TECHNICAL PUBLICATIONS WRE-326

July 1995

A THREE-DIMENSIONAL FINITE-DIFFERENCE GROUND WATER FLOW MODEL OF THE
SURFICIAL AQUIFER SYSTEM IN ST. LUCIE COUNTY, FLORIDA

A THREE-DIMENSIONAL FINITE-DIFFERENCE GROUND WATER FLOW MODEL OF THE
 SURFICIAL AQUIFER SYSTEM IN ST. LUCIE COUNTY, FLORIDA

by
David E. Butler, P.G.
And

Don G. J. Padgett, P. G.

July 1995

Hydrogeology Division
Water Resources Evaluation Department South Florida Water Management District

West Palm Beach, Florida

EXECUTIVE SUMMARY

This study was undertaken as part of the South Florida Water Management District's (SFWMD) Water Supply Planning initiative. One of the directives in the water supply planning initiative is to "develop and maintain resource monitoring networks and applied research programs (such as forecasting models) required to predict the quantity and quality of water available for reasonable-beneficial uses" (SFWMD, 1991). The St. Lucie County model will be used within the SFWMD by the Planning Department to support the development of the Upper East Coast Water Supply Plan and by the Regulation Department to assist in the implementation of the water use criteria and policies of the District. The Water Supply Plan includes a projection of future water demand, identification of water sources, methods to meet the water demand on a regional scale, and an analysis of impacts associated with these alternate methods. The St. Lucie model will also be used for impact analysis in the District's water use regulatory function and on the local scale by governments and consultants.

This model is not considered to be an unchanging final product. As new data and technologies become available, it will be upgraded and improved. Future plans include the integration of surface water and water quality elements, Geographic Information Systems (GIS) applications, and the ability to "zoom" in on specific areas for more detailed local modeling.

St. Lucie County is underlain by two aquifer systems: the surficial aquifer system and the deeper Floridan aquifer system. Data from a ground water assessment completed by the South Florida Water Management District in 1990 were used to develop the regional three-dimensional finite-difference ground water flow model for St. Lucie County. This report focuses on the ground water flow model for the surficial aquifer system. A separate model with documentation (Lukasiewicz 1992) was developed for the Floridan aquifer system.

For modeling purposes, the surficial aquifer system in St. Lucie County was divided into three layers based on lithology and hydraulic characteristics. Layer 1 is the least productive and contains the surface water bodies. Layers 2 and 3 are the major supply sources for ground water use from the surficial aquifer system in St. Lucie County.

THE GROUND WATER FLOW MODEL

The St. Lucie County surficial aquifer system model was developed using the U.S. Geological Survey modular three-dimensional finite-difference ground water flow model code, commonly known as MODFLOW. This code was used because it allows a detailed evaluation of ground water flow, is available in the public domain, is compatible with most computer systems, and contains many features which make it easy to use and modify. MODFLOW simulates ground water heads and flows. Stress on the aquifers and interactions with surface water bodies can also be simulated with the model.

The horizontal model grid is composed of 71 rows and 109 columns. A uniform cell size of 2,000 feet by 2,000 feet was used throughout the model.

RECHARGE,DISCHARGE, AND WATER USE

Rainfall provides nearly all of the total inflow to the surficial aquifer system in the study area under present conditions. Analysis of the rainfall data for the study area indicates that the rainfall during the calibration period approximates $1-\mathrm{in}-10$ year drought conditions.

Evapotranspiration accounts for approximately 55% of the outflow from the model area under present conditions. Leakage to drains and rivers in the study area accounts for an additional 36% of the losses. Well withdrawals account for an additional 4%. The remaining outflows are due to ground water flows across model boundaries.

Well withdrawals for agriculture, public supply, and domestic self-supply were determined by various means. Agricultural ground water withdrawal information for the study period was estimated primarily from water use permits issued by the District. The permits supplied information on crop types, acreage, irrigation practices, and wells. Additional information, when necessary, was obtained directly from the agricultural operators. Actual pumpage records were used when available. Public supply water use was derived from the monthly reports the utilities submit to the District. Domestic self-supply was estimated based on land use types and irrigation use assumptions.

CALIBRATION/SENSITIVITY TESTING

The model was calibrated by adjusting aquifer parameters within prescribed limits in order to obtain the best match between the computed water levels and the observed water levels. The calibration period was from July 1989 through June 1990. The model was calibrated to steady-state and transient conditions.

The steady-state calibration was based on the hypothesis that during the calibration period the ground water levels fluctuated around a mean water level that could approximate steady-state conditions. The fluctuations in water levels were caused by seasonal variations in rainfall, pumpage, evapotranspiration and canal levels. Furthermore, the average recharge rate during the calibration period was presumed to approximate the steady-state recharge rate under $1-i n-10$ year drought conditions.

Two criteria were used to evaluate steady-state calibration: 1) the simulated steady-state water level must be between the minimum and maximum observed head values for the associated monitoring well; and 2) the simulated steady-state water level was within \pm one foot of the average water level for the associated monitoring well. At least 50% of the observation wells must meet each criterion for the model to be considered successfully calibrated. Results from the model indicate that 71% of the observation wells meet the first criterion, and 73% of the observation wells meet the second criterion.

For the transient scenario, the calibration criterion required that simulated water levels to be within one foot of the observed water levels for at least nine of the twelve months. This criterion was met by 61% of the observation nodes.

Residual maps were generated, for both steady-state and transient conditions, in order to view the spacial distribution of error. Analyses of the residual maps infer that the Level 1 calibration criterion (Anderson and Woessner, 1992) was met for most of the study area. However, there were a few areas, mostly near large withdrawal sources or the tidal portion of the North Fork of the St. Lucie River, that did not meet the Level 1 calibration criterion.

To ensure the best possible accuracy for evaluative or predictive purposes, it was important to test the sensitivity of the model to the estimated parameters. With the exceptions of river bed conductance and drain bed conductance, the model was fairly insensitive to changes in hydraulic parameters. However, changes in the recharge and evapotranspiration parameters significantly affected the simulated water levels in all three layers of the model.

RECOMMENDATIONS

The most important recharge and discharge sources in the model are rainfall and evapotranspiration, respectively. The accuracy of the model depends on the accuracy of the input data for these two sources. As currently designed, the model provides a simplification of the actual complex processes involved in determining how much rainfall actually reaches the aquifer and how much water is removed from the aquifer by evapotranspiration. Work in these areas is needed to improve model accuracy.

Domestic self supply water use and irrigation water use are large water uses in St. Lucie County. In order to enhance the accuracy and reliability of the model for resource availability determinations, improvements in the estimation of domestic self-supply use and irrigation use should be made. Some possible improvements are as follows:
a) The PWS utilities should provide the District with exact locations for the service area boundaries.
b) The local governments in the study area should provide the District with a listing of residences which utilize privately supplied water for landscape irrigation or domestic uses.
c) The District should require agricultural permittees to submit pumpage records to the District monthly.

Public water supply utilities that utilize multiple wells need to record the raw water pumpage individually for each well. Because of differences in pump capacity and the operating schedule of each well, total wellfield pumpage is of limited value for generating the model input necessary for determining wellfield impacts. Individualized withdrawals for each well is especially important when "zooming in" on an area.

Based on the water budget calculated from the model, discharge to surface water bodies represents a significant loss from the aquifer. Input data, including canal construction details and stage levels, are limited and estimation errors could result in inaccurate seepage amounts into or out of the canals. Efforts should be made in the permitting process to obtain and include these data in future surface water management permits. Stage recorders in major grove canals would provide
information on water levels for setting river stages and drain elevations in future modeling efforts.

The model can be used in the evaluation of water use permit applications, when examining impacts on a large scale basis is desirable. Where a finer scale or site-specific model is required, the regional model could be used to provide the boundary conditions and general information for the localized model.

AVAILABILITY OF MODEL FOR USE

Electronic copies of model data sets are available upon request from the Hydrogeology Division. If, in using the model, users include new or more detailed data that results in a better calibration, they are encouraged to share that data with the District. Refinement of the model is a continuous and ongoing process.

TABLE OF CONTENTS

EXECUTIVE SUMMARY i
LIST OF FIGURES vii
LIST OF TABLES ix
ACKNOWLEDGEMENTS x
ABSTRACT Xi
INTRODUCTION 1
Purpose and Scope 1
Location of Study Area 1
Data Collection and Analysis 4
Aquifers in Study Area 4
MODEL FORMULATION AND APPLICATION 8
Overview 8
Discretization 10
Horizontal Discretization 10
Vertical Discretization 12
Time Discretization 13
BOUNDARY CONDITIONS 13
Eastern Boundary 13
Western Boundary 13
Southern Boundary 15
Northern Boundary 15
Hydraulic Characteristics 18
Horizontal Hydraulic Conductivity/Transmissivity 18
Vertical Hydraulic Conductivity 19
Storativity 20
Surface Water Interaction 20
Physical System 20
Rivers 22
Drains 26
Recharge 29
Background 29
Net Precipitation 30
Surface Drainage 31
Recharge vs Rainfall 32
Evapotranspiration 32
ET Surface 32
Maximum ET Rate 34
Extinction Depth 35
Evapotranspiration vs Recharge 35
Ground Water Use 35
Public Water Supply Use 36
Agricultural Water Use 36
Domestic Self Supply 37
Agricultural Recharge 37
CALIBRATION 39
Steady-State Calibration 39
Methodology 39
Results 39
Budget and Flows 56
Transient Calibration 61
Methodology 61
Results 70
SENSITIVITY TESTING 84
Aquifer Parameter Changes 84
Climatic and Stress Changes 84
QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES 89
CONCLUSIONS AND RECOMMENDATIONS 90
REFERENCES 94
APPENDIX A: Lithologic and Hydrogeologic Data 99
APPENDIX B: Data for Surface Water Features 123
APPENDIX C: Rainfall Map and Table, General Land Use Map, Recharge and ET Coefficients 153
APPENDIX D: Water Use Data 185
APPENDIX E: Statistical Analysis of the Water Level Data 203
APPENDIX F: Possible Explanations for Non-Calibration 213
APPENDIX G: Hydrographs of Computed vs Observed Data 217

LIST OF FIGURES

Figure Page
1 Location of Study Area 2
2
Study Area 33
Generalized Hydrogeologic Cross Section 5
4
Generalized Hydrogeologic Column Showing Model Layers 7
5
Model Grid for St. Lucie County 11
6 Cells with Specified Heads 14
7
General Head Cells in Layer 1 16
8 General Head Cells in Layers 2 and 3 17
9
Hydrograph of Well SLMW5S and Stage at G-81 21
10 Location Map of Surface Water Basins within St. Lucie and Eastern Okeechobee Counties 23
11 Cells with River Reaches 24
12 Cells with Drain Reaches 28
13 Conceptualization of Capillary Fringe and ET Extinction Depth Determination 33
14 Location of Monitoring Wells in Layer 1 40
15 Location of Monitoring Wells in Layer 2 41
16 Location of Monitoring Wells in Layer 3 42
17 Starting Heads for Layer 1 43
18 Starting Heads for Layer 2 44
19 Starting Heads for Layer 3 45
20
Steady-State Heads for Layer 1 46
Steady-State Heads for Layer 2 47
Steady-State Heads for Layer 3 48
Steady-State Residuals for Layer 1 53
Steady-State Residuals for Layer 2 54

LIST OF FIGURES
 (Continued)

Figure Page
25 Steady-State Residuals for Layer 3 55
26 Magnitude and Direction of Horizontal Flow in Layer 1 57
27
Volumetric Budget for Layer 1 58
28 Magnitude and Direction of Horizontal Flow in Layer 2 59
29 Magnitude and Direction of Vertical Flow between Layers 1 and 2 60
30 Volumetric Budget for Layer 2 62
31 Magnitude and Direction of Horizontal Flow in Layer 3 63
32
Magnitude and Direction of Vertical Flow between Layers 2 and 3 643334
Volumetric Budget for Layer 3 65
Water Level Map of the Surficial Aquifer System in St. Lucie County, May 1988 69
Dry Season Residual Map for Layer 1 77
Wet Season Residual Map for Layer 1 78
Dry Season Residual Map for Layer 2 80
Wet Season Residual Map for Layer 2 81
Dry Season Residual Map for Layer 3 82
Wet Season Residual Map for Layer 3 83

LIST OF TABLES

Table Page
1 Modflow Packages Used in the St. Lucie County Model 9
2 Domestic Water Supply Estimated Parameters 38
3 Steady-State Calibration Results 50
4 Volumetric Budget for Steady-State Simulation 66
5 Stress Period, Month, and Season Correlation 67
6 Transient Calibration Results 71
7 Dry Season and Wet Season Residuals 74
8 Sensitivity Responses to Aquifer Parameter Changes 86
9 Sensitivity Response to Climatic and Stress Changes 88

ACKNOWLEDGEMENTS

This project was carried out under the direction of Scott Burns, formerly the Director of the Hydrogeology Division and currently Director of the Water Use Division, and Keith Smith, currently the Director of the Hydrogeology Division. The authors would like to thank these individuals for the opportunity to undertake this effort.

The authors wish to acknowledge the peer review committee, whose comments greatly improved the quality of this report:

Hector Arias, City of Fort Pierce
Gary Basham, City of Port St. Lucie
Richard Bouchard, St. Lucie County
Kate Donoghue, Upper District Planning, SFWMD
Emily Hopkins, Upper District Planning, SFWMD
Bruce Lafrenz, Hartman \& Associates, Inc.
Linda Lindstrom, Hydrogeology Division, SFWMD
John Lockwood, Geraghty \& Miller, Inc.
Michael Merritt, USGS
Richard Nevulis, CH2M Hill
Karin Smith, Water Use Division, SFWMD
Keith Smith, Hydrogeology Division, SFWMD
Richard Stenberg, Fort Pierce Utility Authority
Leslie Wedderburn, Dept. of Water Resources Evaluation, SFWMD
Jason Yan, Hydrogeology Division,SFWMD
Jorge Restrepo provided numerous insights into the model as well as several very useful pre- and post-processing programs for which we are very grateful. Jeff Needle (SFWMD), Mark Daron (SFWMD) and Martin Sanders (Lindahl Browning Ferrari and Hellstrom) provided valuable information with regards to the operation of surface water management systems in the county. We also appreciate the suggestions and solutions we received from fellow hydrogeologists on the problems we encountered.

Gratitude is expressed to Barbara Dickey for her immediate attention and assistance to all problems involving the computer, especially in writing programs to make our job easier. Diane Bello, Janet Wise and Dave Demonstranti generated the graphics for this report. Martin Braun, Tony Lubrano, Paul Benton, James McDermott, Arthur Tassinari, Pete Dauenhauer, and Dave Demonstranti provided assistance with well drilling, geophysical logging, and data collection. Finally, Hedy Marshall assisted with the compilation of this report.

Abstract

The surficial aquifer system is an important ground water supply source in St. Lucie County. The surficial aquifer system is comprised of moderately productive zones of sand, shell, limestone and sandstone. The intermediate confining unit underlies the surficial aquifer system and separates it from the Floridan aquifer system. A three-dimensional ground water flow model of the surficial aquifer system was developed using the U.S. Geological Survey modular finite-difference ground water flow model code (MODFLOW). The model consists of three layers representing three lithologic zones. Horizontal discretization was accomplished using a grid comprised of 71 rows and 109 columns. Initial aquifer parameters were obtained from previous studies and the associated ground water reconnaissance study. A transient calibration was performed for a one-year period, July 1989 through June 1990, by comparing simulated water levels with observed water levels from an extensive monitoring network. A steady-state calibration was performed by comparing the steady-state calculated values with the average observed values from the monitoring network. A good correlation was achieved between the estimated values and the observed values for both the steady-state and transient conditions. Sensitivity analyses showed that water levels in all layers of the surficial aquifer system are sensitive to changes in the recharge and evapotranspiration parameters.

INTRODUCTION

PURPOSE AND SCOPE

This report describes the development and calibration of a three-dimensional ground water flow model of the surficial aquifer system in St. Lucie County. The first part of this report is a description of the data and justification of the assumptions used in constructing the model. The second part presents the results of the steadystate and transient calibrations, and a discussion of the model sensitivity analyses.

The model was developed as a tool for assessing regional mass balance relationships between recharge and discharge to the aquifer system. The major tasks associated with this development are described below:

1) Compile and evaluate existing hydrogeologic and hydrologic data.
2) Conduct field investigations to collect additional information in data deficient areas.
3) Define the hydrogeologic framework of the surficial aquifer system.
4) Develop and calibrate a three-dimensional ground water flow model of the system.
5) Conduct model sensitivity analyses to determine the relative influence of different components of the hydrologic and hydrogeologic regimes.
6) Develop a detailed documentation of the model development process to support model use in water management and regulatory applications.

Only the results of tasks 1,2 , and 3 that relate to the process of generating the input files for model development are described in this report. A resource assessment report describing these tasks in detail will be presented at a later date (Lukasiewicz and Switanek, in press). Tasks 4,5 , and 6 are fully described in this report.

LOCATION OF STUDY AREA

St. Lucie County is located in southeastern Florida, northeast of Lake Okeechobee (Figure 1). It is bounded to the north by Indian River County, to the east by the Atlantic Ocean, to the south by Martin County, and to the west by Okeechobee County. The county is roughly square with an average east to west width of 26 miles and a north to south length of 25 miles.

Figure 2 depicts the study area. The study area encompasses all of St. Lucie County, and portions of Martin, Okeechobee, and Indian River counties which are part of the regional ground water flow regime. The study area is bounded to the east by the Indian River Lagoon, to the south by Canal C-23, to the west by a topographic ridge, and to the north by the southernmost drainage and water control districts in Indian River County.

FIGURE 1. Location of Study Area

DATA COLLECTION AND ANALYSIS

The extent and characteristics of the surficial aquifer system in St. Lucie County were determined based on extensive review and evaluation of the available hydrogeologic data. Data from the following reports were used to conceptualize the hydrogeology of the study area: Ardaman \& Associates, Inc. (1990); C.F.S. and Associates, Inc. (1981); CH2M Hill (1988); Geraghty and Miller (1981), (1982), and (1984); Hydrodesigns, Inc. (1988); Layne Atlantic Company (1970); Miller (1979); James M. Montgomery, Inc. (1989); Parker et al. (1955); Post Buckley Schuh and Jernigan, Inc. (1985); Schiner, Laughlin and Toth (1988); and Universal Engineering and Testing Company (1986).

The report data were supplemented by field investigations conducted as part of this study at 24 sites in the study area. Data collection at these sites consisted of collection of aquifer material from drill cuttings, conventional cores, or split spoon samples. Additional hydrogeologic data were collected at three of these sites during aquifer performance tests (APT) utilizing multi-level observation wells.

Field data from the sites described above were supplemented by lithologic descriptions, well cuttings or geophysical logs from over 100 other wells located throughout the study area. Additional data on the hydraulic characteristics of the aquifer were derived from review and re-analysis of aquifer performance tests conducted in the study area by the U. S. Geological Survey, Florida Bureau of Geology, or private consultants. Additional APT data was reviewed but was not used because of poor data quality or insufficient documentation. Data from specific capacity tests from production wells were also used to estimate aquifer characteristics.

AQUIFERS IN THE STUDY AREA

There are two aquifer systems within the study area: the surficial aquifer system and the Floridan aquifer system. Both are laterally continuous throughout the study area, but are vertically separated by the thick sequence of low permeability sediments of the intermediate confining unit (Florida Geological Survey, 1986). Figure 3 provides a generalized hydrogeologic column of the study area.

Due to the low permeability of the sediments that compose the intermediate confining unit, the effects of the Floridan aquifer system on the surficial aquifer system are minimal. For more detailed information on the lithologic and hydrogeologic nature of the Floridan aquifer system in the study area, the reader is referred to Brown and Reece (1979), Brown (1980), Wedderburn and Knapp (1983), and Lukasiewicz (1992).

The intermediate confining unit is a thick sequence of fine clastic and carbonate sediments which acts as an aquitard and restricts the upward migration of poor quality Floridan aquifer system water into the overlying surficial aquifer system. In this report, the top of the intermediate confining unit corresponds with the top of the Hawthorn Group. In the study area, the top of the Hawthorn Group is identified by an increase in content of green clay. The intermediate confining unit was represented as a no-flow boundary at the base of the model. Lithologic characteristics of this unit are described by Scott (1988).

FIGURE 3. Generalized Hydrogeologic Cross Section

The surficial aquifer system is an important source of potable water in the study area. It is composed of low to moderately permeable clastic and carbonate sediments. Ground water in the aquifer exists under unconfined conditions in some areas and semi-confined conditions in others.

Based on the data described above, the system was conceptualized into two hydrogeologic zones: a shallow unconfined soil/sand zone which extends from the surface down to as deep as 50 feet, and an underlying unconfined to semi-confined production zone which extends from the base of the overlying soil/sand zone down to the base of the surficial aquifer system. This conceptualization is shown in Figure 4.

The upper sand/soil zone is seldom used as a water source. The underlying production zone is the primary source of potable water in the surficial aquifer system. The production zone is composed of a interbedded mixture of sand, silt, clay, shells, and limestone. The heterogeneous nature of this zone makes ground water exploration difficult. The regional hydrogeologic variations within this zone were defined by interpolating between the data at discrete well sites.

A more detailed discussion of the geology of the surficial aquifer system is provided in the report by Lukasiewicz and Switanek (in press).

FIGURE 4. Generalized Hydrogeologic Column Showing Model Layers.

MODEL FORMULATION AND APPLICATION

OVERVIEW

The code used in this study to simulate the ground water flow and the interaction of the ground water and surface water systems is the U.S. Geological Survey modular three-dimensional finite-difference ground water flow code MODFLOW (McDonald and Harbaugh, 1988). MODFLOW is capable of simulating ground water flow in an anisotropic, heterogeneous, multi-layered aquifer systems. The finite-difference approach is block-centered, which means that the head values are calculated at the center of the cells. Layers may be simulated as confined, unconfined or convertible (confined/unconfined). This code was selected for the following reasons:

1. It is available in the public domain.
2. It is compatible with most computers with only minor modification.
3. The modular structure of the code and its excellent documentation allow easy modification of the code and the addition of new modules for specialty applications.
4. It allows great flexibility of data file structure and management, which facilitates the employment of and interaction with other software for data manipulation.
5. The cell-by-cell flow feature of the code can be used to:
A. evaluate in detail flow and head changes associated with various withdrawal scenarios; and
B. generate boundary conditions for higher-resolution models within the regional flow model.
6. It can be coupled with currently available non-density dependent solute transport models.
7. A stream package is also available for MODFLOW.

The MODFLOW code is written in modular form. It consists of a main routine and a series of highly independent subroutines called modules. These modules are grouped into packages which address the general use of the model, specific features of the hydrologic system, or particular numerical solution techniques. The hydrologic system packages simulate recharge, evapotranspiration from the saturated aquifer zone, rivers, drains, wells, and other sources and sinks of water external to the model(boundary conditions). Three solution technique packages are available for simulating flow problems: 1) slice successive over relaxation (SOR), 2) strongly implicit procedure (SIP), and 3) the preconditioned conjugate gradient (PCG) method. The SOR method was used in this study. Table 1 lists the packages used in this study.

TABLE 1. MODFLOW Packages Used in the St. Lucie County Model

MODFLOW PACKAGE	FUNCTION	USE IN MODEL
BASIC	Oversees model.	Used to activate packages.
BLOCK CENTERED FLOW	Computes hydraulic parameters.	Used to assign hydraulic parameters.
WELL	Simulates a source or sink to the aquifer that is not affected by heads in the aquifer.	Used to represent public water supply. agricultural, and domestic supply withdrawals and recharge from the Upper Floridan.
DRAN	Simulates discharge from the aquifer to the drain.	Used to represent all water bodies that remove water from the aquifer.
RIVER	Simulates exchange berween a river and an aquifer	Used to represent water bodies that may contribute or remove water from the aquifer.
ET	Simulates ET where the source of water is the saturated porous medium.	Used modified Blaney-Criddle calculation. Coefficients are estimated by land use type.
GENERAL HEAD BOUNDARY	Simulates a source/sink of water to the aquifer that is dependent on the head difference between the source/sink and the aquifer.	Used along the model boundaries to control inflow and outflow for the model.
RECHARGE	Simulates the effects of rainfall to the aquifer.	Used with measured precipitation. A pre-processor calculates actual recharge value.
SLICE-SUCCESSIVE OVERRELAXATION	Solves the finite difference equations for the model using the Slice-Successive Overrelaxation method.	Used to solve flow equations.
OUTPUT CONTROL	Saves the model output in the requested format.	Used to save model output.
OBSERVATION NODES	Generates a file of simulated water kevels for selected cells.	Used to generate comparative hydrographs and calibration data.

Three types of boundary conditions are available for the model formulation: prescribed head, prescribed flux and head-dependent flux. A prescribed head boundary is defined when the head is specified as a known function of position and time at the boundaries. Similarly, prescribed flux is defined when the flux is specified as a known function of time at the outer edges of boundaries. The headdependent flux boundary is defined when the ratio between the head gradient and flux is known. Constant head boundaries, which are a particular case of prescribed head boundaries, maintain the same user-specified head levels throughout the simulation.

Prescribed flux boundaries can be simulated in MODFLOW through the use of external source terms in the model. No-flow boundaries are a type of prescribed flux boundary for which no flow is simulated between the inactive cell and any adjacent active cell. Head-dependent flux boundaries generate a flux dependent on the head in the cell and a user-prescribed head assigned to the external source. Head-dependent flux boundaries can be simulated in MODFLOW through the use of general head boundaries as well as the river, drain and ET packages. Prescribed head can be represented in MODFLOW as a particular case of head-dependent flux, where the flux is set as large as needed. All types of boundary conditions can be set anywhere within a model grid. A no-flow boundary is implicit along the outer edges and bottom layer of a model grid.

DISCRETIZATION

Horizontal Discretization

Grid cell dimensions were determined by balancing the need for resolution of surface water features against the integrity of data regionalization, and the ease of relating cell coordinates to established geographic references. Canal density was very influential in determining the grid spacing. This is especially true in the eastern portion of the study area where surface water management systems strongly influence water levels in the surficial aquifer system. Two of the largest water control districts in the county operate systems with canal densities of about one canal per half mile.

The horizontal model grid comprises 71 rows and 109 columns. Row lengths and column widths are a uniform 2000 feet throughout the model area.

This cell size provides the resolution necessary to differentiate major drainage basins in the larger drainage districts in St. Lucie County. Figure 5 provides the model grid for the St. Lucie County model.

The model cells in row 71 overlap the model cells of row 1 for the Martin County model (Adams 1992). This facilitates the merging of the two models in cases where predictive simulations may require a more regional perspective.

Model Grid for St. Lucie County

Vertical Discretization

The surficial aquifer system was modeled as a multi-layered system to simulate its semi-confined nature and to better represent the influences of surface water features on ground water levels. Three layers were chosen to simulate the hydraulic heterogeneity of the aquifer system. The upper layer, layer 1, contains all of the surface water features. Layers 2 and 3 represent the producing intervals of the aquifer from which most of the ground water withdrawals are made. A generalized hydrogeologic cross section of the county showing the relationship between the producing zone and model layering is shown in Figure 4.

Figure A-1, in Appendix A, illustrates the location of the wells in the study area with lithologic or geophysical information. Table A-1 in Appendix A lists the location and layering data for wells with available information. Model arrays of land surface elevation, layer thickness, and layer bottom elevations were generated from discrete data points using the kriging interpolation technique provided in the SURFER software (Golden Software Inc., 1989). Since cells in row 1 of the Martin County model (Adams 1992) are coincident with cells in row 71 of the model documented in this report, most of the data from these cells were incorporated directly into the kriging process.

