2		
159	514456.44	2788266.11	31.60	No	2.47	24	B2		
160	514331.17	2788180.20	31.69	No	3.87	24	B2		
161	514203.64	2788095.86		No	3.34	24	A1		······
162	514078.59	2788010.48		Yes	4.48	24	A1		
163	513825.23	2787839.00	32.07	No	4.13	24	A1		
164	513571.15	2787671.07	32.26	No	4.14	24	A1		
165	513317.27	2787501.81	32.45	Yes	3.83	24	A1		
166	513065.77	2787329.77	32.64	No	4.02	24	A1		
167	512819.68	2787149.68	32.83	No	3.43	24	A1		
168	512572.61	2786973.64	33.02	No	3.86	24	A1		
169	512324.96	2786795.17	33.21	Yes	3.36	24			
170	512074.35	2786622.30			3.87				
171	511826.99	2786446.79		No	3.77	24	A1		
172	511575.67	2786273.88		No	3.63	24			
173	511323.66	2786098.26		Yes	3.84	24			
174	511100.26	2785895.13	34.15	No	3.78	24	A1		
175	510883.22	2785680.20	34.34	Yes	3.37	24	A1		

CUL_ NO	X_ COORD	Y_ COORD	MILES	TAGS	TAG ELEV_	CUL_ DIAM_	CUL_ TYPE	REMARKS	Locating culvert by Landmark
176	510677.73	2785449.72	34.53	No	2.92	24		Before Mrazek Pond	
177	510482.94	2785220.05	34.72	No	4.02	24	A1		
178	510304.97	2785012.90		No	3.20	24	40		

Notes:

+: TAG ELEV_(Tag Elevation) means the elevation where the tag is placed. The tag is flat round metal placed either on the top of the culvert or on the top of the vertical headwall above the culvert.

APPENDIX III – CULVERT TAG ELEVATION VERSUS MILEAGE ALONG SR 9336 IN ENP

Culvert			93. Culvert Tag Elevation	Culvert			Culvert Tag Elevation
No.	Tags	Mileage	in NGVD29 Datum	No.	Tags	Mileage	in NGVD29 Datum
INU.	Tags	(mi)	(ft)		rays	(mi)	(ft)
1	Yes	0.25	3.99	38	Yes	12.59	4.25
1 2	Yes	0.23	4.25	39	No	12.00	4.41
3	No	0.42	4.5	40	No	12.85	4.48
4	Yes	0.51	4.77	41	Yes	13.04	3.94
5	Yes	0.59	4.79	42	No	13.16	4.29
6	No	0.68	4.05	43	Yes	13.42	4.22
7	No	0.95	5.1	44	No	13.61	2.38
8	No	1.04	4.26	45	No	13.79	2.52
9	Yes	1.12	4.33	46	No	13.98	2.55
10	No	1.29	4.73	47	No	14.16	2.61
11	No	1.38	4.87	48	No	14.34	2.66
12	Yes	1.48	4.84	49	No	14.53	2.68
13	Yes	1.56	4.75	50	No	14.73	2.28
14	Yes	1.67	5.07	51	No	14.92	2.6
15	Yes	1.76	4.75	52	No	15.11	2.16
16	No	1.86	4.69	53	No	15.30	2.26
17	Yes	1.95	4.03	54	No	15.49	2.16
18	Culvert no longer exists Culvert no	2.11	5.03	55	No	15.68	2.94
19	longer exists	2.43	5.11	56	Yes	16.50	3.32
20	Yes	2.54	4.37	57	No	17.20	3.82
21	Yes	2.61	4.25	58	No	17.77	3.24
22	Yes	2.78	4.25	59	Yes	18.28	3.1
23	Yes	3.69	5.51	60	Yes	18.74	3.75
24	Yes	4.59	5.43	61	No	19.49	3.14
25	No	5.18	5.48	62	No	19.68	3.04
26	Yes	6.02	5.48	63	Yes	19.86	3.04
27	Yes	6.85	5.55	64	No	20.08	2.78
28	Yes	7.13	5.8	65	No	20.25	2.94
29	Yes	8.65	6	66	Yes	20.44	3.15
30	No	9.12	5.6	67	Yes	20.63	3.08
31	No	9.65	5.6	68	Yes	20.82	2.76
32	Yes	10.66	5.17	69	Yes	20.98	3.03
33	No	11.47	5.34	70	Yes	21.20	3.02
	No	11.81	4.22	71	Yes	21.39	2.86
35	Yes	11.91	4.21	72	No	21.54	2.86
36	No	12.18	4.25	73	Yes	21.75	2.76
37	Yes	12.37	4.33	74	Yes	21.94	2.96

Table 17. Elevation where the tag is punched onto the top of each of 178 culverts along SR $9336^{\rm +}$

Culvert			Culvert Tag Elevation	Culvert			Culvert Tag Elevation
No.	Tags	Mileage	in NGVD29 Datum	No.	Tags	Mileage	in NGVD29 Datum
		(mi)	(ft)			(mi)	(ft)
75	Yes	22.11	3.06	118	Yes	27.71	3.72
76	No	22.33	3.67	119	No	27.81	2.1
77	No	22.51	3.66	120	No	27.90	2.83
78	No	22.70	3.55	121	Yes	27.99	2.9
79	No	22.88	3.58	122	No	28.13	2.87
80	Yes	23.07	3.67	123	No	28.23	2.81
81	No	23.26	3.99	124	No	28.27	2.97
82	Yes	23.45	3.53	125	No	28.38	2.94
83	Yes	23.64	3.72	126	No	28.44	2.96
84	Yes	23.83	3.75	127	No	28.54	3.05
85	Yes	24.02	3.47	128	No	28.67	2.98
86	No	24.21	3.78	129	No	28.77	2.7
87	Yes	24.40	3.5	130	No	28.81	2.82
88	No	24.59	3.56	131	No	28.90	2.91
89	Yes	24.78	3.81	132	No	29.04	2.44
90	Yes	24.97	3.66	133	Yes	29.14	2.46
91	Yes	25.16	3.53	134	No	29.26	2.6
92	Yes	25.26	3.53	135	No	29.32	2.54
93	No	25.35	3.65	136	Yes	29.41	2.67
94	No	25.44	3.58	137	No	29.51	2.81
95	Yes	25.54	3.68	138	No	29.61	2.59
96	Yes	25.64	3.41	139	Yes	29.70	2.72
97	Yes	25.73	3.71	140	No	29.80	2.58
98	Yes	25.82	3.31	141	No	29.88	3.32
99	Yes	25.92	3.62	142	No	29.97	3.43
100	No	26.02	3.57	143	No	30.08	3.5
101	No	26.11	3.8	144	No	30.18	2.82
102	Yes	26.20	3.71	145	No	30.27	2.48
103	Yes	26.29	3.48	146	No	30.37	1.8
104	No	26.39	3.54	147	No	30.46	2.41
105	No	26.50	3.64	148	No	30.56	2.73
106	No	26.60	4.13	149	No	30.65	2.69
107	Yes	26.69	3.71	150	No	30.75	2.28
108	No	26.76	3.46	151	No	30.84	2.68
109	No	26.85	3.78	152	No	30.93	2.39
110	No	26.94	3.82	153	No	31.07	2.46
111	No	27.04	3.24	154	No	31.12	2.37
112	Yes	27.15	3.46	155	No	31.24	3.56
113	Yes	27.24	3.04	156	No	31.37	2.35
114	Yes	27.34	3.48	157	No	31.43	2.48
115	Yes	27.43	3.72	158	No	31.50	3.68
116	No	27.53	3.79	159	No	31.60	2.47
117	Yes	27.63	3.57	160	No	31.69	3.87

Culvert			Culvert Tag Elevation	Culvert			Culvert Tag Elevation
No.	Tags	Mileage	in NGVD29 Datum	No.	Tags	Mileage	in NGVD29 Datum
		(mi)	(ft)			(mi)	(ft)
161	No	31.79	3.34	170	No	33.40	3.87
162	Yes	31.88	4.48	171	No	33.59	3.77
163	No	32.07	4.13	172	No	33.78	3.63
164	No	32.26	4.14	173	Yes	33.96	3.84
165	Yes	32.45	3.83	174	No	34.15	3.78
166	No	32.64	4.02	175	Yes	34.34	3.37
167	No	32.83	3.43	176	No	34.53	2.92
168	No	33.02	3.86	177	No	34.72	4.02
169	Yes	33.21	3.36	178	No	34.91	3.2

Notes: +: The tag is placed either on the top of the culvert or on the top of the vertical headwall above the culvert.

