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Summary:

Accurate estimation of evapotranspiration (ET) is critical to the management of
water resources and related environmental phenomena. Due to the difficulty and
high cost of direct measurement of ET rates, indirect estimates are commonly used
in practice. However, the methodology and required data are largely dependent on
the temporal and spatial scales of each particular problem. To handle scaling
problems in ET estimates, information on sensitivity and uncertainty in estimated
ET are requested in advance, which was the main objective in this paper.

The short term ET rates can be accurately estimated by the Penman-Brutsaert
model with meteorological data, including net radiation, atmospheric pressure, air
temperature, relative humidity, and wind velocity. In data from a weather station
at the ENR project site, a strong correlation was found between net radiation and
relative humidity, and sensitivity analyses were performed with and without this
correlation effect. Then, the sensitivity result of both cases were evaluated by the
conditional probabilities of the sample. The results show that the conditional
probability with the correlation effect was usually higher than without it, implying
that sensitivity with the correlation effect is more suitable for actual meteorological
conditions. In addition, the propagated errors in the estimated ET rates caused by
the random errors in the measurement of meteorological data were computed. Both
sensitivity and error analyses reveal that the net radiation was the most sensitive
and apt to cause possible errors in ET estimates due to its significant random error.

The results of this study will help the District to understand uncertainties in
estimated ET rates and to improve the monitoring network of meteorological data
in the south Florida region. The proposed sensitivity method with correlation effect
can be applicable not only to the QA/QC of the field measurement data, but to any
type of hydrologic model used in water supply estimations and environmental
management.



hahn-2

Abstract.

A sensitivity and uncertainty analysis of the Penman-Brutsaert evapotranspiration model

was conducted using the actual meteorological data collected from a experimental weather station

located in the humid south Florida region. Since net radiation and relative humidity were found

to be highly correlated in this humid region, a method was developed to analyze the sensitivity

with the correlation effect of these two independent variables. After conducting sensitivity

analyses with and without the correlation effect, the results were evaluated using conditional

probability density functions of both cases. Both theoretical and computed results show that the

conditional probability with the correlation effect increases in proportion to the increasing

absolute correlation coefficient of two independent variables. This finding suggests that the

sensitivity with the correlation effect is more suitable for actual meteorological conditions than

that without the correlation effect. After defining the random errors in each independent variable,

the propagated errors in the estimated evapotranspiration rate due to erroneous independent

variables were computed, which are shown to be valuable for interpretation of the estimated

evapotranspiration rates and designing a monitoring network for meteorological data in humid

region.
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1. Introduction

Accurate estimation of evapotranspiration (ET) is a critical issue in south Florida where

the ET rate is one of the largest components of the water budget due to the abundance of

wetlands and lakes. Since direct measurement of ET is difficult and expensive, indirect

estimation methods are preferable in practice. ET can be estimated indirectly by several different

approaches, which can be classified into several different categories including energy budget,

aerodynamic, combination of energy budget and aerodynamic, water budget, empirical. Overview

of these approaches are presented in several literatures [Jensen et al., 1990; Brutsaert, 1982;

Stannard, 1993; Winter et al., 1995; etc.]. Each approach has its own advantages and

disadvantages and choosing an appropriate model is largely dependent on the temporal and spatial

scales of the individual problem. For a vast wet surface, where the local advection is minimal,

a simple energy budget approach such as Penman equation can be used [Brutsaert, 1982]. Jones

et al. [1984] demonstrated that, for the humid climate in Florida, the Penman method is superior

to the other tested methods because it is based on physical derivations with less empiricism.

Among several Penman type models, the Penman-Brutsaert (P-B) model was selected here, since

this model is known to be adequate for the simulation of ET rate at short time intervals

[Brutsaert, 1979, 1982; Stricker and Brutsaert, 1978; Katul and Parlange, 1992]. To estimate

ET rates by the P-B model, five meteorological variables including net radiation, atmospheric

pressure, air temperature, relative humidity, and wind velocity, should be measured at the

appropriate time intervals.

The above indirect ET estimates contain many different source of errors, including random

errors in meteorological data and propagated errors in ET estimates from the erroneous input.
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Knowing these errors as well as sensitivities of ET model will help to understand the structure

of ET process as well as to improve a monitoring network for the meteorological data in the

region. Sensitivity and error analyses have been extensively studied for rainfall-runoff models

[Main and Brown, 1978; Sorooshian and Arfi, 1982; Troutman, 1982, 1985; and others], but

those for ET models are rarely found. Thus, the purpose of this study is to define the sensitivity

and uncertainty in the ET estimates.