Layer 1 corresponds to the sandy Pleistocene terrace deposits and the overlying soils. Although the base of larer 1 was initially chosen to correspond to the abrupt transition between the shallow sands and soils, and the underlying shell and sand sequences, the layer 1 base array was modified to prevent model cells from going dry during the iterations of the solver.

Figure A-2 is an isopach map of layer 1. The layer is thickest in the western and southeastern portions of the study area.

Figure A-3 is a structure contour map of the base of layer 1. According to Figure A-3, layer 1 is deepest in the southeastern portion of the study area.

The primary producing interval in the modeled aquifer system was divided into two layers, layers 2 and 3, based primarily on regional lithologic and hydraulic characteristics. Measured aquifer head elevations were also used to discern layer boundaries. Variations in aquifer heads with depth were correlated to lithologic changes in the production zone as observed at sites with both deep and shallow monitor wells. These same lithologic changes were interpreted to represent layer boundaries in other deep wells where water level data was not available. Table A-1 in Appendix A provides the elevations of layers 2 and 3 based on the lithologic or geophysical logs available in the study area.

As a general rule, layer 2 is primarily composed of shelly sands with limited occurrences of shelly or sandy limestone. Silt and clay content in layer 2 generally decreases from west to east. Deviations from this trend occur primarily in the southcentral part of St. Lucie County where layer two is composed of sandy, granular limestone. Figures A-4 and A-5, in Appendix A, present an isopach map of layer 2 and structure contour map of the base of layer 2 , respectively.

Layer 3 is a sequence of interbedded sands and shell material in a carbonate dominated matrix. The lithologic character of layer 3 varies across the study area. In the eastern part of the county, layer 3 correlates to a calcareous and poorly- to wellindurated sandstone or biogenic limestone. In the central and western part of the
county layer 3 is characterized by sparse shell material occurring in silty, calcareous mud or poorly indurated mudstone/siltstone. Figure A-6 is an isopach map of layer 3.

The bottom of the producing zone, and the base of the model, correlates to the shallowest occurrence of the low permeability clays, silts and sandy calcareous mud of the Hawthorn Group.

Table A-1 in Appendix A provides the elevations of the base of the surficial aquifer system based on the lithologic and geophysical logs. Figure A-7 is a structure contour map of the base of the surficial aquifer system.

Time Discretization

The transient calibration was discretized into 12 one-month stress periods to correspond with the availability of pumpage reports from the public water supply utilities within the study area and the collection frequency of the water level monitoring network. The calibration period extends from July 1, 1989 through June 30, 1990.

BOUNDARY CONDITIONS

The St. Lucie County ground water flow regime has two natural boundaries: the Indian River on the east, and the Indiantown Spit on the west. The southern boundary is a man-made feature, the C-23 Canal. A constant-head boundary was set along the northern boundary of the model.

Eastern Boundary

The Indian River Lagoon is a nearly linear northwest to southeast trending water sink relative to regional flow. Water levels in most of the inland portion of the Indian River Lagoon are heavily influenced by wind and vary within a range of one foot seasonally. During the transient calibration period, the average stage elevation of the river at a monitoring station located at Fort Pierce was 0.4 feet NGVD. The river was made a constant head boundary at 0.4 feet NGVD in all layers. The coarseness of the model grid makes it unrealistic to simulate the shape of the saltwater/freshwater interface in the vicinity of the shoreline. This boundary will remain valid for all predictive modeling purposes assuming the horizontal discretization of the model grid is not changed. Figure 6 illustrates the location of the cells along the Indian River Lagoon that were held at a constant head of 0.4 feet NGVD.

Western Boundary

The Indiantown Spit is a topographic ridge which extends into Okeechobee County and acts as a northwest/southeast trending ground water divide. The apex of this ridge was made a constant head boundary in all layers. Figure 6 shows the location of the cells that were assigned a constant head elevation. Currently, there are no significant ground water stresses in the vicinity of the western boundary. However, the hydrogeologic characteristics of the western boundary should be examined further to determine the validity of this boundary before planning or regulatory potential impact assessments of water use in the area are simulated. Additional evaluation of this boundary will be accomplished as part of the Okeechobee County Ground Water Resource Assessment.

Southern Boundary

The southern model boundary is associated with the C-23 Canal. The C-23 Canal is a very large canal and acts as a regional ground water sink to the flow systems in both northern Martin County and southern St. Lucie County. The stages in the canal vary and form the baseline for local flow. The cells in which the C-23 reaches are present are active river cells having no flow boundaries at their southernmost edges, while the underlying cells in layers two and three are general head. The cells west of the canal up to the western boundary are general head in all layers. Figure 7 shows the location of the cells with general head boundaries in layer 1 and Figure 8 shows the location of the general head cells in layers 2 and 3. The cells in layer 1 which act as river cells are discussed in more detail in the section on Surface Water Interactions.

The data available from monitor wells and the C-23 Canal stages make it possible to assess the validity of calibrated general head boundary conditions in this area for both planning and regulatory purposes. Reactions of general head cells to simulations of new water uses in the area will determine the validity of the model boundary in specific predictive scenarios.

Northern Boundary

There are no surficial aquifer system monitor wells in the southern area of Indian River County. Therefore, the northern boundary conditions of the model are based on the limited information available about the surface water management systems in both northern St. Lucie County and southern Indian River County. The historical methods of operation for these systems are speculative. Therefore, the northern boundary was placed 10,000 feet north of the St. Lucie County line in order to minimize effects of erroneous boundary assumptions on the cells within the county. The northern boundary of the model is constant head in all three layers with the elevations set to approximate the surface water system maintenance elevations as described by system operators. Figure 6 shows the location of the cells that were assigned constant heads along the northern boundary.

The information on ground water and surface water uses in southern Indian River County is limited. Ground water uses other than for agricultural purposes have not been permitted by the St. Johns River Water Management District. However, managers for Indian River County regional water supply systems indicate there are several developments with private water supply facilities that exist within the modeled area. These users will have to be inventoried to determine their size and facility locations before their possible impacts on the validity of the boundary in the northeast area of the model can be assessed in a reliable manner.

FIGURE 8.

HYDRAULIC CHARACTERISTICS

Horizontal Hydraulic Conductivity/Transmissivity

Horizontal hydraulic conductivity was modeled as being isotropic in each cell. Regional variations in horizontal hydraulic conductivity within each layer were simulated by varying conductivity or transmissivity values between cells.

Model arrays of horizontal hydraulic characteristics were generated from discrete data points using the kriging interpolation technique provided in SURFER software (Golden Software Inc., 1989). In most cases, data was taken directly from row 1 in the model created by Adams (1992) and incorporated in the kriging process. This procedure assured consistency between the Martin and St. Lucie models.

Pre-calibration estimates of the hydraulic characteristics of layer 1 were derived from data presented in the Soil Conservation Service soil surveys for St. Lucie County (Watts and Starky 1980), Okeechobee County (McCollum and Pendleton 1971), Martin County (McCollum and Cruz 1981) and Indian River County (Wettstein, Noble, and Slabaugh 1987). The data presented in these surveys were related to the Soil Conservation Service STATSGO coverage to generate horizontal hydraulic conductivities for each cell in layer 1. Figure A-8, in Appendix A, illustrates the STATSGO coverage for the study area and Table A-2 lists the soil classification with the estimated hydraulic conductivity. Conductivity values calculated in this manner ranged from 11.5 feet/day to 44.2 feet/day.

The hydraulic conductivity values described above were later adjusted during the calibration process in the following manner:

1) The minimum horizontal hydraulic conductivity value in the layer 1 array was raised to 18 feet/day.
2) All values were increased by 10%.

The calibrated hydraulic conductivity values used in layer 1 range from 19.8 feet/day to 51.7 feet/day. These values are consistent with hydraulic conductivity ranges for the soils in the modeled area as shown in Table A-2. Figure A-9, in Appendix A, presents a contour map of the calibrated hydraulic conductivities for layer 1.

Hydraulic characteristics of production zone sediments were determined from the APT's presented in Table A-3, in Appendix A. Figure A-10 shows the location of the aquifer performance test sites in St. Lucie County. For each aquifer performance test, the layer in which the production well was screened was assumed to produce 100 percent of the water. The transmissivity value derived from the test was then divided by the thickness of the screened layer to determine a horizontal hydraulic conductivity for that layer at that site. Layers at sites where hydraulic conductivity data were unavailable were assigned hydraulic conductivities relative to their lithologic similarities with layers at APT sites. Assigned hydraulic conductivity values for layers at untested sites were biased upward relative to the amount of clean shell, calcareous sandstone and coquina limestone present; and downward in an inverse relationship to silt, clay and carbonate mud content. Estimations of hydraulic conductivities from both aquifer performance tests and lithologic data collection wells are presented in Table A-3 in Appendix A. Lukasiewicz and Switanek(in press) discuss the results of the aquifer performance tests in more detail.

Because historical water levels in the surficial aquifer system were always above the top of layer 3 , the transmissivity of this layer remains constant throughout steady-state and transient simulations. The input array for horizontal hydraulic character of this layer represents the transmissivity of layer 3 in units of feet $2 /$ day. Transmissivity values for this layer were calculated by subtracting the kriged surficial aquifer system bottom elevations from the kriged base elevations for layer 2 and multiplying the difference array by the layer 3 kriged horizontal hydraulic conductivity array.

Model calibration was achieved by adjusting the hydraulic conductivity array of layer 2 and the transmissivity array of layer 3 by the following methods :

1) The minimum hydraulic conductivity of layer 2 was increased to 25 feet/day.
2) All layer 2 array values were increased by 10%.
3) Discrete values in the array were adjusted manually in response to the calibration runs.
4) The minimum transmissivity of layer 3 was increased to 600 feet2/day.
5) All layer 3 array values were increased by 20%.
6) Discrete values in the array were adjusted manually in response to the calibration runs.

The resulting modeled minimum and maximum hydraulic conductivity values for layer 2 were $27.5 \mathrm{ft} /$ day and $144.1 \mathrm{ft} / \mathrm{day}$, respectfully. Figure A-11 provides a map of the calibrated hydraulic conductivity values for layer 2.

The resulting modeled minimum and maximum transmissivity values for layer 3 were 720 feet $2 /$ day and 12,380 feet $2 /$ day, respectively. Figure A-12 provides a map of the calibrated transmissivity values for layer 3. Figure A-13 provides a composite transmissivity map for the surficial aquifer system.

Calibrated ranges of layer 2 hydraulic conductivities and layer 3 transmissivities are very reasonable when compared to the APT derived values presented in Table A-3.

Vertical Hydraulic Conductivity

Vertical flow in the model is a function of the vertical leakance (Vcont), area of the cell, and the head difference between the layers. MODFLOW requires that the user calculate the Vcont values between nodes and enter the values into the model as input data. The following formula, from McDonald and Harbaugh (1988), was used to calculate the initial Vcont values:

$$
\begin{equation*}
\text { Vcont }=\frac{2}{\frac{b 1}{v c 1}+\frac{b 2}{v c 2}} \tag{1}
\end{equation*}
$$

where,

```
b1 = thickness of upper layer,
b2 = thickness of lower layer,
vc1 = vertical conductivity of upper layer, and
vc2 = vertical conductivity of lower layer.
```

Discrete values in the arrays were adjusted in response to calibration runs. Figures A-14 and A-15 are contour maps of the calibrated Vcont values between layers 1 and 2 , and between layer 2 and 3 , respectively.

Storativity

Layer 1 cells were all treated as unconfined and were assigned a specific yield of 0.2 . This value is within the range of specific yield measurements for unconsolidated sediments as indicated by Fetter (1980).

Layer 2 cells were allowed to vary between unconfined and confined conditions, depending on the water level. For this scenario, MODFLOW requires both a specific yield value and a confined storativity value. Again, the primarily unconsolidated nature of the sediments of layer 2 made it reasonable to assume a specific yield of 0.2 for these cells. A storativity of 0.0009 was used to represent confined storage in all active layer 2 cells. This value is an average storativity value derived from the pump tests in Table A3 that were conducted in layer 2.

All cells in layer 3 were modeled as a confined aquifer with a storativity of 0.0003 . This storativity value is an average of the storativity values derived from the pump tests in Table A3 that were performed in the producing zones represented by layer 3.

SURFACE WATER INTERACTIONS

Physical System

There are several surface water features within the study area which affect the water levels within the surficial aquifer system. Understanding the surface water systems is essential to the development of a ground water model for the study area. According to Restrepo et al. (1992), canal-aquifer interaction is dependent on several factors:

1) the hydraulic connection between the canal and the aquifer,
2) the head gradient between the canal and the aquifer,
3) the shape of the flow lines in the aquifer surrounding the canal reach, and
4) the geometric characteristics of the cross-section of the canal reach.

Figure 9 is a hydrograph which compares the water level monitoring well SLMW5S with the average monthly and daily stages in the C-24 Canal at Structure G-81. The daily stage readings were taken on the same day as the monthly water

■SLMW5S MONTHLY READING

- G-81 AT C-24 AVERAGE MONTHLY STAGE
^G-81 AT C-24 AVERAGE DAILY STAGE

FIGURE 9. Hydrograph of Well SLMW5S and Stage at G-81
level from well SLMW5S. An examination of the hydrograph indicates that there is a good correlation between the daily stage reading and the ground water level. Figure 9 indicates that the surficial aquifer system responds quickly to changes in canal stages. As shown in Figure 9, there may be a significant difference between the average monthly stage and the ground water level on a specific day.

Cooper and Ortel (1988) divided the surface water bodies in St. Lucie and eastern Okeechobee Counties into five surface water management basins: the C-23 Basin, the C-24 Basin, the C-25 Basin, the C-59 Basin, and the North Fork of the St. Lucie River Basin. The basins were delineated based on surface water flow patterns. Figure 10 depicts the locations of the basins. Figures B-1 through B-5, in Appendix B, depict the major surface water bodies within each basin. Tables B-1 through B-4 describe the design criteria for the control structures within the basins. There are no SFWMD structures within the North Fork of the St. Lucie River Basin.

In addition, there are two other entities that are responsible for large surface water management systems within St. Lucie County: the Fort Pierce Farms Drainage District (FPFDD) and the North St. Lucie River Water Control District (NSLRWCD). Figure 10 illustrates the location of the FPFDD. Figure B-6, in Appendix B, depicts the location of the NSLRWCD in relation to the C-24 and North Fork of the St. Lucie River Basins.

There are no District structures in either the FPFDD or the NSLRWCD. The canals within the FPFDD and NSLRWCD are controlled by the structures which belong to the individual districts. Most of these structures are either culverts or risers with removable flashboards. The control elevation for these structures were surveyed by District staff.

Most of the canals within the NSLRWCD are structure controlled. However, the NSLRWCD maintains the stages in several canals by back-pumping water from Ten Mile Creek (NSLRWCD 1991). Also, the NSLRWCD has a permit from the SFWMD to withdraw water from the C-25 Canal. Figure B-7, in Appendix B, illustrates the location of the pump stations within the NSLRWCD.

A review of aerial photos indicates that there is a myriad of canals throughout the study area. The canals range in size from major waterways to minor irrigation ditches. This modeling study includes only the canals that were deemed to significantly affect the regional flow system. This classification includes the District's canals; and major canals within water control districts, developments, and agricultural areas. Minor canals were only included if they were deemed to significantly affect the regional flow system.

Rivers

The surface water bodies that were incorporated into the model were classified as either rivers or drains based on their storage capacity and ability to maintain a desired water level elevation. Large water bodies that are maintained at a certain control elevation were modeled as rivers in this report. The maintenance can be accomplished via control structures, back-pumping, withdrawal restrictions, or tidal influence. Figure 11 depicts the location of the cells with river reaches. The remaining surface water bodies were classified as drains.

MODFLOW allows for two-way flow between rivers and the aquifer system. The amount of flow is determined by the following: 1) the hydraulic characteristics of the river bed; and 2) the head difference between the aquifer system and the river. MODFLOW assumes that the river stage is constant through a stress period. McDonald and Harbaugh (1988) provide the following equation for flow between the river and aquifer:

$$
\begin{equation*}
Q_{R I V}=K L W(H-R / M \tag{2}
\end{equation*}
$$

where,
$Q_{R I V}=\quad$ the leakage through the reach of the river bed;
$\mathrm{K}=$ the hydraulic conductivity of the river bed;
$L=$ the length of the river reach;
$\mathrm{W}=$ the width of the river;
$\mathrm{M}=$ the thickness of the river bed;
$\mathrm{H}=$ the head in the aquifer; and
$R \quad=\quad$ the head in the river.
River bed conductivity values of $1 / 100$ multiplied by the hydraulic conductivity of the soil were used to estimate the conductivity of the river bed. These values were derived by conducting a series of sensitivity analyses on the river bed conductivity values. A product of $1 / 100$ multiplied by the hydraulic conductivity of the soil produced the best results. For all river reaches, a thickness of one foot was assigned to the river bed.

SFWMD Canals C-23, C-24, C-25, C-23 Extension, and C-25 Extension were treated as rivers in the model. These canals were classified as rivers for the following reasons: 1) the canal reaches are fairly extensive; and 2) ground water seepage combined with restrictions on water withdrawals (SFWMD 1974 and SFWMD 1985) should prevent these canals from drying up completely. Canal reaches and widths were estimated from USGS quadrangle maps. Canal bottom elevations were determined from the US ARMY Corps of Engineers "as-built" drawings. These drawings do not account for later infilling of sediments which would result in canal bottom elevations being higher than originally constructed. Canal stages were taken from data collected by the SFWMD.

The tidal portion of the North Fork of the St. Lucie River was treated as river reaches in the model. The northern limits of the river cells extend up to the control structure of the North St. Lucie River Water Control District. The wetted perimeter of the river was set equal to the area of the water surface. Initially, the hydraulic conductivity of the river bottom in each cell was set equal to $1 / 100$ of the soil hydraulic conductivity in corresponding cells. River stage data was based on data measured at the intersection of SR 70 and the North Fork of the St. Lucie River. Monthly average stage data was used for each transient time step. River bottom elevations were estimated to grade from -5 ft NGVD at the extreme northern reaches to - 13 feet NGVD (per C-23 extension as-built) at the extreme southern end.

Water levels in several canals in the North St. Lucie River Water Control District are artificially maintained by backpumping (NSLRWCD 1991). These canals have wet season (May through October) and dry season (November through April) maintenance schedules. These maintained canals were represented as rivers in the model. The remaining canals in the system were represented using the drains package.

Reaches were determined from digitized maps and widths were determined from field observations and conversations with engineers from a local engineering company. Canal bottom elevation data are not available. However, the consulting engineers indicated that canal bottom elevations range from 9 to 15 feet below land surface. Initially, the river bottom hydraulic conductivity was assigned a value of $1 / 100$ of the soil conductivity. Table B-6, in Appendix B, provides the hydraulic parameters for the river cells within the North St. Lucie River Water Control District.

The Gateway and Buttonwood Waterways are also classified as rivers in this study. These canals are located in East Port St. Lucie which is situated in the southeastern portion of the study area. Talks with city employees indicate that these canals are maintained at an elevation of 11.8 feet NGVD. The City of Port St. Lucie maintains canals stages by routing storm water from adjacent areas into these canals and installing structures to control the off-site discharge. The length, width and river bottom for the canals were obtained from the permit file.

According to Figure 11, most of the river reaches are effluent. The water flows from the aquifer into the rivers. However, in certain areas, usually corresponding with the location of a control structure, some of the District's river reaches become influent. In addition, the river reaches for the Gateway and Buttonwood Waterways are influent. This is consistent with the permit which indicates that these waterways help maintain the water levels in the development.

Drains

MODFLOW only allows flow from the aquifer to drains. The amount of flow is determined by the following factors: 1) the hydraulic characteristics of the drain, and 2) the head difference between the aquifer system and the drain. McDonald and Harbaugh (1988) provide the following equation for flow between the aquifer and the drain:

$$
\begin{equation*}
Q=C(H-D) \tag{3}
\end{equation*}
$$

where,
$Q=$ the flow from the aquifer to the drain;
$C=$ the conductance of the interface between the aquifer and the drain;
$H=$ the head in the aquifer; and
$D=$ the head in the drain.
Similar to the calculation for river bed conductivity, the drain bed conductivity was estimated to be $1 / 100$ of the soil conductivity. Also, the drain beds were assigned a thickness of one foot.

All of the canals within the FPFDD are considered to be drains in this report. The surveyed control elevations for the canals were used for the drain stage elevation. Canal reaches were derived by overlying the model grid on a digitized map of the system. Drain widths were determined by random field inspection.

The canals of the NSLRWCD control the surface water levels in the east central portion of the county (NSLRWCD 1991). The surveyed control elevations were used as drain stages for the model. The elevations should reflect the maximum potential stages in the canals during the transient calibration period since drought conditions during the calibration period made water storage a prime objective of the NSLRWCD.

Some canals do not have structures that restrict discharges to North Fork of the St. Lucie River. In these cases, the effective drain elevation control was the canal bottom.

The remaining hydraulic parameters were derived as follows. Canal widths were based on information provided by system operators and confirmed by field observations made at random locations. Canal reaches were determined by overlaying the model grid on a digitized base map of the NSLRWCD system.

Two other water control districts affect the study area, the St. Johns Water Control District (SJWCD) and the Indian River Farms Drainage District (IRFDD). Both of these districts are located within the St. Johns River Water Management District.

The St. Johns Water Control District is a surface water management system designed to provide irrigation and drainage to the citrus groves in the north central portion of the study area (SJWCD 1991). The Floodway is an east to west running aqueduct which forms the backbone of the system. For calibration purposes, the drain elevations vary between 17 feet to 20 feet NGVD.

The northeastern portion of the model is hydraulically dominated by the IRFDD. This surface water system provides drainage to the suburban and incorporated areas of Vero Beach. Discharges from the system are to the Indian River Lagoon.

Conversations with system operators yielded information on the general operating procedure and canal construction. The entire system functions as a drain with primary control structures located outside of the modeled area (IRFDD 1993). Drainage district operators confirmed that these drains effectively reduced local ground water levels to approximately 4 feet below land surface. Actual drain widths and reaches were approximated from quadrangle maps.

There are several other drains within the study area. Figure 12 depicts the location of the cells in layer 1 which have active drains. Where available, the permit information was used to determine drain extinction depths and routing scenarios. Widths and reaches of the canals and lakes were determined from areal photos and USGS quadrangle maps. Initially, the drain conductance was presumed to be $1 / 100$ of the soil conductivity.

Cells with Drain Reaches
 FIGURE 12.

RECHARGE

Background

Figure C-1, in Appendix C, depicts the location of the rainfall stations in the study area. Table C-1 lists the locations of the rainfall stations.

SFWMD (1994) estimated the average rainfall for St. Lucie County from 1936 to 1992. Table C-1 specifies the stations used in the analysis and Table C-2 (SFWMD 1994) presents the results of the analysis. Only the rainfall stations with a extensive historical record were used for this analysis.

According to Table C-2, the yearly average rainfall in the study area from 1936 through 1992 was 51.37 inches per year. However, during the calibration period the estimated rainfall for the study area was 42.25 inches per year. Table C-3 lists the rank and cumulative percentile for the annual rainfall data from 1936 through 1992, and Figure C-2 is a normal probability plot of the annual rainfall for this period (Statgraphics 1992).

Triola (1993) provides the following formula to analyze normal probability distributions:

$$
\begin{equation*}
z=(x-u) / o \tag{4}
\end{equation*}
$$

where,
$\mathrm{z}=$ the standard score,
$\mathrm{x}=$ the x value of the desired percentile,
$u=$ the mean value of the sample, and
$0=$ the standard deviation of the sample.
According to Equation 4, the rainfall during the calibration period would fall in between the 14th and 15th percentiles. This is fairly close to a 1 -in-10 year drought event (40.39 inches/year).

Figure C-3 is a graph of the average monthly rainfall during the period from 1936 through 1992. According to Figure C-3, 71\% of the precipitation occurs during the wet season (May through October).

Daily rainfall data from all 65 stations were used to develop the recharge arrays for the calibration period. The average recharge in a model cell resulting from precipitation, Rp , can be computed using the mass balance equation:

$$
\begin{equation*}
R_{p}=P_{n}-Q_{d}-E T_{u} \tag{5}
\end{equation*}
$$

where,
P_{n} is the average net precipitation over the cell not lost to interception or depressional storage,
Q_{d} is the average discharge of water lost to surface drainage (not otherwise simulated using a MODFLOW package), and
ET_{u} is the average evapotranspiration from the unsaturated zone (not calculated by the evapotranspiration package in MODFLOW).

The ET package was not updated in time to incorporate ET_{u} in the development of this model. In areas where there is a significant unsaturated zone above the water table, the recharge calculations may become inaccurate without considering $E T_{u}$. However, this model was calibrated without incorporating this parameter.

Net Precipitation

The average monthly net precipitation, Pn , for a cell can be approximated from the total monthly precipitation over the cell, Pt , as:

$$
P_{n}=M A X\left\{K_{i} P_{t}-\stackrel{N}{\left(\Sigma K_{d}(n), 0\right\}} \underset{n=1}{ }\right.
$$

where,

K_{i} in the interception coefficient,

$K_{d}(n)$ is the daily depression storage loss due to evaporation, and
n is the number of days in the month.
Interception is that portion of gross precipitation which wets and adheres to above ground objects until it returns to the atmosphere through evaporation (Bower et al., 1990). The quantity of water intercepted depends upon the storm character, the season of the year, and the species, age, and density of the prevailing plants and trees. The total interception by an individual plant is directly related to the amount of foliage. For non-urban land uses, extreme values of K_{i} can be defined as (Viessman, et al., 1977):

$$
K_{i}= \begin{cases}1.00 & \text { for clear bare ground surface (0\% interception) } \\ 0.75 & \text { for dense closed forest (25\% interception) }\end{cases}
$$

Values for K_{i} in urban areas ranged from 1.00 to 0.50 , depending upon the land use type. The value of K_{i} assigned to a model cell represented the weighted average of the K_{i} values for all land use types within the cell. Figure C-4, in Appendix C , is a general land use map for the study area. Table C-4 provides the land use cover codes and Table C-5 lists land use types and corresponding values for K_{i}.

Precipitation that reaches the ground surface may infiltrate, flow over the surface, or become trapped in numerous small depressions. The depression-storage loss for impervious drainage areas varies from 0.05 inches, on a slope of 2.5%, up to 0.11 inches, on a slope of 1% (Bower, et al., 1990). The upper limit of 0.11 inches was assumed for each precipitation event. The model depression storage loss, K_{d}, was
calculated as: calculated as:

$$
\begin{equation*}
K_{d}=K_{d} \max \left\{M A X\left\{\left[1-\left(K / K_{m}\right) 0.5\right], 0\right\}\right\} \tag{7}
\end{equation*}
$$

where,
$\mathrm{K}_{\mathrm{d}} \max$ is the sum of maximum depression storage losses for the stress period computed on a daily basis (an upper limit of 0.11 inches was assumed for each day),
K is the hydraulic conductivity of the soil layer, and
K_{m} is a calibration factor. It is defined as the value of hydraulic conductivity at which infiltration is assumed to be nearly instantaneously related to the potential evaporation rate.

A value of $\left(\mathrm{K} / \mathrm{K}_{\mathrm{m}}\right)=0$, signifying an impervious drainage area, implies a value of $K_{d}=0.11$ inches per single precipitation event, and a value of $\left(\mathrm{K} / \mathrm{K}_{\mathrm{m}}\right)=1$, a highly pervious area, implies a $K_{d}=0$. Rainfall of less than the critical daily precipitation evaporates and creates neither infiltration nor runoff drainage.

Only one precipitation event per rainy day of at least 0.11 inches was assumed. Storage capacity due to interception is usually reached early in a storm event. This implies that a larger fraction of rainfall is intercepted in depressions during numerous small storms than during infrequent severe storms (Bower et al., 1990).

