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EXECUTIVE SUMMARY

An important issue to water managers is the management of groundwater droughts which

is accompanied by the need to forecast and manage the groundwater resources during drought

conditions. Drought management at the South Florida Water Management District has generally

been a reactive approach. Groundwater levels are routinely monitored, and when critical levels

are reached, action is taken in the form of water use restrictions. When water levels recover, the

restrictions are lifted. This project is an attempt to make drought management more proactive.

By forecasting future groundwater levels based on historical trends, the District may be able to

recommend less stringent water use restrictions before critical levels are reached. The result may

be that critical water levels, and the more drastic water use restrictions that accompany them,

may be able to be avoided using this proactive approach.

There exists a variety of forecast and control methods, among which the Kalnman filter

algorithm, associated with a stochastic time series model, is one of the most promising options.

Since monthly groundwater flow is highly dependent on space and time domains, the underlying

stochastic time series model should incorporate the correlation structure of the system. However,

there currently exists no tools or examples of such multivariate space-time modeling techniques.

Thus, the objective of this study is to develop a state-of-the-art methodology for forecasting and

managing regional groundwater droughts, with the goal of providing consistent and subjective

rules for a drought management plan based on sound and advanced technology of the stochastic

time series theory.

The general methodology adopted for the drought management plan presented here is as

follows: First, a state-space form of stochastic time series model was developed using the long-

term historical groundwater head data. Using the most current groundwater heads, the spatial

groundwater heads for the next month are forecasted by the Kalman filter algorithm with the

fitted time series model. Then, the deviations from the target heads are computed, from which

the spatial pumpage reduction rates are obtained. The pumpage reduction rates are considered

as a management option to meet the target groundwater heads. As a pilot study, a multi-layered



freshwater groundwater system located in Collier County, Florida were used, in which 115

groundwater monitoring wells were selected and historical month-end groundwater heads whose

periods of record range from 7 to 35 years were used.

This study consists with the following four parts:

Part I: Theory of the maximum likelihood fitting of the stochastic space-time

autoregression with exogenous variables (STARX) model,

Part II: Application of the STARX model to the multi-layered aquifer system in Collier

County, Florida,

Part II: Development of a feedforward control scheme for the regional groundwater

drought problem, and

Part IV: Drought management decision support system (DMDSS).

The scope of Part I included development of a new form of the STARX model with a

theory of maximum likelihood (ML) estimation of the proposed STARX model. The estimation

method, with an assumption of complete-data (no-missing), is based on the expectation-

maximization algorithm with a simplified smoother estimator (EMSSE). Several experiments

with the EMSSE algorithm were performed in order to investigate its convergence behaviors,

sensitivity of the initial parameter assumption, and computational loads. Part II addressed the

fundamental problems in identification, calibration, and verification of the STARX model applied

for the multi-layered aquifer system in the model area. Also addressed is the correlation structure

of the groundwater system by the space-time correlation function, and the statistics of the first

spatial order neighbors defined by the Thiessen polygons created by the gaging station network.

In Part III, a feedforward control scheme was developed to control the groundwater head during

the anticipated drought condition. This control scheme consists of a forecasting equation

developed in Part II and a control equation developed by the empirical relationship between the

conceptual Pumpage/Recharge terms and the corresponding head changes. Using the deviations

from the target defined by the 2-in-10-year historical heads, the control equation is used to

compute the spatial pumpage reduction rates by the composite of deviations in each layer. As

an ultimate utility software, a drought management decision support system (DMDSS) was



developed in Part IV. DMDSS is an ARC/INFO based, user-friendly, and menu-driven interface

that integrates functionalities of data input, forecasting, control schemes, interpolation, and

graphical display of both input and output data as well as all relevant GIS coverages.

The major scientific contributions of this study is development of a new form of the

STARX model with its parameter calibration procedure, which may have other potential

applications in regional groundwater forecasting as well as in general scientific and engineering

problems. In addition, the formulation of the space-time correlation function, a conceptual PR

function, and development of a control equation applied for the feedforward control scheme may

be credited as major accomplishments of this study.

One of the inherent limitations of the proposed STARX modeling approach is that even

though it was designed for a large scale problem, this approach has dimensional limitations in

the state variable. That is, a STARX model having more than approximately 100 state variables

causes an extreme inefficiency in calibration. The other minor deficiencies in the proposed

control scheme are that of using a lumped-layer control scheme rather than layer-by-layer, that

of the spatial independence assumption in the pumpage/recharge equation, and that of short

period of records (minimum 7 years) in calibration.

It is highly recommended that this type of groundwater drought management model be

expanded to the other areas. Results of those models will be useful not only as drought

management tools during anticipated drought periods, but also as an invaluable database of long-

term historical groundwater heads that may be valuable data sources for the other water resources

management purposes. Additional recommendations for implementation of this model are:

(1) The District's Water Shortage Plan would need to be modified to allow this approach, and

actual experience with the proposed management plan would need to be obtained in order

to test the effectiveness of this approach.

(2) A real time data acquisition system for monthly groundwater head monitoring is required

in the model area since the real time forecasting is achieved by the most current

groundwater head information. The current monthly groundwater head data should be



directly ported to the DMDSS system to forecast the next month heads and the

corresponding recommended spatial pumpage reduction rates.

(3) Collection of historical pumpage data should be extended to non-public water uses,

including agricultural water uses. This data will be a good resource for the verification

of the proposed feedforward control scheme as well as the general groundwater models.

(4) The forecasting model should be continuously recalibrated since the most current

information result in the most accurate forecasting model. It is highly recommended to

recalibrate the forecasting model every two years or after experiencing a severe drought

event. Since the feedforward control scheme is constructed on the theory of water budget

and assumptions of 2-in-10-year rainfall and permitted groundwater uses, it is desirable

to evaluate the current control scheme using real drought events, from which

improvements and updates of the proposed scheme may be possible.
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1. Introduction

Forecasting future groundwater heads is an important issue to water managers who are

concerned with management of the limited water resources during drought periods. There exist

a variety of statistical forecasting techniques. One promising option is the Kalman filter

forecasting with an underlying system model, which might be either deterministic or stochastic.

The deterministic system model uses either a full scale or simplified scale physical law

of the system. This approach is physically-based and accurate, but complications arise when

applied with the Kalman filter forecasting. Another problem in this approach is that it should

accompany the forecasting of inputs to the physical system. However, some input variables, like

rainfall recharged to the groundwater system, are so uncertain that the forecasting them results

in significant uncertainties which makes forecasting itself virtually meaningless. That is why the

Kalman filtering with a stochastic time series model is commonly used in practical forecasting

problems, and by the same reason, the deterministic system model was eliminated from the

consideration in this study.

When a time series model is fitted to the system, identification of model structure and

calibration of its parameters may become the main concerns. If spatial correlation is dominant,

as in the case of regional groundwater heads, either multivariate autoregressive moving average

(MARMA) models or space-time ARMA (STARMA) model can be applied. Along with a

family of univariate ARMA models, numerous discussions on the theory of MARMA models are

available [see Box and Jenkins, 1970; Salas et al., 1980; Bras and Rodriguez-Iturbe, 1985;

Blockwell and Davis, 1987; Shumway, 1988; and others]. However, the main drawback of

MARMA models is that they do not properly account for the spatial structure of the system.

The spatial structure can be expressed by the statistical correlation with respect to the

spatial components such as distance, direction, or elevation. Without properly discriminating

neighbor stations, the pure MARMA model applied to large systems may spread its weights to

the entire system due to a large degree of freedom, enough to diminish the significance of the



nearby neighbors. Also, the mathematics involved with the sophisticated estimation procedures

of the large scale MARMA model become burdensome. That is why a family of univariate

ARMA models have been extensively used in practice, even though the system is a multivariate

nature in space. An example pertaining to groundwater hydrology, Shih et al. [1992] forecasted

groundwater heads in Collier County, Florida, by applying a set of single site transfer function

models. Also, Graham and Tankersley [1993] applied the Kalman filtering with a set of

univariate ARMA models to forecast groundwater level in the upper Floridan aquifer in Florida.

The deficiency of their approaches is that they never account for the spatial dependency of the

system.

A family of STARMA models offers a way of generalizing both the ARMA time series

models and the simultaneously specified spatial model. It utilizes a hierarchical spatial ordering

of the neighbors. Cressie [1991, page 449] summarized several existing STARMA models,

among them the following two models are of interest since the structure of the proposed model

here resembles them. The STARMA model considered in Pfeifer and Deutch [1980] is of the

form

Np Ik Nq mk
xt E *flWx -k + W- E e wt-k (1)

k=1 i=O k=- i=0

where, for the system of nx fixed locations in space, x, is the (nxxl) state vector at time t, w, is

the white noise vector, Np is the temporal autoregressive order, Nq is the temporal moving

average order, k and m k are the k-th spatial orders of autoregressive and moving average terms,

4~ and 0, are the autoregressive and moving average parameters (scalar) at the k-th temporal

order and the i-th spatial order, respectively, and W' ) is the (nxxnx) matrix of weight for the i-th

spatial order. The other form of STARMA model with exogenous term given by Stoffer [1985]

is defined as

Nq Nk
Xt =S EA Dx + T zt- + w (2)

inl 10



where, for the nx fixed stations, A, is the (nxxnx) diagonal space-time transition intensity matrix

at the i-th temporal lag, Di is a known (nxxnx) distance matrix which expresses the spatial

relationship between the random field x at lag i, z, is the (nzx 1) covariate vector at time t with

(nz) fixed locations in a covariate space, and Y is the (nxxnz) regression matrix.

In the above two models, the spatial parameters are pre-determined by either the inverse

distance weighing or spatial statistics such as covariance or semi-variogram. Then, parameter

calibration is used to find the optimal time dependent multipliers to the predefined spatial

structure. A difficulty in applying the above approaches is that it is hard to imagine how spatial

dependence can arise other sources than integration of causation over the system [Cressie, 1991,

page 450]. That is, defining the spatial weights W ' or D, explicitly, rather than from space-time

correlation structure itself, might circumvent the real system, and the lumped spatial parameters

may lose the integrity of the individual correlation structure of the true system. Conclusively,

spatial parameters can be used to define a structure of spatial system in the model, but should

not be used to determine the parameters themselves.

To overcome these problems, this study proposes a new form of the Space-Time Auto-

Regression with an Exogenous variables (STARX) model suitable for a large scale problem. As

a matter of fact, there exists no subjective definition of the large scale system in the time series

model, but the large scale system referred to here is a system which has more than 20 state

variables, enough to cause divergence problems occasionally during parameter calibration.

The subsequent sections introduce structure and properties of the proposed STARX model,

with its parameter estimation method based on the Expectation-Maximization algorithm with a

Kalman smoother estimator. Also developed is an EM algorithm with a simplified smoother

estimator (EMSSE) for the complete-data. Properties of the estimation algorithm, including

convergence, sensitivity to the initial conditions, and computing time were investigated

sequentially.



2. The Proposed STARX Model

The proposed STARX model is based on the theory of multivariate time series model

with incorporation of the spatial structure via the concept of spatial neighborhood. It is obvious

that adding the exogenous term or the so-called covariate, improves estimation of the state

variable (variate) and becomes more a physically-based model. The other advantage of using

covariate, compared to the simultaneous modeling of both variate and covariate, is that it is

possible to reduce the dimension of the system equation which is very critical in the calibration

of a large scale model. The reason for eliminating the moving average term in the proposed

model is that the moving average term causes severe non-linearity, which adds difficulties in

parameter calibration. The STARX model possesses enough degree of freedom, when applied

for a large system, so that the autoregressive term with its covariate may be enough to represent

the entire system.

In order to formulate the STARX model, suppose that a spatial random vector denoted

by x at time t, with t=1,...,T, is of interest to an investigator. With the nx fixed locations, x, may

be decomposed into components x.4 denoting the state at time t and at the j-th spatial variate, so

that x,' = (x,,...,, , where the notation (') indicating the transpose of either vector or matrix.

Further suppose that a spatial random vector of covariates denoted by z' = (z,1,...,z,. at time t

may be measured concurrently from the nz fixed locations. For a regional groundwater head

forecasting problem, x, may be spatial potentiometric head at time t and the j-th station in a

given aquifer, while z,, may be either rainfall, evapotranspiration, temperature, adjacent layer's

heads, or a composite of them, at time t and the j-th covariate station. With these definitions,

a proposed STARX model which describes the current state x in terms of the previous states ({x.

....x-Nq) and the covariate {z, z, ..., z,)N is of the form

NI Nk
Nxt = ? A .xt4 + E E zt.. + w, (3.a)

t .-- uw



where Nq and Nk are the temporal order of regressions for x, and z, respectively, An is a

(nxxnx) matrix of parameters for the vector xt.i, S2j is a (nxxnz) matrix of parameters for the

covariate z.j, D, is a known (nxxnx) spatial index matrix (SIM) for the x,., E is a known

(nxxnz) SIM for the z.3 vector, and w, is a (nxx 1) white noise vector having a covariance of Q.

Both Di and E need not be a symmetric matrix. Notation (o) is the Hadamard product which

is an element-wise product of two matrices of the same size [Horn and Johnson, 1985]. Let us

assume that the Hadamard product has higher precedence than that of matrix multiplication.

Then, the relationships of both A*BC=(AoB)C and AoBC*Ao(BC) are also satisfied, where A,

B, and C are the subset of Mh with M.~, is a (mxn) vector space.

In order to encode the spatial structure into the SIM matrix, let us define that the m-th

row and n-th column element d in Di matrix is of the form

{ _ 1 if the m-rh and n-th stations are an i-th time lag neighbor
dn 0 otherwise

The same rule is applied for the element ej in E, matrix, indicating that z.;, and x. are an j-th

time lag neighbor. Determination of the neighboring sites will be discussed in the next section.

The STARX model in equation (3.a) can be rewritten in the block matrix form of

xt-1 ,Zt

x,= [D ... DN]A -... AN ] qj +Eo ... E] Q0 ... 0 1k]  i +w, (3.b)

or simply,

xt=DoA x(t-1) + E*D z(t) + w, (3.c)

where A and Q are the block matrices, whose components corresponds to those in equation (3.b).

The dimensions of the matrices in equation (3.c) are as follows: D (nxxns), E (nxxnc), A



(nsxns), and Qf (nxxnc), x(t-1) (nsxl), and z(t) (ncxl), where ns=nxxNq, nc=nzx(Nk+l), and

ng=ns+nc. Letting <=DioAi and iJ=Ejocj will further simplify the above equation to

xt=$ x(t-1) + T Z(t) + Wt  (3.d)

where Q=[%...,AJ] and =[ ,...,WJ, which have dimensions of (nxxns) and (nxxnc),

respectively. The equation (3.d) is exactly the same format as that of a multivariate

autoregressive model with covariate term[see Blockwell and Davis, 1987; and Shumway, 1988].

However, it should be noted that both 0 and W are sparse matrices due to the Hadamard product

by the SIM's, and its behavior is different from that of a full matrix. With properly determined

temporal orders Nq and Nk by model identification procedure, let us define that the above model

is a STARX model of order (Nq,Nk), or simply a STARX(Nq,Nk) process.

The proposed STARX model is more flexible in its format than the pure multivariate time

series model. That is, if the Di's in equation (3.b) are diagonal matrices with no covariate, the

STARX model is a set of univariate autoregressive models. However, forecasting by the state-

space formulation of the diagonal STARX model is different from that of a set of pure univariate

ARMA models, due to the fact that the former uses non-diagonal elements of model noise

covariance Q. Also, if the Di's are unit matrices, the STARX model is nothing but a

multivariate autoregressive model with an exogenous term.



3. Spatial Index Matrix (SIM)

One of advantageous features of the STARX model, compared to MARMA models, is

that it can include the spatial structure of the system via the SIM's. However, it is difficult to

set up a generalized rule on SIM, mainly because it depends on the spatial structure as well as

the scaling of model. That is why the determination of spatial structure into the model must be

left to the investigator of the space-time system [Bennett, 1979, p. 477; Pfeifer and Deutsch,

1980(b); Stoffer, 1985]. This section will briefly discuss the possible SIM schemes to be used

for the STARX model. In most practical cases, a spatial monitoring network, or sampling grids,

plays a key role in determining the spatial structure. Sampling grids can be either regular or

irregular spacings, and the regular grid might be either an equilateral triangular grid, a square

grid, or a hexagonal grid as discussed in Cressie [1991, p. 318].

For regularly spaced grids, spatial order is assigned by equi-distance from the given

location and equally scaled weighing of nearby stations is typically employed [Besag, 1974;

Bennett, 1979, p. 477; and Pfeifer and Deutsch, 1980]. In this case, the definition of spatial

order represents an increasing order of all possible Euclidean distances from the location of

interest. In the case of a one-dimensional regular space system, the number of neighbor sites of

the given spatial order is just two times the spatial order. Figure 1 shows the spatial ordering

scheme for the regularly spaced square grid system. This figure displays only the first six spatial

orders, but it can be extended infinitely. In this ordering scheme, high spatial orders do not have

distinct distance differences while the number of neighbor sites for higher spatial orders increases

dramatically. Thus, in practical spatial modeling, the first spatial order is commonly used

[Bennett, 1979, p.477]. If the spatial weighing scheme is needed, as in the cases of equation (1)

and (2), weights are assigned by the inverse of the spatial order if the site is within the boundary,

or set to zero if the sites are outside of boundary.

For an irregularly spaced system, either the spatial statistics or the spatial ordering scheme

is commonly used. As in the former approach, the semi-variogram can be used after assuming
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that spatial mean and variance are stationary. If a fitted semi-variogram has a significant sill

value after a certain distance, the range of the semi-variogram can be used as a boundary for the

neighbors. However, it is usually difficult to find such a distinct sill or range in practical cases.

Moreover, an assumption of spatial stationarity makes the procedure simple, but loses the true

individual correlation system due to a lumped spatial function. Thus, the spatial ordering scheme

is more preferred in practical spatial modeling.

The spatial ordering scheme is determined by the lagging of adjacency of boundary cells

[Bennett, 1979 p. 481]. That is, the first order sites are the ones which have right adjoined

common boundaries to the interest site, and this rule can be extended to the second and higher

orders. If two cells are adjoined by a point, they are considered second order neighbors. The

site boundary is determined by the natural geographic boundary, or by Thiessen polygons if such

a geographic boundary does not exist as in the case of groundwater head monitoring network.