Assuming that the P-B model is a nonlinear regression model where dependent variables

are the above mentioned five meteorological variables, the sensitivity and uncertainty analyses

were performed with erroneous independent variables measured from an experimental weather

station was installed in a south Florida marsh area. In particular, the sensitivity analyses were

done with and without the correlation effect of the independent variables. The sensitivity with

the correlation effect was evaluated by the conditional probability density function after assuming

that two independent variables are a bivariate normal distribution. This result showed that the

conditional probability was increased when the correlation effects are accounted for, implying

that this case is more suitable for actual meteorological conditions. After defining the

measurement errors of the meteorological variables from the multiple measurements, the errors

propagated to the ET estimates by the P-B model were computed. The results revealed that both

the random measurement error and the propagated errors for net radiation were predominant.
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2. Penman-Brutsaert Model

The P-B model, which is based on the classic Penman approach, incorporates the

atmospheric drying power with the Monin-Obukhov similarity theory for atmospheric stability.

In addition, Brutsaert [1979,1982] has developed a theoretical formulation of the scalar roughness

lengths for different surface types on the basis of a local Reynolds number for air flow. Thus,

one of advantages of using the P-B model is that the scalar roughnesses for different surface

conditions can appropriately be accounted in the model so as to eliminate the requirement to

parameterize the canopy condition which introduces considerable uncertainty.

The general form of the Penman-Brutsaert combination equation [Brutsaert and Stricker,

1979; Brutsaert, 1982] is

E _ (Rn -G) + Y E
A+y A +y

where E is the latent heat flux, A is the slope of the saturation vapor pressure-temperature curve,

y is the psychrometric constant, Rn is the net radiation, G is the soil heat flux, and E, is the

drying power of the air. Since the saturation vapor pressure is a function of the ambient air

temperature T, A is a function of T, and y is a function of both T and the atmospheric pressure

p. Based on the Monin-Obukhov similarity, Brutsaert [1982] suggested the drying power of the

air as

Ea=r.u, o p(q-q) z-V - L( -_ 
(2)

where ic is von Karman's constant, u. is the friction velocity of air at the surface, p is the density

of air, d, is the displacement height for water vapor, z is the height of measurement of
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meteorological variables above the surface, z, is the vapor roughness height, q, and q," are the

specific humidity and the saturation specific humidity at the ambient air temperature, respectively,

y, is the stability correction function for vapor, and L is the Obukhov length defined by

-uw
L (3)

rg[(H+0.61cpTEp/(pcpT)]

where g is the acceleration of gravity, c, is the specific heat at constant pressure, and H is the

specific flux of sensible heat, which can be expressed from the surface energy budget:

H = k - G - E,. (4)

The friction velocity is obtained from the mean horizontal wind speed V described in the context

of Monin-Obukhov similarity:

u = iV -iZo,4) z-do (5)

where do is the momentum displacement height, z, is the surface roughness height for

momentum, and Vm is the stability correction function for momentum.

The atmospheric stability classification is based on L, where L < 0, L > 0, and IL| I

100 are the limits used to signify unstable, stable, and neutral conditions, respectively. Then, the

stability correction functions for both air and momentum have been obtained from the Businger-

Dyer formulation [Brutsaert, 1982]. For unstable conditions, these functions are:
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*m = I(1n-X) 2( +X) - 2 arctan(xm) + 2 arctan(xd (6)
(1 +xOp2(1 +jr()

where xm=xv=(1-16y.)j 4 with ym=(z-do)/L, and xo=(1-16ziL)1' . For stable conditions, both y,

and Win are given by

v = ,m = 5(ZdL - ym) 0 < ym, 1 (8)

(9)*=*m= -5 Z- 1 < y, s 10. (9)

Brutsaert [1982] suggested that the roughness heights z, and zd depend on the surface

condition with the roughness Reynolds number z4(=u.zau), where u is the kinematic viscosity

of air. That is, for smooth surfaces (z.<0.13), the scalar roughness values are:

= 0.624- (10)

z = 0.395 -  (11)
u

or for the bluff-rough surface condition (z.,>2), they both z, and z are:

= 7.4Zoexp(-2.25z f (12)

Z = 7.4Zoexp(-2.465. ((13)
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For the transitional flow regime between smooth and bluff-rough conditions (0.13<z,<2), no

theoretical expressions for both z and z. are available, but Merlivat's criterion of z. .=1 is

known to be acceptable as a transition point from smooth to bluff-rough surfaces [Merlivat, 1978;

Brutsaert, 1982].

Since the equations (1) through (5) are not explicit, they should be solved simultaneously.

