TECHNICAL PUBLICATION

EMA \# 399

FLOW MONITORING IN STORMWATER TREATMENT AREA NO. 6

By
Muluneh Imru
Senior Engineer

December 2001

Hydrology and Hydraulics Division
Environmental Monitoring \& Assessment Department
South Florida Water Management District West Palm Beach, Florida

EXECUTIVE SUMMARY

This report describes the criteria, equations and procedures used to quantify flow through Stormwater Treatment Area No. 6 (STA-6). To evaluate the performance of STA-6 in terms of phosphorus reduction, it is essential that flows into and out of this constructed wetland be estimated using rigorous methods. This poses a challenge due to the configuration of the hydraulic structures and the complexity of water movement through the system.

Flow control structures at STA-6 include trapezoidal weirs (G601, G602 and G603) for inflow, and culverts with weir-box inlets (G354 and G393) for outflow. STA-6 receives agricultural drainage delivered through the pumps at G600. In STA-6, like in several other District sites, two or more structure types are built next to each other. At such sites, there is no separate stage monitoring for each structure type. This is especially true where a typical structure is a culvert with a weir-box inlet (G354 and G393). While culvert flow conditions prevail over the downstream portion of such a combination structure, weir flow characteristics may dominate at the inlet. The weir box at the inlet of a typical culvert in STA-6 is needed to retain water in the treatment cell and keep it wet as much as possible.

Procedures have been developed to monitor all inflows and outflows at STA-6 Section 1. The criteria and steps to be followed for computing flows into STA- 6 cells through the inflow weirs have been established. A method has been presented that will enable the computation of flow through the weir box and gated-culvert combination structures at G354 and G393 (weir-culvert) in order to monitor outflows from each cell.

Data derived from these methods are validated by a good correlation between inflows at G600 and outflows through G354 and G393. The flows through G601, G602 and G603 are slightly different from G600 inflows, as well as the outflows through G354 and G393. There is room for improvement of the weir inflow estimates. It is also possible to gain some improvement on the overall accuracy of flow computation at STA-6 structures through streamgauging and calibration.

The criteria, equations and procedures developed for STA-6 can, with applicable adaptations, be used for flow monitoring at similar stations in other stormwater treatment areas when they come on line. The adaptations will primarily involve determining sitespecific coefficients for similar structure types on the basis of streamgauging data.

CONTENTS

1.0 INTRODUCTION 1
2.0 OBJECTIVES 3
3.0 WEIR FLOW EQUATIONS 3
3.1 DISCHARGE THROUGH WEIRS OF RECTANGULAR FLOW SECTION 4
3.1.1 FREE WEIR FLOW 4
3.1.2 SUBMERGED WEIR FLOW 6
3.2 DISCHARGE THROUGH WEIRS OF TRAPEZOIDAL SECTION 7
3.2.1 FREE WEIR FLOW 8
3.2.2 SUBMERGED FLOW 9
3.2.3 OVERTOPPED WEIR FLOW 9
3.2.4 ZERO FLOW 10
3.2.5 REVERSE FLOW 10
4.0 CULVERT FLOW EQUATIONS 10
4.1 CRITICAL FLOW IN CULVERTS 11
5.0 FLOW EQUATIONS FOR GATED CULVERTS WITH WEIRS 14
5.1 FULL CULVERT FLOW 15
5.2 CULVERT PARTIALLY SUBMERGED 15
5.3 SUBCRITICAL FREE SURFACE FLOW THROUGHOUT THE CULVERT. 16
6.0 COMPUTATION OF INFLOW THROUGH WEIRS G601 AND G602 17
7.0 COMPUTATION OF INFLOW THROUGH WEIR G603 18
8.0 COMPUTATION OF OUTFLOW THROUGH G354 AND G393 19
9.0 FLOW ESTIMATION PARAMETERS 22
10.0 EVALUATION OF FLOW ESTIMATES 25
11.0 CONCLUSIONS AND RECOMMENDATIONS. 29
REFERENCES. 30
APPENDIX I STA-6 INFLOW, INTERIOR AND OUTFLOW STAGES
FOR OCTOBER 2000 31
APPENDIX II STA 6 INFLOWS AND OUTFLOWS THROUGH CELL 5
FOR OCTOBER 2000 51

Figures

Figure 1. Free Weir Flow
Figure 2. Submerged Weir Flow
Figure 3. Trapezoidal Flow Section Weir
Figure 4. General Culvert Flow Section
Figure 5. Trapezoidal/Rectangular Culvert Section
Figure 6. Circular Culvert Section
Figure 7. Culvert Flow Profiles
Figure 8. STA-6 Instantaneous Flow of October 2000
Figure 9. STA-6 Cumulative Flow of October 2000
Figure 10. Inflow and Outflow Stages of Cell 3 October 2000

Tables

Table 1. Structure information for STA-6 stations
Table 2. Discharge coefficients for STA-6 stations
Table 3. STA-6 Flow Monitoring Sites and Stage Stations

Notation

The following notations are used to characterize flow through weirs and culverts:

A	=	flow cross section (maximum A_{0})
Ag_{g}	=	entrance cross section (gate opening) area
A_{0}	=	culvert cross section area $=\pi \mathrm{D}^{2} / 4$
B	$=$	culvert bottom width or weir length (bottom width of trapezoidal section)
B_{m}	=	average width of trapezoidal weir section under water
$\mathrm{B}_{\text {e }}$	$=$	effective weir length
c_{d}	$=$	culvert discharge coefficient
c_{w}	$=$	weir flow coefficient
CW	=	(approach) channel width
D	$=$	diameter of circular culvert or depth of box culvert
D_{m}	$=$	mean depth (area/water surface width)
e	$=$	width of bank or side of trapezoidal section under water
h	$=$	tailwater depth above weir crest or above culvert invert or flow depth at any location
h_{1}	$=$	stage above datum upstream of inlet weir box
h_{2}	$=$	stage above datum at upstream face of culvert inside the weir box
h_{3}	=	water depth above the downstream invert elevation at the location of the invert.
h_{4}	$=$	tailwater depth above the downstream invert elevation.
$\mathrm{h}_{\text {c }}$	$=$	critical flow depth
h_{f}	=	head loss due to friction
h_{w}	$=$	elevation difference between weir crest and downstream invert
H	=	headwater depth above weir crest or above culvert invert
HWE	$=$	head water elevation

\(\left.\begin{array}{lll}INEL \& = \& inlet invert elevation

\mathrm{k}_{\mathrm{e}} \& = \& minor (entrance) loss coefficient (default \mathrm{K}_{\mathrm{e}}=0.5)

\mathrm{L} \& = \& length of culvert barrel

\mathrm{m} \& = \& side slope(horizontal:vertical) of trapezoidal flow section

\mathrm{n} \& = \& Manning's roughness coefficient\end{array}\right]\)| ND | $=$ |
| :--- | :--- |
| v | vertical depth of inclined surface of trapezoidal weir (notch depth) |
| N | $=$ |
| number of contractions in weir flow | |

ACKNOWLEDGEMENTS

I would like to acknowledge several people in the South Florida Water Management District who contributed in preparing and finalizing this report. My gratitude goes to Davies Mtundu and Robb Startzman for their support and encouragement. I would also like to express my gratitude to Carol Goff for coordinating the elaborate review process. I would like to express my appreciation to the following District staff, who reviewed the draft document and provided valuable suggestions that were helpful in revising the document: Davies Mtundu, Emile Damisse, Wossenu Abtew, Garth Redfield, Matahel Ansar, Juan Gonzalez-Castro, Scott Huebner, Martha Nungesser, Kathy Pietro, Jana Newman, Gary Goforth and Tracey Piconne. My gratitude also goes to Carrie Trutwin for her assistance with the final editorial review.

1.0 INTRODUCTION

The Everglades Forever Act (EFA) mandated the South Florida Water Management District (District) to implement the Everglades Construction Project (ECP) as an important step for restoring and protecting the Everglades ecosystem. Stormwater Treatment Area No. 6 (STA-6) is a component of the ECP. It was constructed in 1997 and has been in operation since December 1997.

STA-6 is a constructed wetland designed to reduce total phosphorus in the drainage water coming primarily from the Everglades Agricultural Area (EAA). Comprised of two parts (Northern Cell 5 and Southern Cell3), the wetland provides an effective treatment area of about 870 acres for drainage from approximately 10,400 acres of agricultural land. The inflow into STA-6 comes through G600, a pump station owned and operated by United States Sugar Corporation (USSC). Three trapezoidal weirs (G601, G602 and G603) control inflow into STA-6. Six culverts with weir-box inlets (G354A-C and G393A-C) control outflow from Cell 5 and Cell 3. Bypass flow control is provided at G604. All flows from G354, G393 and G604 are discharged out of STA-6 via the terminal structure (culvert) G607.

Flow monitoring is conducted at more than 400 water control structures in the District. The major types of flow monitoring stations include spillways, weirs, culverts, pumping stations and open channel reaches. At many of the flow monitoring sites in the District, flow is controlled by one type of structure. In such a case, the flow monitoring equations used are those appropriate for the particular structure. However, at some sites two or more structure types are joined in series affecting flow through the station. At such sites, there is not enough space between the structures to assess the independent effects of each structure on the flow. There is no separate stage monitoring for each structure type. This is especially true at those sites whose typical structure is a weir-culvert combination, i.e., where a weir box discharges directly into a culvert. While culvert flow conditions prevail over the downstream portion of such a combination structure, the flow characteristics of the inlet may be those of a weir.

At the outlets of STA-6, as in other STAs, there are gated culverts with weir-box inlets. The weir box at the inlet of a typical culvert in STA-6 helps to retain some water in the treatment cells to keep the treatment cells moist at all times (EES 1997). The inflow into the culvert is affected by the presence of the weir box at the inlet.

The effects of various structure shapes and types on water flow have been investigated in the past and appropriate equations have been developed to estimate velocity, discharge and related parameters. Standard methods of computing flow through water control structures are presented in other District publications (Otero 1995). Most textbooks in hydraulics provide equations, criteria and procedures for estimating flow through a simple structure, that is, a structure consisting of only one hydraulic element, e.g. a weir. The available equations cannot, however, be directly applied when a site contains a series of joined hydraulic structures, e.g. a weir joined to a culvert (weir-box culvert). In such a structure, it is difficult to isolate the effect of each structure type on flow.

Figure 1. Project Location and Site Layout

A culvert with a weir type inlet poses a challenge to direct discharge estimation using existing flow computation procedures. In computing flow through a culvert with a weir inlet, several key issues need to be addressed:

- identification of the control (the weir, the culvert inlet or the culvert outlet);
- effects of transition from weir-controlled to culvert-controlled flow or vice-versa;
- occurrence of critical flow; and
- the influence of the tailwater stage on the flow.

This report describes the criteria, equations and procedures used for flow monitoring in STA-6.
The following section states the objectives of this report. Sections 3 through 8 present the equations and procedures used to estimate flow at STA-6 weirs and culverts. Flow estimation parameters and qualitative evaluation of flow estimates are given in Section 9 and Section 10, respectively. The last section provides conclusions and recommendations.

2.0 OBJECTIVES

The overall objective of this study was to provide validated means for estimating inflows and outflows for STA-6. This work will be useful for STA-6 performance optimization research and permit compliance
monitoring. We currently monitor inflow into STA-6 at G600, the pumping station owned and operated by US Sugar Corporation (USSC). Water delivery into Cell 5 takes place through two inflow weirs, G601 and G602. Inflow into Cell 3 is through weir G603. Weirs G601, G602 and G603 have trapezoidal sections and, therefore, procedures are needed to compute flows into the treatment cells through the trapezoidal weirs.

Outflow from STA-6 was monitored at G606, the UVM (ultrasonic velocity meter) site in the discharge canal for permit compliance until March 2001. Because of possible influences from seepage and drawdown in the supply canal, flow through the G606 UVM was, at times, different from surface outflows from the treatment cells. In order to determine STA-6 outflows, it was necessary to calculate flows at G393 and G354. The structures at G393 and G354 are weir-culvert combinations requiring a flow computation procedure different from those employed for simple structures.

The purpose of this report is to document the results of planning and implementation of flow monitoring for STA-6, including:

- algorithms to compute flows into the treatment cells through the trapezoidal inflow weirs G601, G602 and G603;
- algorithms to compute discharge through G393 and G354, i.e., the outlets from Treatment Cell 3 and Treatment Cell 5, respectively;
- a methodology to determine control of flow through culverts with weir-box inlets; and
- an assessment of the results of flow monitoring in STA-6.

All equations are in the foot-pound-second system of units; i.e. all lengths are in feet (ft .), all weights are in pounds (lb.), and all time dimensions are in seconds (s).

3.0 WEIR FLOW EQUATIONS

Discharge over a weir depends on the relative elevations of headwater, tailwater and weir crest. Depending on these relative elevations, weir flow is categorized as either free weir flow or submerged weir flow. The inflows considered in this study are uncontrolled, because there are no gates over the weirs. Since STA-6 inflow structures (G601, G602, G603) have no gates, the discussion in this study focuses on uncontrolled submerged and uncontrolled free (weir) flows.

STA-6 inflow structures are broad-crested trapezoidal weirs. Many hydraulics text books provide equations for estimating discharge through broad-crested weirs. The main difference shown between sharp-crested and broad-crested weirs is that the coefficient for broad-crested weirs is a function of upstream water depth and weir depth (Chow, 1959). Other than for the coeffiecient, the general form of the free flow equation for the broad-crested weir is similar to that of the sharp-crested weir Eq.(2). French (1985) notes that if the ratio of the total head (H) over the crest to the thickness of the weir in the direction of flow is greater than 15 , the weir is sharp-crested, and he gives an equation each for a broad-crested rectangular weir and for a broad-crested v-notch. He also gives an equation for a broad-crested trapezoidal weir, which, however, does not exhibit a clear relationship to the equations of the rectangular and the v-notch types.

Featherstone et al. (1982) indicate that a trapezoidal notch may be considered as one rectangular weir of width B and two half notches (angle θ). On this basis Eq. (5) is developed as the primary equation for computing free flow through a trapezoidal weir. The issue of sharp-crested and broad-crested configurations can be resolved when the discharge coefficient is determined through calibration. The discharge coefficient can be assigned a constant value at the initial stage. Equation (5) can be used for a rectangular section, with $\theta=0$, and for a v-notch, with $B=0$. The equation is robust enough to account for triangular, rectangular and trapezoidal sections.

3.1 Discharge through Weirs of Rectangular Flow Section

The weir length denotes the horizontal dimension of the crest over which water flows. The existence and configuration of walls at the ends of the weir crest may cause horizontal contractions of the flow section as represented by the effective weir length. The effective weir length $\left(B_{e}\right)$ is used to account for end contractions and is determined using Eq. (1).

$$
\begin{equation*}
\mathrm{B}_{\mathrm{e}}=\mathrm{B}-0.1 \mathrm{NH} \tag{1}
\end{equation*}
$$

In Eq. (1), $N=0,1$ or 2 depending on the number of end contractions, and H is the total head over the weir. If the flow does not experience end contractions, if it is reasonable to assume so, N may be set to zero.

3.1.1 Free Weir Flow

This is a condition where the tailwater stage does not affect the discharge. The District's flow computation software (FLOW) uses the criterion (TWE-WCE)/(HWE-WCE) ≥ 0.5 for uncontrolled free flow over a spillway, where HWE is headwater elevation, WCE is weir crest elevation and TWE is tailwater elevation. For free flow over a rectangular weir, it uses the criterion (TWE-WCE)/(HWE-WCE) ≤ 0.5. It is necessary to standardize the criterion for free flow over weirs and spillways under uncontrolled conditions.

To standardize the criterion it is recommended that flow that meets the following criterion be under free weir flow condition:
(HWE - WCE) / (TWE-WCE) ≥ 1.5
This criterion indicates that free weir flow is characterized by a headwater elevation (HWE) that is higher than the weir crest and has a depth above the weir crest of at least 1.5 times that of the tailwater. This assumes that a critical depth is created at the weir crest and relates to the principle that at critical flow, the total head is 1.5 times the static head. It also assumes that the effect of the approach velocity in the upstream channel is negligible.

When the free weir flow condition prevails over the crest of a rectangular weir section, Eq. (2) is used to estimate discharge, Q. It follows the definition that discharge is a product of velocity and flow section.

$$
\begin{equation*}
Q_{s}=c_{w} B_{e} H^{1.5} \tag{2}
\end{equation*}
$$

The free weir flow coefficient C_{w} is determined through calibration. This coefficient has been expressed as a function of various parameters by different authors. For sharp-crested weirs, Chow (1959) and Henderson (1966, p. 175) give the discharge coefficient as a function of the ratio of water depth above weir to weir height (H / w). For broad-crested weirs the coefficient is a function of upstream water depth and weir height, according to Chow (1959). Henderson (1966, p. 211) indicates that if a crest is broad enough to maintain hydrostatic pressure distribution in the flow across it, the flow will apparently be critical and the discharge can be readily determined using a modified form of Eq. (2). The equation gives a constant discharge coefficient of about 3.09. Since the equation has to be calibrated using field data, initially the theoretical equation can be applied with the constant coefficient. The subsequent calibration process needs to look at whether the discharge coefficient should be a constant or a variable, and what parameters must be used to determine the coefficient. It is necessary to investigate the effects of the various parameters identified, by different authors, as essential in the determination of the discharge coefficients for broad-crested weirs.

A definition sketch is given as Fig. 2 to show parameters used to calculate flow through a weir. The figure shows when the tailwater level is above, as well as below, the weir crest. When the tailwater elevation rises above the weir crest, it starts influencing the discharge over the weir. The effect of the tailwater on the discharge increases with increasing tailwater depth above the weir crest.

Figure 2. Parameters used to calculate flow through a weir

3.1.2 Submerged Weir Flow

Following the discussion and the recommendation made in Section 3.1.1, Free Weir Flow, the flow over a weir becomes submerged when the tailwater level exceeds the weir crest (Fig. 2) and the depth above the weir crest of the headwater is less than 1.5 times that of the tailwater. This condition assumes that if the headwater depth above the weir crest is not at least 1.5 times that of the tailwater, a critical depth is not attained at the weir crest.
$($ HWE - WCE $) /($ TWE - WCE $)<1.5$

For the same headwater stage, the discharge decreases with increasing tailwater stage. This is due to the decrease in the hydraulic gradient, which is an important factor causing flow. Submerged weir flow can be determined by multiplying the free weir flow equation by a submergence coefficient. For sharp-crested weirs and ogee spillways, the submergence coefficient is estimated using Eq. (3), known as the Villemonte Equation, below:

$$
\begin{equation*}
c_{s}=\left[1-\left(\frac{h}{H}\right)^{1.5}\right]^{0.385} \tag{3}
\end{equation*}
$$

Since the submergence coefficient in the form of Eq. (3) was developed for sharp-crested weirs, it can be adopted for broad-crested weirs and modified during calibration with streamgauging data as necessary. Its use is likely to give satisfactory results.

$$
\begin{equation*}
Q=c_{s} c_{w} B_{e} H^{1.5} \tag{4}
\end{equation*}
$$

By substituting Eq. (3) into Eq. (2), we obtain the submerged weir flow equation, Eq. (4).

3.2 Discharge Through Weirs of Trapezoidal Section

A trapezoidal weir section is shown in Figure 3. The top dimension CW indicates the width of the approach channel to the weir. ND denotes the depth of the trapezoidal weir. T represents the top width of the weir corresponding to the depth ND. This section considers various scenarios of headwater and tailwater stages and provides suitable discharge equations.

A trapezoidal flow section weir can be treated as a combination of a rectangular weir and a v-notch. Thus the flow through a trapezoidal weir can be fairly approximated by adding the flows through the triangular sections at the two ends treated together as the v-notch portion and the flow through the main rectangular-weir section in the middle. This section presents the algorithms to compute flow through a trapezoidal weir under various headwater and tailwater conditions. The side of a trapezoidal weir makes an angle, with the vertical defined by $\tan \theta=(\mathrm{T}-\mathrm{B}) /(2 \mathrm{ND})$.

Figure 3. Parameters used to compute flow through a Trapezoidal Flow Section Weir

3.2.1 Free weir flow

Free weir flow prevails when the tailwater stage does not influence the discharge. The literature provides a few equations for determining discharge through broad-crested trapezoidal weirs. French (1985, p. 339) gives a discharge equation in terms of critical depth (y_{c}), an addition to the unknowns (discharge Q and coefficient C_{d}). A numerical solution for an equation with three unknowns requires a lot of assumptions, which may not be real. Further, French (1985, p. 343) notes that there are not enough published data to allow a generic estimate of the coefficients of discharge for trapezoidal broad-crested weirs.

An equation amenable to direct numerical solution is preferred. Equation (5) can be used to estimate free flow through a trapezoidal weir and can be solved directly. The following criterion characterizes free weir flow for a trapezoidal weir.

Criterion: $\quad \mathrm{ND} \geq \mathrm{H} \geq 1.5 \mathrm{~h}$ and $\mathrm{H}>0$

$$
\begin{equation*}
Q=C_{d} B H^{1.5}+C_{t} \tan \theta H^{2.5} \tag{5}
\end{equation*}
$$

The discharge through a trapezoidal weir under free flow condition can be estimated using Eq. (5), where C_{d} is the discharge coefficient.

Equation (5) combines flows through a rectangular weir and a v-notch weir. This is consistent with the physical configuration of a trapezoidal weir, which may be considered as a rectangular flow section with a half v-notch section at each end of the rectangular section. When the sides are vertical (or θ approaches 0), Eq. (5) reduces to the free flow
equation for a rectangular weir, and if the crest length approaches zero (B approaches 0), it reduces to the flow equation through a v-notch weir as it should.

3.2.2 Submerged flow

The following condition characterizes submerged weir flow for a trapezoidal weir. Submerged weir flow prevails when depth above the crest of the headwater is less than 1.5 times that of the tailwater.
Equation (6) can be used to estimate discharge through the trapezoidal weir under submerged conditions.

Criterion: $\quad \mathrm{ND} \geq \mathrm{H}>0$ and $\mathrm{H}<1.5 \mathrm{~h}$

$$
\begin{equation*}
Q=\left[C_{d} B H^{1.5}+C_{t} \tan \theta H^{2.5}\right]\left(1-\left(\frac{h}{H}\right)^{1.5}\right)^{0.385} \tag{6}
\end{equation*}
$$

3.2.3 Overtopped weir flow

Under extreme conditions, the flow may overtop the banks of the trapezoidal section and still be within the limits of the approach channel. When such a condition occurs, the flow may be treated in two sections, namely flow within the weir section and that over the limits of the weir section. Three scenarios are identified below.

Scenario 1: When the headwater is above the bank level, ($\mathrm{H}>\mathrm{ND}$) and the tailwater is at or below the bank level, Eq. (7) can be used to estimate flow.

Criterion: $\quad(\mathrm{ND} \geq \mathrm{h}>0)$

$$
\begin{equation*}
\mathrm{Q}=\mathrm{C}_{\mathrm{d}}\left[(\mathrm{~T}-\mathrm{ND} \tan \theta)(\mathrm{ND}) \mathrm{H}^{0.5}\left(1-\left(\frac{\mathrm{h}}{\mathrm{H}}\right)^{1.5}\right)^{0.385}+\mathrm{CW}(\mathrm{H}-\mathrm{ND})^{1.5}\right] \tag{7}
\end{equation*}
$$

Scenario 2: If both the tailwater and headwater are above the bank level, Eq. (8) can be used to estimate flow.

Criterion: $\quad(\mathrm{H}>\mathrm{ND}$ and $\mathrm{h}>\mathrm{ND})$
$\mathrm{Q}=\mathrm{C}_{\mathrm{d}}\left[(\mathrm{T}-\mathrm{ND} \tan \theta)(\mathrm{ND}) \mathrm{H}^{0.5}\left(1-\left(\frac{\mathrm{h}}{\mathrm{H}}\right)^{1.5}\right)^{0.385}+\mathrm{CW}(\mathrm{H}-\mathrm{ND})^{1.5}\left(1-\left(\frac{\mathrm{h}-\mathrm{ND}}{\mathrm{H}-\mathrm{ND}}\right)^{1.5}\right)^{0.385}\right](8)$

Scenario 3: Though it is a scenario that one would not expect, under normal circumstances, the headwater being above the banks, $\mathrm{H}>\mathrm{ND}$, while the tailwater is at or below the weir crest ($\mathrm{h} \leq 0$), it is a condition worth considering. Under such conditions, Eq. (9) may be used to estimate flow.

Criterion: $\quad \mathrm{H}>\mathrm{ND}$ and $\mathrm{h} \leq 0$

$$
\begin{equation*}
\mathrm{Q}=\mathrm{C}_{\mathrm{d}}\left[(\mathrm{~T}-\mathrm{ND} \tan \theta)(\mathrm{ND}) \mathrm{H}^{0.5}+\mathrm{CW}(\mathrm{H}-\mathrm{ND})^{1.5}\right. \tag{9}
\end{equation*}
$$

3.2.4 Zero flow

When the headwater and tailwater stages are below the weir crest level the flow is zero (neglecting seepage and leakage):

$$
\text { If } \mathrm{H} \leq 0 \text { and } \mathrm{h} \leq 0, \mathrm{Q}=0 \text {. }
$$

3.2.5 Reverse flow

If the tailwater stage is above the weir crest, the condition may indicate flow reversal (negative flow).

$$
\text { If } \mathrm{h}>\mathrm{H}, \mathrm{~h} \text { and } \mathrm{H} \text { switch, and } \mathrm{Q}=-1^{*} \mathrm{Q}
$$

If reverse flow occurs, it would be under a submerged condition. The accuracy of discharge estimation under a submerged reverse condition is lower than under the other conditions. The submerged flow estimation method in itself is of lower accuracy. Besides, parameters developed for estimating positive flow are used to estimate negative flow changing only the sign from positive to negative. Although this approach introduces more errors, it is the readily available method other than conducting research that will require time and money. The recommendation for the future is to conduct the necessary research to develop appropriate parameters for estimating reverse flows.

4.0 CULVERT FLOW EQUATIONS

The type of flow that occurs in a culvert depends on headwater and tailwater elevations, culvert invert elevations in relation to water stages, culvert length and slope. Either the inlet or the outlet can control the flow through a culvert. If the discharge as dictated by the inlet configuration and the stage is not affected by what the outlet can accommodate, the inlet is said to control the flow. A typical condition for inlet control is when critical depth is attained at the inlet, subcritical flow prevails upstream and supercritical downstream. Outlet control of flow is either when a controlling subcritical downstream water depth prevails or flow attains critical depth at the downstream invert.

The flow through a culvert depends on the location of the control. The control location influences the flow type and the hydraulic profile. Different equations are used to estimate discharge for different flow types. For classification of types of flow through culverts, readers may refer to Chow (1959), Henderson (1966) or other textbooks in hydraulics.

4.1 Critical Flow in Culverts

In most cases the occurrence of critical flow (flow with minimum specific energy and corresponding critical depth) determines the location of the control. Critical flow can occur at the inlet (inlet control) or at the outlet (outlet control) of the culvert. When the flow is subcritical (depth higher than critical) throughout including outlet, the flow is outlet-controlled (tailwater).

Figure 4. Key parameters used in calculating culvert flow
The occurrence of critical flow is characterized by the condition that for the given flow, the specific energy is the minimum. The specific energy (in terms of head) is given by Eq. (10),

$$
\begin{equation*}
\mathrm{H}=\mathrm{h}+\frac{\mathrm{Q}^{2}}{2 \mathrm{gA}^{2}} \tag{10}
\end{equation*}
$$

where g is acceleration of gravity, Q is discharge, H is the specific energy and h is the flow depth.
For minimum specific energy, the first derivative of Eq. (10) is set to zero: $\mathrm{dH} / \mathrm{dh}=0$. This results in Eq. (11), a condition that needs to be satisfied for critical depth in any flow cross section.

$$
\begin{equation*}
\frac{\mathrm{Q}^{2}}{\mathrm{~g}}=\frac{\mathrm{A}^{3}}{\mathrm{~T}} \tag{11}
\end{equation*}
$$

Applying Eq. (11) to different channel sections results in correspondingly different critical depth $\left(h_{\mathrm{c}}\right)$ values in relation to discharge Q .
(a) Trapezoidal and Rectangular Sections

For critical flow computation, geometric parameters may be defined as follows,

$$
\begin{aligned}
& \mathrm{y}=\mathrm{h}_{\mathrm{c}} / \mathrm{b} \\
& \mathrm{~m}= \\
& \mathrm{e} / \mathrm{h}
\end{aligned}
$$

where h_{c} is critical depth and the other parameters are as shown in Fig. 5.
Using these parameters, critical flow can be estimated using Eq. (12).

$$
\begin{equation*}
Q=\frac{(1 / y+m)^{1.5}}{(1 / y+2 m)^{0.5}} g^{0.5} h_{c}^{2.5} \tag{12}
\end{equation*}
$$

Figure 5. Trapezoidal/Rectangular Culvert Section

A rectangular section can be taken as a special case of a trapezoidal one where the banks are vertical, i.e. m $=0$, and thus the expression for discharge at critical depth reduces to Eq. (13).

$$
\begin{equation*}
Q=b \sqrt{g} h_{c}{ }^{1.5} \tag{13}
\end{equation*}
$$

For a triangular channel, the equation for critical flow is described by Eq. (14).

$$
\begin{equation*}
\mathrm{Q}=\sqrt{\frac{\mathrm{g}}{2}} \mathrm{~m}_{\mathrm{h}_{\mathrm{c}}}^{5 / 2} \tag{14}
\end{equation*}
$$

(b) Circular Sections

Figure 6. Circular Culvert Section

For the circular section indicated in Fig. 6, where A is the flow cross section, Equations
(15), (16) and (17) apply.

$$
\begin{align*}
& \mathrm{A}=\frac{\mathrm{D}^{2}}{4}\left(\theta_{\mathrm{r}}-1 / 2 \sin 2 \theta\right) \tag{15}\\
& \mathrm{T}=\mathrm{D} \sin \theta \tag{16}\\
& \mathrm{~h}=\frac{\mathrm{D}}{2}(1-\cos \theta) \tag{17}
\end{align*}
$$

The critical flow (at critical depth h_{c}) in a circular section can be obtained using Eq. (18).

$$
\begin{equation*}
\mathrm{Q}=4.01 \frac{\left(\theta_{\mathrm{r}}-1 / 2 \sin 2 \theta\right)^{1.5}}{(\sin \theta)^{0.5}(1-\cos \theta)^{2.5}} \mathrm{~h}_{\mathrm{c}}^{2.5} \tag{18}
\end{equation*}
$$

In Eq. (18), θ_{r} is the angle in radians defined by $\cos \theta=1-(2 h / D)$ per Eq. (17).
For any flow, there is a critical slope that corresponds to the critical depth. Equation (19) can determine the

$$
\begin{equation*}
S_{c}=\frac{14.56 n^{2} D_{m}}{r^{4 / 3}} \tag{19}
\end{equation*}
$$

critical slope corresponding to the flow calculated using Eq. (18).
In Eq. (19) D_{m} is mean depth, which is the ratio of flow area to top width of the flow section, $(\mathrm{b}+\mathrm{e}) \mathrm{h} /(\mathrm{b}+2 \mathrm{eh})$. The ratio of the flow area to the wetted perimeter is the hydraulic radius (r).

The value of S_{c} from Eq. (19) has to be compared against the slope of the culvert invert S_{o}. If S_{c} is greater than S_{0}, then the flow is subcritical and the control is the culvert outlet. If S_{c} is equal to S_{o}, the flow is critical inside the culvert, and the control may be either the weir (rim of flashboard) or the culvert inlet.