Figure 28. Culvert tag elevation versus mileage along SR 9336 in ENP^+

Notes:

+: Culvert tag elevation refers to the notes in Appendix II.

APPENDIX IV – SURVEY SUPPORT FOR STAFF GAUGE INSTALLATION ALONG SR 9336 IN THE EVERGLADES NATIONAL PARK

Introduction

To support the RECOVER and CERP projects, the South Florida Water Management District (District) has initiated a flow monitoring project in the Everglades National Park (ENP), which is undertaken by Hydrogage, Inc. The flow measurement outcomes will be used to establish rating curves and relationships for flow across the culverts along the main park road in ENP.

US Geological Survey (USGS) in Miami also has monitoring needs in ENP to support its modeling efforts. It has been identified that some staff gauges need to be installed along the main park road. Thus corresponding survey work is required to support this task. USGS has taken the role to install the gauges.

Scope of Work

The staff gauges are to be installed at the close vicinity of selected culvert sites. Survey work is to be started from the closest benchmark point of a culvert site. The survey will provide baseline elevation reference to install one staff gauge on each side of the road. In addition to this, 4 elevation readings will be taken for each culvert: 2 invert elevation values and 2 culvert top height readings. The culvert invert point and top point are in the same vertical line. The culvert top points to be surveyed are to be marked by paint before the survey work is started. The following two tables contain some of basic information needed for the survey work.

0.1	<u> </u>		
Culvert	Staff Gauge	Benchmark to be used	Observation &
No.		for survey work	Comment
11	Proposed site of new staff gauge pair	H432 It is just around 20 feet away from culvert 13 on the east side. GPS position readings: W 80°35'50.8" N 25°23'50.9"	To be used to monitor the water level in the upper reach of SR 9336
24	South side: gauge condition is good. North side: gauge pole is there. We may need to put a gauge on the pole.	M432 It is just beside the culvert on north side.	There is a groundwater transducer on north side.

Table 18. Staff gauge sites and closest benchmarks

Culvert	Staff Gauge	Benchmark to be used	Observation &
No.	Starr Stage	for survey work	Comment
30	Proposed site of new staff gauge pair	R432 It is between culvert 29 & 30 on the north side of road, about 300 feet down the road from culvert 29.	To be used to monitor the water level in the upper reach of SR 9336
34	Proposed site of new	GPS position readings: W 80°42'00.4" N 25°26'11.7" Supposed benchmark:	
	staff gauge pair	U432 To be identified	
43	A pair of gauges have been installed	V432 It is located inside the intersection triangle lot of the main park road and Pahayokee road.	West side: gauge is eroded. The numbers and markings on the gauge have faded. A replacement for this is needed. East side: gauge is normal.
59	There is only one staff gauge on the west side of the road. Another staff gauge needs to be installed on the east side of the road.	A433 It is located on the west side of road, about 6 feet down the road from culvert 59.	The analysis on the flow data of this site shows that head water – tail water difference and flow rate exhibits a good relationship.
69	Proposed site of new staff gauge pair	D433 It is located between culvert 69 and 70, about 20 ft in the north from Culvert 70.	To be used to monitor the water level in the middle reach of SR 9336
77	Proposed site of new staff gauge pair	Supposed benchmark: E433 Need to be identified.	To be used to monitor the water level in the middle reach of SR 9336
89	A pair of gauges have been installed	Supposed benchmark: G433 Need to be identified.	Staff gauge readings faded. Gauges need to be replaced on both sides.

Culvert	Staff Gauge	Benchmark to be used	Observation &
No.	Ŭ	for survey work	Comment
108	Proposed site of new staff gauge pair	Supposed benchmark: H433 Need to be identified.	
118	Proposed site of new staff gauge pair	Supposed benchmark: FLGPS THOMPSON 1989 or FLGPS THOMPSON AZ M Need to be identified.	To be used to monitor the water level in the lower reach of SR 9336
143	Proposed site of new staff gauge pair	Supposed benchmark: K433 Need to be identified.	To be used to monitor the water level in the lower reach of SR 9336
170	Proposed site of new staff gauge pair	Supposed benchmark: N433 Need to be identified.	To be used to monitor the water level in the lower reach of SR 9336
P1	Pa-Hay-Okee visitor vista road staff gauge pair. W 80°46.544 N 25°265.895	V432 It is located inside the intersection triangle lot of the main park road and Pahayokee road	To help document the influence of the Pay-Hay-Okee road on flows across SR9336
S1 and SR2	ENP gauges along SR9336 . Located north of Culvert 59	Supposed benchmark: Z432 Need to be identified.	To be used to help verify ENP water levels and in conjunction with USGS marsh flow meters.

Table 19. Benchmarks along SR 9336 in the Everglades National Park

ID	EASTING	NORTHING	LONGITUDE	LATITUDE	MARKER	NAVD 88 (ft)
1	542969.81	2808912.50	80:34:22.1W	25:23:52.3N	lame az mk 1961/197	
2	542464.50	2808670.50	80:34:40.2W	25:23:44.5N	F432 1994	4.55
3	541214.25	2808516.75	80:35:25.0W	25:23:39.6N	G432	4.81
4	540466.38	2808822.25	80:35:51.7W	25:23:49.6N	H432	3.92
5	539463.94	2809387.25	80:36:27.5W	25:24:08.1N	J432	6.13
6	538998.38	2809652.25	80:36:44.1W	25:24:16.7N	K432	4.41
7	537645.75	2810421.00	80:37:32.5W	25:24:41.9N	L432	4.53
8	536205.25	2811020.25	80:38:24.0W	25:25:01.5N	M432	5.37
9	534638.06	2810966.50	80:39:20.1W	25:24:59.9N	N432	4.4
10	533022.38	2811157.50	80:40:17.9W	25:25:06.2N	P432	4.85
11	531755.25	2811958.50	80:41:03.2W	25:25:32.3N	Q432	4.99
12	530129.00	2813119.75	80:42:01.3W	25:26:10.2N	R432	5.35