The value of soil hydraulic conductivity, K, in a model cell was estimated by examining the tables of saturated vertical permeability for applicable soil types found in Soil Conservation Service soil survey books (Watts and Starky 1980; McCollum and Pendleton 1971; McCollum and Cruz 1981; and Wettstein et al., 1987). Soil permeability values ranged from 19.8 feet/day to 51.7 feet/day throughout the modeled area. The instantaneous hydraulic conductivity, K_{m}, was set to $51.7 \mathrm{ft} / \mathrm{day}$.

Surface Drainage

The surface drainage is defined as the difference between the net precipitation, P_{n}, and the net infiltration (Bower, et al., 1990). The net average surface drainage, Q_{d}, can be estimated by:

$$
\begin{equation*}
\left.Q_{d}=\left(K_{s} \backslash K K_{a}\right) \nmid P_{n}\right) \tag{8}
\end{equation*}
$$

where,
K_{g} is a coefficient relating the potential for runoff to surface drainage, and
K_{a} is a coefficient relating the potential for aquifer recharge from surface drainage.
K_{8} varies between 0 and 1 , depending on the potential of the land use type to have surface drainage into a canal or into a surface water body. Factor K_{a} takes into account the effects of drainage systems which may recharge the unsaturated zone of the aquifer. The value of K_{a} is a function of the average hydraulic conductivity and the average slope of the land surface. It has a value of 1 if there is no drainage into the unsaturated zone, and has a value of 0 when rainfall completely recharges the unsaturated zone. Model values for K_{s} varied between 0.1 and 0.3 . Table C-5 lists land use codes and the K_{g} value assigned for each code. The value for K_{a} was uniformly set to 0.1 and was defined as:

$$
\begin{equation*}
K_{a}=K_{a} \max \left(1-K / K_{\max }\right) \tag{9}
\end{equation*}
$$

where,
K_{a} max is the maximum value that K_{a} may take (less than or equal to 1), and
$\mathrm{K}_{\text {max }}$ is the maximum soil hydraulic conductivity in the study area.

Recharge vs Rainfall

Figure C-5 is a map of the average monthly rainfall for the study period based on the rainfall stations in Table C-1. During the calibration period, rainfall was heaviest in the southwestern and northeastern portion of the study area. Rainfall was lightest in the southeastern portion of the study area.

The recharge term used in MODFLOW represents water that actually reaches the aquifer. Figure C-6 is a map of the net recharge under steady-state conditions. Generally, the recharge map reflects the same major patterns as the average rainfall map.

Figure C-7 is a map which illustrates the ratio of recharge to rainfall throughout the study area. The ratio varies throughout the study area due to the number of variables used to estimate the recharge over the study area.

EVAPOTRANSPIRATION

Water loss from the saturated zone through direct evaporation or through transpiration by plants is simulated in the model by the Evapotranspiration (ET) Package of MODFLOW. The following equations express the ET rate (McDonald and Harbaugh, 1988):

$$
\begin{align*}
& Q=0 \text { when } H<S U-D P \tag{10a}\\
& Q=E R^{*}(H-(S U-D P) V D P \text { when } S U \geq H \geq S U-D P \tag{10b}\\
& Q=E R \text { when } H>S U \tag{10c}
\end{align*}
$$

where,
$\mathrm{Q}=$ the ET discharge rate $\left(\mathrm{L}^{3} \mathrm{t}-1\right) ;$
$\mathrm{H}=$ the head in the aquifer $(\mathrm{L}) ;$
$\mathrm{SU}=$ the ET surface elevation $(\mathrm{L}) ;$
$\mathrm{DP}=$ the extinction depth $(\mathrm{L}) ;$ and
$\mathrm{ER}=$ the maximum ET rate $\left(\mathrm{L}^{3} \mathrm{t}-\mathrm{l}\right)$.

ET Surface

The ET surface elevation is represented in the model by the average land surface elevation in each cell minus the capillary fringe height for that cell (see Figure 13 for conceptualization). Fetter (1980) indicates that the capillary rise is inversely proportional to the pore radius. According to Fetter (1980) the capillary rise varies between 0.026 feet for gravel to 9.84 feet for clay.

FIGURE 13. Conceptualization of Capillary Fringe and ET Extinction Depth Determination

In order to derive the ET surface elevations, initial values were taken from USGS 7.5 minute topographic quadrangle maps. The values were smoothed by utilizing the SURFER Program to remove extreme values such as benchmarked features not representative of average land surface elevation in the model cell. Finally the capillary fringe height was subtracted from the average topographic values to estimate the ET surface.

Figure C-8, in Appendix C, is a map of the ET surface elevations. In most cases, the ET surface is fairly close to the land surface.

Maximum ET Rate

The maximum ET rate was estimated using the Blaney-Criddle equation (USDA 1970). The basic form of the equation is as follows:

$$
\begin{equation*}
U=\left(K K_{t} P_{m} T_{m} / 100\right. \tag{11}
\end{equation*}
$$

where,
U is the crop ET for the time period, in inches per day;
K is a consumptive use coefficient which varies according to the crop;
$\mathrm{K}_{\mathrm{t}}=0.0173 \mathrm{~T}$, where T is the temperature in degrees Fahrenheit;
P_{m} is the percent of daytime hours of the year which occurred during the month; and
T_{m} is the mean temperature for the month in degrees Fahrenheit.
The consumptive use coefficient is defined as follows:

$$
\begin{equation*}
K=K_{c} * K_{f} \tag{12}
\end{equation*}
$$

where,
K_{c} is a coefficient reflecting the growth state of the crop (Table C-6, Appendix C); and
K_{f} is a coefficient reflecting the fraction of land surface which is covered with vegetation (also Table C-6). K_{f} is 1.0 for non-urban land uses, and varies between 0.1 and 1.0 for urban land uses.

The monthly percentage daytime hours and mean temperature data from both Indiantown and Fort Pierce rainfall stations were taken directly from SFWMD (1985) Permit Information Manual Volume III and averaged to get monthly values for the modeled area. Crop coefficients (K_{C}) were either taken directly from or inferred from values presented in SFWMD (1985) Permit Information Manual Volume III. Values of K_{f} for urban land uses were determined by examination of surface water permit data for ratios of pervious to impervious area.

Extinction Depth

Extinction depth was a very sensitive parameter in the model calibration. Evapotranspiration will cease if the simulated head in the aquifer drops below the extinction depth for the cell. Extinction depths in the model are related to land use and are based upon estimated root depths for various kinds of vegetation (memorandum dated April 26, 1990 from Thomas Teets to Michael Bennett). Table C-7, in Appendix C, provides the land use codes with their assigned extinction depths.

Even with relatively deep water tables, ET may still occur due to upward transport via capillary forces. In this model, best calibration results were achieved by lowering the extinction depths by one foot in all layer 1 cells.

Evapotranspiration vs Recharge

For several cells the ET discharge exceeds recharge under steady-state conditions. Some possible reasons are as follows:

Drought Conditions. As previously indicated, the rainfall frequency during the calibration period approximates a 1-in-10-year drought conditions. Therefore, it is possible for the evapotranspiration to exceed recharge for certain cells during a drought period.

Missing Canals. Many of the cells where the evapotranspiration exceeds recharge occur in the agricultural areas. As previously indicated, many minor drainage canals were not included because they do not significantly affect the regional flow system. However, the canals may affect the discharges for the individual cells.

Equations 10a, 10b, and 10 c indicate that the ET discharge is dependent on the head in the aquifer. While the absence of these minor irrigation ditches does not significantly affect the water level, the simulated water level in the cell may be slightly higher than in actuality due to the absence of these canals. The higher simulated water level increase the simulated ET discharge.

Additional Inflows. A cell may receive inflows from rivers or alternative sources. These inflows will raise the simulated water levels, and consequently the ET discharge.

GROUND WATER USE

The SFWMD requires all water users to obtain a water use permit with the exception of the following: 1) single family homes, 2) duplexes, and 3) fire-fighting uses. The SFWMD (1985) divides water use permits into two categories: 1) individual permits where the water use demand is greater than $100,000 \mathrm{GPD}$, and 2) general permits where the water use is less than 100,000 GPD. The SFWMD also requires individual permits from users whose average daily withdrawals exceed $10,000 \mathrm{GPD}$ or maximum daily withdrawals exceed $20,000 \mathrm{GPD}$ in a reduced threshold area (RTA). Figure 2 shows the location of the Savanna's and Jensen Beach Peninsula RTA which is located within the study area.

The permit records were a major source of data utilized in determining input data for the well packages. Table D-1, in Appendix D, provides information on the individual permits located within the modeled area.

Calibration for the transient runs were generated by using monthly data. Each month represents a stress period. Calibration for the steady-state run was attained by averaging the last 12 transient stress periods of pumpage data for each well.

Public Water Supply Use

Permitted public water supply pumpages for July 1989 through June 1990 were take from the water use pumpage files. Only public water supply systems permitted by the SFWMD were included in this study. Pumpages from individual wells were determined from utility pumpage records using either actual metered volumes or the pumping time multiplied by the well capacity.

The exceptions to this procedure were the permitted pumpages on the Jensen Beach Peninsula. In this area, well pumpages were based on the total reported wellfield pumpage divided by the number of wells. This methodology is similar to the procedure used by Hopkins (1991) in the development of the North Martin County model.

Pumpages for Harbor Ridge (permit 56-00449-W) were also included in the public water supply package; even though this permit is for irrigation. Harbor Ridge has a permit for public water supply (permit $56-00500-\mathrm{W}$). However, Harbor Ridge did not use its allocation since the facilities were not in place during the calibration period.

Cell locations were determined by converting the planar coordinates for the wells to a row and column location, and assigning the pumpage to the layer at that location which has the highest transmissivity. Figures D-1 and D-2, in Appendix D, depict the locations of cells containing public water supply withdrawals in layers 2 and 3 , respectively.

Agricultural Water Use

Agricultural water use was estimated by using the modified Blaney-Criddle equation used by the SFWMD to calculate the annual and monthly allocations. Soil types, system efficiencies, and crop types were taken directly from the water use permits.

Next, the data were inputted into a program which takes well casing and total depth information and assigns the pumpage to the proper layer. The program takes into consideration that a well screen may penetrate more than one interval. In this case, the pumpage from the well is broken into one or more records and is assigned a relative pumpage per layer based on the amount of screen present in each layer and the hydraulic conductivity of that layer.

Exhibits D-3 and D-4, in Appendix D, illustrate the location of cells with agricultural ground withdrawals in layers 2 and 3, respectively. Withdrawals from surface water sources were not included in the model.

Domestic Self Supply

Domestic self supply withdrawals were estimated using land use data. Five land use types were considered: urban single family low density (URSL); urban single family medium density (URSM); urban single family high density (URSH); urban multifamily (URMF); and urban mobil home (URMH). The area of land use types within each model cell were calculated using GIS polygons. Domestic self supply water use for each cell was calculated using the areas of land use types described above multiplied by the associated rate-per-area values given in Table 2. Population density figures were checked against the land use areas and the 1990 census and were within reasonable limits for the area within the county boundaries.

The transient file for domestic water supply is a single month water use estimation repeated for each month of the calibration period. There is no seasonal differentiation in water use in this simulation.

Agricultural Recharge

According to Lukasiewicz (1992), the Upper Floridan aquifer accounts for a large amount of the agricultural water use within the study area. Since the plants will not use all of the water in the irrigation process, there is a potential for some of this water to recharge the surficial aquifer system. In order to approximate the amount of recharge, the following steps were taken:

1) Lukasiewicz (1992) estimated the pumpage for each Floridan agricultural well in the study area. The wells were separated into two groups: wells with reported data and wells with estimated data.
2) Basically there are three major types of irrigation systems: flood - 50\% irrigation efficiency; sprinkler - 75\% irrigation efficiency; and drip - 85\% irrigation efficiency. Using an intermediate value of 75\% efficiency, it can be concluded that 25% of the water withdrawn from the Floridan aquifer is available to recharge the surficial aquifer system. Therefore, the pumpage from each Floridan well was multiplied by a factor of 0.25 to obtain an estimated recharge value.
3) The calculated recharge data from the wells with reported pumpages were added to the public water supply package. The recharge data for the remaining wells were added to the agricultural package.

TABLE 2. DOMESTIC SUPPLY ESTIMATED PARAMETERS

LAND USE	GPD/ACRE	IRRIGATION PERCENT
URSL	615.75	0.50
URSM	1435	0.50
URSH	2870	0.50
URMF	1456	0.25
URMH	3500	0.20

Methodology for table development:

1) The 1990 population is 150,171 .
2) A per capita usage of 149 GPD /person was used to estimate the withdrawals.
3) The per capita usage was combined with the land use based population density data to derive the table.

CALIBRATION

Calibration is the process of adjusting the parameters of the numerical model so that the model responds similarly to the physical system. The St. Lucie County model was calibrated to both steady-state and transient conditions.

First, the model is initialized with reasonable parameters based on the results from hydrologic studies. Steady-state runs were used to make the primary adjustments to the model. Next, transient runs were used to refine the model. Finally, adjustments were made to the data sets to help the model meet the calibration criteria for steady-state and transient conditions.

In order to measure the success of the calibration, the model results were compared to the actual water levels obtained from the monitoring well network. The monitoring network consisted of 127 wells which were distributed throughout the study area. Figures 14, 15, and 16 depict the location of the monitoring wells for each layer. Water levels from the wells were obtained on a monthly basis.

STEADY-STATE CALIBRATION

Methodology

"Steady-state" can be viewed as an average condition achieved over a long period of time. It presumes that no major changes in stress rates occur during that time. When the stresses that drive ground water flow change very slowly in time relative to the rate of change within the aquifer system, steady-state assumptions are justified. Table E-1, in Appendix E, provides the maximum, average, and minimum water level values for the monitor wells during the calibration period. Table E-1 also provides the standard deviation and variance for the sampled data. In most cases the standard deviation and variance are relatively small. This infers that there is little deviation from the mean water level. Based on the following it can be concluded that "quasi steady-state" conditions existed during the calibration period.

Average values of recharge, evapotranspiration, pumpage, and surface water stage elevations were used to approximate steady-state conditions. These values were calculated from the monthly data collected during the calibration period.

August 1989 water level data from observation wells and surface water stages were kriged to develop the initial starting heads. Figures 17, 18, and 19 present the starting heads used in the calibration process for layers 1,2 , and 3 respectively.

Figures 20, 21, and 22 depict the steady-state water levels for layers 1,2, and 3, respectively. These figures represent average conditions during the calibration period. Restrepo et al. (1989) indicate that steady-state runs can be used for sensitivity analyses or for predictive scenarios.

Results

The steady-state calibrations were based on comparison of simulated water levels under averaged recharge/discharge conditions versus the measured water levels in surveyed wells during the calibration period. Two criteria were used to measure the steady-state calibration:

FIGURE 15. Location of the Monitoring Wells in Layer 2.

FIGURE 16. Location of the Monitoring Wells in Layer 3.

FIGURE 17. Starting Heads for Layer 1.

FIGURE 18. Starting Heads for Layer 2.

FIGURE 20. Steady-State Heads for Layer 1.

FIGURE 22. Steady-State Heads for Layer 3.

1) The simulated steady-state water level for the observation node was within the range of the maximum and minimum observed water levels for the corresponding well. At least 50% of the observation nodes must meet this criteria for the model to be considered calibrated. This criteria was used by Adams (1992) for the Martin County model.
2) The modeled water level for the observation node was within \pm one foot of the averaged water level of the corresponding well. At least 50% of the observation nodes must meet this criteria for the model to be considered calibrated.

Table 3 presents the results of the steady-state simulation. According to Table 3,90 observation nodes (71%) meet the first calibration criteria, 93 observation nodes (73%) meet the second criteria, and 87 observation nodes (68%) meet both criteria. Therefore, the steady-state model successfully meets both calibration criteria.

The remaining wells were classified as either uncalibrated or explainable. An observation node was considered uncalibrated if there was no apparent reason for its failure to meet the calibration criteria. Reasonable adjustments were made to the aquifer parameters affiliated with these nodes. However, these nodes did not calibrate.

An observation node was considered explainable if it met both of the following conditions:

1) There is an apparent reason for a node to fail the calibration criteria.
2) A review of the monitoring well data and adjacent water levels indicates that the simulated data reasonably fits the local trend.

Appendix F describes possible causes for each of the explainable wells.
Anderson and Woessner (1992) recommend that a quantitative analysis of the distribution error be conducted as part of the calibration assessment. In addition, they provided levels for the calibration assessment. For Level 1, the simulated values fall within the calibration target. For this study, if the simulated steady-state water level is within ± 1-foot of the average value, it is defined as meeting the Level 1 calibration criteria for steady-state conditions.

Figures 23, 24, and 25 are the steady-state residual maps for layers 1, 2, and 3, respectively. The residuals were determined by subtracting the mean observed water level for a well from the estimated steady-state water level for the corresponding node.

Figure 23 indicates that most of the study area within layer 1 lies between the ± 1-foot contour interval (Level 1). There are a few areas where the residuals are relatively high (greater than 1.00 foot) or relatively low (less than -1.00 feet). The area located west of the North Fork of the St. Lucie River and northeast of the C-24 Canal does not fit Level 1 calibration criteria. In addition, the area located in the southeast corner of the study area also does not fit Level 1 calibration criteria. These areas are located in the vicinity of the GDU Wellfield and the North Martin County Wellfield, respectively.

TABLE 3. Steady-State Calibration Results

Layer	Row	Column	Well	SS Value	Average	Minimum	Maximum	Status
1	7	83	STL266	9.55	8.77	8.24	9.68	both
1	20	84	PG5	16.90	16.68	15.73	17.41	both
1	22	87	FPWT8	5.07	4.62	3.66	5.46	both
1	23	86	FPWT7	6.96	5.22	2.96	7.46	within range
1	25	85	FPWT6	6.81	5.42	4.41	6.61	uncalibrated
1	27	34	STL42	25.94	25.88	25.12	27.11	both
1	27	85	FPWT4	0.11	0.06	-0.62	0.58	both
1	27	87	FPWT5	1.08	2.40	1.43	0.58 3.13	uncalibrated
1	28	83	PG6	10.02	9.18	8.97	9.44	less than one
1	30	88	FPWT3	-3.85	1.48	0.41	2.61	uncalibrated
1	30	91	PG1	3.95	4.87	3.57	5.71	both
1	31	77	STL125	16.77	16.89	13.85	17.74	both
1	31	83	FPWT2	6.21	6.69	6.03	7.03	both
1	31	86	FPWT9	-0.07	-2.19	-3.22	-0.52	uncalibrated
1	32	89	FPWT1	6.59	8.00	6.49	9.49	within range
1	34	82	STL136	4.16	4.80	3.22	5.99	both
1	34	83	PG7	3.53	3.61	2.77	4.61	both
1	36	71	PG10	13.07	12.21	10.66	14.76	both
1	38	93	STL172	11.09	11.17	10.47	11.94	both
1	40	74	STL130	19.06	19.19	17.97	20.21	both
1	40	80	STL269	17.09	17.13	15.76	18.16	both
1	40	85	STL268	8.47	8.37	7.18	9.44	both
1	44	95	STL278	13.15	12.68	11.03	13.91	both
1	45	84	PG26	12.69	12.16	11.34	13.09	both
1	50	89	GDUSW4S	0.61	0.05	-1.34	0.85	both
1	51	55	STL123	20.26	19.79	18.32	20.64	both
1	51	82	GDUWT02	15.72	11.38	5.88	15.30	uncalibrated
1	52	87	GDPHTWT	3.18	7.77	6.94	12.09	uncalibrated
1	52	87	GDUWT05	3.18	0.39	-1.45	2.30	uncalibrated
1	54	90	GDUWT17	5.55	7.29	6.35	8.35	uncalibrated
1	54	97	STL174	11.05	11.61	10.85	12.21	both
1	54	101	STL176	6.02	11.93	10.67	12.33	uncalibrated
1	55	86	GDUWT18	10.35	10.18	8.71	11.54	both
1	55	90	PG25	5.66	8. 52	7.31	1.54 9.59	uncalibrated
1	57	97	STL276	11.18	10.96	9.87	11.84	both
1	57	100	STL277	11.83	12.67	11.72	13.33	both
1	59	75	STL272	19.66	19.73	18.39	21.54	both
1	61	42	STL41	24.48	24.52	22.88	26.41	both
1	61	97	PG23	5.06	5.39	4.37	5.84	both
1	62	85	STL271	10.78	10.12	9.15	10.86	both
1	63	62	STL161	24.54	24.84	23.39	25.61	both
1	63	92	STL270	2.23	3.31	2.61	25.61 3.76	uncalibrated
1	63	105	M-1268	8.97	4.92	4.15	5.73	less than one
1	65	99	W-7B	6.29	2.86	2.28	3.86	uncalibrated
1	69	101	S-4B	1.38	1.16	0.63	1.45	both
1	70	95	STL274	9.41 19.90	9.04	8.44	9.72	both
2	B	54	PG19N	19.90	19.49	19.03	20.50	both
2	8 13	70	PG12	14.93	14.82	14.28	16.27	both
2	13 20	62 84	STL267 SLMW4D	22.05 16.83	21.57 1652	20.89	22.59	both
2	26	59	PG16	19.83	19.44	18.50	17.26 20.26	both
2	28	72	STLAPT2	19.24	19.98	18.84	20.93	both
2	30	91	SLMW11D	3.78	4.39	2.49	5.32	both
2	31	86	FPMW5	-0.17	-3.20	-4.30	-1.30	uncalibrated
2	34	78	STL265	9.81	10.16	8.91	12.24	both

TABLE 3. Steady-State Calibration Results (Continued)

Layer	Row	Column	Well	$\begin{gathered} \text { SS } \\ \text { Value } \end{gathered}$	Average	Minimum	Maximum	Status
2	37	54	SLMW5S	20.24	19.30	14.28	20.65	both
2	38	82	STLAPT1	13.83	13.35	12.02	14.78	both
2	41	33	SLMW13S	31.39	30.87	28.85	32.03	both
2	42	59	STLMW1S	20.78	20.08	19.04	20.85	both
2	43	41	STLAPT4	26.56	26.18	24.79	27.17	both
2	45	95	PG35N	30.34	30.03	28.29	30.93	both
2	45	37	SLMW10S	30.01	30.12	28.24	30.79	both
2	45	65	PG18	18.83	18.94	18.32	19.20	both
2	45	87	GDUSW3S	1.11	0.79	0.42	1.26	both
2	49	88	GDUSW2S	0.52	1.42	0.20	2.28	both
2	50	89	GDUSW4M	0.62	0.73	-1.64	1.44	both
2	54	101	STL175	5.92	7.23	6.54	7.66	uncalibrated
2	59	75	STL214	19.99	19.75	18.41	21.56	both
2	62	103	W-6B	8.61	9.09	8.28	9.61	both
2	63	98	W.1B	3.84	6.50	5.75	7.41	uncalibrated
2	63	100	W-4B	6.48	4.63	2.71	5.88	uncalibrated
2	63	102	W-5A	7.25	4.85	3.98	6.46	uncalibrated
2	64	96	S-1A	1.39	0.93	0.42	1.92	both
2	64	106	S-5b	2.38	2.85	2.09	3.98	both
2	65	103	W.3B	5.00	4.29	3.47	5.17	both
2	67	99	S-3B	1.04	1.39	0.16	4.50	both
2	67	102	W-2S	3.72	3.53	-0.76	7.06	both
2	68	98	S-2B	0.33	0.27	. 0.41	0.75	both
2	70	82	STL273	20.39	20.48	18.69	21.40	both
2	70	95	STL275	5.36	4.26	4.00	4.89	uncalibrated
3	8	54	PG13M	19.91	19.91	19.40	20.61	both
3	14	69	STL264	19.11	19.54	19.16	20.37	less than one
3	19	84	FPTW1	17.58	14.63	13.73	15.93	uncalibrated
3	21	85	FPTW2	14.38	15,07	14.22	16.42	both
3	24	88	FPMW1	4.66	3.93	2.90	5.10	both
3	24	89	FPMW2	3.25	4.84	3.82	5.82	uncalibrated
3	25	87	FPMW3	5.14	6.59	5.99	7.29	uncalibrated
3	26	85	FPTW5	3.62	7.11	6.45	8.45	uncalibrated
3	26	89	STL191	4.07	4.91	4.43	5.37	less than one
3	28	72	STLAPT2	19.34	19.70	18.33	20.63	both
3	29	66	SLMW12D	19.02	18.93	17.97	19.53	both
3	30	87	FPTW4	-9.61	-6.19	-8.61	-2.11	explainable
3	31	88	FPTW7	-2.48	-6,11	-8.23	-3.13	explainable
3	31	89	FPMW4	3.20	4.32	3.10	5.00	within range
3	34	78	STL213	10.11	10.17	9.13	11.52	both
3	37	54	SLMW5D	20,26	19.28	14.40	20.65	both
3	38	82	STLAPT1	12.62	8.84	$\mathbf{7 . 7 4}$	9.78	uncalibrated
3	38	93	SLMW14D	10.99	11.16	10.42	11.91	both
3	41	33	SLMW13D	31.39	31.20	29.15	32.23	both
3	42	69	STLMW1D	20.77	20.18	19.44	20.54	less than one
3	43	41	STLAPT4	26.62	26.13	24.79	27.04	both
3	45	37	SLMW10D	29.99	29.94	27.99	30.44	both
3	45	87	GDUSW3D	1.20	2.68	2.17	3.09	uncalibrated
3	49	88	GDUSW2D	0.65	-0.27	-2.05	0.62	less than one
3	50	89	GDUSW4D	0.77	-0.01	-2.00	2.42	both
3	51	82	GDU80.7	15.43	14.70	11.89	16.48	both
3	54	93	STL173	6.29	7.29	6.04	8.22	both
3	54	101	STL177	5.81	4.24	3.60	5.25	uncalibrated
3	62	103	W-6A	8.33	7.83	3.40	9.27	both

TABLE 3. Steady-State Calibration Results (Continued)

Layer	Row	Column	Well	SS Value	Average	Minimum	Maximum	Status
3	63	98	W.1A	3.58	6.54	5.93	7.34	uncalibrated
3	63	100	W-4A	6.40	2.49	1.20	3.88	uncalibrated
3	63	104	M-1254	5.78	4.53	3.75	5.40	uncalibrated
3	64	62	STL185	24.21	24.71	23.35	25.30	both
3	64	96	S-1B	1.43	0.76	0,05	1.55	both
3	64	96	S-1C	1.43	0.82	0.31	1.89	both
3	64	106	S-5A	2.25	2.72	-1.56	4.64	both
3	65	99	W-7A	-0.81	1.30	-0.26	3.66	uncalibrated
3	65	103	W-3A	4.81	4.39	3.59	5.82	both
3	66	92	HRR1	3.87	3.38	2.51	4.61	both
3	66	92	HRR2	3.87	3.46	1.76	4.73	both
3	67	94	HRR3	3.16	2.41	1.48	3.49	both
3	67	99	S-3A	1.00	1.76	0.51	2.76	both
3	67	102	W-2D	3.60	3.89	0.09	7.03	both
3	68	98	S-2A	0.29	0.27	-0.99	0.92	both
3	69	96	HRR4	2.26	2.01	1.03	2.76	both
3	69	101	S-4A	1.51	1.13	0.93	1.52	both
3	69	101	S-4C	1.51	1.26	0.45	2.03	both

90 wells (71%) meet the first calibration criterion where the estimated steady-state head value for the node falls between the maximum and minimum water level for the corresponding observation well.

93 wells (73%) meet the second calibration criterion where the difference between the average head value for the observation well and the estimated steady-state head value for the corresponding node is less than or equal to 1.00 feet.