Advantages of using the Thiessen polygon method are that this method is easy to apply and that

it accounts for both distance and directional components simultaneously in selecting the

neighbors. Instead, if the nearest distance criterion is used to select neighbors, the selected

neighbor might be skewed to a certain direction which is not desirable. A disadvantage of the

Thiessen polygon method is that the numbers of neighbors are not uniform when the monitoring

network is irregular.

Bennett [1979 p.484] pointed out that the problem of spatial order schemes in irregular

systems is that "extension to high-order spatial orders becomes very dubious since there is no

simple or objective rule by which the contiguity counts can be made". Thus, instead of using

the higher spatial orders, the first spatial order is strongly recommended for SIMs in the STARX

model.

Let us define Nn as the number of neighbors for the given site. Nn within a space may

vary from one site to another or one time lag to another time lag, but for simplicity it is

assumed that a uniform Nn is used throughout a STARX model. Figure 2 shows an example of

constructing SIM's from the first spatial order defined by the Thiessen polygon, where Nn=3 was
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used uniformly for both variate and covariate cases.

The SIM's in the STARX model use a concept of binary indexing of stations to

discriminate whether a site is neighbored to the site of interest (1=abuttal) or not (0-=no abuttal).

The neighbors are determined by the boundary of the Thiessen polygon. In the case of the

uniform Nn scheme, the Thiessen polygon can still be used to add or subtract the neighbors to

make uniform Nn. In this case, the combination of the Euclidean distance and direction can be

used as the neighborhood selection criteria. For instance, the X4 site in Figure 2 has 5 first-order

neighbors, but the three nearest neighbors were selected based on the distances. Also, X8 has

only two neighbors, but X6 was added to make Nn=3. In the case of a covariate SIM F,, the

Thiessen polygon should be constructed one-by-one for each state variable.

4. Maximum Likelihood (ML) Fitting of the STARX Model

There are several different techniques available to calibrate parameters of stochastic time

series models, such as the method of moment, least square method, ML method, etc. The method

of moment uses the correlation structure or the partial auto-correlation structure of the data. This

method is relatively simple and widely used for model identification process, but needs to refine

the parameters further by the other sophisticated methods. It is possible to apply one of the least

square methods as in the linear regression model fitting. The least square method uses only the

first two moments of the measured time series. Harvey [1990, p.84] pointed out that, if the form

of the distribution is specified, restricting attention to the first two moments may be statistically

inefficient.

The ML method attempts to incorporate all the information into a model by working with

the complete distribution of the measurement. This is why the ML method is preferred over the

other methods for the time series modeling. To illustrate the ML function, suppose that a set of

the measured random variables, y,...y, are available. The statistical time series model specifies

a distribution for y.... yT, known as the joint density function, which depends on n unknown
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parameters in a vector y = (,y...,y,)'. Once the sample has been drawn, y,,...y becomes a set

of fixed numbers. The expression for the joint density can then be re-interpreted as a function

of y, where V is any admissible value of the parameter vector, rather than the true value. It

therefore indicates the plausibility of different values of yr, given the sample. Viewed in this

way, the expression for the joint density function is called the likelihood function, and is denoted

by L(4). In general, L(r) is the continuous function of y and the ML estimator can be found

by the various optimization algorithms based on the differential calculus of the ML function.

If the objective is just fitting of the STARX model, one may use the Gauss-Newton

algorithm or the scoring algorithm as introduced in Harvey [1990, p. 134]. However, the ultimate

objective of fitting the proposed STARX model here is forecasting the future state by the Kalman

Filter algorithm. Kalman filter seeks to provide the minimum error variance estimator for the

state vector with balancing both the model and output errors, given the measurements. The

Kalman filter forecasting requires a set of state model parameters as well as noise covariances

and initial state with its error covariance, all of which should be calibrated simultaneously. Thus,

a special algorithm, rather than conventional optimization algorithms is requested for forecasting

the future state.

It is known that the expectation-maximization (EM) algorithm proposed by Dempster et

al. [1977] can be applied in conjunction with modified Kalman smoothed estimators to derive

a simple recursive procedure for the ML fitting of multivariate ARMA models [Shumway and

Stoffer, 1982; Stoffer, 1985; Shumway, 1988 (p.173); etc.]. Particularly, the EM algorithm, even

though it is somewhat complicated, is ideally suited to the multivariate time series applications

involving unobserved components or irregularly observed data. Furthermore, the recursive

estimation by Kalman filtering can effectively eliminate the divergence of optimization that is

commonly occurred by the false initial parameters. The next subsections will discuss the basic

assumptions, formulation of general EM algorithm with the Kalman smoother estimator, and the

simplified Kalman smoothed estimator for the complete-data set.
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4.1. State-Space Formulation

To apply the Kalman filter recursion, the STARX model needs to be transformed into

the state-space form which consists with the state and measurement equations. The STARX

model in equation (3.d) can be written in the form of the state equation

x(t) = 0 x(t-1) + ' z(t) + w(t) (3.e)

where x(t)'=[x',...,x.Nl'], z(t)'=[z/',...,z,.,'], and w(t)'=[w', 0,...,0] are augmented vectors having

(nsx 1) dimensions, and the parameter matrices 4 and 'F are defined by

01 .,.... ON

I 0 0 0

0 .. O 0

0 0 I 0

To ... OT

and 7 =

0 ... O

with I is the identity matrix and 0 is the zero matrix. The model noise vector w(t) is a multi-

Gaussian white noise with w(t)=N(0,Q'), where Q"=E[w(t) w(t)']. For more simplicity, the

equation (3.e) can be rewritten as

x(t) = [0 Y][X(t )J + w(t) = eOX(t-1) + w(t)(31)

which will be used for the maximization step in the EM algorithm.

Now, to allow for the possibility of missing data and the existence of measurement noise,

the measurement equation is expressed by

, = M(t) x(t) + v (4)

where y, is an (nxxl) incompletely measured vector at time t, the measurement noise v, is a

(nxx 1) multi-Gaussian white noise having v,=N(0,R). The measurement matrix M(t)=[M,0,. ..,0]
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has the dimension of (nxxns), and M, is a non-random bounded matrix whose element m' at

time t and i-th variate is defined by

f 1 if the corresponding state is measur
m = 0 otherwise

In the state-space form, it is not possible to measure the true state vector x. Only yy is

measurable and xt is expressed implicitly by the surrogate measurement vector y,.

4.2. Filtering, Smoothing, and Forecasting

The problem of estimating the discrete state vector x(t) in equation (3.e) can be

approached by the expectation of x(t) conditioned on the measured data y,,...,yT and the

concurrently measured covariate z,, ... , zr, where T is the number of total discrete measurements.

In order to specify this procedure, consider the general conditional mean of the (nsx1) state

vector

4t" = E [x(t) I Y,...,y1 , z ,...,zl (5)

where E[.] denotes the expectation operator, s is the span of the measured data and t is the time

at which state vector x(t) is estimated. Defining that the estimation error x, is given by the true

value xt' minus the estimated value ', that is, x=(xt - )a) which has a dimension of (nsx 1).

Also let us define that the (nsxns) error covariance of the state estimates is

pt=E [(x;-i;)(x-g) - I Y1'- 'Y, Z1,..,Zs] (6)

and the error covariance for one-time lagging state vectors is

p E,-i =E i[(x 1 1 -XtcI' I Yp...Sr z1,..,zsi. (7)

Then, the following three problems occur when estimating the above three estimates ,

pt, and p,.,: if t=s, it is called the filtering problem; if tcs, it is the smoothing problem; and
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if t>s, it is the forecasting problem. With definitions of the above conditional expectations and

some assumptions, the modified Kalman smoothed estimator is derived. The step-by-step

derivations can be found in Jazwinski [1970 p. 200] and Shumway and Stoffer [1981], and this

subsection introduces only the fundamental assumptions with their final results.

4.3. The modified Kalman smoothed estimator

To develop the Kalman filter recursion, it is assumed that the initial state x(0) is a

Gaussian vector, with x(0) = N(p,), and that w, and v, are mutually independent, so that E[w(t)

v,']=0. Furthermore, it is assumed that both w(t) and v, are independent to both x(t) and z(t).

The calculation of the Kalman filter estimators proceeds by starting the forward recursion. For

t=1,...,T, the predicted state of the STARX model in equation (3.e) becomes

where ( is (nsxns) nonsingular state transition matrix. The predicted error covariance is

pf-s = eP ' + Q* (9)

where Q*- E[w(t) w(t = [, and Q=E[wt w

The filter gain, or so called the Kalman gain, is

K, = p-'M(t)' [M(t) pt-'M()' + Ri-1  (10)

where R(=E[vtv1']) is any positive semi-definite matrix which satisfies the x'Rx>0 condition for

all nonzero x, and superscript (-1) denotes the matrix inversion. Then, the state update, or the

state estimate, is

rt " X-'1 + Kt y, - M() i- (11)
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and the state error covariance is

p, = pt-1+K, M(t) pl-1  (12)

Equations (8) through (12) are the forward recursion. The initial conditions for the

forward recursion are taken to be xo°=p and p0°=E, where Z should be the positive semi-definition

matrices to assure the matrix inversion operation at the initial time step.

The general purpose of smoothing is to refine the forward estimators and Pt based on

all measured data yl,...,yT and z,, ..., zr. Assuming that the filtering solution P, P'., and Pt are

available from the forward recursion, the backward recursion can be performed for t= T,T-1,...,1

using the equations

Jt-, rp t 0 [pT-']-' (13)

x = xt -1 [xtr _ lx-] (14)

Pt -1  P- + Jt- [Pt - P - ] J- (15)

Also, it is requested to compute the smoothed error covariance for the one-time lagging

state pT,,.1 in equation (7) for the expectation step in the EM algorithm. The resulting backward

recursion step from Shumway and Stoffer [1981] for t=T,T-1,...,2, is

P ,t-2 -2 + Jt-P- - -] Jt-2' (16)

and the initial error covariance is computed by

PT,T-I [I-KM()] p - (17)
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where KT and pTT- are those from the last time step in the forward recursion. The above

forward and backward recursions give a convenient means for calculating the conditional

expectations of both the state vector and associated error covariance, which are of interest when

estimating parameters in the STARX model. The data are not required to be regularly spaced

or complete series in the above formulations.

Unlike equation (8), equation (9) does not account for the covariate effect in estimating

the state error covariance. The underlying assumptions used in equation (9) are that covariate

is a deterministic term and both E[' z(t) and E[z(t) z(t)' are set to zero. If the covariate effect

is considered, the right hand side of equation (9) should add the (Q4)ER tz(t)I ' +YE[R'

z(t)f'lA'+~E[z(t) z(t)']P') term. With this term, the equation (9) becomes similar to that of the

Schmidt-Kalman filter [Jazwinski, 1970, p. 285]. The Schmidt-Kalman filter was basically

derived for the state-space equation with uncertain parameters that is regarded as a random

variable with known a priori statistics. In order to estimate the above term, the predicted state

error term W' should be estimated recursively along with the state vector.

4.4. Expectation-Maximization (EM) Algorithm

The EM algorithm, introduced by Dempster et al. [1977], is an alternative non-linear

optimization algorithm which enables estimation of model parameter with an incomplete data set

using the ML method. The term "incomplete data" implies the existence of two sample spaces:

a measured part, and an unmeasured part.

In the time series context, it is common to measure some incomplete data Y as a known

function of a signal process X and a noise process V. Both X and V are not directly measured,

but only indirectly expressed through Y. Let us define InL(X,V | 0) as a log likelihood based on

the complete data, and InL(Y 0) as a log likelihood based on the incomplete data, where 0 is

the parameter set of the model to be estimated. Then, the EM algorithm is designed to find 0

iteratively, which maximizes the expectation of the complete-data log likelihood conditioned on

the measured data Y. Each iteration of the EM algorithm involves two steps; the expectation step
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(E-step) and maximization step (M-step). Let us write such a conditional expectation process as

Q(oI|0) = E, [ In L(X,V io) IY;oe. (18)

where i denotes i-th iteration. The E-step computes Q(9 1 B0) from the above expression and the

M-step chooses 08,+ to maximize Q(0 | 0) using one of the optimization techniques. Since the X

process cannot be measured directly, the above equation can be written in terms of the Kalman

smoothed estimators defined in the previous subsection. The E-step in the case when vectors

y,...,yT,and z,,...,z7 are fully observed is given by [see Shumway and Stoffer, 1982]

Q(Ol d -In EI - tr { E-' [pT(o) + (x T(O) -)(x T(0) -pY)])
2 2

SInQI - !tr (Q-' (C - eS,(1) - S,(1)e + es,_,(0)0')l
T-T InlRI -1 tr {R-' [(Y -M(Otr)(Yr-M(tTr)- +M(t) pr M(t)'}

2 2 t 1
t=l

(19)

where xT(0)=N(p,X), A I is the determinant of the matrix A, trA is the trace of a matrix A given

by E".iai for A= {a} with AE R" , and

St-(0) A (20)

s,(i) = [B G] (21)

where

T
A -- [P xt i a (22)

t-1
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T
B -- [P,, + (23)

t= 1

T
C= E (p,(+fT x"1] (24)

t=1

T
F= E [At z(ty] (25)

t-= 1

T
G= E [xT z(t)'] (26)

t=1

T
H- E [z(t)z(t)'] (27)

t- 1

Again 1'T is from the Kalman smoothed estimator, and k1r is the first sub-vector in the

V'=,T" ,... ,x lT7']. The dimensions of each matrix in equations (20) through (28) are as

follows: S,.1(0) (naxna), S(1) (nxxna), A (nsxns), B (nxxns), C (nxxnx), F (nsxnc), G (nxxnc),

and H (ncxnc), with na=ns+nc.

The M-step is now easily applied by maximizing equation (19) with respect to the

parameters 0, Q, and R. The M-step yields the following regression estimators:

0s+1 i D* [St(1) S,_(o)'] (28)

t+ - (C .,S(1Y - S). 1  + ,s,_( ') (29)

. - E [(y, -M(t)ix)y,-M(O/t )'- +M(t) M(ty] (30)

where, from equation (3.f), D* is defined by
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D 1 ... D-1 Dg Eo ... EN

I ... O 0 0 ... 0

0 ... I 0 0 ... 0

Also, it is possible to update either p,. {V(0)) or Ei+1 {=pT(0)+(xT(0)-p)(xT(0)-p)'}, or

both of them at each iteration. However, it is known that both p and E are relatively insensitive

to the variations in the initial conditions [Stoffer, 1985]. In case of missing data (incomplete-

data) at a given time step, the measurement vector should be partitioned and rearranged into the

measured and missing parts by y,' = [y,', y 2)] and the measurement noise covariance should

be estimated in the partitioned form. The Ri1 term in this case given by Stoffer [1985] is

T
I tr i- (31)

t=1

with

C s 1S21 (32)

[asr &1I S R2.1 ' +R.1

p, - ,R1 (33)

42.I R2 - IRIR', (34)

and

Sr) = (yi)-M(t)1)xr)(y(t)M(t)Xt) + M(t)pM( t(,- (35)

where R=cov{v 1(ft\)}, with v ( is the partitioned measurement noise corresponding to y'i), Rui
is computed first by the complete-data estimator (equation 30) and reshaped into the measured

and missing parts like yt('. The matrix I in equation (31) is a permutation matrix which is
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obtained after reordering the M(t) matrix. A simplification introduced in Shumway and Stoffer

[1982] is for the case where the missing part and measured part are not correlated, so that R2.
is a zero matrix and the update for the missing part is given by just R22. If the measurement

vector y, is completely missing, then the term C, is simply R.

The incomplete-data log-likelihood given by Gupta and Mehra [1974] is of the form

T
-21nL(Y;O) Z n In IM(t) p- M(t)I +

t=1 (36)
T
E (y-M(t)it-1) [M(t) pt-'M(t) +RJ-1 (y-M(t)f l-)

t=1

where t1 and p '- are from the forward recursion. The reason why the log likelihood function

is multiplied by (-2) is that this likelihood function is the same as that of the least square

objective function. Then, the objective function of the optimization is the minimizing equation

(36).

To summarize the above procedure, each M-step recalibrates the following forecasting

parameter set

E = {e, Q*, R , and n}

based on the E-step by the Kalman smoothed estimator. The entire EM procedure can be

computed as follows:

(I) Start with initial assumption of S~o

(II) On the i-th iteration, run the forward and backward recursions using equations (8) through

(17) with ", from the previous iteration.

(III) Update E+, by the M-step in equations (28) through (35).

(IV) Compute a likelihood function given by equation (36) and check convergence. Stop

iteration when the incomplete-data log-likelihood and the parameter set stabilize,

otherwise repeat step (II) and (III) for the i+l iteration.
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5. Simplified Kalman Smoother for Complete-Data Set

Although the EM algorithm has its greatest advantage when it is used for incomplete-data

sets, it is possible to simplify the Kalman smoothing procedure with an assumption of complete-

data. The EM algorithm with a simplified smoothed estimator (EMSSE) enables one not only

to increase the convergence rate, but to significantly reduce computational time and memory

requirements. The simplification of the Kalman smoothed estimator is accomplished by using

time-invariant state error covariance terms. The concept of time-invariance in Kalman filtering

was briefly discussed by Lainiotis [1978], where the partitioned filter is solved in the form of a

time-invariance and steady-state (Weiner) filter.

Without missing data, the measurement equation can be rewritten by

Yt = M x(t) + vt  (37)

where the time-invariant measurement matrix (nxxns) becomes M=[I,0,...,0], with I and 0 are

identity and zero matrices having (nxxnx) dimensions, respectively. Since the measurement

matrix M is time-invariant, pt-1, pf, and K, in the forward recursion also become time-invariant

variables. Let us redefine these variables as the time-invariant notations; p,=pp,-, po=p,, and

K=K Then, equations (9), (10), and (12) can be rewritten by

pI Po + Q ...(a)
K = pM' M pM'+R-1 ...(b) (38)

po (I-KM) p .. (c)

which can be estimated independently from the state estimation. This is a set of simultaneous

equations having three unknown terms and three known terms(4, Q, and R). The explicit

solution of the above equation is unknown, but an iterative method can be used to solve it since

the Kalman forward recursion is designed to obtain the minimum mean-squared error estimation.