-	1
n	1
o	л

ID	EASTING	NORTHING	LONGITUDE	LATITUDE	MARKER	NAVD 88 (ft)
13	528078.63	2812980.25	80:43:14.7W	25:26:05.8N	S432	4.59
14	526345.13	2812701.50	80:44:16.8W	25:25:56.9N	T432	4.47
15	524778.19	2812806.00	80:45:12.9W	25:26:00.4N	U432	3.45
16	523010.16	2812155.75	80:46:16.2W	25:25:39.3N	V432	4.98
17	522031.03	2810822.50	80:46:51.4W	25:24:56.0N	W432	3.32
18	521141.28	2809507.00	80:47:23.3W	25:24:13.3N	X432	3.45
19	520037.69	2808283.50	80:48:02.9W	25:23:33.6N	Y432	3.41
20	519026.28	2806987.25	80:48:39.1W	25:22:51.5N	Z432	2.92
21	518344.34	2805689.25	80:49:03.6W	25:22:09.3N	A433	2.87
22	517950.13	2804144.50	80:49:17.8W	25:21:19.1N	B433	2.82
23	518615.66	2802572.25	80:48:54.0W	25:20:28.0N	C433	3.5
24	519712.44	2801806.75	80:48:14.8W	25:20:03.0N	D433	2.65
25	520268.72	2800179.75	80:47:55.0W	25:19:10.1N	E433	2.25
26	520278.69	2798041.75	80:47:54.8W	25:18:00.6N	F433	2.58
27	520278.47	2796140.25	80:47:54.9W	25:16:58.8N	G433	2.3
28	520279.50	2794087.00	80:47:55.0W	25:15:52.0N	H433	2.18
29	520036.25	2792020.25	80:48:03.8W	25:14:44.9N	PINKS 1961	
20	£1000 C 00	0701007 75	80.48.05 334	25-14-42 931	FLGPS THOMPSON	2.00
	519996.00	2791987.75	80:48:05.2W	25:14:43.8N	1989 FLGPS THOMPSON	2.69
31	519514.94	2791651.25	80:48:22.4W	25:14:32.9N	AZM	1.68
32	517788.13	2790492.25	80:49:24.2W	25:13:55.3N	J433	1.84
33	516317.31	2789503.50	80:50:16.8W	25:13:23.2N	K433	2.05
34	514868.38	2788523.75	80:51:08.6W	25:12:51.4N	L433	1.77
35	513087.75	2787337.25	80:52:12.3W	25:12:12.9N	M433	2.32
36	512225.97	2786718.50	80:52:43.1W	25:11:52.8N	N433	2.5
37	510999.25	2785782.75	80:53:27.0W	25:11:22.4N	P433	2.45
38	510307.72	2785015.25	80:53:51.7W	25:10:57.5N	872 3644 N TIDAL	1.58
39	510300.88	2784951.75	80:53:52.0W	25:10:55.4N	872 3644 L TIDAL	1.29
40	509358.00	2783884.25	80:54:25.7W	25:10:20.7N	Q433	2.5
41	508771.31	2782441.75	80:54:46.7W	25:09:33.8N	R433	3.11
42	508061.38	2781491.75	80:55:12.1W	25:09:02.9N	872 3644 K TIDAL	1.38
43	507785.25	2781260.75	80:55:21.9W	25:08:55.4N	MARKED 17.36	15.04
44	507784.38	2781249.25	80:55:22.0W	25:08:55.1N	FCE 3803	
45	507679.41	2780591.00	80:55:25.7W	25:08:33.7N	MLW G	
46	507681.88	2780648.50	80:55:25.6W	25:08:35.5N	872 3644 TIDAL 1	2.79

Notes:

NAVD 88 values are excerpted from the web site of the National Geodetic Survey http://www.ngs.noaa.gov/

APPENDIX V – SURVEY SUMMARY SHEET FOR CULVERTS ALONG SR 9336 IN ENP

	NAVD88 elevation								GPS position reading							
	Staff gauge tube Top of p			fpipe				Invert	Top of pipe			Invert of pipe				
Culvert	North/	South/	North/	South/	North/	South/	North/	South/	North/West si	de coordinate	South/East si	de coordinate	North/West si	de coordinate	South/East sig	de coordinate
No.	West	East	West	East	West	East	West	East	Northing	Easting	Northing	Easting	Northing	Easting	Northing	Easting
	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)
11	4.71	4.9	3.52	3.74	1.26	1.47	2.26	2.27	386448.9	789878.7	386403.5	789854.8	386449.6	789879.2	386403.6	789855.2
24	5.73	6.02	4	3.97	1.75	1.72	2.25	2.25	394130.5	775059	394079.9	775060.9	394129.3	775060.2	394079.1	775061.1
30	5.71	5.26	4.12	4.23	1.86	1.99	2.26	2.24	401282.1	752883	401231.4	752884.4	401281.7	752884.3	401232.1	752884.6
34	4.06	5.01	2.65	2.53	0.4	0.29	2.25	2.24	399879.3	739197.9	399832.8	739192.1	399878.4	739198.4	399832.6	739192.7
43	3.06	2.96	2.62	2.71	0.19	0.4	2.43	2.31	397429.6	731301.9	397394.9	731336.3	397434	731297.7	397392.2	731339.2
59	1.66	1.14	1.43	1.45	-0.84	-0.82	2.27	2.27	376623.1	716438.8	376608.8	716481.3	376624	716436	376605.9	716485.3
69	0.91	2.14	1.4	1.35	-0.86	-0.9	2.26	2.25	364563.7	720041.3	364605.5	720067.3	364561.1	720039.7	364611.1	720068.8
77	2.34	2.67	1.22	1.32	-0.77	-0.77	1.99	2.09	357500.1	722768	357500.3	722809.7	357500.3	722766	357500.8	722809.8
89	2.83	2.55	2.38	2.16	-0.58	-0.73	2.96	2.89	345494.2	722766.7	345491.6	722811	345492.7	722768.1	345491.7	722808.1
108	1.47	1.44	0.92	1.01	-1.08	-1.05	2	2.06	335017.9	722770.8	335017.1	722813.1	335019.2	722772.3	335019.6	722810.9
118	2.4	1.91	2.26	2.28	-0.65	-0.69	2.91	2.97	330873.5	720693.2	330841	720716.4	330874.1	720693.2	330841.4	720716.6
143	1.45	1.29	1.87	1.64	-0.39	-0.62	2.26	2.26	323905.3	710321.4	323870	710347.5	323906.1	710319.2	323868.3	710347.7
170	1.7	2.88	2.2	2.14	-0.55	-0.63	2.75	2.77	314055.6	695863	314024.9	695888.6	314056.9	695863.2	314024.2	695887.6

Table 20. Survey summary for the culverts and staff gauge tubes in the selected monitoring sites

APPENDIX VI – COMPARISON OF ELEVATION VALUES ON THE CULVERT TAGS WITH LAND SURVEY RESULTS OF THIS PROJECT

Originally when the culverts were buried under SR 9336 in ENP, a tag was placed at each culvert site. It is either on the top of the pipe or on the top of the vertical headwall above the pipe. Table 17 contains the elevation where each tag is placed. When the staff gauges were to be installed in 2004, a survey work was conducted in 13 representative culvert sites. Elevations of the culvert inverts and tops were surveyed. Listed below in Table 21 are the comparison of the above two sources, surveyed in different years.

Culvert No.	Elevation of point where culvert tag is placed (see Table 17)	Results from the survey conducted in 2004 for the project	Comparison			
(1)	NAVD 29 (ft)	NAVD 29 (ft)				
(1)	(2)	(3)				
11	4.87	Top of culvert: Northern: 5.11 Southern: 5.33	Columns (2) & (3) should be close. But actually the difference is significant.			
24	5.43	Top of culvert: Northern: 5.59 Southern: 5.56	Columns (2) & (3) should be close. But actually the difference is distinguishable.			
30	5.6	Top of culvert: Northern: 5.71 Southern: 5.82	Columns (2) & (3) should be close. But actually the difference is distinguishable.			
34	4.22	Top of culvert: Northern: 4.24 Southern: 4.12	Column (2) and the value for the northern side of column (3) have little difference.			
43	4.22	Top of culvert: North/West: 4.21 South/East: 4.30	Column (2) and the value for the North/West side of column (3) are almost the same.			
59	3.1	Top of culvert: West: 3.02 East: 3.04	Columns (2) & (3) should be close. But actually the difference is distinguishable.			
69	3.03	Top of culvert: North/East: 2.57 South/West: 2.62	Columns (2) & (3) should be close. But actually the difference is significant.			