5.0 FLOW EQUATIONS FOR GATED CULVERTS WITH WEIRS

There are several flow conditions and corresponding equations for estimating flow through culvert and weir combination structures. The culvert and weir combination flow conditions most likely to prevail at the STA-6 outflow structures are considered in this section.

Figure 7. Culvert flow profiles

In Fig. 7, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{E}$ and F are water levels, $\mathrm{D}=$ culvert diameter, $\mathrm{G}=$ gate opening,
$h_{1}=$ upstream water depth above culvert invert, $h_{c}=$ critical flow depth inside the culvert, $h_{3}=$ water depth at the downstream end of the culvert, and $h_{4}=$ tailwater depth downstream of the culvert. Z denotes the drop in culvert invert between upstream and downstream ends. The culvert slope is S_{0} and its length is L.

5.1 Full culvert flow

Flow through a culvert can either be under pressure (full culvert flow) or with a free surface (partial culvert flow). This is the flow type when the culvert is submerged at both the inlet and the outlet, i.e. headwater stage at A and tailwater stage at B (Fig. 7). The following criteria define the flow type.
$\left(h_{1}-z\right) / G>1$, i.e. the gate opening is smaller than the headwater depth above the invert. $\left(h_{1}-z\right)>h_{4}>D$, i.e. the tailwater depth above the downstream invert is greater than the diameter of the culvert.

When these conditions are met the culvert flows full. For full culvert flow condition, the discharge can be estimated using Eq. (20), according to Damisse et al. (1997).

$$
\begin{equation*}
Q=C_{d} A_{0} \sqrt{\frac{2 g\left(h_{1}-h_{4}\right)}{K_{e}\left(\frac{A_{0}}{A_{g}}\right)^{2}+\left(1+\frac{29 n^{2} L}{r^{4 / 3}}\right)}} \tag{20}
\end{equation*}
$$

The following default values may be adopted for subsequent verification and adjustment, as necessary, on the basis of field discharge measurements.

C_{d}	$=$	1
n	$=$	0.022 for corrugated metal pipe of fair condition.
K_{e}	$=$	0.5 for a pipe with a square-cut end

The value of A_{g} is determined using Eq. (15) with the value of θ determined from Eq. (21).
$\cos ^{-1} \theta=1-\frac{2 G}{D}$
Equation (21) is obtained by rearranging Eq. (17) replacing h with G.

5.2 Culvert partially submerged

Sometimes the culvert may be submerged at the upstream end while it is free downstream. This flow condition corresponds to headwater level at A , and tailwater level at C in Fig. 7. It is not a typical flow condition in lowland areas, where slopes are usually mild. It may occur in situations where invert slopes are significant and where the flow is controlled by the inlet capacity. This is flow under high head (Damisse et al. 1997) with the headwater stage at A and tailwater stage at C (Fig. 7). The following criteria are used to establish this flow type.
$\left(h_{1}-Z\right) / G>1.5$, i.e. the ratio of the headwater depth above the culvert to the gate opening is greater than 1.5 .
$h_{4} \leq D$, i.e. the tailwater depth above the invert is less than or equal to the culvert diameter.

$$
\begin{equation*}
Q=C_{d} A_{o} \sqrt{\frac{2 g(h-x D)}{K_{e}\left(\frac{A_{o}}{A_{g}}\right)^{2}+\left(1+\frac{29 n^{2} L}{r^{\frac{4}{3}}}\right)}} \tag{22}
\end{equation*}
$$

Under these conditions flow is estimated using Eq. (22).
In Eq. (22), x is a coefficient for the distance to the center of pressure from the outlet invert as a function of culvert diameter, and it varies from 0.5 to 1.0 (the default value is 0.75).

5.3 Subcritical free surface flow throughout the culvert

In most cases culverts on mild slopes carry flows with a free water surface, with no submergence at the upstream or downstream end. This condition corresponds to the headwater level at E , and the tailwater level at F . The criteria for this type of flow are the following.

$$
\left(h_{1}-Z\right) / G<1.5 \text { or } \quad\left(h_{1}-Z\right) / D<1.5 \text {, i.e. the headwater level }
$$

above the invert is less than 1.5 times the lesser of culvert diameter or the gate opening.

$\mathrm{h}_{4} / \mathrm{h}_{\mathrm{c}}$	$>$
h_{4}	
$\mathrm{~S}_{\mathrm{o}}$	
the flow.	

corresponding to the flow.
This flow type is under outlet control. At the terminal section of the culvert, the tailwater stage is above that corresponding to the critical depth. For this condition Eq. (23) is used to estimate flow, according to Damisse et al. (1997),

$$
\begin{equation*}
\mathrm{Q}=\mathrm{C}_{\mathrm{d}} \mathrm{~A}_{3} \sqrt{\frac{2 \mathrm{~g}\left(\mathrm{~h}_{1}-\mathrm{h}_{4}\right)}{1+\frac{2 \mathrm{gA}_{3}^{2} \mathrm{~L}}{\mathrm{~K}_{1} \mathrm{~K}_{3}}}} \tag{23}
\end{equation*}
$$

where K_{i} stands for conveyance, defined as follows, in Eq. (24).

$$
\begin{equation*}
\mathrm{K}_{\mathrm{i}}=\frac{1.486}{\mathrm{n}} \mathrm{r}_{\mathrm{i}}^{2 / 3} \mathrm{~A}_{\mathrm{i}} \tag{24}
\end{equation*}
$$

The corresponding hydraulic radius (r_{i}) for a free surface flow in a circular culvert at any section can be computed using Eq. (25).

$$
\begin{align*}
& r=\frac{D}{4}\left(1-\frac{\sin 2 \theta}{2 \theta}\right) \tag{25}\\
& \tag{26}\\
& \theta=\cos ^{-1}\left(1-\frac{2 h}{D}\right)
\end{align*}
$$

Rearranging Eq. (17) to determine the angle gives Eq. (26).

6.0 COMPUTATION OF INFLOW THROUGH WEIRS G601 AND G602

Inflow into Cell 5 of STA-6 takes place through two trapezoidal broad-crested weirs. The crest of each weir is at elevation 14 ft NGVD and is 11 ft wide. The trapezoid sides slope at 10:1 (horizontal: vertical). The equations and criteria to be used to determine inflow into Cell 5 of STA- 6 corresponding to the various headwater and tailwater combinations are given in this section. All elevations are in feet. In the following equations the notations are $\mathrm{H}=$ headwater depth, $\mathrm{h}=$ tailwater depth, $\mathrm{HWE}=$ headwater elevation, TWE $=$ tailwater elevation, $\mathrm{WCE}=$ weir crest elevation, $\mathrm{B}_{\mathrm{H}}=$ water surface width where depth above crest is H, B $=$ weir crest length, $\mathrm{m}=$ trapezoidal weir side slopes and $\mathrm{ND}=$ notch depth.

$$
\begin{align*}
\mathrm{H} & = \tag{27}\\
\mathrm{h} & \\
& =\mathrm{HWE}-\mathrm{WCE} \tag{29}\\
\mathrm{~B}_{\mathrm{H}} & =\mathrm{B}+\mathrm{mH}-\mathrm{WCE}
\end{align*}
$$

The relevant dimensions of each weir are: $\quad \mathrm{ND}=2.5, \mathrm{~B}=11^{\prime}, \mathrm{m}=6$.

1. If $\mathrm{H} \leq 0, \mathrm{Q}=0$
2. If $\mathrm{ND} \geq \mathrm{H} \geq \mathrm{h}$ and $\mathrm{H}>0$

Equation (1) is used to determine $B_{e},\left(B_{e}=14-0.1 * 2 * H\right)$. Equation (6) is used to determine Q, with $C_{w}=$ 3.1 (default) until it is calibrated with stream flow data.
3. If $\mathrm{ND} \geq \mathrm{H}>\mathrm{h}>0$ and $\mathrm{H} \leq 1.5 \mathrm{~h}$

Equation (3) estimates submergence coefficient $\mathrm{C}_{\mathrm{s} .}$. Equation (5) is suitable to determine Q .
4. If $\mathrm{H}>\mathrm{ND}>0 \geq \mathrm{h}$

Equation (9) is suitable to determine Q.
5. If $\mathrm{H} \geq \mathrm{ND} \geq \mathrm{h}>0$

Equation (7) estimates Q.
6. If $\mathrm{H} \geq \mathrm{h}>\mathrm{ND}$

Equation (8) is suitable to determine Q .

7.0 COMPUTATION OF INFLOW THROUGH WEIR G603

Inflow into Cell 3 of STA- 6 is through a trapezoidal broad-crested weir. As per the "as-built" drawing, the crest of Weir 3 is at elevation 14.2 ft NGVD and 14 ft wide. The trapezoid sides slope at 10:1 (horizontal:vertical). The equations and criteria to be used to determine inflow into Cell 3 of STA-6 corresponding to the various headwater and tailwater combinations are given in this section.

$$
\begin{align*}
\mathrm{H} & =\mathrm{HWE}-\mathrm{WCE}\left(\text { i.e. } 14.2^{\prime}\right) \tag{30}\\
\mathrm{h} & \left.=\text { TWE }- \text { WCE (i.e. } 14.2^{\prime}\right) \tag{31}\\
\mathrm{B}_{\mathrm{m}} & =\mathrm{B}+\mathrm{mH}\left(\text { where } \mathrm{B}=14^{\prime}, \mathrm{m}=10\right) \tag{32}
\end{align*}
$$

The relevant dimensions of each weir are: $\quad \mathrm{ND}=3.34, \mathrm{~B}=14, \mathrm{~m}=10$

1. If $\mathrm{H} \leq 0, \mathrm{Q}=0$
2. If $\mathrm{ND} \geq \mathrm{H} \geq 0 \geq \mathrm{h}$

Use Eq. (1) to determine $\mathrm{B}_{\mathrm{e}},\left(\mathrm{B}_{\mathrm{e}}=\mathrm{B}-0.1 * 2 * \mathrm{H}\right)$.
Use Eq. (6) to determine Q , with $\mathrm{C}_{\mathrm{w}}=3.1$ (default) until it is calibrated with streamgauging data.
3. If $\mathrm{ND} \geq \mathrm{H} \geq \mathrm{h}>0$

Equation (3) is used to determine submergence coefficient C_{s}.
Equation (5) is suitable to determine Q.
4. If $\mathrm{H}>\mathrm{ND}>0 \geq \mathrm{h}$

Equation (9) is suitable to determine Q.
5. If $\mathrm{H}>\mathrm{ND} \geq \mathrm{h}>0$

Equation (7) is suitable to determine Q.
6. If $\mathrm{H}>\mathrm{h}>\mathrm{ND}$

Equation (8) is suitable to determine Q.

8.0 COMPUTATION OF OUTFLOW THROUGH G354 AND G393

The weir-culvert combination structure is provided with a slide gate at the culvert inlet, which will affect the flow. At first, an assumption was made that the slide gate is either fully closed or fully open with no intermediate degree of opening. The conditions of the slide gate would thus be either closed or open. Subsequently, the procedure was revised and a discharge computation algorithm was developed to account for the intermediate levels of gate opening. In this study, the low-level slide gates at the sides of the weir boxes G354A, G354C and G393B, provided to drain the cells if the need arises (an unlikely event), are assumed closed.

The relative elevations of tailwater, headwater, weir crest and culvert crown will determine the flow equation to be used at any time. The criteria and algorithms used to compute flow through a weir-culvert combination structure of STA-6 are described in the following sections.

The rim elevation of the weir box (WCE) at G354 is 14.1 ft and that of G393 is 14.0 ft NGVD. These elevations are the main reference for flow computation at those stations.

1. Stage upstream of weir box, HWE $\leq W C E$ (14.1 ft and 14.0 ft NGVD for G354 and G393, respectively) and weir box side gate closed, or slide gate at upstream face of culvert closed $(\mathrm{G}=0)$

In this condition it is assumed that there is no outflow from the treatment cells to the discharge canal. Leakage, if any, is neglected, and flow is estimated to be zero, $\mathrm{Q}=0$.

2 Slide gate open and stage upstream of weir box, HWE $>$ WCE (14.1 ft for G354 or 14.0 ft for G393 NGVD as appropriate).

Outflow occurs and discharge is computed using either a weir equation or a culvert equation. There is a condition where either a weir equation or a culvert equation may be acceptable. In such a situation the flow computed using a weir equation is compared to that obtained using a culvert equation, and the lower of the two values is adopted as the better estimate.

Computation Steps

- Determine θ using Eq. (21) for angle subtended by gate $\left(\theta_{g}\right)$.
- Determine A_{g} from Eq. (15) using θ_{g}.
- Determine θ_{3} from Eq. (21) using h_{3} in place of G for the angle subtended by the water surface.
- Determine A_{3} corresponding to θ_{3} from Eq. (15).
- Determine hydraulic radius r corresponding to h_{3} using Eq. (25).
- Compute flow (Q) using Eq. (18), assuming h_{3} corresponds to critical flow depth $\left(\mathrm{h}_{\mathrm{c}}\right)$ at the downstream end of the culvert.
- Use the resulting flow Q to determine the corresponding critical slope S_{c} from Eq. (19).
- Determine culvert invert slope $\mathrm{So}_{\mathrm{o}}=\mathrm{z} / \mathrm{L}$ and compare against the critical S_{c}.
- Determine friction slope from Eq. (37).
- Determine h_{2} from Eq. (38).
- Determine θ_{2} using h_{2} in Eq. (21).
- Use θ_{2} in Eq. (15) to determine A_{2}, which shall be limited to a maximum of the full culvert cross-section area.
- Assume $h_{3}=h_{4}$, tailwater depth above outlet invert determined from Eq. (34).

$$
\begin{equation*}
\mathrm{h}_{1}=\mathrm{HWE}-\text { OUTEL } \tag{33}
\end{equation*}
$$

$$
\mathrm{h}_{3}=\text { TWE }- \text { OUTEL }
$$

$$
\begin{equation*}
\mathrm{z}=\mathrm{OUTEL}-\mathrm{INEL} \tag{34}
\end{equation*}
$$

$$
\begin{equation*}
\mathrm{h}_{\mathrm{w}}=\mathrm{WCE}-\mathrm{OUTEL} \tag{35}
\end{equation*}
$$

$$
\begin{equation*}
S_{f}=\left[\left(c_{w} L H^{1.5} n\right) /\left(1.486 A_{3} R^{0.667}\right)\right]^{2} \tag{37}
\end{equation*}
$$

$\mathrm{h}_{2}=\mathrm{h}_{3}+\mathrm{z}+\mathrm{s}_{\mathrm{f}}{ }^{*} \mathrm{~L}$

$$
\begin{equation*}
\mathrm{A}_{\mathrm{r}}=\mathrm{A}_{\mathrm{g}} / \mathrm{A}_{2} \tag{38}
\end{equation*}
$$

When $G<D$ and $G<\left(h_{2}-z\right)$, the discharge computed must be reduced by the factor A_{r}. The value of A_{r} shall be limited to a maximum of 1.0 .

Condition 1: If $h_{1}-z \geq D \geq h_{2}-z$ and $S_{c} \geq S_{o}$, assume flow control at weir box crest.
If $h_{1}-h_{w} \geq 1.5\left(h_{2}-h_{w}\right)$, consider free weir flow and use Eq. (2) default $C_{w}=3.1$;
If $0<h_{1}-h_{w}<1.5\left(h_{2}-h_{w}\right)$, consider submerged weir flow and use Eq. (3) for submergence coefficient with Manning's $\mathrm{n}=0.022$ (default) and determine flow Q using Eq. (4).

Condition 2: If $\left(\mathrm{h}_{2}-\mathrm{z}\right) / \mathrm{D}>1, \mathrm{G} / \mathrm{D} \geq 1,\left(\mathrm{~h}_{2}-\mathrm{z}\right) / \mathrm{G}>1, \mathrm{~h}_{3}>\mathrm{D}$ outlet controlled submerged culvert flow prevails. Compute flow with Eq. (20), using $\mathrm{n}=0.022$ and $\mathrm{C}_{\mathrm{d}}=1$ (defaults). Use Eq. (21) for θ and Eq. (15) for gate opening area A_{g}. Slope is not considered as a criterion in this case.

Condition 3: If $\left(h_{2}-z\right) / D \geq 1.5, G / D \geq 1, h_{3} \leq D$, use Eq. (22) to compute flow and default values $\mathrm{m}=0.75, \mathrm{n}=0.022, \mathrm{~K}_{\mathrm{e}}=0.5, \mathrm{C}_{\mathrm{d}}=1$. Slope is not considered as a criterion in this case.

Condition 4: If $h_{2}-Z \geq 1.5 D, G / D \geq 1, h_{4} \geq D,\left(h_{1}-h_{w}\right)<1.5\left(h_{2}-h_{w}\right)$;
Determine Q_{1} using Eq. (4), C_{s} from Eq. (3)
Determine Q_{2} using Eq. (23), K_{2} and K_{3} from Eq. (24), r_{2} and r_{3} from Eq. (25), and θ from Eq. (26).

If $\mathrm{Q}_{1}<\mathrm{Q}_{2}, \mathrm{Q}=\mathrm{Q}_{1}$ else, $\mathrm{Q}=\mathrm{Q}_{2} . \quad\left[\mathrm{Q}=\min \left(\mathrm{Q}_{1}, \mathrm{Q}_{2}\right)\right]$

9.0 FLOW ESTIMATION PARAMETERS

The FLOW program is used in conjunction with DBHYDRO (the hydrologic database) and the Archive database to estimate flow through the various control structures in the District. All static information (structure parameters) required for discharge computation is registered in the DBHYDRO database. The dynamic instantaneous data, including headwater stage, tailwater stage and control operation status, are available in the Archive database. The structure information registered in the DBHYDRO database for STA-6 structures is given in Table 1.

Table 1. Structure information for STA6 stations

station	G600	G601	G602	G603	G354	G393	G605	G606	G607
Type	pump	weir	weir	weir	culvert	culvert	uvm	uvm	culvert
Units	5	1	1	1	3	3	1	1	6
Dbkey (Source)	G6531	J5566	J5567	J5568	J0939	J5569	GA119	GA116	G7750
Dbkey (Preferred)	GG955				MC958	MC959	H3143	H3144	
Max Q (Group)	500	180	180	140	360	140	200	600	600
Min. Q (Group)	0	0	0	0	0	0	0	-130	-200
Design Q (Group)	500	180	180	140	360	140	200	650	500
$\begin{gathered} \text { Maximum } \\ \text { HW(ft) } \\ \hline \end{gathered}$	$\begin{aligned} & 10.2 \mathrm{on} \\ & 8.7 \mathrm{off} \end{aligned}$	16.34	16.34	16.09	17.6	17.6	16.4	16.4	16.4
$\begin{gathered} \text { Maximum TW } \\ (\mathrm{ft}) \end{gathered}$		15.45	15.45	15.45	16.4	16.4	16.4	16.4	N/A.
Bypass Stage (ft)		20.50	20.50	20.5	19.5	19.5	20.5	19.5	19.0
Section Minimum Elevation		14.1	14.1	14.2	14.1	14.0	0	0	4.29
Section Length(ft)	N/A.	N/A	N/A	N/A	75	75	N/A	N/A	70
Section Width(ft)	$\begin{gathered} \hline 4 \\ \text { Dia. } \end{gathered}$	11 bottom	11 bottom	14 bottom	7	7		34	$\begin{aligned} & 4 \text { of } 5.5^{\prime} \\ & 2 \text { of } 7.0^{\prime} \end{aligned}$
Section Depth(tt)	$\begin{gathered} \hline 4 \\ \text { Dia. } \end{gathered}$	$\begin{gathered} 2.4 \\ \text { notch } \end{gathered}$	$\begin{gathered} 2.3 \\ \text { notch } \end{gathered}$	$\begin{gathered} 3.3 \\ \text { notch } \end{gathered}$	7	7		13	$\begin{aligned} & 4 \text { of } 5.5^{\prime} \\ & 2 \text { of } 7.0^{\prime} \end{aligned}$
RPM	150	N/A							

[^0]Table 2 presents the discharge coefficients for the different flow conditions of each flow control structure. Four discharge coefficients are provided for discharge estimation through the pump station G600. For each weir (G601, G602 and G603), four flow conditions are considered. Correspondingly, four discharge coefficients are given. Inlet loss coefficient $\left(\mathrm{K}_{\mathrm{e}}\right)$ and Manning's coefficient (n) values are also given for the culverts G354 and G393.

Table 2. Discharge Coefficients for STA-6 Stations

station	G600	G601	G602	G603	G354	G393	G607
Type	Pump	Weir	Weir	weir	culvert	culvert	culvert
Units	5	1	1	1	3	3	6
Dbkey (Source)	G6531	J5566	J5567	J5568	J0939	J5569	G7750
Dbkey (Preferred)	GG955				MC958	MC959	
N	1800						
COEF11 (A)	-1.1						
COEF12 (B)	36000						
COEF13 (C)	19				3.3	3.3	3.3
WEIR COEF. (Cw)		3.1	3.1			0.5	0.5
INLET_K					0.022	0.022	0.022
Manning's n							

STA-6 flow-monitoring sites and stage-monitoring stations are listed in Table 3. Table 3 indicates the flow combinations, site identifiers (site i.d.s) and start dates of the monitoring stations. Station source and preferred flow dbkeys (database keys or alphanumeric identifiers) are also given in this table. Initially the outflow stations were established in such a way that G354 was treated as one flow station with three culvert barrels, as was G393. One reason for handling G354 and G393 as one flow station with three controls was that all structure parameters used for all of them were similar and the same pair of headwater and tailwater stages was used. In addition, all three culverts delivered water from the same cell to the same discharge canal with identical inlet and outlet conditions. Thus it was deemed logical to establish one flow station with three controls in the interest of reducing data- processing costs. Later, it was decided to treat each culvert as a separate flow station because of the distance between adjacent culverts.

Table 3. STA6 Flow Monitoring Sites and Stage Stations

Site	Station Flow Combination	Site ID	Start Date	Source dbkey	Preferred dbkey
G600	G600 P	62647341	29-OCT-1997	G6531	GG955
	G600+H		31-OCT-1997	G6528	
	G600+T		29-OCT-1997	G6529	
	G600+P1		29-OCT-1997		
	G600+P2		29-OCT-1997		
	G600+P4		29-OCT-1997		
	G600+P5		29-OCT-1997		
G601	G601	63547341	30-NOV-1998	J5566	
	G352S+H		17-DEC-1997		
	G352S+T		17-DEC-1997		
G602	G602	63547342	30-NOV-1998	J5567	
	G352S+H		17-DEC-1997		
	G352S+T		17-DEC-1997		
G603	G603	63647341	30-NOV-1998	J5568	
	G392S+H		17-DEC-1997		
	G392S+T		17-DEC-1997		
G605	G605+Q		24-NOV-1997	GA119	H3143
	G605+ (stage)		24-NOV-1997	GA118	
G606	G606+Q		24-NOV-1997	GA116	H3144
	G606+(stage)		24-NOV-1997	GA115	
G354	G354 C	63147352	12-DEC-1997	J0939	MC958
	G354C+H		12-DEC-1997		
	G354C+T		12-DEC-1997		
	G354A@1		01-DEC-1997		
	G354B@1		01-DEC-1997		
	G354C@1		01-DEC-1997		
G393	G393 C	60148343	12-DEC-1997	J5569	MC959
	G393+H		12-DEC-1997		
	G393+T		12-DEC-1997		
	G393A@1		01-DEC-1997		
	G393B@1		01-DEC-1997		
	G393C@1		01-DEC-1997		
G354+G393			01-DEC-1997	JI252	
STA6OUT	STA6OUT				HD889
G607	G607 C	60148341	13-MAY-1997	G7750	
	G607+H		13-MAY-1997		
	G607+T		13-MAY-1997		
	G607@(1to6)		13-MAY-1997		

10.0 EVALUATION OF FLOW ESTIMATES

A period of record (October 1 through 31, 2000) was selected to evaluate the ratings implemented for inflow and outflow structures for STA-6. The Flow program was used to generate instantaneous flows for the selected period. Figure 8 shows instantaneous flows through all inflow and outflow structures of STA6. The cumulative flows for the period are shown in Fig. 9.

STA6 Flows
—G600 pump cfs - G601 weir cfs - G603 weir cfs - G354 culvert cfs - G393 culvert cfs

Figure 8. STA-6 Instantaneous Discharges of October 2000

In general the results were very good as far as flow estimates are concerned. The estimates of cumulative flow for G354 and G393 (the outflow weirs) compared very well with the corresponding

STA6 Cumulative Flows for 10/2000

Figure 9. STA-6 Cumulative Flows of October 2000
inflows through G600 pumps. The cumulative inflow through the G600 pumps was estimated at 12,700 acft for the period. The estimate of the corresponding combined cumulative outflow through G354 and G393 was $12,300 \mathrm{ac}$-ft, i.e. 97 percent of G 600 inflow. The three-percent difference can be attributed to losses through net evapotranspiration, seepage and estimation errors.

The attenuation and translation effects of the cells (providing storage) can be observed in Fig. 8. The outflow peak is reduced in magnitude and shifted forward in time when compared to the inflows. The outflow discharge curve is smoother and flatter than that of the inflow. The behavior is expected of reservoirs (detention facilities). The pulse-like discharges from G600 are routed through the cells to generate a smoother and flatter receding limb of the outflow hydrograph.

The discharges through the inflow weirs (G601, G602 and G603) show a few negative values, implying flow from the treatment cells back into the supply canal (reverse flow). Under normal operating conditions, backflow from the treatment cells to the inflow canal is not a likely scenario. It is a result of negative head differential, i.e. the headwater being less than the tailwater. The scenario is not consistent with the fact that G604 is closed and thus there is no flow through this bypass structure. There is no backflow through G600, which implies that there is no discharge from the supply canal into the sugarcane farms.

The relation between the headwater and tailwater of a control structure determines the sign of the resulting computed flow. When the headwater is higher than the tailwater, the flow is positive; otherwise it is negative. The instances where the headwater is lower than the tailwater at the inflow weirs of STA- 6 may be due to some errors in the reference elevations. The reference elevations related to G601, G602 and G603 need to be tied to a benchmark. If both tailwater and headwater elevations are tied to the same benchmark, the effect of reference elevation errors will be minimized.

In a few instances the headwater and tailwater stages at the inflow trapezoidal weirs did not appear realistic. In those instances, headwater readings were lower than the tailwater readings, and thus the flow estimates were negative, indicating reverse flow. The stage readings seem to be erroneous. The combined cumulative inflow through the trapezoidal weirs G601, G602 and G603 estimated for the period was 10,900 ac-ft, i.e. 86 percent of the estimated inflow through G600. The 14 -percent difference between $G 600$ estimates and the combined flows of G601, G602 and G603 is partly due to the negative head differentials, which generated negative flows at the three inflow weirs, and partly due to seepage and estimation errors. The negative flows do not seem warranted by the design criteria or the operation plan. The actual operation of those structures did not indicate any possibilities of reverse flow.

Flow pulses shown in Fig. 9 match exactly with stage variations indicated in Fig. 10. This is not unexpected, because discharge is a function of stage. The accuracy of computed flow is dependent upon the accuracy of the stages. Any error in the stage values affects the error in flow exponentially. This is clear from the equations used to determine flow. Flow equations for all conditions are given as power functions of head differential (powers of H greater than 1.0).

Figure 10. Inflow and Outflow Stages of Cell 3

11.0 CONCLUSIONS AND RECOMMENDATIONS

Procedures have been developed to monitor inflow and outflow at STA-6 Section 1. The criteria and steps to be followed for computing flows into STA- 6 cells through the inflow weirs have been presented in this report. A method is presented that enables the computation of flow through the weir box and culvert combination structures at G354 and G393 in order to monitor outflows from the respective treatment cells.

The flow conditions most likely to prevail at the inflow and outflow stations have been considered. For most coefficients, default values have been suggested for use in the absence of calibration results. However, streamgauging activities need to be planned and carried out to obtain adequate calibration data from the inflow and outflow stations. Adequate discharge measurements (preferably 30 or more for each station) will facilitate rating analyses to determine appropriate discharge coefficients. Streamgauging activities need to be provided for in such a way as to enable independent discharge measurements for G354 and G393. This may require operating one of these two stations at a time when the measurements are taking place. Discharge measurements need to be made for the inflow stations in such a way as to determine inflows to Cell 5 separately from inflows to Cell 3. This may require simultaneous measurements using two crews.
"As-built" crest elevations of the inflow and outflow weirs have been used in the flow computation equations. For the inflow Weir 3 the "as-built" crest elevation is slightly higher than the design crest elevation (14.3 ft NGVD as designed versus 14.2 ft NGVD as built).

The criteria, equations and algorithms developed and presented in this report will significantly improve flow monitoring through STA-6 Section 1. The methodologies presented here can, with slight modifications, be used for flow monitoring at similar stations in new stormwater treatment areas when they come on line.

The equations used for flow computation at STA-6 structures are theoretical, and default values have been adopted for discharge coefficients. There is good correlation between inflows from G600 and outflows through G354 and G393 (correlation coefficient $=0.99$). The flows through G601, G602 and G603 are slightly different from G600 inflows, as well as the outflows through G354 and G393. There is some room for improvement of the weir inflow estimates. It is also possible to gain some improvement on the overall accuracy of flow computation at STA- 6 structures. Thus, it is imperative that extensive streamgauging be conducted at STA-6. It is necessary to acquire adequate streamgauging data in order to verify and/or improve accuracy of flow estimates at STA- 6 structures.

Some input data showed unlikely stage relations between the headwater and tailwater stages of G603 (G352S+H and G352S+T). On a few occasions it was observed that the headwater stages were lower than the tailwater stages, resulting in negative flows. This is possibly caused by incompatible reference elevations of headwater and tailwater. It is thus imperative that the reference elevations of those stages be investigated. If the reference elevations of the headwater and the tailwater differ, the correct values must be used to improve the accuracy of the flow estimates.

REFERENCES

Bodhaine, G.L. (1968). Measurement of Peak Discharge by Indirect Methods, Techniques of Water Resources Investigations of the United States Geological Survey. United States Government Printing Office, Washington, D.C.

Brater, E.F. and H.W. King. (1976). Handbook of Hydraulics (6th edition), McGraw Hill, New York, NY.
Burns \& McDonnell (1996). Stormwater Treatment Area No. 6 Section 1, Contract Drawings (as built), South Florida Water Management District, West Palm Beach, FL.

Chow, V.T. (1959). Open Channel Hydraulics. McGraw Hill, New York, NY.
Damisse, E., S. Kone and D. Mtundu (1997). A Numerical Approach to Improve the Accuracy of Flow Rate Computation at Culvert Structures, Water Resources Education, Training and Practice: Opportunities for the Next Century. American Water Resources Association, Denver, CO.

EES (1997). Operation Plan, Stormwater Treatment Area No. 6 Section 1, South Florida Water Management District, West Palm Beach, FL.

Featherstone, R.E. and C. Nalluri (1982). Civil Engineering Hydraulics, Granada Publishing, Bungay, Great Britain.

French, R.H. (1985). Open-Channel Hydraulics. McGraw Hill, New York, NY.
Henderson, F.M. (1966). Open Channel Flow. Prentice Hall, NJ.
Hydrologic Engineering Center (1990). HEC-2 Water Surface Profiles, User's Manual, U.S. Army Corps of Engineers. Davis, CA.