That is, with an initial assumption of po, which satisfies the positive semi-definition matrix, the

above equations are solved for p1, K, and Po sequentially and repeatedly until the estimators are

stabilized. The experiment in this study reveals that less than 10 iteration leads to a good
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convergent solution.

The same iteration method can be applied for the backward recursion. That is, the time-

invariant estimator J (=3j) is computed by

J = p0g' [p]-1  (38)

Also, with time-invariant notations of pT0 (=pT) and pT1 (-pT.1r2), the smoothed error covariance

matrices are rewritten by

Po - J poJ' = Po - i p 1J (39)

P1  - J piJ' = pJ' -J* pJ' (40)

Again, both equations (39) and (40) were derived under the condition of minimum mean-squared

error estimation, so that an iteration of each equation with an initial assumption which satisfies

the positive semi-definition condition will result in the optimal solutions.

Alternatively, both equations (39) and (40) can be solved explicitly by using the

Kronecker sum properties [Bellman, 1970, p. 125]. That is, since each equation has the form

X - UXV = W (41)

where X is an unknown matrix, and U,V, and W are known coefficient matrices, the solution of

the above equation to X is given by

X = yUkWyk (42)
k-0

In practice, summation of the above equation continues until the term (UWVk) at the k-th

summation is insignificant. The condition of equation (42) is that the sum of any two

characteristic roots (eigenvalues) of U and V is nonzero. This condition is automatically satisfied

when both U and V are the stability matrices, which means that all of the eigenvalues of U and
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V have negative real parts. Since V=U' for both equations (39) and (40), the characteristic

polynomials of both U and V are the same and the above stability condition is automatically

satisfied as long as J, po, and pl are all positive semi-definite matrices. After solving the error

covariances in equations (38) through (40), the forward recursion to estimate the state vector is

given by equation (8) and (11) using the time-invariant matrices K and M, and the backward

recursion is computed by equation (14) with the J matrix.

The great advantage of EMSSE is that whenever complete-data is available, the

computational load is significantly reduced due to the reduced number of matrix inversions; the

larger the system is, the greater is the reduction of computational loads. The other advantage is

that use of time-invariant parameters eliminates the effect of the initial assumption of the error

covariances, and consequently escalates the convergence rate of the EM algorithm. These

advantages have significant meaning for a large scale model where divergence of the forward

recursion may occurred in early iteration step.

6. Properties of the EMSSE Algorithm

A number of mathematical properties of the general EM algorithm are available in

Dempster et al. [1977] and Wu [1983]. The key property is that, under the continuity and

differentiability of the ML function L(Y;0), the EM sequence of the form Q(010i) in equation (18)

converges to the likelihood value L which maximizes L(Y;0) giving an optimal parameter 0'.

If Q(10I) is continuous, then L' is the stationary value of L(Y;0). If 0i converges to 0', then 0*

is a stationary point under continuity of the partial derivative of Q with respect to 0.

The intention of this section is to investigate the behaviors of the proposed EMSSE

algorithm, particularly when it is used to calibrate the forecasting parameter set E. Four

experiments were conducted: convergence, ML function versus a number of neighbor Nn,

sensitivity of initial parameter set B(0), and computational loads. For these experiments, an

example problem was set up as in Figure 2, which is an actual groundwater monitoring network
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taken from the northern part of Collier County, Florida. It consists of 8 variate stations (nx=8)

from the sandstone aquifer (3rd layer from the top) and 6 covariate stations (nz=6) from the

lower Tamiami aquifer (2nd layer). The standardized historical month-end head data from

January 1987 to August 1993 were used.

6.1. Convergence

One of the interesting aspects of the EMSSE algorithm is that it eventually diverges after

a certain convergence. The larger the system is, the faster the divergence becomes. It should

be noted that divergence of the EMSSE algorithm is somewhat different from filter divergence.

The latter one occurs when the Kalman filter is constructed on the basis of an erroneous model;

some treatment techniques of filter divergence are available in Jazwinski [1970 p.301].

The convergence pattern of ML function by the EMSSE algorithm has three distinct

phases as shown in Figure 3; let us define them as the rapid convergence, gradual

convergence, and divergence phases. With any assumed initial parameter set E(0), the ML

function -21nL dramatically decreases at the first iteration and continues to decrease significantly

during a few more iterations (until 4-th iteration in Figure 3) mainly due to the rapid convergence

of the first term of ML function in equation (36). This is the rapid convergence phase. After

this phase, the algorithm still converges at a relatively small rate. This is the gradual

convergence phase. The optimal parameter set is obtained at the end of the gradual convergence

phase. With continuing iterations, the ML function begins to oscillate with a very small

amplitude at the beginning but increases gradually. This is the beginning of the divergence

phase.
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In Figure 3(b), the actual oscillation started at the 216-th iteration and it increased dramatically

after about 260-th iteration. The EMSSE algorithm was terminated automatically at 289-th

iteration due to an unrealistically large ML value, specifically the determinant in the first term

of ML function.

The second term in the ML function (36) behaves opposite to its first term. That is,

during both the rapid and gradual convergence phases, the second term increases while -21nL and

its first term decrease. In the case of a large system, the magnitude of the second term is

relatively small compared to the first term. However, the starting of divergence of the -21nL is

slightly different from that of the first term due to the effect of second term.

6.2 ML Function Versus Number of Neighbors, Nn

In the second experiment, calibrations were conducted with different SIMs created by

different Nn's ranging from 0 to 7(full SIM). For three different temporal orders (Nq=l, 2, and

3), the optimal ML values, as well as the first term of the ML functions were computed and

plotted in Figure 4. In general, (-21nL) is inversely proportional to Nq when the SIM is a full

or near full matrix, since the higher Nq means more degrees of freedom in model. However, this

rule does not hold for the sparse SIMs which behaves more or less non-linearly. For example,

the model with Nq=3 outperformed than that of Nq=2, even though the first terms of the ML

function were almost identical regardless of Nq.

The reasons for such non-linearity are as follows: The EMSSE algorithm identifies its

model parameter 0 from the full SIM system at first hand, then it performs the Hadamard product

of the SIM and 0 at the end of each iteration to get the parameter matrix that has a sparse format.

That is, even though 0 is calibrated for the full system, the uncorrelated portion of 0 are ignored

by the Hadamard product and the next iteration uses only the correlated portion of 6 by the

predefined neighborhood concept. Thus, the EMSSE algorithm with the sparse SIM model still

converges at a certain degree, but an optimal ML value for the sparse SIM model is higher than

that of the full matrix model.
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Alternatively, it is possible to use a sparse system approach in the Kalman smoother.

That is, at each EM step, the error covariance terms, p., Po, p o, and pT,, are obtained by utilizing

the Hadamard products. That is, for any sets of two sites that are not neighbors, their error

covariance terms are not set to zeros in the EM algorithm. This scheme seems to be more

logical, but in most cases, it causes extreme instability in filtering, and such instability hinders

the convergence of the EMSSE algorithm.

6.3. Sensitivity of the Initial Parameter Assumptions

The EMSSE algorithm starts with the initial parameter set E(0)={p(0), E(0), 0(0), Q(0),

and R(0)}, where (0) indicates the initial step before iteration. It was known that the EM

algorithm with Kalman smoothed estimator is relatively insensitive to the variations of the initial

conditions p(0)=o ° and Z(0)=-po [Stoffer, 1985]. This fact is still valid for the EMSSE

algorithm. Furthermore, an assumption of E(0)=p is needed, but this initial value never affect

the final convergence. The third experiment of the EMSSE algorithm was conducted to analyze

the sensitivities of the ML function with respect to the three initial parameters 0(0), Q(0), and

R(0). The resulting ML values with different initial parameters were plotted with respect to the

number of iterations in the Figure 5.

The results of this experiment indicated that the ML function converged to the same

values after certain iterations regardless of the initial 0(0)'s and Q(0)'s. Among the initial

parameters, R(0) was the most sensitive. The exact values of -21nL's at the 50-th iteration (which

are not shown in Figure 5(c)) are as follows.

Diagonal of R(0) 0.2 0.5 1.0 2.0 4.0 10.0

-21nL -510.2 -514.2 -514.5 -514.1 -513.5 -512.6
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Particularly, the influence of R(0) was very significant during the rapid convergence phase. The

small R(0) induces fast convergence of the EMSSE algorithm, but may cause quick divergence,

particularly for the large scale model. It was verified that, for small or medium scale problems

(approximately nx<20), initial R(0) of less than 0.1 may give good convergence, and for the large

scale problem(nx>20), R(0) of 0.5 or higher, may produce stabilized ML values with optimal

parameter estimation without divergence during the rapid convergence phase. From this

experiment, the following conclusions are drawn:

(1) The initial parameters 0(0), Q(0), and p(0) are insensitive to the final ML function,

even though the ML values at the first few iterations are quite different. E(0) can be any positive

semi-definite value if the time-invariant scheme is used in the EMSSE algorithm.

(2) The optimal ML function by the EMSSE algorithm is not significantly affected by

0(0). That is, regardless of any 0(0)'s, the algorithm converges to the L' giving an optimal

model parameter 0*".

(3) Among the parameter set E, R(0) is the most sensitive parameter to the ML function

in the EMSSE algorithm. In most cases, diagonals of R(0) of less than 0.2 leads to an optimal

solution, but for the large scale model, diagonals of R(0) of 0.5 or higher are recommended to

avoid divergence during the rapid convergence phase.

6.4. Computational Load

The EMSSE algorithm requires considerable computational time due to numerous matrix

manipulations. Nevertheless, discussions of the exact computation time (CPU time) is

inadequate because the CPU time is subject to change depending on the hardware system,

programming habitat (especially matrix manipulations), and the input-output options in the

program. In this paper, the experiment was focused on how much computational loads are

increased, in a relative sense, by increasing the dimension nx and temporal order Nq.

The EMSSE algorithm was coded in FORTRAN with some IMSL subroutines and

executed on a SUN Sparc-10 workstation. During the calibration of the model with different
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nx and Nq, the CPU times were monitored. Figure 6 shows CPU times in seconds per iteration,

which is an average of 20 iterations of the EMSSE algorithm. This experiment revealed that

CPU time increases exponentially with proportional to either nx or Nq, mainly due to the

increased dimensions of the matrices. The fitted quadratic equations for CPU time t in seconds

per iteration in both cases were given by

m=1.614-0.290nx+0.016nx 2, with R2=0.998, (44)

m=2.038-2.643Nq+1.238Nq 2, with R2=0.994, (45)

respectively. When increasing both nx and Nq, or using covariate in the model, the computation

time increases dramatically. For instance, if nx=48, Nq=4, and T=72, the total CPU time for 25

iterations took about 9.6 hours.

7. Summary and Conclusion

Presenting a methodology to fit a stochastic time series model in the space-time domain

has been the main goal of this paper, which will ultimately be used to forecast the regional

groundwater head. This study developed a new form of the space-time autoregression with

exogenous variables (STARX) model, which uses the Hadamard product of parameter matrices

and spatial index matrices to incorporate the spatial correlation of the system. After discussing

the structures of the STARX model, efforts were concentrated on the ML fitting, which is based

on the expectation-maximization algorithm with a simplified smoother estimator (EMSSE). The

EMSSE algorithm, if the complete-data set is available, not only enables the reduction of the

computational load, but also achieves accurate parameter estimation by using time-invariant error

covariance matrices.

To verify the EMSSE algorithm, several experiments were conducted, which included the

convergence fashion, ML versus number of neighbors Nn, sensitivity of the initial parameter

assumption .(0) ={u(0), E(0), 0(0), Q(0), and R(0)}, and computational load. After defining

three convergence phases based on the ML function obtained by the EMSSE algorithm,
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comparisons of convergence rates were made for the full system versus different sparse systems.

The sensitivity analysis to the initial parameter assumption revealed that 0(0), Q(O), p(0), and

£(O) are insensitive to the ML function, but R(O), particularly its diagonal elements, is the most

sensitive to the ML function in the EMSSE algorithm. Computational load increases

approximately proportional to either nx2 or Nq2 .
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1. Introduction

Like most types of modeling, procedures involved in stochastic time series modeling

include identification, calibration, and verification. The algorithm of the calibration process for

the proposed STARX model was presented in Part I. The objective of Part II is to address the

state-of-the-art methodologies of the modeling procedure as well as the practical issues that arose

during the STARX model building. As a pilot study for the groundwater drought management

problem, a model area was selected which is located in the western Collier County, Florida. The

month-end groundwater head data from 115 monitoring wells in the four freshwater aquifers were

collected, whose periods of record vary from 7 to 35 years.

To identify the structure of the STARX model, the spatial statistics of the space-time

correlation function and the time lagged semi-variogram function between the different space

domains were analyzed, along with the statistics of the first spatial neighbors defined by the

Thiessen polygon created by the gaging station network. Discussions also includes

transformation processes of the raw data to meet the underlying assumptions in the STARX

model. Those transformations includes standardization to remove seasonality, the Box-Cox

transformation for normality, and use of linear models to remove temporal trends.

Then, parameters of several candidate STARX models having different temporal orders

were calibrated along with error covariance matrices, from which the best models in each layer

were selected based on the Akaiki information criterion. After investigating the abilities of data

generation to verify the fitted STARX model, 12-month lead time forecasting was performed,

whose result as well as error covariances were displayed along with the historical data. Results

show that the fitted STARX models preserve first four moments and the low-order correlation

coefficient of the historical data. Some of forecasting results were displayed with the

corresponding historic data which shows good matches between them for the smaller lead times.
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2. Description of the Model Area with Historical Data

The model area consists of the western half of Collier County and a small portion of south-

western Lee County, Florida (Figure 1). Its boundary is defined by;

This area is characterized by moderately drained sandy soils with extensive agricultural and urban

development. This region receives an average of 54.3 inches of rainfall annually, with about 60

percent occurring during the wet season (mid May-October). Without having a significant

surface water inflow source or surface water storage, the area relies mainly on the groundwater

sources to meet water use demands. Thus, this area typically experiences water shortage

problems during the dry season. Also, the groundwater uses in this area are very sensitive to the

conflicting issues of water supply, salt water intrusion, and environmental impacts on the

extensive wetlands which are located along the western edge of the model area.

The area's hydrogeology consists of four underlying fresh water aquifers as described in

Table I, which provide most of the region's water demands. The top three aquifers are separated

from each other by semi-confining beds having low permeable material, however a significant

amount of inter-aquifer flow takes place due to the leaky structure. These three aquifers are

extensively developed due to their low salinity content. The mid-Hawthorn aquifer is separated

from the sandstone aquifer by a low permeable confining unit, and not highly utilized due to

increased well depth, high salinity, and low yield.
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(b) Lower Tamiami aquifer, (c) Sandstone aquifer, and (d) Mid-Hawthorn aquifer.
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Schematics of aquifer system in the model area with their hydraulic properties

Layer Name of Aquifer K, or T # of gaging

ID aquifer thickness stations
b(ft) (ft/day) selected

Layer 1 Surficial 40-60 100-3500 48
aquifer

Layer 2 Lower Tamiami 70-120 10000-320000 43
aquifer

Layer 3 Sandstone 150-250 160-25000 14
aquifer

Layer 4 Mid-Hawthorn 160-410 500-1200 10
aquifer

Ref.: K, is the horizontal hydraulic conductivity, and T is the transmissivity.

Currently, the U.S. Geological Survey (USGS) maintains approximately 150 groundwater

monitoring wells in this area, from which piezometric heads are collected at either regular or

random time intervals. Also, some local agencies and private companies (mainly agricultural

operations) have collected groundwater head data, but those are not included in this study due

to their unknown reliability and inconsistency in data collection and reporting. The periods of

record range from the early 1900's through August 1993. However, only a few wells have

records extending back to the mid 1950s. The active USGS monitoring program in this area

started during the mid-1970s, and a full-fledged monitoring program began in 1987; from that

time, a complete-data set is available. After eliminating stations whose records are inconsistent

or having sampling intervals greater than one month, only 115 gaging stations were selected.

Table 1 and Figure 2 show the distribution of these stations for each aquifer. The groundwater

head in the area, along with the land surface elevation, are usually highest in the northeast region

and gradually decreases to the southwest coastal region, where the fresh groundwater interfaces

with ambient saltwater. The groundwater flow direction follows this natural head gradient,

except for the mid-Hawthorn aquifer where the groundwater flows in a more east-west direction.
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3. Preliminary Considerations to Build Stochastic Time Series Model

The governing equation describing the three dimensional transient flow of a slightly

compressible fluid in a non-homogeneous anisotropic aquifer can be written [Mcdonald and

Harbaugh, 1988, p98] as;

_ h 0 . h 0 . h ah (1)

where Kxx, Ky, and Kz are values of hydraulic conductivity (LT') along the x, y, and z

coordinate axes, So is the specific storage (L' ), h is the potentiometric head (L), t is the time

(T), and W is a volumetric flux per unit volume (take a positive sign for outflow from the

system, T') which is characterized by pumpage, recharge, leakages from and to surface-water

bodies, flux from adjacent formations, evapotranspiration, etc. Numerous analytical and

numerical solutions to the above governing equation are known for various system scales as well

as different boundary conditions, and selecting a solution method is largely dependant on the

purpose of the analysis and data availability.

Bennett [1992] simulated the regional groundwater flow in the model area by applying

the MODFLOW model developed by McDonald and Harbaugh [19881. This kind of physical

model, even though it does not have any forecasting capability, provides invaluable information

on the groundwater system and usually is used to estimate the impact of alternative groundwater

uses. The sensitivity analysis in his report showed that head in the Surficial aquifer is the most

sensitive to the changes of rainfall, and that heads at the Lower Tamiami, Sandstone, and

Mid-Hawthorn aquifers are mostly affected by the vertical hydraulic conductance of the semi-

confining zones.

Instead of using a mathematical model describing the above full dynamics of

groundwater flow, this study used a type of stochastic time series model. The stochastic time

series model can not incorporate all the above physical components due to its dimensional

limitations. Furthermore, the forecasting error increases proportional to the increasing forecasting
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lead time in general. These two facts justify the use of time series model with only limited

independent variables. The important thing in the time series model is not a detailed physical

groundwater flow mechanism, but a statistical correlation structure of the system, both auto-

correlation and cross-correlation.