Table 21. Comparison of elevation values on the culvert tags with the results of survey in 2004

77	3.66	Top of culvert: West: 2.81 East: 2.91	This culvert has vertical headwall at its entrance. The tag is on the top of the headwall. So the tag elevation is higher than that of the culvert top. Columns (2) & (3) can not be compared.
89	3.81	Top of the headwall: West: 3.60 East: 3.38	This culvert has vertical headwall at its entrance. The tag is on the top of the headwall in the west side. The difference between Column (2) and the value for the West side of column (3) is significant.
108	3.46	Top of culvert: West: 2.60 East: 2.51	This culvert has vertical headwall at its entrance. The tag is on the top of the headwall. So the tag elevation is higher than that of the culvert top. Columns (2) & (3) can not be compared.
118	3.72	Top of the headwall: North/West: 3.85 South/East: 3.87	This culvert has vertical headwall at its entrance. The tag is on the top of the headwall. The difference between Columns (2) and (3) is distinguishable.
143	3.5	Top of culvert: North/West: 3.46 South/East: 3.23	Column (2) and the value for the North/West side of column (3) have a small difference.
170	3.87	Top of the headwall: North/West: 3.79 South/East: 3.73	This culvert has vertical headwall at its entrance. The tag is on the top of the headwall. The difference between Columns (2) and (3) is distinguishable.

From the comparison in Table 21, it is seen that significant or distinguishable differences exist between the tag elevations listed in Table 17 and the elevations surveyed in 2004. The survey conducted in 2004 was based on the Vertical Control Marks (benchmarks) installed by the National Geodetic Survey in 1994, which is accurate. Data in Table 17 was based on an old datum system, which is less accurate. So when we use the data in Table 17 to represent elevations of the culverts along SR 9336 for monitoring or modeling purposes, discretions must be employed. If accurate elevation data is required, then a new survey based on the Vertical Control Marks of 1994 is preferred.

APPENDIX VII – FLOW MEASUREMENT RECORDS FOR CULVERTS ALONG SR 9336 IN ENP

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-08-04	13:40 to 14:10	3.321	1.399	2.45	1.356	North to south	2.95	2.88
2004-10-19	11:58 to 12:35	4.400	1.463	2.576	1.708	North to south		2.96
2004-10-21	12:56 to 13:40	4.331	1.479	2.606	1.662	North to south		2.975
2004-11-03	15:50 to 16:51	0.750	1.201	2.046	0.367	North to south		2.69
2004-11-04	15:41 to 16:21	0.635	1.201	2.046	0.311	North to south		2.675
2004-11-05	12:52 to 13:26	0.931	1.166	1.974	0.472	North to south		2.665

Table 22. Flow measurement records at Culvert 11

Table 23. Flow measurement records at Culvert 24

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft*/s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-08-04	14:55 to 15:27	2.290	1.96	3.127	0.733	North to south	4.03	3.96
2004-08-18	14:10	1.031	2.24	3.142	0.328	North to south	3.96	3.88
2004-08-25	12:45	0.314	2.13	3.142	0.1	North to south	3.86	3.8
2004-09-01	12:00	0	2.06	3.142	0	North to south	3.78	3.74
2004-10-19	13:15	1.128	2.24	3.142	0.359	North to south	3.98	3.9

Table 24. Flow measurement records at Culvert 30

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft³/s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-08-04	16:05 to 16:35	0.607	1.926	3.326	0.183	North to South	3.91	3.84
2004-08-11	12:15	1.247	1.73	3.053	0.409	North to South	3.71	3.68
2004-08-18	15:20	2.307	2.09	3.462	0.666	North to South	4.07	4.05
2004-08-27	11:35	0.724	1.67	2.954	0.245	North to South	3.66	3.64
2004-09-01	14:00	0.921	1.72	3.036	0.303	North to South	3.705	3.69
2004-09-16	17:45	0.000	1.36	2.373	0		3.36	3.34
2004-09-24	11:00	0.000	1.46	2.570	0		3.46	3.45
2004-10-01	13:50		1.52	2.685			3.5	3.5
2004-10-05	14:00		1.3	2.252			3.28	3.29
2004-10-14	11:50		1.34	2.333			3.34	3.34
2004-10-19	14:10 to 14:58	0.793	1.854	3.236	0.245	North to South	3.86	3.82
2004-11-04	15:15		1.36	2.373			3.35	3.34

Table 25. Flow measurement records at Culvert 34

Date	Time	Flow	Depth of		Mean velocity	Flow direction	Head Tail
Buto	11110	11011		01	, voicenty	anoonon	In all In all

			water	flow				
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-28	13:30	2.021	1.9	3.296	0.613	North to South	3.16	3.16
2004-08-06	10:15	5.289	2.05	3.442	1.537	North to South	2.38	2.31
2004-08-11	14:36 to 15:10	6.097	1.959	3.362	1.814	North to South	2.26	2.21
2004-08-11	14:36 to 15:10	3.706	1.959	3.363	1.102	North to South	2.26	2.21
2004-08-18	16:15	5.483	2.25	3.464	1.583	North to South	2.57	2.5
2004-08-27	10:55	3.361	2	3.403	0.987	North to South	2.3	2.275
2004-09-01	14:58 to 15:43	8.134	1.886	3.278	2.482	North to South	2.24	2.18
2004-09-01	16:00	2.871	1.93	3.332	0.862	North to South	2.24	2.18
2004-09-16	17:15	0.236	1.66	2.937	0.081	North to South	1.96	1.94
2004-09-23	16:40	1.490	1.81	3.175	0.469	North to South	2.1	2.07
2004-10-01	13:10	1.715	1.83	3.203	0.536	North to South	2.12	2.08
2004-10-05	14:45	0.656	1.74	3.068	0.214	North to South	2.03	2.01
2004-10-14	11:20	0.0	1.79	3.145	0.0		2.08	2.07
2004-10-19	15:30	5.603	2.23	3.464	1.617	North to South	2.582	2.5
2004-11-05	12:15	1.007	1.83	3.203	0.314	North to South	2.115	2.09

Table 26. Flow measurement records at Culvert 43

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-28	15:00	4.622	1.25	2.149	2.151	South/East to North/West	1.69	1.58
2004-08-06	11:06 to 11:31	5.613	1.291	2.233	2.513	South/East to North/West	1.86	1.7
2004-08-12	17:27 to 18:00	3.481	1.216	2.078	1.676	South/East to North/West	1.7	1.64
2004-08-20	13:02 to 13:30	7.831	1.405	2.461	3.182	South/East to North/West	2.09	1.84
2004-08-26	16:22 to 16:53	5.984	1.434	2.518	2.377	South/East to North/West	1.99	1.83
2004-09-15	12:49 to 13:41	3.117	1.168	1.978	1.576	South/East to North/West	1.58	1.57
2004-09-16	16:30	1.478	1.18	2.004	0.737	South/East to North/West	1.55	1.545
2004-09-22	12:59 to 13:44	2.565	1.24	2.129	1.205	South/East to North/West	1.690	1.66
2004-09-29	16:51 to 17:08	1.550	1.234	2.114	0.733	South/East to North/West	1.63	1.64
2004-10-05	15:50 to 16:51	1.560	1.269	2.186	0.713	South/East to North/West	1.685	1.68
2004-10-12	11:49 to 12:50	0.542	1.232	2.111	0.257	South/East to North/West	1.645	1.64
2004-10-19	15:55 to 16:31	8.310	1.588	2.809	2.958	South/East to North/West	2.245	2.02

Table 27. Flow measurement records at Culvert 59

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-06-16	16:55	2.748	1.204	2.054	1.338	East to west	0.4	0.27
2004-07-23	10:25	2.657	1.198	2.041	1.302	East to west	0.42	0.32
2004-07-28	16:00	5.206	1.5	2.647	1.967	East to west	1.04	0.51
2004-08-06	12:09	7.825	1.467	2.583	3.029	East to west	0.89	0.54
2004-08-12	16:14	5.609	1.45	2.55	2.2	East to west	0.7	0.52
2004-08-20	11:54	11.146	1.677	2.965	3.759	East to west	1.21	0.76

2004-08-26	15:22	8.741	1.709	3.017	2.897	East to west	1.08	0.8
2004-09-15	14:11	4.877	1.465	2.579	1.891	East to west	0.69	0.57
2004-09-22	14:13	3.855	1.471	2.59	1.488	East to west	0.75	0.61
2004-10-01	11:38	2.296	1.527	2.697	0.851	East to west	0.74	0.7
2004-10-06	15:16	2.487	1.428	2.507	0.992	East to west	0.62	0.58
2004-10-12	14:09	2.015	1.396	2.445	0.824	East to west	0.6	0.55
2004-10-21	10:41	11.023	1.769	3.112	3.542	East to west	1.32	0.93