87 wells (68%) meet both criteria.

FIGURE 24. Steady-State Residuals for Layer 2

Figure 24 shows that most of the study area within layer 2 meets the Level 1 calibration criteria. However, there is an area of relatively high residuals near the northern end of the North Fork of the St. Lucie River. This area lies within or adjacent to the Fort Pierce Wellfield.

Figure 25 indicates that most of the study area in layer 3 meets the Level 1 calibration criteria. However, there is an area of high residuals near the northwestern end of the North Fork of the St. Lucie River. This area corresponds to an area of high domestic withdrawals in layer 3 (see Figure D-6). In addition, there is an area of relatively low residuals located between the C-25 Canal and the northern end of the North Fork of the New River.

Basically, Figures 23 through 25 indicate that the error distribution is relatively low throughout most of the study area. Most of the areas that lie outside the calibration limits are associated with concentrated withdrawal areas. The grid spacing may not be fine enough to adequately simulate the distance between the withdrawal sources and the monitor wells.

Budget and Flows

Layer One. Figure 26 illustrates the magnitude and direction of the horizontal flows in layer 1 under steady-state conditions. An examination of Figures 20 and 26 indicates that the regional flow direction is towards the east. Most of the flow vectors are fairly small. This indicates modest horizontal flows throughout most of the layer. However, there are significant flows along the active cells adjacent to the western boundary. The magnitude of the ground water flow is due to the steep ground water gradient in the area. Another significant area of horizontal flow is associated with the ground water divide in the southeastern portion of the study area. In the northeastern portion of the study area, the converging vectors are associated with the Fort Pierce wellfield.

In addition to the head distribution, MODFLOW also provides a volumetric budget as a check on the numerical accuracy of the simulation (McDonald and Harbaugh, 1988). The following volumetric analyses were performed on the steadystate flow rates on a layer by layer basis.

The volumetric budget for layer 1 is approximately $134 * 106 \mathrm{ft} 3 / \mathrm{day}$. Figure 27 provides a breakdown of the volumetric flows for layer 1 under steady-state conditions. According to Figure 27, recharge accounts for 90% of the inflow for layer 1 ; upward leakage from layer 2 accounts for 8% of the inflow; and river leakage, model boundaries, and recharge wells account for the remaining 2% of the inflow. Figure 27 indicates that the outflow from layer 1 can be broken down as follows: 51% goes to ET; 25% goes to drains; $\mathbf{1 5 \%}$ goes to downward leakage; $\mathbf{9 \%}$ goes to rivers and to the model boundaries.

Layer Two. Figure 28 illustrates the magnitude and direction of the horizontal flows in layer 2 under steady-state conditions. A comparison with Figure 26 , indicates that the regional flow pattern in layer 2 is similar to the regional flow pattern in layer 1. However, the effects of the large public water supply wellfields are more apparent in layer 2.

Figure 29 depicts the magnitude and direction of vertical flow between layers 1 and 2. Generally, the vertical gradient between layers 1 and 2 is relatively small. For most cells, the flow direction is downward. The largest vertical flows are associated with the Ft. Pierce Wellfield.

FIGURE 28. Magnitude and Direction of Horizontal Flow in Layer 2

The steady-state volumetric budget for layer 2,25 * $106 \mathrm{ft} 3 / \mathrm{day}$, is smaller than the volumetric budget for layer 1. Figure 30 provides the volumetric flows for layer 2. According to Figure 30, the inflow for layer 2 can be broken down as follows: 79% is from downward leakage and 21% is from upward leakage and the model boundaries. The outflow is broken down as follows: 45% goes to upward leakage, 41% goes to downward leakage, and 14% goes to well withdrawals and to model boundaries.

Layer Three. Figure 31 illustrates the magnitude and direction of the horizontal flows in layer 3 under steady-state conditions. An examination of Figures 22 and 31 indicates that the regional flow direction is towards the east. The regional flow pattern in layer 3 is similar to the regional flow patterns in layers 1 and 2.

A comparison of Figures 26, 28, and 31 indicates that the horizontal flow increases with depth in the vicinity of the North Fork of the St. Lucie River. This phenomenon is caused by the increased withdrawals in layer 3 in the vicinity of the North Fork of the St. Lucie River. An examination of Figures D-1, D-2, D-5 and D-6 indicates that there are more public water supply wells and domestic wells in layer 3 than in layer 2. As previously stated, there are no withdrawals in layer 1. The examination also reveals that most of the public water supply wells and domestic wells are located in the vicinity of the North Fork of the St. Lucie River.

Figure 32 depicts the magnitude and direction of vertical flows between layers 2 and 3. Generally, the vertical gradient between layers 2 and 3 is small. In most cases the direction of vertical flow is downward. The largest vertical flows are associated with the Fort Pierce Wellfield.

The steady-state volumetric budget for layer 3 is 11.1 * $106 \mathrm{ft} 3 /$ day. Therefore, the volumetric flow for a layer decreases with depth. Figure 33 provides the breakdown of the volumetric budget for layer 3. According to Figure 33, the predominant inflow source of for layer 3 is downward leakage from layer 2 . Boundary effects are insignificant. The outflow from layer 3 can be broken down as follows: 47% goes to upward leakage to layer $2,36 \%$ goes to wells withdrawals, and 17% goes to the model boundaries.

Table 4 provides the total volumetric budget for the entire model area. According to Table 4, rainfall accounts for nearly all of the inflow for the model area. ET is the largest source of outflow (55%) followed by drains (27%). Ground water withdrawals account for 4% of the discharge from the model

TRANSIENT CALIBRATION

Methodology

A series of transient runs were made to calibrate the model to observed water levels. The calibration period for the model was July 1989 through June 1990. This period was chosen because it is the most recent period with sufficient water level observations. The transient simulation includes 14 stress periods. The first month, July 1989, was run three times in order to help equilibrate the starting heads. Table 5 provides a listing of the stress periods with the corresponding month.

FIGURE 31. Magnitude and Direction of Horizontal Flow in Layer 3

TABLE 4. Volumetric Budget for Steady-State Simulation

INFLOW	RATE $\left(10^{6} \mathrm{ft}^{3} / \mathrm{day}\right)$
Boundaries	0.096
Wells	2.441
Recharge	120.190
River Leakage	1.552
TOTAL IN	124.279

OUTFLOW	RATE $\left(10^{6} \mathbf{f t}^{3} / \mathrm{day}\right)$
Boundaries	5.457
Wells	5.453
Drains	33.645
ET	68.221
River Leakage	11.512
TOTAL OUT	124.288

INFLOW - OUTFLOW $=0.009^{*}\left(10^{6} \mathrm{ft}^{\mathbf{3} / \text { day }}\right)$

TABLE 5. Stress Period, Month and Season Correlation

Stress Period	Month	Season Type
1	July 1989	Wet Season
2	July 1989	Wet Season
3	July 1989	Wet Season
4	August 1989	Wet Season
5	September 1989	Wet Season
6	October 1989	Wet Season
7	November 1989	Dry Season
8	December 1989	Dry Season
9	January 1990	Dry Season
10	February 1990	Dry Season
11	March 1990	Dry Season
12	April 1990	Dry Season
13	May 1990	Wet Season
14	June 1990	Wet Season

Several factors affect the agreement between observed water levels and the simulated water levels:

1. MODFLOW simulates well withdrawals at the center of a cell. This process induces errors because in reality pumping wells are located throughout the cell. The amplitude of the error depends on the magnitude of the withdrawal and the distance between the center of the cell and the well location.
2. Anderson and Woessner (1992) state that finite-difference methods compute a value for head at the node which is also the average head for the cell that surrounds the node. In areas of high ground water gradients, water levels throughout a cell can vary significantly.

Figure 34 is a water level map of the surficial aquifer system in St. Lucie County (Kane 1992). According to Figure 34, there are several areas in St. Lucie County where the ground water gradient is relatively steep.
3. The model was developed using one month stress periods. Consequently, the simulated water levels reflect the cumulation of all stresses that occurred within a month. However, the measured water levels reflect the events from the most recent time of measurement. The measured water level may be more sensitive to these recent stresses than to the cumulative stresses in the vicinity of the well.
4. A local rainstorm during or immediately prior to a measuring period, could produce water level increases in selected wells. Also, the distance between rainfall stations and monitoring wells is important. A rainfall event may cause water fluctuations at a given well, but the rainfall event may not be detected by the nearest rainfall station.

In order to achieve calibration, changes were made to the initialized model. Most of the successful changes were made to the following parameters: evapotranspiration surface, extinction depth, starting water levels, drain elevation, river stage (refined to correlate more accurately with the operation of the surface water management system), and river/drain conductance. Changes to any of these parameters affected the simulated water levels for all layers. The decision on which parameters to alter in order to calibrate an observation node were based on analyses of the hydrographs, water level maps, and information on the surface water systems.

Anytime a change was made for the transient scenario, a corresponding change was made for the steady-state scenario, and vice versa. This procedure maintained consistency between the steady-state and transient cases.

Most of the successful corrections involved alteration of the ET surface or the extinction depth. The simulated water level could be increased by either raising the ET surface or the extinction depth. The opposite situation can be affected by lowering the ET surface or extinction depth.

The development of the ET surface was based on USGS topographic quadrangles which have a contour interval of 5 feet. According to Adams (1992), this leaves a range of ± 2.5 feet for adjustment of the ET surface. Adjustments to the ET surface were kept within this range.

In some instances, nodes were assigned inaccurate starting heads as a result of kriging errors. This situation occurred mostly in the western portion of the model where data from monitoring wells are scarce. Consequently, the simulated water level for an observation node was not able to approach the observed water level. This situation was corrected by assigning a more realistic starting head to the affected nodes. In order to derive more realistic water levels, the surface water system was reviewed. It was presumed that the surface water levels approximate the ground water levels.

There are several observation nodes that are affected by surface water sources. The model was run several times using different conductance for the rivers and drains. The values that yielded the best results were used in the final calibration.

Results

The transient simulation was considered successfully calibrated if the modeled water level for a node was within one foot of the observed water level for 75% of the stress periods. This was the same criterion used by Adams (1992) for the Martin County model. Since stress periods 1,2 , and 3 are repetitious, stress period 3 through 14 were used for analysis of the calibration criteria.

Appendix G contains the hydrographs for the calibrated transient model. The hydrographs are useful for comparing the observed water levels versus the calculated results, and for examining the change in the water levels over time in response to varying stresses.

Table 6 presents the results of the transient simulation. According to Table 6, 78 observation nodes (61%) met the calibration criterion. The remaining observation nodes were classified as either explainable or uncalibrated.

An observation node was considered explainable if it met these conditions:

1) There was an apparent reason for a node to fail the calibration criterion.
2) A review of the monitoring well data and adjacent water levels indicates that the simulated water levels reasonably fit the local trend.

The explanation for the explainable wells are discussed in Appendix F.
Table 5 lists the stress periods with its season type. Table 7 presents the residuals from the transient calibration. The transient residuals were divided into dry-season residuals and wet-season residuals. The dry-season residuals were determined by averaging the residuals for the dry-season stress periods for each well. Likewise, the wet-season residuals were determined by averaging the wet-season residuals for each well. Since stress periods 1 and 2 are repetitive, they were not used to determine the wet season residuals. As indicated by Table 7, in most cases the differences between the wet season residual and the dry season residual are small. If the simulated water level for a given stress period is within the range of ± 1-foot of the observed water level, it is defined as meeting Level 1 calibration criteria under transient conditions.

Figures 35 and 36 are maps of the dry-season residuals and wet-season residuals for layer 1, respectively. Overall, both figures exhibit similar trends to the steady-state residual map for layer 1 (Figure 23). The majority of the study area lies

TABLE 6. Transient Calibration Results

Layer	Row	Column	Well Name	\% of Calibrated Stress Periods	Results
1	7	83	STL266	91.67	calibrated
1	20	84	PG5	100.00	calibrated
1	22	87	FPWT8	91.67	calibrated
1	23	86	FPWT7	25.00	uncalibrated
1	25	85	FPWT6	8.33	uncalibrated
1	27	34	STL42	100.00	calibrated
1	27	85	FPWT4	83.33	calibrated
1	27	87	FPWT5	16.67	uncalibrated
1	28	83	PG6	75.00	calibrated
1	30	88	FPWT3	0.00	uncalibrated
1	30	91	PG1	66.67	explainable
1	31	77	STL125	66.67	uncalibrated
1	31	83	FPWT2	83.33	calibrated
1	31	86	FPWT9	0.00	uncalibrated
1	32	89	FPWT1	83.33	calibrated
1	34	82	STL136	91.67	calibrated
1	34	83	PG7	83.33	calibrated
1	36	71	PG10	41.67	explainable
1	38	93	STL172	100.00	calibrated
1	40	74	STL130	75.00	calibrated
1	40	80	STL269	83.33	calibrated
1	40	85	STL268	91.67	calibrated
1	44	95	STL278	75.00	calibrated
1	45	84	PG26	100.00	calibrated
1	50	89	GDUSW4S	66.67	uncalibrated
1	51	55	STL123	83.33	calibrated
1	51	82	GDUWT02	8.33	uncalibrated
1	52	87	GDPHTWTP2	0.00	uncalibrated
1	52	87	GDUWT05	0.00	uncalibrated
1	54	90	GDUWT17	16.67	uncalibrated
1	54	97	STL174	83.33	calibrated
1	54	101	STL176	0.00	uncalibrated
1	55	86	GDUWT18	75.00	calibrated
1	55	90	PG25	0.00	uncalibrated
1	57	97	STL276	91.67	calibrated
1	57	100	STL277	75.00	calibrated
1	59	75	STL272	91.67	calibrated
1	61	42	STL41	66.67	uncalibrated
1	61	97	PG23	100.00	calibrated
1	62	85	STL271	75.00	calibrated
1	63	62	STL161	91.67	calibrated
1	63	92	STL270	75.00	calibrated
1	63	105	M-1268	83.33	calibrated
1	65	99	W-7B	0.00	uncalibrated
1	69	101	S-4B	100.00	calibrated
1	70	95	STL274	83.33	calibrated

TABLE 6. Transient Calibration Results (Continued)

Layer	Row	Column	Well Name	\% of Calibrated Stress Periods	Results
2	8	54	PG13N	- 75.00	calibrated
2	8	70	PG12	83.33	calibrated
2	13	62	STL267	91.67	calibrated
2	20	84	SLMW4D	100.00	calibrated
2	26	59	PG16	83.33	calibrated
2	28	72	STLAPT2S4	58.33	uncalibrated
2	30	91	SLMW11D	66.67	uncalibrated
2	31	86	FPMW5	0.00	uncalibrated
2	34	78	STL265	75.00	calibrated
2	37	54	SLMW5S	66.67	explainable
2	38	82	STLAPT1S2	75.00	calibrated
2	41	33	SLMW13S	83.33	calibrated
2	42	59	STLMW1S	83.33	calibrated
2	43	41	STLAPT4S3	83.33	calibrated
2	45	35	PG35N	83.33	calibrated
2	45	37	SLMW10S	91.67	calibrated
2	45	65	PG18	91.67	calibrated
2	45	87	GDUSW3S	83.33	calibrated
2	49	88	GDUSW2S	66.67	uncalibrated
2	50	89	GDUSW4M	91.67	calibrated
2	54	101	STL175	25.00	uncalibrated
2	59	75	STL214	83.33	calibrated
2	62	103	W-6B	100.00	calibrated
2	63	98	W-1B	8.33	uncalibrated
2	63	100	W-4B	16.67	uncalibrated
2	63	102	W-5A	0.00	uncalibrated
2	64	96	S-1A	91.67	calibrated
2	64	106	S-5b	100.00	calibrated
2	65	103	W-3B	50.00	uncalibrated
2	67	99	S-3B	91.67	calibrated
2	67	102	W-2S	50.00	uncalibrated
2	68	98	S-2B	100.00	calibrated
2	70	82	STL273	100.00	calibrated
2	70	95	STL275	25.00	uncalibrated
3	8	54	PG13M	100.00	calibrated
3	14	69	STL264	75.00	calibrated
3	19	84	FPTW1	0.00	uncalibrated
3	21	85	FPTW2	66.67	explainable
3	24	88	FPMW1	75.00	calibrated
3	24	89	FPMW2	8.33	uncalibrated
3	25	87	FPMW3	33.33	uncalibrated
3	26	85	FPTW5	0.00	uncalibrated
3 3	26	89	STL191	91.67	calibrated
3	28	72	STLAPT2D4	91.67	calibrated
3	29	66	SLMW12D	100.00	calibrated
3	30	87	FPTW4	16.67	explainable

TABLE 6. Transient Calibration Results (Continued)

Layer	Row	Column	Well Name	\% of Calibrated Stress Periods	Results
3					
3	31	88	FPTW7	0.00	explainable
3	31	89	FPMW4	75.00	calibrated
3	34	78	STL213	75.00	calibrated
3	37	54	SLMW5D	66.67	explainable
3	38	82	STLAPT1D2	0.00	uncalibrated
3	38	93	SLMW14D	9.67	calibrated
3	41	33	SLMW13D	83.33	calibrated
3	42	59	STLMW1D	91.67	calibrated
3	43	41	STLAPT4D3	83.33	calibrated
3	45	37	SLMW10D	91.67	calibrated
3	45	87	GDUSW3D	25.00	uncalibrated
3	49	88	GDUSW2D	41.67	uncalibrated
3	50	89	GDUSW4D	50.00	uncalibrated
3	51	82	GDU80-7	50.00	uncalibrated
3	54	93	STL173	66.67	uncalibrated
3	54	101	STL177	8.33	uncalibrated
3	62	103	W-6A	75.00	calibrated
3	63	98	W-1A	0.00	uncalibrated
3	63	100	W-4A	0.00	uncalibrated
3	63	104	M-1254	8.33	uncalibrated
3	64	62	STL185	91.67	calibrated
3	64	96	S-1B	91.67	calibrated
3	64	96	S-1C	75.00	calibrated
3	64	106	S-5A	75.00	calibrated
3	65	99	W-7A	16.67	uncalibrated
3	65	103	W-3A	58.33	uncalibrated
3	66	92	HRR1	9.67	calibrated
3	66	92	HRR2	8.33	calibrated
3	67	94	HRR3	75.00	calibrated
3	67	99	S-3A	83.33	calibrated
3	67	102	W-2D	75.00	calibrated
3	68	98	S-2A	91.67	calibrated
3	69	96	HRR4	91.67	calibrated
3	69	101	S-4A	100.00	calibrated
	101	S-4C	100.00	calibrated	

78 observation wells (61%) meet the calibration criterion.

TABLE 7. Dry Season and Wet Season Residuals

Layer	Row	Column	Well Name	Dry Season Residuals	Wet Season Residuals
1	7	83	STL266	0.69	0.58
1	20	84	PG5	0.05	0.01
1	22	87	FPWT8	0.55	0.30
1	23	86	FPWT7	2.22	1.47
1	25	85	FPWT6	2.17	1.31
1	27	34	STL42	0.11	-0.14
1	27	85	FPWT4	0.31	-0.44
1	27	87	FPWT5	-1.31	-1.48
1	28	83	PG6	0.68	0.52
1	30	88	FPWT3	-4.97	-5.32
1	30	91	PG1	-0.88	-0.89
1	31	77	STL125	-0.30	-0.27
1	31	83	FPWT2	-0.38	0.24
1	31	86	FPWT9	2.58	3.08
1	32	89	FPWT1	-0.57	-0.78
1	34	82	STL136	-0.20	-0.11
1	34	83	PG7	-0.12	0.64
1	36	71	PG10	0.70	0.93
1	38	93	STL172	-0.19	0.13
1	40	74	STL130	-0.28	-0.03
1	40	80	STL269	-0.30	-0.18
1	40	85	STL268	-0.39	0.77
1	44	95	STL278	0.43	0.64
1	45	84	PG26	0.33	0.51
1	50	89	GDUSW4S	1.11	0.47
1	51	55	STL123	0.79	0.37
1	51	82	GDUWT02	3.14	5.77
1	52	87	GDPHTWTP2	-5.03	-2.86
1	52	87	GDUWT05	3.46	3.42
1	54	90	GDUWT17	-1.98	-1.40
1	54	97	STL174	-0.66	-0.05
1	54	101	STL176	-5.87	-5.70
1	55	86	GDUWT18	-0.14	- 0.75
1	55	90	PG25	-2.69	-2.50
1	57	97	STL276	0.07	0.44
1	57	100	STL277	-0.96	-0.70
1	59	75	STL272	0.15	-0.34
1	61	42	STL41	0.24	-0.41
1	61	97	PG23	-0.41	-0.08
1	62	85	STL271	0.45	1.03
1	63	62	STL161	-0.04	-0.49
1	63	91	STL270	-0.88	-0.79
1	63	105	M-1268	-0.74	-0.56
1	65	99	W-7B	4.45	3.96
1	69	101	S-4B	0.32	3.96 0.40
1	70	95	STL274	-0.12	0.71
2	8	54	PG13N	0.01	0.63
2	8	70	PG12	-0.01	0.112

TABLE 7. Dry Season and Wet Season Residuals (Continued)

Layer	Row	Column	Well Name	Dry Season Residuals	Wet Season Residuals
2	13	62	STL267	0.70	0.09
2	20	84	SLMW4D	0.11	0.14
2	26	59	PG16	0.47	0.63
2	28	72	STLAPT2S4	-0.73	-0.93
2	30	91	SLMW11D	-0.49	-0.65
2	31	86	FPMW5	3.45	3.99
2	34	78	STL265	-0.29	-0.08
2	37	54	SLMW5S	1.18	-0.30
2	38	82	STLAPT1S2	-0.28	0.94
2	41	33	SLMW13S	0.76	0.24
2	42	59	STLMW1S	0.76	0.70
2	43	41	STLAPT4S3	0.47	0.30
2	45	35	PG35N	-0.08	0.75
2	45	37	SLMW10S	-0.28	0.05
2	45	65	PG18	-0.14	0.28
2	45	87	GDUSW3S	0.59	0.49
2	49	88	GDUSW2S	-0.60	-0.69
2	50	89	GDUSW4M	-0.11	0.34
2	54	101	STL175	-1.31	-1.07
2	59	75	STL214	0.40	0.00
2	62	103	W-6B	0.01	-0.42
2	63	98	W-1B	-1.90	-2.13
2	63	100	W-4B	2.27	2.16
2	63	102	W-5A	2.73	2.60
2	64	96	S-1A	0.46	0.56
2	64	103	S-5b	-0.24	-0.01
2	64	106	W-3B	1.23	1.18
2	67	99	S-3B	-0.34	-0.15
2	67	102	W-2S	-0.50	1.75
2	68	98	S-2B	0.03	0.09
2	70	82	STL273	-0.45	-0.07
2	70	95	STL275	1.07	1.33
3	8	54	PG13M	-0.03	-0.17
3	14	69	STL264	-0.68	-0.48
3	19	84	FPTW1	2.85	2.73
3	21	85	FPTW2	-0.72	-1.06
3	24	88	FPMW1	1.09	0.64
3	24	89	FPMW2	-1.26	-1.68
3	25	87	FPMW3	-0.78	-1.58
3	26	85	FPTW5	-2.98	-3.60
3	26	89	STL191	-0.97	-0.76
3	28	72	STLAPT2D4	0.04	-0.61
3	29	66	SLMW12D	0.32	0.21
3	30	87	FPTW4	-2.26	-4.18
3	31	88	FPTW7	3.79	4.40
3	31	89	FPMW4	-0.57	-0.83
3	34	78	STL213	-0.02	0.33

TABLE 7. Dry Season and Wet Season Residuals (Continued)

Layer	Row	Column	Well Name	Dry Season Residuals	Wet Season Residuals
3	37	54	SLMW5D	1.20	-0.21
3	38	82	STLAPTID2	3.33	4.13
3	38	93	SLMW14D	-0.53	0.29
3	41	33	SLMW13D	0.27	0.08
3	42	59	STLMW1D	0.51	0.73
3	43	41	STLAPT4D3	0.58	0.41
3	45	37	SLMW10D	-0.23	0.33
3	45	87	GDUSW3D	-1.38	-1.16
3	49	88	GDUSW2D	1.18	1.19
3	50	89	GDUSW4D	1.12	0.92
3	51	82	GDU80-7	0.14	1.53
3	54	93	STL173	-0.73	-0.69
3	54	101	STL177	1.49	1.87
3	62	103	W-6A	0.52	1.03
3	63	98	W-1A	-2.29	-2.37
3	63	100	W-4A	4.43	4.13
3	63	104	M-1254	1.54	1.60
3	64	62	STL185	-0.39	-0.61
3	64	96	S-1B	0.63	\bigcirc
3	64	96	S-1C	0.61	0.73
3	64	106	S-5A	-0.61	0.35
3	65	99	W-7A	-1.95	-1.50
3	65	103	W-3A	1.03	0.80
3	66	92	HRR1	0.45	0.54
3	66	92	HRR2	0.43	0.41
3	67	94	HRR3	0.54	1.04
3	67	99	S-3A	-0.56	-0.75
3	67	102	W-2D	0.14	0.13
3	68	98	S-2A	-0.19	0.22
3	69	96	HRR4	0.19	0.39
3	69	101	S-4A	0.60	0.44
3	69	101	S-4C	0.51	0.28

FIGURE 35. Dry Season Residual Map for Layer 1

FIGURE 36. Wet Season Residual Map for Layer 1
within the region bounded by the ± 1-foot contours. Therefore, the majority of the area meets the Level 1 calibration requirement. Most of the areas that do no meet the calibration criteria are associated with large withdrawal areas.

Figures 37 and 38 are maps of the dry-season residuals and wet-season residuals for layer 2, respectively. Overall, both figures exhibit similar trends to the steady-state residual map for layer 2 (Figure 24). Most of the study area lies between the ± 1-foot contours. However, there is an area near the C-24 Canal with high residuals on Figure 37 that does not appear on Figure 24.

Figure 39 and 40 are maps of the dry-season residuals and wet-season residuals for layer 3, respectively. Overall, both figures exhibit similar trends to the steadystate residual map for layer 3 (Figure 25). However, there is an area near the C-24 Canal with high residuals on Figure 39 that does not appear on Figures 25 and 40. Most of the study area in layer 3 meets the Level 1 calibration criteria.

Basically, Figures 35 through 40 indicate that most of the study area meets Level 1 calibration criteria in all three layers under transient conditions. Most of the areas that do not meet Level 1 conditions are associated large public water supply or domestic withdrawals. However, there is an area near C-24 that does not meet the calibration target. Monitoring wells SLMW5S (layer 2) and SLMW5D (layer 3) are located within this area. The stage of the $\mathrm{C}-24$ was changed significantly during several stress periods. This affected the calibration of the monitoring wells.

SENSITIVITY TESTING

The model was tested to check its sensitivity to changes in aquifer parameters, climatic conditions, and stresses. Using the steady-state version, aquifer parameters were tested by altering the following: layer 1 hydraulic conductivity, layer 2 hydraulic conductivity, layer 3 transmissivity, Vcont between layers 1 and 2, Vcont between layers 2 and 3, and river and/or drain bed conductance. The sensitivity of the model to these parameters was tested by doubling, then halving each parameter, one at a time. In addition, the Vcont, and river and drain conductances were also reduced and increased by an order of magnitude. Head changes in each layer were examined to determine the relative sensitivity of the calibrated model. The results of these tests are presented in Table 8.

The model was also tested, using the steady-state version, for its sensitivity to the following climatological and stress factors: recharge, maximum ET rate, and ET surface. Recharge and ET rates were increased and decreased by 20%. The ET surface was analyzed with the climate and stress parameters since this item is part of the ET package. In addition, the recharge from the FAS wells was cancelled and doubled. The results of these tests are presented in Table 9.