Lindeburg, M.R. (1995). Civil Engineering Reference Manual, Sixth Edition, Professional Publications Inc., Belmont, CA.

Linsley, R.K. and J.B. Franzini (1972). Water-Resources Engineering, McGraw Hill, New York, NY.
Otero, J.M. (1995). Computation of Flow through Water Control Structures, South Florida Water Management District, West Palm Beach, FL.

APPENDIX I: STA-6 INFLOW, INTERIOR AND OUTFLOW STAGES FOR OCTOBER 2000

G392S+H = Inflow headwater stage in supply canal (for G601 and G602), G392S+T = Inflow tailwater stage in Cell 3 (for G601 and G602), G393S+H = Outflow headwater stage inside Cell 3 (for G393), G393 $+\mathrm{T}=$ Outflow tailwater stage in discharge canal, G393 CE $=$ Weir crest elevation of G393 (weir-culvert combination structure), Hinflow = Head difference across inflow weirs (G601 and G602), Houtflow = Head difference across outflow (G393)

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001001	0	1	14.41	14.28	14.27	12.82	14	0.13	0.01
20001001	15	1	14.4	14.28	14.26	12.82	14	0.12	0.02
20001001	30	1	14.4	14.28	14.26	12.82	14	0.12	0.02
20001001	45	1	14.39	14.28	14.26	12.82	14	0.11	0.02
20001001	100	1	14.39	14.28	14.26	12.82	14	0.11	0.02
20001001	115	1	14.39	14.28	14.26	12.82	14	0.11	0.02
20001001	130	1	14.38	14.28	14.26	12.82	14	0.1	0.02
20001001	145	1	14.38	14.28	14.26	12.82	14	0.1	0.02
20001001	200	1	14.38	14.27	14.26	12.82	14	0.11	0.01
20001001	215	1	14.37	14.27	14.26	12.82	14	0.1	0.01
20001001	230	1	14.37	14.27	14.25	12.82	14	0.1	0.02
20001001	245	1	14.37	14.27	14.25	12.82	14	0.1	0.02
20001001	300	1	14.37	14.27	14.25	12.82	14	0.1	0.02
20001001	315	1	14.36	14.27	14.25	12.82	14	0.09	0.02
20001001	330	1	14.36	14.27	14.25	12.82	14	0.09	0.02
20001001	345	1	14.36	14.26	14.25	12.82	14	0.1	0.01
20001001	400	1	14.35	14.26	14.25	12.82	14	0.09	0.01
20001001	415	1	14.35	14.26	14.25	12.82	14	0.09	0.01
20001001	430	1	14.35	14.26	14.25	12.82	14	0.09	0.01
20001001	445	1	14.34	14.26	14.24	12.82	14	0.08	0.02
20001001	500	1	14.34	14.26	14.24	12.82	14	0.08	0.02
20001001	515	1	14.34	14.26	14.24	12.82	14	0.08	0.02
20001001	530	1	14.34	14.26	14.24	12.82	14	0.08	0.02
20001001	545	1	14.33	14.26	14.24	12.82	14	0.07	0.02
20001001	600	1	14.33	14.25	14.24	12.82	14	0.08	0.01
20001001	615	1	14.33	14.25	14.24	12.82	14	0.08	0.01
20001001	630	1	14.32	14.25	14.24	12.82	14	0.07	0.01
20001001	645	1	14.32	14.25	14.24	12.82	14	0.07	0.01
20001001	700	1	14.32	14.25	14.23	12.82	14	0.07	0.02
20001001	715	1	14.32	14.25	14.23	12.82	14	0.07	0.02
20001001	730	1	14.31	14.25	14.23	12.82	14	0.06	0.02
20001001	745	1	14.31	14.25	14.23	12.82	14	0.06	0.02
20001001	800	1	14.31	14.24	14.23	12.81	14	0.07	0.01
20001001	815	1	14.48	14.24	14.23	12.81	14	0.24	0.01
20001001	830	1	14.63	14.25	14.23	12.82	14	0.38	0.02
20001001	845	1	14.74	14.26	14.23	12.81	14	0.48	0.03
20001001	900	1	14.83	14.27	14.23	12.81	14	0.56	0.04
20001001	915	1	14.89	14.29	14.23	12.81	14	0.6	0.06
20001001	930	1	14.95	14.31	14.22	12.81	14	0.64	0.09
20001001	945	1	15.02	14.34	14.22	12.81	14	0.68	0.12
20001001	1000	1	15.07	14.36	14.22	12.81	14	0.71	0.14
20001001	1015	1	15.12	14.39	14.22	12.81	14	0.73	0.17

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001001	1030	1	15.16	14.41	14.22	12.81	14	0.75	0.19
20001001	1045	1	15.21	14.44	14.22	12.81	14	0.77	0.22
20001001	1100	1	15.25	14.46	14.22	12.81	14	0.79	0.24
20001001	1115	1	15.28	14.48	14.22	12.81	14	0.8	0.26
20001001	1130	1	15.31	14.5	14.22	12.8	14	0.81	0.28
20001001	1145	1	15.34	14.52	14.22	12.8	14	0.82	0.3
20001001	1200	1	15.37	14.53	14.22	12.8	14	0.84	0.31
20001001	1215	1	15.39	14.55	14.22	12.8	14	0.84	0.33
20001001	1230	1	15.41	14.56	14.22	12.8	14	0.85	0.34
20001001	1245	1	15.43	14.57	14.22	12.8	14	0.86	0.35
20001001	1300	1	15.44	14.59	14.23	12.8	14	0.85	0.36
20001001	1315	1	15.45	14.6	14.23	12.8	14	0.85	0.37
20001001	1330	1	15.46	14.61	14.23	12.79	14	0.85	0.38
20001001	1345	1	15.47	14.61	14.23	12.79	14	0.86	0.38
20001001	1400	1	15.46	14.62	14.23	12.79	14	0.84	0.39
20001001	1415	1	15.38	14.58	14.24	12.79	14	0.8	0.34
20001001	1430	1	15.3	14.55	14.24	12.79	14	0.75	0.31
20001001	1445	1	15.23	14.52	14.24	12.79	14	0.71	0.28
20001001	1500	1	15.18	14.5	14.24	12.79	14	0.68	0.26
20001001	1515	1	15.14	14.48	14.25	12.79	14	0.66	0.23
20001001	1530	1	15.09	14.46	14.25	12.79	14	0.63	0.21
20001001	1545	1	15.06	14.44	14.25	12.79	14	0.62	0.19
20001001	1600	1	15.02	14.42	14.25	12.79	14	0.6	0.17
20001001	1615	1	14.99	14.41	14.26	12.78	14	0.58	0.15
20001001	1630	1	14.96	14.39	14.26	12.78	14	0.57	0.13
20001001	1645	1	14.93	14.38	14.26	12.78	14	0.55	0.12
20001001	1700	1	14.9	14.37	14.26	12.78	14	0.53	0.11
20001001	1715	1	14.88	14.36	14.26	12.78	14	0.52	0.1
20001001	1730	1	14.85	14.35	14.27	12.78	14	0.5	0.08
20001001	1745	1	14.83	14.35	14.27	12.78	14	0.48	0.08
20001001	1800	1	14.81	14.34	14.27	12.78	14	0.47	0.07
20001001	1815	1	14.79	14.33	14.27	12.78	14	0.46	0.06
20001001	1830	1	14.78	14.33	14.27	12.78	14	0.45	0.06
20001001	1845	1	14.76	14.32	14.27	12.78	14	0.44	0.05
20001001	1900	1	14.74	14.32	14.27	12.78	14	0.42	0.05
20001001	1915	1	14.73	14.32	14.27	12.78	14	0.41	0.05
20001001	1930	1	14.71	14.31	14.27	12.78	14	0.4	0.04
20001001	1945	1	14.7	14.31	14.27	12.78	14	0.39	0.04
20001001	2000	1	14.68	14.31	14.27	12.78	14	0.37	0.04
20001001	2015	1	14.67	14.3	14.27	12.78	14	0.37	0.03
20001001	2030	1	14.66	14.3	14.27	12.78	14	0.36	0.03
20001001	2045	1	14.65	14.3	14.27	12.78	14	0.35	0.03
20001001	2100	1	14.64	14.3	14.27	12.77	14	0.34	0.03
20001001	2115	1	14.63	14.3	14.27	12.78	14	0.33	0.03
20001001	2130	1	14.62	14.29	14.27	12.78	14	0.33	0.02
20001001	2145	1	14.61	14.29	14.27	12.78	14	0.32	0.02
20001001	2200	1	14.6	14.29	14.27	12.78	14	0.31	0.02
20001001	2215	1	14.59	14.29	14.26	12.78	14	0.3	0.03
20001001	2230	1	14.58	14.29	14.26	12.78	14	0.29	0.03
20001001	2245	1	14.57	14.28	14.26	12.77	14	0.29	0.02
20001001	2300	1	14.57	14.28	14.26	12.77	14	0.29	0.02

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001001	2315	1	14.56	14.28	14.26	12.77	14	0.28	0.02
20001001	2330	1	14.55	14.28	14.26	12.77	14	0.27	0.02
20001001	2345	1	14.54	14.28	14.26	12.77	14	0.26	0.02
20001002	0	2	14.54	14.28	14.26	12.77	14	0.26	0.02
20001002	15	2	14.53	14.28	14.26	12.77	14	0.25	0.02
20001002	30	2	14.52	14.27	14.26	12.77	14	0.25	0.01
20001002	45	2	14.52	14.27	14.25	12.77	14	0.25	0.02
20001002	100	2	14.51	14.27	14.25	12.77	14	0.24	0.02
20001002	115	2	14.5	14.27	14.25	12.77	14	0.23	0.02
20001002	130	2	14.5	14.27	14.25	12.77	14	0.23	0.02
20001002	145	2	14.49	14.27	14.25	12.77	14	0.22	0.02
20001002	200	2	14.49	14.27	14.25	12.77	14	0.22	0.02
20001002	215	2	14.48	14.27	14.25	12.77	14	0.21	0.02
20001002	230	2	14.48	14.26	14.25	12.77	14	0.22	0.01
20001002	245	2	14.47	14.26	14.25	12.77	14	0.21	0.01
20001002	300	2	14.47	14.26	14.25	12.77	14	0.21	0.01
20001002	315	2	14.46	14.26	14.24	12.77	14	0.2	0.02
20001002	330	2	14.46	14.26	14.24	12.77	14	0.2	0.02
20001002	345	2	14.45	14.26	14.24	12.77	14	0.19	0.02
20001002	400	2	14.45	14.26	14.24	12.77	14	0.19	0.02
20001002	415	2	14.44	14.26	14.24	12.77	14	0.18	0.02
20001002	430	2	14.44	14.25	14.24	12.77	14	0.19	0.01
20001002	445	2	14.43	14.25	14.24	12.77	14	0.18	0.01
20001002	500	2	14.43	14.25	14.24	12.77	14	0.18	0.01
20001002	515	2	14.42	14.25	14.24	12.77	14	0.17	0.01
20001002	530	2	14.42	14.25	14.23	12.77	14	0.17	0.02
20001002	545	2	14.42	14.25	14.23	12.77	14	0.17	0.02
20001002	600	2	14.41	14.25	14.23	12.77	14	0.16	0.02
20001002	615	2	14.41	14.25	14.23	12.77	14	0.16	0.02
20001002	630	2	14.4	14.25	14.23	12.77	14	0.15	0.02
20001002	645	2	14.4	14.24	14.23	12.77	14	0.16	0.01
20001002	700	2	14.4	14.24	14.23	12.77	14	0.16	0.01
20001002	715	2	14.39	14.24	14.23	12.77	14	0.15	0.01
20001002	730	2	14.39	14.24	14.23	12.77	14	0.15	0.01
20001002	745	2	14.39	14.24	14.23	12.77	14	0.15	0.01
20001002	800	2	14.38	14.24	14.22	12.77	14	0.14	0.02
20001002	815	2	14.38	14.24	14.22	12.77	14	0.14	0.02
20001002	830	2	14.38	14.24	14.22	12.77	14	0.14	0.02
20001002	845	2	14.37	14.23	14.22	12.77	14	0.14	0.01
20001002	900	2	14.37	14.23	14.22	12.77	14	0.14	0.01
20001002	915	2	14.37	14.23	14.22	12.77	14	0.14	0.01
20001002	930	2	14.36	14.23	14.22	12.77	14	0.13	0.01
20001002	945	2	14.36	14.23	14.22	12.77	14	0.13	0.01
20001002	1000	2	14.36	14.23	14.22	12.77	14	0.13	0.01
20001002	1015	2	14.35	14.23	14.22	12.77	14	0.12	0.01
20001002	1030	2	14.35	14.23	14.21	12.77	14	0.12	0.02
20001002	1045	2	14.35	14.23	14.21	12.77	14	0.12	0.02
20001002	1100	2	14.34	14.23	14.21	12.77	14	0.11	0.02
20001002	1115	2	14.34	14.22	14.21	12.77	14	0.12	0.01
20001002	1130	2	14.34	14.22	14.21	12.77	14	0.12	0.01
20001002	1145	2	14.34	14.22	14.21	12.77	14	0.12	0.01

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001002	1200	2	14.33	14.22	14.21	12.76	14	0.11	0.01
20001002	1215	2	14.34	14.24	14.22	12.77	14	0.1	0.02
20001002	1230	2	14.34	14.23	14.22	12.76	14	0.11	0.01
20001002	1245	2	14.34	14.23	14.22	12.76	14	0.11	0.01
20001002	1300	2	14.34	14.23	14.21	12.75	14	0.11	0.02
20001002	1315	2	14.34	14.23	14.21	12.75	14	0.11	0.02
20001002	1330	2	14.33	14.23	14.21	12.77	14	0.1	0.02
20001002	1345	2	14.35	14.24	14.21	12.79	14	0.11	0.03
20001002	1400	2	14.35	14.24	14.22	12.79	14	0.11	0.02
20001002	1415	2	14.35	14.24	14.22	12.77	14	0.11	0.02
20001002	1430	2	14.34	14.23	14.22	12.77	14	0.11	0.01
20001002	1445	2	14.34	14.23	14.22	12.76	14	0.11	0.01
20001002	1500	2	14.34	14.23	14.22	12.77	14	0.11	0.01
20001002	1515	2	14.33	14.23	14.22	12.77	14	0.1	0.01
20001002	1530	2	14.33	14.23	14.22	12.78	14	0.1	0.01
20001002	1545	2	14.33	14.23	14.21	12.78	14	0.1	0.02
20001002	1600	2	14.33	14.23	14.21	12.78	14	0.1	0.02
20001002	1615	2	14.33	14.23	14.21	12.79	14	0.1	0.02
20001002	1630	2	14.32	14.22	14.21	12.78	14	0.1	0.01
20001002	1645	2	14.32	14.22	14.21	12.77	14	0.1	0.01
20001002	1700	2	14.32	14.22	14.21	12.77	14	0.1	0.01
20001002	1715	2	14.32	14.22	14.21	12.77	14	0.1	0.01
20001002	1730	2	14.31	14.22	14.21	12.78	14	0.09	0.01
20001002	1745	2	14.31	14.22	14.21	12.78	14	0.09	0.01
20001002	1800	2	14.31	14.22	14.21	12.78	14	0.09	0.01
20001002	1815	2	14.31	14.22	14.21	12.77	14	0.09	0.01
20001002	1830	2	14.3	14.22	14.2	12.77	14	0.08	0.02
20001002	1845	2	14.3	14.21	14.2	12.78	14	0.09	0.01
20001002	1900	2	14.3	14.21	14.2	12.78	14	0.09	0.01
20001002	1915	2	14.3	14.21	14.2	12.78	14	0.09	0.01
20001002	1930	2	14.3	14.21	14.2	12.77	14	0.09	0.01
20001002	1945	2	14.3	14.21	14.2	12.77	14	0.09	0.01
20001002	2000	2	14.3	14.21	14.2	12.77	14	0.09	0.01
20001002	2015	2	14.29	14.21	14.2	12.77	14	0.08	0.01
20001002	2030	2	14.29	14.21	14.2	12.77	14	0.08	0.01
20001002	2045	2	14.29	14.21	14.2	12.77	14	0.08	0.01
20001002	2100	2	14.29	14.21	14.2	12.77	14	0.08	0.01
20001002	2115	2	14.28	14.21	14.2	12.77	14	0.07	0.01
20001002	2130	2	14.28	14.21	14.2	12.77	14	0.07	0.01
20001002	2145	2	14.28	14.21	14.2	12.76	14	0.07	0.01
20001002	2200	2	14.28	14.2	14.2	12.76	14	0.08	0
20001002	2215	2	14.27	14.2	14.19	12.76	14	0.07	0.01
20001002	2230	2	14.27	14.2	14.19	12.76	14	0.07	0.01
20001002	2245	2	14.27	14.2	14.19	12.76	14	0.07	0.01
20001002	2300	2	14.27	14.2	14.19	12.76	14	0.07	0.01
20001002	2315	2	14.27	14.2	14.19	12.76	14	0.07	0.01
20001002	2330	2	14.26	14.2	14.19	12.75	14	0.06	0.01
20001002	2345	2	14.26	14.2	14.19	12.76	14	0.06	0.01
20001003	0	3	14.26	14.2	14.19	12.76	14	0.06	0.01
20001003	15	3	14.26	14.2	14.19	12.76	14	0.06	0.01
20001003	30	3	14.26	14.2	14.19	12.76	14	0.06	0.01

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001003	45	3	14.25	14.19	14.19	12.76	14	0.06	0
20001003	100	3	14.25	14.19	14.19	12.76	14	0.06	0
20001003	115	3	14.25	14.19	14.19	12.76	14	0.06	0
20001003	130	3	14.25	14.19	14.18	12.76	14	0.06	0.01
20001003	145	3	14.25	14.19	14.18	12.76	14	0.06	0.01
20001003	200	3	14.24	14.19	14.18	12.75	14	0.05	0.01
20001003	215	3	14.24	14.19	14.18	12.75	14	0.05	0.01
20001003	230	3	14.24	14.19	14.18	12.75	14	0.05	0.01
20001003	245	3	14.24	14.19	14.18	12.75	14	0.05	0.01
20001003	300	3	14.23	14.19	14.18	12.75	14	0.04	0.01
20001003	315	3	14.23	14.19	14.18	12.75	14	0.04	0.01
20001003	330	3	14.23	14.19	14.18	12.75	14	0.04	0.01
20001003	345	3	14.23	14.18	14.18	12.75	14	0.05	0
20001003	400	3	14.23	14.18	14.18	12.75	14	0.05	0
20001003	415	3	14.22	14.18	14.18	12.74	14	0.04	0
20001003	430	3	14.22	14.18	14.18	12.74	14	0.04	0
20001003	445	3	14.22	14.18	14.17	12.74	14	0.04	0.01
20001003	500	3	14.22	14.18	14.17	12.74	14	0.04	0.01
20001003	515	3	14.22	14.18	14.17	12.74	14	0.04	0.01
20001003	530	3	14.21	14.18	14.17	12.74	14	0.03	0.01
20001003	545	3	14.21	14.18	14.17	12.74	14	0.03	0.01
20001003	600	3	14.21	14.18	14.17	12.74	14	0.03	0.01
20001003	615	3	14.21	14.18	14.17	12.74	14	0.03	0.01
20001003	630	3	14.21	14.18	14.17	12.74	14	0.03	0.01
20001003	645	3	14.2	14.18	14.17	12.74	14	0.02	0.01
20001003	700	3	14.2	14.17	14.17	12.74	14	0.03	0
20001003	715	3	14.2	14.17	14.17	12.74	14	0.03	0
20001003	730	3	14.2	14.17	14.17	12.74	14	0.03	0
20001003	745	3	14.43	14.17	14.17	12.74	14	0.26	0
20001003	800	3	14.64	14.18	14.17	12.73	14	0.46	0.01
20001003	815	3	14.79	14.21	14.17	12.73	14	0.58	0.04
20001003	830	3	14.92	14.24	14.17	12.73	14	0.68	0.07
20001003	845	3	15	14.28	14.17	12.73	14	0.72	0.11
20001003	900	3	15.08	14.32	14.17	12.73	14	0.76	0.15
20001003	915	3	15.14	14.36	14.16	12.73	14	0.78	0.2
20001003	930	3	15.2	14.4	14.16	12.73	14	0.8	0.24
20001003	945	3	15.27	14.43	14.16	12.73	14	0.84	0.27
20001003	1000	3	15.32	14.47	14.16	12.73	14	0.85	0.31
20001003	1015	3	15.37	14.5	14.17	12.72	14	0.87	0.33
20001003	1030	3	15.42	14.53	14.17	12.72	14	0.89	0.36
20001003	1045	3	15.45	14.56	14.17	12.73	14	0.89	0.39
20001003	1100	3	15.49	14.58	14.17	12.73	14	0.91	0.41
20001003	1115	3	15.52	14.61	14.18	12.74	14	0.91	0.43
20001003	1130	3	15.55	14.63	14.18	12.74	14	0.92	0.45
20001003	1145	3	15.58	14.65	14.18	12.74	14	0.93	0.47
20001003	1200	3	15.59	14.66	14.18	12.73	14	0.93	0.48
20001003	1215	3	15.61	14.67	14.19	12.72	14	0.94	0.48
20001003	1230	3	15.63	14.69	14.19	12.72	14	0.94	0.5
20001003	1245	3	15.64	14.7	14.19	12.72	14	0.94	0.51
20001003	1300	3	15.65	14.71	14.2	12.73	14	0.94	0.51
20001003	1315	3	15.66	14.73	14.21	12.74	14	0.93	0.52

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001003	1330	3	15.67	14.74	14.21	12.75	14	0.93	0.53
20001003	1345	3	15.68	14.74	14.22	12.75	14	0.94	0.52
20001003	1400	3	15.69	14.75	14.22	12.75	14	0.94	0.53
20001003	1415	3	15.7	14.76	14.23	12.75	14	0.94	0.53
20001003	1430	3	15.7	14.77	14.24	12.75	14	0.93	0.53
20001003	1445	3	15.71	14.78	14.24	12.76	14	0.93	0.54
20001003	1500	3	15.72	14.79	14.25	12.76	14	0.93	0.54
20001003	1515	3	15.72	14.79	14.26	12.76	14	0.93	0.53
20001003	1530	3	15.73	14.8	14.26	12.76	14	0.93	0.54
20001003	1545	3	15.73	14.81	14.27	12.77	14	0.92	0.54
20001003	1600	3	15.73	14.81	14.28	12.77	14	0.92	0.53
20001003	1615	3	15.74	14.82	14.29	12.78	14	0.92	0.53
20001003	1630	3	15.74	14.83	14.3	12.79	14	0.91	0.53
20001003	1645	3	15.74	14.83	14.31	12.79	14	0.91	0.52
20001003	1700	3	15.74	14.84	14.31	12.8	14	0.9	0.53
20001003	1715	3	15.74	14.84	14.32	12.8	14	0.9	0.52
20001003	1730	3	15.74	14.84	14.33	12.8	14	0.9	0.51
20001003	1745	3	15.73	14.85	14.34	12.81	14	0.88	0.51
20001003	1800	3	15.73	14.85	14.34	12.81	14	0.88	0.51
20001003	1815	3	15.73	14.85	14.35	12.82	14	0.88	0.5
20001003	1830	3	15.73	14.85	14.36	12.81	14	0.88	0.49
20001003	1845	3	15.73	14.85	14.37	12.82	14	0.88	0.48
20001003	1900	3	15.73	14.86	14.39	12.84	14	0.87	0.47
20001003	1915	3	15.73	14.87	14.4	12.86	14	0.86	0.47
20001003	1930	3	15.73	14.87	14.41	12.87	14	0.86	0.46
20001003	1945	3	15.72	14.87	14.41	12.86	14	0.85	0.46
20001003	2000	3	15.72	14.87	14.42	12.86	14	0.85	0.45
20001003	2015	3	15.72	14.87	14.42	12.86	14	0.85	0.45
20001003	2030	3	15.71	14.87	14.43	12.88	14	0.84	0.44
20001003	2045	3	15.72	14.88	14.44	12.88	14	0.84	0.44
20001003	2100	3	15.74	14.91	14.46	12.92	14	0.83	0.45
20001003	2115	3	15.73	14.91	14.47	12.93	14	0.82	0.44
20001003	2130	3	15.74	14.92	14.49	12.94	14	0.82	0.43
20001003	2145	3	15.73	14.92	14.5	12.95	14	0.81	0.42
20001003	2200	3	15.73	14.92	14.51	12.94	14	0.81	0.41
20001003	2215	3	15.73	14.92	14.51	12.95	14	0.81	0.41
20001003	2230	3	15.72	14.93	14.51	12.96	14	0.79	0.42
20001003	2245	3	15.72	14.93	14.52	12.96	14	0.79	0.41
20001003	2300	3	15.72	14.93	14.53	12.97	14	0.79	0.4
20001003	2315	3	15.72	14.94	14.53	12.98	14	0.78	0.41
20001003	2330	3	15.72	14.94	14.54	12.98	14	0.78	0.4
20001003	2345	3	15.71	14.94	14.54	12.99	14	0.77	0.4
20001004	0	4	15.71	14.94	14.55	12.99	14	0.77	0.39
20001004	15	4	15.71	14.94	14.55	12.99	14	0.77	0.39
20001004	30	4	15.7	14.94	14.56	13	14	0.76	0.38
20001004	45	4	15.71	14.95	14.58	13.02	14	0.76	0.37
20001004	100	4	15.71	14.95	14.59	13.05	14	0.76	0.36
20001004	115	4	15.71	14.96	14.6	13.07	14	0.75	0.36
20001004	130	4	15.74	15.03	14.62	13.14	14	0.71	0.41
20001004	145	4	15.81	15.1	14.68	13.23	14	0.71	0.42
20001004	200	4	15.87	15.17	14.72	13.29	14	0.7	0.45

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001004	215	4	15.88	15.18	14.74	13.3	14	0.7	0.44
20001004	230	4	15.93	15.26	14.81	13.36	14	0.67	0.45
20001004	245	4	15.93	15.29	14.85	13.41	14	0.64	0.44
20001004	300	4	15.95	15.33	14.87	13.46	14	0.62	0.46
20001004	315	4	15.96	15.35	14.89	13.49	14	0.61	0.46
20001004	330	4	15.97	15.38	14.92	13.52	14	0.59	0.46
20001004	345	4	16.03	15.43	14.96	13.61	14	0.6	0.47
20001004	400	4	16.05	15.47	15.03	13.71	14	0.58	0.44
20001004	415	4	16.03	15.48	15.05	13.78	14	0.55	0.43
20001004	430	4	16.06	15.54	15.09	13.83	14	0.52	0.45
20001004	445	4	16.12	15.62	15.16	13.94	14	0.5	0.46
20001004	500	4	16.15	15.68	15.25	14.05	14	0.47	0.43
20001004	515	4	16.14	15.7	15.31	14.11	14	0.44	0.39
20001004	530	4	16.14	15.73	15.36	14.17	14	0.41	0.37
20001004	545	4	16.12	15.74	15.37	14.2	14	0.38	0.37
20001004	600	4	16.13	15.79	15.42	14.24	14	0.34	0.37
20001004	615	4	16.12	15.8	15.44	14.28	14	0.32	0.36
20001004	630	4	16.1	15.81	15.46	14.29	14	0.29	0.35
20001004	645	4	16.08	15.81	15.47	14.3	14	0.27	0.34
20001004	700	4	16.07	15.81	15.48	14.31	14	0.26	0.33
20001004	715	4	16.07	15.83	15.51	14.33	14	0.24	0.32
20001004	730	4	16.05	15.83	15.51	14.34	14	0.22	0.32
20001004	745	4	16.04	15.83	15.52	14.34	14	0.21	0.31
20001004	800	4	16.06	15.86	15.52	14.35	14	0.2	0.34
20001004	815	4	16.06	15.87	15.55	14.39	14	0.19	0.32
20001004	830	4	16.07	15.88	15.56	14.4	14	0.19	0.32
20001004	845	4	16.06	15.88	15.58	14.4	14	0.18	0.3
20001004	900	4	16.1	15.93	15.61	14.44	14	0.17	0.32
20001004	915	4	16.13	15.97	15.65	14.49	14	0.16	0.32
20001004	930	4	16.14	16	15.68	14.52	14	0.14	0.32
20001004	945	4	16.15	16.01	15.7	14.54	14	0.14	0.31
20001004	1000	4	16.14	16.01	15.71	14.54	14	0.13	0.3
20001004	1015	4	16.13	16.01	15.72	14.54	14	0.12	0.29
20001004	1030	4	16.12	16	15.73	14.53	14	0.12	0.27
20001004	1045	4	16.11	15.99	15.73	14.53	14	0.12	0.26
20001004	1100	4	16.09	15.99	15.73	14.52	14	0.1	0.26
20001004	1115	4	16.09	15.99	15.73	14.52	14	0.1	0.26
20001004	1130	4	16.09	15.98	15.73	14.51	14	0.11	0.25
20001004	1145	4	16.09	15.99	15.73	14.51	14	0.1	0.26
20001004	1200	4	16.09	15.99	15.73	14.5	14	0.1	0.26
20001004	1215	4	16.08	15.98	15.73	14.5	14	0.1	0.25
20001004	1230	4	16.08	15.98	15.73	14.49	14	0.1	0.25
20001004	1245	4	16.07	15.98	15.73	14.48	14	0.09	0.25
20001004	1300	4	16.07	15.97	15.73	14.47	14	0.1	0.24
20001004	1315	4	16.07	15.97	15.73	14.47	14	0.1	0.24
20001004	1330	4	16.06	15.97	15.73	14.46	14	0.09	0.24
20001004	1345	4	16.06	15.97	15.72	14.46	14	0.09	0.25
20001004	1400	4	16.06	15.96	15.72	14.45	14	0.1	0.24
20001004	1415	4	16.06	15.96	15.72	14.44	14	0.1	0.24
20001004	1430	4	16.05	15.96	15.71	14.44	14	0.09	0.25
20001004	1445	4	16.05	15.96	15.71	14.43	14	0.09	0.25