Table 28. Flow measurement records at Culvert 69

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-23	12:00	0.607	1.03	1.661	0.365	North/East to South/West	0.15	0.14
2004-07-29	10:21 to 11:10	4.543	1.426	2.447	1.857	North/East to South/West	0.62	0.52
2004-08-05	15:40 to 15:55	4.919	1.399	2.396	2.053	North/East to South/West	0.71	0.57
2004-08-12	15:18 to 15:40	4.476	1.27	2.144	2.088	North/East to South/West	0.41	0.36
2004-08-19	14:39 to 15:08	5.147	1.498	2.581	1.994	North/East to South/West	0.73	0.58
2004-08-26	14:28 to 14:56	3.662	1.432	2.459	1.489	North/East to South/West	0.59	0.50
2004-09-15	15:28 to 16:08	1.650	1.236	2.077	0.795	North/East to South/West	0.38	0.34
2004-09-16	15:45	1.526	1.18	1.967	0.776	North/East to South/West	0.35	0.31
2004-09-22	15:24 to 16:04	2.201	1.266	2.138	1.029	North/East to South/West	0.4	0.36
2004-09-30	16:16 to 16:51	0.832	1.3	2.204	0.378	North/East to South/West	0.43	0.4
2004-10-07	10:14 to 11:10	0.719	1.129	1.860	0.387	North/East to South/West	0.22	0.2
2004-10-12	15:17 to 16:01	1.035	1.066	1.733	0.597	North/East to South/West	0.18	0.16
2004-10-21	11:34 to 12:16	7.755	1.596	2.752	2.817	North/East to South/West	0.94	0.71

Table 29. Flow measurement records at Culvert 77

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-22	15:30	0.000	0.65	0.885	0.0	East to west	-0.17	-0.19
2004-07-29	11:45	3.125	0.95	1.471	2.124	East to west	0.3	0.22
2004-08-05	14:21 to 14:52	4.872	1.157	1.884	2.585	East to west	0.52	0.33
2004-08-12	14:24 to 14:37	3.271	1.007	1.586	2.063	East to west	0.27	0.18
2004-08-20	11:01 to 11:25	3.119	1.067	1.705	1.829	East to west	0.37	0.25
2004-08-26	13:43 to 14:01	2.468	1.039	1.648	1.497	East to west	0.305	0.21
2004-09-15	16:32 to 17:15	3.523	1.073	1.717	2.052	East to west	0.35	0.25
2004-09-23	15:18 to 15:51	2.679	1.012	1.596	1.779	East to west	0.26	0.23
2004-09-30	15:30 to 15:48	2.230	1.204	1.976	1.129	East to west	0.38	0.38
2004-10-07	11:36 to 12:52	1.403	0.969	1.509	0.93	East to west	0.17	0.165
2004-10-14	10:30	1.140	0.9	1.371	0.832	East to west	0.13	0.12
2004-10-20	15:07 to 15:30	5.178	1.27	2.104	2.461	East to west	0.59	0.442

Table 30. Flow measurement records at Culvert 89

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-22	12:30	0.333	0.3	0.295	1.128	West to east	-0.18	-0.28
2004-07-29	13:00	0.500	0.35	0.369	1.355	West to east	-0.13	-0.22
2004-08-05	13:30	1.178	0.8	1.173	1.004	West to east	0.26	0.22
2004-08-12	12:50	0.725	0.65	0.885	0.819	East to west	-0.03	-0.03
2004-08-20	10:00	1.308	0.63	0.848	1.542	East to west	0	-0.06
2004-08-26	11:55	0.951	0.6	0.793	1.200	East to west	-0.05	-0.09
2004-09-16	14:25 to 15:03	3.399	0.972	1.514	2.244	East to west	0.31	0.095
2004-09-23	14:09 to 14:45	2.748	0.935	1.442	1.906	East to west	0.24	0.1
2004-09-30	14:09 to 14:40	1.057	1.137	1.846	0.573	East to west	0.365	0.340
2004-10-06	14:12 to 14:48	2.275	0.899	1.370	1.661	East to west	0.21	0.060
2004-10-13	14:39 to 15:20	2.365	0.869	1.309	1.808	East to west	0.15	0.020
2004-10-20	14:10 to 14:44	3.242	1.099	1.769	1.834	East to west	0.405	0.270
2004-11-05	10:00 to 10:39	1.649	0.834	1.240	1.330	East to west	0.105	-0.025

Table 31. Flow measurement records at Culvert 108

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft³/s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-29	14:00	0.591	0.78	1.162	0.509	West to east	-0.27	-0.42
2004-08-05	12:15	1.166	0.98	1.572	0.742	West to east	-0.05	-0.08
2004-08-12	12:15	0.371	1.01	1.634	0.227	East to west	-0.1	-0.12
2004-08-19	12:00	0.803	1	1.613	0.498	East to west	-0.09	-0.13
2004-08-26	11:00	0.513	0.96	1.530	0.335	East to west	-0.1	-0.14
2004-09-16	12:57 to 13:55	2.987	1.133	1.887	1.583	East to west	0.23	0.160
2004-09-23	12:49 to 13:39	2.383	1.101	1.822	1.308	East to west	0.18	0.140
2004-09-30	13:06 to 13:42	0.657	1.329	2.285	0.288	East to west	0.34	0.325
2004-10-06	12:50 to 13:45	1.900	1.099	1.817	1.045	East to west	0.165	0.110
2004-10-13	13:31 to 14:14	1.544	1.035	1.685	0.916	East to west	0.11	0.070
2004-10-20	13:08 to 13:46	2.427	1.265	2.158	1.125	East to west	0.33	0.280
2004-11-05	11:00 to 11:31	0.742	1.03	1.675	0.443	East to west	0.06	0.030

Table 32. Flow measurement records at Culvert 118

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-29	15:00	0.410	0.42	0.482	0.849	West to east	-0.220	-0.26
2004-08-05	11:15	0.930	0.58	0.761	1.223	West to east	-0.070	-0.14
2004-08-12	10:45	0.209	0.59	0.779	0.268	East to west	-0.09	-0.090
2004-08-19	11:15	0.360	0.57	0.743	0.485	East to west	-0.09	-0.100
2004-08-26	10:20	0.277	0.55	0.706	0.392	East to west	-0.11	-0.120
2004-09-16	11:30 to 12:26	1.684	0.906	1.392	1.210	East to west	0.28	0.190
2004-09-23	11:41 to 12:20	1.692	0.843	1.267	1.335	East to west	0.215	0.165

2004-09-30	11:52 to 12:40	0.307	1.01	1.591	0.193	East to west	0.36	0.350
2004-10-06	11:26 to 12:22	1.648	0.804	1.188	1.387	East to west	0.195	0.155
2004-10-13	12:11 to 13:07	0.837	0.805	1.191	0.703	East to west	0.15	0.115
2004-10-20	11:59 to 12:45	1.176	1.001	1.583	0.743	East to west	0.345	0.300
2004-11-04	13:53 to 14:41	0.686	0.807	1.195	0.574	East to west	0.085	0.060