Katul and Parlange [1992] found that a simple iterative procedure gives a good convergent

solution for Ep. Having a onset latent heat flux rate EB, the potential ET rate (IT) is computed

by (ET=Ep,/), where X is the latent heat of vaporization that is a function of the air temperature

T. The specific humidity q, in (2) is a function of the actual vapor pressure ed that is a function

of the relative humidity RH. The direct measurement of soil heat flux G requires a heat plate

installation and calibration of instruments needing great care [Brutsaert, 1982]. Since G is

usually not sensitive to the estimated ET rate (discussed later), the following simple empirical

relationship was adopted to estimate G:

G = cR (14)

where parameter c, needs to be calibrated based on the actual ET. If the height of vegetation h

is available, both the displacement height d and the surface roughness height for momentum z,

can not defined theoretically, but if vegetation is dominant at the surface, the following empirical

relationships are commonly used in practice:

o do = cAc (15)

S-= ch (16)

where hC is the height of vegetation, and cd and c are the parameters to be determined.
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To summarize the above procedure, a set of input vector x to the P-B model is x={Rn,

p, T, RH, and V}, and a parameter set 3 that needs to be defined in advance is P=3{h , z, c, Cd,

and c,). In addition, both z and h, should be known in order to estimate ET rate by the P-B

model.

3. Sensitivity Analysis for Correlated Independent variables

Sensitivity analysis investigates the changes in the optimal solution with the changes in

the optimal system input components y, such as the input variables x or the parameters [3. The

results of the sensitivity analysis can be used to track and account for errors in a model

simulation and to characterize the resulting ranges of uncertainties. The sensitivity and

uncertainties in ET predictions may be analyzed by treating the P-B model as a non-linear

regression model. That is, the P-B model utilizes the independent variables x and the fixed

parameters B to compute the ET; the optimal ET rate predicted by the P-B model can now be

simply denoted by E'e -f(y)-=f(xo p,), where the superscript "0" denotes the optimal system input

in contrast to the erroneous one. Letting y, be the i-th input component among vector yO, the

sensitivity s, by changing yo is expressed by the gradient term [Singh, 1988]:

,_ Aft.) _ fty', Y i#) -fly 0 ) (17)
Ay Yt - Y0

where yi-y,=+Ayj=y°(l+/100). The common values of 8 may be (t5%, -t10%, ±15%,.....).

Sensitivity s; can also be defined by the partial derivative term af(.)/ay. Both partial derivative

and gradient sensitivities are identical only when the relationship of dependent and independent

variables are linear. More often than not, the above gradient sensitivity is more preferable than

that of partial derivative, since the variations of both dependent and independent variables are
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more adequately represented by the gradient sensitivity.

If independent variables are correlated (which is true for some independent variables in

the P-B model), the correlation effect may be included in the sensitivity analysis as follows: Let

us consider that, for any given model, the sensitivity by changing the i-th optimal independent

variable x,° is of concern and that the j-th independent variable xj is significantly correlated with

xi. For a given x,, xj may be more than one. It is obvious that there exist some independent

variable(s) whose correlations are not very significant. Then, the sensitivity si with respect to

changing xiO with the optimal parameters set BO is

s_ r_ .fix,, E[XfIX,=x], x, jai.k*i,kj, ) - fxo,) (18)

where xi=xi°+Ax;=x,0(l+6/100), and uppercase (X) is the random variable while lowercase (x)

is any specified value. It is also possible to extend the above formulation to the multi-variate

case rather than the bi-variate case, that is, multi-variate x's with multiple xj, which is not

included in this paper. To obtain the conditional expectation in (18), it is assumed that a simple

and reasonable model which represents adequately the relationship between x and x, is

xj = o + a1XI + e (19)

where ao and a, are the regression parameters, and a is the regression error which is independent

of x having E-N(0,o2). Further, it is assumed that both xj and x, are a bivariate normal

distribution having a correlation coefficient p. Then, the conditional expectation and variance

of x given x, are given [Mood et al., 1974, Chapter 5] by
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(20)
Sox

Var(Xl=x) = o (1-p)o 2  (21)

where p.) and a(.2 are the sample mean and variances of the given independent variable. If the

conditional expressions on xj given x are already known, the conditional expressions of x given

xj are simply given [Troutman, 1982] by

oX Jx , -- oaloXt + aiot x(2

Var(X,X,=x) = 2o . (23)
0, + aoX

The sensitivity result obtained by equation (18) can be evaluated by computing the

conditional probability density function (pdf) of x, given xj, or vice verse, and by comparing it

with the uncorrelated one. If a set of two random variables (N, X) is a bivariate normal

distribution and its correlation coefficient p is significant, the conditional distribution of X.

given X=xj is normal with mean px+(paoox)(x-p,) and variance ax2(1-p2), and the conditional

pdf of x; given by xj is obtained from its joint and marginal pdfs [Mood et al., 1974] as

(24)fAxt Ix,(xIx) -x. -
f(X.)

where fi2=(1-p 2). In the case of equation (17) which is the sensitivity without the correlation
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effect, xo is simply taken by its mean pxj, then the above conditional pdf becomes

In the case of equation (18) which is the sensitivity with the correlation effect, the regression

curve of x given by x is the straight line obtained by equation (20) [Mood et al., 1974]. Then,

plugging equation (20) into equation (24) results in the conditional pdf of

f0xa Ilx IX F=E[X4 IX,=xt]) = o xp - x,-x (26)

which is identical to the marginal pdf of x, divided by TI, that is, fx(xi)/rl. Equation (22) is the

conditional pdf parallel to the x, axis while equation (24) is the conditional pdf parallel to the

regression line given by equation (21). Even though sensitivities obtained by equations (17) and

(18) have different meanings, the higher conditional pdf ensures more reliability of the sensitivity

analysis. If p is significant, the conditional pdf obtained by equation (26) is always greater than

that by equation (25) for xi i>0, implying that the sensitivity analysis obtained by equation (18)

represents more for the actual sample than that by equation (17).