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001004	1500	4	16.05	15.95	15.71	14.42	14	0.1	0.24
20001004	1515	4	16.05	15.95	15.7	14.42	14	0.1	0.25
20001004	1530	4	16.05	15.95	15.7	14.41	14	0.1	0.25
20001004	1545	4	16.05	15.95	15.7	14.41	14	0.1	0.25
20001004	1600	4	16.05	15.95	15.7	14.41	14	0.1	0.25
20001004	1615	4	16.05	15.94	15.69	14.4	14	0.11	0.25
20001004	1630	4	16.05	15.94	15.69	14.4	14	0.11	0.25
20001004	1645	4	16.03	15.93	15.69	14.4	14	0.1	0.24
20001004	1700	4	16.03	15.93	15.69	14.4	14	0.1	0.24
20001004	1715	4	16.05	15.94	15.69	14.39	14	0.11	0.25
20001004	1730	4	16.05	15.94	15.68	14.39	14	0.11	0.26
20001004	1745	4	16.05	15.94	15.68	14.39	14	0.11	0.26
20001004	1800	4	16.05	15.94	15.68	14.4	14	0.11	0.26
20001004	1815	4	16.05	15.93	15.68	14.4	14	0.12	0.25
20001004	1830	4	16.05	15.93	15.67	14.4	14	0.12	0.26
20001004	1845	4	16.05	15.93	15.67	14.4	14	0.12	0.26
20001004	1900	4	16.05	15.93	15.67	14.4	14	0.12	0.26
20001004	1915	4	16.05	15.93	15.67	14.4	14	0.12	0.26
20001004	1930	4	16.05	15.93	15.67	14.4	14	0.12	0.26
20001004	1945	4	16.05	15.93	15.67	14.41	14	0.12	0.26
20001004	2000	4	16.05	15.93	15.66	14.41	14	0.12	0.27
20001004	2015	4	16.05	15.93	15.66	14.41	14	0.12	0.27
20001004	2030	4	16.05	15.92	15.66	14.42	14	0.13	0.26
20001004	2045	4	16.05	15.92	15.66	14.42	14	0.13	0.26
20001004	2100	4	16.04	15.92	15.66	14.42	14	0.12	0.26
20001004	2115	4	16.04	15.92	15.66	14.42	14	0.12	0.26
20001004	2130	4	16.04	15.92	15.66	14.42	14	0.12	0.26
20001004	2145	4	16.04	15.92	15.66	14.42	14	0.12	0.26
20001004	2200	4	16.04	15.92	15.65	14.42	14	0.12	0.27
20001004	2215	4	16.04	15.91	15.65	14.42	14	0.13	0.26
20001004	2230	4	16.04	15.91	15.65	14.42	14	0.13	0.26
20001004	2245	4	16.04	15.91	15.65	14.42	14	0.13	0.26
20001004	2300	4	16.04	15.91	15.65	14.42	14	0.13	0.26
20001004	2315	4	16.04	15.91	15.65	14.42	14	0.13	0.26
20001004	2330	4	16.03	15.91	15.65	14.42	14	0.12	0.26
20001004	2345	4	16.03	15.91	15.65	14.42	14	0.12	0.26
20001005	0		16.03	15.9	15.64	14.42	14	0.13	0.26
20001005	15	5	16.03	15.9	15.64	14.42	14	0.13	0.26
20001005	30	5	16.03	15.9	15.64	14.42	14	0.13	0.26
20001005	45	5	16.03	15.9	15.64	14.42	14	0.13	0.26
20001005	100	5	16.03	15.9	15.64	14.42	14	0.13	0.26
20001005	115	5	16.03	15.9	15.64	14.42	14	0.13	0.26
20001005	130	5	16.03	15.9	15.64	14.41	14	0.13	0.26
20001005	145	5	16.03	15.9	15.63	14.41	14	0.13	0.27
20001005	200	5	16.03	15.89	15.63	14.41	14	0.14	0.26
20001005	215	5	16.03	15.89	15.63	14.41	14	0.14	0.26
20001005	230	5	16.02	15.89	15.63	14.41	14	0.13	0.26
20001005	245	5	16.02	15.89	15.63	14.41	14	0.13	0.26
20001005	300	5	16.02	15.89	15.63	14.41	14	0.13	0.26
20001005	315	5	16.02	15.89	15.63	14.41	14	0.13	0.26
20001005	330	5	16.02	15.89	15.63	14.41	14	0.13	0.26

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001005	345	5	16.02	15.89	15.62	14.41	14	0.13	0.27
20001005	400	5	16.02	15.89	15.62	14.41	14	0.13	0.27
20001005	415	5	16.02	15.88	15.62	14.41	14	0.14	0.26
20001005	430	5	16.02	15.88	15.62	14.4	14	0.14	0.26
20001005	445	5	16.02	15.88	15.62	14.4	14	0.14	0.26
20001005	500	5	16.02	15.88	15.62	14.4	14	0.14	0.26
20001005	515	5	16.02	15.88	15.62	14.4	14	0.14	0.26
20001005	530	5	16.01	15.88	15.61	14.4	14	0.13	0.27
20001005	545	5	16.01	15.88	15.61	14.4	14	0.13	0.27
20001005	600	5	16.01	15.88	15.61	14.4	14	0.13	0.27
20001005	615	5	16.01	15.88	15.61	14.4	14	0.13	0.27
20001005	630	5	16.01	15.88	15.61	14.4	14	0.13	0.27
20001005	645	5	16.01	15.88	15.61	14.39	14	0.13	0.27
20001005	700	5	16.01	15.87	15.61	14.39	14	0.14	0.26
20001005	715	5	16.01	15.87	15.61	14.39	14	0.14	0.26
20001005	730	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	745	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	800	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	815	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	830	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	845	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	900	5	16.01	15.87	15.6	14.39	14	0.14	0.27
20001005	915	5	16.01	15.87	15.6	14.38	14	0.14	0.27
20001005	930	5	16	15.86	15.6	14.38	14	0.14	0.26
20001005	945	5	16	15.86	15.6	14.38	14	0.14	0.26
20001005	1000	5	16	15.86	15.59	14.38	14	0.14	0.27
20001005	1015	5	16	15.86	15.59	14.38	14	0.14	0.27
20001005	1030	5	16	15.86	15.59	14.37	14	0.14	0.27
20001005	1045	5	16	15.86	15.59	14.37	14	0.14	0.27
20001005	1100	5	16	15.86	15.59	14.37	14	0.14	0.27
20001005	1115	5	16	15.86	15.59	14.36	14	0.14	0.27
20001005	1130	5	15.97	15.85	15.59	14.35	14	0.12	0.26
20001005	1145	5	15.99	15.85	15.59	14.35	14	0.14	0.26
20001005	1200	5	16	15.85	15.58	14.34	14	0.15	0.27
20001005	1215	5	15.99	15.85	15.58	14.33	14	0.14	0.27
20001005	1230	5	15.99	15.85	15.58	14.32	14	0.14	0.27
20001005	1245	5	15.99	15.85	15.58	14.31	14	0.14	0.27
20001005	1300	5	15.99	15.85	15.58	14.31	14	0.14	0.27
20001005	1315	5	15.99	15.85	15.58	14.3	14	0.14	0.27
20001005	1330	5	15.99	15.85	15.57	14.29	14	0.14	0.28
20001005	1345	5	15.99	15.85	15.57	14.29	14	0.14	0.28
20001005	1400	5	15.99	15.85	15.57	14.28	14	0.14	0.28
20001005	1415	5	15.99	15.84	15.57	14.28	14	0.15	0.27
20001005	1430	5	15.99	15.84	15.57	14.27	14	0.15	0.27
20001005	1445	5	15.99	15.84	15.57	14.27	14	0.15	0.27
20001005	1500	5	15.99	15.84	15.56	14.27	14	0.15	0.28
20001005	1515	5	15.99	15.84	15.56	14.27	14	0.15	0.28
20001005	1530	5	15.99	15.84	15.56	14.26	14	0.15	0.28
20001005	1545	5	15.99	15.84	15.56	14.26	14	0.15	0.28
20001005	1600	5	15.99	15.84	15.56	14.25	14	0.15	0.28
20001005	1615	5	15.99	15.84	15.56	14.25	14	0.15	0.28

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001005	1630	5	15.99	15.84	15.55	14.24	14	0.15	0.29
20001005	1645	5	15.99	15.83	15.55	14.24	14	0.16	0.28
20001005	1700	5	15.99	15.83	15.55	14.24	14	0.16	0.28
20001005	1715	5	15.96	15.83	15.55	14.24	14	0.13	0.28
20001005	1730	5	15.97	15.83	15.55	14.23	14	0.14	0.28
20001005	1745	5	15.97	15.82	15.55	14.23	14	0.15	0.27
20001005	1800	5	15.97	15.82	15.55	14.23	14	0.15	0.27
20001005	1815	5	15.86	15.8	15.54	14.23	14	0.06	0.26
20001005	1830	5	15.97	15.82	15.54	14.22	14	0.15	0.28
20001005	1845	5	16.01	15.82	15.54	14.22	14	0.19	0.28
20001005	1900	5	16.01	15.83	15.54	14.22	14	0.18	0.29
20001005	1915	5	16.03	15.83	15.54	14.22	14	0.2	0.29
20001005	1930	5	16.05	15.84	15.54	14.22	14	0.21	0.3
20001005	1945	5	16.06	15.85	15.54	14.22	14	0.21	0.31
20001005	2000	5	16.07	15.85	15.54	14.21	14	0.22	0.31
20001005	2015	5	16.08	15.85	15.54	14.21	14	0.23	0.31
20001005	2030	5	16.08	15.86	15.54	14.21	14	0.22	0.32
20001005	2045	5	16.09	15.86	15.54	14.21	14	0.23	0.32
20001005	2100	5	16.09	15.86	15.54	14.21	14	0.23	0.32
20001005	2115	5	16.09	15.87	15.54	14.21	14	0.22	0.33
20001005	2130	5	16.1	15.87	15.54	14.21	14	0.23	0.33
20001005	2145	5	16.1	15.87	15.54	14.2	14	0.23	0.33
20001005	2200	5	16.1	15.87	15.54	14.2	14	0.23	0.33
20001005	2215	5	16.09	15.87	15.54	14.2	14	0.22	0.33
20001005	2230	5	16.09	15.87	15.54	14.2	14	0.22	0.33
20001005	2245	5	16.09	15.87	15.54	14.2	14	0.22	0.33
20001005	2300	5	16.09	15.87	15.54	14.2	14	0.22	0.33
20001005	2315	5	16.09	15.87	15.54	14.2	14	0.22	0.33
20001005	2330	5	16.09	15.87	15.55	14.2	14	0.22	0.32
20001005	2345	5	16.09	15.87	15.55	14.19	14	0.22	0.32
20001006	0	6	16.09	15.87	15.55	14.2	14	0.22	0.32
20001006	15	6	16.09	15.87	15.55	14.19	14	0.22	0.32
20001006	30	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	45	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	100	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	115	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	130	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	145	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	200	6	16.09	15.88	15.55	14.19	14	0.21	0.33
20001006	215	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	230	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	245	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	300	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	315	6	16.08	15.88	15.56	14.19	14	0.2	0.32
20001006	330	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	345	6	16.08	15.88	15.56	14.19	14	0.2	0.32
20001006	400	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	415	6	16.09	15.88	15.56	14.19	14	0.21	0.32
20001006	430	6	16.09	15.89	15.56	14.19	14	0.2	0.33
20001006	445	6	16.09	15.89	15.56	14.18	14	0.2	0.33
20001006	500	6	16.09	15.89	15.56	14.18	14	0.2	0.33

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001006	515	6	16.09	15.89	15.56	14.18	14	0.2	0.33
20001006	530	6	16.09	15.89	15.56	14.18	14	0.2	0.33
20001006	545	6	16.09	15.89	15.56	14.18	14	0.2	0.33
20001006	600	6	16.09	15.89	15.56	14.18	14	0.2	0.33
20001006	615	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	630	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	645	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	700	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	715	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	730	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	745	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	800	6	16.09	15.89	15.57	14.18	14	0.2	0.32
20001006	815	6	16.09	15.9	15.57	14.18	14	0.19	0.33
20001006	830	6	16.09	15.9	15.57	14.18	14	0.19	0.33
20001006	845	6	16.09	15.9	15.57	14.18	14	0.19	0.33
20001006	900	6	16.09	15.9	15.57	14.18	14	0.19	0.33
20001006	915	6	16.09	15.9	15.57	14.18	14	0.19	0.33
20001006	930	6	16.08	15.9	15.57	14.18	14	0.18	0.33
20001006	945	6	16.08	15.9	15.57	14.18	14	0.18	0.33
20001006	1000	6	16.07	15.89	15.57	14.17	14	0.18	0.32
20001006	1015	6	16.08	15.9	15.57	14.17	14	0.18	0.33
20001006	1030	6	16.09	15.9	15.57	14.17	14	0.19	0.33
20001006	1045	6	16.09	15.9	15.57	14.17	14	0.19	0.33
20001006	1100	6	16.09	15.9	15.57	14.17	14	0.19	0.33
20001006	1115	6	16.1	15.9	15.57	14.17	14	0.2	0.33
20001006	1130	6	16.1	15.9	15.57	14.17	14	0.2	0.33
20001006	1145	6	16.1	15.9	15.57	14.17	14	0.2	0.33
20001006	1200	6	16.1	15.9	15.57	14.17	14	0.2	0.33
20001006	1215	6	16.1	15.91	15.57	14.16	14	0.19	0.34
20001006	1230	6	16.1	15.91	15.57	14.16	14	0.19	0.34
20001006	1245	6	16.1	15.91	15.57	14.16	14	0.19	0.34
20001006	1300	6	16.1	15.91	15.57	14.16	14	0.19	0.34
20001006	1315	6	16.1	15.91	15.58	14.16	14	0.19	0.33
20001006	1330	6	16.1	15.91	15.58	14.16	14	0.19	0.33
20001006	1345	6	16.1	15.91	15.58	14.16	14	0.19	0.33
20001006	1400	6	16.07	15.9	15.58	14.16	14	0.17	0.32
20001006	1415	6	16.06	15.89	15.58	14.16	14	0.17	0.31
20001006	1430	6	16.01	15.88	15.58	14.16	14	0.13	0.3
20001006	1445	6	16.02	15.88	15.58	14.16	14	0.14	0.3
20001006	1500	6	16.06	15.88	15.58	14.16	14	0.18	0.3
20001006	1515	6	16.05	15.88	15.58	14.15	14	0.17	0.3
20001006	1530	6	16.06	15.88	15.57	14.15	14	0.18	0.31
20001006	1545	6	16.06	15.89	15.57	14.15	14	0.17	0.32
20001006	1600	6	16.06	15.89	15.57	14.15	14	0.17	0.32
20001006	1615	6	16.07	15.89	15.58	14.16	14	0.18	0.31
20001006	1630	6	16.06	15.89	15.57	14.16	14	0.17	0.32
20001006	1645	6	16.07	15.89	15.57	14.16	14	0.18	0.32
20001006	1700	6	16.05	15.89	15.57	14.16	14	0.16	0.32
20001006	1715	6	16.05	15.89	15.57	14.16	14	0.16	0.32
20001006	1730	6	16.06	15.89	15.57	14.16	14	0.17	0.32
20001006	1745	6	16.11	15.93	15.58	14.19	14	0.18	0.35

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001006	1800	6	16.15	15.96	15.61	14.24	14	0.19	0.35
20001006	1815	6	16.13	15.96	15.62	14.25	14	0.17	0.34
20001006	1830	6	16.13	15.96	15.62	14.25	14	0.17	0.34
20001006	1845	6	16.13	15.96	15.63	14.25	14	0.17	0.33
20001006	1900	6	16.12	15.96	15.63	14.25	14	0.16	0.33
20001006	1915	6	16.13	15.96	15.63	14.24	14	0.17	0.33
20001006	1930	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	1945	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2000	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2015	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2030	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2045	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2100	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2115	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2130	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2145	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2200	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2215	6	16.12	15.96	15.63	14.24	14	0.16	0.33
20001006	2230	6	16.12	15.96	15.63	14.23	14	0.16	0.33
20001006	2245	6	16.12	15.96	15.63	14.23	14	0.16	0.33
20001006	2300	6	16.12	15.96	15.63	14.23	14	0.16	0.33
20001006	2315	6	16.12	15.96	15.63	14.23	14	0.16	0.33
20001006	2330	6	16.12	15.96	15.63	14.23	14	0.16	0.33
20001006	2345	6	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	0	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	15	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	30	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	45	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	100	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	115	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	130	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	145	7	16.12	15.96	15.63	14.23	14	0.16	0.33
20001007	200	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	215	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	230	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	245	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	300	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	315	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	330	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	345	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	400	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	415	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	430	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	445	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	500	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	515	7	16.12	15.96	15.63	14.22	14	0.16	0.33
20001007	530	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	545	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	600	7	16.11	15.96	15.63	14.22	14	0.15	0.33
20001007	615	7	16.11	15.96	15.63	14.21	14	0.15	0.33
20001007	630	7	16.11	15.96	15.63	14.21	14	0.15	0.33

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001007	645	7	16.11	15.96	15.63	14.21	14	0.15	0.33
20001007	700	7	16.11	15.96	15.63	14.21	14	0.15	0.33
20001007	715	7	16.11	15.96	15.63	14.21	14	0.15	0.33
20001007	730	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	745	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	800	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	815	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	830	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	845	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	900	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	915	7	16.11	15.96	15.63	14.21	14	0.15	0.33
20001007	930	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	945	7	16.12	15.96	15.63	14.21	14	0.16	0.33
20001007	1000	7	16.1	15.96	15.63	14.2	14	0.14	0.33
20001007	1015	7	16.12	15.96	15.63	14.2	14	0.16	0.33
20001007	1030	7	16.12	15.96	15.63	14.2	14	0.16	0.33
20001007	1045	7	16.12	15.96	15.63	14.2	14	0.16	0.33
20001007	1100	7	16.12	15.96	15.63	14.2	14	0.16	0.33
20001007	1115	7	16.13	15.96	15.63	14.19	14	0.17	0.33
20001007	1130	7	16.13	15.96	15.63	14.19	14	0.17	0.33
20001007	1145	7	16.13	15.96	15.63	14.19	14	0.17	0.33
20001007	1200	7	16.13	15.97	15.63	14.19	14	0.16	0.34
20001007	1215	7	16.13	15.97	15.63	14.19	14	0.16	0.34
20001007	1230	7	16.13	15.97	15.63	14.19	14	0.16	0.34
20001007	1245	7	16.13	15.97	15.63	14.18	14	0.16	0.34
20001007	1300	7	16.13	15.97	15.62	14.18	14	0.16	0.35
20001007	1315	7	16.13	15.97	15.62	14.18	14	0.16	0.35
20001007	1330	7	16.13	15.97	15.62	14.18	14	0.16	0.35
20001007	1345	7	16.13	15.97	15.62	14.18	14	0.16	0.35
20001007	1400	7	16.13	15.97	15.62	14.18	14	0.16	0.35
20001007	1415	7	16.13	15.97	15.62	14.18	14	0.16	0.35
20001007	1430	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1445	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1500	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1515	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1530	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1545	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1600	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1615	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1630	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1645	7	16.13	15.96	15.62	14.17	14	0.17	0.34
20001007	1700	7	16.13	15.96	15.62	14.17	14	0.17	0.34
20001007	1715	7	16.13	15.97	15.62	14.17	14	0.16	0.35
20001007	1730	7	16.11	15.96	15.62	14.17	14	0.15	0.34
20001007	1745	7	16.07	15.95	15.62	14.17	14	0.12	0.33
20001007	1800	7	16.06	15.94	15.62	14.17	14	0.12	0.32
20001007	1815	7	16.05	15.93	15.62	14.17	14	0.12	0.31
20001007	1830	7	16.03	15.92	15.62	14.17	14	0.11	0.3
20001007	1845	7	16.03	15.92	15.62	14.17	14	0.11	0.3
20001007	1900	7	16.02	15.91	15.62	14.17	14	0.11	0.29
20001007	1915	7	16.01	15.91	15.62	14.17	14	0.1	0.29

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001007	1930	7	16	15.9	15.62	14.17	14	0.1	0.28
20001007	1945	7	16	15.9	15.61	14.17	14	0.1	0.29
20001007	2000	7	15.99	15.9	15.61	14.17	14	0.09	0.29
20001007	2015	7	15.99	15.89	15.61	14.17	14	0.1	0.28
20001007	2030	7	15.99	15.89	15.61	14.17	14	0.1	0.28
20001007	2045	7	15.98	15.89	15.6	14.17	14	0.09	0.29
20001007	2100	7	15.98	15.88	15.6	14.17	14	0.1	0.28
20001007	2115	7	15.98	15.88	15.6	14.17	14	0.1	0.28
20001007	2130	7	15.98	15.88	15.6	14.17	14	0.1	0.28
20001007	2145	7	15.97	15.88	15.59	14.17	14	0.09	0.29
20001007	2200	7	15.97	15.87	15.59	14.17	14	0.1	0.28
20001007	2215	7	15.97	15.87	15.59	14.17	14	0.1	0.28
20001007	2230	7	15.97	15.87	15.59	14.17	14	0.1	0.28
20001007	2245	7	15.97	15.87	15.58	14.17	14	0.1	0.29
20001007	2300	7	15.97	15.86	15.58	14.17	14	0.11	0.28
20001007	2315	7	15.96	15.86	15.58	14.16	14	0.1	0.28
20001007	2330	7	15.96	15.86	15.57	14.16	14	0.1	0.29
20001007	2345	7	15.96	15.86	15.57	14.16	14	0.1	0.29
20001008	0	8	15.96	15.85	15.57	14.16	14	0.11	0.28
20001008	15	8	15.96	15.85	15.57	14.16	14	0.11	0.28
20001008	30	8	15.96	15.85	15.56	14.16	14	0.11	0.29
20001008	45	8	15.96	15.85	15.56	14.16	14	0.11	0.29
20001008	100	8	15.96	15.84	15.56	14.15	14	0.12	0.28
20001008	115	8	15.96	15.84	15.56	14.15	14	0.12	0.28
20001008	130	8	15.95	15.84	15.55	14.15	14	0.11	0.29
20001008	145	8	15.95	15.84	15.55	14.15	14	0.11	0.29
20001008	200	8	15.95	15.84	15.55	14.15	14	0.11	0.29
20001008	215	8	15.95	15.83	15.54	14.14	14	0.12	0.29
20001008	230	8	15.95	15.83	15.54	14.14	14	0.12	0.29
20001008	245	8	15.95	15.83	15.54	14.14	14	0.12	0.29
20001008	300	8	15.95	15.83	15.54	14.14	14	0.12	0.29
20001008	315	8	15.95	15.83	15.53	14.14	14	0.12	0.3
20001008	330	8	15.95	15.82	15.53	14.14	14	0.13	0.29
20001008	345	8	15.95	15.82	15.53	14.13	14	0.13	0.29
20001008	400	8	15.95	15.82	15.53	14.13	14	0.13	0.29
20001008	415	8	15.94	15.82	15.53	14.13	14	0.12	0.29
20001008	430	8	15.94	15.82	15.52	14.13	14	0.12	0.3
20001008	445	8	15.94	15.82	15.52	14.13	14	0.12	0.3
20001008	500	8	15.94	15.81	15.52	14.13	14	0.13	0.29
20001008	515	8	15.94	15.81	15.52	14.13	14	0.13	0.29
20001008	530	8	15.94	15.81	15.51	14.12	14	0.13	0.3
20001008	545	8	15.94	15.81	15.51	14.12	14	0.13	0.3
20001008	600	8	15.94	15.81	15.51	14.12	14	0.13	0.3
20001008	615	8	15.94	15.81	15.51	14.12	14	0.13	0.3
20001008	630	8	15.94	15.81	15.5	14.12	14	0.13	0.31
20001008	645	8	15.94	15.8	15.5	14.12	14	0.14	0.3
20001008	700	8	15.94	15.8	15.5	14.12	14	0.14	0.3
20001008	715	8	15.94	15.8	15.5	14.11	14	0.14	0.3
20001008	730	8	15.94	15.8	15.5	14.11	14	0.14	0.3
20001008	745	8	15.94	15.8	15.49	14.11	14	0.14	0.31
20001008	800	8	15.94	15.8	15.49	14.11	14	0.14	0.31

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001008	815	8	15.94	15.8	15.49	14.1	14	0.14	0.31
20001008	830	8	15.94	15.79	15.49	14.1	14	0.15	0.3
20001008	845	8	15.94	15.79	15.49	14.1	14	0.15	0.3
20001008	900	8	15.94	15.79	15.48	14.1	14	0.15	0.31
20001008	915	8	15.94	15.79	15.48	14.1	14	0.15	0.31
20001008	930	8	15.92	15.78	15.48	14.09	14	0.14	0.3
20001008	945	8	15.93	15.79	15.48	14.09	14	0.14	0.31
20001008	1000	8	15.94	15.79	15.48	14.09	14	0.15	0.31
20001008	1015	8	15.94	15.79	15.48	14.09	14	0.15	0.31
20001008	1030	8	15.95	15.79	15.47	14.08	14	0.16	0.32
20001008	1045	8	15.95	15.79	15.47	14.08	14	0.16	0.32
20001008	1100	8	15.95	15.79	15.47	14.08	14	0.16	0.32
20001008	1115	8	15.95	15.79	15.47	14.08	14	0.16	0.32
20001008	1130	8	15.99	15.79	15.47	14.07	14	0.2	0.32
20001008	1145	8	16.02	15.8	15.46	14.07	14	0.22	0.34
20001008	1200	8	16.03	15.81	15.46	14.07	14	0.22	0.35
20001008	1215	8	16.05	15.81	15.46	14.06	14	0.24	0.35
20001008	1230	8	16.06	15.82	15.46	14.06	14	0.24	0.36
20001008	1245	8	16.07	15.83	15.46	14.05	14	0.24	0.37
20001008	1300	8	16.08	15.83	15.46	14.05	14	0.25	0.37
20001008	1315	8	16.09	15.84	15.46	14.05	14	0.25	0.38
20001008	1330	8	16.09	15.84	15.46	14.04	14	0.25	0.38
20001008	1345	8	16.1	15.84	15.46	14.04	14	0.26	0.38
20001008	1400	8	16.1	15.84	15.46	14.04	14	0.26	0.38
20001008	1415	8	16.11	15.85	15.46	14.03	14	0.26	0.39
20001008	1430	8	16.07	15.84	15.46	14.03	14	0.23	0.38
20001008	1445	8	16.06	15.83	15.46	14.03	14	0.23	0.37
20001008	1500	8	16.04	15.83	15.46	14.03	14	0.21	0.37
20001008	1515	8	16.03	15.82	15.46	14.03	14	0.21	0.36
20001008	1530	8	16.02	15.82	15.46	14.02	14	0.2	0.36
20001008	1545	8	16.01	15.82	15.46	14.02	14	0.19	0.36
20001008	1600	8	16	15.81	15.46	14.02	14	0.19	0.35
20001008	1615	8	15.99	15.81	15.46	14.02	14	0.18	0.35
20001008	1630	8	15.99	15.81	15.47	14.02	14	0.18	0.34
20001008	1645	8	15.98	15.81	15.46	14.02	14	0.17	0.35
20001008	1700	8	15.98	15.8	15.46	14.02	14	0.18	0.34
20001008	1715	8	15.97	15.8	15.46	14.02	14	0.17	0.34
20001008	1730	8	15.97	15.8	15.46	14.02	14	0.17	0.34
20001008	1745	8	15.96	15.79	15.46	14.02	14	0.17	0.33
20001008	1800	8	15.95	15.79	15.46	14.02	14	0.16	0.33
20001008	1815	8	15.95	15.79	15.46	14.01	14	0.16	0.33
20001008	1830	8	15.95	15.79	15.46	14.02	14	0.16	0.33
20001008	1845	8	15.94	15.78	15.46	14.01	14	0.16	0.32
20001008	1900	8	15.94	15.78	15.46	14.01	14	0.16	0.32
20001008	1915	8	15.94	15.78	15.46	14.01	14	0.16	0.32
20001008	1930	8	15.94	15.78	15.46	14.01	14	0.16	0.32
20001008	1945	8	15.94	15.78	15.45	14.01	14	0.16	0.33
20001008	2000	8	15.94	15.78	15.45	14.01	14	0.16	0.33
20001008	2015	8	15.94	15.78	15.45	14.01	14	0.16	0.33
20001008	2030	8	15.93	15.77	15.45	14.01	14	0.16	0.32
20001008	2045	8	15.93	15.77	15.45	14.01	14	0.16	0.32

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001008	2100	8	15.93	15.77	15.45	14.01	14	0.16	0.32
20001008	2115	8	15.93	15.77	15.44	14.01	14	0.16	0.33
20001008	2130	8	15.93	15.77	15.44	14.01	14	0.16	0.33
20001008	2145	8	15.93	15.77	15.44	14.01	14	0.16	0.33
20001008	2200	8	15.93	15.77	15.44	14.01	14	0.16	0.33
20001008	2215	8	15.93	15.76	15.44	14.01	14	0.17	0.32
20001008	2230	8	15.93	15.76	15.44	14.01	14	0.17	0.32
20001008	2245	8	15.93	15.76	15.44	14.01	14	0.17	0.32
20001008	2300	8	15.93	15.76	15.43	14.01	14	0.17	0.33
20001008	2315	8	15.93	15.76	15.43	14.01	14	0.17	0.33
20001008	2330	8	15.93	15.76	15.43	14.01	14	0.17	0.33
20001008	2345	8	15.93	15.76	15.43	14	14	0.17	0.33
20001009	0	9	15.93	15.76	15.43	14	14	0.17	0.33
20001009	15	9	15.93	15.76	15.43	14	14	0.17	0.33
20001009	30	9	15.93	15.75	15.42	14	14	0.18	0.33
20001009	45	9	15.93	15.75	15.42	14	14	0.18	0.33
20001009	100	9	15.92	15.75	15.42	14	14	0.17	0.33
20001009	115	9	15.92	15.75	15.42	14	14	0.17	0.33
20001009	130	9	15.92	15.75	15.42	14	14	0.17	0.33
20001009	145	9	15.92	15.75	15.42	14	14	0.17	0.33
20001009	200	9	15.92	15.75	15.41	14	14	0.17	0.34
20001009	215	9	15.92	15.75	15.41	14	14	0.17	0.34
20001009	230	9	15.92	15.75	15.41	13.99	14	0.17	0.34
20001009	245	9	15.92	15.75	15.41	13.99	14	0.17	0.34
20001009	300	9	15.92	15.75	15.41	13.99	14	0.17	0.34
20001009	315	9	15.92	15.74	15.41	13.99	14	0.18	0.33
20001009	330	9	15.92	15.74	15.41	13.99	14	0.18	0.33
20001009	345	9	15.92	15.74	15.41	13.99	14	0.18	0.33
20001009	400	9	15.92	15.74	15.4	13.99	14	0.18	0.34
20001009	415	9	15.92	15.74	15.4	13.99	14	0.18	0.34
20001009	430	9	15.92	15.74	15.4	13.99	14	0.18	0.34
20001009	445	9	15.92	15.74	15.4	13.99	14	0.18	0.34
20001009	500	9	15.92	15.74	15.4	13.99	14	0.18	0.34
20001009	515	9	15.92	15.74	15.39	13.98	14	0.18	0.35
20001009	530	9	15.92	15.74	15.39	13.98	14	0.18	0.35
20001009	545	9	15.92	15.74	15.39	13.98	14	0.18	0.35
20001009	600	9	15.92	15.74	15.39	13.97	14	0.18	0.35
20001009	615	9	15.92	15.74	15.39	13.97	14	0.18	0.35
20001009	630	9	15.92	15.74	15.39	13.97	14	0.18	0.35
20001009	645	9	15.92	15.73	15.39	13.97	14	0.19	0.34
20001009	700	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	715	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	730	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	745	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	800	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	815	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	830	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	845	9	15.92	15.73	15.38	13.96	14	0.19	0.35
20001009	900	9	15.92	15.73	15.37	13.96	14	0.19	0.36
20001009	915	9	15.92	15.73	15.37	13.96	14	0.19	0.36
20001009	930	9	15.92	15.73	15.37	13.95	14	0.19	0.36