Table 33. Flow measurement records at Culvert 143

Date	Time	Flow	Depth of water	Area of flow	Mean velocity	Flow direction	Head water	Tail water
(yyyy-mm-dd)	(hh:mm to hh:mm)	(ft ³ /s)	(ft)	(ft ²)	(ft/s)		(ft)	(ft)
2004-07-30	10:30	0.262	0.56	0.741	0.353	West to East	-0.04	-0.07
2004-08-05	10:30	0.348	0.59	0.798	0.436	West to East	-0.01	-0.05
2004-08-19	10:30	0.124	0.29	0.289	0.429	East to West	-0.105	-0.13
2004-08-26	9:45	0.089	0.28	0.275	0.324	East to West	-0.12	-0.15
2004-09-16	11:00	0.947	0.62	0.855	1.108	East to West	0.26	0.2
2004-09-23	10:50	0.583	0.56	0.741	0.786	East to West	0.19	0.14
2004-09-30	11:10	0.243	0.77	1.151	0.211	East to West	0.365	0.355
2004-10-06	11:00	0.568	0.55	0.723	0.786	East to West	0.185	0.145
2004-10-13	11:30	0.372	0.5	0.632	0.588	East to West	0.155	0.095
2004-10-20	11:30	0.527	0.7	1.011	0.521	East to West	0.315	0.285
2004-11-04	13:00	0.340	0.45	0.544	0.625	East to West	0.07	0.025

Table 34. Flow measurement records at Culvert 170

Date	Time (hh:mm to hh:mm)	Flow (ft ³ /s)	Depth of water (ft)	Area of flow (ft ²)	Mean velocity (ft/s)	Flow direction	Head water (ft)	Tail water (ft)
2004-07-30	11:30	0.196	0.68	0.957	0.205	East to West		0.09
2004-09-16	10:10	0.270	0.83	1.253	0.216	East to West	0.27	0.27
2004-09-23	10:10	0.201	0.83	1.253	0.161	East to West	0.27	0.26
2004-09-30	10:04 to 10:38	2.165	1.033	1.665	1.300	East to West	0.52	0.485
2004-10-06	10:10	0.259	0.82	1.233	0.210	East to West	0.265	0.27
2004-10-13	10:16 to 11:03	0.733	0.911	1.415	0.518	East to West	0.37	0.37
2004-10-20	9:56 to 10:52	0.551	0.932	1.457	0.378	East to West	0.375	0.385
2004-11-04	12:30	0.0	0.66	0.918	0.0		0.09	0.09

APPENDIX VIII – WATER LEVEL MEASUREMENT RECORDS AT REPRESENTATIVE CULVERTS ALONG SR 9336 IN ENP

Table 35 to Table 48 are water level data for each field trip. The data was collected at representative culverts along SR 9336 in a period of three days. Since the water level changes gradually in ENP most of the time, each table provides a profile of the water level distribution along SR 9336, an important cross section to monitor the hydrological conditions in the Everglades. Figure 29Error! Reference source not found. to Figure 42Error! Reference source not found. are the corresponding graphical representation of water level distribution along SR 9336. Figure 43Error! Reference source not found. to Figure 52Error! Reference source not found. display the water level distribution of different dates in on one plot, which shows how water level changes temporally.

Date	Culvert	Mileage	North/West [#]	South/East [#]
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
	30	9.12		
	34	11.81		
	43	13.42		
7/23/2004	59	18.28	0.32	0.42
7/23/2004	69	20.98	0.14	0.15
7/22/2004	77	22.51	-0.19	-0.17
7/22/2004	89	24.78	-0.18	-0.28
	108	26.76		
	118	27.71		
	143	30.08		
	170	33.4		

Table 35. Water level versus mileage along SR 9336 in ENP (Observation 1)

Notes:

#:

The orientation of North/West and South/East is unambiguously identifiable for all culverts except Culvert 69. For Culvert 69, North/West and South/East should be comprehended as West and East side of the main park road. This peculiarity is seen in Figure 1Error! Reference source not found.. This convention applies to all the tables and graphs that follow.

Table 36. Water level versus mileage along SR 9336 in ENP (Observation 2)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		

	30	9.12		
7/28/2004	34	11.81	3.16	3.16
7/28/2004	43	13.42	1.58	1.69
7/28/2004	59	18.28	0.51	1.04
7/29/2004	69	20.98	0.52	0.62
7/29/2004	77	22.51	0.22	0.3
7/29/2004	89	24.78	-0.13	-0.22
7/29/2004	108	26.76	-0.27	-0.42
7/29/2004	118	27.71	-0.22	-0.26
7/30/2004	143	30.08	-0.04	-0.07
7/30/2004	170	33.4	0.09	0.09

Table 37. Water level versus mileage along SR 9336 in ENP (Observation 3)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
8/4/2004	11	1.38	2.95	2.88
8/4/2004	24	4.59	4.03	3.96
8/4/2004	30	9.12	3.91	3.84
8/6/2004	34	11.81	2.38	2.31
8/6/2004	43	13.42	1.7	1.86
8/6/2004	59	18.28	0.54	0.89
8/5/2004	69	20.98	0.57	0.71
8/5/2004	77	22.51	0.33	0.52
8/5/2004	89	24.78	0.22	0.26
8/5/2004	108	26.76	-0.05	-0.08
8/5/2004	118	27.71	-0.070	-0.14
8/5/2004	143	30.08	-0.01	-0.05
	170	33.4		

Table 38. Water level versus mileage along SR 9336 in ENP (Observation 4)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
8/11/2004	30	9.12	3.71	3.68
8/11/2004	34	11.81	2.26	2.21
8/12/2004	43	13.42	1.64	1.7

8/12/2004	59	18.28	0.52	0.7
8/12/2004	69	20.98	0.36	0.41
8/12/2004	77	22.51	0.18	0.27
8/12/2004	89	24.78	-0.03	-0.03
8/12/2004	108	26.76	-0.12	-0.1
8/12/2004	118	27.71	-0.090	-0.09
	143	30.08		
	170	33.4		

Table 39. Water level versus mileage along SR 9336 in ENP (Observation 5)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
8/18/2004	24	4.59	3.96	3.88
8/18/2004	30	9.12	4.07	4.05
8/18/2004	34	11.81	2.57	2.5
8/20/2004	43	13.42	1.84	2.09
8/20/2004	59	18.28	0.76	1.21
8/19/2004	69	20.98	0.58	0.73
8/20/2004	77	22.51	0.25	0.37
8/20/2004	89	24.78	-0.06	0
8/19/2004	108	26.76	-0.13	-0.09
8/19/2004	118	27.71	-0.100	-0.09
8/19/2004	143	30.08	-0.13	-0.105
	170	33.4		

Table 40. Water level versus mileage along SR 9336 in ENP (Observation 6)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
8/25/2004	24	4.59	3.86	3.8
8/27/2004	30	9.12	3.66	3.64
8/27/2004	34	11.81	2.3	2.275
8/26/2004	43	13.42	1.83	1.99
8/26/2004	59	18.28	0.8	1.08
8/26/2004	69	20.98	0.5	0.59
8/26/2004	77	22.51	0.21	0.305

8/26/2004	89	24.78	-0.09	-0.05
8/26/2004	108	26.76	-0.14	-0.1
8/26/2004	118	27.71	-0.120	-0.11
8/26/2004	143	30.08	-0.15	-0.12
	170	33.4		

Table 41. Water level versus mileage along SR 9336 in ENP (Observation 7)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
9/1/2004	24	4.59	3.78	3.74
9/1/2004	30	9.12	3.705	3.69
9/1/2004	34	11.81	2.24	2.18
	43	13.42]	
	59	18.28		
	69	20.98		
	77	22.51		
	89	24.78		
	108	26.76		
	118	27.71		
	143	30.08		
	170	33.4		

Table 42. Water level versus mileage along SR 9336 in ENP (Observation 8)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
9/16/2004	30	9.12	3.36	3.34
9/16/2004	34	11.81	1.96	1.94
9/15/2004	43	13.42	1.57	1.58
9/15/2004	59	18.28	0.57	0.69
9/15/2004	69	20.98	0.34	0.38
9/15/2004	77	22.51	0.25	0.35
9/16/2004	89	24.78	0.095	0.31
9/16/2004	108	26.76	0.16	0.23
9/16/2004	118	27.71	0.19	0.28