4. Error Analysis

Predicted ET may contain many different sources of errors, including model error,

temporal and spatial scaling error, error from biased parameters, and propagated error due to

erroneous independent variables. The general assumptions in error analysis are: (1) the errors

are statistically independent of the predictions fi(x,B) for different time i, and are identically

distributed; (2) the errors are statistically independent from each other; and (3) the errors are
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normally distributed, with a zero mean and a finite variance [Troutman, 1985].

The convention is to let random variables be uppercase (Y,X) and particular observations

lowercase (y,x). Given a set of error-free independent variable x*, in contrast to the erroneous

independent variable x, there is a range of actual values of ET that could be conceivably be

associated with x*; this range is characterized by the probability distribution of ET conditioned

on X'=x', or (ET IX=x'). Letting the actual ET as (ET IX'=x') and the model-predicted ET as

f(x','*), there will always be a nonzero difference between (ET X'=x*) and f(x',5'). Let us

define the nonzero differences as the prediction errors e, that is, e=(ET [X'--x)-f(x',P*). The e

series in time is normally distributed with a mean of zero and a finite error variance of 0,"2

Using the above definitions, it is possible that the following two conditional expectations are

applicable in describing the error process [Troutman, 1985]:

E[ETIX*=x*] = jtx*,p*) (27)

Var(ETIX'=x *) = E[((ET X*=x )-f(x , p*) ] = o (28)

Even though the above expressions are based on the unbiased independent variables x', the

available data in the field are usually erroneous data x due to the small number of observation,

or only a single measurement in most practical cases.

Since errors are normally distributed with a finite variance, the variance of error has been

frequently used as a quantity of error. Instead, this paper uses the percentage probabilistic error,

which is more generally accepted in the practical metrology to define the error quantity

[Rabinovich, 1993]. For a given erroneous independent variable X=x, the total ET prediction

error variance p2(x,|5) can be expressed [Troutman, 1982] by



hahn-14

o4(x,p) Var(ETIX=x) = E[(ET-f(X,p) IX-x] (29)

= o2 + v2(x) + y2(xp)

where the first term of the last expression is the variance of model predicted error, and

u2(x) - Var[ftX *,') X=x] (30)

is the propagated error variance from the erroneous independent variables, and

y(x,P) = E[ETIX=x]-jx,p) (31)

is the bias in prediction due to the erroneous parameters. The third term in equation (29) is the

expected square bias which purely depends on the model parameters. If the error-free

independent variables (x=x') are used in prediction, 1)(x) will be zero, or if the correct

parameters (|5=|5) are used, the bias is zero and the third term in equation (29) will vanish.

5. Measurement of meteorological data

An experimental weather station was installed at the Everglades Nutrient Removal project

site in south Florida (26o 38' N, 80° 25' W). The project area is primarily an open, treeless, and

undeveloped swamp covered with the tall dense cattails. The cattail (Typha domingensis) is

about 1.5 meters in height. The elevation of the site is about 4 meters above the National

Geodetic Vertical Datum. The area is transacted by small lateral canals and dirt roads which may

impact on the aerodynamic process at the interfacial sublayer, which is the immediate vicinity

of the surface where the turbulence of air flow is strongly affected by surface roughness

elements.

Three 10-meter wind towers and one 2.6-meter wind tower (Figure 1) were installed, from

which wind velocity (V) and direction have been measured at 15-minute intervals. Each 10-
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meter wind tower has three identical sets of weather sensors installed 2 meters above land surface

(z=2m) to measure the meteorological data, including Rn, p, T, RH. Accordingly, each

meteorological variable has 9 multiple measurements (WXij, i=1,2,3, j=1,2,3), while wind speed

has three 10-meter measurements (WXII, WX21, and WX31) and one 2.6-meter measurement

(WX12). The distances between the three wind towers are less than 100 meters. The statistics

(which are discussed later) show that no significant differences were found between the

meteorological data from three wind towers, indicating that weather conditions at the three wind

tower are nearly identical. Also, Famiglietti and Wood [1995] showed that the representative

element area, which is the critical scale at which the implicit continuum assumption can be used,

for diurnal areally averaged ET reaches a maximum of 1-2 km2 . Therefore, multiple

measurements of each meteorological data were treated as a point data and differences between

them were considered as random errors. Since the number of multiple measurements is small,

the unbiased estimation method was used to compute the statistics of the meteorological data.