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001009	945	9	15.92	15.72	15.37	13.95	14	0.2	0.35
20001009	1000	9	15.9	15.72	15.37	13.95	14	0.18	0.35
20001009	1015	9	15.79	15.7	15.37	13.95	14	0.09	0.33
20001009	1030	9	15.74	15.67	15.37	13.95	14	0.07	0.3
20001009	1045	9	15.81	15.68	15.36	13.95	14	0.13	0.32
20001009	1100	9	15.88	15.7	15.36	13.94	14	0.18	0.34
20001009	1115	9	15.88	15.7	15.36	13.94	14	0.18	0.34
20001009	1130	9	15.92	15.71	15.36	13.94	14	0.21	0.35
20001009	1145	9	15.93	15.72	15.35	13.93	14	0.21	0.37
20001009	1200	9	15.94	15.72	15.35	13.93	14	0.22	0.37
20001009	1215	9	15.96	15.73	15.35	13.93	14	0.23	0.38
20001009	1230	9	15.97	15.73	15.35	13.93	14	0.24	0.38
20001009	1245	9	15.98	15.73	15.35	13.93	14	0.25	0.38
20001009	1300	9	15.99	15.74	15.35	13.93	14	0.25	0.39
20001009	1315	9	15.99	15.74	15.35	13.93	14	0.25	0.39
20001009	1330	9	15.97	15.74	15.34	13.93	14	0.23	0.4
20001009	1345	9	15.97	15.74	15.34	13.92	14	0.23	0.4
20001009	1400	9	15.97	15.74	15.34	13.92	14	0.23	0.4
20001009	1415	9	15.97	15.74	15.34	13.95	14	0.23	0.4
20001009	1430	9	15.98	15.74	15.34	13.96	14	0.24	0.4
20001009	1445	9	16.01	15.75	15.34	13.97	14	0.26	0.41
20001009	1500	9	16.03	15.76	15.34	13.95	14	0.27	0.42
20001009	1515	9	16.04	15.76	15.34	13.95	14	0.28	0.42
20001009	1530	9	16.05	15.77	15.34	13.94	14	0.28	0.43
20001009	1545	9	16.06	15.77	15.34	13.94	14	0.29	0.43
20001009	1600	9	16.07	15.78	15.35	13.94	14	0.29	0.43
20001009	1615	9	16.07	15.78	15.35	13.93	14	0.29	0.43
20001009	1630	9	16.07	15.79	15.35	13.93	14	0.28	0.44
20001009	1645	9	16.08	15.79	15.35	13.93	14	0.29	0.44
20001009	1700	9	16.09	15.79	15.35	13.92	14	0.3	0.44
20001009	1715	9	16.09	15.79	15.35	13.92	14	0.3	0.44
20001009	1730	9	16.09	15.8	15.35	13.92	14	0.29	0.45
20001009	1745	9	16.09	15.8	15.35	13.91	14	0.29	0.45
20001009	1800	9	16.08	15.8	15.36	13.92	14	0.28	0.44
20001009	1815	9	16.09	15.8	15.36	13.92	14	0.29	0.44
20001009	1830	9	16.09	15.8	15.36	13.92	14	0.29	0.44
20001009	1845	9	16.09	15.8	15.36	13.92	14	0.29	0.44
20001009	1900	9	16.09	15.8	15.37	13.92	14	0.29	0.43
20001009	1915	9	16.09	15.8	15.37	13.91	14	0.29	0.43
20001009	1930	9	16.09	15.81	15.37	13.92	14	0.28	0.44
20001009	1945	9	16.09	15.81	15.37	13.92	14	0.28	0.44
20001009	2000	9	16.09	15.81	15.37	13.92	14	0.28	0.44
20001009	2015	9	16.09	15.81	15.38	13.92	14	0.28	0.43
20001009	2030	9	16.09	15.81	15.38	13.92	14	0.28	0.43
20001009	2045	9	16.09	15.81	15.38	13.92	14	0.28	0.43
20001009	2100	9	16.09	15.82	15.38	13.92	14	0.27	0.44
20001009	2115	9	16.1	15.82	15.39	13.92	14	0.28	0.43
20001009	2130	9	16.09	15.82	15.39	13.92	14	0.27	0.43
20001009	2145	9	16.09	15.82	15.39	13.92	14	0.27	0.43
20001009	2200	9	16.09	15.82	15.39	13.92	14	0.27	0.43
20001009	2215	9	16.09	15.82	15.39	13.92	14	0.27	0.43

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001009	2230	9	16.1	15.82	15.4	13.92	14	0.28	0.42
20001009	2245	9	16.09	15.83	15.4	13.92	14	0.26	0.43
20001009	2300	9	16.09	15.83	15.4	13.92	14	0.26	0.43
20001009	2315	9	16.09	15.83	15.4	13.92	14	0.26	0.43
20001009	2330	9	16.1	15.83	15.4	13.92	14	0.27	0.43
20001009	2345	9	16.1	15.83	15.41	13.92	14	0.27	0.42
20001010	0	10	16.1	15.83	15.41	13.93	14	0.27	0.42
20001010	15	10	16.1	15.83	15.41	13.93	14	0.27	0.42
20001010	30	10	16.1	15.83	15.41	13.93	14	0.27	0.42
20001010	45	10	16.1	15.84	15.41	13.93	14	0.26	0.43
20001010	100	10	16.1	15.84	15.41	13.93	14	0.26	0.43
20001010	115	10	16.1	15.84	15.42	13.93	14	0.26	0.42
20001010	130	10	16.1	15.84	15.42	13.93	14	0.26	0.42
20001010	145	10	16.1	15.84	15.42	13.93	14	0.26	0.42
20001010	200	10	16.1	15.85	15.42	13.93	14	0.25	0.43
20001010	215	10	16.1	15.85	15.42	13.93	14	0.25	0.43
20001010	230	10	16.1	15.85	15.42	13.93	14	0.25	0.43
20001010	245	10	16.1	15.85	15.43	13.93	14	0.25	0.42
20001010	300	10	16.1	15.85	15.43	13.93	14	0.25	0.42
20001010	315	10	16.1	15.85	15.43	13.93	14	0.25	0.42
20001010	330	10	16.1	15.85	15.43	13.94	14	0.25	0.42
20001010	345	10	16.1	15.85	15.43	13.94	14	0.25	0.42
20001010	400	10	16.1	15.85	15.43	13.94	14	0.25	0.42
20001010	415	10	16.1	15.86	15.44	13.94	14	0.24	0.42
20001010	430	10	16.1	15.86	15.44	13.94	14	0.24	0.42
20001010	445	10	16.1	15.86	15.44	13.94	14	0.24	0.42
20001010	500	10	16.1	15.86	15.44	13.94	14	0.24	0.42
20001010	515	10	16.1	15.86	15.44	13.94	14	0.24	0.42
20001010	530	10	16.1	15.86	15.44	13.94	14	0.24	0.42
20001010	545	10	16.1	15.86	15.45	13.94	14	0.24	0.41
20001010	600	10	16.1	15.86	15.45	13.94	14	0.24	0.41
20001010	615	10	16.1	15.87	15.45	13.94	14	0.23	0.42
20001010	630	10	16.1	15.87	15.45	13.94	14	0.23	0.42
20001010	645	10	16.1	15.87	15.45	13.95	14	0.23	0.42
20001010	700	10	16.1	15.87	15.45	13.95	14	0.23	0.42
20001010	715	10	16.1	15.87	15.45	13.95	14	0.23	0.42
20001010	730	10	16.1	15.87	15.45	13.95	14	0.23	0.42
20001010	745	10	16.1	15.87	15.46	13.95	14	0.23	0.41
20001010	800	10	16.1	15.87	15.46	13.95	14	0.23	0.41
20001010	815	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	830	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	845	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	900	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	915	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	930	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	945	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	1000	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	1015	10	16.1	15.88	15.46	13.95	14	0.22	0.42
20001010	1030	10	16.1	15.88	15.47	13.96	14	0.22	0.41
20001010	1045	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1100	10	16.1	15.89	15.47	13.96	14	0.21	0.42

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE	Hinflow	Houtflow
20001010	1115	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1130	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1145	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1200	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1215	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1230	10	16.1	15.89	15.47	13.96	14	0.21	0.42
20001010	1245	10	16.1	15.89	15.48	13.96	14	0.21	0.41
20001010	1300	10	16.1	15.89	15.48	13.96	14	0.21	0.41
20001010	1315	10	16.1	15.89	15.48	13.96	14	0.21	0.41
20001010	1330	10	16.1	15.89	15.48	13.96	14	0.21	0.41
20001010	1345	10	16.1	15.89	15.48	13.96	14	0.21	0.41
20001010	1400	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1415	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1430	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1445	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1500	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1515	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1530	10	16.09	15.89	15.48	13.97	14	0.2	0.41
20001010	1545	10	16.09	15.9	15.48	13.97	14	0.19	0.42
20001010	1600	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1615	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1630	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1645	10	16.1	15.9	15.48	13.97	14	0.2	0.42
20001010	1700	10	16.11	15.9	15.49	13.97	14	0.21	0.41
20001010	1715	10	16.11	15.9	15.49	13.97	14	0.21	0.41
20001010	1730	10	16.11	15.9	15.49	13.97	14	0.21	0.41
20001010	1745	10	16.11	15.91	15.49	13.97	14	0.2	0.42
20001010	1800	10	16.11	15.91	15.49	13.97	14	0.2	0.42
20001010	1815	10	16.09	15.9	15.49	13.97	14	0.19	0.41
20001010	1830	10	16.1	15.9	15.49	13.97	14	0.2	0.41
20001010	1845	10	16.11	15.91	15.49	13.97	14	0.2	0.42
20001010	1900	10	16.1	15.91	15.49	13.97	14	0.19	0.42
20001010	1915	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	1930	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	1945	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2000	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2015	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2030	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2045	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2100	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2115	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2130	10	16.11	15.91	15.5	13.97	14	0.2	0.41
20001010	2145	10	16.11	15.92	15.5	13.98	14	0.19	0.42
20001010	2200	10	16.11	15.92	15.5	13.98	14	0.19	0.42
20001010	2215	10	16.11	15.92	15.5	13.98	14	0.19	0.42
20001010	2230	10	16.11	15.92	15.5	13.98	14	0.19	0.42
20001010	2245	10	16.11	15.92	15.51	13.98	14	0.19	0.41
20001010	2300	10	16.11	15.92	15.51	13.98	14	0.19	0.41
20001010	2315	10	16.11	15.92	15.51	13.98	14	0.19	0.41
20001010	2330	10	16.11	15.92	15.51	13.98	14	0.19	0.41
20001010	2345	10	16.11	15.92	15.51	13.98	14	0.19	0.41

Date	Hrs	Day	G392S+H	G392S+T	G393+H	G393+T	G393CE Hinflow	Houtflow	
20001011	0	11	16.11	15.92	15.51	13.98	14	0.19	0.41
20001011	15	11	16.11	15.92	15.51	13.98	14	0.19	0.41
20001011	30	11	16.11	15.92	15.51	13.99	14	0.19	0.41

APPENDIX II: STA-6 INFLOWS AND OUTFLOWS THROUGH CELL 5 FOR OCTOBER 2000

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G601 } \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G601-3 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{gathered} \text { G600 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \text { G601-3 } \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
1	0.0	4.5	4.5	4.2	20.1	12.5	1	0.0	0.1	0.3	0.0	0.3	0.7
	0.0	4.5	4.5	3.9	20.1	11.8	1	0.0	0.3	0.7	0.0	0.5	1.3
	0.0	4.2	4.2	3.9	20.1	11.8	1	0.0	0.4	1.0	0.0	0.8	2.0
	0.0	4.3	4.3	3.5	20.1	11.8	1	0.0	0.5	1.3	0.0	1.0	2.6
	0.0	4.3	4.3	3.5	20.1	11.8	1	0.0	0.7	1.7	0.0	1.3	3.3
	0.0	4.3	4.3	3.5	20.1	11.8	1	0.0	0.8	2.0	0.0	1.5	4.0
	0.0	4.1	4.1	3.2	20.1	11.8	1	0.0	0.9	2.3	0.0	1.8	4.6
	0.0	4.1	4.1	3.2	18.5	11.8	1	0.0	1.0	2.6	0.0	2.0	5.2
	0.0	3.8	3.8	3.3	18.5	11.8	1	0.0	1.1	3.0	0.0	2.2	5.9
	0.0	3.8	3.8	3.0	18.5	11.8	1	0.0	1.2	3.3	0.0	2.5	6.5
	0.0	4.0	4.0	3.0	18.5	11.1	1	0.0	1.4	3.6	0.0	2.7	7.1
	0.0	3.6	3.6	3.0	18.5	11.1	1	0.0	1.5	3.9	0.0	2.9	7.7
	0.0	3.6	3.6	3.0	18.5	11.1	1	0.0	1.6	4.2	0.0	3.1	8.3
	0.0	3.8	3.8	2.7	18.5	11.1	1	0.0	1.7	4.5	0.0	3.3	8.9
	0.0	3.4	3.4	2.7	18.5	11.1	1	0.0	1.8	4.8	0.0	3.5	9.6
	0.0	3.4	3.4	2.7	18.5	11.1	1	0.0	1.9	5.1	0.0	3.7	10.2
	0.0	3.4	3.4	2.4	18.5	11.1	1	0.0	2.0	5.4	0.0	3.9	10.8
	0.0	3.6	3.6	2.4	18.5	11.1	1	0.0	2.1	5.7	0.0	4.1	11.4
	0.0	3.3	3.3	2.4	17.0	11.1	1	0.0	2.2	6.0	0.0	4.3	12.0
	0.0	3.3	3.3	2.2	17.0	10.4	1	0.0	2.3	6.3	0.0	4.5	12.5
	0.0	3.3	3.3	2.2	17.0	10.4	1	0.0	2.3	6.6	0.0	4.7	13.1
	0.0	3.4	3.4	2.2	17.0	10.4	1	0.0	2.4	6.9	0.0	4.8	13.7
	0.0	3.1	3.1	2.2	17.0	10.4	1	0.0	2.5	7.2	0.0	5.0	14.2
	0.0	3.1	3.1	1.9	17.0	10.4	1	0.0	2.6	7.5	0.0	5.2	14.8
	0.0	3.1	3.1	2.0	17.0	10.4	1	0.0	2.7	7.7	0.0	5.4	15.4
	0.0	2.9	2.9	2.0	17.0	10.4	1	0.0	2.8	8.0	0.0	5.5	15.9
	0.0	2.9	2.9	1.7	17.0	10.4	1	0.0	2.9	8.3	0.0	5.7	16.5
	0.0	2.9	2.9	1.7	17.0	10.4	1	0.0	2.9	8.6	0.0	5.8	17.1
	0.0	2.7	2.7	1.7	15.5	9.8	1	0.0	3.0	8.9	0.0	6.0	17.6
	0.0	2.8	2.8	1.7	15.5	9.8	1	0.0	3.1	9.1	0.0	6.1	18.1
	0.0	2.8	2.8	1.5	15.5	9.8	1	0.0	3.2	9.4	0.0	6.3	18.6
	0.0	2.8	2.8	1.5	15.5	9.8	1	0.0	3.2	9.7	0.0	6.4	19.2
	305.0	6.2	6.2	1.5	15.5	9.8	1	3.2	3.4	9.9	6.3	6.7	19.7
	295.0	8.0	8.0	7.3	15.5	9.8	1	6.3	3.6	10.2	12.4	7.2	20.2
	284.6	15.2	15.2	15.0	15.5	9.8	1	9.2	4.1	10.5	18.3	8.1	20.7
	286.7	19.6	19.6	22.3	15.5	9.8	1	12.2	4.7	10.7	24.2	9.4	21.3
	286.2	23.9	23.9	29.2	15.5	9.8	1	15.2	5.5	11.0	30.1	11.0	21.8
	278.7	28.5	28.5	34.1	15.5	9.8	1	18.1	6.5	11.2	35.9	12.9	22.3
	277.8	30.5	30.5	39.5	14.1	9.2	1	21.0	7.5	11.5	41.6	14.9	22.8
	272.9	35.6	35.6	46.1	14.1	9.2	1	23.8	8.8	11.7	47.3	17.4	23.3
	273.5	36.7	36.7	51.2	14.1	9.2	1	26.7	10.1	12.0	52.9	19.9	23.7
	269.5	41.1	41.1	56.4	14.1	9.2	1	29.5	11.5	12.2	58.5	22.8	24.2
	274.9	44.4	44.4	60.8	14.1	9.2	1	32.3	13.1	12.5	64.2	25.9	24.7
	276.3	46.3	46.3	66.5	14.1	9.2	1	35.2	14.7	12.7	69.9	29.2	25.2
	272.3	48.8	48.8	71.2	14.1	9.2	1	38.1	16.5	12.9	75.5	32.7	25.7
	273.8	52.1	52.1	74.8	14.1	9.2	1	40.9	18.3	13.2	81.1	36.4	26.1

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 393 \\ \mathrm{cfs} \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	G601-3 cfs	$\begin{aligned} & \mathrm{G} 393+\mathrm{G} 354 \\ & \text { Cfs } \end{aligned}$	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	266.1	54.1	54.1	78.5	14.1	9.2	1	43.7	20.3	13.4	86.6	40.2	26.6
	264.4	56.6	56.6	82.3	12.7	9.2	1	46.4	22.3	13.6	92.1	44.3	27.1
	261.0	58.0	58.0	86.4	12.7	9.2	1	49.2	24.4	13.9	97.5	48.4	27.5
	260.1	60.5	60.5	88.8	12.7	9.2	1	51.9	26.6	14.1	102.9	52.8	28.0
	259.0	60.8	60.8	91.6	12.7	9.2	1	54.6	28.8	14.3	108.2	57.2	28.4
	255.1	62.7	62.7	94.4	12.7	9.2	1	57.2	31.1	14.6	113.5	61.7	28.9
	254.7	63.4	63.4	95.3	12.7	9.8	1	59.9	33.4	14.8	118.8	66.3	29.3
	256.3	65.3	65.3	96.6	12.7	9.8	1	62.5	35.8	15.0	124.1	71.0	29.8
	252.9	66.0	66.0	97.9	12.7	9.8	1	65.2	38.2	15.3	129.3	75.8	30.3
	254.8	66.8	66.8	99.5	12.7	9.8	1	67.8	40.6	15.5	134.5	80.6	30.7
	0.0	55.7	55.7	97.6	12.7	9.8	1	67.8	42.8	15.7	134.5	84.9	31.2
	0.0	56.9	56.9	86.5	12.7	10.4	1	67.8	44.9	16.0	134.5	89.0	31.7
	0.0	45.6	45.6	75.8	12.7	10.4	1	67.8	46.6	16.2	134.5	92.5	32.2
	0.0	43.3	43.3	67.2	12.7	10.4	1	67.8	48.2	16.5	134.5	95.6	32.6
	0.0	40.1	40.1	61.3	12.7	10.4	1	67.8	49.7	16.7	134.5	98.6	33.1
	0.0	35.1	35.1	56.9	12.7	11.1	1	67.8	51.0	16.9	134.5	101.2	33.6
	0.0	34.1	34.1	51.6	12.7	11.1	1	67.8	52.3	17.2	134.5	103.7	34.1
	0.0	30.9	30.9	48.7	12.7	11.1	1	67.8	53.4	17.4	134.5	106.0	34.6
	0.0	29.1	29.1	44.8	12.7	11.1	1	67.8	54.5	17.7	134.5	108.1	35.1
	0.0	27.3	27.3	41.9	12.7	11.8	1	67.8	55.5	17.9	134.5	110.1	35.6
	0.0	25.7	25.7	39.3	12.7	11.8	1	67.8	56.4	18.2	134.5	112.0	36.1
	0.0	24.0	24.0	36.6	12.7	11.8	1	67.8	57.3	18.5	134.5	113.7	36.6
	0.0	22.4	22.4	34.0	12.7	11.8	1	67.8	58.1	18.7	134.5	115.3	37.1
	0.0	21.6	21.6	32.3	12.7	11.8	1	67.8	58.9	19.0	134.5	116.9	37.6
	0.0	20.5	20.5	29.9	12.7	12.5	1	67.8	59.7	19.2	134.5	118.4	38.1
	0.0	19.1	19.1	28.2	12.7	12.5	1	67.8	60.4	19.5	134.5	119.7	38.7
	0.0	18.7	18.7	26.7	12.7	12.5	1	67.8	61.0	19.7	134.5	121.1	39.2
	0.0	17.3	17.3	25.3	12.7	12.5	1	67.8	61.7	20.0	134.5	122.3	39.7
	0.0	16.9	16.9	24.5	12.7	12.5	1	67.8	62.3	20.3	134.5	123.5	40.2
	0.0	15.9	15.9	23.1	12.7	12.5	1	67.8	62.8	20.5	134.5	124.6	40.7
	0.0	15.0	15.0	21.6	12.7	12.5	1	67.8	63.4	20.8	134.5	125.7	41.3
	0.0	14.6	14.6	20.9	12.7	12.5	1	67.8	63.9	21.1	134.5	126.7	41.8
	0.0	13.7	13.7	19.6	12.7	12.5	1	67.8	64.4	21.3	134.5	127.7	42.3
	0.0	13.4	13.4	19.0	12.7	12.5	1	67.8	64.9	21.6	134.5	128.7	42.8
	0.0	13.1	13.1	17.6	14.1	12.5	1	67.8	65.3	21.9	134.5	129.6	43.4
	0.0	12.2	12.2	17.1	14.1	12.5	1	67.8	65.7	22.1	134.5	130.4	43.9
	0.0	11.9	11.9	16.4	14.1	12.5	1	67.8	66.2	22.4	134.5	131.2	44.5
	0.0	11.6	11.6	15.8	14.1	12.5	1	67.8	66.6	22.7	134.5	132.1	45.0
	0.0	11.3	11.3	15.2	14.1	12.5	1	67.8	67.0	23.0	134.5	132.8	45.6
	0.0	10.8	10.8	14.6	14.1	12.5	1	67.8	67.3	23.2	134.5	133.6	46.1
	0.0	10.5	10.5	14.1	14.1	12.5	1	67.8	67.7	23.5	134.5	134.3	46.6
	0.0	10.2	10.2	13.5	14.1	12.5	1	67.8	68.1	23.8	134.5	135.0	47.2
	0.0	10.0	10.0	12.9	14.1	12.5	1	67.8	68.4	24.1	134.5	135.7	47.7
	0.0	10.0	10.0	12.4	14.1	11.8	1	67.8	68.7	24.3	134.5	136.4	48.3
	0.0	9.2	9.2	11.8	14.1	11.8	1	67.8	69.1	24.6	134.5	137.0	48.8
	0.0	9.2	9.2	11.4	14.1	11.8	1	67.8	69.4	24.9	134.5	137.6	49.3
	0.0	8.9	8.9	11.4	14.1	11.8	1	67.8	69.7	25.1	134.5	138.2	49.9
	0.0	8.7	8.7	10.8	14.1	11.8	1	67.8	70.0	25.4	134.5	138.8	50.4
	0.0	8.2	8.2	10.3	14.1	11.8	1	67.8	70.2	25.7	134.5	139.3	50.9
	0.0	8.4	8.4	9.8	14.1	11.8	1	67.8	70.5	26.0	134.5	139.9	51.5

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G601 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 603 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 393 \\ \mathrm{cfs} \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	G601-3 cfs	$\begin{aligned} & \mathrm{G} 393+\mathrm{G} 354 \\ & \text { Cfs } \end{aligned}$	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 ac-ft	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	0.0	7.9	7.9	9.8	14.1	11.8	1	67.8	70.8	26.2	134.5	140.4	52.0
	0.0	7.7	7.7	9.3	14.1	11.8	1	67.8	71.0	26.5	134.5	140.9	52.6
	0.0	7.7	7.7	8.9	15.5	11.8	1	67.8	71.3	26.8	134.5	141.4	53.1
	0.0	7.5	7.5	8.9	15.5	11.1	1	67.8	71.6	27.1	134.5	141.9	53.7
	0.0	7.0	7.0	8.5	15.5	11.1	1	67.8	71.8	27.3	134.5	142.4	54.2
	0.0	7.2	7.2	8.0	15.5	11.1	1	67.8	72.0	27.6	134.5	142.9	54.8
	0.0	6.8	6.8	8.0	15.5	11.1	1	67.8	72.2	27.9	134.5	143.3	55.3
	0.0	7.0	7.0	7.5	15.5	11.1	1	67.8	72.5	28.2	134.5	143.7	55.9
	0.0	6.6	6.6	7.5	15.5	11.1	1	67.8	72.7	28.4	134.5	144.2	56.4
	0.0	6.8	6.8	7.1	15.5	11.1	1	67.8	72.9	28.7	134.5	144.6	57.0
	0.0	6.3	6.3	7.2	15.5	11.1	1	67.8	73.1	29.0	134.5	145.0	57.5
	0.0	6.5	6.5	6.7	15.5	11.1	1	67.8	73.3	29.3	134.5	145.4	58.1
	0.0	6.1	6.1	6.7	15.5	11.1	1	67.8	73.5	29.6	134.5	145.8	58.6
	0.0	6.3	6.3	6.3	15.5	10.4	1	67.8	73.7	29.8	134.5	146.2	59.1
	0.0	5.9	5.9	6.3	15.5	10.4	1	67.8	73.9	30.1	134.5	146.6	59.7
	0.0	6.1	6.1	5.9	15.5	10.4	1	67.8	74.1	30.4	134.5	146.9	60.2
	0.0	6.1	6.1	5.9	15.5	10.4	1	67.8	74.3	30.6	134.5	147.3	60.8
	0.0	5.7	5.7	5.5	14.1	10.4	1	67.8	74.4	30.9	134.5	147.7	61.3
	0.0	5.9	5.9	5.6	14.1	10.4	1	67.8	74.6	31.1	134.5	148.0	61.8
	0.0	5.5	5.5	5.2	14.1	10.4	1	67.8	74.8	31.4	134.5	148.4	62.3
2	0.0	5.6	5.6	5.2	14.1	10.4	2	67.8	75.0	31.7	134.5	148.7	62.8
	0.0	5.3	5.3	4.8	14.1	10.4	2	67.8	75.1	31.9	134.5	149.0	63.3
	0.0	5.3	5.3	4.8	14.1	9.8	2	67.8	75.3	32.2	134.5	149.3	63.8
	0.0	5.1	5.1	4.8	14.1	9.8	2	67.8	75.4	32.4	134.5	149.6	64.3
	0.0	5.1	5.1	4.5	14.1	9.8	2	67.8	75.6	32.7	134.5	149.9	64.8
	0.0	5.1	5.1	4.5	14.1	9.8	2	67.8	75.7	32.9	134.5	150.2	65.3
	0.0	4.8	4.8	4.1	14.1	9.8	2	67.8	75.9	33.2	134.5	150.5	65.8
	0.0	4.8	4.8	4.2	14.1	9.8	2	67.8	76.0	33.4	134.5	150.8	66.3
	0.0	4.5	4.5	4.2	14.1	9.8	2	67.8	76.2	33.7	134.5	151.1	66.7
	0.0	4.6	4.6	3.8	14.1	9.8	2	67.8	76.3	33.9	134.5	151.4	67.2
	0.0	4.6	4.6	3.8	14.1	9.8	2	67.8	76.4	34.1	134.5	151.6	67.7
	0.0	4.3	4.3	3.8	14.1	9.8	2	67.8	76.6	34.4	134.5	151.9	68.2
	0.0	4.4	4.4	3.5	14.1	9.2	2	67.8	76.7	34.6	134.5	152.1	68.7
	0.0	4.4	4.4	3.5	14.1	9.2	2	67.8	76.8	34.9	134.5	152.4	69.2
	0.0	4.4	4.4	3.5	14.1	9.2	2	67.8	77.0	35.1	134.5	152.7	69.7
	0.0	4.2	4.2	3.2	14.1	9.2	2	67.8	77.1	35.4	134.5	152.9	70.1
	0.0	4.2	4.2	3.2	14.1	9.2	2	67.8	77.2	35.6	134.5	153.1	70.6
	0.0	3.9	3.9	3.2	14.1	9.2	2	67.8	77.3	35.8	134.5	153.4	71.1
	0.0	4.0	4.0	2.9	14.1	9.2	2	67.8	77.4	36.1	134.5	153.6	71.6
	0.0	4.0	4.0	2.9	12.7	9.2	2	67.8	77.6	36.3	134.5	153.8	72.0
	0.0	3.7	3.7	2.9	12.7	9.2	2	67.8	77.7	36.5	134.5	154.0	72.5
	0.0	3.8	3.8	2.6	12.7	9.2	2	67.8	77.8	36.8	134.5	154.3	72.9
	0.0	3.8	3.8	2.6	12.7	8.5	2	67.8	77.9	37.0	134.5	154.5	73.4
	0.0	3.8	3.8	2.6	12.7	8.5	2	67.8	78.0	37.2	134.5	154.7	73.8
	0.0	3.6	3.6	2.4	12.7	8.5	2	67.8	78.1	37.4	134.5	154.9	74.3
	0.0	3.6	3.6	2.4	12.7	8.5	2	67.8	78.2	37.7	134.5	155.1	74.7
	0.0	3.6	3.6	2.4	12.7	8.5	2	67.8	78.3	37.9	134.5	155.3	75.1
	0.0	3.3	3.3	2.4	12.7	8.5	2	67.8	78.4	38.1	134.5	155.5	75.6
	0.0	3.5	3.5	2.1	12.7	8.5	2	67.8	78.5	38.3	134.5	155.7	76.0
	0.0	3.8	3.8	2.3	12.7	9.2	2	67.8	78.6	38.6	134.5	155.9	76.5