AQUIFER PARAMETER CHANGES

Table 8 presents the results from the sensitivity testing of aquifer parameters. The table provides a listing of the altered parameter, maximum decline in water level, maximum increase in water level, mean head change, and standard deviation.

Overall, changes in the river and drain conductance values caused the largest changes in water levels for the individual nodes in all three layers of the model. Water levels for individual nodes increased as much as 10.26 feet and decreased as much as 11.54 feet when the conductance was changed by an order of magnitude. The maximum mean water level change, -1.09 feet, occurred when the conductance was increased an order of magnitude above the calibrated values.

An analysis of Table 8 indicates that altering the other aquifer characteristics had a minimal effect on the water level on a regional basis. This is exemplified by the small values of the average mean difference and standard deviation. However, the changes have an effect locally as illustrated by the extreme water level changes for particular nodes.

CLIMATIC AND STRESS CHANGES

Table 9 presents the results from the sensitivity testing of the climatic and stress changes. The table provides a listing of the altered parameter, maximum decline in water level, maximum increase in water level, mean head change, and standard deviation.

The results from Table 9 indicate that recharge is an important parameter. Increasing the recharge by 20% raised the average water level by 0.31 feet in all three layers. The maximum increase in water levels was 3.45 feet. Decreasing the recharge caused the average water level to drop by 0.37 feet. The maximum decrease was 5.04 feet.

Altering the maximum ET rate did not affect the model results as much as changing the recharge rate. Increasing the ET rate by 20% caused an average water level decline of 0.11 feet throughout the model area. Decreasing the ET rate by 20% caused an average rise in the water level of 0.15 feet throughout the modeled area.

Decreasing the ET surface by one foot caused the average water level to drop 0.63 feet in all three layers. With the exception of river and/or drain conductance, this parameter has the largest effect on all nodes throughout the modeled area.

Neither eliminating or doubling the recharge from the FAS wells significantly affected the water levels throughout the model area. However, several individual nodes were significantly affected by altering the Floridan aquifer recharge.

TABLE 8. Sensitivity Response to Aquifer Parameter Changes

Results for Layer 1 hydraulic conductivity * 2
Layer 1 maximum decrease $=1.40$ maximum increase $=1.85$
Layer 2 maximum decrease $=0.95$ maximum increase $=1.80$
Layer 3 maximum decrease $=0.93$ maximum increase $=1.80$
mean $=-0.02$ std $=0.14$

Result for Layer 1 hydraulieconductivity *0.5
Results for Layer 1 hydraulic conductivity * 0.5
Layer 1 maximum decrease $=1.08$ maximum in
Layer 2 maximum decrease $=1.06$ maximum increase $=0.61$ mean $=0.01$ std $=0.07$
$\begin{array}{ll}\text { Layer } 3 \text { maximum decrease }=1.06 \text { maximum increase }=0.61 \text { mean }=0.01 \text { std }=0.07 \\ \text { std } & =0.07\end{array}$
Results for Layer 2 hydraulic conductivity * 2
Layer 1 maximum decrease $=1.64$ maximum increase $=4.44$ mean $=-0.04$ std $=0.27$
Layer 2 maximum decrease $=1.65$ maximum increase $=4.45$ mean $=-0.04$ std $=0.28$
Layer 3 maximum decrease $=1.64$ maximum increase $=4.41$ mean $=-0.04$ std $=0.28$
Results for layer 2 hydraulic conductivity * 0.5
Layer 1 maximum decrease $=4.52$ maximum increase $=1.30$ mean $=0.02$ std $=0.22$
Layer 2 maximum decrease $=4.52$ maximum increase $=1.30$ mean $=0.02$ std $=0.23$
Layer 3 maximum decrease $=4.47$ maximum increase $=1.30$ mean $=0.02$ std $=0.23$
Results for layer 3 transmissivity *2
Layer 1 maximum decrease $=1.93$
Layer 2 maximumincrease $=4.78$
Layer 3 maximum decrease $=1.92$ maximum increase $=4.79$
Results for layer 3 transmissivity * 0.5
Layer 1 maximum decrease $=5.09$ maximum increase $=1.65$ mean $=0.02$ std $=0.27$
Layer 2 maximum decrease $=5.09$ maximum increase $=1.67$ mean $=0.02$ std $=0.28$
Layer 3 maximum decrease $=5.12$ maximum increase $=1.67$ mean $=0.02$ std $=0.29$
Results for Vcont between layers $1 \& 2 * 2$
Layer 1 maximum decrease $=1.95$ maximum increase $=0.24$ mean $=-0.01 \mathrm{std}=0.08$
Layer 2 maximum decrease $=0.47$ maximum increase $=1.52$ mean $=0.01$ std $=0.09$
Layer 3 maximum decrease $=0.46$ maximum increase $=1.52$ mean $=1.47$ mean $=0.01$ std $=0.01$ std $=0.08$
Results for Vcont between layers $1 \& 2 * 0.5$
Layer 1 maximum decrease $=0.35$ maximum increase $=1.72$ mean $=0.01$ std $=0.07$
Layer 2 maximum decrease $=2.02$ maximum increase $=0.66$ mean $=-0.01$ std $=0.13$
Layer 3 maximum decrease $=1.96$ maximum increase $=0.63$ mean $=-0.01$ std $=0.12$
Results for Vcont between layers 1 and 2*10
Layer 1 maximum decrease $=4.68$ maximum increase $=0.49$ mean $=-0.02$ std $=0.20$
Layer 2 maximum decrease $=0.95$ maximum increase $=2.33$ mean $=0.01$ std $=0.14$
Layer 3 maximum decrease $=0.92$ maximum increase $=2.26$ mean $=0.01$ std $=0.14$
Results for Vcont between layers 1 and $2 * 0.10$
Layer 1 maximum decrease $=1.21$ maximum increase $=3.48$ mean $=0.07$ std $=0.29$
Layer 2 maximum decrease $=6.68$ maximum increase $=2.82$ mean $=-0.08$ std $=0.57$
Layer 3 maximum decrease $=6.52$ maximum increase $=2.67$ mean $=-0.08$ std $=0.56$
Results for Vcont between layers 2 and $3 * 2$
Layer 1 maximum decrease $=0.47$ maximum increase $=0.25$ mean $=0.00$ std $=0.02$
Layer 2 maximum decrease $=0.49$ maximum increase $=0.26$ mean $=0.00$ std $=0.03$
Layer 3 maximum decrease $=0.49$ maximum increase $=0.51$ mean $=0.00$ std $=0.04$

TABLE 8. Sensitivity Response to Aquifer Parameter Changes (Continued)

Results for Vcont betwreen layers 2 and 3*0.5
Layer 1 maximum decrease $=0.32$ maximum increase $=0.49$ mean $=0.01$ std $=0.03$
Layer 2 maximum decrease $=0.34$ maximum increase $=0.49$ mean $=0.01$ std $=0.03$
Layer 3 maximum decrease $=0.80$ maximum increase $=0.65$ mean $=-0.01$ std $=0.06$
Results for Vcont between layers 2 and 3*10
Layer 1 maximum decrease $=1.58$ maximum increase $=0.54$ mean $=-0.01$ std $=0.05$
Layer 2 maximum decrease $=1.62$ maximum increase $=0.57$ mean $=-0.01$ std $=0.06$
Layer 3 maximum decrease $=1.42$ maximum increase $=1.06$ mean $=0.00$ std $=0.08$
Results for Vcont between layers 2 and 3 * 0.10
Layer 1 maximum decrease $=0.97$ maximum increase $=2.18$ mean $=0.03$ std $=0.16$
Layer 2 maximum decrease $=1.03$ maximum increase $=2.20$ mean $=0.03$ std $=0.17$
Layer 3 maximum decrease $=3.32$ maximum increase $=2.42$ mean $=-0.06$ std $=0.34$
Drain and River Conductance * 2
Layer 1 maximum decrease $=3.35$ maximum increase $=2.07$ mean $=-0.39 \mathrm{std}=0.46$
Layer 2 maximum decrease $=3.29$ maximum increase $=1.95$ mean $=-0.39$ std $=0.45$
Layer 3 maximum decrease $=2.96$ maximum increase $=1.92$ mean $=-0.39$ std $=0.44$
Drain and River Conductance * 0.5
Layer 1 maximum decrease $=2.87$ maximum increase $=3.67$ mean $=0.35$ std $=0.46$
Layer 2 maximum decrease $=2.72$ maximum increase $=3.63$ mean $=0.35 \operatorname{std}=0.45$
Layer 3 maximum decrease $=2.69$ maximum increase $=3.43$ mean $=0.35$ std $=0.45$
Drain and River Conductance * 10
Layer 1 maximum decrease $=8.22$ maximum increase $=4.27$ mean $=-1.09$ std $=1.14$
Layer 2 maximum decrease $=7.94$ maximum increase $=4.02$ mean $=-1.09$ std $=1.11$
Layer 3 maximum decrease $=6.75$ maximum increase $=3.96$ mean $=-1.09 \mathrm{std}=1.09$
Drain and River Conductance * 0.1
Layer 1 maximum decrease $=11.54$ maximum increase $=10.26$ mean $=0.85$ std $=1.21$
Layer 2 maximum decrease $=11.01$ maximum increase $=10.06$ mean $=0.85$ std $=1.18$
Layer 3 maximum decrease $=10.88$ maximum increase $=9.10$ mean $=0.85$ std $=1.16$

TABLE 9. Sensitivity Responses to Climatic or Stress Changes

Recharge increased by 20%
Layer 1 maximum decrease $=0.00$
Layer 2 maximum decrease $=0.00$
Layer 3 maximum decrease $=0.00$
Recharge decreased by 20%
Layer 1 maximum decrease $=5.04$ n
Layer 2 maximum decrease $=5.02$
Layer 3 maximum decrease $=5.01$
ET' rate increased by 20%
Layer 1 maximum decrease $=0.54$
Layer 2 maximum decrease $=0.54$
Layer 3 maximum decrease $=0.54$
ET rate decreased by 20%
Layer 1 maximum decrease $=0.00$ maximum increase $=0.98$ mean $=0.15$ std $=0.14$
Layer 2 maximum decrease $=0.00$
Layer 3 maximum decrease $=0.00$
$\begin{array}{lll}\text { maximum increase }=3.45 & \text { mean }=0.31 & \text { std }=0.30 \\ \text { maximum increase }=3.43 & \text { mean }=0.31 & \text { std }=0.29 \\ \text { maximum increase }=3.43 & \text { mean }=0.31 & \text { std }=0.29\end{array}$
maximum increase $=0.00$
maximum increase $=0.00$
maximum increase $=0.00$
mean $=-0.37$
mean $=0.37$ std $=0.45$
mean $=-0.36$ std $=0.44$
mean $=-0.36$ std $=0.44$
maximum increase $=0.00$
maximum increase $=0.00$
maximum increase $=0.00$
mean $=-0.11$
mean $=0.11$ std $=0.09$
mean $=-0.11$ std $=0.09$
$\begin{array}{lll}\text { maximum increase }=0.98 & \text { mean }=0.15 & \text { std }=0.14 \\ \text { maximum increase }=0.95 & \text { mean }=0.15 & \text { std }=0.14\end{array}$
maximum increase $=0.95$ mean $=0.15$ std $=0.14$

ET surface increased 1 foot: failed to converge

ET aurface decreased by 1 foot
Layer 1 maximum decrease $=1.01$ maximum increase $=0.00$ mean $=-0.63$ std $=0.33$
Layer 2 maximum decrease $=1.01$ maximum increase $=0.00$ mean $=-0.63$ std $=0.32$
Layer 3 maximum decrease $=1.01$ maximum increase $=0.00$
mean $=-0.63$ std $=0.32$
No recharge from Floridan aquifer wells
$\begin{array}{lllll}\text { Layer } 1 & \text { maximum decrease }=2.36 & \text { maximum increase }=0.00 & \text { mean }=-0.03 & \text { std }=0.09 \\ \text { Layer } 2 & \text { maximum decrease }=2.30 & \text { maximum increase }=0.00 & \text { mean }=-0.03 & \text { std }=0.09\end{array}$
Layer 3 maximum decrease $=2.19$ maximum increase $=0.00$ mean $=-0.03$ std $=0.08$
Recharge from Floridan aquifer wells * 2
Layer 1 maximum decrease $=0.01$ maximum increase $=2.05$ mean $=0.03$ std $=0.09$
Layer 2 maximum decrease $=0.01$ maximum increase $=2.00$ mean $=0.03$ std $=0.09$
Layer 3 maximum decrease $=0.01$ maximum increase $=1.91$ mean $=0.03$ std $=0.08$

QUALITY ASSURANCE / QUALITY CONTROL PROCEDURES

The South Florida Water Management District developed quality assurance/quality control (QA/QC) procedures pertaining to ground water flow models as the models progressed from the development stage in the Water Resources Evaluation Department to utilization by the Regulation and Planning Departments. The process involves a series of iterations between the model developer and the end users. In addition, a peer review team is selected for each model.

Each model is evaluated in terms of: a) acceptability, and b) impacts of deficiencies on application of the model. Acceptability is divided into three categories: 1) meets all standards of completeness and accuracy, 2) meets main standards, but enhancements are necessary to improve the overall accuracy of the model, and 3) does not meet standards and the model is not ready for use. All parameters that did not meet standards were corrected as a first priority. Parameters needing enhancements were prioritized into the items that should be upgraded before the models are used in order to minimize future problems and the items which can be continually enhanced even while the model is in use.

The QA/QC checklist is divided in two parts: a conceptualization section and a data section. The conceptualization section is a narrative discussion of the methodology and assumptions used in creating the data sets. It covers such topics as boundary conditions, time and space discretization, recharge and evapotranspiration calculations, water use data sources and assumptions, aquifer parameters, river and drain parameters, and calibration criteria. This discussion was intended to familiarize the users with all assumptions used in creating the model in order to make them aware of situations which may affect the results. The data set checklist includes all data sets used in the model and verifies that there are no data anomalies. Data were checked both graphically and numerically. Contour plots were compared with data points used to create them to make sure they were accurate. The minimum and maximum values for each plot were determined and checked for reasonableness. Numerical arrays were printed and checked visually, especially at boundaries. River, drain and general head cell values were also printed spatially and checked for reasonableness and consistency between cells. All well locations were verified both in row and column format, and planar coordinate format. The simulated withdrawals were compared to permitted allocations for reasonableness. The volumetric budget was also checked to determine if anything was out of proportion.

Final agreement was reached and the checklists from the peer review panel were approved with no unacceptable sections and several sections identified as acceptable under current conditions with future enhancements necessary.

CONCLUSIONS AND RECOMMENDATIONS

1. According to the model results, surface water discharges accounted for 36% of losses from the ground water system. Currently, the accuracy of this number cannot be verified. However, a surface water model which encompasses the study area is being developed and the outcome from this model may result in modifications to the existing ground water model. One area of potential improvement is defining the "wetted perimeter" of a canal. Data on widths and depths of drainage canals are sparse, especially for the many grove and roadside drainage canals. Also, most of these canals have no records of stage levels and sometimes information on control structure elevations is missing or inaccurate. This makes it difficult, if not impossible, to accurately represent the drainage potential of these surface water bodies. During the regulation process, every effort should be made to include pertinent control elevation and canal construction data in the permits. Information concerning ditches, lakes, canals, wetlands, etc. in future surface water permits as well as one-foot topographic data obtained during permit review would benefit future model calibration efforts. Stage recorders in some of the major grove canals would produce valuable data for use in the ground and surface water models.
2. Currently, the model is not sensitive enough to be used in surface water permitting to determine exact control elevations or to set acceptable wetland elevations. However, ground water levels in the model can be checked against existing permits and new proposed control elevations, and any discrepancies should be reported to the model developer to aid in improved model calibration. Refining the grid size and elevation data would make this model a useful tool for evaluating existing and future impacts on surface water management systems.
3. The model in its present configuration is not effective for assessing ground water withdrawal impacts on a small scale, due to the regional nature of the model grid. As a result, small scale impacts on adjacent users or small wetland areas may be overlooked due to cell-wide averaging. Improved grid resolution and use of one-foot topographic data is needed to better assess these small scale impacts. The SFWMD has developed software which makes it possible to "zoom in" on an area of a regional model and obtain data to create a model with finer grid resolution. This process will improve site-specific evaluations.
4. With 97% of the inflow for the model coming from the recharge package and 55% of the losses removed by the evapotranspiration (ET) package, the overall accuracy of the model is dependent on the accuracy of these two packages. During model calibration, it became obvious that these packages do not allow the user to accurately imitate the intricacies of these processes because they deal only with direct effects on the saturated aquifer. Therefore, pre-processing of inputs to these packages is necessary to meet the assumptions the model makes of the data. Areas needing work include accounting for irrigation water, investigating areas where ground water is significantly below land surface, the effects of canals which lower the water table below the ET extinction depth and the results of each of these situations on recharge and evapotranspiration rates.
5. One portion of the evapotranspiration package is the ET surface elevation. It is usually set close to land surface. Detailed land surface data on a large scale is not available. Changes of even one foot in ET surface affected calibration results. These results illustrate the need for detailed information. In addition, cell size is also an important factor. In areas with rapid elevation changes, smaller cells and more detailed data should result in improved calibration of the model.
6. Although ground water withdrawals account for only 4% of the modeled outflow, the impact of these withdrawals was the stimulus for developing the model. There are three main types of ground water withdrawals: public water supply, agricultural, and domestic.

Public water supply withdrawals are the best documented of the three types. However, most public water supply purveyors do not record flow from individual wells. Individual flow meters would provide more accurate withdrawal data for model input.

Accurate withdrawal information for agricultural water use is scarce. Actual water use data would increase confidence in the calibration of the model, particularly in areas of heavy ground water use. In addition, accurate projections of future agricultural water use will be necessary for the development of a water supply plan for the study area.

Domestic self-supply is a large and widespread type of water use. Therefore, parameters used in reaching this estimate need refining to increase the accuracy and reliability of the model.
7. The model was difficult to calibrate within the specified constraints in several localized areas. A review of the residual maps indicates that the highest residuals are located near large withdrawal sources or near the tidal portions of the North Fork of the St. Lucie River. Probable reasons are cell-wide averaging, uncertainty in aquifer parameters, and missing or incorrect data for the surface water system or stress rates. Future revisions to the model should be concentrated in these areas to improve the confidence level of the model.
8. A review of the data maps indicate that there are several areas where input data is scarce, particularly in the western portion of St. Lucie County. Future studies should include ground water reconnaissance investigations in these areas.
9. Model calibration for this study was based on one year of data collection. The relatively short calibration period was chosen in order to comply with the priorities and time lines of the District. Future studies should include a longer calibration period. A time period of at least two years is recommended. Also, the District should develop ground water level maps in order to obtain a better idea of the ground water movement in the study area. The additional information will allow the District staff to utilize statistical analysis for model calibration as opposed to using an arbitrary criterion of \pm one foot.

In addition, the study period coincided with a relatively dry period. Analysis of the rainfall data infers that the study period approximates 1 -in- 10 year drought conditions. Future studies should include calibration under different climatic conditions.
10. Ground water in the study area primarily flows from west to east. A significant amount of the recharge to the surficial aquifer system takes place in Okeechobee County. The District is conducting a ground water reconnaissance study of Okeechobee at the present time. Data from this study should be included in any future model recalibrations.
11. The District should develop interfaces for the St. Lucie model with the existing Martin County model, the Okeechobee County model (which is being developed), and the regional surface water model (currently being developed). This will result in a truly regional model that will encompass the entire flow regime of the surficial aquifer system for the Upper East Coast Planning Area.
12. Most of the canals within the study area function as drains or as effluent rivers. In both cases, ground water flows from the aquifer into the canals.
13. Refinement of the model is a continuous process. As part of the process, the District will develop GIS coverages for the data used in the calibrated model. One of the more important coverages is the canal coverage. First, the District will generate a GIS coverage for the input data used to develop the river and drain packages. Once this task is completed, the District will incorporate the data for the minor irrigation canals that were not used in the model. Even though these canals are not significant on a regional scale, they may be significant when future users wish to conduct a more site-specific evaluation for regulation or planning purposes.
14. Overall, the total inflows and outflows for the model are balanced and appear reasonable. However, there are several nodes where the ET discharge is absent or significantly higher than the recharge. As previously indicated, most of the rivers reaches in the model are effluent. In several cases, the rivers and drains lower the water levels in the aquifer below the extinction depths. When this situation occurs, the ET discharge will be absent for that particular node. Most of the areas where the ET discharges are missing are located in areas with a relatively high density of canals.

There are several nodes which have relatively high ET/recharge ratios. Some possible reasons for the high ET/recharge ratios are as follows:
a) This phenomenon may be due to the moderate drought conditions which occurred during the study period.
b) Many of the nodes with a high ET/recharge ratio occur in areas where canals are absent from the model. Since these nodes do not have surface water discharges to lower the water levels, these nodes have a relative high ET discharge.
c) Several nodes have other significant sources of inflow besides recharge. This additional water raises the simulated water level in the cell. Consequently, the ET discharge also increases due to the higher simulated water level.

It should be noted that none of the cells where ET exceeds recharge goes dry under either transient or steady-state simulations. Also, random checks of the individual budgets for these nodes indicates that the total inflow for the node matches the total outflow for the node.

REFERENCES

Adams, Karin, M. 1992. A Three-Dimensional Finite-Difference Ground Water Flow Model of the Surficial Aquifer in Martin County, Florida. South Florida Water Management District, Technical Publication 92-02

Anderson, Mary.P., and William W. Woessner. 1992. Applied Ground Water Modeling, Simulation of Flow and Advective Transport. Academic Press, Inc.

Ardaman \& Associates, Inc. 1990. Aquifer Performance Test Results for Savanna Dunes Project, St. Lucie County, Florida. Consultant Report in SFWMD Water Use Division Library.

Bearden, H.W.. 1972. Water Availability in Canals and Shallow Sediments in St. Lucie County, Florida. State of Florida Department of Natural Resources Report of Investigation No. 62.

Bower, Richard F., K.M. Adams, and J.I. Restrepo. 1990. A Three-Dimensional Finite-Difference Ground Water Flow Model of Lee County, Florida. South Florida Water Management District, Technical Publication 90-1.

Brown, Michael P. 1980. Aquifer Test Data and Analyses for the Floridan Aquifer System in the Upper East Coast Planning Area. South Florida Water Management District, Technical Publication 80-1.

Brown, Michael P., and D.E. Reece. 1979. Hydrologic Reconnaissance of the Floridan Aquifer System, Upper East Coast Planning Area. South Florida Water Management District, Technical Map Series 79-1 Plates 1-10B
C.F.S. and Associates, Inc. 1981. Supplemental Information for a Water Use Permit for Spanish Lakes Country Club Service Corporation. Consultant Report in SFWMD Water Use Division Library.

CH2M Hill Inc. 1988. Well Completion Report for the Lawnwood Wellfield Expansion and Floridan Aquifer Blending Well. Consultant Report in SFWMD Water Use Division Library.

Cooper, R. M. and T. W. Ortel. 1988. An Atlas of St. Lucie County Surface Water Management Basins. South Florida Water Management District Technical Memorandum.

El-Khazan, Clovis C. 1988. Modeling of Water Exchange Between the Indian River Lagoon and the Surficial Aquifer in Port St. Lucie, Florida, MS Thesis, Florida Institute of Technology, Melbourne, Florida.

Fetter, C.W. 1980. Applied Hydrogeology. Charles E. Merrill Publishing Company.
Florida Geological Survey, 1986. Hydrogeologic Units of Florida. Florida Geological Survey, Special Publication No. 28.

Geraghty and Miller, Inc. 1981. Hydrogeologic Investigations of the Savannah Club, St. Lucie County, Florida. Consultant Report in SFWMD Water Use Division Library.

Geraghty and Miller, Inc. 1982. Hydrogeologic Investigation of Harbor Ridge Limited, St. Lucie County, Florida. Consultant Report in SFWMD Water Use Division Library.

Geraghty and Miller, Inc. 1984. Installation and Testing Production Well 2 and Associated Wells, Harbor Ridge Limited, St. Lucie County, Florida. Consultant Report in SFWMD Water Use Division Library.

Gilbert, Richard O. 1987. Statistical Methods for Environmental Pollution Monitoring. Van Nostrand Reinhold.

Golden Software Inc. 1989. Surfer Reference Manual.
Hopkins, Emily. 1991. A Water Resource Analysis of the Jensen Beach Peninsula, Martin County, Florida. South Florida Water Management District, Technical Publication 91-03.

Hunter/Hydrosoft. 1989. Martin and St. Lucie County Ground-Water Modeling Study. Consultant Report in SFWMD Water Use Division Library.

Hydrodesigns, Inc. 1988. Safe Casing Depths for Floridan Aquifer System Wells in Martin, St. Lucie and Okeechobee Counties, Florida. Consultant report in SFWMD Water Use Division Library.

Indian River Farms Drainage District. 1993. Plan of Indian River Farms Drainage District, Indian River County, Florida.

James M. Montgomery, Inc. 1989. North Martin County Wellfield Wetlands Impact Study, Aquifer Performance Test. Consultant Report in SFWMD Water Use Division Library.

Kane, Richard L. 1992. Altitude of the Water Table in the Surficial Aquifer System in Martin and St. Lucie Counties, May 1988. U.S. Geological Survey Open-File Report 92-98.

Layne Atlantic Company. 1970. General Development Utilities, Inc., Report of Analyses of Pumping Test and Determination of Effects of Pumping. Consultant Report in SFWMD Water Use Division Library.

Lukasiewicz, John. 1992. A Three-Dimensional Finite-Difference Ground Water Flow Model of the Floridan Aquifer System in Martin, St. Lucie, and Eastern Okeechobee Counties, Florida, South Florida Water Management District, Technical Publication 92-03.

Lukasiewicz, John and M. P. Switanek. In Press. Ground Water Resource Assessment of Martin and St. Lucie Counties, Florida. South Florida Water Management District, Technical Publication 95-**

McCollum, Samuel H., and O. E. Cruz, Sr. 1981. Soil Survey of Martin County Area, Florida. United States Department of Agriculture, Soil Conservation Service.

McCollum, Samuel H., and Robert F. Pendleton. 1971. Soil Survey of Okeechobee County, Florida. United States Department of Agriculture, Soil Conservation Service.

McDonald, M.G., and A.W. Harbaugh. 1988. A Modular Three-Dimensional FiniteDifference Ground-Water Flow Model. Techniques of Water-Resources Investigations of the U.S. Geological Survey, Book 6.

Miller, W. L. 1979. Hydrologic and Geologic Data from the Upper East Coast Planning Area, Southeast Florida. U. S. Geological Survey, Open File Report 79 1543.

North St. Lucie River Water Control District. 1991. Information Map.
Parker, G. G., G. E. Ferguson, S. K. Love, et al. 1955. Water Resource of Southeastern Florida. U. S. Geological Survey Water Supply Paper No. 1255.

Post, Buckley, Schuh \& Jernigan, Inc. 1985. Hydrological Report, St. Lucie West, St. Lucie County, Florida. Consultant Report in SFWMD Water Use Division Library.

Restrepo, J.I, C. Bevier, and D. Butler. 1992. A Three-Dimensional Finitedifference Ground Water Flow Model of the Surficial Aquifer System, Broward County, Florida. South Florida Water Management District, Technical Publication 92-05.

St. Johns Water Control District. 1991. St. Johns Water Control District Water Conservation Plan.

Schiner, G. R., C. P. Laughlin, and D. J. Toth. 1988. Geohydrology of Indian River County, Florida, U. S. Geological Survey, Water-Resources Investigation Report 884073.

Scott, Thomas M.. 1988. The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida. Florida Geological Survey Bulletin No. 59.