Pumpage is a sensitive component to the groundwater system. Historical records showed

that irrigation pumping for agricultural and landscape is approximately 78 percent of the

groundwater uses in this area based on the 1988 estimates [Bennett, 1992]. However, only a

limited number of actual pumping records are available in the study area. Thus, the pumpage

term was unable to include in the time series model. To investigate the cause and effect of the

simplified groundwater system, the correlation analyses were focused on the heads between the

layers, as well as rainfall.

4. Space-Time Correlation Functions

The two most commonly used spatial statistics are the correlation coefficient and semi-

variogram. As long as the maximum likelihood method is used in parameter calibration, those

spatial statistics are not directly used in the time series model. However, the spatial statistics are

very critical to identify the structure of the STARX model. Also, investigating the spatial

statistics of historical heads will help to understand the whole groundwater flow system correctly

in the model area.

In order to effectively illustrate a multi-dimensional groundwater system in the model

area, the following definitions of space-time correlation are made: First, the correlation

coefficient, pxy of two random variables X and Y is defined by

cov[X,
Pxy (2)

axo r

with cov[X,Y]=E[(X-Px)(Y-pv)], and px, ox, Pa, and o are the means and standard deviations
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of X and Y, respectively. px is a unitless measure of the linear relationship of X and Y, and

satisfies -lSp,x <1 condition. Using the standardized series of X and Y (which is dividing its

standard deviation after subtracting its mean from the original series), the correlation coefficient

is the same as the covariance, that is, px =cov[X,Y] =E[XYI.

Introducing the time-lag 1, let us define the space-time correlation coefficient yv(1) of two

standardized random variables x and xj as

T'
SErx (xj =,_1 )  (3)

T. t-1

where T' is the number of effective pairs of measurements. For a complete-data, T" is (T-1) with

T as the period of record. If missing data are presented in either x., or xt.,, or in both, Yu(l) is

computed by only the non-missing pairs. The basic properties of the space-time correlation

coefficient are: y()=yj,(-O), but y,(O)*,(1), and y,(1)*y(-1); If i=j, Y,(1) is the auto-correlation

coefficient, with y(1)=yd(-1); and if 1=0, yu(0 ) is the cross correlation coefficient.

Expanding (3) to a state vector xt'=[x,,...,xtj, where nx is the number of sites, results

in the space-time correlation matrix xx(l) of

E[xr,lxt-] ... E[xtx,-wl Yu .- -Y (4)

r ) =r l) J=E[x, x'- i I 2 -

Exuo,,] ... E[xtnxt_] lYnx l(/ ... Yxsr(b

The Ex(1) is a (nxxnx) bounded (+1) matrix. If the covariate z'=[z,1,...,z]J is presented where

nz is the number of covariate sites, Pz(1) (nzxnz) as well as the corresponding inter-space

correlation matrices ,xz() (nxxnz) and Fx(O) (nzxnx) can also be defined similar to (3), where

the equality rxz(1)=rzx(-1)' holds. The space-time correlation matrix is not only useful in

displaying the correlations systematically, but also can be applied for the parameter estimates

by the method of moment. For instance of the latter case, let us assume that we have a

multivariate AR(1) model x= x ,.+w,, where is the parameter matrix, and w, is the model noise.
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Then, the Yule-Walker equation is written by r'(-1)TI'(0), from which the moment estimate

) can be obtained by solving the system of equation.

Finally, defining yk(l,d), k=l,...,N(l,d), as the k-th y(1) whose Euclidean distance between

site i in m-space domain and j in n-space domain is d±5 with 6 is a bound of d, a four-

dimensional space-time correlation function (STCF) e(m,n,l,d) can be given by

4(m,n,14) E ykA (5)
N(1d) k-1

Computationally, the function 4(m,n,l,d) with respect to d can be obtained easily by the curve

fitting of k(l,d)'s versus d's. Like the correlation coefficient, the STCF values range from +1

to -1.

Another commonly used spatial function is the semi-variogram. Under the assumptions

of the second-order spatial stationary and E[x-x,4]=0, the variogram for the time-lag l can be

defined by

n(m,nl,) = varlx, - xr, l
N(l4 (6)

- 2N(1,d) (x, - x - )

where N(l,d) is the number of paired-measurements which has a time lag I and distance d apart,

and var[.] is the variance operator. The estimated Tj(m,n,l,d)'s with respect to d's from the

sample are commonly fitted to a theoretical functional model. The widely used functional models

are linear, polynomial, exponential, Gaussian, and spherical models. Subsequent sections will

show both the fitted SFCF and variogram functions to the multi-aquifer groundwater heads as

well as rainfall spaces.
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(a)
4(R,R,4d)

or
(R,R,4d)

(b) (c)
(1,R,1,d) 4(1,1,,d) Figure 5(a)

or or F(1,2,,d)
n(1,R,/,d) t(1,1,1,d)

(d) (e) (f
(2,R,,d) (2,1,1d) a(2,2,,d) Figure 5(b)

or or or (2,3,1,d)
q(2,R,,d) ql(2,1,,d) p(2,2,,d)

(g) (h) (i)
4(3,R,i,d) 4(3,2,4d) t(3,3,Ad) Figure

or or or 5(c)
'q(3,R,l,d) T(3,2,1,d) r(3,3,4d) 4(3,4,1,d)

(j) (k) (1)
4(4,R,l,d) t(4,3,,d) 4(4,4,,d)

or or or
S(4,R,,d) (4,3,,d) T (4,4,1,d)

An inter-space matrix with the block notations of both space-time correlation

functions and semi-variograms.
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Results and Discussions.

Even though rainfall is not used to forecast the future groundwater head here, it is worthwhile

to investigate the correlations between groundwater heads and rainfall since rainfall is a main

driving factor in the groundwater flow system. In order to compute the STCF 4(m,n,1,d)'s, the

rainfall gaging stations as well as groundwater monitoring stations from Layer 1 , 2, 3, and

4 in the model area were stacked sequentially to form a vector X (133x 1) so that E[XX']

produces a covariance matrix having 25 block matrices. The notations of the block matrices are

shown in Figure 3. From the covariance matrix associated with the Euclidean distance d, the

fitted function 4(m,n,l,d) versus d for each time lag 1(=0,...,5) was computed by the cubic

regression analysis. For example, when m=l, n=l, and 1=0, a fitted STCF curve is given by

t(,1,0) [0.789-0.0441d+0019-0.oooo26d3  if do.o (7)

1.0 if d=0.0

The fitted curves of (m,n,1,d) versus d for the lower triangular blocks in Figure 3 are

shown in Figure 4. The block elements t(3,1,1,d), t(4,1,1,d), and t(4,2,1,d) were excluded in

Figure 4 because those are not adjacent layers. Also, Figure 5 shows the fitted 4(m,n,l,d)'s which

are from the upper triangular blocks in Figure 3 for comparison with Figure 4. It should be

noted that the STCFs for Layer 4 was somewhat inconsistent due to the small number of gaging

stations. Figure 6 shows the fitted semi-variograms with respect to distance for different time

lags.

From both STCF and variogram curves, the following conclusions on the spatial correlation

structures were drawn. The STCFs of the monthly rainfall in the region were very high (>0.65).

However the temporal correlations on them were insignificant. In other words, the spatial

variation of the monthly rainfall within the scale of a county was not dominant. Furthermore,

the correlation coefficient between rainfall and groundwater head were generally lower than that

of neighboring layer's heads. The STCFs of groundwater head decreased proportional to both

temporal lag 1 and the Euclidean distance d, which were distinct for low temporal orders, but
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when 1>2 those function were not significantly varied. In terms of spatially averaged STCF's,

the equality of t(m,n,1,d) = t(n,m,ld) holds, even though each element was somewhat different.

That is, a matrix in Figure 3 was symmetric in the sense of spatial scale. Unlike the STCFs, the

semi-variogram functions did not show any differences between the time lags, implying that this

function can hardly be used for time series analysis. In most cases, the range of the semi-

variogram was about 12 miles, with sill values ranging from 0.5 to 1.0.

5. Treatments of the Raw Data

The underlying assumptions of the STARX model is that both the variate x, and covariate

z, are independent and identically distributed (i.i.d.) normal random variables, and that time

series should be stationary in time. To meet the stationary condition, the time series should not

include any temporal trend, inconsistency, or seasonality. There exists a variety of statistical

tests to detect the above conditions. When the above assumptions are not meet, the stochastic

time series model should be developed either with those abnormality conditions, or after

appropriate transformations of raw data. Examples of the former cases include the ARIMA or

the seasonal ARMA models, in which the modeling procedure is more complicated and a

dimensional increase is inevitable. Thus, the later transformation method is preferred for the

STARX model since the dimension of the STARX model is critical for the parameter calibration.

5.1. Seasonality

Seasonality or periodicity in time series is a regular change in the data values that occurs

at the same time in a given period, so it can be characterized by a strong serial correlation at the

seasonal lag. Typically, the monthly groundwater head in the model area had a strong

seasonality as shown in the Figure 7. The monthly means showed higher head during the wet

season due to intensive summer rainfall.
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However, the monthly standard deviations during the wet season were smaller than those of the

dry season except for the Surficial aquifer. The reason is that the regional summer rainfall

induces near maximum groundwater heads in each aquifer.

Several methods are available to handle the seasonality. One approach is to take

differences, using a 12 month time lag for monthly time steps, and to model by the ARIMA

procedure [Box and Jenkins, 1976, chapter 4; Salas et al., 1985, chapter 6]. A deficiency of this

approach is that it loses a year of data by the seasonal differencing, which is critical when the

period of record is short. Another approach is to use the seasonal parameters in the time series

model as introduced by Salas et al. [1985, section 5.3], but this approach increases the number

of parameters dramatically and is not applicable to the large scale STARX model. A third

approach to seasonality is to include indicator variables for the season as explanatory variables.

This approach is very simple in nature and does not increase the number of model parameters,

thus this study adopts the multiplicative explanatory variable approach by the standardization

procedure introduced by Salas et al. [1980, page 241] as follows.

Consider a time series u, (untransformed) at a site i is measured with an equal time step

t with t=1,...,T. This series can be rewritten in the form of uW.,,i using the seasonal notation

t(1,..,co) and year u1(=1,...,N), where w is the number of season in a year, N is the period of

record in years, and the number of measurement T is InN. Then, the moment estimate of the

seasonal mean t. is

N
t (8)

and the unbiased seasonal standard deviation ao1 is

N

with =1,...12 when a monthly time step is used. The transformed time series x,,, after removing

the seasonality, or so-called the standardized series, at site i is given by
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u,=f- P~ (10)

otj

After standardization, the series x,. is considered xu, t=l,...,T, to fit for the STARX model. This

standardized series x, has a zero mean and variance of one if the series meet the normality

condition. For standardized series, the correlation coefficient is the same as covariance.

5.2. Normality

Several statistical tests are available for testing the hypothesis that a given series is

normally distributed. The skewness test of normality given by Salas et al. [1985, page 92] is

based on the fact that the skewness coefficient for a normal variable is zero. An estimation of

the skewness of a time series u, t= 1,...,T is

T
1 No _)

T (UIA4 (11)

where p, is the sample mean for site i. The (1-a) probability limits may be defined by

tu.a(6/T)1 , where u,.. is the 1-c/2 quantile of the standard normal distribution. If the

estimated y is within the probability limit, the hypothesis of normality is accepted, or otherwise,

rejected. In case of non-normal series, several transformation techniques are available.

Since some groundwater head time series do not satisfy the hypothesis of normality, the

Box-Cox transformation [Bras and Rodriguez-lturbe, 1985, page 73] was performed, which is

given by
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Xr=

1#0 (12)

where A is the transformation parameter at site i to be estimated. Using a simple trial and error

method, optimal 1's, i=1,...115, were calibrated, whose values range from -0.6 to 2.2, with an

average of 0.43. After the Box-Cox transformation, the y,'s (mean±l standard deviation) are

improved from -0.065±0.35 to -0.042-0.26, while the number of sites which were accepted by

the normality assumption with ca=0.1 was increased from 92 sites to 106 sites (92.2% accepted).

In addition, the other transformations, including logarithm, exponential, and power

transformations, were conducted, but the results demonstrated that the Box-Cox transformation

was superior to the other methods.

5.3 Temporal Trend

Stochastic time series analysis is generally based on the assumption of stationarity in time.

The first order stationarity means that the expected values do not vary with time, while the

second order stationarity is defined as stationary in both mean and covariance [Salas et al. 1985,

page 3]. It should be noted that stationarity in data is different from the stationarity condition

of the time series model itself. As an example of the latter case, to ensure the second order

stationarity condition of the autoregressive model xrc (B)w,, a characteristic polynomial i(B)

should be on or within the unit circle.

One of the common non-stationarity in the groundwater head data is a temporal trend

which is a long, consistent change in the time series values from beginning to end. Temporal

trends in data can be detected by visual inspection of time series plots, differenced data,

autocorrelations by parts, or by the test of the unit-root hypothesis developed by Dickey and

Fuller [1979]. Temporal trend can be modeled by either linear, quadratic, or cubic patterns.

A simple linear trend model introduced by Shumway [1988 page 124] is
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ut = Poj + P14 t + et(

where t=1,...,T, eu is the model noise, |5o and ,, are regression parameters, which can be

estimated by

T

0L - (14)

E (t-t *)
t-1

P0, = u - P1 , t* (15)

where t* and u1i are the sample means over the times axis and observed series, respectively.

Then, the detrended series can be obtained by

xty = ut - Po - P1J t (16)
- (ut4 - u;)-Pl 4 (t-t*)

After standardization and the Box-Cox transformation, the temporal trends were removed

before the calibration of STARX model. For i=1,...,1 15, the estimated Bo.,'s have -0.04649 and

the standard deviation of 0.1437, and a maximum of 0.318, while the estimated 1,'s have a

mean of 0.0036, a standard deviation of 0.00899, and a maximum of 0.028.

Since time series were transformed to remove seasonality, non-normality, and temporal

trend, the forecasted time series should be back transformed for the comparison and control of

the groundwater drought problem. Those back transformations can be done sequentially by

inverting the transformation equations in terms of the original series u.
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6. Designing the Forecasting Model Structure

To illustrate groundwater interactions in the multi-layered aquifer system in the model

area, let us define h1, h2, h3, and h4 as the representative groundwater heads at Layers 1, 2, 3,

and 4, respectively. The historical data showed the relationships of; h,>h 2; h2>h3; and (h1 ,

h2, or h3)<<h4. Similar to the land surface elevation, the groundwater heads in Layer 1, 2, and

3 ranged from about 30 feet NGVD in the northeast region to near zero feet NGVD in the

southwest coastal region, and the groundwater flow direction was generally from the northeast

to the southwest. Heads in Layer 4 ranged approximately from 40 feet NGVD at the eastern

edge of model area to 25 feet NGVD at the west coastal region.

A volumetric water budget analysis by Bennett [1992] showed that Layer 1 receives 95%

of its inflow from local rainfall and releases about 16% of its outflow to Layer 2. Layer 2

receives about 82% of its inflow from the Layer 1 and releases only 9% of its outflow to Layer

3. Layer 3 receives 54% of its inflow from Layer 2 and 43% of it from Layer 4 while releasing

40% of its outflow to Layer 2. Layer 4 receives most of its inflow from through upward leakage

from deeper aquifers and releases most of its outflow to Layer 3. These results indicate that

Layer 1 and 4 are not significantly affected by the adjacent layers, while Layer 2 is influenced

by Layer I, and Layer 3 is affected by both Layers 2 and 4. The correlation analysis in Section

4 also support these conclusions.

Experimentation with the EMSSE algorithm in Part I showed that a system having more

than 50 state variables is extremely inefficient in calibration. Thus, instead of building a STARX

model comprising all aquifer layers at once, the following three separate STARX models were

developed:

Model I : for Layer 1, with no-covariate,

Model II : for Layer 2, with Layer 1 as covariate, and

Model III : for Layers 3 and 4, with Layer 2 as covariate.
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Although this approach contradicts simultaneous simulation and forecasting of the multi-aquifer

system, it accounts for the main cause and effect of groundwater flows with minimizing the

structural error of the model.

6.1. Determination of Neighbor Sites by the Thiessen Polygons.

A matrix form of the STARX model describing the current groundwater head vector x

in terms of the previous heads x,~. .Nq and the covariate of the above layer heads z, z,. ...,

z. may be expressed in the form

xt =- +. Ee Dn _j + w, (17)
=1 j=0

where Nq and Nk are the temporal order of regressions for x1 and z, respectivelyA (nxx) and Q,
(nxxnz) are the parameter matrices, D, (nxxnx) and E; (nxxnz) are the spatial index matrix

(SIM) for state vector and covariate, respectively, w, is the (nxxl) white noise vector having

covariance Q, and notation (o) is the Hadamard product that is the element-wise product of the

two same size matrices. Both Di and E, in the above equation represent the spatial correlation

structure of the system, in the forms of the 0-1 binary elements. For instance, {d..), which is

an element in matrix D, is 1 if site n is the i-th temporal order neighbor of the site of interest

m (abuttal), and 0 otherwise (non-abuttal).

The factors in determining neighbor sites are the Euclidean distance of two sites, direction

from the site of interest, spatial statistics such as variogram or spatial correlation, etc. For a

regularly spaced system, neighbors having the same spatial order can be determined objectively

by the equi-distance. But for an irregularly spaced system, choosing either spatial order or

neighbors is difficult. Among several possible options, the Thiessen polygon method was used

here because this method incorporates both distance and directional components simultaneously.

Thiessen polygon is a convex polygon whose boundary defines the area that is closest to the

point of interest relative to all other points [Environmental System Research Institute, 1992]. It
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is geometrically defined by the perpendicular bisectors of the lines which connect all neighbor

sites as shown in Figure 8(a), which is directly used to construct D, for Model I. When the

covariate z, is used in a STARX model, the covariate Thiessen polygons should be constructed

site by site. That is, if the nx state vector and nz covariate vector are used, a total nx maps

should be prepared each of which is constructed on the covariate space with adding a station

from the state vector. Figure 8(b) shows some examples of the Thiessen polygons of the

covariate space in the Model H. For instance, by introducing site 52 (also 78, or 89) into the

covariate space of layer 1, a new polygon (hatched) for site 52 was created as in Figure 8(b).