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \hline \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 393 \\ \mathrm{cfs} \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \mathrm{G} 601-3 \\ & \mathrm{cfs} \end{aligned}$	G393+G354 Cfs	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	0.0	3.5	3.5	2.4	14.1	9.2	2	67.8	78.7	38.8	134.5	156.1	76.9
	0.0	3.5	3.5	2.4	14.1	9.2	2	67.8	78.8	39.0	134.5	156.3	77.4
	0.0	3.3	3.3	2.4	14.1	8.5	2	67.8	78.9	39.3	134.5	156.4	77.9
	0.0	3.6	3.6	2.4	14.1	8.5	2	67.8	79.0	39.5	134.5	156.6	78.4
	0.0	3.5	3.5	2.1	14.1	8.5	2	67.8	79.1	39.7	134.5	156.8	78.8
	0.0	3.3	3.3	2.6	17.0	8.5	2	67.8	79.2	40.0	134.5	157.0	79.4
	0.0	3.6	3.6	2.6	18.5	9.2	2	67.8	79.3	40.3	134.5	157.2	79.9
	0.0	3.6	3.6	2.6	18.5	9.2	2	67.8	79.4	40.6	134.5	157.4	80.5
	0.0	3.3	3.3	2.4	18.5	9.2	2	67.8	79.5	40.9	134.5	157.6	81.1
	0.0	3.3	3.3	2.4	18.5	9.2	2	67.8	79.6	41.2	134.5	157.8	81.6
	0.0	3.1	3.1	2.4	18.5	9.2	2	67.8	79.6	41.5	134.5	158.0	82.2
	0.0	3.4	3.4	2.1	18.5	9.2	2	67.8	79.7	41.7	134.5	158.1	82.8
	0.0	3.1	3.1	2.1	18.5	9.2	2	67.8	79.8	42.0	134.5	158.3	83.4
	0.0	3.1	3.1	2.1	18.5	8.5	2	67.8	79.9	42.3	134.5	158.5	83.9
	0.0	3.1	3.1	2.1	18.5	8.5	2	67.8	80.0	42.6	134.5	158.7	84.5
	0.0	2.9	2.9	2.1	17.0	8.5	2	67.8	80.1	42.9	134.5	158.8	85.0
	0.0	2.9	2.9	1.9	17.0	8.5	2	67.8	80.2	43.1	134.5	159.0	85.5
	0.0	2.9	2.9	1.9	17.0	8.5	2	67.8	80.2	43.4	134.5	159.1	86.1
	0.0	2.9	2.9	1.9	17.0	8.5	2	67.8	80.3	43.7	134.5	159.3	86.6
	0.0	2.7	2.7	1.9	17.0	8.5	2	67.8	80.4	43.9	134.5	159.5	87.1
	0.0	2.7	2.7	1.6	17.0	8.5	2	67.8	80.5	44.2	134.5	159.6	87.6
	0.0	2.8	2.8	1.6	17.0	8.5	2	67.8	80.5	44.5	134.5	159.7	88.2
	0.0	2.8	2.8	1.6	17.0	8.5	2	67.8	80.6	44.7	134.5	159.9	88.7
	0.0	2.5	2.5	1.6	17.0	8.5	2	67.8	80.7	45.0	134.5	160.0	89.2
	0.0	2.5	2.5	1.4	15.5	7.9	2	67.8	80.7	45.2	134.5	160.2	89.7
	0.0	2.5	2.5	1.4	15.5	7.9	2	67.8	80.8	45.5	134.5	160.3	90.2
	0.0	2.6	2.6	1.4	15.5	7.9	2	67.8	80.9	45.7	134.5	160.4	90.7
	0.0	2.6	2.6	1.4	15.5	7.9	2	67.8	81.0	46.0	134.5	160.6	91.2
	0.0	2.6	2.6	1.4	15.5	7.9	2	67.8	81.0	46.2	134.5	160.7	91.7
	0.0	2.3	2.3	1.4	15.5	7.9	2	67.8	81.1	46.5	134.5	160.8	92.1
	0.0	2.3	2.3	1.4	15.5	7.9	2	67.8	81.2	46.7	134.5	161.0	92.6
	0.0	2.3	2.3	1.2	15.5	7.9	2	67.8	81.2	46.9	134.5	161.1	93.1
	0.0	2.3	2.3	1.2	15.5	7.9	2	67.8	81.3	47.2	134.5	161.2	93.6
	0.0	2.4	2.4	1.2	15.5	7.9	2	67.8	81.3	47.4	134.5	161.3	94.1
	0.0	2.2	2.2	1.2	15.5	7.9	2	67.8	81.4	47.7	134.5	161.4	94.6
	0.0	2.2	2.2	1.0	14.1	7.9	2	67.8	81.5	47.9	134.5	161.6	95.0
	0.0	2.2	2.2	1.0	14.1	7.9	2	67.8	81.5	48.1	134.5	161.7	95.5
	0.0	2.2	2.2	1.0	14.1	7.9	2	67.8	81.6	48.4	134.5	161.8	95.9
	0.0	2.0	2.0	1.0	14.1	7.9	2	67.8	81.6	48.6	134.5	161.9	96.4
	0.0	2.0	2.0	0.8	14.1	7.4	2	67.8	81.7	48.8	134.5	162.0	96.8
	0.0	2.0	2.0	0.8	14.1	7.4	2	67.8	81.7	49.0	134.5	162.1	97.3
	0.0	2.0	2.0	0.8	14.1	7.4	2	67.8	81.8	49.3	134.5	162.2	97.7
	0.0	2.0	2.0	0.8	14.1	7.4	2	67.8	81.8	49.5	134.5	162.3	98.2
	0.0	1.8	1.8	0.8	14.1	7.4	2	67.8	81.9	49.7	134.5	162.4	98.6
	0.0	1.9	1.9	0.7	14.1	7.4	2	67.8	81.9	49.9	134.5	162.5	99.0
	0.0	1.9	1.9	0.7	14.1	7.4	2	67.8	82.0	50.2	134.5	162.6	99.5
	0.0	1.9	1.9	0.7	12.7	7.4	2	67.8	82.0	50.4	134.5	162.7	99.9
	0.0	1.9	1.9	0.7	12.7	7.4	2	67.8	82.1	50.6	134.5	162.8	100.3
	0.0	1.7	1.7	0.7	12.7	7.4	2	67.8	82.1	50.8	134.5	162.8	100.7
	0.0	1.7	1.7	0.5	12.7	7.4	2	67.8	82.1	51.0	134.5	162.9	101.1

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G601 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 603 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \mathrm{cfs} \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \text { cfs } \end{aligned}$	G393+G354 Cfs	G600 ac-ft	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	0.0	1.7	1.7	0.5	12.7	7.4	2	67.8	82.2	51.2	134.5	163.0	101.6
	0.0	1.7	1.7	0.5	12.7	7.4	2	67.8	82.2	51.4	134.5	163.1	102.0
	0.0	1.7	1.7	0.5	12.7	6.8	2	67.8	82.3	51.6	134.5	163.2	102.4
	0.0	1.5	1.5	0.5	12.7	6.8	2	67.8	82.3	51.8	134.5	163.2	102.8
	0.0	1.5	1.5	0.4	12.7	6.8	2	67.8	82.3	52.0	134.5	163.3	103.2
	0.0	1.5	1.5	0.4	12.7	6.8	2	67.8	82.4	52.2	134.5	163.4	103.6
	0.0	1.5	1.5	0.4	11.4	6.8	2	67.8	82.4	52.4	134.5	163.4	104.0
	0.0	1.4	1.4	0.4	11.4	6.8	2	67.8	82.4	52.6	134.5	163.5	104.3
	0.0	1.4	1.4	0.2	11.4	6.8	2	67.8	82.5	52.8	134.5	163.6	104.7
	0.0	1.4	1.4	0.2	11.4	6.8	2	67.8	82.5	53.0	134.5	163.6	105.1
	0.0	1.4	1.4	0.2	11.4	6.8	2	67.8	82.5	53.2	134.5	163.7	105.5
	0.0	1.4	1.4	0.2	11.4	6.8	2	67.8	82.6	53.4	134.5	163.8	105.8
	0.0	1.2	1.2	0.2	11.4	6.8	2	67.8	82.6	53.5	134.5	163.8	106.2
	0.0	1.3	1.3	0.1	11.4	6.8	2	67.8	82.6	53.7	134.5	163.9	106.6
	0.0	1.3	1.3	0.1	11.4	6.8	2	67.8	82.6	53.9	134.5	163.9	107.0
	0.0	1.3	1.3	0.1	11.4	6.2	2	67.8	82.7	54.1	134.5	164.0	107.3
3	0.0	1.1	1.1	0.1	10.1	6.2	3	67.8	82.7	54.3	134.5	164.0	107.7
	0.0	1.1	1.1	0.1	10.1	6.2	3	67.8	82.7	54.4	134.5	164.1	108.0
	0.0	1.1	1.1	0.0	10.1	6.2	3	67.8	82.7	54.6	134.5	164.1	108.3
	0.0	1.1	1.1	0.0	10.1	6.2	3	67.8	82.8	54.8	134.5	164.2	108.7
	0.0	1.1	1.1	0.0	10.1	6.2	3	67.8	82.8	55.0	134.5	164.2	109.0
	0.0	1.0	1.0	0.0	10.1	6.2	3	67.8	82.8	55.1	134.5	164.2	109.3
	0.0	1.0	1.0	0.0	10.1	6.2	3	67.8	82.8	55.3	134.5	164.3	109.7
	0.0	1.0	1.0	0.0	10.1	6.2	3	67.8	82.8	55.5	134.5	164.3	110.0
	0.0	1.0	1.0	0.0	10.1	6.2	3	67.8	82.9	55.6	134.5	164.4	110.4
	0.0	7.1	7.1	0.0	10.1	6.2	3	67.8	83.0	55.8	134.5	164.7	110.7
	381.7	7.1	7.1	0.0	10.1	6.2	3	71.8	83.2	56.0	142.4	164.9	111.0
	379.0	18.2	18.2	5.4	10.1	6.2	3	75.8	83.6	56.1	150.3	165.8	111.4
	375.0	22.7	22.7	15.9	10.1	6.2	3	79.7	84.2	56.3	158.0	167.1	111.7
	371.2	29.6	29.6	26.3	10.1	6.2	3	83.5	85.1	56.5	165.7	168.8	112.0
	363.2	35.3	35.3	37.3	8.9	6.2	3	87.3	86.3	56.6	173.2	171.1	112.4
	356.9	39.3	39.3	44.8	8.9	6.2	3	91.0	87.5	56.8	180.6	173.6	112.7
	360.3	44.8	44.8	52.9	8.9	6.2	3	94.8	89.0	57.0	188.0	176.6	113.0
	351.8	48.0	48.0	59.3	8.9	5.7	3	98.4	90.6	57.1	195.3	179.8	113.3
	352.1	52.6	52.6	66.0	8.9	5.7	3	102.1	92.4	57.3	202.5	183.3	113.6
	352.3	56.0	56.0	74.6	8.9	5.7	3	105.8	94.4	57.4	209.8	187.2	113.9
	347.5	59.9	59.9	80.6	8.9	5.7	3	109.4	96.5	57.6	217.0	191.3	114.2
	345.8	64.0	64.0	87.1	8.9	6.2	3	113.0	98.7	57.7	224.1	195.8	114.5
	343.0	67.4	67.4	93.9	8.9	6.2	3	116.6	101.1	57.9	231.2	200.5	114.8
	342.0	70.2	70.2	97.8	8.9	6.2	3	120.1	103.6	58.0	238.3	205.4	115.1
	342.6	73.8	73.8	103.6	8.9	6.2	3	123.7	106.2	58.2	245.4	210.6	115.4
	333.2	75.4	75.4	107.7	8.9	6.8	3	127.2	108.9	58.4	252.3	215.9	115.7
	334.9	78.3	78.3	112.1	8.9	6.8	3	130.7	111.7	58.5	259.2	221.5	116.1
	327.6	78.6	78.6	116.7	8.9	6.8	3	134.1	114.5	58.7	265.9	227.1	116.4
	338.6	80.8	80.8	118.1	8.9	6.8	3	137.6	117.4	58.8	272.9	232.9	116.7
	327.3	81.1	81.1	121.3	8.9	7.4	3	141.0	120.4	59.0	279.7	238.8	117.1
	329.2	82.4	82.4	124.2	8.9	7.4	3	144.4	123.4	59.2	286.5	244.8	117.4
	328.1	84.1	84.1	125.6	8.9	7.4	3	147.9	126.5	59.3	293.3	250.8	117.7
	329.2	84.9	84.9	127.1	8.9	7.9	3	151.3	129.5	59.5	300.1	257.0	118.1
	324.3	85.8	85.8	128.2	10.1	8.5	3	154.7	132.7	59.7	306.8	263.2	118.5

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 354 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \mathrm{cfs} \end{aligned}$	$\mathrm{G} 393+\mathrm{G} 354$ Cfs	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \text { ac-ft } \end{gathered}$
	326.5	87.2	87.2	129.6	10.1	8.5	3	158.1	135.8	59.9	313.5	269.4	118.8
	334.3	86.6	86.6	131.5	10.1	9.2	3	161.6	139.0	60.1	320.4	275.7	119.2
	333.5	87.5	87.5	133.0	10.1	9.2	3	165.0	142.2	60.3	327.3	282.1	119.6
	328.9	88.9	88.9	134.5	11.4	9.8	3	168.5	145.5	60.5	334.1	288.5	120.1
	338.0	89.8	89.8	134.1	11.4	10.4	3	172.0	148.7	60.8	341.1	295.0	120.5
	336.4	89.2	89.2	135.6	11.4	10.4	3	175.5	152.0	61.0	348.1	301.5	121.0
	323.2	90.7	90.7	137.1	12.7	11.1	3	178.8	155.3	61.2	354.7	308.1	121.5
	333.5	90.7	90.7	137.1	12.7	11.8	3	182.3	158.6	61.5	361.6	314.7	122.0
	330.5	90.1	90.1	138.6	12.7	11.8	3	185.8	162.0	61.7	368.5	321.3	122.5
	327.5	91.6	91.6	138.2	12.7	12.5	3	189.2	165.3	62.0	375.2	327.9	123.0
	327.3	91.0	91.0	138.2	14.1	13.1	3	192.6	168.7	62.3	382.0	334.5	123.6
	323.9	91.0	91.0	139.7	15.5	13.9	3	196.0	172.0	62.6	388.7	341.2	124.2
	319.0	91.8	91.8	139.3	15.5	14.6	3	199.3	175.4	62.9	395.3	347.8	124.8
	323.3	91.8	91.8	139.3	15.5	15.3	3	202.6	178.7	63.2	402.0	354.5	125.4
	326.2	90.4	90.4	138.8	17.0	15.3	3	206.0	182.1	63.6	408.7	361.1	126.1
	318.1	90.4	90.4	138.8	17.0	16.1	3	209.4	185.4	63.9	415.3	367.7	126.8
	315.4	90.4	90.4	138.8	17.0	16.8	3	212.6	188.7	64.3	421.8	374.3	127.5
	316.7	90.4	90.4	136.4	17.0	17.6	3	215.9	192.0	64.6	428.3	380.9	128.2
	314.5	88.9	88.9	136.4	18.5	17.6	3	219.2	195.3	65.0	434.8	387.4	128.9
	316.2	88.9	88.9	136.4	18.5	18.4	3	222.5	198.6	65.4	441.4	393.9	129.7
	315.5	88.3	88.3	136.4	18.5	19.1	3	225.8	201.8	65.8	447.9	400.3	130.5
	317.4	89.8	89.8	136.4	20.1	19.9	3	229.1	205.1	66.2	454.4	406.9	131.3
	314.9	88.3	88.3	135.9	21.7	21.6	3	232.4	208.4	66.6	460.9	413.3	132.2
	317.4	88.3	88.3	135.5	21.7	22.4	3	235.7	211.6	67.1	467.5	419.8	133.1
	316.4	88.3	88.3	135.5	23.3	23.2	3	239.0	214.9	67.6	474.0	426.2	134.1
	318.7	86.9	86.9	133.5	23.3	23.2	3	242.3	218.1	68.1	480.6	432.6	135.0
	312.6	86.9	86.9	133.5	23.3	24.1	3	245.6	221.3	68.6	487.1	438.9	136.0
	307.3	86.9	86.9	133.5	25.0	24.1	3	248.8	224.5	69.1	493.4	445.3	137.0
	317.5	87.1	87.1	131.6	25.0	25.0	3	252.1	227.7	69.6	500.0	451.6	138.0
	318.0	89.4	89.4	133.0	26.7	25.8	3	255.4	230.9	70.1	506.6	458.0	139.1
	307.8	87.1	87.1	135.5	30.3	27.6	3	258.6	234.1	70.7	512.9	464.4	140.3
	316.2	88.8	88.8	133.5	32.1	28.5	3	261.9	237.4	71.4	519.4	470.8	141.6
	312.4	87.3	87.3	134.9	34.0	30.3	3	265.1	240.6	72.1	525.9	477.2	142.9
	318.4	86.5	86.5	133.0	34.0	31.3	3	268.5	243.8	72.7	532.5	483.6	144.3
	310.5	86.5	86.5	133.0	35.9	32.2	3	271.7	247.0	73.4	538.9	489.9	145.7
	313.8	85.0	85.0	133.0	37.8	32.2	3	275.0	250.1	74.2	545.4	496.1	147.1
	315.7	86.5	86.5	130.5	37.8	32.2	3	278.2	253.3	74.9	551.9	502.4	148.6
	310.5	86.5	86.5	130.5	39.8	33.2	3	281.5	256.5	75.7	558.3	508.7	150.1
	305.4	85.0	85.0	130.5	39.8	34.1	3	284.7	259.6	76.4	564.6	514.9	151.6
	311.4	85.0	85.0	130.0	41.7	34.1	3	287.9	262.7	77.2	571.1	521.1	153.2
	308.8	85.0	85.0	130.0	41.7	35.1	3	291.1	265.8	78.0	577.4	527.3	154.7
	303.2	83.6	83.6	128.1	43.8	35.1	3	294.3	268.9	78.8	583.7	533.4	156.4
	308.9	83.6	83.6	128.1	43.8	36.0	3	297.5	272.0	79.7	590.1	539.5	158.0
	311.0	84.2	84.2	128.1	45.8	36.0	3	300.7	275.1	80.5	596.5	545.6	159.7
	308.2	83.6	83.6	126.2	45.8	37.0	3	303.9	278.1	81.4	602.9	551.7	161.4
	314.0	83.6	83.6	127.6	47.9	39.0	3	307.2	281.2	82.3	609.4	557.8	163.2
	306.1	84.4	84.4	127.6	50.1	40.0	3	310.4	284.3	83.2	615.7	563.9	165.1
	310.7	87.0	87.0	127.0	50.1	41.0	3	313.6	287.4	84.2	622.1	570.1	167.0
	311.6	94.4	94.4	128.9	58.8	43.1	3	316.9	290.7	85.2	628.6	576.7	169.1
	315.3	95.4	95.4	138.7	75.3	49.5	3	320.2	294.2	86.5	635.1	583.5	171.7

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 354 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 393 \\ \mathrm{cfs} \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \mathrm{cfs} \end{aligned}$	G393+G354 Cfs	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	314.6	98.9	98.9	146.7	93.0	53.9	3	323.5	297.8	88.1	641.6	590.6	174.7
	313.5	104.9	104.9	148.2	103.7	56.1	3	326.7	301.5	89.7	648.0	598.0	178.0
	324.7	102.4	102.4	153.3	123.2	64.2	3	330.1	305.2	91.7	654.8	605.4	181.9
	323.6	103.3	103.3	151.0	134.9	68.9	3	333.5	308.9	93.8	661.4	612.8	186.1
	339.5	102.5	102.5	152.2	146.9	71.4	3	337.0	312.7	96.1	668.5	620.2	190.6
	340.7	103.3	103.3	152.8	156.1	73.8	3	340.6	316.4	98.5	675.5	627.6	195.3
	343.7	105.0	105.0	152.5	168.6	77.6	3	344.1	320.2	101.0	682.6	635.1	200.4
	361.2	108.6	108.6	162.1	184.8	82.6	3	347.9	324.1	103.8	690.1	642.9	205.9
	364.5	105.8	105.8	163.2	201.3	91.7	3	351.7	328.0	106.9	697.6	650.7	212.0
	365.6	108.3	108.3	157.3	211.5	94.4	3	355.5	331.9	110.1	705.1	658.4	218.3
	377.0	110.5	110.5	158.5	225.3	99.8	3	359.4	335.9	113.5	712.9	666.2	225.0
	374.8	119.4	119.4	164.8	250.1	109.4	3	363.3	340.1	117.2	720.7	674.6	232.5
4	382.2	116.3	116.3	165.4	287.0	121.8	4	367.3	344.2	121.5	728.6	682.8	240.9
	384.9	111.4	111.4	160.2	300.1	129.8	4	371.3	348.2	125.9	736.5	690.7	249.8
	391.9	112.2	112.2	156.1	305.0	136.1	4	375.4	352.2	130.5	744.6	698.6	258.9
	389.9	109.9	109.9	149.3	312.2	136.9	4	379.5	356.0	135.2	752.7	706.2	268.2
	399.8	107.0	107.0	144.6	323.6	143.6	4	383.6	359.8	140.1	760.9	713.6	277.8
	393.3	107.0	107.0	140.2	334.9	145.6	4	387.7	363.5	145.1	769.1	720.9	287.8
	396.5	100.1	100.1	132.9	340.7	148.4	4	391.9	366.9	150.2	777.3	727.8	297.9
	393.7	101.3	101.3	127.2	340.0	149.7	4	396.0	370.4	155.3	785.4	734.6	308.0
	400.2	100.1	100.1	124.3	347.3	150.9	4	400.1	373.7	160.5	793.7	741.3	318.3
	400.9	97.3	97.3	120.7	349.8	155.1	4	404.3	377.0	165.7	801.9	747.8	328.7
	395.4	96.5	96.5	114.8	353.0	154.7	4	408.4	380.2	171.0	810.1	754.2	339.2
	399.2	95.5	95.5	111.8	353.0	156.3	4	412.6	383.4	176.3	818.4	760.4	349.7
	399.9	97.6	97.6	111.8	360.4	156.0	4	416.7	386.6	181.7	826.6	766.8	360.4
	397.9	94.2	94.2	109.6	369.4	159.5	4	420.9	389.7	187.2	834.8	772.9	371.3
	401.4	99.1	99.1	110.6	376.8	160.8	4	425.1	392.9	192.8	843.1	779.3	382.4
	401.8	97.2	97.2	107.4	375.0	164.0	4	429.3	396.0	198.4	851.4	785.6	393.6
	407.6	102.5	102.5	108.9	389.9	167.4	4	433.5	399.3	204.2	859.9	792.1	405.1
	402.8	99.6	99.6	109.2	405.3	172.1	4	437.7	402.5	210.2	868.2	798.4	417.0
	409.0	101.9	101.9	104.8	415.1	175.9	4	442.0	405.7	216.4	876.6	804.8	429.2
	407.1	99.6	99.6	105.7	420.5	178.4	4	446.2	408.9	222.6	885.0	811.1	441.6
	407.0	96.6	96.6	101.9	429.3	180.1	4	450.4	412.0	229.0	893.4	817.2	454.2
	407.6	95.9	95.9	98.0	429.3	181.8	4	454.7	415.0	235.3	901.9	823.2	466.8
	403.5	95.1	95.1	97.2	430.4	183.9	4	458.9	418.0	241.7	910.2	829.1	479.5
	403.1	94.4	94.4	96.3	430.4	183.9	4	463.1	421.0	248.1	918.5	835.0	492.2
	382.0	92.1	92.1	88.3	427.1	184.3	4	467.1	423.8	254.5	926.4	840.6	504.8
	382.9	93.6	93.6	88.3	427.1	184.3	4	471.1	426.7	260.9	934.3	846.3	517.5
	382.7	92.1	92.1	91.6	428.2	184.7	4	475.0	429.6	267.3	942.2	852.0	530.1
	384.2	93.6	93.6	88.3	428.2	184.7	4	479.0	432.4	273.7	950.2	857.7	542.8
	385.4	93.6	93.6	88.3	429.3	185.1	4	483.1	435.3	280.1	958.1	863.4	555.5
	383.7	92.9	92.9	87.6	429.3	185.1	4	487.1	438.2	286.5	966.1	869.1	568.2
	383.7	90.7	90.7	87.6	430.4	185.5	4	491.1	441.0	292.9	974.0	874.6	580.9
	386.2	92.1	92.1	83.4	427.0	185.9	4	495.1	443.7	299.3	982.0	880.2	593.6
	388.1	92.1	92.1	86.8	427.0	186.3	4	499.1	446.6	305.6	990.0	885.8	606.2
	383.7	91.4	91.4	86.8	423.7	186.3	4	503.1	449.4	312.0	997.9	891.3	618.8
	385.6	91.4	91.4	82.7	424.7	186.6	4	507.1	452.1	318.4	1005.9	896.8	631.5
	383.9	91.4	91.4	82.7	421.4	185.0	4	511.1	454.9	324.7	1013.8	902.3	644.0
	387.9	92.8	92.8	86.1	418.0	185.3	4	515.2	457.7	331.0	1021.8	907.9	656.5
	383.9	90.7	90.7	86.1	418.0	185.7	4	519.2	460.5	337.3	1029.8	913.4	668.9

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \hline \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 393 \\ \mathrm{cfs} \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \mathrm{cfs} \end{aligned}$	$\mathrm{G} 393+\mathrm{G} 354$ Cfs	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	383.7	92.8	92.8	82.0	414.7	184.0	4	523.2	463.3	343.5	1037.7	919.0	681.3
	397.2	92.0	92.0	82.0	414.7	184.4	4	527.3	466.1	349.7	1045.9	924.5	693.7
	397.2	92.0	92.0	85.3	411.3	184.7	4	531.4	468.9	355.9	1054.1	930.0	706.0
	397.2	92.0	92.0	85.3	412.3	183.0	4	535.6	471.7	362.1	1062.3	935.6	718.3
	399.1	92.0	92.0	85.3	408.9	183.4	4	539.7	474.5	368.3	1070.6	941.2	730.5
	397.2	93.4	93.4	85.3	408.9	183.4	4	543.9	477.3	374.5	1078.8	946.8	742.8
	397.4	93.4	93.4	85.3	405.6	183.4	4	548.0	480.2	380.6	1087.0	952.4	755.0
	399.2	88.5	88.5	88.4	405.6	182.1	4	552.2	482.9	386.7	1095.2	957.9	767.1
	418.7	93.4	93.4	88.4	402.2	182.1	4	556.5	485.8	392.8	1103.9	963.6	779.2
	431.6	90.6	90.6	83.8	402.2	182.1	4	561.0	488.6	398.9	1112.8	969.0	791.2
	428.0	94.7	94.7	83.8	397.9	182.1	4	565.5	491.4	405.0	1121.7	974.7	803.2
	431.4	94.7	94.7	88.4	397.9	182.4	4	570.0	494.3	411.0	1130.6	980.4	815.2
	421.9	94.7	94.7	88.4	393.7	180.7	4	574.4	497.2	417.0	1139.3	986.2	827.1
	429.6	94.7	94.7	88.4	393.7	180.7	4	578.9	500.1	423.0	1148.2	991.9	839.0
	425.7	96.0	96.0	88.4	389.5	180.4	4	583.3	503.0	428.9	1157.0	997.7	850.7
	425.7	96.0	96.0	91.4	389.5	180.4	4	587.7	506.0	434.8	1165.7	1003.6	862.5
	425.7	96.0	96.0	91.4	389.5	178.7	4	592.2	508.9	440.8	1174.5	1009.4	874.2
	419.5	96.0	96.0	91.4	385.2	178.7	4	596.5	511.9	446.6	1183.2	1015.3	885.9
	425.6	96.0	96.0	91.4	384.3	178.7	4	601.0	514.8	452.5	1192.0	1021.1	897.5
	426.5	96.0	96.0	91.4	380.1	178.7	4	605.4	517.8	458.3	1200.8	1027.0	909.1
	425.7	96.0	96.0	91.4	379.2	178.7	4	609.8	520.7	464.1	1209.6	1032.8	920.6
	425.9	97.3	97.3	91.4	375.0	178.4	4	614.3	523.7	469.9	1218.4	1038.8	932.0
	425.7	97.3	97.3	91.4	375.0	176.7	4	618.7	526.7	475.6	1227.2	1044.7	943.4
	421.8	97.3	97.3	91.4	375.0	176.7	4	623.1	529.7	481.4	1235.9	1050.6	954.8
	423.4	97.3	97.3	94.2	370.8	176.4	4	627.5	532.7	487.1	1244.7	1056.5	966.1
	425.7	97.3	97.3	94.2	369.8	176.4	4	631.9	535.7	492.8	1253.5	1062.5	977.4
	429.4	96.5	96.5	90.6	369.8	176.4	4	636.4	538.6	498.5	1262.3	1068.4	988.7
	427.3	96.5	96.5	90.6	365.6	176.4	4	640.9	541.6	504.1	1271.2	1074.2	999.9
	433.1	96.5	96.5	90.6	365.6	176.4	4	645.4	544.5	509.8	1280.1	1080.1	1011.1
	425.2	96.5	96.5	90.6	365.6	176.4	4	649.8	547.5	515.4	1288.9	1085.9	1022.3
	426.9	96.5	96.5	90.6	361.5	174.7	4	654.3	550.4	521.0	1297.7	1091.8	1033.4
	428.2	96.5	96.5	93.4	361.5	174.7	4	658.7	553.4	526.6	1306.6	1097.7	1044.5
	430.0	97.7	97.7	93.4	361.5	174.7	4	663.2	556.4	532.2	1315.5	1103.7	1055.5
	433.6	97.7	97.7	93.4	357.3	174.7	4	667.7	559.4	537.7	1324.4	1109.6	1066.5
	434.9	97.7	97.7	93.4	357.3	174.7	4	672.2	562.4	543.2	1333.4	1115.6	1077.5
	430.5	97.7	97.7	93.4	357.3	174.7	4	676.7	565.4	548.8	1342.3	1121.6	1088.5
	427.4	97.7	97.7	89.8	357.3	174.7	4	681.2	568.4	554.3	1351.1	1127.5	1099.5
	429.3	96.9	96.9	89.8	353.2	174.7	4	685.7	571.4	559.8	1360.0	1133.3	1110.4
	433.1	95.7	95.7	92.6	354.2	173.1	4	690.2	574.3	565.3	1368.9	1139.2	1121.3
	430.5	96.9	96.9	92.6	354.2	173.1	4	694.6	577.3	570.8	1377.8	1145.1	1132.2
	427.7	96.9	96.9	92.6	350.0	173.1	4	699.1	580.3	576.3	1386.7	1151.0	1143.0
	435.1	98.1	98.1	92.6	350.0	173.1	4	703.6	583.3	581.7	1395.7	1157.0	1153.8
	435.1	96.9	96.9	92.6	350.0	173.1	4	708.2	586.3	587.2	1404.7	1162.9	1164.6
	434.9	98.1	98.1	92.6	350.0	173.1	4	712.7	589.3	592.6	1413.6	1168.9	1175.4
	435.1	98.1	98.1	92.6	345.9	173.4	4	717.2	592.3	598.0	1422.6	1174.8	1186.2
	432.6	98.1	98.1	92.6	345.9	171.8	4	721.7	595.3	603.4	1431.6	1180.8	1196.9
	428.9	98.1	98.1	95.2	345.9	171.8	4	726.2	598.3	608.8	1440.4	1186.8	1207.6
	427.4	98.1	98.1	95.2	341.8	171.8	4	730.7	601.4	614.2	1449.3	1192.8	1218.2
	431.0	97.3	97.3	91.7	341.8	171.8	4	735.1	604.4	619.5	1458.2	1198.7	1228.8
	434.8	99.2	99.2	91.7	342.8	171.8	4	739.7	607.4	624.9	1467.1	1204.7	1239.4