South Florida Water Management District. 1974. Memorandum Report on Surface Water Availability in the St. Lucie County Area.

South Florida Water Management District. 1985. Management of Water Use, Permit Information Manual Volume III.

South Florida Water Management District. 1991. Draft Water Supply Policy Document.

South Florida Water Management District, 1994. Upper East Coast Water Supply Plan Background Document.

Statgraphics. 1992. Manugistics, Inc.
Triola, Mario F. 1993. Elementary Statistics (5th edition). Addison-Wesley Publishing Company, Inc.

United States Department of Agriculture, Soil Conservation Service. 1970. Irrigation Water Requirements. Technical Release No. 21.

Universal Engineering and Testing Company. 1986. Task III, Kings Bay Golf and Country Club, Okeechobee, Florida, Aquifer Performance Test. Consultant Report in SFWMD Water Use Division Library.

Viessman, W., J. W. Knapp, G. L. Lewis, and T. E. Harbaugh. 1977. Introduction to Hydrology. A Dun-Donnelley Publisher, New York.

Watts, Frank C., and Daniel L. Starky. 1980. Soil Survey of St. Lucie County Area, Florida, United States Department of Agriculture, Soil Conservation Service.

Wedderburn, Leslie A. and Michael S. Knapp. 1983. Field Investigation into the Feasibility of Storing Fresh Water in Saline Portions of the Floridan Aquifer System, St. Lucie County, Florida, South Florida Water Management District, Technical Publication 83-7.

Wettstein, Carol A., Chris V. Noble, and James D. Slabaugh. 1987. Soil Survey of Indian River County, Florida. United States Department of Agriculture, Soil Conservation Service.

White, William A. 1970. The Geomorphology of the Florida Peninsula. Florida Bureau of Geology, Geological Bulletin No. 51.

APPENDIX A

LITHOLOGIC AND HYDROGEOLOGIC DATA

LIST OF FIGURES - APPENDIX A

Figure Page
A-1. Map of Wells with Lithologic or Geophysical Data 101
A-2. Isopach Map of Layer 1 106
A-3. Structure Contour Map of the Base of Layer 1 107
A-4. Isopach Map of Layer 2 108
A-5. Structure Contour Map of the Base of Layer 2 109
A-6. Isopach Map of Layer 3 110
A-7. Structure Contour Map of the Base of the Surficial Aquifer System 111
A-8. General Soil Type Map for the Study Area from Statsgo 113
A-9. Hydraulic Conductivity Map of Layer 1 114
A-10. Map Showing the Location of the APT's 115
A-11. Hydraulic Conductivity of Layer 2 118
A-12. Transmissivity of Layer 3 119
A-13. Composite Transmissivity Map of the Surficial Aquifer System 120
A-14. VCONT between Layers 1 and 2 121
A-15. VCONT between Layers 2 and 3 122
LIST OF TABLES - APPENDIX A
Table Page
A-1. Lithologic Well Data 102
A-2. Soil Classification (STATSGO) 112
A-3. St. Lucie County Aquifer Performance Tests 116

FIGURE A-1. Map of Wells with Lithologic or Geophysical Data

MAP \#	WELL NAME	TOTAL DEPTH	GROUND LEVEL (NGVD)	EAST PLANARS	NORTH PLANARS	LAYER 1 THICKNESS	LAYER 1 BASE (NGVD)	LAYER 2 THICKNESS	LAYER 2 BASE (NGVD)	LAYER 3 THICKNESS	BASE OF (NGVD)
38	HRTW-4	138	10.00	721627	1049905	30.00	-20.00	65.00	-85.00	43.00	-128.00
39	HRTW-6	126	12.00	721793	1052632	42.00	-30.00	53.00	-83.00		
40	HRR-1	150	10.00	722773	1054859	42.00	-32.00	63.00	-95.00		
41	HRR-3	147	10.00	728112	1052566	42.00	-32.00	42.00	-74.00	35.00	-109.00
42	HRR-4	131	10.00	730660	1049248	30.00	-20.00	64.00	-84.00	28.00	-110.00
43	HRPW-2	125	10.00	726875	1047712	45.00	-35.00	35.00	-70.00	48.00	-118.00
44	HRPW-1	110	10.00	723701	1050320	45.00	-35.00	35.00	-70.00		
45	FPBLEND	904	20.00	709923	1130728	45.00	-25.00	35.00	-60.00	30.00	-90.00
46	FPS-18	120	20.00	713732	1125901	45.00	-25.00	35.00	-60.00	35.00	-95.00
47	SLF50	1000	25.00	662956	1092341				25.00	130.00	-105.00
48	PG-318	150	28.46	620195	1157726	29.00	-0.54	34.00	-34.54	45.00	-79.54
49	SCD	403	22.00	642376	1123062	18.00	4.00	22.00	-18.00	62.00	-80.00
50	FP\#3ABD	154	29.70	721591	1122510	45.00	-15.30	45.00	-60.30	60.00	-120.30
51	FP\#5ABD	174	24.50	721765	1123622	46.00	-21.50	44.00	-65.50		
52	FTPATW1	170	20.54	703880	1078187	22.00	-1.46	23.00	-24.46	80.00	-104.46
53	SC5D	125	16.56	728305	1082558	35.00	-18.44	35.00	-53.44	50.00	-103.44
54	SC1D	120	17.00	724245	1082637	25.00	-8.00	45.00	-53.00	45.00	-98.00
55	SC14D	125	15.00	729380	1083877	45.00	-30.00	25.00	-55.00		
56	SC25D	135	15.00	728459	1087204	30.00	-15.00	30.00	-45.00		
57	SC290	435	15.00	732517	1087329	40.00	-25.00	40.00	-65.00		
58	W8361/SLF14	1248	26.00	639149	1091949	20.00	6.00	20.00	-14.00	85.00	-99.00
59	W1052	867	19.00	690151	1120027	20.00	-1.00	40.00	-41.00	40.00	-81.00
60	W1022	930	18.00	684656	1119396	20.00	-2.00	20.00	-22.00	80.00	-102.00
61	W1393	980	17.00	688020	1113252	20.00	-3.00	20.00	-23.00		
62	W3023	691	20.00	684512	1170492	12.00	8.00	46.00	-38.00	84.00	-122.00
63	W7677	576	22.00	689186	1133655	30.00	-8.00	33.00	-41.00	62.00	-103.00
64	W15106	470	25.00	632801	1157463	20.00	5.00	30.00	-25.00	50.00	-75.00
65	W3018	714	2.00	706827	1171914	10.00	-8.00	74.00	-82.00	41.00	-123.00
66	SDOW4	>190	20.00	746354	1066507	45.00	-25.00	40.00	-65.00		
67	FPTW 11	130	21.62	705370	1138784	50.00	-28.38	30.00	-58.38	48.00	-106.38
68	FPTW10	138	21.87	710512	1138709	65.00	-43.13	25.00	-68.13	45.00	-113.13
69	FPTW9	130	23.65	710440	1135073	65.00	-41.35	25.00	-66.35	34.00	-100.35
70	FPTW6	174	20.00	710557	1129924	65.00	-45.00	35.00	-80.00	28.00	-106.00
71	FPTW7	130	20.00	713380	1124385	55.00	-35.00	25.00	-60.00	30.00	-90.00
72	FPTW8	130	20.00	716444	1124300	40.00	-20.00	35.00	-55.00	40.00	-95.00
73	FPTW5	175	30.00	720591	1124019						-115.00
74	SLWD2	130	23.00	699971	1084226	24.00	-1.00	45.00	-46.00		

	888898888
	8888888888
	88888888888
$\frac{5}{4}$	
	888898888888 앙ㅇㅇ 888888888888888888
出宸	
\#	

FIGURE A-2. Isopach Map of Layer 1

[^0]
FIGURE A-4. Isopach Map of Layer 2

FIGURE A-5. Structure Contour Map of the Base of Layer 2

FIGURE A-6. Isopach Map of Layer 3

TABLE A-2 Soll Cuntifiction

MAP
SOL CLASEIFICATION
ESTMMATED HYDRAULIC CONDUCTIMIT (pidey)
ARENTS-MAT ACHAHYDRAOUENTE-NATERNE:HURST 20.0
DABNOER-URBAN LAND-HMMOKALEEMYAKKA-OKELANTA 31.5
FELDA-CHOBEEKALIOAFLOPDDANANITTAW 115
FLORMDANA-PMERA-TERRA GEMPMACDPOMPANO 25.1
MYAKKA-POMELLO-MNOKALEE-WAVELAND-CASSA 25.6
PALM BEACH-CANAVERAL-URBAN LAND-ST. AUOUSTME-BEACHES 44.2
PAOLA-ORENO-ASTATULA-POMELLO-MYAKKA 43.2
POMONA-EAURALIIE-MALABAR-MYAKKA-BAENEER 28.2
RMERA-PLNEDA-FELDA-WNDER 11.7
BMYRNA-IMMOKALEE-BABNGER-MYAKKA-EAVRALLE 29.6TAVARES-2OLFO-PAOLA-ASTATULAHYAKK41.7TERRA CEM-RATOR-GMOVA18.0
\because TERRA CEM-BAMSULA-TOMOKA-HONTOON 25.9WABASEOPBLDAPMEDA-WNDERPAELEY1E. 6
CH WATEPFELDAMALABAR 172WATERPECNBH-ESTEROPEHLICER-WULFERTOUTEDE MODEL
WATERTERRA CEMARATOR 19.6
$E=3$ WATERTERRA CEMAUREAN LAND 20.0
WAVELAND-ZOLFO-MYAKKA-MMMOKALEEMALABAR 20.4
II
)
整要

FIGURE A-10. Map Showing the Location of the APT"s
TABLE A-3. St. Lucie County Aquifer Perfomance Tests

- DENOTES THE T VALUES CAME FROM BEARDEN'S BOG REPORT OR FROM HYDROSOFT'S DATA RECON FOR THE ST LUCIE COUNTY WELLFIELD PROTECTION MODEL. THESE VALUES ARE UNVERIFIED.
MYRAULIC CONDUCTIVITY
LEAKANCE SCREEN (1/DAY) INTERVAL
 8
0
0

STORATIVITY

TRANSMISSIVITY
(FT^2/DAY)
 NORTH
PLANARS

WELL NAME

HARBOR RIDGE ${ }^{*} 1$
HARBOR RIDGE ${ }^{\prime} 2$
SAVANNAH CLUB
SP LAKES C CLUB
NPT ST LUCIE PW12
STL APT2
SHALLOW
McCARTY RANCH
STL APT1
STLAPT4
FT PIERCE INT
INDRIO ROAD
SAVAGE ROAD
ST LUCIE WEST
FT.PIERCE,BCE $\# 10$
FT.PIERCE,BCE\#11

- DENOTES THE T VALUES CAME FROM BEAROENS BOG REPORT OR FROM HYDROSOFT'S DATA RECON FOR THE
ST LUCIE COUNTY WELLFIELD PROTECTION MODEL. THESE VALUES ARE UNVERIFIED.

fIGURE A-11. Hydraulic Conductivity of Layer 2

FIGURE A-12. Transmissivity of Layer 3

FIGURE A-13. Composite Transmissivity Map of the Surficial Aquifer

FIGURE A-14. Vcont between layers 1 and 2

FIGURE A-15. Vcont between layers 2 and 3

APPENDIX B

DATA FOR SURFACE WATER FEATURE

LIST OF FIGURES - APPENDIX B

Figure Page
B-1. The C-25 Basin 125
B-2. The C-24 Basin 127
B-3. The C-23 Basin 129
B-4. The C-59 Basin 131
B-5. The North Fork of the St. Lucie River Basin 133
B-6. Location of the NSLRWCD in Relation to the North Fork of the St. Lucie River Basin and the C-24 Basin 134
B-7. Location of Pump Stations within the NSLRWCD 135
LIST OF TABLES - APPENDIX B
Table Page
B-1. C-25 Basin Structures - Design Criteria 126
B-2. C-24 Basin Structures - Design Criteria 128
B-3. C-23 Basin Structures - Design Criteria 130
B-4. C-59 Basin Structures - Design Criteria 132
B-5. Hydraulic Parameters for the SFWMD River Reaches 136
B-6. Hydraulic Parameters for the NSLRWCD River Reaches 143

FIGURE B-1. The C-25 Basin (from Cooper and Ortel, 1988)

Table B-1. C-25 Basin Structures - Design Criteria

Structure	Type	$\begin{aligned} & \text { Design } \\ & \text { Stages } \\ & \text { (ft NGVD) } \end{aligned}$	$\underset{(f t \text { NGVD) }}{\text { Optimum Stage }}$
S-50 Stage divide	Fixed crest weir; $\mathrm{cl}=126 \mathrm{ft}$ $\mathrm{ce}=12.0 \mathrm{ft}$	$\begin{aligned} & H W=16.0 \\ & T W=0.7 \end{aligned}$	Passes flow when HW > 12.0
S-99 Stage divide	Gated spillway, 2 gates 15.4 ft high * 25.8 ft wide, $\mathrm{ncl}=50.0 \mathrm{ft}$ $\mathrm{ce}=5.6 \mathrm{ft}$	$\begin{aligned} & \mathrm{HW}=20.0 \\ & \mathrm{TW}=19.5 \end{aligned}$	May 15 to Oct 15 $19.2 \leq \mathrm{HW} \leq 20.2$ Oct 15 to May 15 $21.5 \leq \mathrm{HW} \leq 22.5$
G-81 Water supply between C-24 and C-25	Steel sheet-pile dam, 3 timber gates on concrete weir, 9.5 ft high * 5.7 feet wide; $\mathrm{ncl}=15.0 \mathrm{ft}$ $\mathrm{ce}=13.5 \mathrm{ft}$		Depends on conditions
ce $=$ crest elevation HW = head water $\mathrm{cl}=\mathrm{crest}$ length $\mathrm{ncl}=$ net crest length	$\mathrm{cmp}=$ corrugated ie $=$ invert elevati $\mathrm{TW}=$ tail water	metal pipe n	$\begin{aligned} & \mathrm{ft}=\text { feet } \\ & \text { in }=\text { inches } \end{aligned}$

Modified from Cooper and Ortel (1988)

FIGURE B-2. The C-24 Basin (from Cooper and Ortel, 1988)

Table B-2. C-24 Basin Structures - Design Criteria

Structure	Type	Design Stages (ft NGVD)	$\underset{\text { (ft NGVD) }}{\text { Optimum Stage }}$
S-49 Stage divide	Gated spillway, 2 gates, 15.7 ft high * 17.8 ft wide, $\mathrm{ncl}=34.0 \mathrm{ft}$, $c e=4.4 \mathrm{ft} \mathrm{NGVD}$	$\begin{aligned} & \mathrm{HW}=16.3 \\ & \mathrm{TW}=2.4 \end{aligned}$	May 15 to Oct 15 $18.5 \leq \mathrm{HW} \leq 20.2$ Oct 15 to May 15 $19.5 \leq \mathrm{HW} \leq 21.2$
G-78 Divide Structure: C-23 and C-24 basins; Water Supply between C-23 and C-24	Culvert with flashboard riser 1-72 in * 50 ft CMP		Normally closed, opened for water supply or drainage
G-79 Stage divide Water Supply between C-23 and C-24	Culvert with flashboard riser 2-60 in * 62 ft CMP , $\mathrm{ie}=16.9 \mathrm{ft}$ (west end) $\mathrm{ie}=15.9 \mathrm{ft}$ (east end) $1-84$ in * 62 ft CMP ie $=15.1 \mathrm{ft}$	$\begin{aligned} & \mathrm{HW}=22.0 \\ & \text { (east side) } \\ & \text { TW }=22.9 \\ & \text { (west side) } \end{aligned}$	HW (23.0
G-81 Water supply between C-24 and C-25	Steel sheet-pile dam, 3 timber gates on concrete weir, $9.5 \mathrm{ft} \mathrm{high} * 5.7$ feet wide; $\mathrm{ncl}=15.0 \mathrm{ft}$ $c \mathrm{ce}=13.5 \mathrm{ft}$		Depends on conditions

```
ce = crest elevation
HW = head water
ncl = net crest length
```

cmp $=$ corrugated metal pipe
$\mathrm{ft}=\mathrm{feet}$
ie $=$ invert elevation
TW = tail water in $=$ inches

Modified from Cooper and Ortel (1988)

FIGURE B-3. The C-23 Basin (from Cooper and Ortel, 1988)

Table B-3. C-23 Basin Structures - Design Criteria

Structure	Type	Design Stages (ft NGVD)	$\underset{(\mathrm{ft} \text { NGVD) }}{\text { Optimum }}$
S-48 Stage divide	Fixed crest weir, $\mathrm{cl}=113 \mathrm{ft}$ $\mathrm{ce}=8.0 \mathrm{ft}$	$\begin{aligned} & \mathrm{HW}=13.0 \\ & \mathrm{TW}=0.7 \end{aligned}$	Passes flow when HW 8.0
S-97 Stage divide	Gated spillway, 2 gates 14.2 ft high * 22.8 ft wide, $\mathrm{ncl}=44.0 \mathrm{ft}$ $\mathrm{ce}=7.8 \mathrm{ft}$	$\begin{aligned} & \mathrm{HW}=18.5 \\ & \mathrm{TW}=14.0 \end{aligned}$	May 15 to Oct 15 $20.5 \leq \mathrm{HW} \leq 22.2$ Oct 15 to May 15 $22.2 \leq \mathrm{HW} \leq 23.2$
G-78 Divide Structure: C-23 and C-24 basins; Water Supply between C-23 and C-24	Culvert with flashboard riser $1-72$ in * 50 ft CMP		Normally closed, opened for water supply or drainage
ce $=$ crest elevation $\mathrm{HW}=$ head water $\mathrm{cl}=$ crest length ncl $=$ net crest length	cmp $=$ corrugated metal pipe ie $=$ invert elevation $\mathrm{TW}=$ tail water		$\begin{aligned} & \mathrm{ft}=\text { feet } \\ & \text { in }=\text { inches } \end{aligned}$

Modified from Cooper and Ortel (1988)

FIGURE B-4. The C-59 Basin (from Cooper and Ortel, 1988)

Table B-4. C-59 Basin Structures - Design Criteria

Structure	Type	Design Stages (ft NGVD)	$\begin{aligned} & \text { Optimum Stage } \\ & \text { (ft NGVD) } \end{aligned}$
S-191 Stage divide	$\begin{aligned} & \text { Gated spillway, } 3 \\ & \text { gates } 17.6 \mathrm{ft} \text { high } \\ & * 27.8 \mathrm{ft} \text { wide, } \\ & \mathrm{ncl}=81.0 \mathrm{ft} \\ & \mathrm{ce}=7.4 \mathrm{ft} \end{aligned}$	$\begin{aligned} & \mathrm{HW}=19.2 \\ & \mathrm{TW}=18.6 \end{aligned}$	```19.0 19.2\geqHW \geq 18.8 (Gate closed if TW >HW)```
S-192 Divide structure and pump station, water supply from L-63N Borrow Canal to Taylor Creek	Gated Culvert 4ft * 112 ft CMP ie $=8.0 \mathrm{ft}$; Pump station unit:one 13500 GPM pump	$\begin{aligned} & \mathrm{HW}=21.6 \\ & \mathrm{TW}=13.0 \end{aligned}$	$\begin{aligned} & \mathrm{HW}=19.0 \\ & \mathrm{TW}=14.0 \\ & \text { (water supply) } \end{aligned}$
G-106 Divide structure and water supply from L-63N Borrow Canal to S-113 Basin	Gated Culvert 3 ft * 90 ft CMP $\mathrm{ie}=15.0$		
ce $=$ crest elevation $\mathrm{HW}=$ head water ncl $=$ net crest length	cmp $=$ corrugated metal pipe ie $=$ invert elevation TW = tail water		$\begin{aligned} & \mathrm{ft}=\text { feet } \\ & \mathrm{in}=\text { inches } \end{aligned}$

Modified from Cooper and Ortel (1988)

FIGURE B-5. The North Fork of the St. Lucie River Basin (from Cooper and Ortel, 1988)

Location of the Pump Stations within the NSLRWCD.

FIGURE B-7.

RIVER bed
HYDRAULIC
CONDUCTVITY
(FEETIDAY)

TABLE B-5. Hydraulic Parameters for SFWMD River Reaches (Continued)

RIVER
WIDTH
(FEET)

 ROW
 CONTROL
STRUCTURE
 CANAL
NAME

TABLE B-5. Hydraulic Parameters for SFWMD River Reaches (Continued)

 RIVER
WIDTH

TABLE B－5．Hydraulic Parameters for SFWMD River Reaches（Continued）

 RIVER
REACH
（FEET）
 MODEL
 MODEL
ROW
密

态

RIVER BED

hydraulic是

TABLE B－5．Hydraulic Parameters for SFWMD River Reaches（Continued）
 RIVER
REACH
（FEET）
 RIVER
BOTTOM
 MODEL
COLUMN
会

突

TABLE B-5. Hydraulic Parameters for SFWMD River Reaches (Continued)

 RIVER
REACH
(FEET)

 CANAL

[^1]

TABLE B-5. Hydraulic Parameters for SFWMD River Reaches (Continued)

RIVER
BOTTOM
(NGVD)

MODEL
COLUMN

MODEL
ำ

canal
name

TABLE B-6, Hydraulic Parametens for the NSLRWCD River Reaches (Continued)

 MODEL
COLUMN
 RIVER
BOTTOM曷
$\frac{5}{3}$

CANAL
NAME

NSLDD 57
星 NSLDD 57 NSLDD 57 NSLDD 57 NSLDD 57 NSLDD 57 NSLDD 67 NSLDD 57 NSLDD 57 NSLDD 57 8
0
0
0

0 | 昆 |
| :--- |
| 易 |
| 0 | 8

8

易 | 8 |
| :--- |
| 8 |
| 8 |
| 8 |
| 8 | 8

易

8 | 8 |
| :--- |
| 8 |
| 8 |
| 8 |
| 8 | NSLDD 68 NSLDD 56 NSLDD 68 NSLDD 56 NSLDD 56最苞

曷
4术量色品
槵
$\frac{0}{2}$

下N

気

TABLE B-6. Hydraulic Parameters for the NSLRWCD River Reaches (Contimued)

 MODEL
ROW
 STRUCTURE
 NSLDD 81
 NSL.DD8sX NSLDD $88 \times$ NSLDD 88X NSLDD 90 NLSDD 80 NBLDD 88
㥅

 NSLDD 89

 NSLDD 87

© 8 \& RIVER
BOTTOM
(NGVD)关
 CONTROL
STRUCTURE
 CANAL
NAME
NSLDD 80
NBLDD 89
NSLDD 107

APPENDIX C

RAINFALL STATION MAP AND TABLE, GENERAL LAND USE MAP, RECHARGE AND ET COEFFICIENTS

LIST OF FIGURES - APPENDIX C

Figure Page
C-1. Map of Rainfall Stations 157
C-2. Normal Probability Plot of Average Annual Rainfall 165
C-3. Average Monthly Rainfall (1936 through 1992) 166
C-4. General Land Use Map 167
C-5. Average Monthly Rainfall 174
C-6. Net Recharge Map 175
C-7. Ratio of Net Recharge to Average Monthly Rainfall 176
C-8. ET Surface 184
LIST OF TABLES - APPENDIX C
TableC-1. Rainfall Stations158
C-2. Monthly Mean Rainfall (1936 through 1992) 161
C-3. Ranking of the Mean Annual Rainfall (1936 through 1992) 163
C-4. S.F.W.M.D. Land Use and Land Cover Classification Code 168
C-5. Coefficients Used in Recharge Preprocessing 172
C-6. Crop Coefficient Used in ET Preprocessing 177
C-7. Extinction Depths Used in ET Preprocessing 181

FIGURE C-1. Map of Rainfall Stations

TABLE C-1. Rainfall Stations

MRP \#	STATE PLANE COORDINATES		SITE: SOURCE
	EAST	NORTH	
1	724500	1031500	Martin Downs WrP:Operator
2	705456	1034067	Martin County Palm City Inndeill:Operator
3	501174	1042435	Brighton 1 Dairy; SFMED
4*	743790	1042559	Stuayt 1; SFWad
5	564645	1044001	S133 R; SFFRD
6*	566270	1044407	EGS6 R; STM
7	585589	1045352	New Palm Dairy; SFwad
8	585404	1047169	Red Top Dairy; Srine
9*	673871	1049370	Bluegoose (Belfort); SThind
10	724900	1049900	Harbor Ridge Country Club; Operator
11	512067	1051029	\$65 East Spillway; SFwad
12	534849	1055005	G80 Culvert; Sywap
13	502347	1057682	Maple River; SFWMD
14	739724	1058288	N. Martin County WrP; Operator
15*	568500	1060466	Okeechobee Field Station 2; STran
16	569040	1061376	Okeechobee Field Station; SFMaD
17	599092	1061539	Davie Deiry (Belfort) ; SFWn
18	747801	1066011	MCD8 Lake Manor; 3 TL MOSQ. Control Dist.
19	549263	1071646	SEz East Well; SEMap
20	697590	1073107	MCD16 Betknan; STL moSQ. Control Dist.
21	556116	1074583	Okeechobet Forest Service HO; SFTRD
22	512269	2076667	Exightton Dairy *2; SFind
23	753954	1077763	MCD7 Inland Dunes; STI Mose. Control Dint.
24	536805	1078802	Dry Inke Dairy ${ }^{\text {2; SIMPD }}$
25	517138	1083131	Flying G. Dairy *2; 3rine
26	726207	1086687	mcdio Spanish Lakes; StL mose. Control Diet.
27*	663325	1090222	Hayes Property (Belfort); SFWMD
28	711747	1091961	ycilo white City; STL mose. Control Dist.
29*	620090	1099281	Cow Creek Ranch (Belfort); SFTMD

TABLE C-1. Rainfall Stations (Continued)

MAP 書	STATE PLANE COORDINATES		SITE: SOORCE
	PAST	NORTH	
30	679599	1101500	MCD17 Pony Pines; SrL Mose. Control Dist.
31*	657594	1102721	Ft. Pierce rield station; Srup
32*	657594	1102721	Ft. Pierce Field station; SFMod
33*	678230	1105129	Scotto Growen; STVad
34	729525	1105892	med9 Barnes;smL Mose. Control Dist.
35	504958	1106049	GN 160 Rain/Well, US98 \#t Bapsinger; SFTMD
36	508203	1108574	Iamb Island Dairy; Srmep
37	501983	1109482	Chandler Slough; SFwod
38	714853	1118434	MCD20 MCDA. P .; STL MOSQ. Control Dist.
39	565698	1118623	Meluthur Daixy Barn \#2; SFMuD
40*	715032	1118738	Ft. Pierce Tower; Srpod
41	687518	1124256	cc740 Coca Cola Groves Blk5; Operator
42	692825	1126200	Ft. Pierce iras Center; IFAS
43	731380	1128422	MCD6 Ocean Village; STL MosQ. Control Dist.
44*	710834	1128714	Ft. Pierce; SFMad
45	517206	1134427	W.F. Rucks Dairy; Sriom
46	502793	1234726	Eagle Isiand Dairy; SFWND
47	657994	1138873	CC702 Coce Cola Groves; Operator
48	701310	1141389	MCD4 Bill Grace;Srl mpSe. Control Dist.
49	728329	1142028	McD2 Hoxth Beachlsth mose. Control Dist.
50	642832	1146996	ccilo Coca Coll GrovesBlki; Operator
51	521703	1148768	GM 189 Rain/Mol1 on Rocking K Ranch; Sman
52	712969	1150941	McD3 Walden III; 32L moSe. Control Dist.
53	642980	1155983	Cc715 Coca Cola Grove Blk11; Operator
54	693927	1139428	mCD5 工itkmood Park; STI mosp. Control Diet.
55*	562659	1160322	GFi 143 Rain/well on Rocking k Ranch; SFtod
56	646925	1160441	cc717 Coca Cola Grover sik14; Operator
57	721282	1162195	mCD1 Bryp Mawr; STz Mose. Control Dist.
58	652408	1162986	CC732 Coca Cola Groves Elk44; Operator
59	646987	1168216	Cc720 Coca Cola Grover Blk20; Operator