From these polygons, all neighbors whose boundaries are joined by lines are first order

neighbors. If a pair of neighbors is joined by a point (for example, site ID 7 and 12, or 26 and

40, in Figure 9), they are considered second order neighbors, as in the case of a regularly spaced

system. Even though first order neighbors can easily be found, neighbors having a spatial orders

greater than one are very difficult to determine. An advantage of using the Thiessen polygon

method in determining the neighbors is that this method is objective since the Thiessen polygon

is uniquely determined, which cannot be achieved for the nearest distance criteria. For instance,

the nearest distance criteria cannot link the dense network system located in the western area with

the sparse network in the eastern portion of the model area.
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Thiessen polygons with their gaging station ID numbers: (a) For D, matrix in

Model I (Layer 1), (b) For E matrix in Model II, where the hatched areas are

the covariate Thiessen polygons created by variate sites (site ID 52, 78, and 89)

of Layer 2, while the dashed lines show the original polygons of Layer 1.
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6.2. Statistics on the First Order Neighbors

The Thiessen polygons can be classified into two classes: The exterior polygon which

faces directly to the model boundary, and the interior polygon which is surrounded completely

by other polygons. From the Thiessen polygon map of each aquifer layer, the first order

neighbors of each site were counted which are listed in Table 2. This table revealed that the

most probable number of neighbors of the first spatial order for the interior polygons is either

5 or 6 with a range from 4 to 8, while that for the exterior polygons is 3 or 4 with a range from

1 to 6.

To investigate the spatial neighborhood statistics, let us define that nt (The superscript

M is neither power nor combinatorial notations) is the number of polygons, each of which has

i neighbors defined by the M spatial order. The sum of all possible n1M, i=1,...,oo, is equal to the

number of gaging stations nx. Let us also assume that the selected neighbors of each station

does not exceed the limiting number of stations n. If a polygon has more than n neighbors, only

n neighbors are selected for the given station based on either direction or distance criteria. This

scheme is useful to restrict the number of neighbors when they are a large number which is not

desirable for the STARX model. With this neighbor definition, the number of total neighbors

within a space is (nxxn) and the total number of neighbors excluded by the limiting maximum

neighbor n is ," nk(n-k). Then, NM, which is the total number of neighbors selected by the

limiting neighbor numbers n, is given by

M-1

Na = (nxxn) - r kM (n-k) (18)
k-i

and pe,, which is the probability of being selected by the restriction scheme versus that of the

non-restriction scheme, is given by

SN
pn- N (19)

NM
n.~o
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The pM is the probability of neighbors included when the n uniform neighbor scheme with M

spatial order is defined. The statistics of pM are also listed in Table 2. This table shows that

if the gaging network is large enough (meaning sufficient gaging stations) the most probable

number of the n was 5. P," statistics showed that the first spatial order with a 5-uniform-

neighbors scheme covered approximately over 90% of the all first order stations. Likewise, that

of 6-neighbor scheme covered over 95% of the first order stations.

Table 2. Statistics of the first spatial order neighbors.
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n 1 2 3 4 5 6 7 8 sum

Layer 1
n M for interior polygons,A 0 0 0 4 10 6 5 1 25
n0M for exterior polygons,B 0 1 8 7 5 1 0 23

nM, (A+B) 0 1 8 11 15 7 5 1 48
N M  48 96 143 182 210 223 229 230 23

pnM(%) 21 42 66 79 91 97 100 100 0

Layer 2
nM for interior polygons,A 0 0 0 4 7 6 5 1 23
noM for exterior polygons,B 0 4 5 7 3 1 0 20

n.M, (A+B) 0 4 5 11 10 7 5 1 43
N M  43 86 125 159 182 195 201 202 20

pM(%) 21 43 62 79 90 97 100 100 2

Layer 3
nM for interior polygons,A 0 0 0 0 3 3
n M for exterior polygons,B 1 2 4 4 0 11

n. M, (A+B) 1 2 4 4 - 3 14
NM 14 27 38 45 48 51 51 51 51

p M(%) 28 53 75 88 94 100 100 100

Layer 4
n.M for exterior polygons 2 2 3 2 1 - - - 10

NM 10 18 24 27 28 28 28 28 28
p M(%) 36 64 86 96 100 100 100 100



7. Calibration of the STARX Model

As identification processes of the stochastic time series model, the previous sections

discussed characteristics of the groundwater system, groundwater head data, pre-treatment of the

data, and spatial structure of the system. Box and Jenkins [1976, page 173] also included

determination of model orders and preliminary estimation of model parameters as the model

identification process. In their framework, identification is performed by a simple estimation

method such as the method of moment, then the model parameters are calibrated by the

maximum likelihood (ML) method. Since the ML estimates by the EMSSE algorithm was

adopted in here, both determination of model order and calibration of model parameters were

performed simultaneously. That is, the parameters of several alternative models having different

model orders were calibrated with some information criterion statistics, which are used to select

the best model order.

For information statistics to determine the model order for the multivariate autoregressive

model, either the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC)

[Shumway, 1988, page 167] can be used. Using the residual sum of products defined by

RSP=EiT[w'w,], where wt is the model noise estimated by the ML method, the form of AIC

is given by

AIC(Nq)=n RSP I n 2 Nq (21)
T T

where nx is the dimension of the state vector, and T is the period of record of data. Especially,

lnlRSPI is the so called reduced likelihood [Blockwell and Davis, 1987, page 280], which has

similarity to the -2nL estimated by the EMSSE algorithm. Note that if the conditional fitting

procedure leading to the RSP is applied, T in the above two equations may be replaced by the

effective observation (T-Nq). For a multivariate autoregressive model, the number of effective

parameters is (nx2Nq), or for the STARX model with covariate term, the number of effective

parameters will be (nx2Nq+nxxnzx(Nk+l)). The BIC, or the so called Schwarz criterion, chooses
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the model order Nq that minimizes

BIC(Nq)=n + nx2N InT (20)BIC(Nq)=n T T
T T

During the calibration of several alternative models, the ML functions as well as AIC and

BIC values were also computed as summarized in Table 3. The period of record of data used

for calibration is from January 1987 to December 1992 (72 months). Based on the AIC and the

first term of the ML function, STARX(2,no), STARX(1,0), and STARX(3,0) were selected

(marked) for Model-I, II, and II, respectively. It should be noted that the determination of

model order by the estimated BIC is somewhat different from that of the AIC, indicating that

the further study should be focused on those criterion statistics for the family of the multivariate

autoregressive models.
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Test statistics of the alternative models with their estimated ML values.

The 1st The 2nd The 2nd The 2nd

Nq Nk term of term of -21nL, term of AIC term of BIC

-2nL,A -21nL,B A+B AIC BIC

Model I nx=48

1 - -13678 2977 -10701 58 -91.0 126 -22.4

:1 i -15956 613 -15343 115 -97.9 252 39.3

3 - -15638 236 -15402 173 -41.1 379 164.7

4 - -16288 122 -16166 230 5.9 505 280.3

Model 1I nx=43, nz=48

1 - -11667 3111 -8555 46 -72.6 101 -17.5

2 - -16558 853 -15705 93 -125.6 203 -15.1

3 - -17628 344 -17284 139 -101.4 304 63.8

t>,' -17814 1420 -16394 81 -147.1 177 -51.0

2 0 -15076 334 -14742 127 -77.9 278 73.2

3 0 -15792 140 -15652 173 -44.3 379 161.8

1 1 -16418 193 -16225 115 -110.3 252 26.7

2 1 -12188 62 -12125 161 -7.2 353 184.9

3 1 -14546 34 -14512 207 5.9 455 253.0

Model III nx=24, nz=43

1 - -3673 1871 -1802 14 -10.6 32 6.5

2 - -5644 1802 -3843 29 -24.6 63 9.7

3 - -8765 1274 -7491 43 -60.8 95 -9.4

1 0 -5350 1833 -3517 25 -23.6 55 6.4

2 0 -8406 1555 -6852 40 -55.6 87 -8.4

>3 O -9716 600 -9116 54 -72.6 118 -8.3
1 1 -7530 1753 -5777 36 -44.2 79 -1.4

2 1 -9336 662 -8674 50 -70.1 110 -10.0

3 1 -8941 307 -8634 65 -55.1 142 22.1

2 2 -8452 218 -8234 61 -53.2 134 19.7

3 2 -8779 99 8680 76 -45.0 166 45.1

3 3 -6753 15 -6738 86 -7.2 189 95.7
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8. Verification

Two of the most common applications of the stochastic time series model are

stochastic data generation and forecasting. If certain sample statistics are preserved in either

generated or forecasted data, the null hypothesis of building a particular type of stochastic

time series model is accepted, or otherwise rejected. Thus, verification of the calibrated

STARX model is focused on those two aspects.

8.1. Data generation

In water supply plans or hydraulic structure designs, the frequency of the design

hydrologic event is occasionally defined by a yearly or larger time step. However, within that

time step, there exist infinitely many realizations when data are discretized by monthly or

weekly time steps. In reality, the historical data cannot incorporate all possible realizations

due to the limited period of records. Instead, the stochastic data generation method provides

an ideal tool to replicate such infinite realizations, each of which possess similar sample

statistics. The main mechanism for generating the different realization in the stochastic time

series model is the random noise term.

The calibration of the STARX model using the EMSSE algorithm assumes that there

exists measurement noise vt; then the measurement equation in the state-space form is given

by y,=1Mx+v,. In case of data generation, M, is nothing but an identity matrix. Substituting

all x,'s in equation (17) by (y,-v)'s and rearranging with respect to yt results in the following

recursion equation:

Nq Nk Nq

Y, D " E D1 t + E EopZj + Wt+ v - E DoA - (22)
-1 j-o ~-1

where w, and vt are the multi-Gaussian random vectors having zero means and variance Q
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and R, respectively. Since x(0) is set to N(p,), the initial condition of generated series Yo can

be N(R,+R). With covariate series z (which should be generated beforehand) as well as

generated noise series w, and v, and assumption of initial state yo, the state vector y, are

generated by (22), recursively. In order to eliminate the impact of the initial data assumption,

the data generated by the first 100 time steps were discarded.

Using the calibrated Model I, five different data sets having different numbers of time

steps were generated. Figure 9 shows the spatial averages of the following four moments with

respect to the generated time steps: mean, standard deviation (1-SD), skewness, and Kurtosis

(coefficient of excess). Theoretical values of the above four statistics should be zero. Results

showed asymptotic convergence to zero implying that the first four moments of the time series

were preserved by the fitted STARX model. Also, an investigation of preserving the space-time

correlation in the generated time series was performed. Figure 10 is the fitted STCF for Layer

1 (Surficial aquifer) computed from the generation data having 1500 time steps. This result can

be compared with the original data in Figure 4(c). The comparison revealed that the STCF's

with time lags up to 3 were well preserved for distances less that 12 miles, but the STCFs with

distances greater than 12 miles were usually lower than that of the actual data. In reality, only

the first spatial order neighbor is commonly used in the fitted STARX model. As a summary,

the STARX model preserves the first four moments as well as space-time correlations for the

designated space-time model orders.

8.2 Forecasting with Its Error Covariance

By definition, an unconditional prediction (ex ante prediction) is called forecasting

[Harvey, 1991]. Even though the terms forecasting and prediction have been used inter-

changeable throughout the previous literatures, this study uses the term forecasting as the

prediction of the future by the stochastic time series model without having state measurement

after the calibration period. The adoptive mode in modeling uses previous model inputs as well

as the previous measured outputs in calculating current model output. The current model output

is expressed as a function of previous measured outputs as well as model input, or using the
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discrepancy between the last measured and model output as feedback to calculate the future state.

Since the STARX model was calibrated in a state-space format, the Kalman forward

recursion can easily be applied to forecasting the future state using the predicted state equation

and its error covariance. That is, if x(t) is the stacked state vector x(t)'=[xt',...,x.N],, then the

forecasted state is given by

x(t) = 4x(t-1) + jz(t) (23)

which is the minimum variance forecasting. The forecasted error variance is also given by

pt = Pe + Q * (24)

where Q = and Q=E[w, w .

In order to verify the forecasting ability of the fitted three STARX models, forecasting

was performed at the end of December 1992 using the forecasting lead time 1=1,...,12. Based

on the forecast error covariance p , or po in the EMSSE algorithm, Table 4 displays the spatial

mean and standard deviation of the forecasted error, which is the square root of the diagonal

terms of error covariance. The first row, 1<1, is for the calibration case, which is constant

during the period of calibration since complete data were used. An interesting thing to note is

that the forecasting errors increased during the first three or four steps then remain constant. The

data in Table 4 is standardized data having a mean of zero and variance of one. Figure 11

shows the contour maps of both historical and forecasted groundwater heads for each layer for

the selected months (1=1,2, and 4 month). Due to the irregular distribution of gaging stations,

layers below the Surficial Aquifer display only a portion of the heads. This contour maps shows

a good match between the forecasted with historical heads for 1=1, but the forecasting errors

increase with respect to the increasing lead times.
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Spatial means and standard deviations of the forecasting error, p;.

Lead Model I Model II Model III

Time I
Mean S.D. Mean S.D. Mean S.D.

<1 0.260 0.044 0.251 0.062 0.242 0.066

1 0.421 0.067 0.640 0.232 0.641 0.339

2 0.484 0.071 0.651 0.232 0.684 0.319

3 0.526 0.075 0.652 0.232 0.720 0.292

4 0.544 0.078 0.652 0.232 0.734 0.281

5 0.559 0.081 0.652 0.232 0.738 0.279

6 0.570 0.084 0.652 0.232 0.742 0.276

7 0.579 0.087 0.652 0.232 0.743 0.275

8 0.586 0.092 0.652 0.232 0.744 0.275

9 0.592 0.096 0.652 0.232 0.744 0.274

10 0.596 0.099 0.652 0.232 0.744 0.274

11 0.601 0.103 0.652 0.232 0.744 0.274

12 0.604 0.106 0.652 0.232 0.744 0.274

Ref.: S.D. = 1 standard deviation
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9. Summary and Conclusion

To forecast groundwater heads in Collier County, Florida, three STARX models were

built. As an identification process, several properties of groundwater flow in the region were

discussed, which includes the groundwater flow characters in the model area, selection of spatial

neighbors, statistics of the first spatial neighbors, and the spatial statistics of space-time

correlation function (STCF) and time lagged semi-variogram function. The results of the STCF

analysis indicates that the spatial correlation of monthly heads were stronger than the temporal

correlation, while the one-to-one correlation between rainfall and head were relatively low.

In order to satisfy the underlying stationary assumption of raw data which is required in

the STARX model, the following three transformations of raw data were performed: standardi-

zation to remove seasonality, Box-Cox transformation for normality, and use of a linear model

to remove temporal trends. Using the maximum likelihood fitting procedure based on the

EMSSE algorithm, three STARX models were calibrated whose temporal orders selected by the

Akaiki information criterion are: STARX(2,no) for Layer 1, STARX(1,0) for Layer 2, and

STARX(3,0) for Layer 3 and 4.

The verification of the fitted STARX model focused on the data generation and

forecasting ability. Results shows that the STARX model preserved the first four moments as

well as space-time correlations for the designated space-time model orders. The 12-month ahead

forecasting from January 1993 were performed and compared with historically measured data;

resulting in a good match.
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Heading Index

ID = well identification number
x-coor = x-c iane(ft)
y-coor = y-coordinate(ft)
name = USGS well name
elev. = surface elevation (ft. NGVD)
wd = well depth (ft)
cd = casing depth (ft)
aq = aquifer type

SU - Surficial aquifer
LT = Lower Tamiami aquifer
SA = sandstone aquifer
MH = Mid-Hawthorn aquifer

type = instrument type
gstape = USGS taping
usgs = USGS recoder

b-yr = begining year of record
e-yr = ending year of record
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ID x-coor y-coor name elev wd cd aq type b-yr e-yr

Layer-1

1 381523 587958 C-995 8.00 37.0 28.0 SU gstape 1985 1993

2 399789 592454 C-495 6.58 70.0 8.0 SU usgs 1971 1993

3 365081 613044 C-496 13.59 57.0 8.0 SU usgs 1974 1993

4 279826 621373 C-969 5.09 72.0 25.0 SU usgs 1985 1993

5 292113 615960 C-1063 6.08 55.0 30.0 SU gstape 1987 1993

6 322074 625619 C-1067 5.40 65.0 30.0 SU gstape 1987 1993

7 285149 627807 C-968 6.50 23.0 8.0 SU usgs 1985 1993

8 264244 640639 C-967 5.04 140.0 19.0 SU usgs 1985 1993

9 321791 645307 C-690 8.64 48.0 43.0 SU usgs 1981 1993

10 386697 646196 C-296 14.10 45.0 8.0 SU usgs 1974 1993

11 321210 658839 C-972 11.18 40.0 25.0 SU gstape 1985 1993

12 274748 661583 C-996 10.53 23.0 13.5 SU gstape 1985 1993

13 286871 662227 C-976 10.95 40.0 10.0 SU gstape 1985 1993

14 248055 662843 C-1052 7.26 25.0 10.0 SU gstape 1987 1993

15 238400 663507 C-1062 10.77 24.0 10.0 SU gstape 1987 1993

16 238643 673400 C-1000 11.50 24.0 14.0 SU gstape 1985 1993



Id x-coor y-coor name elev wd cd aq type b-yr e-yr

17 237375 674720 C-1001 12.65 24.0 14.0 SU gstape 1985 1993

18 243028 675494 C-392 10.00 30.0 28.0 SU usgs 1974 1993

19 247676 675769 C-1054 8.83 25.0 10.0 SU gstape 1987 1993

20 386237 678505 C-986 16.39 40.0 28.0 SU gstape 1985 1993

21 258359 680149 C-1055 9.87 25.0 10.0 SU gstape 1987 1993

22 237514 682494 C-1026 16.67 38.0 28.0 SU gstape 1986 1993

23 237629 686330 C-1061 14.88 25.0 10.0 SU gstape 1987 1993

24 288008 689280 C-980 13.37 30.0 15.0 SU gstape 1985 1993

25 307679 689590 C-953 12.35 40.0 12.0 SU usgs 1985 1993

26 331186 692519 C-598 13.36 36.5 32.5 SU usgs 1981 1993

27 240959 694791 C-321 11.21 20.3 20.3 SU gstape 1972 1993

28 237423 697236 C-1060 11.71 25.0 10.0 SU gstape 1987 1993

29 233332 698170 C-999 8.74 23.0 13.0 SU gstape 1985 1993

30 247644 701011 C-1057 10.69 105 8.0 SU gstape 1987 1993

31 237009 703802 C-1059 9.42 25.0 10.0 SU usgs 1987 1993

32 253586 705318 C-384 12.70 58.0 9.7 SU usgs 1974 1993

33 244928 733842 L-5722 11.36 21.0 11.0 SU usgs 1986 1993

34 352285 763216 C-1078 31.91 38.0 13.0 SU gstape 1987 1993

35 382596 777660 C-1075 30.64 28.0 8.0 SU gstape 1987 1993

36 236208 721476 L-5726 11.00 32.0 22.0 SU usgs 1986 1993

37 232234 726247 L-5724 11.96 35.0 25.0 SU usgs 1986 1993

38 276094 726800 L-1997 14.90 20.0 10.0 SU usgs 1975 1993

39 369492 712981 C-503 17.47 20.4 8.0 SU usgs 1974 1993

40 303976 735445 C-978 19.06 40.0 15.0 SU gstape 1985 1993

41 344105 739014 C-981 15.34 60.0 40.0 SU gstape 1985 1993

42 410999 759316 C-131 26.60 54.0 22.0 SU usgs 1956 1993

43 342095 712266 C-984 20.30 40.0 30.0 SU gstape 1985 1993

44 345368 585447 C-1065 3.47 50.0 27.0 SU gstape 1987 1993

45 233014 763197 L-2308 15.49 13.5 12.0 SU gstape 1976 1993
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ID x-coor y-coar name eev wd cd aq type b-yr e-yr