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601 } \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \hline \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{gathered} \hline \text { G600 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	428.6	100.0	100.0	94.2	307.9	165.1	5	966.9	760.8	884.9	1917.9	1509.1	1755.1
	420.5	99.0	99.0	94.2	308.6	165.1	5	971.3	763.9	889.8	1926.6	1515.1	1764.9
	421.1	100.0	100.0	94.2	304.7	165.3	5	975.7	766.9	894.7	1935.3	1521.2	1774.6
	418.7	99.0	99.0	94.2	304.7	165.3	5	980.1	770.0	899.6	1944.0	1527.2	1784.3
	422.9	98.2	98.2	94.2	305.4	164.0	5	984.5	773.0	904.5	1952.7	1533.2	1794.0
	418.9	98.2	98.2	96.5	305.4	164.0	5	988.8	776.0	909.4	1961.4	1539.3	1803.7
	422.6	97.3	97.3	96.5	305.4	164.0	5	993.2	779.1	914.3	1970.1	1545.3	1813.4
	420.4	95.5	95.5	86.8	301.5	164.0	5	997.6	782.0	919.1	1978.8	1551.0	1823.0
	424.9	96.5	96.5	90.1	302.1	164.2	5	1002.0	784.9	924.0	1987.6	1556.9	1832.7
	426.2	97.3	97.3	92.5	302.1	164.2	5	1006.5	787.9	928.8	1996.4	1562.8	1842.3
	422.8	103.1	103.1	92.5	302.1	164.2	5	1010.9	791.0	933.7	2005.1	1569.0	1851.9
	422.3	96.3	96.3	58.9	302.1	162.6	5	1015.3	793.6	938.5	2013.8	1574.2	1861.5
	425.3	100.2	100.2	92.5	298.3	162.9	5	1019.7	796.7	943.3	2022.6	1580.2	1871.1
	426.1	107.4	107.4	104.9	298.9	162.9	5	1024.2	800.0	948.1	2031.4	1586.8	1880.6
	427.8	104.6	104.6	102.8	298.9	162.9	5	1028.6	803.3	952.9	2040.2	1593.3	1890.2
	430.4	109.3	109.3	108.8	298.9	162.9	5	1033.1	806.7	957.7	2049.1	1600.0	1899.7
	427.8	110.2	110.2	112.8	298.9	162.9	5	1037.5	810.1	962.6	2058.0	1606.9	1909.2
	425.4	110.2	110.2	113.8	295.0	162.9	5	1042.0	813.6	967.3	2066.8	1613.8	1918.7
	425.6	112.1	112.1	116.8	295.0	163.1	5	1046.4	817.2	972.1	2075.6	1620.9	1928.2
	422.8	114.0	114.0	119.8	295.6	163.1	5	1050.8	820.8	976.9	2084.3	1628.1	1937.6
	425.2	113.0	113.0	117.9	295.6	163.1	5	1055.2	824.4	981.7	2093.1	1635.2	1947.1
	425.0	113.9	113.9	120.9	295.6	163.1	5	1059.7	828.0	986.4	2101.9	1642.4	1956.6
	424.9	113.9	113.9	120.9	291.8	163.1	5	1064.1	831.7	991.2	2110.6	1649.6	1966.0
	425.0	114.9	114.9	118.9	291.8	163.1	5	1068.5	835.3	995.9	2119.4	1656.8	1975.4
	425.1	113.9	113.9	122.0	291.8	163.1	5	1073.0	838.9	1000.7	2128.2	1664.0	1984.8
	422.5	113.9	113.9	122.0	291.8	163.4	5	1077.4	842.6	1005.4	2136.9	1671.2	1994.2
	403.6	113.9	113.9	122.0	291.8	163.4	5	1081.6	846.2	1010.1	2145.3	1678.5	2003.6
	403.5	113.9	113.9	118.9	292.4	163.4	5	1085.8	849.8	1014.9	2153.6	1685.6	2013.0
	403.8	113.9	113.9	118.9	292.4	163.4	5	1090.0	853.4	1019.6	2162.0	1692.8	2022.4
	406.4	112.0	112.0	118.9	292.4	163.4	5	1094.2	857.0	1024.4	2170.3	1699.9	2031.9
	401.6	112.0	112.0	118.9	292.4	163.4	5	1098.4	860.6	1029.1	2178.6	1707.0	2041.3
	406.4	112.0	112.0	118.9	288.6	163.4	5	1102.6	864.2	1033.8	2187.0	1714.0	2050.6
	401.8	113.0	113.0	118.9	288.6	165.0	5	1106.8	867.7	1038.6	2195.3	1721.2	2060.0
	404.4	113.0	113.0	118.9	288.6	165.2	5	1111.0	871.3	1043.3	2203.7	1728.3	2069.4
	402.0	112.0	112.0	118.9	288.6	165.0	5	1115.2	874.9	1048.0	2212.0	1735.4	2078.7
	406.7	112.0	112.0	118.9	288.6	165.2	5	1119.4	878.5	1052.7	2220.4	1742.5	2088.1
	402.3	113.0	113.0	116.9	288.6	165.2	5	1123.6	882.1	1057.5	2228.7	1749.6	2097.5
	404.7	112.0	112.0	116.9	288.6	165.2	5	1127.8	885.6	1062.2	2237.1	1756.6	2106.9
	404.3	113.0	113.0	116.9	289.1	165.2	5	1132.1	889.2	1066.9	2245.4	1763.7	2116.2
	407.0	113.0	113.0	116.9	289.1	165.2	5	1136.3	892.7	1071.7	2253.8	1770.8	2125.6
	407.0	112.0	112.0	116.9	289.1	165.2	5	1140.5	896.3	1076.4	2262.3	1777.8	2135.0
	404.6	112.0	112.0	116.9	289.1	165.2	5	1144.8	899.8	1081.1	2270.6	1784.8	2144.4
	407.0	113.0	113.0	116.9	289.1	165.2	5	1149.0	903.4	1085.9	2279.0	1791.9	2153.8
	406.7	113.0	113.0	116.9	289.1	166.8	5	1153.2	907.0	1090.6	2287.4	1799.0	2163.2
	406.9	112.0	112.0	116.9	289.1	166.8	5	1157.5	910.5	1095.4	2295.8	1806.1	2172.6
	406.7	113.0	113.0	116.9	289.1	166.8	5	1161.7	914.1	1100.1	2304.2	1813.1	2182.0
	402.0	113.0	113.0	116.9	289.1	166.8	5	1165.9	917.7	1104.8	2312.5	1820.2	2191.5
	404.6	112.0	112.0	113.8	289.1	166.8	5	1170.1	921.2	1109.6	2320.9	1827.2	2200.9
	403.7	113.0	113.0	116.9	289.1	166.8	5	1174.3	924.8	1114.3	2329.2	1834.3	2210.3
	400.6	112.0	112.0	113.8	285.4	166.8	5	1178.5	928.3	1119.1	2337.5	1841.3	2219.7

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601 } \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \hline \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	G601-3 cfs	$\begin{aligned} & \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{gathered} \hline \text { G600 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	395.9	109.1	109.1	105.2	283.1	169.0	6	1391.8	1106.2	1359.7	2760.7	2194.1	2697.0
	393.6	109.3	109.3	108.4	283.1	169.0	6	1395.9	1109.6	1364.4	2768.8	2200.8	2706.4
	289.9	109.1	109.1	101.9	283.1	169.0	6	1398.9	1112.9	1369.2	2774.8	2207.5	2715.7
	402.8	106.4	106.4	101.9	283.1	169.0	6	1403.1	1116.2	1373.9	2783.1	2214.0	2725.1
	396.3	109.6	109.6	105.2	286.9	169.0	6	1407.3	1119.6	1378.6	2791.3	2220.7	2734.5
	397.5	115.4	115.4	112.2	306.6	170.0	6	1411.4	1123.1	1383.6	2799.5	2227.7	2744.3
	398.3	116.3	116.3	118.5	311.8	173.7	6	1415.5	1126.8	1388.6	2807.7	2235.0	2754.4
	394.7	113.4	113.4	111.8	311.8	175.0	6	1419.7	1130.3	1393.7	2815.9	2242.0	2764.4
	395.3	115.4	115.4	111.8	307.9	175.0	6	1423.8	1133.9	1398.7	2824.1	2249.1	2774.4
	400.4	115.4	115.4	111.8	308.6	176.7	6	1427.9	1137.5	1403.8	2832.3	2256.1	2784.4
	397.1	113.4	113.4	108.3	308.6	176.7	6	1432.1	1140.9	1408.9	2840.5	2263.1	2794.5
	401.7	113.4	113.4	111.8	308.6	176.9	6	1436.3	1144.5	1413.9	2848.8	2270.1	2804.5
	400.9	113.4	113.4	108.3	308.6	176.9	6	1440.4	1148.0	1419.0	2857.1	2277.0	2814.5
	396.2	113.4	113.4	108.3	308.6	176.9	6	1444.6	1151.5	1424.0	2865.3	2283.9	2824.6
	398.3	113.4	113.4	108.3	308.6	176.9	6	1448.7	1154.9	1429.1	2873.5	2290.8	2834.6
	398.3	113.4	113.4	108.3	308.6	176.9	6	1452.9	1158.4	1434.1	2881.8	2297.8	2844.6
	400.7	114.5	114.5	108.3	309.2	176.9	6	1457.0	1161.9	1439.2	2890.0	2304.7	2854.7
	398.3	114.5	114.5	108.3	309.2	176.9	6	1461.2	1165.5	1444.3	2898.3	2311.7	2864.7
	400.7	112.5	112.5	108.3	309.2	176.9	6	1465.4	1168.9	1449.3	2906.5	2318.6	2874.7
	395.8	112.5	112.5	108.3	309.2	176.9	6	1469.5	1172.4	1454.4	2914.7	2325.5	2884.8
	398.2	112.5	112.5	108.3	309.2	176.9	6	1473.6	1175.9	1459.5	2922.9	2332.4	2894.8
	393.6	112.5	112.5	108.3	309.2	176.9	6	1477.7	1179.3	1464.5	2931.1	2339.2	2904.9
	399.3	112.5	112.5	108.3	305.4	176.9	6	1481.9	1182.8	1469.5	2939.3	2346.1	2914.8
	400.2	112.5	112.5	108.3	305.4	176.9	6	1486.1	1186.3	1474.6	2947.6	2353.0	2924.8
	401.4	112.5	112.5	108.3	305.4	177.2	6	1490.2	1189.8	1479.6	2955.9	2359.9	2934.8
	399.3	112.5	112.5	108.3	305.4	177.2	6	1494.4	1193.2	1484.6	2964.1	2366.8	2944.8
	401.2	112.5	112.5	108.3	305.4	177.2	6	1498.6	1196.7	1489.7	2972.4	2373.7	2954.7
	400.7	112.5	112.5	108.3	305.4	177.2	6	1502.8	1200.2	1494.7	2980.7	2380.6	2964.7
	402.8	112.5	112.5	108.3	305.4	177.2	6	1506.9	1203.6	1499.7	2989.0	2387.4	2974.7
	400.1	112.5	112.5	108.3	306.0	177.2	6	1511.1	1207.1	1504.7	2997.3	2394.3	2984.6
	399.5	112.5	112.5	108.3	306.0	177.2	6	1515.3	1210.6	1509.8	3005.6	2401.2	2994.6
	398.0	112.5	112.5	108.3	306.0	177.2	6	1519.4	1214.1	1514.8	3013.8	2408.1	3004.6
	398.1	112.5	112.5	108.3	306.0	177.2	6	1523.6	1217.5	1519.8	3022.0	2415.0	3014.6
	398.3	112.5	112.5	108.3	306.0	177.2	6	1527.7	1221.0	1524.9	3030.2	2421.9	3024.6
	396.1	112.5	112.5	108.3	306.0	177.2	6	1531.8	1224.5	1529.9	3038.4	2428.8	3034.6
	396.2	112.5	112.5	108.3	306.0	177.2	6	1536.0	1228.0	1534.9	3046.6	2435.6	3044.5
	401.6	112.5	112.5	108.3	302.1	177.2	6	1540.2	1231.4	1539.9	3054.9	2442.5	3054.5
	399.6	112.5	112.5	108.3	302.1	177.2	6	1544.3	1234.9	1544.9	3063.2	2449.4	3064.4
	397.2	112.5	112.5	108.3	302.1	177.4	6	1548.5	1238.4	1549.9	3071.4	2456.3	3074.3
	402.2	112.5	112.5	104.8	302.1	177.4	6	1552.6	1241.8	1554.9	3079.7	2463.1	3084.2
	402.7	112.5	112.5	108.3	302.1	177.4	6	1556.8	1245.3	1559.9	3088.0	2470.0	3094.1
	394.0	112.5	112.5	104.8	302.1	177.4	6	1560.9	1248.7	1564.9	3096.1	2476.8	3104.0
	394.7	113.6	113.6	108.3	302.1	177.4	6	1565.1	1252.2	1569.9	3104.3	2483.7	3113.9
	395.2	112.5	112.5	104.8	302.7	177.4	6	1569.2	1255.6	1574.9	3112.5	2490.6	3123.8
	390.5	112.5	112.5	104.8	302.7	177.4	6	1573.2	1259.1	1579.9	3120.5	2497.4	3133.7
	395.7	112.5	112.5	104.8	302.7	177.4	6	1577.4	1262.5	1584.9	3128.7	2504.2	3143.7
	398.6	112.5	112.5	104.8	302.7	177.4	6	1581.5	1265.9	1589.9	3136.9	2511.0	3153.6
	396.7	112.5	112.5	108.3	302.7	177.4	6	1585.6	1269.4	1594.9	3145.1	2517.9	3163.5
	395.3	112.5	112.5	108.3	302.7	177.4	6	1589.8	1272.9	1599.9	3153.3	2524.8	3173.4
	394.0	112.5	112.5	108.3	302.7	177.4	6	1593.9	1276.4	1604.9	3161.4	2531.7	3183.3

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \mathrm{cfs} \end{aligned}$	$\mathrm{G} 393+\mathrm{G} 354$ Cfs	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 $\mathrm{ac}-\mathrm{ft}$	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	394.9	108.7	108.7	104.8	290.2	176.9	7	1810.8	1454.7	1856.3	3591.6	2885.5	3682.0
	387.7	103.1	103.1	93.0	290.2	176.9	7	1814.8	1457.9	1861.2	3599.7	2891.7	3691.7
	391.0	102.3	102.3	92.2	289.7	176.9	7	1818.9	1460.9	1866.0	3607.7	2897.8	3701.3
	390.2	102.3	102.3	91.4	289.7	176.9	7	1822.9	1464.0	1870.9	3615.8	2903.9	3710.9
	385.9	99.5	99.5	86.9	289.7	176.9	7	1827.0	1467.0	1875.8	3623.8	2909.8	3720.6
	395.1	99.5	99.5	86.9	289.7	176.9	7	1831.1	1470.0	1880.6	3631.9	2915.7	3730.2
	393.5	97.6	97.6	86.1	289.7	176.9	7	1835.2	1472.9	1885.5	3640.1	2921.5	3739.9
	392.9	98.7	98.7	82.3	289.7	176.9	7	1839.3	1475.8	1890.4	3648.2	2927.3	3749.5
	395.2	96.8	96.8	81.6	289.7	176.9	7	1843.4	1478.7	1895.2	3656.3	2933.0	3759.2
	394.4	97.9	97.9	81.6	289.7	175.3	7	1847.5	1481.6	1900.1	3664.5	2938.7	3768.8
	389.6	97.9	97.9	77.7	289.7	175.3	7	1851.5	1484.4	1904.9	3672.5	2944.4	3778.4
	389.5	96.0	96.0	80.8	289.7	175.3	7	1855.6	1487.3	1909.7	3680.6	2950.0	3788.0
	395.3	96.0	96.0	80.8	289.7	175.3	7	1859.7	1490.1	1914.6	3688.8	2955.6	3797.6
	395.9	97.1	97.1	77.0	285.9	173.7	7	1863.8	1492.9	1919.4	3696.9	2961.3	3807.1
	391.5	95.2	95.2	80.1	285.9	173.7	7	1867.9	1495.8	1924.2	3705.0	2966.8	3816.6
	393.6	95.2	95.2	80.1	286.4	173.7	7	1872.0	1498.6	1929.0	3713.2	2972.4	3826.1
	395.5	95.2	95.2	80.1	286.4	173.7	7	1876.1	1501.4	1933.7	3721.3	2978.0	3835.6
	389.5	96.3	96.3	76.3	286.4	172.1	7	1880.2	1504.2	1938.5	3729.4	2983.6	3845.1
	389.6	96.3	96.3	79.4	286.4	172.1	7	1884.3	1507.0	1943.3	3737.4	2989.2	3854.5
	391.5	96.3	96.3	79.4	286.4	172.1	7	1888.3	1509.9	1948.1	3745.5	2994.8	3864.0
	391.2	94.4	94.4	79.4	282.6	172.1	7	1892.4	1512.7	1952.8	3753.6	3000.3	3873.4
	391.3	95.5	95.5	79.4	282.6	170.4	7	1896.5	1515.5	1957.5	3761.7	3005.9	3882.8
	395.5	94.4	94.4	82.3	282.6	170.4	7	1900.6	1518.3	1962.2	3769.9	3011.5	3892.1
	389.2	95.5	95.5	78.6	282.6	170.6	7	1904.7	1521.1	1967.0	3777.9	3017.1	3901.5
	393.6	95.5	95.5	78.6	282.6	169.0	7	1908.8	1523.9	1971.7	3786.0	3022.7	3910.8
	399.3	95.5	95.5	78.6	283.1	169.0	7	1912.9	1526.7	1976.4	3794.3	3028.2	3920.2
	391.7	95.5	95.5	81.5	283.1	169.0	7	1917.0	1529.6	1981.1	3802.4	3033.9	3929.5
	395.3	95.5	95.5	81.5	279.4	169.0	7	1921.1	1532.4	1985.8	3810.5	3039.5	3938.8
	393.2	94.7	94.7	81.5	279.4	167.4	7	1925.2	1535.2	1990.4	3818.7	3045.1	3948.0
	402.9	94.7	94.7	81.5	279.4	167.4	7	1929.4	1538.0	1995.1	3827.0	3050.7	3957.2
	399.1	94.7	94.7	84.3	279.9	167.6	7	1933.6	1540.9	1999.7	3835.2	3056.4	3966.5
	398.8	94.7	94.7	84.3	279.9	167.6	7	1937.7	1543.7	2004.4	3843.5	3062.0	3975.7
	387.2	94.7	94.7	80.8	276.1	166.0	7	1941.8	1546.6	2009.0	3851.5	3067.6	3984.9
	395.3	94.7	94.7	80.8	276.1	166.0	7	1945.9	1549.4	2013.6	3859.6	3073.2	3994.0
	389.2	94.7	94.7	80.8	276.1	166.0	7	1949.9	1552.2	2018.2	3867.7	3078.7	4003.1
	389.5	94.7	94.7	83.5	276.1	164.6	7	1954.0	1555.0	2022.8	3875.7	3084.4	4012.2
	389.5	94.7	94.7	83.5	276.6	164.6	7	1958.0	1557.9	2027.4	3883.8	3090.0	4021.4
	397.1	95.7	95.7	83.5	276.6	164.6	7	1962.2	1560.7	2032.0	3892.0	3095.7	4030.5
	391.5	93.9	93.9	83.5	272.8	164.6	7	1966.3	1563.6	2036.6	3900.1	3101.3	4039.5
	401.4	93.9	93.9	83.5	272.8	163.0	7	1970.4	1566.4	2041.1	3908.4	3106.9	4048.5
	393.3	93.9	93.9	86.0	272.8	163.0	7	1974.5	1569.2	2045.6	3916.5	3112.6	4057.5
	397.1	93.9	93.9	86.0	273.3	163.2	7	1978.7	1572.1	2050.2	3924.7	3118.2	4066.5
	397.7	93.9	93.9	86.0	273.3	163.2	7	1982.8	1574.9	2054.7	3932.9	3123.9	4075.6
	395.0	93.9	93.9	82.7	269.6	163.2	7	1986.9	1577.8	2059.2	3941.1	3129.5	4084.5
	404.6	93.9	93.9	82.7	269.6	161.6	7	1991.1	1580.6	2063.7	3949.4	3135.1	4093.4
	396.6	93.9	93.9	82.7	269.6	161.6	7	1995.3	1583.4	2068.2	3957.6	3140.6	4102.3
8	398.8	93.9	93.9	85.3	269.6	161.6	8	1999.4	1586.2	2072.7	3965.9	3146.3	4111.2
	397.1	94.9	94.9	85.3	269.6	161.6	8	2003.6	1589.1	2077.2	3974.1	3152.0	4120.1
	400.5	93.9	93.9	85.3	270.0	160.2	8	2007.7	1591.9	2081.7	3982.4	3157.6	4129.0
	396.6	94.9	94.9	85.3	266.3	160.2	8	2011.9	1594.8	2086.1	3990.5	3163.3	4137.8

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 354 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \text { cfs } \end{aligned}$	G393+G354 Cfs	G600 $\mathrm{ac}-\mathrm{ft}$	G601-3 ac-ft	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	395.0	93.9	93.9	85.3	266.3	160.2	8	2016.0	1597.6	2090.6	3998.7	3168.9	4146.6
	398.6	94.9	94.9	85.3	266.3	160.2	8	2020.1	1600.5	2095.0	4006.9	3174.6	4155.5
	399.1	94.9	94.9	85.3	266.3	158.6	8	2024.3	1603.4	2099.4	4015.2	3180.3	4164.2
	392.7	93.1	93.1	87.7	266.3	158.6	8	2028.4	1606.2	2103.9	4023.3	3186.0	4173.0
	394.7	93.1	93.1	87.7	263.0	158.6	8	2032.5	1609.1	2108.3	4031.5	3191.6	4181.7
	398.3	93.1	93.1	87.7	263.0	158.8	8	2036.6	1611.9	2112.7	4039.7	3197.3	4190.4
	402.4	93.1	93.1	87.7	263.0	158.8	8	2040.8	1614.8	2117.0	4048.0	3202.9	4199.2
	392.7	93.1	93.1	87.7	263.0	157.2	8	2044.9	1617.6	2121.4	4056.1	3208.6	4207.8
	392.2	93.1	93.1	87.7	263.0	157.2	8	2049.0	1620.5	2125.8	4064.2	3214.2	4216.5
	395.0	93.1	93.1	87.7	263.3	157.4	8	2053.1	1623.3	2130.2	4072.4	3219.9	4225.2
	400.0	93.1	93.1	90.0	259.7	157.4	8	2057.3	1626.2	2134.5	4080.6	3225.6	4233.8
	388.6	93.1	93.1	90.0	259.7	157.4	8	2061.3	1629.1	2138.9	4088.7	3231.3	4242.5
	400.7	93.1	93.1	90.0	259.7	155.8	8	2065.5	1632.0	2143.2	4097.0	3237.0	4251.0
	419.2	93.1	93.1	90.0	260.0	155.8	8	2069.9	1634.8	2147.5	4105.6	3242.7	4259.6
	420.6	94.1	94.1	86.0	260.0	156.0	8	2074.3	1637.7	2151.9	4114.3	3248.4	4268.2
	418.1	94.9	94.9	86.9	260.0	156.0	8	2078.6	1640.6	2156.2	4122.9	3254.1	4276.8
	417.8	94.9	94.9	90.0	256.4	156.0	8	2083.0	1643.5	2160.5	4131.6	3259.9	4285.3
	415.6	94.9	94.9	90.0	256.6	156.0	8	2087.3	1646.4	2164.8	4140.2	3265.7	4293.9
	411.3	96.7	96.7	93.0	256.6	154.6	8	2091.6	1649.4	2169.1	4148.7	3271.6	4302.4
	419.1	96.7	96.7	93.0	256.6	154.6	8	2096.0	1652.4	2173.4	4157.3	3277.5	4310.9
	415.0	101.2	101.2	93.0	256.6	154.6	8	2100.3	1655.5	2177.6	4165.9	3283.6	4319.4
	401.7	102.1	102.1	93.0	256.9	154.6	8	2104.5	1658.6	2181.9	4174.2	3289.8	4327.9
	411.3	103.8	103.8	105.0	253.3	154.7	8	2108.7	1661.8	2186.2	4182.7	3296.2	4336.3
	406.1	106.5	106.5	111.8	253.3	153.2	8	2113.0	1665.2	2190.4	4191.1	3302.9	4344.7
	406.2	108.4	108.4	112.8	253.5	153.2	8	2117.2	1668.6	2194.6	4199.5	3309.7	4353.1
	406.0	111.2	111.2	118.6	253.5	153.3	8	2121.4	1672.2	2198.9	4207.9	3316.8	4361.5
	399.0	111.1	111.1	119.6	253.7	153.3	8	2125.6	1675.7	2203.1	4216.1	3323.8	4369.9
	404.6	113.0	113.0	120.7	253.7	153.4	8	2129.8	1679.4	2207.4	4224.5	3331.0	4378.3
	408.4	113.0	113.0	123.6	250.0	153.4	8	2134.1	1683.0	2211.6	4232.9	3338.2	4386.6
	398.0	114.9	114.9	124.7	250.1	153.4	8	2138.2	1686.7	2215.8	4241.1	3345.5	4395.0
	403.6	113.9	113.9	124.7	250.1	153.5	8	2142.4	1690.4	2220.0	4249.5	3352.8	4403.3
	401.2	114.8	114.8	127.6	250.1	153.5	8	2146.6	1694.1	2224.2	4257.8	3360.2	4411.7
	399.4	114.8	114.8	127.6	250.1	153.5	8	2150.7	1697.8	2228.4	4266.0	3367.6	4420.0
	400.6	109.1	109.1	128.7	250.1	153.6	8	2154.9	1701.4	2232.6	4274.3	3374.8	4428.3
	403.8	108.3	108.3	118.8	250.1	153.6	8	2159.1	1704.9	2236.8	4282.6	3381.7	4436.7
	404.9	104.4	104.4	117.8	250.1	153.6	8	2163.3	1708.3	2241.0	4291.0	3388.4	4445.0
	408.5	103.6	103.6	111.8	250.1	153.6	8	2167.6	1711.6	2245.2	4299.4	3395.0	4453.4
	404.6	101.7	101.7	110.8	250.1	153.6	8	2171.8	1714.9	2249.4	4307.8	3401.5	4461.7
	407.1	100.9	100.9	107.9	250.1	153.7	8	2176.1	1718.1	2253.6	4316.2	3407.9	4470.1
	407.9	99.0	99.0	104.9	246.5	153.7	8	2180.3	1721.3	2257.8	4324.6	3414.2	4478.3
	407.7	100.0	100.0	103.9	246.5	153.7	8	2184.6	1724.5	2262.0	4333.1	3420.5	4486.6
	409.9	99.2	99.2	100.9	246.5	153.7	8	2188.8	1727.6	2266.1	4341.5	3426.6	4494.9
	412.2	99.2	99.2	100.9	246.5	155.2	8	2193.1	1730.7	2270.3	4350.0	3432.8	4503.2
	410.6	97.3	97.3	97.9	246.5	153.7	8	2197.4	1733.7	2274.5	4358.5	3438.9	4511.4
	412.1	97.3	97.3	100.0	246.5	153.7	8	2201.7	1736.8	2278.7	4367.0	3445.0	4519.7
	400.6	93.9	93.9	97.0	246.5	153.7	8	2205.9	1739.8	2282.8	4375.3	3450.8	4528.0
	395.7	96.5	96.5	97.0	246.5	153.7	8	2210.0	1742.8	2287.0	4383.5	3456.8	4536.2
	401.0	93.9	93.9	96.1	246.5	153.7	8	2214.2	1745.8	2291.2	4391.8	3462.7	4544.5
	400.8	95.7	95.7	93.0	246.5	153.7	8	2218.3	1748.7	2295.3	4400.1	3468.6	4552.8
	402.2	93.9	93.9	93.0	246.5	153.8	8	2222.5	1751.6	2299.5	4408.4	3474.4	4561.1

Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \mathrm{G} 601 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 602 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \mathrm{G} 603 \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \mathrm{G} 600 \\ \mathrm{cfs} \end{gathered}$	$\begin{aligned} & \text { G601-3 } \\ & \text { cfs } \end{aligned}$	G393+G354 Cfs	$\begin{aligned} & \text { G600 } \\ & \text { ac-ft } \end{aligned}$	$\begin{gathered} \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \mathrm{G} 393+\mathrm{G} 354 \\ \mathrm{ac}-\mathrm{ft} \end{gathered}$
	401.9	94.9	94.9	93.0	246.5	153.7	8	2226.7	1754.6	2303.7	4416.7	3480.2	4569.3
	403.7	94.9	94.9	92.2	246.5	153.8	8	2230.9	1757.5	2307.8	4425.0	3486.0	4577.6
	401.1	94.9	94.9	92.2	246.5	153.8	8	2235.1	1760.5	2312.0	4433.3	3491.9	4585.9
	402.4	93.1	93.1	92.2	246.5	153.8	8	2239.3	1763.4	2316.2	4441.6	3497.6	4594.1
	401.8	93.1	93.1	92.2	246.5	153.8	8	2243.5	1766.3	2320.3	4449.9	3503.4	4602.4
	402.1	93.1	93.1	92.2	246.5	152.2	8	2247.7	1769.2	2324.5	4458.2	3509.1	4610.6
	402.3	93.1	93.1	92.2	243.0	152.2	8	2251.9	1772.1	2328.6	4466.5	3514.9	4618.8
	404.8	94.1	94.1	92.2	243.0	152.2	8	2256.1	1775.0	2332.7	4474.9	3520.7	4627.0
	402.7	93.1	93.1	91.3	243.0	152.2	8	2260.3	1777.9	2336.8	4483.2	3526.4	4635.1
	405.0	94.1	94.1	91.3	243.0	152.2	8	2264.5	1780.8	2341.0	4491.6	3532.2	4643.3
	403.2	94.1	94.1	91.3	243.0	152.2	8	2268.7	1783.7	2345.1	4499.9	3538.0	4651.5
	405.3	94.1	94.1	91.3	243.0	150.6	8	2272.9	1786.6	2349.2	4508.3	3543.7	4659.6
	403.3	94.1	94.1	91.3	243.0	150.6	8	2277.1	1789.5	2353.3	4516.6	3549.5	4667.7
	403.5	92.3	92.3	91.3	243.0	150.6	8	2281.3	1792.4	2357.4	4525.0	3555.2	4675.9
	403.2	92.3	92.3	91.3	243.0	150.6	8	2285.5	1795.3	2361.5	4533.3	3560.9	4684.0
	401.4	92.3	92.3	93.4	239.4	150.6	8	2289.7	1798.2	2365.5	4541.6	3566.6	4692.1
	403.7	92.3	92.3	93.4	239.4	150.6	8	2293.9	1801.1	2369.6	4549.9	3572.4	4700.1
	406.2	92.3	92.3	93.4	239.4	150.6	8	2298.1	1804.0	2373.7	4558.3	3578.1	4708.2
	401.9	92.3	92.3	93.4	239.4	149.1	8	2302.3	1806.8	2377.7	4566.6	3583.9	4716.2
	401.7	92.3	92.3	93.4	239.4	149.1	8	2306.5	1809.7	2381.8	4574.9	3589.6	4724.2
	404.3	92.3	92.3	93.4	239.4	149.1	8	2310.7	1812.6	2385.8	4583.3	3595.4	4732.3
	401.8	93.3	93.3	93.4	239.4	149.1	8	2314.9	1815.6	2389.9	4591.6	3601.2	4740.3
	404.2	92.3	92.3	93.4	239.4	149.1	8	2319.1	1818.5	2393.9	4599.9	3606.9	4748.3
	406.8	93.3	93.3	93.4	235.9	149.1	8	2323.3	1821.4	2397.9	4608.3	3612.7	4756.3
	406.0	93.3	93.3	95.5	235.9	147.6	8	2327.6	1824.3	2401.9	4616.7	3618.5	4764.2
	405.4	93.3	93.3	95.5	235.9	147.6	8	2331.8	1827.2	2405.9	4625.1	3624.3	4772.1
	400.0	93.3	93.3	92.6	235.9	147.6	8	2336.0	1830.2	2409.9	4633.4	3630.1	4780.0
	404.1	93.3	93.3	92.6	235.9	147.6	8	2340.2	1833.1	2413.9	4641.7	3635.9	4788.0
	403.5	93.3	93.3	92.6	235.9	147.6	8	2344.4	1836.0	2417.9	4650.1	3641.6	4795.9
	400.4	93.3	93.3	92.6	235.9	147.6	8	2348.5	1838.9	2421.9	4658.3	3647.4	4803.8
	402.2	93.3	93.3	92.6	232.3	146.1	8	2352.7	1841.8	2425.8	4666.6	3653.2	4811.6
	399.9	93.3	93.3	92.6	232.3	146.1	8	2356.9	1844.7	2429.8	4674.9	3658.9	4819.4
	399.9	93.3	93.3	92.6	232.3	146.1	8	2361.1	1847.6	2433.7	4683.2	3664.7	4827.3
	402.3	91.5	91.5	92.6	232.3	146.1	8	2365.3	1850.5	2437.6	4691.5	3670.4	4835.1
	402.2	93.3	93.3	92.6	232.3	146.1	8	2369.4	1853.4	2441.6	4699.8	3676.2	4842.9
	399.8	91.5	91.5	94.6	232.3	146.1	8	2373.6	1856.3	2445.5	4708.1	3681.9	4850.7
	399.7	91.5	91.5	94.6	232.3	146.1	8	2377.8	1859.2	2449.5	4716.3	3687.6	4858.5
	397.7	91.5	91.5	94.6	228.8	146.1	8	2381.9	1862.0	2453.4	4724.5	3693.4	4866.3
	399.8	91.5	91.5	94.6	228.8	144.5	8	2386.1	1864.9	2457.3	4732.8	3699.1	4874.0
	395.4	91.5	91.5	94.6	228.8	144.5	8	2390.2	1867.8	2461.2	4741.0	3704.8	4881.7
	397.4	91.5	91.5	94.6	228.8	144.5	8	2394.3	1870.7	2465.0	4749.2	3710.6	4889.4
	390.7	91.5	91.5	94.6	228.8	144.5	8	2398.4	1873.6	2468.9	4757.2	3716.3	4897.1
9	394.4	91.5	91.5	94.6	225.3	144.5	9	2402.5	1876.5	2472.8	4765.4	3722.0	4904.8
	395.6	91.5	91.5	94.6	225.3	143.0	9	2406.6	1879.4	2476.6	4773.6	3727.8	4912.4
	396.6	92.5	92.5	94.6	225.3	143.0	9	2410.8	1882.3	2480.5	4781.8	3733.6	4920.0
	397.8	91.5	91.5	94.6	225.3	143.0	9	2414.9	1885.2	2484.3	4790.0	3739.3	4927.6
	396.3	92.5	92.5	94.6	225.3	143.0	9	2419.0	1888.1	2488.1	4798.2	3745.1	4935.2
	399.6	92.5	92.5	94.6	225.3	143.0	9	2423.2	1891.0	2492.0	4806.4	3750.8	4942.8
	395.8	91.5	91.5	94.6	225.3	143.0	9	2427.3	1893.9	2495.8	4814.6	3756.6	4950.4
	396.2	91.5	91.5	96.5	225.3	143.0	9	2431.5	1896.8	2499.6	4822.8	3762.4	4958.0