The weather station has a non-weighable submerged lysimeter. The lysimeter has a

diameter of 3.5-meters and is planted in cattail to mimic the surrounding cattail field. The water

budget components, including stage, inflow, outflow, and rainfall within the lysimeter, have been

recorded at 15-minute intervals to compute the lysimeter ET which may be used to calibrate and

verify any conceived ET models. Therefore, the lysimeter ET rates are structurally independent

from the ET rates estimated by the meteorological data. However, the 15-minute lysimeter ET

rates include considerable error due to the low accuracy of the stage measurement: the

measurement accuracy of the lysimeter stage is about 0.38 millimeters whereas an average

estimated daytime ET rate is about 0.15 millimeters per 15 minutes. The lysimeter errors are
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reduced when the 15-minute ET rates are aggregated to a longer time step such as daily (will be

discussed later).

6. Results and Discussion

Sensitivity without the correlation effect

Both sensitivity and error analyses were based on one-year (10/14/1992-10/13/1993) of

meteorological data from the above experimental weather stations. As a preliminary analysis,

the basic statistics of a set of unbiased independent variables x' were computed. To explain this

procedure, let us define a three-dimensional array of erroneous independent variables whose

element is {x,}, where

i=1,...,I, with I as the number of independent variables (I=5),

j=1,...,J, with J as the number of time steps (J=35040 for overall year, or J=17521 for day-

time only), and

k=1,...,K, with K as the number of multiple measurements (K=9 for i=1,...,4, or K=3 for i=5

which is wind velocity V).

After assuming that the multiple measurements of each variable at each time are normally

distributed, the unbiased independent variables vector x,' were computed by taking the arithmetic

mean, that is x' = (xui+,...+x,)/K. Then, the basic statistics of each independent variable were

computed along the time axis, i.e. j=1,...,J (Table 1). The daytime was assumed when the 15-

minute net radiation readings were positive, that is, Rn'>0. The portion of daytime is about 50

percent of the period of record. Particularly, the mean squared error, MSExq, in Table 1 is

computed by
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J
MSE = E1 E (x (32)

The interesting thing to note in this table is that the skewness values of the day-time Rn and V

are reduced significantly, compared to those of the overall year. These decreased skewness

values are good for the sample's normality assumption in both sensitivity and error analyses. As

a matter of fact, the night-time ET rates are not significant compared to the daily ET rate; the

average night-time net radiation (which is negative) during the period of record is only 7.4

percent of the day-time net radiation. Therefore, most analyses here are those of the daytime

data unless specified.

For the sensitivity analyses, the optimal independent variables xo in equations (17) and

(18) were assumed the averaged error-free daytime values xi' those of which are listed on the

seventh row from the bottom in the Table I. Using the P-B model with k=1.5m, z=2.0m,

cz=0.123 , cd=2/3 , and c,=0.0817, the estimated ET rate is 7.413 mm per day, where c, was

calibrated using the actual daily lysimeter ET rates and both cz and cd were taken from Jensen

et al. [1990]. The range of changing independent variable Ax in equations (17) and (18) was

from (-1. 5oxi) to (+1.5a ). For plotting purposes, the xi's were scaled by the standardization

process to make rational comparisons of the changing estimated ET rate by changing the each

independent variable based on its standard deviation. That is, with px and ,xi the mean and

standard deviation of i-th independent variable, respectively, the standardized variable x; is

Xw h xj -x (33)
wo x

which has a mean of zero and a variance of one. Figure 2 shows the resulting sensitivity curves
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of five independent variables. The results showed that, among the five independent variables,

Rn was the most sensitive to the predicted ET rate, and that RH was the second most sensitive

but its magnitude was much less than that of Rn, and that both T and V were nonlinearly

proportional to the ET rate but their sensitivities were relatively insignificant.

Figure 3 shows the sensitivity curves of five major parameters defined in the P-B model,

where 5 which is the changing rate from the optimal parameters was from -20% to 20%. The

sensitivity curves for h, z, cz, and cd were nonlinear due to the fact that those parameters reflect

the aerodynamic process in the ET model. In general, the above five parameters were usually

much less sensitive to the ET prediction compared to those of independent variables. The present

analyses were those of a small spatial scale (virtually a point estimate). However the sensitivities

of the parameters are expected to increase in proportional to the increasing spatial scale.