46 284175 759067 L-5665 20.00 37.0 32.0 SU gstape 1983 1993

47 256870 769616 L-739 18.65 20.0 18.0 SU gstape 1973 1993

48 314407 769929 L-1138 25.19 20.0 15.0 SU gstape 1976 1993

Layer-2

49 285316 624777 C-975 6.70 150.0 60.0 LT gstape 1985 1993

50 322074 625619 C-1068 5.40 200.0 120.0 LT gstape 1987 1993

51 257593 641585 C-600 5.39 52.0 48.0 LT usgs 1981 1993

52 274481 645632 C-599 8.92 50.0 46.0 LT usgs 1981 1993

53 381254 655600 C-1070 13.37 205.0 100.0 LT gstape 1987 1993

54 321210 658839 C-973 11.18 150.0 90.0 LT gstape 1985 1993

55 237201 661192 C-130 5.49 71.5 69.0 LT gstape 1976 1993

56 286871 662227 C-977 10.95 140.0 75.0 LT gstape 1985 1993

57 238308 663507 C-472A 14.69 70.2 702 LT gstape 1983 1993

58 234587 665852 C-524 4.29 80.0 63.0 LT gstape 1976 1993

59 234231 667268 C-525 6.90 83.0 63.0 LT gstape 1975 1993

60 233877 668886 C-526 5.71 68.0 63.0 LT gstape 1983 1993

61 242444 669338 C-161 3.48 165.0 140.0 LT gstape 1975 1993

62 233258 671919 C-527 5.90 71.5 63.0 LT gstape 1977 1993

63 235552 674530 C-474A 6.67 72.0 63.0 LT gstape 1976 1993

64 237558 674820 C-491 12.60 71.0 70.0 LT gstape 1979 1993

65 237785 667347 C-123 11.44 157.0 96.6 LT usgs 1975 1993

66 242846 675495 C-391 9.38 75.0 70.0 LT usgs 1974 1993

67 247960 677685 C-430 850 65.0 63.0 LT usgs 1976 1993

68 234943 679178 C-528 4.39 80.0 63.0 LT gstape 1976 1993

69 237514 682494 C-506A 16.67 70.7 62.5 LT usgs 1976 1993

70 247644 701011 C-1058 10.69 80.0 62.0 LT usgs 1987 1993

71 237429 683504 C-490 16.55 71.0 70.0 LT gstape 1976 1993

72 239627 685409 C-489 15.20 83.0 63.0 LT usgs 1974 1993

73 288008 689280 C-956 13.37 260.0 60.0 LT gstape 1987 1993
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ID xcoor y-coor name elev wd cd aq type b-yr e-yr

74 307679 689590 C-951 12.35 170.0 120.0 LT usgs 1985 1993

75 247404 691319 C-458 9.17 63.0 63.0 LT gstape 1976 1993

76 243673 691746 C-460 10.39 66.0 64.0 LT usgs 1975 1993

77 237500 694913 C-1003 18.03 61.0 51.0 LT gstape 1985 1993

78 342578 695202 C-988 15.66 160.0 95.0 LT usgs 1985 1993

79 237439 699760 C-424 11.00 132.0 126.0 LT gstape 1977 1993

80 244756 705370 C-1004 9.92 60.0 52.0 LT usgs 1985 1993

81 302204 706578 C-304 15.59 130.0 125.0 LT gstape 1983 1993

82 307686 711197 C-971 15.54 150.0 100.0 LT gstape 1985 1993

83 369492 712880 C-1073 18.80 160.0 100.0 LT gstape 1987 1993

84 276094 726800 L-1996 15.03 259.0 65.0 LT usgs 1976 1993

85 245086 729802 L-738 9.16 75.0 61.0 LT usgs 1980 1993

86 249828 731793 L-1691 12.49 69.0 58.0 LT usgs 1974 1993

87 301825 742220 C492 17.50 64.0 60.0 LT usgs 1974 1993

88 410817 759114 C-1074 26.71 130.0 100.0 LT usgs 1987 1993

89 366828 762865 C-363 34.10 119.0 84.0 LT gstape 1983 1993

90 357586 771881 C-462 34.10 110.0 50.0 LT usgs 1974 1993

91 233210 750979 L-5731 15.67 120.0 90.0 LT usgs 1987 1993

Layer-3

92 273978 705305 C-303 13.45 300.0 232.0 SA gstape 1983 1993

93 342095 712266 C-989 20.30 270.0 240.0 SA usgs 1985 1993

94 369492 712880 C-689 18.80 265.0 230.0 SA gstape 1983 1993

95 304520 715351 C-688 16.73 242.0 220.0 SA gstape 1983 1993

96 405450 717125 C-1072 19.29 260.0 140.0 SA usgs 1987 1993

97 345014 739011 C-1079 15.34 390.0 298.0 SA usgs 1987 1993

98 369813 758009 C-298 30.67 303.0 254.0 SA gstape 1983 1993

99 343829 762843 C-687 22.98 310.0 290.0 SA gstape 1983 1993

100 350077 781499 C-531 41.84 240.0 210.0 SA usgs 1977 1993

101 382596 777660 C-1077 30.64 246.0 170.0 SA usgs 1987 1993
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11-53

ID x-coor ycoor name eev wd cd aq type b-yr e-yr

102 290501 769637 L-2192 27.26 184.0 155.0 SA usgs 1976 1993

103 284175 759067 L-5664 20.00 300.0 180.0 SA usgs 1983 1993

104 241990 759204 L-5668 15.62 155.0 106.0 SA usgs 1984 1993

105 233014 763197 L-741 15.26 119.0 102.0 SA usgs 1976 1993

Layer-4

106 372433 539020 C-39 10.00 484.0 436.0 MH gstape 1985 1993

107 378559 572519 C-311 4.94 450.0 430.0 MH gstape 1982 1993

108 349888 625007 C-987 9.30 370.0 280.0 MH gstape 1985 1993

109 321235 664694 C-974 10.10 460.0 400.0 MH gstape 1985 1993

110 307224 689592 C-948 12.35 420.0 370.0 MH gstape 1985 1993

111 369492 712880 C-684 17.46 490.0 440.0 MH gstape 1982 1993

112 303976 735445 C-963 19.06 340.0 340.0 MH gstape 1985 1993

113 344105 739014 C-983 15.34 520.0 480.0 MH gstape 1985 1993

114 387029 736656 C-965 21.96 458.0 438.0 MH gstape 1985 1993

115 301825 742220 C-1080 17.50 309.0 238.0 MH gstape 1987 1993
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Part III

Development of a Feedforward Control Scheme

for the Regional Groundwater Drought Problem
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1. Introduction

The water manager's goal of a implementing groundwater drought plan is to protect the

groundwater resources and to assure equitable distribution of water to the different users during

the anticipated drought condition so that adverse economic, social, environmental, and health

impacts from the water shortage will be minimized. Since drought management plans should

be based on the past, present, and future water conditions, forecasting of future droughts is

required. Forecasting in general is accompanied by considerable uncertainty and the following

control problem should also take into account the uncertainty. That is why many control

problems have been handled by the stochastic time series topics. Along with stochastic

forecasting theory, there exist a variety of stochastic control theories [Box and Jenkins, 1976,

page 423, Bennett, 1979, page 533, and others]. However, to apply these control theories to a

practical problem, specifically for large scale problems, several difficulties, such as appropriate

forecasting model structure and scaling of the real system arise; none of which are addressed in

the literature. Thus, the objective of this study is to develop a state-of-art methodology to handle

the groundwater drought problem for practical management purposes. The methodology is based

on the stochastic forecasting and control scheme in the system theory applied to a large scale

groundwater system.

To manage the groundwater resources during anticipated drought conditions, a

feedforward control scheme was adopted. This scheme consists of a forecasting equation and a

control equation. The forecasting equation was built by the Kalman filter algorithm associated

with the state-space form of space-time autoregressive model with exogenous variable (STARX),

which was discussed in Parts I and II of this report. The control equation, which will be used

to estimate recommendations for reducing permitted groundwater use based on the anticipated

deviation from the target water level, was developed by the empirical relationship between the

head change and a conceptual pumpage/recharge (PR) function. The PR function was defined

by surface water budget components including effective rainfall, potential evapotranspiration, and

spatial landuse patterns.

11-3



An alternative to this control equation can be physically-based groundwater flow models

such as MODFLOW [McDonald and Harbaugh, 1988]. However, difficulties in this alternative

approach are that model input, including rainfall and boundary conditions should be forecasted

(which creates another difficulty when those variables are multivariate in nature), that aquifer

characteristics should be pre-defined (which usually contain considerable uncertainties), and that

the forecasting itself contains a lot of uncertainty so that the use of sophisticated physically-based

models does not increase accuracy proportional to the increased work load associated with

creating and running a physically-based model. For these reasons, a simple regression equation

was chosen to be used as a control equation.

The structure of the proposed feedforward control scheme is that, after computing

deviations from the target heads at the next predicted month for each aquifer layer, those

deviations are converted to the recommended reduction of groundwater pumping by the control

equation, and the spatially-distributed percentage reduction rates are computed based on the

permitted groundwater use estimated by the 2-in-10-year drought scenario. As a final result, the

control scheme provides a spatially varied water use restriction map in each month, which can

be used as a management tool during anticipated drought periods. This reduction plan is a

regional and monthly guideline. The proposed control scheme was tested in western Collier

County, Florida, under several generated drought conditions. The test showed promising results

for managing the groundwater resources during the drought periods.

2. Existing Rules for Groundwater Use Permits and Drought Contingency Plan

A definition of hydrologic drought given by Dracup et al. [1980] is "a water shortage

with reference to a specified need for water in a conceptual supply and demand relationship".

This definition implies that drought is defined by a relative sense usually in terms of frequency

of historical hydrologic records. Statistically, the probability of a drought event p, which is

opposite to that of flood, is defined by the following non-exceedance cumulative density function

F(.):
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p = Fx(x) = prob.{Xa}

where X is the random variable denoting any hydrologic event such as rainfall depth or ground-

water head, and x is any given number. Then, the return period Tr of the drought event is given

by 1/p, and the complementary probability q is given by (l-p) which is the exceedance

probability. For the definition of reference to a specified need for water, it is necessary to know

the existing rules for groundwater use and drought management in the model area, from which

the recommended groundwater pumping reductions during the anticipated drought condition can

be estimated by the ratio of the pumping reduction required to meet the target head under

existing permit conditions. The model area referred to here consists of the northwest portion of

Collier County and the southwest portion of Lee County as described in Figure 3 and Part-II of

this report.

The Florida Statutes (Part II of Chapter 373) state that the South Florida Water

Management District (The District) is responsible for the permitting of the use of both surface

and ground water within its jurisdictional boundaries [SFWMD, 1993]. The major groundwater

uses in the model area are public, industrial, mining, and irrigation. However, Bennett [1992]

estimated that agricultural and landscape irrigation withdrawals account for approximately 78

percent of the total groundwater use based on 1988 estimates. Thus, the discussion hereafter will

be focused on the method of estimating the agricultural water use. The permit information

manual Volume III [SFWMD, 1993] specifies that the reasonable need for irrigation water use

is defined by the supplemental water requirement (SWR) with the irrigation efficiency, which

varies from 50% to 85% depending on the irrigation methods. This manual uses the modified

Blaney-Criddle equation for the evapotranspiration and the SCS method for the effective rainfall

to estimate the SWR for crops. The monthly SWR is computed by the 2-in-10-year frequency

rainfall, and the maximum monthly allocation is determined by choosing the irrigated month with

the largest supplemental water requirement.

The water shortage plan, which is one of the water management rules listed in Volume
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III, provides consistent rules, principles and restrictions that apply to groundwater users,

facilitating the management and enforcement of droughts in the area. This plan also provides

for variances from these restrictions. If there is a possibility that there will not be sufficient

water available within a source class to meet the anticipated demands, water managers issue a

water shortage order to the users. This order is activated when a drought is foreseen and

remains active as long as water restrictions are in effect.

Specifically, Chapter 40E-21.221 in the water shortage plan outlines the drought

contingency plan by stating that "the current data shall be compared to historical data to

determine whether estimated present and anticipated available water supply .... will be insufficient

to meet the estimated present and anticipated demand...". This plan establishes the severity of

the groundwater drought condition with the reduction of water uses as follows:

However, there exists no objective definition or tool to determine the above water

shortage phases. In the past, a uniform water use reduction scheme at the regional scale based

on the simple frequency analysis of rainfall event was used as a management tool. Thus, this

study was intended to develop a state-of-the-art methodology to determine the spatial water

shortage condition from current and anticipated droughts, as well as a spatial groundwater

reduction scheme to meet the goal of groundwater resource protection. The system control theory

was adopted to resolve this problem.

-6

Water shortage (W/S) Color code % reduction in

Phase overall demand

Moderate W/S Yellow Less than 15%

Severe W/S Orange Less than 30%

Extreme W/S Red Less than 45%

Critical W/S Purple Less than 60%



3. System Control Theory

As mentioned before, the ultimate goal of groundwater drought management is to protect

the groundwater resources during anticipated drought conditions, while maximizing permitted

water uses. In terms of system theory, this management activity can be formulated and solved

by the control theory. System control serves to specify what system inputs are required to

achieve given output levels. One of the common ways of modeling and controlling the system

is by the stochastic time series model as a represented system. Numerous discussions on this

topic are available from Box and Jenkins [1976, page 423], Bennett [1979, page 533], and others.

In system theory, there exist a variety of control schemes, but three basic forms prevail;

open-loop control, closed-loop control, and feedforward control. In the open-loop control

scheme, a control rule is preset on the basis of available experience. This scheme can be

adjusted only infrequently and tends to allow unexpected fluctuations. The closed-loop control

scheme, or so called feedback device, compares the system output and the specified target and

makes adjustments based on the deviation. The feedforward control scheme offers the

advantages of detecting disturbances before they affect system operations and a control action

is then initiated to compensate for potential deviations in the output.

The District's past drought management practice can be classified as an open-loop scheme

since the drought frequency was computed from past and present drought conditions and the

empirical water use reduction was applied uniformly over the local area. The next section

describes how to build a feedforward control scheme to manage groundwater drought problems.

Of particular interest is how to build a control equation based on the relationship between the

conceptual PR function and head changes in multi-layered aquifers.
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4. Feedforward Control Scheme

In terms of a stochastic time series framework, groundwater flow is governed by the

endogenous variable as well as several exogenous variables. Exogenous variables to the

groundwater system include rainfall, evapotranspiration, pumpage, seepage from the surface water

bodies, and regional groundwater flow. Among them, pumpage is the only controllable variable

in the sense of the system theory. However, the historical pumping records in the model area,

specifically those of agricultural uses, are not available. Thus, the historical pumpages for crop

irrigation were estimated from the surface water budget.

Using the forecasting model and the empirical PR-groundwater head relationship, a

feedforward control scheme was developed to apply to groundwater drought management, as

shown in Figure 1. Output from the control system is simulated groundwater heads in space at

the next time step. System inputs include the most recently measured heads, specified target

heads (seasonal) and water use permit information, as well as the unmeasured disturbances. The

unmeasured disturbance, which is not an artificial input, is the source of disturbances other than

the measured disturbance [Box and Jenkins, 1976, page 424]. The main components of the

proposed feedforward control scheme are a system equation and a control equation. The system

equation forecasts the future groundwater heads in each layer using the Kalman filter algorithm

associated with the STARX models developed in Part II of this report. The main function of

the control equation is to manipulate the system so that the state variable reaches the target

level. If head change is explicitly modeled by the PR function, it is possible to build a control

equation by combining the STARX model and the head-PR equation as described in Box and

Jenkins [1976, page 424]. However, this approach is not practical since a multi-layered aquifer

system creates a huge state dimension which impedes an appropriate parameter estimation and

the handling of those equations. Instead, a control equation was developed based on the

empirical relationship between the PR function and head changes in multi-layered aquifers.
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Figure 1. A feedforward control scheme for groundwater drought management.