74

9/16/2004	143	30.08	0.2	0.26
9/16/2004	170	33.4	0.27	0.27

Table 43. Water level versus mileage along SR 9336 in ENP (Observation 9)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
9/24/2004	30	9.12	3.46	3.45
9/23/2004	34	11.81	2.1	2.07
9/22/2004	43	13.42	1.66	1.69
9/22/2004	59	18.28	0.61	0.75
9/22/2004	69	20.98	0.36	0.4
9/23/2004	77	22.51	0.23	0.26
9/23/2004	89	24.78	0.1	0.24
9/23/2004	108	26.76	0.14	0.18
9/23/2004	118	27.71	0.165	0.215
9/23/2004	143	30.08	0.14	0.19
9/23/2004	170	33.4	0.26	0.27

Table 44. Water level versus mileage along SR 9336 in ENP (Observation 10)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
10/1/2004	30	9.12	3.5	3.5
10/1/2004	34	11.81	2.12	2.08
9/29/2004	43	13.42	1.64	1.63
10/1/2004	59	18.28	0.7	0.74
9/30/2004	69	20.98	0.4	0.43
9/30/2004	77	22.51	0.38	0.38
9/30/2004	89	24.78	0.34	0.365
9/30/2004	108	26.76	0.325	0.34
9/30/2004	118	27.71	0.35	0.36
9/30/2004	143	30.08	0.355	0.365
9/30/2004	170	33.4	0.485	0.52

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
10/5/2004	30	9.12	3.28	3.29
10/5/2004	34	11.81	2.03	2.01
10/5/2004	43	13.42	1.68	1.685
10/6/2004	59	18.28	0.58	0.62
10/7/2004	69	20.98	0.2	0.22
10/7/2004	77	22.51	0.165	0.17
10/6/2004	89	24.78	0.06	0.21
10/6/2004	108	26.76	0.11	0.165
10/6/2004	118	27.71	0.155	0.195
10/6/2004	143	30.08	0.145	0.185
10/6/2004	170	33.4	0.27	0.265

Table 45. Water level versus mileage along SR 9336 in ENP (Observation 11)

Table 46. Water level versus mileage along SR 9336 in ENP (Observation 12)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
	11	1.38		
	24	4.59		
10/14/2004	30	9.12	3.34	3.34
10/14/2004	34	11.81	2.08	2.07
10/12/2004	43	13.42	1.64	1.645
10/12/2004	59	18.28	0.55	0.6
10/12/2004	69	20.98	0.16	0.18
10/14/2004	77	22.51	0.12	0.13
10/13/2004	89	24.78	0.02	0.15
10/13/2004	108	26.76	0.07	0.11
10/13/2004	118	27.71	0.115	0.15
10/13/2004	143	30.08	0.095	0.155
10/13/2004	170	33.4	0.37	0.37

Table 47. Water level versus mileage along SR 9336 in ENP (Observation 13)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)

10/19/2004	11	1.38		2.96
10/19/2004	24	4.59	3.98	3.9
10/19/2004	30	9.12	3.86	3.82
10/19/2004	34	11.81	2.582	2.5
10/19/2004	43	13.42	2.02	2.245
10/21/2004	59	18.28	0.93	1.32
10/21/2004	69	20.98	0.71	0.94
10/20/2004	77	22.51	0.442	0.59
10/20/2004	89	24.78	0.27	0.405
10/20/2004	108	26.76	0.28	0.33
10/20/2004	118	27.71	0.3	0.345
10/20/2004	143	30.08	0.285	0.315
10/20/2004	170	33.4	0.385	0.375

Table 48. Water level versus mileage along SR 9336 in ENP (Observation 14)

Date	Culvert	Mileage	North/West	South/East
	No.		Side	Side
		(mile)	NAVD88 (ft)	NAVD88 (ft)
11/5/2004	11	1.38		2.665
	24	4.59		
11/4/2004	30	9.12	3.35	3.34
11/5/2004	34	11.81	2.115	2.09
	43	13.42		
	59	18.28		
	69	20.98		
	77	22.51		
11/5/2004	89	24.78	-0.025	0.105
11/5/2004	108	26.76	0.03	0.06
11/4/2004	118	27.71	0.06	0.085
11/4/2004	143	30.08	0.025	0.07
11/4/2004	170	33.4	0.09	0.09

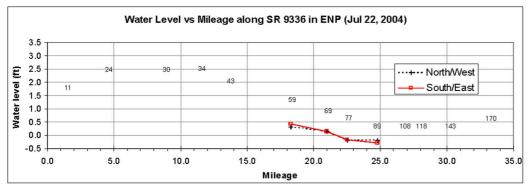


Figure 29. Water level versus mileage along SR 9336 in ENP (Observation 1)

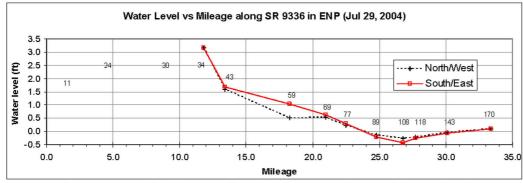


Figure 30. Water level versus mileage along SR 9336 in ENP (Observation 2)

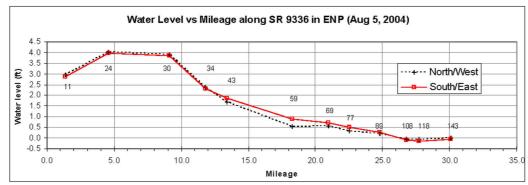


Figure 31. Water level versus mileage along SR 9336 in ENP (Observation 3)

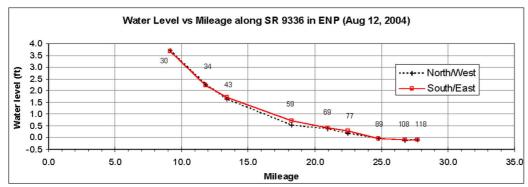


Figure 32. Water level versus mileage along SR 9336 in ENP (Observation 4)

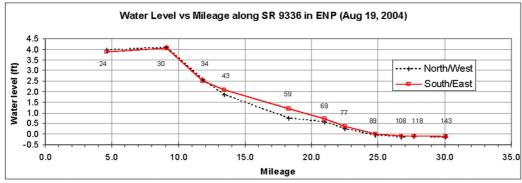


Figure 33. Water level versus mileage along SR 9336 in ENP (Observation 5)

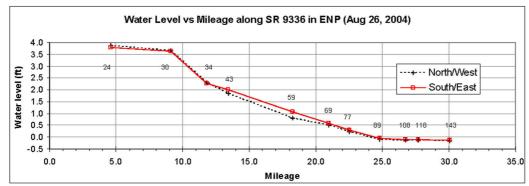


Figure 34. Water level versus mileage along SR 9336 in ENP (Observation 6)

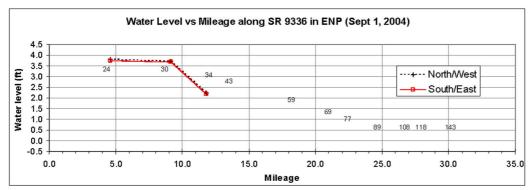


Figure 35. Water level versus mileage along SR 9336 in ENP (Observation 7)

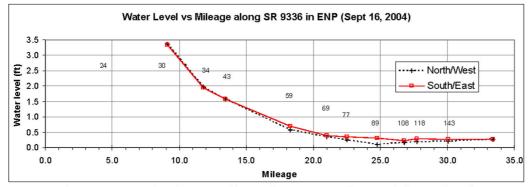


Figure 36. Water level versus mileage along SR 9336 in ENP (Observation 8)

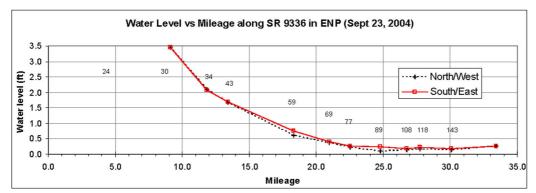


Figure 37. Water level versus mileage along SR 9336 in ENP (Observation 9)