Sensitivity with the correlation effect

Table 2 shows correlation coefficients between the five error-free independent variables,

as well as the latent heat flux E, and the sensible heat flux H estimated by the P-B model. This

matrix revealed that the correlation between Rn and RH in the humid region was higher than

those of any other combinations of independent variables. The relative humidity RH, which is

the ratio (expressed as a percentage) of the actual to the saturation vapor pressure in the air, is

an inverse function of the air temperature which is again a function of Rn. Unlike the actual

vapor content in the air, RH in the area is at a minimum in the afternoon and at a maximum in

the early morning. The matrix also showed that both E, and H were highly correlated with Rn,

implying that ET rates can be predicted simply by only Rn with considerable accuracy for daily

or larger time steps. The correlation coefficients of the overall data were slightly higher than
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those of day-time data, but those of the overall data are biased since the night-time Rn and T are

clustered to their low values.

Taking into account for the high correlation between Rn and RH, the sensitivity analyses

with correlation effect were done for those two variables as follows: First, the regression

equations and its error variance were estimated by equations (20) through (23) as:

E[RH° Rn] = 87.319-48.568Rn with o,2=153.25, and

E[RnOJRH] = 0.898-0.00851RH with of=0.02686,

where units of RH and Rn are percent and kw/m2 , respectively. Then, the sensitivities were

computed by equation (18) while changing each independent variable ranging from -1.5c to 1.5a,

whose results are plotted in Figure 4. With the correlation effect between Rn and RH, the

sensitivity for RH was dramatically increased, while that for Rn was moderately increased.

Nevertheless, the sensitivity for Rn was still higher than that for RH.

In order to evaluate the sensitivity analyses with and without the correlation effect, the

conditional pdf's were computed by equations (25) and (26), and plotted in Figure 5. Under the

bivariate normal distribution assumption of Rn and RH, the conditional pdf's with the correlation

effect were increased compared to those without the correlation effect. The result implies that,

even though each case has its own meaning, the sensitivity with the correlation effect is more

resemble to the actual sample in probabilistic sense than that without the correlation effect. Also,

it should be noted that, the conditional pdf of Rn given RH was higher than that of RH given Rn,

due to the fact that the variance of the sample RH in the humid region was relatively less than

that of Rn (refer to Table 1).
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Error analysis

The total prediction error variance o 2(X,P) of any given model can be defined by equation

(29) which has three components; the model error, propagation error, and error due to the biased

parameters. Having all required meteorological data, only cr for G is needed to calibrate for the

use of the P-B model. Noticing that the sensitivity of c, is relatively low; it does not induce any

significant bias on the estimated ET rate. Thus, it is assumed that f(x,) term (29) is zero and

the first two terms are defined here. To investigate the independence in the ET estimation errors

in time, the auto-correlation coefficients of error series were computed, which are 0.37 and -0.21

for the first and second time lags, respectively. Those low auto-correlations indicate that the ET

estimation errors were independent in time. Further sophisticated test for correlated errors are

also available [Sorrooshian and Dracup, 1980; Alley, 1984], but are not considered in here since

the auto-correlations of prediction errors were insignificant.

As mentioned before, the 15-minute lysimeter ET rates contain considerable errors which

are usually more than 100%, and are greater during the day-time. Thus, the first components in

equation (29), the model error variances, were computed on a daily basis as follows: the daily

sum ET series were computed from the 15-minute water budget components in the lysimeter

which are available only after February 11, 1993 (245 days among the period of record of

meteorological data). Also, the ET rates during the same periods were estimated by the P-B

model in 15-minute interval and aggregated to get the daily estimated ET series. From both

estimated and measured daily ET series, the variance of model errors 0 "2, as well as those of

rainy and no-rain days were computed (Table 4). Noticing that the ET estimation error by the

P-B model is usually small for even small time intervals [Stricker and Brutasert, 1978; Katul



hahn-21

and Parlange, 1992; and Parlange and Katul, 1992], the model errors in Table 4 are the errors

caused by the inaccurate lysimeter measurements. From o,'2's with and without rainfalls, it can

be concluded that the considerable error in the daily ET estimations originated from the

uncertainty of rainfall: the uncertainty in rainfall causes about a 28% increase of the model error

variance. However, the majority source of error in c " was the lysimeter measurement error.

The second component in equation (29), the propagated error variances a2(x), were

computed by equation (30) for each set of erroneous 15-minute independent variable x

(i=1,...,5, k=1,...9 or 3 for wind speed), and the results are listed in Table 5. This table also

includes the average t9(x)'s for both 15-minute and daily intervals. The results indicate that the

propagated errors u2(x)'s from variable to variable changes significantly, that the erroneous Rn

resulted in the most severe error in the ET estimates while the effect of p, T, RH, and V were

relatively low. The erroneous RH induced the second most significant error in ET estimates,

and p was the most insignificant. The overall results of the propagated errors were very similar

to that of the sensitivity analysis even though they are different in nature. The aggregated daily

propagated errors from those of 15-minute were reduced significantly (last row in Table 5)

compared to those of 15-minute, due to the fluctuation of 15-minute errors along the zero mean

in time. In other words, the propagated errors of 15-minute data were unbiased along the mean.