III-9



Defining that ht+, is the forecasted head at time t, site i, and layer m, and that Hr,.i is

the corresponding seasonal target head at month k+l (k=1,...,12) of time t+l, the deviation from

the target d,4 tm is given by

j - (2)

Positive d,; means that deficit of water is predicted and a control action is needed. Using the

control equation with the computed deviations in every layer, the PR term st, where t+ indicates

a time period during t to t+l since it is a cumulative term during that period, is computed by the

control equation. Then, the percent reduction of pumpage r", is computed by

r t+ x 10O (%) (3)

where sJT is the permitted groundwater use at site i with the superscript T denoting the target

level

If no control scheme is used, the forecasting can be done for any lead time I even though

the forecast error increases with increasing 1. If the feedforward control scheme is continuously

used, either one of the following two cases occurs depending on the availability of input data:

The first case is when the complete- or partial-data are available at time t, it should be used to

forecast (update) the state at time t+1 and to compute a reduction rate during t to t+1. The

second case is if state measurements at time t are not available at all but the system was

controlled at t-1, the reduction rates at t+l can be computed after updating the state at time t

using the target heads as the second best alternative.

The following sections will illustrate how to operate a system equation operation, how to

set up a control equation, and how to specify the target groundwater heads along with the

permitted groundwater conditions based on the existing rules.
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Figure 2. Concept of real time forecasting using the Kalman filtering algorithm.

4.1. Operation of the System Equation

Forecasting by the Kalman filter algorithm requires a set of predefined optimal parameters

for a conceived forecasting model. The forecasting parameters include parameters for the

STARX model, state and measurement noise covariances, and updated state and associated error

covariance. Ideally, these forecasting parameters can be calibrated using the up-to-date measured

data, but this option is impractical since the calibration process of a large scale model needs a

great deal of time and effort. Moreover, if the system is more or less stationary in time, a new

calibration with a small amount of updated data should not differ from the previous calibration,

as indicated in the sensitivity analyses of the expectation-maximization algorithm given by Stoffer

[1986] and discussion in Part II of this report.

Fortunately, the Kalman filter algorithm allows updating the state and its associated error

covariance continuously using the most currently measured data before forecasting. Let us define

such an update of the state vector and its error covariance as the warm-up process. If a

complete-data set is available during the warm-up period, the state error covariance remains

constant (time-invariant) and only the state vector will be updated. Figure 2 illustrates the

concept of real time forecasting in the time horizon. The real time forecasting by the Kalman

III-11
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filter algorithm is an adaptive mode: the forecasting is based on the previous model inputs as

well as the previous measured model output. The forecast lead time l is mainly determined by

the error covariances of the forecasted states. If I is too long, the forecasting errors will be the

same as variance of sample data.

For the practical purpose of the groundwater drought management problem, it is

recommended to calibrate forecasting parameters every other year, mainly during the off-drought

period or non-cultivating season. Since the model is not verified using the actual drought

records, a process of model evaluation including the forecasting model is necessary after certain

years (for example every 5 years) or after experiencing a severe drought event, whichever may

come first. The model structures including the spatial index matrixes, covariance structure, and

temporal order of model can be refined based on this evaluation.

4.2. Supplemental Water Requirement (SWR) for Groundwater Use Permits

Since agricultural water use is the largest of the groundwater uses in the area, discussion

here is focused on the permitting process of agricultural water use, from which a conceptual PR

function was derived. When little or no measurements of water requirements for crops are

available, the SWR for a crop is usually used to estimate the pumping requirement. The SWR

for a crop is computed by subtracting effective rainfall from the potential ET, both of which are

not directly measurable. In order to determine the SWR for the groundwater use permit, the

permit information manual Volume-III [SFWMD,1993] recommends the modified Blaney-Criddle

equation for estimation of evapotranspiration (ET) E, at time t, which is given by [Jensen et al.,

1990, page 103]

Et= k (4)

where k, is a coefficient related to the mean monthly air temperature, (=0.0173T-0.314), 1k is

a monthly factor reflecting the growth stage of the crop type, Tt is the mean monthly temper-

ature at the month t (°F), and p, is the percent of daytime hours of the year that occurred during
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the month t.

The Soil Conservation Service method [Jensen et al., 1990, page 67; SFWMD, 1993] to

compute effective rainfall RE* at the month t is

RE;* =fs f E,*(0.7a2K " '-0.115 6)  (5)

where f, is a soil factor given by f,=0.5317 +0.2952d -0.0577d2+0.0038d3 with d as the net depth

of application, f, is a conversion factor from an average rainfall to a 2-in-10-year frequency

rainfall, E' is the monthly effective ET expressed by E'=10°' 2 ,6E and Rt is the 2-in-10-year

monthly rainfall depth at month t. Then, the monthly SWR for the crop at time t, st, is given by

s, = E, - RE* (6)

where s, is a depth unit (in inches). The total volume of SWR at month t can be obtained by

multiplying total irrigation area and dividing by the irrigation efficiency which is dependant on

the irrigation method. Finally, the permit allocation for groundwater use is determined by

selecting the month which has the largest SWR.

As a summary, the 2-in-10-year SWR is computed by the spatial parameter set, {ic, A,

d, f,, k., Rt, Tt, and p4}, among which the last three terms are space-time dependent variables.

An attempt was made to compute the historical SWR series by the above method with historical

rainfall (f,=1.0) and temperature data, and related the SWR with the corresponding historical

groundwater head change. However, the result was unsatisfactory, implying that the SWR

method, particularly the RED' term by the SCS method, does not adequately estimate the SWR

in the model area. Thus, after thoroughly investigating the relationship between groundwater

head and the corresponding rainfall (which is the most important driving force in both surface

and subsurface hydrologic systems), a conceptual PR function was developed, along with an

estimation of the associated parameters by optimization methods.
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4.3. Rainfall-Groundwater Head Relationship

Although rainfall is the most important driving variable to the groundwater system, one-

to-one correlation between rainfall and heads are not very significant as shown in Part II of this

report. This is a main cause of failure when a simple linear regression model is fitted to the

rainfall-groundwater head system. This subsection will investigate the cause and effect of rainfall

and groundwater heads from the multi-aquifer systems in the model area, from which it is

possible to conceptualize their relationship for building a control equation.

More often than not, time series plots provide invaluable information on the statistical

characteristics of raw data, those of which can not be detected from the lumped correlation

statistics, such as correlation coefficient or variogram. Figure 4 shows time series, raw data

without any transformations, for arbitrarily chosen rainfall (point rainfall) and nearby groundwater

head stations (instantaneous head at the end of each month) from the underlying aquifers.

Particularly, the location of the gaging station in graph (a) is at the southeast corner of model

area, while that of (b) is at the northwest corner. From the examination of these time series, the

following observations were made;

(1) The general patterns of monthly rainfall and the corresponding groundwater head

hydrograph in each layer matched very well. A large rainfall during the summer season induced

high groundwater heads as expected, but there exists a threshold in rainfall depth so that the head

does not exceed the threshold. This phenomenon can be explained by the infiltration capacity

theory, where the excess rainfall over the infiltration capacity will be drained in the form of

overland or channel flows.

(2) The groundwater heads decreased consistently when the amount of rainfall is small.

These drawdown is mainly due to pumpage and regional groundwater outflow exceeding the

inflow to the groundwater system. This phenomenon is another cause of failure when one seeks

a direct relationship between rainfall and groundwater head.
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(3) The rising and falling limbs of the groundwater hydrographs behave differently. The

rising limb was steeper and increased linearly, while the falling limb was milder and decayed

exponentially. There exists a time lagging effect between the high intensity rainfall and the

associated peak of the head hydrograph. Also, the groundwater head maintained constantly high

levels for one or two more months after a high intensity rainfall, then it gradually decreases.

(4) The deeper the aquifer layer, the less sensitive the head was to the rainfall. The

temporal dependence of heads were higher than that of rainfall, which is more significant in the

deeper aquifers. This implies that the applicability of the stochastic time series model to

groundwater head is much higher than to that of rainfall.

5. A Conceptual Pumpage/Recharge (PR) term

Based on the above observations, a conceptual PR model was formulated and its seasonal

parameter set was estimated by the optimization algorithm. A problem arose on what kind of

spatial scale should be used to compute PR function. As mentioned before, the forecasting was

done for the fixed gaging stations in each aquifer layer, whose two-dimensional results are

displayed after a spatial interpolation. Thus, a Thiessen polygon created by the Surficial

Aquifer's monitoring network was used as the base spatial scale, since this aquifer has the most

dense monitoring network among the four freshwater aquifers. That is, whenever site i is cited

in the space domain, i ranges from 1 to nx(=48 stations).

Let us assume that, like the SWR in equation (6), the PR term, su, at time t and site i is

defined by

s,r -; (7)

where E; is the average ET depth at polygon i, and R,' is the effective rainfall contributed to

the groundwater system. Incorporating the infiltration capacity of soil in the discussion (1) of

the previous subsection, the effective rainfall can be expressed by
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Ra otherwise

where R. is the maximum rainfall depth contributing to the groundwater system at month k

(k=1,...,12) for time i, and R, is the measured monthly rainfall depth at time t and site i. Within

the study area, 18 rainfall stations were available (Figure 3) and R, for a given site i was

obtained by selecting the rainfall station which is closest to the center of polygon i.

The Blaney-Criddle method in equation (6) indicates that SWR in the agricultural area

is computed by the ET that is the function of the crop growth factor k, and the spatial soil type

d. The second largest groundwater use was the public water supply. Individual installed capacity

of public water supply wells was much greater than those of agricultural wells. Combining both

agricultural use and public water supply, the average transformed ET term in depth units is

formulated as:

E -= d, kc(k,i) Ek + E4,a( (9)

where k=1,...,12, d is the net soil depth of application at site i, ranging from 0.4 to 3.6

depending on the soil type [refer to SFWMD, 1993], k(k,i) is the factor reflecting the growth

stage of the crop at site i and month k, and EF is the monthly pan ET rate at month k. Although

day-by-day temperatures fluctuate significantly, the monthly mean temperatures in the region

were more or less stationary in space and time as shown in Figure 5. Figure 5 displays the

monthly temperature time series measured from two stations separated by approximately 30

miles, along with the 27-year average temperature for the Naples station. This temperature

stationarity justifies the use of the monthly average ET in estimating the effective ET.

E,(i) is the permitted public water supply converted to the equivalent ET depth at

polygon i. In order to add the pumping effects by public water supply wells in the PR function,

the following two assumptions were made: First, the monthly pumping rates for public water

supply wells are constant over the year (non-seasonal). Second, the influence boundary of the

drawdown by public water supply well is approximately defined by an one-mile buffer zone.
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Then, the Epub(i) is expressed by

E () = kpQ (10)

where k is the global factor for converting the total public water supply pumpage at polygon i

to the equivalent ET depth, A, is the total area of a one-mile buffer zones created by public water

supply wells at polygon i, and Q, is the total public water supply allocation for polygon i. Figure

6 shows major public water supply wells with their one-mile buffer areas. Even though the

assumption of uniform one-mile buffer zones is not objective, optimizing kl from the conceptual

PR term will compensate for the weakness of this assumption. Although Ez(i) is not very

sensitive to the pumpage reduction, inclusion of E,,(i) in the PR term enables one to apply a

pumpage reduction scheme to the public water supply wells during drought periods.

There are a variety of types of agricultural practices within the model area, as well as

each Thiessen polygon. However those agricultural practice types were classified into one of five

classes as shown in Figure 7. If nr is the total number of different crops including any non-

agricultural zones in a polygon i, a composite crop factor within polygon i at month k, denoted

by k(k,i), is computed by the areal weighing scheme as

nt

kc(k,) r= wj kc(k,ij) (11)
V-1

where w is the areal weight for the particular crop type j, that is, wj=A/A, with Ai is the area

covered by the j-th crop type within the i-th polygon, and A is the total area. Table 1 lists k's

for the distinct crop types. The remaining land uses other than agricultural are mainly urban and

forest areas, whose k,(k,i,j) values are assumed the same as that of AM landuse type (groves,

nurseries, and tropical fruit). To summarize, the historical PR series during the period of record

are estimated from equations (7) through (11), where major inputs include the historical rainfall,

spatial landuse and soil maps, public water supply well information, and an optimal parameter

set, {R.,,, E , and kp, k=1,...,12).
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Table 1. Monthly crop factors with the estimated parameters for the conceptual PR model

month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

AC 0.63 0.73 0.86 0.99 1.08 1.13 1.22 1.06 0.99 0.91 0.78 0.64

AP 0.46 0.60 0.63 0.68 0.70 0.53 0.56 0.58 0.52 0.53 0.49 0.44

AM 0.63 0.66 0.68 0.70 0.71 0.71 0.71 0.71 0.70 0.68 0.67 0.64

AG 0.49 0.57 0.73 0.85 0.90 0.92 0.92 0.91 0.87 0.79 0.67 0.55

R,(in) 1.56 3.91 4.05 2.50 4.26 7.62 7.43 7.50 8.74 4.09 1.19 1.45

R,,.(in) 3.00 6.00 5.50 6.00 6.00 7.50 9.50 5.50 4.50 8.50 3.00 11.0

Er(in) 4.50 5.30 5.30 5.20 2.90 0.20 5.20 7.60 8.00 9.50 7.10 5.20

S0.832

Ref.: - Landuse codes: AC=cropland; AP=pasture; AM=groves, ornamentals, nurseries, tropical

fruits; AG(AF and UO)=grass [from SFWMD, 1993].

- R is the historical monthly average rainfall, R.. is the maximum rainfall

contributed to the groundwater system, and Ek is the monthly pan ET depth, all three

quantities are in inches per month.
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Figure 7. Agricultural landuse with Theissen polygons.
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6. Optimization of a PR Parameter Set

The parameter set {Rm , Eg. and k~, k=1,...,12} in the previous conceptual PR model was

calibrated by an optimization method. The purpose of this optimization was to obtain an optimal

parameter set which maximizes the correlation between the historical PR term and the

corresponding head changes, so that the functional relationship of those two variables can be used

to estimate the pumpage reduction by the deviation from the anticipated target head. Particularly,

the head change Ahf is defined by

Ah7' = ht'4 -h, (12)

where, ham is the groundwater head at time t, site i, and aquifer layer m. Equations (2), (7),

and (12) may have either positive or negative quantities whose interpretations are different as

follows:

Pumpage/ Head Change Deviation from the

Recharge target

Equation s,=E'-R, *  Ah."=h. m-him dm=Hklm-h m

Positive(+) SWR Drawdown Reduction of pumping

Negative(-) Recharge Head increase No action required

Let us define p, as the average correlation coefficient between the historical PR and

head change at Layer 1 (because it is the most sensitive to the PR term). p, is computed by

S1 " cOv [ Ah sJ]
Pau s #

LX ~W i-I h ~1 0;h a

(13)

where nx is the number of Thiessen polygons for the Layer 1, cov[.J and a are the sample

covariance and standard deviation, respectively. Then, the objective function of the optimization
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is to maximize p,O,. The unconstrained nonlinear least square with the finite-difference Jacobian

method was used to get the optimal parameter set [IMSL, 1991]. For the optimization, the

historical Ahj series from January 1987 to September 1993 were prepared, some of which have

missing values. The final results obtained are listed in the last three rows in Table 1, where the

final objective function for an optimal parameter set was p=0.6 19 .

Also practiced was optimization of the conceptual model itself. Alternative conceptual

models considered include the direct rainfall, groundwater head, ET by the Blaney-Criddle

method, effective rainfall by the SCS method, and the logarithm transformations of one or more

of them. The details of these optimizations are not described here, but the results shows that the

conceptual PR function was superior to the alternative models.

7. Develop a Control Equation

In order to make the system controllable, let us set up the following time-lagged linear

regression equation of su,; using the head change in each layer Ahmt+, as independent variables:

L Nk

St4 = Po + E Pmi, Ah;+", + e, (14)
m-1 $0

where t+ means a period between t and t+l, |ai is a intercept of regression for polygon i, (34

is a regression coefficient for layer m and temporal order j at polygon i, and e, is the Gaussian

white noise having a mean of zero and a variance of a,. If the current time is t, s, is given by

Ah hs=(hm', -hmt), where hm, 1, is the mean square error forecasting conditioned on the

previous measurements. This control equation does not use any of the spatial correlation

structure of the system. The reason is that introducing a spatial correlation structure in the multi-

layered aquifer system results in too many parameters which hinder optimal parameter calibration

as well as the manipulation of the equation. However, the term hm
4.,, already includes such

spatial correlations via the STARX model, so that estimated s, will more or less include the
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spatial characters.

The spatial order Nk, which is considered as a global parameter in the space domain, can

be determined by the identification procedure of the stochastic time series model. As a criterion

statistics for the candidate temporal orders Nk=0,...,3, the spatial average AIC(Nk)'s were

computed by [also refer to the original form given by Salas et al., 1985, page 97];

AIC(Nk) = AICN + 2Nk (15)
nx ax

where T is the sample size and o is the residual error variance computed by the least square

linear regression estimator. The period of record used in this identification procedure was from

January 1987 to September 1993 (T=80). With sets of optimal parameters of four candidate

models, the AIC(Nk)'s were computed as: AIC(0)=145.96, AIC(1)=122.17, AIC(2)=122.83, and

AIC(3)=122.56. Finally, based on the AIC's, Nk=1 was selected for which the spatial average

of R2 statistics was 0.657 and the spatial average of the sum of square error was 360.6 ft2. For

example, the 28-th polygon which is located at the western coastal area has a control equation

of

s0 - 1.614+0.942A h 1, 2+0.728Ah X1 +0.258A hfl (16)
+0.374Ah +0.489Ah +O0.259Ah,

with a R2 of 0.765. It should be noted that the superscripts in equation (16) are not the power

notations but the indicators for the specified aquifer layer.

8. Target Water level

In addition to the most currently measured heads, the other required inputs to the

feedforward control scheme are target groundwater levels, HIi" and the permitted groundwater

use in terms of PR function, si. Since the groundwater uses in the model area have been

allocated based on the estimated SWR which is computed by the 2-in-10-year drought rainfall,

I-26



it is logical to set the target water level as the 2-in-10-year groundwater head. Also, it was

assumed that the target water levels are a monthly distributed spatial function. That is, the

desired target is subject to change by the crop irrigation requirement. To explain the procedure,

let us define a 4-dimensional random variable hy m as the groundwater head at site i, year j,

month k, and layer m. After estimating the seasonal parameters by fitting the normal distribution

functions at site i month k and layer m, the target water levels h m"'s are computed from the

quantile corresponding to the 2-in-10-year drought frequency. The period of record in this

frequency analysis was from January 1977 to August 1993. The two parameter normal

distribution was fitted by the method of moment, and Chi-square statistics was used to justify

the goodness-of-fit of the distribution function, resulting in 92% of fittings accepted by the null

hypothesis of the normal distribution with a 5% significant level.