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601 } \\ \mathrm{cfs} \end{gathered}$	$\begin{gathered} \hline \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	G601-3 cfs	$\begin{aligned} & \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{gathered} \hline \text { G600 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	396.3	91.5	91.5	96.5	221.8	141.5	9	2435.6	1899.7	2503.4	4831.0	3768.1	4965.5
	396.9	92.5	92.5	96.5	221.8	141.5	9	2439.7	1902.7	2507.2	4839.2	3773.9	4973.1
	396.8	92.5	92.5	96.5	221.8	141.5	9	2443.8	1905.6	2511.0	4847.4	3779.8	4980.6
	394.9	92.5	92.5	96.5	221.8	141.5	9	2448.0	1908.5	2514.8	4855.5	3785.6	4988.1
	397.6	91.5	91.5	96.5	221.8	141.5	9	2452.1	1911.4	2518.6	4863.7	3791.4	4995.6
	384.9	92.5	92.5	96.5	221.8	141.5	9	2456.1	1914.4	2522.3	4871.7	3797.2	5003.1
	369.3	91.5	91.5	96.5	221.8	141.5	9	2460.0	1917.3	2526.1	4879.3	3802.9	5010.6
	357.6	91.5	91.5	96.5	221.8	141.5	9	2463.7	1920.2	2529.9	4886.7	3808.7	5018.1
	341.9	92.5	92.5	96.5	218.4	140.0	9	2467.2	1923.1	2533.7	4893.8	3814.5	5025.5
	320.8	91.5	91.5	96.5	218.4	140.0	9	2470.6	1926.0	2537.4	4900.4	3820.3	5032.9
	302.4	91.5	91.5	96.5	218.4	140.0	9	2473.7	1929.0	2541.1	4906.7	3826.1	5040.3
	211.0	88.2	88.2	98.4	218.4	140.0	9	2475.9	1931.8	2544.9	4911.0	3831.8	5047.7
	212.3	70.5	70.5	92.8	218.4	140.0	9	2478.1	1934.3	2548.6	4915.4	3836.6	5055.1
	0.0	82.1	82.1	64.1	218.4	140.0	9	2478.1	1936.6	2552.3	4915.4	3841.3	5062.5
	379.1	74.7	74.7	55.4	218.4	140.0	9	2482.1	1938.8	2556.0	4923.2	3845.5	5069.9
	385.2	90.1	90.1	75.2	214.9	138.5	9	2486.1	1941.4	2559.7	4931.2	3850.8	5077.2
	379.1	90.7	90.7	91.0	214.9	138.5	9	2490.1	1944.3	2563.4	4939.0	3856.4	5084.5
	380.3	91.7	91.7	91.0	214.9	138.5	9	2494.0	1947.1	2567.1	4946.9	3862.1	5091.8
	365.5	95.9	95.9	100.2	214.9	138.5	9	2497.8	1950.2	2570.8	4954.4	3868.1	5099.1
	346.7	95.9	95.9	101.1	214.9	137.0	9	2501.4	1953.2	2574.4	4961.6	3874.2	5106.4
	327.2	97.7	97.7	103.8	214.9	137.0	9	2504.8	1956.3	2578.1	4968.4	3880.4	5113.7
	304.1	99.4	99.4	107.6	214.9	137.0	9	2508.0	1959.5	2581.8	4974.6	3886.7	5120.9
	285.0	100.4	100.4	110.3	211.5	137.0	9	2511.0	1962.8	2585.4	4980.5	3893.1	5128.1
	282.7	101.2	101.2	113.0	211.5	137.0	9	2513.9	1966.0	2589.0	4986.4	3899.7	5135.3
	284.7	102.1	102.1	114.0	211.5	137.0	9	2516.9	1969.4	2592.7	4992.3	3906.2	5142.5
	291.4	102.1	102.1	114.0	211.5	137.0	9	2519.9	1972.7	2596.3	4998.3	3912.8	5149.7
	322.8	98.4	98.4	108.6	211.5	135.5	9	2523.3	1975.9	2599.9	5004.9	3919.1	5156.9
	340.6	99.4	99.4	108.6	211.5	135.5	9	2526.8	1979.1	2603.5	5012.0	3925.5	5164.1
	382.0	98.4	98.4	108.6	211.5	135.5	9	2530.8	1982.2	2607.1	5019.9	3931.8	5171.2
	414.8	101.1	101.1	108.6	208.1	135.5	9	2535.1	1985.5	2610.7	5028.4	3938.2	5178.3
	406.8	102.9	102.9	111.3	208.1	135.5	9	2539.4	1988.8	2614.3	5036.9	3944.7	5185.4
	408.4	107.5	107.5	117.8	208.1	135.5	9	2543.6	1992.2	2617.9	5045.3	3951.6	5192.5
	409.9	106.5	106.5	121.7	208.1	135.5	9	2547.9	1995.7	2621.4	5053.8	3958.5	5199.6
	406.9	109.3	109.3	124.4	208.1	135.5	9	2552.1	1999.3	2625.0	5062.2	3965.6	5206.7
	406.4	110.2	110.2	125.5	208.1	135.5	9	2556.4	2002.9	2628.6	5070.6	3972.8	5213.8
	408.9	111.2	111.2	128.3	208.1	135.5	9	2560.6	2006.6	2632.2	5079.0	3980.0	5220.9
	406.3	112.1	112.1	129.4	208.1	137.0	9	2564.9	2010.2	2635.8	5087.4	3987.3	5228.1
	408.4	111.1	111.1	129.4	208.1	137.0	9	2569.1	2013.9	2639.4	5095.8	3994.6	5235.2
	408.1	113.0	113.0	127.8	208.1	137.0	9	2573.4	2017.6	2643.0	5104.3	4001.9	5242.3
	405.5	112.0	112.0	130.6	208.1	137.0	9	2577.6	2021.3	2646.6	5112.7	4009.2	5249.5
	407.6	112.0	112.0	133.4	208.1	137.0	9	2581.8	2025.0	2650.2	5121.1	4016.6	5256.6
	407.5	113.9	113.9	133.4	208.1	137.0	9	2586.1	2028.8	2653.8	5129.5	4024.1	5263.7
	405.3	113.9	113.9	131.7	208.1	137.0	9	2590.3	2032.5	2657.3	5137.9	4031.5	5270.8
	397.8	113.9	113.9	131.7	208.1	137.0	9	2594.4	2036.3	2660.9	5146.1	4038.9	5278.0
	395.1	112.0	112.0	128.9	208.1	138.5	9	2598.6	2039.9	2664.6	5154.3	4046.2	5285.1
	395.5	112.0	112.0	131.7	208.1	138.5	9	2602.7	2043.6	2668.2	5162.4	4053.6	5292.3
	397.9	113.9	113.9	131.7	208.1	138.5	9	2606.8	2047.4	2671.8	5170.6	4061.0	5299.5
	392.9	112.0	112.0	131.7	208.1	138.5	9	2610.9	2051.1	2675.4	5178.8	4068.3	5306.6
	397.2	113.9	113.9	131.7	208.1	140.0	9	2615.1	2054.8	2679.0	5187.0	4075.8	5313.8
	397.2	112.9	112.9	131.7	208.1	140.0	9	2619.2	2058.6	2682.6	5195.2	4083.2	5321.0

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	G601-3 cfs	$\begin{aligned} & \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{aligned} & \hline \text { G600 } \\ & \text { ac-ft } \end{aligned}$	$\begin{gathered} \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	G393+G354 $\mathrm{ac}-\mathrm{ft}$
	397.0	112.9	112.9	130.0	208.1	140.0	9	2623.3	2062.3	2686.3	5203.4	4090.5	5328.2
	394.2	113.9	113.9	130.0	208.1	140.0	9	2627.4	2066.0	2689.9	5211.5	4097.9	5335.4
	396.8	112.9	112.9	130.0	208.1	140.0	9	2631.6	2069.7	2693.5	5219.7	4105.3	5342.6
	396.8	112.9	112.9	130.0	208.1	141.5	9	2635.7	2073.4	2697.2	5227.9	4112.6	5349.8
	393.9	112.9	112.9	130.0	208.1	141.5	9	2639.8	2077.1	2700.8	5236.1	4120.0	5357.0
	394.2	112.9	112.9	130.0	211.5	141.5	9	2643.9	2080.8	2704.5	5244.2	4127.3	5364.3
	396.1	112.9	112.9	128.3	211.5	141.5	9	2648.0	2084.5	2708.1	5252.4	4134.6	5371.6
	393.6	112.9	112.9	131.2	211.5	143.0	9	2652.1	2088.2	2711.8	5260.5	4142.0	5378.9
	391.4	112.9	112.9	128.3	211.5	143.0	9	2656.2	2091.9	2715.5	5268.6	4149.3	5386.3
	396.0	112.9	112.9	128.3	211.5	143.0	9	2660.3	2095.6	2719.2	5276.8	4156.6	5393.6
	393.4	112.9	112.9	128.3	211.5	143.0	9	2664.4	2099.3	2722.9	5284.9	4163.9	5400.9
	396.0	112.9	112.9	128.3	211.5	143.0	9	2668.6	2103.0	2726.6	5293.1	4171.3	5408.2
	395.8	112.9	112.9	131.2	211.5	144.5	9	2672.7	2106.7	2730.3	5301.3	4178.6	5415.6
	393.2	112.9	112.9	126.5	211.5	144.5	9	2676.8	2110.4	2734.0	5309.4	4185.9	5422.9
	395.8	112.9	112.9	126.5	211.5	144.5	9	2680.9	2114.0	2737.7	5317.6	4193.2	5430.3
	395.7	112.9	112.9	126.5	211.5	144.5	9	2685.0	2117.7	2741.4	5325.8	4200.5	5437.7
	395.6	111.8	111.8	129.4	214.9	144.5	9	2689.1	2121.4	2745.2	5333.9	4207.8	5445.1
	395.4	111.8	111.8	129.4	214.9	146.1	9	2693.3	2125.1	2749.0	5342.1	4215.1	5452.5
	395.0	111.8	111.8	129.4	214.9	146.1	9	2697.4	2128.7	2752.7	5350.3	4222.3	5460.0
	390.4	111.8	111.8	129.4	214.9	146.1	9	2701.4	2132.4	2756.5	5358.3	4229.6	5467.5
	392.8	111.8	111.8	129.4	214.9	146.1	9	2705.5	2136.1	2760.2	5366.4	4236.9	5474.9
	390.2	111.8	111.8	127.6	214.9	146.1	9	2709.6	2139.8	2764.0	5374.5	4244.2	5482.4
	392.5	111.8	111.8	127.6	214.9	146.1	9	2713.7	2143.4	2767.8	5382.6	4251.5	5489.8
	392.4	111.8	111.8	127.6	214.9	147.6	9	2717.8	2147.1	2771.5	5390.7	4258.7	5497.3
	392.1	111.8	111.8	127.6	214.9	147.6	9	2721.9	2150.7	2775.3	5398.8	4266.0	5504.8
	390.1	111.8	111.8	127.6	214.9	147.6	9	2725.9	2154.4	2779.1	5406.9	4273.2	5512.3
	391.9	111.8	111.8	125.8	218.4	147.6	9	2730.0	2158.0	2782.9	5415.0	4280.4	5519.9
	391.9	110.7	110.7	125.8	218.4	147.6	9	2734.1	2161.6	2786.7	5423.1	4287.6	5527.4
	394.3	111.8	111.8	125.8	218.4	147.6	9	2738.2	2165.3	2790.5	5431.2	4294.8	5535.0
	391.9	110.7	110.7	125.8	218.4	149.1	9	2742.3	2168.9	2794.3	5439.3	4302.0	5542.6
	393.8	110.7	110.7	125.8	218.4	149.1	9	2746.4	2172.5	2798.2	5447.5	4309.2	5550.2
	394.1	110.7	110.7	125.8	218.4	149.1	9	2750.5	2176.1	2802.0	5455.6	4316.4	5557.8
	393.9	110.7	110.7	125.8	218.4	149.1	9	2754.6	2179.7	2805.8	5463.7	4323.5	5565.4
	391.5	110.7	110.7	125.8	218.4	149.1	9	2758.7	2183.4	2809.7	5471.8	4330.7	5573.0
	391.7	110.7	110.7	125.8	218.4	149.1	9	2762.8	2187.0	2813.5	5479.9	4337.9	5580.6
	391.5	110.7	110.7	123.9	218.4	150.7	9	2766.8	2190.6	2817.3	5488.0	4345.0	5588.2
	393.7	110.7	110.7	123.9	218.4	150.7	9	2770.9	2194.2	2821.2	5496.1	4352.2	5595.8
	388.5	110.7	110.7	123.9	218.4	150.7	9	2775.0	2197.8	2825.0	5504.2	4359.3	5603.4
10	388.5	110.7	110.7	123.9	221.8	150.7	10	2779.0	2201.4	2828.9	5512.2	4366.4	5611.1
	391.0	110.7	110.7	123.9	221.8	150.7	10	2783.1	2205.0	2832.8	5520.3	4373.6	5618.8
	391.0	110.7	110.7	123.9	221.8	150.7	10	2787.2	2208.6	2836.7	5528.4	4380.7	5626.5
	390.8	110.7	110.7	123.9	221.8	152.2	10	2791.2	2212.2	2840.6	5536.4	4387.8	5634.2
	393.3	110.7	110.7	123.9	221.8	152.2	10	2795.3	2215.8	2844.5	5544.6	4395.0	5642.0
	391.0	110.7	110.7	122.0	221.8	152.2	10	2799.4	2219.3	2848.4	5552.6	4402.1	5649.7
	390.8	109.6	109.6	122.0	221.8	152.2	10	2803.5	2222.9	2852.2	5560.7	4409.1	5657.4
	393.2	109.6	109.6	122.0	221.8	152.2	10	2807.6	2226.4	2856.1	5568.8	4416.2	5665.2
	388.3	110.7	110.7	122.0	221.8	152.2	10	2811.6	2230.0	2860.0	5576.9	4423.3	5672.9
	393.0	109.6	109.6	122.0	221.8	152.2	10	2815.7	2233.6	2863.9	5585.0	4430.3	5680.6
	390.7	109.6	109.6	122.0	221.8	152.2	10	2819.8	2237.1	2867.8	5593.1	4437.3	5688.4
	391.2	111.6	111.6	122.0	221.8	153.8	10	2823.9	2240.7	2871.7	5601.1	4444.5	5696.1

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{aligned} & \hline \text { G600 } \\ & \text { ac-ft } \end{aligned}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	391.6	109.6	109.6	122.0	221.8	153.8	10	2827.9	2244.3	2875.7	5609.2	4451.5	5703.9
	393.8	111.6	111.6	119.9	225.3	153.8	10	2832.0	2247.9	2879.6	5617.4	4458.6	5711.7
	393.9	111.6	111.6	119.9	225.3	153.8	10	2836.1	2251.4	2883.6	5625.5	4465.7	5719.5
	391.8	111.6	111.6	119.9	225.3	153.8	10	2840.2	2255.0	2887.5	5633.6	4472.8	5727.4
	391.8	111.6	111.6	119.9	225.3	153.8	10	2844.3	2258.6	2891.5	5641.7	4479.9	5735.2
	394.0	111.6	111.6	119.9	225.3	153.8	10	2848.4	2262.2	2895.4	5649.8	4487.0	5743.0
	393.7	111.6	111.6	119.9	225.3	153.8	10	2852.5	2265.7	2899.4	5658.0	4494.1	5750.9
	393.8	111.6	111.6	119.9	221.8	153.8	10	2856.6	2269.3	2903.3	5666.1	4501.2	5758.6
	393.8	111.6	111.6	119.9	225.3	153.8	10	2860.7	2272.9	2907.2	5674.2	4508.2	5766.5
	391.4	111.6	111.6	119.9	225.3	153.8	10	2864.8	2276.5	2911.2	5682.3	4515.3	5774.3
	391.2	111.6	111.6	119.9	225.3	155.3	10	2868.9	2280.0	2915.1	5690.4	4522.4	5782.2
	393.6	111.6	111.6	117.9	225.3	155.3	10	2873.0	2283.6	2919.1	5698.5	4529.5	5790.0
	391.4	111.6	111.6	117.9	225.3	155.3	10	2877.0	2287.1	2923.1	5706.6	4536.5	5797.9
	391.1	109.6	109.6	117.9	225.3	155.3	10	2881.1	2290.6	2927.0	5714.7	4543.5	5805.8
	390.6	111.6	111.6	117.9	225.3	155.3	10	2885.2	2294.2	2931.0	5722.8	4550.5	5813.6
	390.7	110.5	110.5	117.9	225.3	155.3	10	2889.3	2297.7	2935.0	5730.9	4557.5	5821.5
	393.0	111.6	111.6	117.9	225.3	155.3	10	2893.4	2301.3	2938.9	5739.0	4564.6	5829.4
	393.0	111.6	111.6	117.9	225.3	155.3	10	2897.4	2304.8	2942.9	5747.1	4571.6	5837.2
	388.0	111.6	111.6	117.9	225.3	155.3	10	2901.5	2308.4	2946.9	5755.1	4578.7	5845.1
	392.8	110.5	110.5	117.9	225.3	156.9	10	2905.6	2311.9	2950.8	5763.2	4585.7	5853.0
	390.7	111.6	111.6	117.9	225.3	156.9	10	2909.7	2315.5	2954.8	5771.3	4592.7	5860.9
	387.9	111.6	111.6	117.9	225.3	156.9	10	2913.7	2319.0	2958.8	5779.3	4599.8	5868.8
	390.1	110.5	110.5	117.9	225.3	156.9	10	2917.8	2322.5	2962.8	5787.4	4606.8	5876.7
	390.1	111.6	111.6	117.9	225.3	156.9	10	2921.8	2326.1	2966.8	5795.4	4613.8	5884.6
	392.5	111.6	111.6	115.8	228.8	156.9	10	2925.9	2329.6	2970.8	5803.5	4620.8	5892.5
	390.1	111.6	111.6	115.8	228.8	156.9	10	2930.0	2333.2	2974.8	5811.6	4627.8	5900.5
	389.9	110.5	110.5	115.8	228.8	156.9	10	2934.0	2336.7	2978.8	5819.7	4634.8	5908.5
	389.7	106.8	106.8	115.8	228.8	156.9	10	2938.1	2340.1	2982.8	5827.7	4641.6	5916.4
	391.2	110.5	110.5	115.8	228.8	156.9	10	2942.2	2343.6	2986.8	5835.8	4648.5	5924.4
	392.8	107.6	107.6	115.8	228.8	156.9	10	2946.3	2347.1	2990.9	5843.9	4655.4	5932.4
	399.5	110.5	110.5	114.7	228.8	156.9	10	2950.4	2350.6	2994.9	5852.2	4662.3	5940.4
	399.2	110.5	110.5	112.6	228.8	156.9	10	2954.6	2354.0	2998.9	5860.4	4669.2	5948.3
	396.2	110.5	110.5	115.8	228.8	156.9	10	2958.7	2357.5	3002.9	5868.6	4676.2	5956.3
	398.1	110.5	110.5	115.8	228.8	156.9	10	2962.9	2361.0	3006.9	5876.8	4683.1	5964.3
	400.3	110.5	110.5	115.8	228.8	156.9	10	2967.0	2364.6	3011.0	5885.1	4690.1	5972.2
	395.5	110.5	110.5	115.8	228.8	156.9	10	2971.1	2368.1	3015.0	5893.3	4697.0	5980.2
	400.0	112.5	112.5	118.9	228.8	158.5	10	2975.3	2371.6	3019.0	5901.5	4704.2	5988.2
	397.3	112.5	112.5	118.9	228.8	158.5	10	2979.4	2375.2	3023.0	5909.7	4711.3	5996.2
	397.3	107.6	107.6	118.9	228.8	158.5	10	2983.6	2378.7	3027.1	5917.9	4718.2	6004.2
	397.3	112.5	112.5	116.8	232.3	158.5	10	2987.7	2382.3	3031.1	5926.1	4725.2	6012.3
	312.4	108.5	108.5	116.8	232.3	158.5	10	2991.0	2385.7	3035.2	5932.6	4732.1	6020.4
	382.7	110.5	110.5	112.6	232.3	158.5	10	2995.0	2389.2	3039.3	5940.5	4739.0	6028.4
	378.6	112.5	112.5	115.8	232.3	158.5	10	2998.9	2392.8	3043.4	5948.3	4746.0	6036.5
	378.3	110.5	110.5	116.8	232.3	158.5	10	3002.8	2396.3	3047.4	5956.2	4753.0	6044.6
	380.1	112.5	112.5	113.5	232.3	158.5	10	3006.8	2399.8	3051.5	5964.0	4760.0	6052.7
	384.8	112.5	112.5	116.8	232.3	160.1	10	3010.8	2403.4	3055.6	5972.0	4767.1	6060.8
	377.9	110.5	110.5	116.8	232.3	160.1	10	3014.8	2406.9	3059.7	5979.8	4774.1	6068.9
	380.2	112.5	112.5	116.8	232.3	160.1	10	3018.7	2410.4	3063.8	5987.6	4781.1	6077.0
	381.7	112.5	112.5	116.8	232.3	160.1	10	3022.7	2414.0	3067.9	5995.5	4788.2	6085.1
	380.0	112.5	112.5	116.8	232.3	160.1	10	3026.6	2417.6	3071.9	6003.4	4795.2	6093.2

Day	$\begin{gathered} \hline \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G601 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G602 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G603 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \text { G354 } \\ \text { cfs } \end{gathered}$	$\begin{gathered} \hline \text { G393 } \\ \text { cfs } \end{gathered}$	Day	$\begin{gathered} \text { G600 } \\ \text { cfs } \end{gathered}$	$\begin{aligned} & \hline \text { G601-3 } \\ & \text { cfs } \end{aligned}$	$\begin{aligned} & \hline \text { G393+G354 } \\ & \text { Cfs } \end{aligned}$	$\begin{aligned} & \hline \text { G600 } \\ & \text { ac-ft } \end{aligned}$	$\begin{gathered} \hline \text { G601-3 } \\ \text { ac-ft } \end{gathered}$	$\begin{gathered} \text { G393+G354 } \\ \text { ac-ft } \end{gathered}$
	377.6	112.5	112.5	116.8	232.3	160.1	10	3030.6	2421.1	3076.0	6011.2	4802.3	6101.3
	382.4	112.5	112.5	116.8	232.3	160.1	10	3034.6	2424.7	3080.1	6019.1	4809.4	6109.4
	379.8	111.4	111.4	116.8	232.3	160.1	10	3038.5	2428.2	3084.2	6026.9	4816.4	6117.5
	379.4	112.5	112.5	116.8	232.3	160.1	10	3042.5	2431.8	3088.3	6034.7	4823.4	6125.6
	382.0	111.4	111.4	116.8	235.9	160.1	10	3046.5	2435.3	3092.4	6042.6	4830.5	6133.8
	377.6	111.4	111.4	114.5	235.9	160.1	10	3050.4	2438.8	3096.5	6050.4	4837.4	6142.0
	377.5	111.4	111.4	114.5	235.9	160.1	10	3054.3	2442.3	3100.7	6058.2	4844.4	6150.2
	381.2	111.4	111.4	114.5	235.9	160.1	10	3058.3	2445.9	3104.8	6066.1	4851.4	6158.3
	381.9	111.4	111.4	114.5	235.9	160.1	10	3062.3	2449.4	3108.9	6074.0	4858.3	6166.5
	379.1	111.4	111.4	114.5	235.9	161.6	10	3066.2	2452.9	3113.0	6081.8	4865.3	6174.7
	381.0	112.5	112.5	114.5	235.9	161.6	10	3070.2	2456.4	3117.2	6089.7	4872.3	6182.9
	378.9	111.4	111.4	114.5	235.9	161.6	10	3074.1	2459.9	3121.3	6097.5	4879.3	6191.2
	377.1	112.5	112.5	114.5	235.9	161.6	10	3078.1	2463.5	3125.5	6105.3	4886.3	6199.4
	379.2	111.4	111.4	114.5	235.9	161.6	10	3082.0	2467.0	3129.6	6113.2	4893.3	6207.6
	378.8	111.4	111.4	114.5	235.9	161.6	10	3086.0	2470.5	3133.7	6121.0	4900.2	6215.8
	378.5	111.4	111.4	114.5	235.9	161.6	10	3089.9	2474.0	3137.9	6128.8	4907.2	6224.0
	381.1	111.4	111.4	114.5	235.9	161.6	10	3093.9	2477.5	3142.0	6136.7	4914.2	6232.2
	376.2	111.4	111.4	114.5	235.9	161.6	10	3097.8	2481.0	3146.2	6144.5	4921.1	6240.4
	376.6	111.4	111.4	114.5	235.9	161.6	10	3101.7	2484.5	3150.3	6152.2	4928.1	6248.6
	378.6	111.4	111.4	114.5	235.9	161.6	10	3105.7	2488.1	3154.5	6160.1	4935.1	6256.9
	380.8	111.4	111.4	112.2	235.9	161.6	10	3109.6	2491.6	3158.6	6167.9	4942.0	6265.1
	376.0	111.4	111.4	112.2	235.9	161.6	10	3113.5	2495.0	3162.7	6175.7	4948.9	6273.3
	380.5	111.4	111.4	112.2	235.9	161.6	10	3117.5	2498.5	3166.9	6183.6	4955.8	6281.5
	378.4	111.4	111.4	112.2	235.9	161.6	10	3121.4	2502.0	3171.0	6191.4	4962.8	6289.7
	378.6	111.4	111.4	112.2	235.9	163.2	10	3125.4	2505.5	3175.2	6199.2	4969.7	6297.9
	378.0	111.4	111.4	112.2	235.9	163.2	10	3129.3	2509.0	3179.3	6207.0	4976.6	6306.2
	380.3	111.4	111.4	112.2	235.9	163.2	10	3133.3	2512.5	3183.5	6214.9	4983.5	6314.4
	378.1	111.4	111.4	112.2	239.4	163.2	10	3137.2	2516.0	3187.7	6222.7	4990.4	6322.8
	375.9	111.4	111.4	112.2	239.4	163.2	10	3141.1	2519.5	3191.9	6230.4	4997.4	6331.1
	376.0	111.4	111.4	112.2	239.4	163.2	10	3145.1	2523.0	3196.1	6238.2	5004.3	6339.4
	380.7	111.4	111.4	112.2	239.4	163.2	10	3149.0	2526.4	3200.3	6246.1	5011.2	6347.7
	375.6	111.4	111.4	112.2	239.4	163.2	10	3152.9	2529.9	3204.5	6253.8	5018.1	6356.0
	377.9	111.4	111.4	112.2	239.4	163.2	10	3156.9	2533.4	3208.6	6261.7	5025.0	6364.4
	375.5	111.4	111.4	112.2	239.4	163.2	10	3160.8	2536.9	3212.8	6269.4	5032.0	6372.7
11	375.5	111.4	111.4	112.2	239.4	163.2	11	3164.7	2540.4	3217.0	6277.2	5038.9	6381.0
	377.1	111.4	111.4	112.2	239.4	163.2	11	3168.6	2543.9	3221.2	6285.0	5045.8	6389.3
	375.3	112.5	112.5	112.2	239.4	163.2	11	3172.5	2547.4	3225.4	6292.7	5052.8	6397.6
	375.1	111.4	111.4	112.2	239.4	163.2	11	3176.4	2550.9	3229.6	6300.5	5059.7	6405.9
	374.7	111.4	111.4	112.2	239.4	163.2	11	3180.3	2554.4	3233.8	6308.2	5066.6	6414.3
	377.6	111.4	111.4	112.2	239.4	163.2	11	3184.3	2557.9	3238.0	6316.0	5073.5	6422.6
	374.7	111.4	111.4	112.2	239.4	163.2	11	3188.2	2561.4	3242.2	6323.8	5080.5	6430.9
	377.0	111.4	111.4	109.9	239.4	163.2	11	3192.1	2564.8	3246.4	6331.5	5087.3	6439.2
	379.1	106.5	106.5	109.9	239.4	163.2	11	3196.1	2568.2	3250.6	6339.4	5094.0	6447.5
	376.8	111.4	111.4	109.9	239.4	163.2	11	3200.0	2571.7	3254.8	6347.2	5100.9	6455.9
	393.8	108.5	108.5	109.9	239.4	163.2	11	3204.1	2575.1	3259.0	6355.3	5107.6	6464.2
	390.2	111.4	111.4	112.2	239.4	163.2	11	3208.1	2578.5	3263.2	6363.4	5114.5	6472.5
	394.3	113.4	113.4	108.9	239.4	163.2	11	3212.3	2582.0	3267.4	6371.5	5121.5	6480.8
	386.8	111.4	111.4	113.2	239.4	163.2	11	3216.3	2585.5	3271.6	6379.5	5128.4	6489.1
	390.9	112.2	112.2	113.2	239.4	164.8	11	3220.4	2589.1	3275.8	6387.6	5135.4	6497.5
	391.9	112.2	112.2	113.2	239.4	164.8	11	3224.4	2592.6	3280.0	6395.7	5142.4	6505.8

| Day | G600 | G601 | G602 | G603 | G354 | G393 | Day | G600 | G601-3 | G393+G354 | G600 | G601-3 | G393+G354 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | cfs | cfs | cfs | cfs | cfs | cfs | | cfs | cfs | Cfs | ac-ft | ac-ft | ac-ft |
| | 388.8 | 112.2 | 112.2 | 113.2 | 239.4 | 164.8 | 11 | 3228.5 | 2596.1 | 3284.2 | 6403.7 | 5149.4 | 6514.2 |

[^0]: Notes: All discharges are in cfs. All length dimensions are in ft . Section width/depth is diameter for circular culverts.