TABLE C-1. Rainfall Stations (Continued)

MAP 劵	STATE PLANE COORDINATES		SITE: SOURCW
	EAST	NORTH	
60	652558	1170762	cc735 coca Cola Groves B1k50; Operator
61	647146	1173872	CC727 Coca Cola Groves B1k34; Operator
62	553182	1178585	Rocking x Ranch (2N35); STVMD
63*	553988	1181212	Fort Drum 5kin; Srieab
64	647207	1181850	cc730 Coca Cola Groves B1k40; Operator
65*	684060	1190485	Vero Beach Tower; STMD
* Deed to metimate long term average for study area			

 Hौo

 जルN世的

ルNN以

Table C-3. Ranking of the Annual Rainfall (1936 through 1992)

RANK	YEAR	RAINFALL	PERCENTILE
1	1938	35.98	1.09
2	1961	36.21	2.84
3	1981	38.36	4.59
4	1967	40.32	6.33
5	1980	41.51	8.08
6	1988	41.56	9.83
7	1944	41.67	11.57
8	1946	42.86	13.32
9	1943	43.21	15.07
10	1989	43.95	16.81
11	1956	44.05	18.56
12	1955	44.10	20.31
13	1950	44.17	22.05
14	1977	45.08	23.80
15	1975	45.14	25.55
16	1987	45.32	27.29
17	1942	45.39	29.04
18	1965	45.65	30.79
19	1990	45.76	32.53
20	1972	46.73	34.28
21	1971	47.30	36.03
22	1976	47.65	37.77
23	1948	47.71	39.52
24	1945	48.10	41,27
25	1974	48.65	43.01
26	1939	48.90	44.76
27	1978	49.13	46.51
28	1951	49.18	48.25
29	1958	49.51	50.00
30	1940	49.87	51.75
31	1985	50.02	53.49
32	1984	51.22	55.24
33	1962	51.44	56.99
34	1970	51.45	58.73
35	1964	51.91	60.48
36	1952	52.79	62,23
37	1986	53.66	63.97
38	1949	53.71	65.72
39	1963	53.88	67.47
40	1973	54.21	69.21
41	1968	55.18	70.96
42	1892	57.94	72.71
43	1979	58.34	74.45
44	1960	58.36	76.20
45	1966	59.89	77.95
46	1953	60.53	79.69

Table C-3. Ranking of the Annual Rainfall (1936 through 1992) (Continued)

FIGURE C-2. Normal Probability Plot of Average Annual Rainfall

FIGURE C-3. Average Monthly Rainfall (1936 through 1992)

TABLE C-4: S.F.W.M.D. LAND USE AND LAND COVER CLASSIFICATION CODE

LEVELI LEVELII LEVELIII
(U) Urban and built-up land
(UR) Residential
(URSL) Single-family, Low Density (under 2 D.U./gross acre)
(URSM) Single-family, Medium Density (2 to $5 \mathrm{D} . \mathrm{U} . / \mathrm{gross}$ acre)
(URSH) Single-family, High Density (over 5D.U./gross acre)
(URMF) Multi-family building
(URMH) Mobile homes
(UC) Commercial and Services
(UCPL) Parking lot
(UCSC) Shopping center
(UCSS) Sales and services
(UCCE) Cultural and Entertainment
(UCMC) Marine commercial (Marinas)
(UCHM) Hotel-Motel
(UI) Industrial
(UIJK) Junkyard
(UILT) Other light industrial
(UIHV) Other heavy industrial
(US) Institutional

(USED)	Educational
(USMD)	Medical
(USRL)	Religious
(USMF)	Military
(USCF)	Correctional
(USGF)	Governmental (other than military or correctional)
(USSS)	Social services (Elks, Moose, Eagles)

(UT) Transportation

(UTAP)	Airports
(UTAG)	Small grass airports
(UTRR)	Railroad yards and terminals
(UTPF)	Port facilities
(UTEP)	Electrical power facilities
(UTTL)	Major transmission lines
(UTHW)	Major highway and rights-of-way
(UTWS)	Water supply plants
(UTSP)	Sewerage treatment plants
(UTSW)	Solid waste disposal

(UTRS) Antenna arrays
(UTOG) Oil and gas storage
(UO) Open and others

$$
\begin{array}{ll}
\text { (UORC) } & \text { Recreational facilities } \\
\text { (UOGC) } & \text { Golf courses } \\
\text { (UOPK) } & \text { Parks } \\
\text { (UOCM) } & \text { Cemeteries } \\
\text { (UORV) } & \text { Recreational vehicle parks } \\
\text { (UOUD) } & \text { Open under development } \\
\text { (UOUN) } & \text { Open and undeveloped within } \\
& \text { urban area }
\end{array}
$$

(A) Agriculture
(AC) Cropland
(ACSC) Sugar cane
(ACTC) Truck crops
(ACRF) Rice fields
(AP) Pasture
(APIM) Improved pasture
(APUN) Unimproved pasture
(AM) Groves, Ornamentals, Nurseries, Tropical fruits
(AMCT) Citrus
(AMTF) Tropical fruits
(AMSF) Sod farms
(AMOR) Ornamentals
(AF) Confined feeding operations
(AFFL) Cattle feed lots
(AFDF) Dairy farms
(AFFF) Fish farms
(AFHT) Horse training and stables
(AFPY) Poultry
(R) Rangeland
(RG) Grassland
(RS) Scrub and brushland
(RSPP) Palmetto prairies
(RSSB) Brushland

TABLE C-4: S.F.W.M.D. LAND USE AND LAND COVER CLASSIFICATION CODE (CON"T.)
(F) Forested uplands
(FE) Coniferous

(FEPF)	Pine flatwoods
(FESP)	Sand pine scrub
(FECF)	Commercial forest (pine)

(FO) Non-coniferous
(FOAP) Australian pine
(FOBP) Brazilian pepper
(FOPA) Palms
(FOSO) Scrub oak
(FOOK) Oak
(FOCF) Commercial forest
(FM) Mixed forested
(FMTW) Temperate hardwoods
(FMCM) Cabbage palms/Melaleuca
(FMCO) Cabbage palms/Oaks
(FMPM) Pine/Melaleuca
(FMPO) Pine/Oak
(FMTH) Tropical hammocks
(FMOF) Old fields forested
(FMCD) Coastal dunes
(FMPC) Pine/Cabbage palms
(W) Wetlands
(WF) Forested fresh
(WFCM) Cypress/Melaleuca
(WFCY) Cypress
(WFWL) Willow
(WFME) Melaleuca
(WFSB) Scrub and brushland
(WFMX) Mixed forested
(WN) Non-forested fresh
(WNSG) Sawgrass
(WNCT) Cattail
(WNBR) Bullrush
(WNWC) Wire cordgrass
(WNAG) Mixed aquatic grass
(WNWL) Sloughs

TABLE C-4: S.F.W.M.D. LAND USE AND LAND COVER CLASSIFICATION CODE (CONT.)
(WS) Forested salt
(WSRM) Red mangrove
(WSBW) Black and White mangrove
(WM) Non-forested salt
(WX) Mixed forested and non-forested fresh
(WXPP) Pine and wet prairies
(WXCP) Cypress domes and wet prairies
(WXHM) Hardwood marsh
(H) Water
(B) Barren land
(BB) Beaches
(BP) Extractive
(strip mines, quarries, and gravel pits)
(BS) Spoil areas
(BL) Levees

* Documentation of major codes from "LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM, A TECHNICAL MANUAL", Department of Transportation, State Topographic Office Remote Sensing Center, Kuyper, Becker and Shopmyer, February 1981

TABLE C-5. Coefficients Used in Recharge Preprocessing

Land Use	Ki	Ks	Ka
0	. 75	. 10	. 10
UR	. 70	. 10	. 10
URSL	. 80	. 10	. 10
URSM	. 75	. 10	. 10
URSH	. 70	. 10	. 10
URMF'	. 65	. 10	. 10
URME	. 60	. 10	. 10
UC	. 50	. 30	. 10
UCPL	. 50	. 30	10
UCSC	. 50	. 30	. 10
UCSS	. 50	. 30	. 10
UCCE	. 60	+20	. 10
UCMC	. 50	. 20	. 10
UCHM	. 50	. 20	10
UI	. 50	. 30	. 10
UIJK	. 50	. 30	. 10
UILT	. 50	. 20	. 10
UIHV	. 50	. 30	. 10
US	. 50	. 20	10
USED	. 60	. 20	10
USMD	. 50	. 30	. 10
USRL	. 50	. 20	. 10
USMF	. 50	. 20	.10
USCF	. 50	. 20	. 10
USGF	. 50	. 20	. 10
USSS	. 50	. 20	. 10
UT	. 60	. 20	. 10
UTAP	. 60	. 20	. 10
UTAG	. 70	. 10	. 10
UTRR	. 60	. 10	. 10
UTPF	. 60	. 20	. 10

Iand Use	Ki	Ks	Ka
AFDF	. 90	. 10	. 10
AFEF	. 90	. 10	. 10
AFHT	. 90	. 10	. 10
AFPY	. 90	.10	. 10
R	. 75	. 10	. 10
RG	1.00	. 10	. 10
RS	. 80	. 10	. 10
RSPP	. 75	. 10	.10
RSSB	. 80	. 10	. 10
F	. 85	. 10	. 10
FE	. 85	.10	. 10
FEPF	. 85	. 10	. 10
FESP	. 85	. 10	. 10
FECP	. 85	. 10	. 10
FO	. 85	. 10	. 10
FOAP	. 85	. 10	. 10
FOBP	. 85	. 10	.10
FOPA	. 85	. 10	. 10
FOSO	. 85	. 10	. 10
FOOR	. 85	. 10	. 10
FOCF	. 85	. 10	. 10
FM	. 85	. 10	. 10
FMIW	. 85	. 10	. 10
FMCM	. 85	. 10	.10
FMCO	. 85	. 10	. 10
FMPM	. 85	. 10	. 10
EMPO	. 85	. 10	. 10
FMTH	. 85	. 10	. 10
FMOF	. 85	. 10	. 10
FMCD	. 85	. 10	. 10
FMPC	. 85	. 10	. 10

TABLE C-5. Coefficients Used in Recharge Preprocessing (Continued)

Land Use	Ki	Ks	Ka
UTEP	. 60	. 10	. 10
UTTL	. 60	. 10	. 10
UTHW	. 60	. 10	. 10
UTWS	. 60	. 10	. 10
UTSP	. 60	. 20	. 10
UTSW	. 60	. 10	. 10
UTRS	. 60	. 10	. 10
UTOG	. 60	. 20	. 10
UO	. 98	. 10	. 10
UORC	+ 90	. 10	.10
UOGC	. 75	. 10	. 10
UOPK	. 90	. 10	. 10
UOCM	. 90	. 10	. 10
UORV	. 80	. 20	. 10
UOUD	. 98	. 10	. 10
UOUN	. 75	. 10	. 10
A	. 80	. 10	. 10
$A C$. 95	. 10	. 10
ACSC	. 83	. 10	. 10
ACTC	. 95	. 10	+10
ACRF	. 86	. 10	. 10
AP	. 83	. 10	.10
APIM	. 83	. 10	. 10
APUN	. 83	.10	. 10
AM	. 85	. 10	.10
AMCT	. 85	. 10	. 10
AMTTF	. 85	. 10	. 10
AMSF	. 90	. 10	. 10
AMOR	. 70	. 10	. 10
AF	. 90	. 10	. 10
AFFL	. 90	.10	. 10

Land Use	Ki	Ks	Ka
W	. 90	. 10	. 10
WF	. 85	. 10	. 10
WFCM	. 85	. 10	. 10
WFCY	. 85	. 10	. 10
WFWL	. 85	.10	. 10
WFME	. 87	. 10	. 10
WFSB	. 80	. 10	. 10
WFMX	. 80	. 10	. 10
WN	. 90	. 10	. 10
WNSG	. 90	. 10	. 10
WNCT	. 90	. 10	. 10
WNBR	. 90	. 10	10
WNWC	. 90	. 10	. 10
WNAG	. 90	. 10	. 10
WNWL	. 90	. 10	. 10
WS	. 85	. 10	10
WSRM	. 85	. 10	. 10
WSBW	. 85	. 10	+10
WM	. 90	. 10	. 10
WX	. 90	. 10	. 10
WXPP	. 90	. 10	. 10
WXCP	. 90	. 10	. 10
WXHM	. 90	. 10	. 10
H	1.00	. 10	. 10

FIGURE C-7. Ratio of Net Recharge to Average Monthly Rainfall

FIGURE C-6. Net Recharge Map

TABLE C-6. Crop Coefficients Used for ET Preprocessing (Continued)

$\begin{aligned} & \text { Land } \\ & \text { Une } \end{aligned}$	Covered				Mowh								
	\%	1	2	3	4	5	6	7	8	9	10	11	12
UTRR	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTPF	. 05	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTEP	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTTL	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTHW	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTWS	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UrsP	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTSW	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTRS	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTOG	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	$t .0$
vo	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UORC	. 90	4.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
voge	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UOPK	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UOCM	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UORV	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UOUD	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UOUN	. 90	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
AC	1.0	. 41	. 44	. 63	. 67	. 64	. 69	. 72	. 71	. 72	. 86	. 74	. 64
ACSC	1.0	. 39	. 30	. 53	. 61	. 70	. 79	. 79	. 84	. 73	. 88	. 72	. 69
ACTC	1.0	4	. 71	. 82	. 78	. 53	. 49	. 57	. 44	. 71	. 82	. 78	. 53
ACRF	1.0	. 39	. 30	. 53	. 61	. 70	. 79	. 79	. 4	. 73	. 6 8	. 72	. 69
$\mathrm{AP}^{\text {P }}$	1.0	. 49	57	. 73	. 85	. 90	. 92	.92	. 91	. 87	. 79	. 67	. 55
APM	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	.91	. 87	. 79	. 67	. 55
APUN	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
AM	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
AMCT	1.0	. 63	. 66	. 68	. 7	. 71	. 71	. 71	. 71	. 7	. 68	. 67	. 64
AMTF	1.0	. 27	. 42	. 58	. 7	. 78	. 11	. 77	. 71	. 63	. 54	43	3
AMSF	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
AMOR	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	4.0	1.0	1.0	1.0	1.0

TABLE C-6. Crop Coefficients Used for ET Preprocessing

Land	Covered				Morth								
Une	\%	1	2	3	4	5	6	7	8	9	10	11	12
U	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UR	. 48	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
URSL	. 67	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
URSM	. 53	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
URSH	. 45	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
URMF	. 33	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
URMH	. 40	1.0	1.0	1.0	1.0	$\pm .0$	1.0	1.0	1.0	1.0	3.0	1.0	1.0
UC	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UCPL	. 25	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UCSC	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ucss	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Ucce	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UCMC	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UCHM	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
U	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UITK	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
ULTT	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTHV	. 05	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
US	. 70	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
USED	. 70	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
USMD	. 60	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
USRL	. 70	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
USMP	. 60	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
USCF	. 70	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
USGF	. 70	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Usss	. 70	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UT	. 50	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTAP	. 10	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
UTAG	. 20	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0

TABLE C-6. Crop Coefficients Used for ET Preprocessing (Continued)

Land Ure	Covered				Month								
	\%	1	2	3	4	5	6	7	8	9	10	11	12
FMOF	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMCD	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMPC	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
w	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WF	1.0	. 73	. 4	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WFCM	1.0	. 73	. 34	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WhFCY	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WFWL	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WFME	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WFSB	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WFMX	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WN	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
WNSG	1.0	. 49	. 57	. 73	. 85	.90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
WNCT	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
WNBR	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
WNWC	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
WNAG	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
WNWL	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	.91	. 87	. 79	. 67	. 55
Ws	1.0	. 73	. 34	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WSRM	1.0	. 73	. 44	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WSBW	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	90	. 75
WM	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
$\mathbf{W X}$	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WXPP	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WXCP	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
WXHM	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
H	1.0	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15	1.15
3	. 50	. 49	57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	55

TABLE C-6. Crop Coefficients Used for ET Preprocessing (Continued)

$\begin{aligned} & \text { Land } \\ & \text { Une } \end{aligned}$	Covered				Monch								
	¢	1	2	3	4	5	6	7	1	9	10	11	12
AF	. 76	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
AFFL	. 75	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
AFDF	. 80	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
APFP	. 75	. 49	. 57	. 73	. 85	. 90	. 92	. 92	.91	. 87	. 79	. 67	. 55
AFHT	. 75	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
AFPY	. 75	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
R	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
RG	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	.91	. 87	. 79	. 67	. 55
RS	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
RSPP	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
RSSB	1.0	. 49	. 57	. 73	. 85	. 90	. 92	. 92	.91	. 87	. 79	. 67	. 55
F	1.0	. 63	. 73	. 86	. 98	1.09	1.13	1.11	1.06	. 99	. 90	. 78	. 66
FE	1.0	. 63	. 73	. 86	. 98	1.09	1.13	1.11	1.06	. 99	. 90	. 78	. 66
FEPF	1.0	. 63	. 73	. 86	. 98	1.09	1.13	1.11	1.06	. 99	. 90	. 78	. 66
FESP	1.0	. 63	. 73	. 86	. 98	1.09	1.13	1.11	1.06	. 99	. 90	. 78	. 66
FECF	1.0	. 63	. 73	. 86	. 98	1.09	1.13	1.11	1.06	. 99	. 90	. 78	. 66
FO	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FOAP	1.0	. 73	. 34	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FOBP	1.0	. 73	. 34	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
POPA	1.0	. 73	. 44	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
Poso	1.0	. 73	. 94	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
POOK	1.0	. 73	. 4	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
POCP	1.0	. 73	. 4	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
PM	1.0	. 73	. 34	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMTW	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMCM	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMCO	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMPM	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMPO	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75
FMTH	1.0	. 73	. 84	. 99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	. 90	. 75

TABLE C-7. Extinction Depths Used for ET Preprocessing (Continued)

LAND USE CODE	EXTINCTION DEPTH (FEET)	LAND USE CODE	EXTINCTION DEPTH (FEET)
UT	1.0	FMCM	1.5
UTAP	1.0	FMCO	1.5
UTAG	1.0	FMPM	2.0
UTRR	1.0	FMPO	3.0
UTPF	1.0	FMTH	1.5
UTEP	1.0	FMOF	2.0
UTTL	1.0	FMCD	3.0
UTHW	1.0	FMPC	2.0
UTWS	1.0	W	2.25
UTSP	1.0	WF	3.35
UTSW	1.0	WFCM	5.0
UTRS	1.0	WFCY	8.0
UTOG	1.0	WFWL	1.0
vo	1.10	WFME	1.5
UORC	1.0	WFSB	1.5
UOGC	1.0	WFMX	3.0
UOPK	1.25	WN	1.5
UOCM	1.0	WNSG	2.5
UORV	1.25	WNCT	2.5
UOUD	1.0	WNBR	1.0
UOUN	1.25	WNWC	1.0
A	1.4	WNAG	1.0
AC	1.65	WNWL	1.0
ACSC	3.0	ws	3.0
ACTC	1.0	WSRM	3.0
ACRF	1.0	WSBW	3.0

TABLE C-7. Extinction Depths Used for ET Preprocessing

LAND USE CODE	EXTINCTION DEPTH (FEET)
U	1.0
UR	1.0
URSL	1.0
URSM	1.0
URSH	1.0
URMF	1.0
URMH	1.0
UC	1.0
UCPL	1.0
UCSC	1.0
UCSS	1.0
UCCE	1.0
UCMC	1.0
UCHM	1.0
UI	1.0
UIJK	1.0
UILT	1.0
UIHV	1.0
US	1.0
USED	1.0
USMD	1.0
USRL	1.0
USMF	1.0
USCF	1.0
USGF	1.0
USSS	1.0

LAND	EXTINCTION			
USE				
DEPTH				
(FEET)		,	AMOR	1.5
:---	:---			
AF	1.0			
AFFL	1.0			
AFDF	1.0			
AFFF	1.0			
AFHT	1.0			
AFPY	1.0			
R	1.50			
RG	1.25			
RS	1.75			
RSPP	2.0			
RSSB	1.5			
F	2.30			
FE	2.65			
FEPF	2.0			
FESP	5.0			
FECP	1.0			
FO	2.0			
FOAP	1.0			
FOBP	1.0			
FOPA	1.5			
FOSO	1.5			
FOOK	5.0			
FOCF	2.0			
FM	2.40			
FMTW	5.0			

FIGURE C-8. ET Surface

TABLE C-7. Extinction Depths Used for ET Preprocessing (Continued)

LAND USE CODE	EXTINCTION DEPTH (FEET)
AP	2.0
APIM	2.0
APUN	2.0
AM	2.25
AMCT	3.0
AMTF	3.0
AMSF	1.25

LAND USE CODE	EXTINCTION DEPTH (FEET)
WM	1.25
WX	4.3
WXPP	3.0
WXCP	5.0
WXHM	5.0
H	6.0
B	.75

APPENDIX D

WATER USE DATA

LIST OF FIGURES - APPENDIX D

Figure Page
D-1. Cells with Public Water Supply Withdrawals in Layer 2 189
D-2. Cells with Public Water Supply Withdrawals in Layer 3 190
D-3. Cells with Agricultural Water Withdrawals in Layer 2 191
D-4. Cells with Agricultural Water Withdrawals in Layer 3 192
D-5. Cells with Domestic Water Withdrawals in Layer 2 193
D-6. Cells with Domestic Water Withdrawals in Layer 3 194
LIST OF TABLES - APPENDIX D
Table Page
D-1. Water Use Spreadsheet for St. Lucie Model 195

FIGURE D-1.

FIGURE D-4. Cells with Agricultural Water Withdrawals in Layer 3

FIGURE D-5. Cells with Domestic Water Withdrawals in Layer 2

WATER USE SPRFADSHHET

0	끆	8		8	0	8	$\stackrel{8}{*}$	号品
\bigcirc	．	$\stackrel{\circ}{\circ}$		\bigcirc	∞	$\stackrel{\circ}{0}$	$\stackrel{0}{0}$	0
\％	\％	\cdots		ㅍN	9	$\stackrel{\square}{-}$	$\stackrel{-}{9}$	＋
\exists	F	\cdots		$\underset{\sim}{\text { a }}$	F	\cdots	\cdots	\pm
\cdots	$\stackrel{\sim}{\sim}$	∞		\sim	\pm	$\stackrel{\infty}{-}$	$\stackrel{\oplus}{\bullet}$	
0	m	$\stackrel{7}{7}$		$\underset{\sim}{\sim}$	$\underset{\sim}{7}$	$\stackrel{m}{\sim}$	$\stackrel{\square}{7}$	¢
¢	\％	E		ni	－	${ }^{\circ}$	0	－0．00

｜ 50

$0 \quad 0$
95

匂
号
曻
客
営男

$$
\xi
$$

$$
x
$$

\qquad
 OH
$0^{2} \quad{ }^{2}$
in
\ddot{n}

$\%$

in

 Nㅓㅇ성성엉엉 영옹

8
5600120 W
Notyof

[^2]

\[

$$
\begin{aligned}
& 5600795 \\
& 5600796 \\
& 5600797 \\
& 5600798 \\
& 5600804 \\
& 5600805 \\
& 5600806 \\
& 5600816 \\
& 5600915 \\
& 5600816 \\
& 5600829 \\
& \hline 4300026 \\
& \hline 4300510 \\
& \hline 4700070
\end{aligned}
$$
\]

∞					
∞	∞	0	0	0	∞

APPENDIX E

STATISTICAL ANALYSIS

 OF THE WATER LEVEL DATA
LIST OF TABLES - APPENDIX E

Table Page
E1. Statistical Analysis of the Water Level Data 207

Table E1. Statistical Analysis of the Water Level Data (Continued)

Well Name	Maximum	Average	Minimum	Standard Deviation	Variance
GDUWT02	15.30	11.38	5.88	2.61	6.82
GDPHTWTP2	12.09	7.77	6.94	1.77	3.14
GDUWT05	2.30	0.39	-1.45	1.25	1.57
GDUWT17	8.35	7.29	6.35	0.55	0.31
STL174	12.21	11.61	10.85	0.43	0.19
STL176	12.33	11.93	10.67	0.45	0.21
GDUWT18	11.54	10.18	8.71	0.68	0.46
PG25	9.59	8.52	7.31	0.62	0.38
STL276	11.84	10.96	9.87	0.67	0.44
STL277	13.33	12.67	11.72	0.40	0.16
STL272	21.54	19.73	18.39	0.81	0.65
STL41	26.41	24.52	22.88	1.27	1.62
PG23	5.84	5.39	4.37	0.43	0.19
STL271	10.86	10.12	9.15	0.45	0.20
STL161	25.61	24.84	23.39	0.56	0.31
STL270	3.76	3.31	2.61	0.30	0.09
M-1268	5.73	4.92	4.15	0.48	0.23
W-7B	3.86	2.86	2.28	0.55	0.30
$S-4 B$	1.45	1.16	0.63	0.26	0.07
STL274	9.72	9.04	8.44	0.36	0.13
PG13N	20.50	19.49	19.03	0.42	0.18
PG12	16.27	14.82	14.28	0.63	0.40
STL267	22.59	21.57	20.89	0.50	0.25
SLMW4D	17.26	16.52	15.55	0.55	0.30
PG16	20.26	19.44	18.50	0.41	0.17

TABLE E1. Statistical Analysis of the Water Level Data

Well Name	Maximum	Average	Minimum	Standard Deviation	Variance
STL266	9.68	8.77	8.24	0.42	0.18
PG5	17.41	16.68	15.73	0.53	0.28
FPWT8	5.46	4.62	3.66	0.48	0.23
FPWT7	7.46	5.22	2.96	1.40	1.96
FPWT6	6.61	5.42	4.41	0.68	0.46
STL42	27.11	25.88	25.12	0.54	0.29
FPWT4	0.58	0.07	-0.62	0.42	0.17
FPWT5	3.13	2.40	1.43	0.59	0.34
PG6	9.44	9.18	8.97	0.15	0.02
FPWT3	2.61	1.48	0.41	0.61	0.37
PG1	5.71	4.87	3.57	0.68	0.46
STL125	17.74	16.89	13.85	1.01	1.02
FPWT2	7.03	6.69	6.03	0.29	0.08
FPWT9	-0.52	-2.19	-3.22	0.83	0.69
FPWT1	9.49	8.00	6.49	0.79	0.62
STL136	5.99	4.80	3.22	0.79	0.63
PG7	4.61	3.61	2.77	0.62	0.38
PG10	14.76	12.21	10.66	0.97	0.93
STL172	11.94	11.17	10.47	0.49	0.24
STL130	20.21	19.19	17.97	0.63	0.40
STL269	18.16	17.13	15.76	0.67	0.45
STL268	9.44	8.37	7.18	0.78	0.61
STL278	13.91	12.68	11.03	1.03	1.06
PG26	13.09	12.16	11.34	0.57	0.33
GDUSW4S	0.85	0.05	-1.34	0.63	0.40
STL123	20.64	19.79	18.32	0.72	0.52

Table E1. Statistical Analysis of the Water Level Data (Continued)