Also, the computed v2(Rn,p,T,RH,V), which is the propagated error variance of 15-minute ET

rates resulting from the combined effect of all five independent variables (Rn, p, T, RH, and V),

was 1.038 and that of daily interval was 0.097.

As a summary, Table 6 lists the percentage probabilistic errors t to the expected

independent variable X as
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loo100tse (34)

where S, the unbiased sample standard deviation of any type of errors, and tq is the q percent

point of the Student's t distribution depending on the confidence probability level a and the

degree of freedom v=n-1 with n is the number of samples. If the above quantities are for ET

rates, p should be an average ET rate of 7.413 mm/day. The above probabilistic error implies

that the most errors e's in time with probability level a falls within the limits gb [Rabinovich,

1993]. The Table 6 showed that both measurement and propagated errors for Rn were most

significant, while those of p were minimal. However, it should be noted that the percentage

probabilistic error of u2 (V) were greater than that of t2 (RH) due to the significant measurement

errors on V, whereas the sensitivity results of them were opposite.

7. Conclusions

1. For purposes of the sensitivity analysis in the Penman-Brutsaert (P-B) evapo-

transpiration model, a theoretical framework of sensitivity analysis method for correlated

independent variables was formulated, along with the verification method by the conditional

probability density function (pdf) after assuming that any sets of the correlated two independent

variables are bivariate normally distributed. Whenever the correlations of any combinations of

two independent variables are significant, the conditional probability with correlation effect

increases, compare to that without correlation effect, with proportion to the increasing correlation

coefficient between two variables. This method has the potential to be applied to the sensitivity

analysis of any given model with significant correlations presented in the independent variables.

2. The sensitivity analyses with 15-minute meteorological data indicate that the net
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radiation Rn was the most sensitive to the ET estimate, that relative humidity RH was the second

most sensitive in the humid region and was inversely proportional to the ET rate, and that

temperature T and wind velocity V were less sensitive and were nonlinearly behavior to the

estimated ET rate. The statistical analyses show that Rn was highly correlated to the latent heat

flux Ep (p=0.99). These results may change depending on the temporal and spatial scales which

should be further studied in terms of spatial variability of the ET rate.

3. The measured data show that the correlation coefficient between Rn and RH was

significant (p=-0.74) in the swamp region where the potential ET rates are identical to the actual

ET rates. The sensitivity analysis with correlation effect shows that the sensitivity of estimated

Et rate by changing RH was significantly increased, whereas that of Rn was mildly increased but

the sensitivity for Rn was still higher than for RH. The conditional pdf's of both (Rn |RH) and

(RH |Rn) were increased, but the former case was more significant than the later owing to the

small variation of RH. This result indicates that, even though both sensitivities with and without

the correlation effect have their own meaning, the sensitivity with the correlation effect gives

more assurance than that without the correlation effect.

4. The random measurement errors for five independent variables (Rn, p, T, RH, and V)

to the P-B model were defined from the multiple samples at the experimental weather station in

the south Florida. Those random errors of meteorological data were well above of the

instrumental errors. The propagated error variance v2(x) from the erroneous independent

variables were obtained, which are not available in actual measurement cases where single

measurement at a time is in common. Both measurement and propagated errors will be valuable

for the interpretation of the estimated ET rates as well as the design of further meteorological
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monitoring networks.

5. The percentage probabilistic errors to the expected variable based on the normality

assumption were presented (Table 5) for two different probability levels (a of 0.75 and 0.9). The

result shows that the propagated error in ET rate estimated from the erroneous net radiation was

most significant; the expected propagation error in the estimated ET rate due to the erroneous

Rn is about 11 percent when a is 0.75. The percentage probabilistic error for V is higher than

that for RH making it second most significant variable due to the large measurement error on V,

whereas the sensitivity results of both RH and V were opposite.
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Table 1. Statistics of the Error-free Independent Variables Used in Evapotranspiration Estimation.

Statistics Rn (kw/m) p (kpa') T (C) RH (%) V (m/s)

Overall Year (10/14/1992-10/13/1993; 35040 samples)

Mean 0.122

Standard deviation 0.208

Skewness 1.363

Minimum -0.071

Maximum 0.880

Coeff. of variance 1.702

Mean square error 0.001

Daytime only

Mean 0.264

Standard deviation 0.214

Skewness 0.517

Minimum 0.000

Maximum 0.880

Coeff. of variance 0.808

Mean square error 0.002

1 kpa (kilopascal) = 10 m

101.719 22.834

0.328 5.350

-0.467 -0.381

99.530 1.833

103.080 35.717

0.003 0.234

0.223 0.066

(10/14/1992-10/13/1993; 17521

101.718 25.509

0.336 4.752

-0.533 -0.549

99.530 2.659

103.080 35.717

0.003 0.186

0.246 0.080

83.495

15.446

-0.907

26.861

99.935

0.185

4.709

samples)

74.497

16.164

-0.059

26.861

99.9350

0.217

3.404

1.103

0.795

1.280

0.003

8.008

0.721

0.009

1.394

0.880

0.872

0.003

8.008

0.631

0. 010

----
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Correlation Coefficient Matrix of Independent Variables, as well as Latent Heat Flux

E, and Sensible Heat Flux H.

Rn p T RH V F H

Rn 1.0 0.032 0.586 -0.740 0.351 0.994 0.859

P 0.073 1.0 -0.135 -0.038 -0.096 0.022 0.068

T 0.514 -0.095 1.0 -0.456 0.120 0.597 0.432

RH -0.643 -0.065 -0.372 1.0 -0.495 -0.783 -0.415

V 0.178 -0.098 -0.046 -0.342 1.0 0.414 0.003

4 0.990 0.054 0.550 -0.700 0.264 1.0 0.797

H 0.802 0.132 0.241 -0.250 -0.224 0.709 1.0

Ref.: The elements in the upper triangular matrix is for the overall year data, whereas those

of the lower triangular matrix is for the daytime data
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Table 3. Accuracy of Instruments Used at the Experimental Weather Station.

Independent Variable

Net Radiation, Rn

Atmospheric Pressure, p

Air Temperature, T

Relative Humidity, RH

Wind Velocity, V'

Instrument Type

Q-6 Net Radiometer

PTA427 Barometric

Pressure Transducer

HMT 35-C Sensor

HMT 35-C Sensor

W. Tronics 2100 Skyvane

* V was measured every 10 seconds and averaged over 15-minute intervals.

Accuracy

0.02 kw/m'

0.133 kpa

0.5 °C

0.5 %

0.45 m/s
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Table 4. Measurement Errors in the Daily Lysimeter ET Rate.

Type of Error

Measurement error in the Lysimeter Stage

Mean Absolute Error

a82 (245 days)

a62 for rainy days (93 days)

o, " for no-rain days (152 days)

Value

0.38 mm

1.411 mm/day

3.172 (mm/day)2

3.669 (mm/day)

2.867 (mm/day)2

+ Stage measurement error is the instantaneous error in each measurement (15-minute intervals).

~cl
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Propagated Error Variances v9(x) by the Erroneous input Variables and Their Averages

Station

ID

wxll

wx 12

wx 13

wx21

wx22

wx23

wx31

wx32

wx33

Average

1-day Average

#(Rn)

x100

1.035

1.308

0.820

0.956

0.662

0.846

0.997

0.596

1.385

0.956

0.083

92(p)

x105

1.683

0.406

0.041

0.120

0.154

0.084

0.410

0.998

0.065

0.440

0.025

'2(T)

x103

1.324

1.366

1.080

0.903

1.213

1.047

1.317

2.722

1.388

1.388

0.100

v'(RH)

x10

5.074

2.736

1.879

1.189

3.642

1.404

3.378

2.203

4.406

2.879

0.430

u2(V)

x 10O

5.438

4.966

4.441

4.948

0.090

Ref.: The above error were estimated in 15-minute intervals except for the last row, and the

unit of estimated ET rate was mm/day.

II~
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Table 6. Percentage Probabilistic Errors.

unit: %

Error Type

1. Random Err-

or in Input

2. Propagated

Error, Wl(x)

3. Model Error,

daily ae. 2

Prob.

a=0.75

a=-0.90

ar-0.75

a=0.90

a=0.75

a=0.90

Rn

14.65

21.70

8.991

16.91

p

0.33

0.63

0.02

0.04

T

0.75

1.42

0.34

0.64

RH

1.67

3.18

0.49

0.93

V

4.84

9.20

0.64

1.22

(Rnp,T,RH,V)

9.33

17.95

11.46

21.80

Ref.: a or prob. is the confidence level;

intervals data.

all errors except the last row are for 15-minute

___ ___
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List of Figures

Figure 1. Schematic of the experimental weather station and other features at the Everglades

Nutrient Removal project site in the south Florida.

Figure 2. Sensitivity curves of evapotranspiration for the five meteorological variables, without

the correlation effects.

Figure 3. Sensitivity curves of evapotranspiration for the five major parameters in the Penman-

Bmrutsaert model.

Figure 4. Sensitivity curves of evapotranspiration for both net radiation and relative humidity, with

the correlation effect.

Figure 5. Conditional pdf curves:

(1) Rn with the correlation effect, f (Rn{RH=E[RHIRn] );

(2) Rn without the correlation effect, f )(RnIRH=paH);

(3) RH with the correlation effect, f~, (RHI(Rn=E[RnRH] });

and (4) RH without the correlation effect, f 4n(RHIRn=pR).
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