In addition, the following constraints were used to adjust the target levels: in order to

prevent salt water intrusion, the target water level (for Layer 1, 2, and 3) is adjusted to zero feet

NGVD if a site is located within five miles of the coast and the target level is below zero feet

NGVD. Also, in the confined aquifer (Layer 4), the target water level is adjusted to the top

elevation of the confined aquifer if the target level is below the top of confined aquifer. This

latter constraint is important to maintain the structural integrity of the limestone aquifer, in which

the hydrodynamic pressure of the groundwater provides a significant amount of support against

collapse and possible sinkhole formation.

The monthly 2-in-10-year PR functions were computed by the PR procedure with the

average 2-in-10-year rainfall depth in Table 1, which was computed from the 27-year historical

rainfall in the region. Then, the s,' for polygon i was determined by selecting the largest such

PR function at polygon i. Figure 8 is a contour map showing the spatial distribution of si', which

indicates that the larger groundwater uses are located in the northern portion of the model area.
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9. Simulation and Discussion

The proposed feedforward control scheme was tested for various drought conditions to

investigate variations of pumpage reduction with respect to the different drought frequencies.

As mentioned before, the calibration period for both the forecasting and control equations was

from January 1987 to August 1993. A one-year warm-up period was used for this test

simulation. Without having an actual drought event during that warm-up period, expected

drought events having five different return frequencies (Tr=2, 5, 10, 20, and 50 years) were

generated. Such a data can be generated by the following two methods. First, the monthly

groundwater head series hu"(p), t=1,...,12 having an average probability is p can be generated by

means of the STARX model. But due to seasonality, that series is nothing but one realization,

and there exists an infinite number of such series. An average of those series by month becomes

an expected drought event, E[hJ(p)],t=1,...,12. Thus, as a second approach, the expected drought

series having probability p can be obtained, not by the above data generation method, but from

the frequency information of the historical data. The latter method was used to create the

drought events during the warm-up period. In either case, the space-time correlation of the

system can not be preserved.

Since the seasonal target heads were used in the feedforward control scheme, the

simulation was performed in both May (end of dry season) and September (middle of wet

season). For instance, when the present time t is in May, the warm-up period was from the

previous June to this May and heads at t+l(=June) were forecasted spatially, then the

recommended pumpage reduction r,, during June was computed.

As summary statistics of the above test, the mean p-E[rg. and standard deviation

p={var[r4 } " of pumpage reduction rates were computed for different frequencies p during the

warm-up period. This simulation was performed for both wet or dry conditions and the results

are shown in Figure 9. Also, Figure 10 shows an example of pumpage reduction contour map

during the June case with the return period of 20 years.
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Statistics of the pumpage reduction versus return period of drought.

III-30

30

20

-10

E -20

-30
100

80

0 70

.50
E

so)

100

Figure 9.



LEGEND

r- . Contour

SCounty Boundary

P Shoreline

An example of recommended pumpage reduction (percent) in case of a 1-in-20-
year drought event.

111-31

Figre 10.



From these simulations, the following results were noted:

(1) The relationship between pumpage reduction and return period Tr of antecedent head

condition during the warm-up period behaved nonlinearly. However, the pumping reduction

rates, in terms of both p, and or, were approximately linearly proportional to In(Tr) for tr>5 years,

and this linearity was more acceptable when the groundwater head is less than the 2-in-10-year

target level.

(2) The spatial variation of the pumpage reduction was much greater than that by the

frequency variation. This result strongly supports the concept of spatial forecasting and

management of groundwater in the model area, instead of the uniform pumpage reduction

previously practiced by the District.

(3) The average pumping reduction rate P, during the wet season was higher than that

during the dry season, despite the higher expected rainfall during the wet season. This is mainly

due to the increasing supplemental water requirement from the agricultural fields during the

summer season. However, the spatial variance of reduction rate o, during the wet season was

smaller than that of the dry season.

(4) The average pumping reduction rate of both the wet and dry seasons was near zero

when Tr is 5 years. That is, the estimated pumpage reduction rate based on the groundwater

head difference matches well with the historical target level. This result validates the proposed

feedforward control scheme, specifically the assumptions of using 2-in-10-year seasonal target

water levels along with the 2-in-10-year groundwater use permit based on the proposed PR

function.
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10. Conclusion

A feedforward control scheme was developed to handle the regional groundwater drought

problem. This scheme forecasts the future groundwater heads in the multi-layered aquifer system

by the STARX model and computes the deviations from the seasonal target level. Using the

empirical control equation based on the relationship of head change and the conceptual

pumpage/recharge function, spatial pumpage reduction rates are computed from the present and

forecasted heads. The recommended pumpage reduction scheme can be applied to the all

different kinds of groundwater users since the pumpage/recharge function accounts for a variety

of groundwater uses components. As model verification, simulations were performed for

different seasons and different drought frequencies. Results validate the feedforward control

scheme along with the empirical control equation based on the proposed pumpage/recharge

function.

Advantages of the proposed control scheme are that it is simple in nature, thus more

intuitive, and that it is possible to control the drought spatially, instead of uniformly as in the

previous method. Another advantage comes from the use of the conceptual pumpage/recharge

function in estimating the spatial recharge in the groundwater system. Limitations of this control

scheme are that the recommended pumpage reduction is that of the lumped layers, not layer-by-

layer, that it does not provide reduction rates well-by-well or different water uses classifications,

and that adaptability of the forecasting model, such as changing model structure, is difficult. To

use the proposed feedforward control scheme, collection of timely measured groundwater head

data in the model area is critical.
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1. Introduction

The Drought Management Decision Support System (DMDSS) is a user-friendly application

designed to help in the prediction of future ground water levels for Collier county, Florida. The

forecasting method is based on Kalman filtering associated with Space-Time Autoregression with

exogenous variables (STARX) model. Historical data for calibration of the STARX model

consists of 17 years (1977-1993) of monthly groundwater heads from 115 monitoring stations.

However, the DMDSS database contains 44 years (1950-1993) of data from the above 115

stations (record lengths vary station-by-station), as well as 44-year of monthly rainfall data from

21 stations, to let the user understand the long term historical trend of groundwater heads in the

model area.

The DMDSS allows users to look at the temporal and spatial distribution of rainfall and

groundwater head data across the model area, set parameters for existing conditions, and execute

the forecasting model for the next twelve-month period. Results of the model can be displayed

graphically with different options including spatial interpolation, contouring of the future

groundwater head, displaying time series by two-dimensional graphs, etc. It also possesses the

capability of saving and printing the analysis and the results.

The DMDSS, requiring spatial analysis for its analyses, makes extensive use of GIS technology.

Arc/Info (version 7.0), the standard GIS package used at the South Florida Water Management

District, was selected as the basis for the development of graphical interface. Considering the

complexity of Arc/Info package itself and wide range of users type, the application focuses on

simple point and click operation. It consists of a series of menus written in Arc Macro Language

(AML) which allows users to perform the operations without requiring any in-depth knowledge

of the ARC/INFO process involved. It also includes supporting programs for data manipulation

and statistical computation written in FORTRAN.
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2. How to Start the Application

The DMDSS program is operated from within the Arc/Info software. If unfamiliar with the

command for invoking Arc/Info on your system, users should ask their UNIX system manager

as well as the GIS manager to set up the appropriate Arc/Info environments. To run this

application, user should start the Arc/Info application and type "gwmanarc" (without quotes) at

the UNIX prompt. It will by default create a directory "dmdss" in the user's home directory and

change the workspace to that directory. If the "dmdss" directory already exists, it will simply

change the workspace to it.

Example : muir% runarc6

arc: gwmanarc

The above process will result in popping up of the following title menu on the screen. The four

available options at this title menu are:

continue will result in displaying the main menu,

disclaimer of the software,

popping up a help menu,

quit the application, respectively.

The main functionality of the title menu is initiation or re-initiation of the DMDSS application.

In case of re-initiation, all pre-set parameters and options from the previous run will be changed

to the system defaults.
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3. Overview of the Main Menu

The main menu comprises four major components as shown in the following figure:

DMDSS - Main Menu

1 Model Data P)

2 Parameter Calibration >)
3 Forecasting p;)
4 output >)
5 Help )
6 Quit )

Each submenu allows the following options:

1. Model data: Display historical data stored in the info database and all pertinent GIS

coverages. The purpose of this option is to let the user understand the characteristics of

the historical groundwater head and rainfall, as well as to familiarize the user with the

geography of the model area.

2. Parameter Calibrations: Perform calibration of the STARX model parameters using

updated information. This option be used only when the input data are significantly

updated. It is recommended to recalibrate the STARX model every two years or after

experiencing a severe drought event, whichever comes first.

3. Forecasting: Run a STARX model in the forecasting mode to predict the next twelve

month groundwater heads after updating the present condition.
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4. Output: Display the forecasting results, as well as the errors and confidence intervals in

temporally and spatially.

Each of these functions involves one or more sub-menus, that can be invoked from the main

menu by simply clicking the desired choice. Subsequent choices under the four main functions

represent the following various features offered to the user. It should be noted that the historical

data menu can be viewed separately for spatial mapping and time series.

1. Model Data

1.a. Historical data

A. Contour Map

B. Time Series

Monthly Statistics

Yearly Statistics

Correlation

1.b. GIS Coverage

2. Parameter Calibration

2.a. Spatial Index Matrix (SIM)

2.b. Update Yearly Data

2.c. Update Monthly Data

2.d. Parameter Calibration

3. Forecasting

3.a. Parameters

3.b. Present Conditions

3.c. Execute Forecasting Model

4. Output

4.a. Spatial Mapping

4.b. Time Series
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4. Description of Menus

4.1. Model Data

1.a. Historical data

The historical data menu as shown in the following figure allows the user to display contour
maps and time series for five different options, resulting in ten different menus. The purpose of
this submenu is to display historical data stored in the info database which has the groundwater
heads from 115 monitoring stations and rainfall from 21 stations in the model area. To initiate
the desired menu, the user should select the desired display option first (contour map or time
series) and the select the information type. Next the user must click on the "Apply" button,
which will pop up another appropriate submenu. The Main menu button returns to the main
menu while the Quit button returns to the main menu.
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A. Contour Map

This menu helps in creating a contour map of desired data type for a specific time. The process

of creating contours involves interpolation of point data to produce a continuous distribution for

the model area before generating contours. The method used for interpolation is the universal

kriging with the linear semi-variogram function to model the drift. Final contour output includes

the interpolated contour map as well as the map showing standard error for the model area.

It also has the capability to save and print the generated contour map. This submenu permits the

user to change the workspace and view any coverage(s). Following are the steps to create a

contour map.

Step 1: Select the appropriate data type (Rainfall, Pumpage, or Potent_head).

Step 2: Set appropriate month and year by clicking month and year scroll bar.

Step 3: Choose desired contour interval.

Step 4: Click the Apply button.

A brief description of other menu buttons is given below.

Save: Saves the generated map under different name.

Print: Prints a hard copy of the created map.

Up: Moves up a workspace

Down: Moves down a workspace

Draw: Draw the selected coverages in the scrollbar above.

Main menu: Returns to the main menu

Previous menu: Returns to last menu.

Quit: Returns to the title menu.

The user should note that the contour map display option for the other options, such as monthly

statistics, yearly statistics, auto-correlation, and cross-correlation, are similar in nature and can

be used by the above process.
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r &Historical Data - Contour

DATA TYPE
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B. Time Series

The purpose of this menu is to let the user see seasonal variations of one or more station for a

specified time period. It plots a graph for the selected station point between time and

corresponding values. Described below are the steps to use this menu.

Step 1: Select desired data type by clicking on the appropriate button (rainfall, pumpage,

or Potent_head). A small menu will appear requiring input for the number of

stations to be viewed. User then can select the stations by clicking on the desired

gaging stations from the active Arc/Plot window.

Step 2: Repeat the process for other data type if required.

Step 3: Click on Display button.

A brief description of other menu buttons is given below.

Save:

Print:

Help:

Main menu:

Previous menu:

Quit:

Saves the generated time series plot under different name.

Prints a hard copy of the generated time series plot.

Pops up a help menu.

Returns to the main menu

Returns to last menu.

Returns to the title menu.

Monthly Statistics

Same as the subsection l.a

Yearly Statistics

Same as the subsection 1.a

Correlations

Not available in the current version
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1.b. GIS Coverage

GIS data is a display menu permitting the user to view base maps, gaging stations, aquifer

elevations, and other pertinent GIS coverages in the model area. The base maps include district

boundary, canal, lake, county boundary, and major roads. The GIS data option helps to set Tics

which are registration or geographic control points for GIS coverages that represents known

locations on the appropriate coordinate system. The Tics allow the coverage to be standardized

in a particular coordinate system, allows map sheets to be registered for digitizing, and also

serves as the basis for transforming features into new coordinate systems. It is generally

advantageous to have each coverage registered to the same set of Tics.

To use this menu the user must click on the desired checkboxes and hit the Draw button. The

identify button allows the user to get information in detail about any particular feature of the

displayed coverage. Please refer to the Arc/Info documentation (Map projections and coordinate

management volume) for more details on tics, projections, and transformations.

A brief description of other menu buttons is given below.

Up: Moves up a workspace from the present working directory to search for

appropriate GIS coverages.

Down: Moves down a workspace.

Draw: Draw the selected coverages in the scroolbar.

Help: Pops up a help menu.

Identify: Identifies any particular feature of displayed coverage in detail. It will invoke

a pop up window telling the type of GIS coverage (point, arc, tin, lattice, etc.).

Main menu:Returns to the main menu

Quit: Returns to the title menu.
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Figure 3. Model area with basemap.
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4.2. Parameter Calibration

2.a. Spatial Index Matrices (SIM)

SIM is a method to establish the correlation of station points to five neighbor points in the

current layer, as well as with the layer above, the layer below, and rainfall. This menu allows

the user to understand the relationship by visually displaying the related station points on the

screen. It makes a convex polygon of the five selected points from which user can easily identify

the boundary of the site interested. The convex polygon is a polygon in which no internal angle

is more than 180 degree. To use this menu the user should select an appropriate layer and

display option, then click on the Apply button.

The three display options are available:

Overall: Displays the relationship for all the station points at the same time.

Sequential: Displays convex polygons one-by-one in fixed sequence of station

identification numbers which were assigned from west-south to east-

north direction in general.

Interactive: Displays a convex polygon for a selected gaging station, providing more

flexible views to the user.

Other menu buttons are:

Main menu: Returns to the main menu.

Apply: Initiate display on the Arc/Plot window.

Quit: Returns to the title menu.

Help: Pops up a help menu.
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Figure 4. Display the selected neighbors by the different options.
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2b. Update Yearly Data

The update yearly data menu simply inputs the specified name of the ASCII file containing

yearly data in a column format (ID, Station ID, values) and updates the existing info database.

The user must have a write permission for the data files to be able to update them. Since this

option adds the data to the central database, only an authorized user (DMDSS manager) can do

it. If unauthorized users try it, it will kick back to the previous menu with a warning message.

i basic

Please type fullpath for input file

Jan1993. da,

OK Cancel)

2.c. Update Monthly Data

Same as the update yearly data option.

2.d. Parameter Calibration

This menu allows the user to recalibrate the parameters for the STARX model using the

expectation-maximization algorithm associated with a simplified smoother estimator (EMSSE)

method which is coded by FORTRAN and attached to the DMDSS. (Not available in the current

version).
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4.3. Forecasting

3.a. Parameters

This option allows the user to look at the calibrated parameters for the STARX model in the

form of ASCII file from the pop up window, from which the user can understand the way the

space-time forecasting is done in the STARX model (Not available in the current version).

3.b. Present Condition

The main functionality of this option is to display currently updated data. Both extended time

series and contour maps can be generated by this option, with the stations which have missing

values at the present time (Not available in the current version).

3.c. Execute Forecasting Model

This menu runs the forecasting model for a period of the next twelve months and import the

forecasted values and associated errors into the info database automatically. The user simply

defines the current time by clicking the appropriate month and year and hitting the Execute

button which results in the forecasting of groundwater heads for next 12 months. Other menu

buttons descriptions are:

Main menu: Returns to the main menu

Quit: Returns to the title menu.

Help: Pops up a help menu.
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4.4. Output

4.a. Spatial Mapping

The spatial mapping menu let the user see the forecasted output for two different times and

compare them with current and historical conditions. It also calculates and displays drawdown

and water table depth from the land surface elevation for forecasted times. It is necessary to

execute the forecasting model before output is displayed. The following steps describes the usage

of this menu.

Step 1: Select the data type. (Drawdown and WT depth cannot be calculated unless

forecast map previously have been created for that period).

Step 2: Type/Select the current time for which the forecasting model has been executed

previously.

Step 3: Set appropriate contour intervals.

Step 4: Choose the lead time for forecasting.

Step 5: This step has two options: The first option allows the user to display all the maps

at the same time by clicking the All button. This option is available only for

forecasting and not for the drawdown and water table depth display. The second

option allows the user to display each map individually by clicking appropriate Do

button.

Other menu button description are

Save: Saves the generated map under different name.

Print: Print a hard copy of a map.

Help: Pops up a help menu.

Main menu: Returns to the main menu

Quit: Returns to the title menu.
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Potent_head contour maps

Figure 5. Output contour maps showing 12-month lead forecasting.
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4.b Time Series

This output option displays the time series projection for next twelve month period with

confidence intervals of ±50% and ±95%, along with the previous twelve month data. The

procedure to use this menu is described below.

Step 1: Type/Select the current date (month/year) for which the forecasting model has

been previously executed. The current date should be the same as that specified

in the forecasting option.

Step 2: Select desired data type by clicking on the appropriate button (Rainfall,

Potent_head). If the user selects the Rainfall button, it will display only the

previous twelve months data. The user then can select the stations by clicking on

the desired point. The process is repeated if other data types also need to be

selected.

Step 3: Click the "Display" button to plot the time series on screen.

A brief description of other menu buttons is given below.

Save: Saves the generated plot file under different name.

Print: Print a hard copy of a map.

Help: Pops up a help menu.

Main menu: Returns to the main menu.

Quit: Returns to the title menu to finish the application.
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