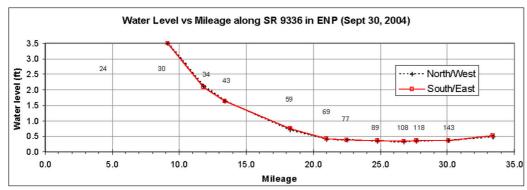


Figure 38. Water level versus mileage along SR 9336 in ENP (Observation 10)

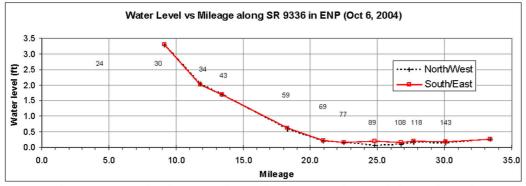


Figure 39. Water level versus mileage along SR 9336 in ENP (Observation 11)

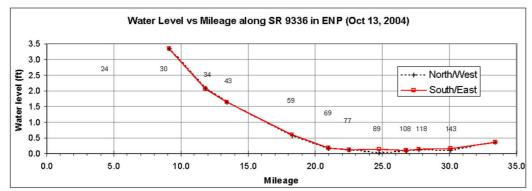


Figure 40. Water level versus mileage along SR 9336 in ENP (Observation 12)

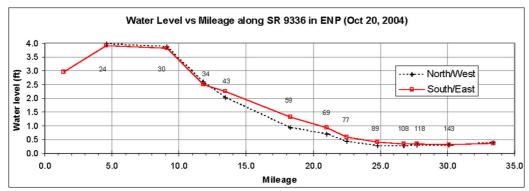


Figure 41. Water level versus mileage along SR 9336 in ENP (Observation 13)

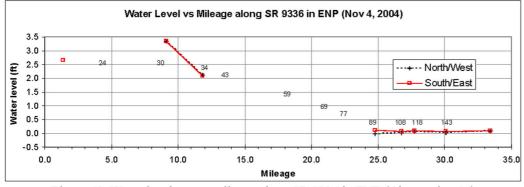
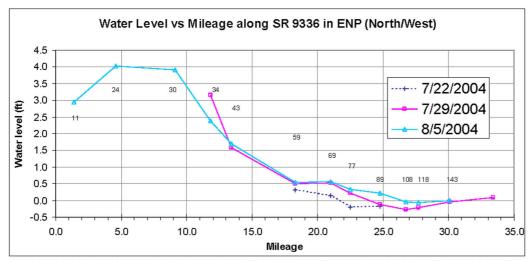
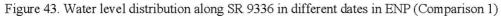




Figure 42. Water level versus mileage along SR 9336 in ENP (Observation 14)

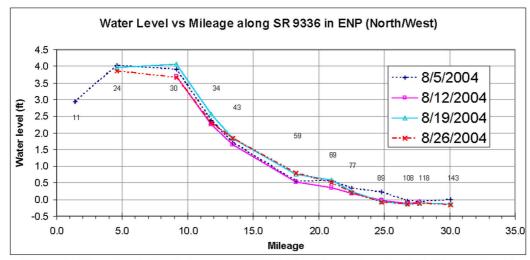
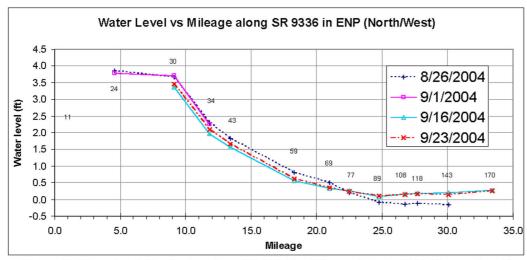
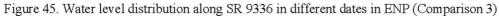




Figure 44. Water level distribution along SR 9336 in different dates in ENP (Comparison 2)

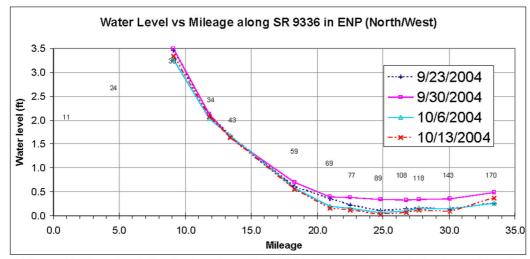


Figure 46. Water level distribution along SR 9336 in different dates in ENP (Comparison 4)

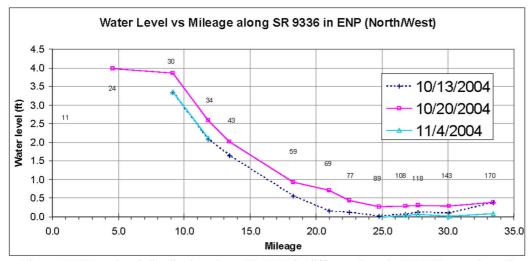


Figure 47. Water level distribution along SR 9336 in different dates in ENP (Comparison 5)

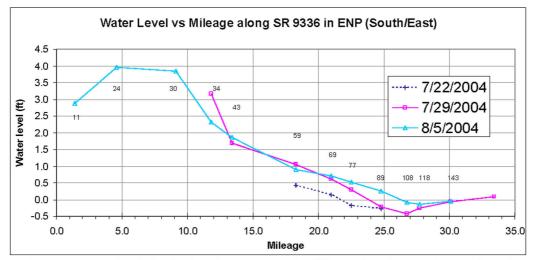


Figure 48. Water level distribution along SR 9336 in different dates in ENP (Comparison 1)

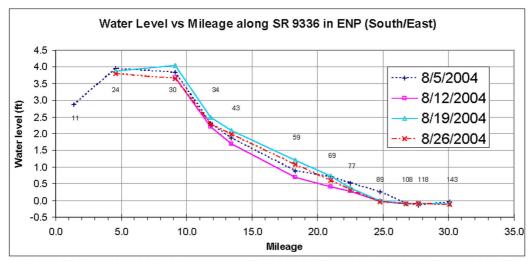


Figure 49. Water level distribution along SR 9336 in different dates in ENP (Comparison 2)

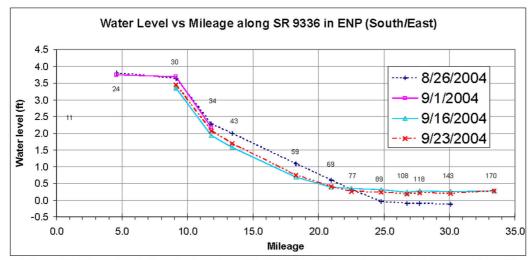
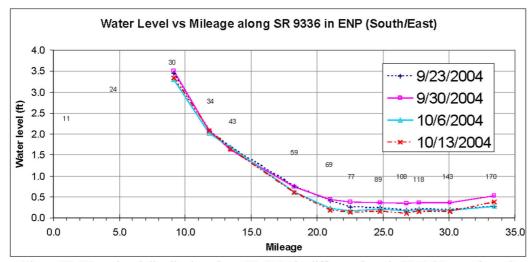
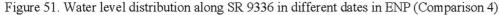




Figure 50. Water level distribution along SR 9336 in different dates in ENP (Comparison 3)

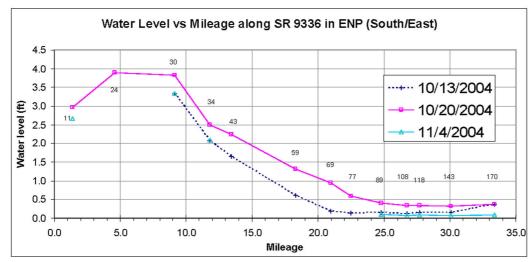


Figure 52. Water level distribution along SR 9336 in different dates in ENP (Comparison 5)

It is seen from the above figures that the major water level drop occurs in the stretch from Culvert 30 to 89. This coincides with the fact that the major flow occurs in this section.

Formatted: Left