Well Name	Maximum	Average	Minimum	Standard Deviation	Variance
W-2S	7.06	3.53	-0.76	2.39	5.70
S-2B	0.75	0.27	-0.41	0.33	0.11
STL273	21.40	20.48	18.69	0.78	0.60
STL275	4.89	4.27	4.00	0.31	0.10
PG13M	20.61	19.91	19.40	0.41	0.17
STL264	20.37	19.54	19.16	0.35	0.12
FPTW1	15.93	14.63	13.73	0.71	0.50
FPTW2	16.42	15.07	14.22	0.62	0.39
FPMW1	5.10	3.93	2.90	0.59	0.35
FPMW2	5.82	4.84	3.82	0.58	0.33
FPMW 3	7.29	6.59	5.99	0.50	0.25
FPTW5	8.45	7.11	6.45	0.64	0.41
STL191	5.37	4.91	4.43	0.27	0.07
STLAPT2D4	20.63	19.70	18.33	0.69	0.47
SLMW12D	19.53	18.93	17.97	0.37	0.14
FPTW4	-2.11	-6.19	-8.61	2.46	6.05
FPTW7	-3.13	-6.11	-8.23	1.69	2.86
FPMW 4	5.00	4.33	3.10	0.72	0.52
STL213	11.52	10.17	9.13	0.66	0.44
SLMW5D	20.65	19.28	14.40	2.08	4.31
STLAPT1D2	9.78	8.84	7.74	0.63	0.40
SLMW14D	11.91	11.16	10.42	0.56	0.32
SLMW13D	32.23	31.20	29.15	0.96	0.92
STLMW1D	20.54	20.18	19.44	0.32	0.10
STLAPT4D3	27.04	26.13	24.79	0.78	0.60

Table E1. Statistical Analysis of the Water Level Data (Continued)

Well Name	Maximum	Average	Minimum	Standard Deviation	Variance
STLAPT2S4	20.93	19.98	18.84	0.62	0.38
SLMW11D	5.32	4.39	2.49	0.96	0.92
FPMW5	-1.30	-3.20	-4.30	0.97	0.95
STL265	12.24	10.16	8.91	0.91	0.82
SLMW5S	20.65	19.30	14.28	2.14	4.59
STLAPT1S2	14.78	13.35	12.02	0.83	0.69
SLMW13S	32.03	30.87	28.85	0.88	0.78
STLMW1S	20.85	20.08	19.04	0.48	0.23
STLAPT4S3	27.17	26.18	24.79	0.82	0.67
PG35N	30.93	30.03	28.29	0.69	0.47
SLMW1 OS	30.79	30.12	28.24	0.65	0.42
PG18	19.20	18.94	18.32	0.26	0.07
GDUSW3S	1.26	0.79	0.42	0.29	0.08
GDUSW2S	2.28	1.42	0.20	0.68	0.46
GDUSW4M	1.44	0.74	-1.64	0.80	0.64
STL175	7.66	7.23	6.54	0.34	0.11
STL214	21.56	19.75	18.41	0.79	0.62
W-6B	9.61	9.09	8.28	0.47	0.22
W-1B	7.41	6.50	5.75	0.59	0.34
W-4B	5.88	4.63	2.71	1.10	1.20
W-5A	6.46	4.85	3.98	0.81	0.65
S-1A	1.92	0.93	0.42	0.50	0.25
S-5b	3.98	2.85	2.09	0.59	0.35
W-3B	5.17	4.29	3.47	0.48	0.23
S-3B	4.50	1.39	0.16	1.20	1.44

Table E1. Statistical Analysis of the Water Level Data (Continued)

Well Name	Maximum	Average	Minimum	Standard Deviation	Variance
S-4C	2.03	1.26	0.45	0.46	0.21

Table El. Statistical Analysis of the Water Level Data (Continued)

Well Name	Maximum	Average	Minimum	Standard Deviation	Variance
SLMW1 0D	30.44	29.94	27.99	0.64	0.40
GDUSW3D	3.09	2.68	2.17	0.33	0.11
GDUSW2D	0.62	-0.27	-2.05	0.73	0.53
GDUSW4D	2.42	-0.01	-2.00	1.22	1.48
GDU80-7	16.48	14.70	11.89	1.43	2.05
STL173	8.22	7.29	6.04	0.62	0.38
STL177	5.25	4.24	3.60	0.47	0.22
W-6A	9.27	7.83	3.40	1.54	2.36
W-1A	7.34	6.54	5.93	0.56	0.31
W-4A	3.88	2.49	1.20	1.00	0.99
M-1254	5.40	4.53	3.75	0.49	0.24
STL185	25.30	24.71	23.35	0.55	0.31
S-1B	1.55	0.76	0.05	0.43	0.18
S-1C	1.89	0.82	0.31	0.50	0.25
S-5A	4.64	2.72	-1.56	1.47	2.16
W-7A	3.66	1.30	-0.26	1.14	1.30
W-3A	5.82	4.39	3.59	0.69	0.48
HRR1	4.61	3.38	2.51	0.53	0.28
HRR2	4.73	3.46	1.76	0.70	0.49
HRR3	3.49	2.41	1.48	0.60	0.36
S-3A	2.76	1.76	0.51	0.59	0.35
W-2D	7.03	3.89	0.09	1.62	2.62
S-2A	0.92	0.27	-0.99	0.50	0.25
HRR 4	2.76	2.01	1.03	0.54	0.29
S-4A	1.52	1.13	0.93	0.18	0.03

APPENDIX F

POSSIBLE EXPLANATIONS FOR NON-CALIBRATION

The following discussion provides possible reasons why certain observation nodes failed to calibrate. The conclusions given below were based on the steady-state water level maps, calibration hydrographs, and analyses of available hydrologic data.

Monitoring well PG1 (1,30,91) meets the steady-state criteria for calibration, but does not meet the transient criterion for calibration. Only 8 out of 12 stress periods meet the calibration criterion. The remaining four stress periods miss the calibration criteria by 0.5 feet or less. Figures 14 and 20 indicate that this well is located near the coast in an area where the hydraulic gradient is fairly steep. As expected, the simulated water levels are usually lower that the observed water levels. The off-center location of the monitoring well and steep hydraulic gradient provide possible reasons for the observation node failing the transient calibration criteria.

Monitoring well PG10 ($1,36,71$) meets both of the steady-state criteria for successful calibration. However, the node failed to meet the transient calibration criterion. One possibility is that the steep hydraulic gradient adjacent to the monitoring well affects the calibration. The steep hydraulic gradient is caused by the difference in water levels between the NSLRWCD canals and Ten-mile Creek.

Monitoring wells SLMW5S $(2,37,54)$ and SLMW5D $(3,37,54)$ meet both standards for steady-state calibration. However, the wells do not meet the transient criterion for calibration. Both wells are located adjacent to the C-24 Canal. Due to the proximity of the wells to the canal, the water levels in the wells are reflective of the canal levels (Figure 9). The canal stage will fluctuate throughout a stress period. However, the average stage was used to simulate the canal stage in the model for a stress period. An examination of the stage data for G-81 at Canal C-24 shows significant fluctuations during some of the stress periods. If these daily fluctuations differ significantly from the average stage, the data from the observation wells will not meet the calibration criteria.

Well FPTW2 is located in cell $(3,21,85)$. The observation node meets both standards for steady-state calibration. However, only 8 of the 12 stress periods meet the standard for successful transient calibration. The maximum difference between the observed and calculated water levels is 1.30 feet, and the average absolute error is relatively small, 0.82 feet. The observation node is located near a steep hydraulic gradient caused by Structure S-50 on the C-25 Canal. It is believed that the effects of the control structure impact the water levels in the vicinity of the observation node.

Wells FPTW4 $(3,30,87)$ and FPTW7 $(3,31,88)$ are located near several public water supply wells which cumulatively withdraw over $100,000 \mathrm{ft} 3 / \mathrm{day}$. Since the distance between the public water supply wells and the observation wells cannot be simulated accurately with this grid spacing, these observation nodes will not meet the calibration criteria for steady-state or transient conditions.

APPENDIX G

HYDROGRAPHS OF COMPUTED VS OBSERVED VALUES

Loyer 1 Row 20 Column 84

DIFFERENCE PLOT

Extreme Errors [-0.4, 0.8] Average Absolute Error 0.29 Std.Error 0.38 pg 2
REFERENCED AND CALCULATED NODE HEADS-- Station: STL266

Layer 1 Row 7 Column 83

Extreme Errors [- 0.0, 1.3] Averoge Absolute Error 0.52 $\begin{array}{lllll} & \text { Std.Error } 0.42 & \mathrm{Pg} & 1\end{array}$

Layer 1 Row 23 Column 86

Extreme Errors [$\left.\begin{array}{lllllll}-0.2, & 3.7\end{array}\right] \quad$ Average Absolute Error $1.62 \quad$ Std.Error $1.11 \quad \mathrm{Pg} 4$

Loyer 1 Row 22 Column 87

Extreme Errors [$\left.\begin{array}{llllll}-0.8 & 1.2\end{array}\right] \quad$ Average Absolute Error 0.48 Std.Error $0.55 \quad$ pg 3

Layer 1 Row 27 Column 34 Note: Observed * Calculated x

Extreme Errors [$\left.\begin{array}{lll}-0.7, & 0.4\end{array}\right]$ Average Absolute Error 0.25 Std.Error $0.33 \quad \mathrm{Pg}$

Layer 1 Row 25 Column 85
Note: Observed * Colculated \times

Extreme Errors [$0.9,3.2$] Average Absolute Error 1.59 Std.Error 0.65 pg 5

Layer 1 Row 27 Column 87
Note: Observed * Colculated x

Loyer 1 Row 27 Column 85

Extreme Errors [$\left.\begin{array}{llllllllllllll}-1.3 & 1.1\end{array}\right] \quad$ Average Absolute Error $0.46 \quad$ Std.Error $0.63 \quad \mathrm{Pg} \quad 7$

DIFFERENCE PLOT

Extreme Errors [-6.0, -4.4] Averoge Absolute Error 4.82 \quad Std.Error $0.49 \quad \mathrm{Pg} 10$

Layer 1 Row 28 Column 83
Note: Observed * Calculated x

Extreme Errors [-0.7, 1.7] Average Absolute Error 0.62 Std.Error $0.65 \quad$ pg 9

REFERENCED AND CALCULATED NODE HEADS-- Stotion: STL125

DIFFERENCE PLOT

Extreme Errors [- 1.1, 1.9] Average Absolute Error 0.69 Std.Error 0.83 pg

Loyer 1 Row 31 Column 86

Extreme Errors [1.9, 4.2] Averoge Absolute Error 2.79 Std.Error 0.68 Pg 14

Layer 1 Row 31 Column 83
Note: Observed * Calculated \times

Extreme Errors [-1.2, 1.8] Averoge Absolute Error 0.64 Sta.Error $0.86 \quad$ pg 13

Layer 1 Row 34 Column 82
Note: Observed * Calculoted x

Extreme Errors [$-1.5,1.0$] Average Absolute Error $0.51 \quad$ Std.Error $0.72 \quad$ pg 16

Layer 1 Row 32 Column 89

Extreme Errors [$\left.\begin{array}{ll}-2.1, & 0.6\end{array}\right] \quad$ Average Absolute Error 0.74 Std.Error 0.65 pg 15

Loyer 1 Row 36 Column 71
Note: Observed * Calculated x
DIFFERENCE PLOT

Extreme Errors [-1.2, 2.4] Average Absolute Error 1.09 $\begin{array}{llllll} & \text { Std.Error } 0.93 & \text { pg } 18\end{array}$

Extreme Errors [-0.2, 1.3] Averoge Absolute Error 0.47 Std.Error 0.58 pg 17

Extreme Errors [$\left.\begin{array}{lllllll}-0.8 & 0.6\end{array}\right] \quad$ Averoge Absolute Error 0.35 Std.Error $0.46 \quad$ Pg 19

Extreme Errors [-1.1, 1.4] Averoge Absolute Error 0.45 Std.Error $0.65 \quad \mathrm{pg} 20$

DIFFERENCE PLOT

Loyer 1 Row 40 Column 85

Extreme Errors [- 0.8, 2.0] Averoge Absolute Error 0.69 $\begin{array}{llllll} & \text { Std.Error } 0.86 & \text { pg } & 22\end{array}$

Loyer 1 Row 44 Column 95

Extreme Errors [$-0.1,1.5]$ Average Absolute Error 0.61 Std.Error 0.57 pg

Layer 1 Row 45 Column 84
Note: Observed * Calculated x

Loyer 1 Row 51 Column 55
Note: Observed * Calculated x

Extreme Errors [$\begin{array}{llllll}-0.6, ~ 1.4]\end{array}$ Averoge Absolute Error 0.61 \quad Std.Error $0.51 \quad$ Pg 26

Loyer 1 Row 51 Column 82
Note: Observed * Calculated x

Extreme Errors [$0.8,9.3$] Average Absolute Error 4.25 Std.Error 2.33 pg 27

Extreme Errors [2.0, 4.8] Averoge Absolute Error 3.22 Std.Error 0.58 pg 29

Loyer 1 Row 54 Column 90

Extreme Errors [-2.6, -0.5] Averoge Absolute Error 1.49 Std.Error 0.67 Pg 30

Layer 1 Row 54 Column 97

Extreme Errors [- 1.5, 2.1] Averoge Absolute Error 0.78

Extreme Errors [-6.3, -4.8] Average Absolute Error 5.35 Std.Error 0.44 pg 32

Loyer 1 Row 55 Column 86
Note: Observed * Calculated x

Extreme Errors [-0.5, 1.7] Average Absolute Error 0.65 Std.Error $0.71 \quad$ Pg 33

Extreme Errors [-4.7, -1.1] Average Absolute Error 2.31 $\begin{aligned} & \text { Std.Error } 0.97 \quad \text { pg } 34\end{aligned}$

Layer 1 Row 57 Column 97
Note: Observed * Calculated x

Extreme Errors [$\left.\begin{array}{ll}-0.6 & 1.7\end{array}\right]$ Average Absolute Error 0.67 Std.Error 0.75 pg 35

Layer 1 Row 57 Column 100

Extreme Errors [-1.6, -0.1] Averoge Absolute Error 0.75 Std.Error 0.39 pg 36

Loyer 1 Row 59 Column 75
Note: Observed * Calculated x

Extreme Errors [$1.3,0.9$] Average Absolute Error 0.39 Std.Error $0.54 \quad$ pg 37

Layer 1 Row 61 Column 42
Note: Observed * Colculated x

Extreme Errors [$-2.2,1.1] \quad$ Average Absolute Error 0.73 \quad Std.Error $1.02 \quad \mathrm{Pg} 38$

REFERENCED AND CALCULATED NODE HEADS-- Station: STL271

Layer 1 Row 62 Column 85
Note: Observed * Calculated \times

Extreme Errors [- 0.2, 3.0] Average Absolute Error 0.79 Std.Error $0.83 \quad$ pg 40

Layer 1 Row 63 Column 62

Extreme Errors [$-1.5,0.5]$ Average Absolute Error 0.44 Std.Error 0.53 pg

Layer 1 Row 63 Column 105

Extreme Errors [-1.6, 0.2$]$ Averoge Absolute Error 0.75 Std.Error 0.48 pg 43

Extreme Errors [$\left.\begin{array}{lllllll}-0.3 & 0.9\end{array}\right]$ Average Absolute Error 0.44 Std.Error $0.35 \quad$ pg 45

Extreme Errors [-0.9, 1.2] Average Absolute Error 0.69 Std.Error $0.74 \quad \mathrm{Pg} 46$
REFERENCED AND CALCULATED NODE HEADS-- Station: PG13N

Loyer 2 Row B Column 54

Extreme Errors [-1.0, 1.5] Averoge Absolute Error 0.60 Std.Error $0.70 \quad$ Pg 47

Layer 2 Row 8 Column 70
Note: Observed * Calculated x

Extreme Errors [$-2.1,1.2] \quad$ Averoge Absolute Error 0.63 \quad Std.Error $0.86 \quad$ Pg 48

Layer 2 Row 13 Column 62

Extreme Errors [- $0.3,1.1$] Average Absolute Error 0.42 \quad Std.Error $0.39 \quad$ pg 49

Loyer 2 Row 20 Column 84

Extreme Errors [-0.3, 0.9] Average Absolute Error 0.30 Std.Error 0.37 pg 50

Layer 2 Row 26 Column 59
Note: Observed * Calculated x

Extreme Errors [$-0.2,1.3]$ Average Absolute Error 0.51 Std.Error $0.40 \quad \mathrm{Pg}$

Extreme Errors [$-1.2,1.0$] Averoge Absolute Error 0.80 Std.Error 0.67 pg 53

Layer 2 Row 31 Column 86

Extreme Errors [$2.8,5.6$] Average Absolute Error 3.70

Layer 2 Row 34 Column 78

Note: Observed * Calculated x

Extreme Errors [$-2.4,1.4]$ Average Absolute Error 0.71 Std.Error $1.00 \quad$ Pg 55

Loyer 2 Row 37 Column 54

Extreme Errors [- 2.7, 3.7] Average Absolute Error 0.85 Std.Error 1.48 Pg 56

Loyer 2 Row 38 Column 82 Note: Observed * Colculated x

Extreme Errors [-1.1, 2.0] Average Absolute Error 0.80 Std.Error 0.97 P9

Layer 2 Row 41 Column 33

Note: Observed Calculated x

Extreme Errors [$\left.\begin{array}{ll}-0.5, & 2.0\end{array}\right]$ Average Absolute Error 0.49 Std.Error 0.63 pg 58

Loyer 2 Row 42 Column 59

DIFFERENCE PLOT

Extreme Errors [0.0, 1.4] Averoge Absolute Error 0.68 Std.Error $0.34 \quad$ pg 59

Loyer 2 Row 43 Column 41

Extreme Errors [$\mathbf{- 0 . 5}, 1.3$] Averoge Absolute Error 0.55 Std.Error $0.55 \quad$ pg 60

Layer 2 Row 45 Column 35

Extreme Errors [-0.3, 1.9] Average Absolute Error 0.60 Std.Error 0.77 pg 61

Loyer 2 Row 45 Column 37 Note: Observed * Calculated \times

Extreme Errors [- 0.5, 1.6] Average Absolute Error 0.51 Std.Error 0.77 pg 62

Layer 2 Row 45 Column 65

Extreme Errors [$-0.6,1.0$] Average Absolute Error 0.29 Std.Error 0.42 pg 63

REFERENCED AND CALCULATED NODE HEADS - - Station: GDUSW3S

Loyer 2 Row 45 Column 87

Extreme Errors [-0.1, 1.4] Average Absolute Error 0.47 Std.Error $0.46 \quad$ pg 64

Extreme Errors [- 1.4, 0.3] Averoge Absolute Error 0.58 Std.Error 0.57 pg 65

Extreme Errors [$\begin{array}{llllll}-0.5, ~ 2.0] & \text { Average Absolute Error } 0.34 & \text { Std.Error } 0.62 & \text { pg } & 66\end{array}$

Layer 2 Row 54 Column 101
Note: Observed * Calculated x

Extreme Errors [- 2.0, -0.3] Average Absolute Error 1.06 Std.Error 0.41 pg 67

Extreme Errors [$\left.\begin{array}{lllllll}-1.0 & 1.1\end{array}\right] \quad$ Averoge Absolute Error 0.37 Std.Error $0.51 \quad$ Pg 68

Loyer 2 Row 62 Column 103

Extreme Errors [- 0.8, 0.5] Averoge Absolute Error 0.37 Std.Error $0.40 \quad \mathrm{Pg} 69$

Loyer 2 Row 63 Column 98

Extreme Errors [-3.0, -0.9] Average Absolute Error 1.88 Std.Error 0.48 pg 70

Extreme Errors [$0.5,3.4$] Average Absolute Error 2.04 \quad Std.Error $0.80 \quad$ pg 71

Layer 2 Row 63 Column 102

Extreme Errors [1.3, 4.2] Averoge Absolute Error 2.31 Std.Error 1.02 pg 72

Layer 2 Row 64 Column 96

Extreme Errors [$-0.3,1.1$] Average Absolute Error 0.54 Std.Error 0.38

Layer 2 Row 64 Column 106

Extreme Errors [$\left.\begin{array}{lllllll}-0.9, & 1.0\end{array}\right] \quad$ Average Absolute Error $0.64 \quad$ Std.Error $0.73 \quad$ Pg 74

Extreme Errors [$\left.\begin{array}{lllllll}-3.4, & 0.7\end{array}\right] \quad$ Averoge Absolute Error $0.59 \quad$ Std.Error $1.00 \quad$ pg 76

Layer 2 Row 67 Column 102
Note: Observed * Calculated \times

Extreme Errors [- 3.0, 5.3] Averoge Absolute Error 1.90 Std.Error 2.77 pg 77

DIFFERENCE PLOT

Extreme Errors [$\left.\begin{array}{llllll}-0.8, & 0.4\end{array}\right] \quad$ Average Absolute Error 0.31 \quad Std.Error $0.35 \quad$ pg 79

Loyer 2 Row 70 Column 95

Extreme Errors [$0.7,1.8$] Averoge Absolute Error 1.13 \quad Std.Error 0.29 pg 80

Extreme Errors [$\left.\begin{array}{llllll}-0.9, & 0.6\end{array}\right] \quad$ Average Absolute Error 0.32 Std.Error $0.41 \quad \mathrm{Pg}$

Layer 3 Row 14 Column 69

Extreme Errors [- 1.7, 0.4] Averoge Absolute Error 0.69 Std.Error 0.55 pg 82

Loyer 3 Row 19 Column 84
Note: Observed * Calculated x

Extreme Errors [$2.2,3.5] \quad$ Average Absolute Error 2.69 $\begin{array}{lllll} & \text { Std.Error } 0.38 & \text { pg } 83\end{array}$

Loyer 3 Row 21 Column 85

Layer 3 Row 24 Column 89

Extreme Errors [- 2.1, -0.6] Average Absolute Error 1.28 \quad Std.Error $0.45 \quad$ pg 86

Extreme Errors [- $2.0,-0.0$] Average Absolute Error 1.10 Std.Error 0.57 pg 87

Layer 3 Row 26 Column 85
Note: Observed * Colculated x

Extreme Errors [-3.9, -2.5] Average Absolute Error 3.03 Std.Error 0.44 pg

Layer 3 Row 26 Column 89
Note: Observed * Calculated x

Extreme Errors [$1.9,-0.3$] Average Absolute Error $0.77 \quad$ Std.Error $0.35 \quad$ pg 89

Layer 3 Row 28 Column 72

Extreme Errors [$\left.\begin{array}{lllll}-1.3 & 0.4\end{array}\right] \quad$ Averoge Absolute Error $0.36 \quad$ Std.Error $0.45 \quad \mathrm{Pg} 90$

Layer 3 Row 30 Column 87
Note: Observed * Calculated x

Extreme Errors [-7.0, -0.5] Averoge Absolute Error 2.80
Std.Error 2.09

Loyer 3 Row 31 Column 88
Note: Observed * Calculoted x

Extreme Errors [1.4, 6.1] Averoge Absolute Error 3.84 Std.Error 1.36 pg 93

Loyer 3 Row 31 Column 89

Extreme Errors [- 1.7, 0.1] Average Absolute Error 0.62 Std_Error 0.47 pg 94

Loyer 3 Row 34 Column 78
Note: Observed * Calculated x

Extreme Errors [-1.4, 1.3] Averoge Absolute Error 0.67 Std.Error 0.83 pg 95

Loyer 3 Row 37 Column 54

Extreme Errors [- 2.6, 3.6] Average Absolute Error 0.85 Std.Error 1.44 pg 96

Layer 3 Row 38 Column 82
Note: Observed * Calculated \times

Extreme Errors [2.9, 5.2] Averoge Absolute Error 3.66 Std.Error 0.75 pg 97

Layer 3 Row 42 Column 59

Extreme Errors [$0.3,1.3$] Average Absolute Error 0.58 \quad Std.Error $0.26 \quad$ Pg 100

Layer 3 Row 43 Column 41

Extreme Errors [$-0.2,1.4$] Averoge Absolute Error 0.61 Std.Error 0.53 . pg 101

Extreme Errors [-0.5, 1.8] Average Absolute Error 0.52 Std.Error $0.81 \quad$ Pg 102

REFERENCED AND CALCULATED NODE HEADS - - Stotion: GDUSW3D

Loyer 3 Row 45 Column 87

Extreme Errors [- 2.0, -0.6] Averoge Absolute Error 1.16 Std.Error 0.38 pg 103

Extreme Errors [0.5, 2.7] Averoge Absolute Error 1.30 Std.Error 0.80 pg 104

Layer 3 Row 50 Column 89

Layer 3 Row 51 Column 82

Extreme Errors [- 1.3. 3.2] Averoge Absolute Error 1.07 Std.Error 1.13 Pg 106

Layer 3 Row 54 Column 93
Note: Observed * Calculated \times

Extreme Errors [-2.4, 1.1] Average Absolute Error 0.77 Std.Error 0.96 pg 107

Loyer 3 Row 62 Column 103
Note: Observed * Colculated x
DIFFERENCE PLOT

Extreme Errors [-0.7, 4.9] Average Absolute Error 0.B1 Std.Error 1.40 pg 109

Loyer 3 Row 63 Column 100
Note: Observed * Calculated x

Extreme Errors [3.3, 5.4] Averoge Absolute Error 3.88 Std.Error 0.62 pg 111

Extreme Errors [0.6, 2.5] Averoge Absolute Error 1.34 Std.Error 0.51 pg 112

Extreme Errors [- 1.4, 0.2] Averoge Absolute Error 0.55 Std.Error 0.44 pg 113

REFERENCED AND CALCULATED NODE HEADS-- Station: S-1B

DIFFERENCE PLOT

Extreme Errors [0.1, 1.5] Average Absolute Error 0.72 Std.Error 0.33 pg 114

Loyer 3 Row 64 Column 96

Extreme Errors [-0.2, 1.2] Average Absolute Error 0.72 Std.Error 0.41 Pg 115

Layer 3 Row 64 Column 106

Extreme Errors [- 2.4, 4.5] Averoge Absolute Error 0.90 Std.Error 1.53 Pg 116

Loyer 3 Row 65 Column 99
Note: Observed * Colculated x

Extreme Errors [4.1, -0.4] Average Absolute Error 1.54 . Std.Error 0.92 pg 117

Layer 3 Row 65 Column 103

Extreme Errors [-0.6, 1.8] Average Absolute Error 0.81 Std.Error 0.68 Pg 118

Loyer 3 Row 66 Column 92

Extreme Errors [-0.1, 1.5] Average Absolute Error 0.52 Std.Error 0.53 pg 120

Extreme Errors [$\mathbf{- 0 . 6}, 2.1$] Average Absolute Error 0.97 Std.Error 0.72 pg 121

Layer 3 Row 67 Column 99

Extreme Errors [$\left.\begin{array}{ll}-1.4, & 0.2\end{array}\right] \quad$ Average Absolute Error 0.65 Std.Error $0.36 \quad$ pg 122

Layer 3 Row 67 Column 102

Note: Observed * Colculoted x

Extreme Errors [-3.1, 4.8] Averoge Absolute Error 1.12 Std.Error 1.93 pg 123

Loyer 3 Row 68 Column 98
Note: Observed * Calculated x

Extreme Errors [- 0.7, 1.3] Average Absolute Error 0.25 Std.Error 0.47 Pg 124

Layer 3 Row 69 Column 101
Note: Observed * Colculated \times
DIFFERENCE PLOT

Extreme Errors [0.1, 0.9] Average Absolute Error 0.48 Std.Error 0.25 pg 126

Loyer 3 Row 69 Column 101

Extreme Errors [$\begin{array}{lllll}-0.3, & 0.9] & \text { Average Absolute Error } 0.53 & \text { Std.Error } 0.45 & \text { pg } 127\end{array}$

[^0]: FIGURE A-3. Structure Contour Map of the Base of Layer 1

[^1]:

[^2]:

