TECHNICAL MEMORANDUM

REVISION AND RECALIBRATION OF

 THE THREE-DIMENSIONAL GROUND WATER FLOW MODEL OF PALM BEACH COUNTY, FLORIDA> by

J. Jason Yan
Cindy Bevier
Karin Adams Smith

DRE-322

March 1995

Hydrogeology Division
Department of Water Resources Evaluation South Florida Water Management District

West Palm Beach, Florida

EXECUTIVE SUMMARY

Introduction

The Palm Beach County ground water flow models were among the first models developed as part of the South Florida Water Management District's program to quantify the ground water resources of the District and to provide tools for planning and regulatory applications. Since the development of the Palm Beach models, major advances have been made in groundwater modeling, including the incorporation of Geographic Information System technology and the availability of many new or revised modules for the MODFLOW code, making possible more accurate simulation of the various components of the hydrologic cycle. In addition, a significant amount of data and information have been developed and collected since the models were completed.

The District anticipated this situation and designed a process in which ground water flow models are periodically revised and recalibrated in order to ensure that they remain as accurate and reliable as possible. Specific tasks to be completed as part of each model revision include:

1. Updating the supporting data sets with the most recent data available,
2. Incorporating any new technology into the revised models,
3. Correcting any problems or deficiencies detected during the application of the models, and
4. Improving the calibration of the models.

The Palm Beach County ground water flow models were the first models to be revised and recalibrated. Specific tasks in this project include:

1. Combination of the two original models into one county-wide model grid,
2. Calibration of the model using an additional 198 monitoring wells,
3. Calibration of the model to both transient and steady state conditions,
4. Redescription of the model boundary conditions and simulation of additional areas,
5. Inclusion of data from the Martin and Broward County models to improve consistency between models, particularly the surface water data and the vertical discretization,
6. Revision of surface water level input from constant values used throughout the simulation period to average monthly values, and
7. Inclusion of other data collected subsequent to completion of the original models.

Revision and recalibration efforts were constrained by time and manpower; therefore, additional improvements, such as updating surface water GIS data over the entire study area, were not completed.

Model Calibration

The revised Palm Beach County model was calibrated against observed ground water levels in 272 observation wells for the period from January 1989 through June 1990. This period was chosen because it contains ample data for calibration and represents a moderately dry period. For the transient calibration, 208 wells (76%) either met the calibration criteria or were influenced by factors that prevented calibration. For the steady state calibration, 58% of the wells met the calibration criteria. Detailed sensitivity analyses were not performed due to time constraints. However, the revised model should exhibit sensitivity to the same parameters (canal bed conductance, surface water levels, ground water pumping rates, recharge and evapotranspiration) as the original models.

Results and Conclusions

Analysis of the volumetric budget for the revised model indicates that under steady state conditions inflow to the model consists of 81.8% recharge from rainfall, 14.3% leakage from surface water bodies, 1.5% return flow from irrigation, and 2.4% from the head dependent boundaries. Outflow from the model consists of 46.9% evapotranspiration, 20.9% discharge to surface water bodies, 14.2% to well pumpage, and 18.0% to head dependent boundaries. This also compares favorably to the results from the original models. Vertical and horizontal flow vector diagrams show the direction and magnitude of flow simulated under steady state conditions. Analysis of all output from the revised model, combined with the good match obtained between simulated and observed water levels, demonstrate that the revised model closely simulates the dynamics of the hydrogeologic system of Palm Beach County.

Recommendations

No matter how accurate a model is, it is still only an approximation of a physical system. There will always be inaccuracies resulting from assumptions and data limitations. Therefore, improvement is always possible and the following refinements are recommended for future revisions:

1. Since rainfall and evapotranspiration account for the majority of inflow and outflow to the model, more accurate estimates of both parameters are critical to further model refinements and linkage with surface water models. Studies to improve estimation methodologies should be initiated.
2. Flow between ground water and surface water bodies also accounts for significant portions of inflow and outflow to the model. Much of the input data associated with the surface water simulation, such as canal construction details and stage levels, are limited. Inaccuracies associated with estimates of these parameters may significantly impact the accuracy and reliability of the model. Efforts should be made, both through data acquisition studies and the regulatory process, to obtain the needed data and information.
3. The nature of the shallow ground water system in Palm Beach County results in a significant link between ground water and surface water flow. MODFLOW does not provide an adequate simulation of ground water - surface water interactions. A fully integrated ground water - surface water model should be developed in order to provide a comprehensive tool for use in water resource planning and management.
4. Additional information should be gathered to improve the accuracy of the ground water use simulation of the model. Required information includes utility service area boundaries, planar coordinates of supply and monitor wells, and pumpage records for individual wells. This information can be collected and maintained in a database through the District's regulatory program.

Model Availability

Electronic copies of the model data sets are available for a fee from the SFWMD Hydrogeology Division. If, in using the model, users include new or more detailed data that results in a better calibration, they are encouraged to share the data with the District. This will result in a more consistent and accurate model available for use by all interested parties. Refinement of the model will be a continuous, ongoing process.

TABLE OF CONTENTS

EXECUTIVESUMMARY i
TABLE OF CONTENTS V
LIST OF FIGURES vii
LIST OF TABLES viii
ACKNOWLEDGEMENTS ix
INTRODUCTION 1
Background 1
Purpose 1
Scope 2
Aquifer Systems of the Modeled Area 2
MODEL DEVELOPMENT 7
Discretization 9
Space Discretization 9
Time Discretization 11
Boundary Conditions 11
Eastern Boundary 12
Western Boundary 12
Northern Boundary 13
Southern Boundary 13
Hydraulic Characteristics 13
Conductivity 13
Transmissivity 13
Specific Yield and Storage 14
Vertical Conductance 14
Evapotranspiration 16
ET Surface 16
Maximum ET Rate 16
Extinction Depth 17
Water Table and Capillary Fringe 17
Surface Water System of the Modeling Area 23
Rivers 23
Drains 24
Recharge 27
Net Precipitation. 27
Surface Drainage 30
Public Water Supply 30
Non-Public Water Supply 32
MODEL CALIBRATION 35
Steady State Calibration 35
Criteria 35
Results 35
Transient Calibration 47
Criteria 47
Results 47
Volumetric Budget 54
SENSITIVITY ANALYSIS 57
CONCLUSIONS 58
RECOMMENDATIONS 59
REFERENCES 61
APPENDIX A: Model Results for Steady State Simulation 63
APPENDIX B: Magnitude and Direction of Flow 75
APPENDIX C: Maps of Model Layer Elevation 87
APPENDIX D: Maps of Model Layer Thickness 95
APPENDIX E: Information Used for Calculating Pumpage 101
APPENDIX F: Model Input Data 121
APPENDIX G: Selected Hydrograph Comparisons 133

LIST OF FIGURES

Figure
1 Location of Study Area 3
2 Study Area 4
3 Land Use Types in Study Area 5
4 Conceptual Cross Section of Hydrogeologic Zones within the Surficial Aquifer System 6
5
Model Grid, Model Area and Model Boundaries 10
$6 \quad$ Vertical Conductance between Layer 1 and Layer 2 15
7
Cells Containing River Reaches 25
8
Cells Containing Drain Reaches 26
10
11 Cells Containing Non-Public Water Supply Wells 33
Rainfall Stations Supplying Precipitation Data 28
Cells Containing Public Water Supply Wells 31
12
Observation Wells, Layer 1 36
13 Observation Wells, Layer 2 37
14 Observation Wells, Layer 3 38
15 Observation Wells, Layer 4 39
16 Observation Wells, Layer 5 40
17 Steady State Calibration Residuals from Average Measured Water Levels 41
18 Difference Between Observed and Calculated Water Levels, Layer 1 49
19 Difference Between Observed and Calculated Water Levels, Layer 2 50
20 Difference Between Observed and Calculated Water Levels, Layer 3 51
21 Difference Between Observed and Calculated Water Levels, Layer 4 52
22 Difference Between Observed and Calculated Water Levels, Layer 5 53

LIST OF TABLES

Table Page
1 MODFLOW packages used in the Palm Beach Model 8
2 SFWMD Land Use and Land Cover Classification Code 18
3 Extinction Depths Used in ET Preprocessing 22
4 Transient Calibration Results 47
5 Volumetric Budget of the Model (Steady-State Condition) 54
6 Volumetric Budget for the Area Covered by the Previous Palm Beach County Models 55

ACKNOWLEDGEMENTS

The authors wish to thank Keith Smith, Leslie Wedderburn, Garth Redfield, Mary-Jo Shine, Amanda Krupa, and Mariano Guardo for reviewing the earlier version of this document and providing valuable comments, which greatly improved the quality of this document.

Gratitude is expressed to Barbara Dickey for her support in using the pre and post-processors. Also to Diane Bello, Janet Wise and Dave Demonstranti for creating graphics.

This project was carried out under the direction of Scott Burns, formerly the Director of the Hydrogeology Division and currently Director of the Water Use Division and Keith Smith, currently Director of the Hydrogeology Division. I would like to thank them for giving me the opportunity to undertake this effort.

Finally, the author would like to acknowledge Hedy Marshall for her patience, competence and knowledge essential in the word-processing and editing of the final report.

INTRODUCTION

BACKGROUND

Two three-dimensional ground water models for the eastern Palm Beach County area were developed by the South Florida Water Management District (SFWMD) in 1989. The models were calibrated against the average ground water level data collected by the United States Geological Survey (USGS) between October 1983 and May 1985 at 74 observation wells. The model documentation (Shine et al., 1989) describes in detail the aquifer systems, the hydrologic conditions, and the model calibration. In addition to compiling and evaluating existing hydrogeologic data, one of the objectives of the project was to make predictive simulations with the model and to assess the potential impacts of different climatic and hydrologic conditions on the groundwater resources of eastern Palm Beach County. The models were used to simulate ground water level declines after droughts of 90 and 180 days duration.

After 1989, the District made significant efforts to develop other county-wide ground water flow models to support county-wide and regional water supply planning. Among the county-wide ground water models, the Martin County ground water model (Adams, 1992) and the Broward County ground water model (Restrepo, et al., 1992) were developed by early 1992. During this period, it was realized that a significant amount of updated information for Palm Beach County area had been collected, including data on topography and land use. Since Palm Beach County had experienced a relatively dry period from January 1989 to June 1990, it was decided to update the model input data and re-calibrate the Palm Beach County ground water model to the dry period.

PURPOSE

The study was undertaken as part of the South Florida Water Management District's Water Supply Planning initiative. The model can be used within the SFWMD by the Planning Department in the development of Water Supply Plans and by the Regulation Department to review applications for water use to assure their consistency with District regulatory criteria. The Water Supply Plans include projections of future water demands for the years 2010, identification of water sources and methods to meet the demands on a regional scale, and an analysis of impacts associated with alternate water supply methods.

In order to accurately simulate different scenarios corresponding to future water supply alternatives, the most up-to-date information should be used. With the most recent information (detailed land use information, updated stresses, and rainfall), the Palm Beach County ground water model will be more useful for both planning and regulatory applications.

SCOPE

The scope of the re-calibration effort included:
(1) redefining the model boundaries,
(2) combining the two original models into a single model,
(3) updating selected time series and static data, and
(4) calibrating the revised model.

The location and area covered by the model are shown in Figures 1 and 2, respectively. The eastern boundary of the model is the Intracoastal Waterway. The western boundary of the model consists of Lake Okeechobee, the West Palm Beach Canal, Water Conservation Area 1 (WCA 1) and L-36. The north boundary is approximately 5 miles north of the Palm Beach and Martin County boundary and includes part of the C-44 canal. The south boundary is approximately 7 miles south of the Palm Beach and Broward County boundary at the C-14 canal.

Selected time series data were updated to the January 1989 to June 1990 time period. Updated data includes rainfall, temperature, ground water pumpage, and surface water stage elevations. In the original models, surface water elevations were averaged over the calibration period and not varied for each stress period. Monthly average elevations were used in the updated model. One hundred and ninety eight additional monitoring wells were added, resulting in a total of 272 monitoring wells used to calibrate the model.

Land use data for 1988 and the newly developed GIS soil maps were used for calculating potential evapotranspiration (ET) and recharge. The general land use information is shown in Figure 3. Additional surface water data was included as part of this project.

AQUIFER SYSTEMS OF THE MODELED AREA

Palm Beach County, Florida is underlain by two aquifer systems: the Surficial Aquifer System and the deeper Floridan Aquifer System. This study focused upon the Surficial Aquifer System which is widely used for irrigation and public water supply in Palm Beach County. In the development of the two previous models, the Surficial Aquifer System was divided into two hydrogeologic zones: a production zone, consisting of highly to moderately transmissive aquifers, and a non-production zone, comprising less transmissive formations. The production zone was further divided into a highly transmissive interval, which is the Biscayne aquifer, and a moderately transmissive interval, referred to as the non-Biscayne production zone. A conceptualized cross section of the hydrogeologic zones of the surficial aquifer can be found in Figure 4. A more detailed discussion of the hydrogeology of the model area can be found in Shine, et al., 1989.

Figure 1. Location of Study Area

Figure 2.
Study Area

Figure 3. Land Use Types in Study Area

MODEL DEVELOPMENT

The U.S. Geological Survey modular three-dimensional finite-difference ground water flow simulation program, commonly known as MODFLOW (McDonald and Harbaugh, 1988), was used to develop the Palm Beach County ground water model. MODFLOW simulates ground water flow in anisotropic, heterogeneous, layered aquifer systems. The finite-difference approach is block-centered. Layers may be simulated as confined, unconfined or convertible (confined/unconfined). This model was selected for the following reasons:

1. It is available in the public domain,
2. It is compatible with most computers with only minor modifications,
3. The modular structure of the code and its excellent documentation allow easy modification of the code and the addition of new modules for special applications,
4. MODFLOW allows great flexibility of data file structure and management, which facilitates the employment of and interaction with other software for data manipulation, and
5. The cell-by-cell flow feature of the code can be used to:
a. evaluate, in detail, flow and head changes associated with various withdrawal scenarios, and
b. generate boundary conditions for higher-resolution models within the regional flow model.

The MODFLOW code is written in modular form. It consists of a main routine and a series of highly independent subroutines called modules. These modules are grouped into packages which address the general use of the model, specific features of the hydrologic system, or particular solution techniques. The hydrologic system packages simulate recharge, evapotranspiration from the saturated aquifer zone, rivers, drains, wells, and other sources and sinks of water external to the model (boundary conditions). Three solution technique packages are available for simulating flow problems: 1) slice successive over relaxation (SSOR), 2) strongly implicit procedure (SIP), and 3) the preconditioned conjugate gradient (PCG) method. The SIP method was used in this study. The MODFLOW modules used in this study are listed in Table 1, which are the same as those used by the original north and south Palm Beach models.

Three types of boundary conditions are available for the model formulation; prescribed head, prescribed flux and mixed boundary. A prescribed head boundary is defined when the head is specified as a known function of space and time at the boundary. Similarly, prescribed flux is defined when the flux is specified as a known function of time at the outer edges of boundaries. The mixed boundary condition, a type of head-dependent flux, is defined when the ratio between the head gradient and flux is known. Constant head boundaries, which are a particular case of prescribed head boundaries, maintain the same user-specified head levels throughout the simulation.

Table 1. MODFLOW PACKAGES USED IN THE PALM BEACH MODEL

MODFLOW PACKAGE	FUNCTION	USE IN MODEL
Basic	Handles model administration.	Used
Block Centered Flow	Computes coefficients of finite difference equations for ground water flow, in an isolated aquifer system considering constant head cells.	Used to represent aquifer system without constant head cells.
Well	Simulates a source or sink to the aquifer at a specific rate not affected explicitly by heads and cell area.	Used to simulate pumpage and injection wells.
River	Simulates the effects of river leakage. River may act as recharge or discharge sources depending on the head gradient between the river stage and the ground water regime.	Used to simulate the interaction between a surface water body and the aquifer in cells with maintained SFWMD canals, gecondary canals with recharge systems, or secondary canals having free flow with SFWMD canals.
Drain	Simulates the effects of drains, which remove water from the aquifer when the head in the aquifer is higher than the head in the drain.	Used to simulate water levels in unmaintained canals and some lakes which are not isolated
Recharge	Simulates recharge to the aquifer from deep percolation due to precipitation.	Used
Evapotranspiration	Simulates the effects of evapotranspiration from a saturated aquifer system.	Used
General Head Boundary	Simulates a source/sink of water outside model area which provides or removes water to a model active cell at a rate proportional to the head gradient between the source and the cell.	Used to simulate General Head Boundary conditions and prescribed heads.
Strongly Implicit Procedure (SIP)	Solves the model's finite difference equations using the SIP method.	Used
Observation Nodes	Generates computed aquifer heads for selected model cells.	Used for calibration and comparison purposes.

Prescribed flux boundaries can be simulated in MODFLOW through the use of external source terms in the model. No-flow boundaries are a type of prescribed flux boundary for which no flow is simulated between the inactive cell and any adjacent active cell. Head-dependent flux boundaries generate a flux dependent on the head in the cell and a user-prescribed head assigned to the external source. Prescribed head can be represented in MODFLOW as a particular case of head-dependent flux, where the flux is set as large as needed. All types of boundary conditions can be set anywhere within a model grid. A no-flow boundary is implicit along the outer edges and bottom layer of a model grid.

DISCRETIZATION

Space Discretization

The model area is horizontally discretized into half mile by half mile cells and consists of 110 rows and 75 columns (Figure 5). This model covers a larger area than the two previous models. The upper left hand corner of the previous north Palm Beach model is located at row 9 and column 18 of the current model. The lower right hand corner cell of the south Palm Beach model is located at row 97 and column 75 of the current model. The state plane coordinates of the lower right hand corner are X $=813346$ feet and $\mathrm{Y}=688948$ feet. The vertical discretization is similar to the original models except that layer 5 and layer 6 of the previous models were combined into one layer (layer 5) in this model. A conceptual cross section of the vertical discretization can be found in Shine, et al., 1989. The top and bottom elevations of each model layer are presented in Appendix C. The thicknesses of layers 2 through 5 are presented in Appendix D. Vertical discretization of the Surficial Aquifer System was designed as follows:

1. Layer 1 contains all river, drain, recharge and evapotranspiration cells. Layer 1 extends from the water table to a depth about - 20 ft NGVD. This depth was selected in order to portray soil conditions while avoiding drying of cells during model simulations. This layer is mainly composed of low permeability aquifer formations.
2. Layer 2 contains all sediments from the bottom of layer 1 to the top of the highly permeable limestones of the Biscayne aquifer. This layer extends from about -20 to -60 ft NGVD. The bottom depth of layer 2 represents the top of the Biscayne aquifer.
3. Layers 3 and 4 represent the Biscayne aquifer. The top of layer 3 (bottom of layer 2) was assigned to the first occurrence of highly permeable limestone seen in cores and well logs, or at the top of strata identified as having hydraulic conductivities of $1600 \mathrm{ft} / \mathrm{day}$. The top of layer 4 (bottom of layer 3) is approximately the midpoint of the Biscayne aquifer.
4. Layer 5 begins at the bottom of the Biscayne aquifer, or when the highly permeable limestones found above give way to significantly less permeable sands, silts, and shell. The bottom of layer 5 generally coincides with the bottom of the Surficial Aquifer System.

Figure 5. Model Grid, Model Area and Model Boundaries

Time Discretization

Transient model runs were separated into 18 one month stress periods to match end of month water level readings for calibration purposes. There are 4 equal length time steps per stress period. Steady state conditions were established using the average values of the 18 stress periods, which simulates the scenario that the system has stress, recharge and ET under the average conditions for a length of time equal to the 18 stress periods and reaches a steady-state condition. Under the steady-state condition, there is no further change in water levels throughout the system for a given set of inflow/outflow conditions.

Transient discretization into one-month stress periods was chosen because of the availability of monthly pumping reports from public water utilities and computer storage considerations at the beginning of the modeling effort. The transient calibration period was from January 1989 through June 1990.

BOUNDARY CONDITIONS

Model boundary conditions determine effects of the external flow system on the modeled area. Boundary conditions are expressed in mathematical equations which represent the physical conditions to be simulated in the model. Whether a model's boundaries are true physical conditions or practical representations, boundary condition specification is extremely important and requires an understanding of the mathematical role of boundary conditions as well as the hydrogeological relationships. In order to assure the best simulation results in the areas of interest, two principles were used to define the boundaries of the model: 1) use the MODFLOW modules which represent the physical conditions of boundaries, 2) place the model boundaries at a great distance from the areas of interest to reduce the boundary effects.

A combination of no-flow, general-head, and general-head acting as prescribed head boundaries were used in the model. The active and inactive cells, and general head cells, which are boundary cells, are shown in Figure 5. The boundary conditions of this model were set up slightly different from those of the two original models. The differences are mainly that most of the constant head boundaries and the no-flow boundaries described in the original models have been converted to general head boundaries or prescribed head boundaries. These boundaries include the entire eastern boundary, the western boundary, and part of the southern and northern boundaries. Also the north and south boundaries were extended beyond the county lines into Martin and Broward County, respectively.

The general head package was used to generate head dependent flux and prescribed head boundaries. According to McDonald and Harbaugh (1988), a general head boundary consists of a water source outside the modeled area which supplies or removes water to a model cell at a rate proportional to the head difference between the source and the cell. The rate at which water is supplied to a cell is given by:

$$
\begin{equation*}
Q_{i}=C_{i}\left(H B_{i}-h\right) \tag{1}
\end{equation*}
$$

where
$Q_{i}=$ the flow rate to the cell from boundary i, or vice versa ($\mathrm{ft} 3 / \mathrm{day}$),

$$
\begin{aligned}
\mathrm{C}_{\mathrm{i}} & =\text { the constant of proportionality for boundary } \mathrm{i}(\mathrm{ft} 2 / \text { day }), \\
\mathrm{HB}_{\mathrm{i}} & =\text { the average head at the source boundary } \mathrm{i}(\mathrm{ft}), \text { and } \\
\mathrm{h} & =\text { the average head in the cell (} \mathrm{ft} \text {). }
\end{aligned}
$$

The constant of proportionality for the boundary i is defined herein as the horizontal conductance. C_{i}, (ft2/day), and was calculated using the equation:

$$
\begin{equation*}
C_{i}=K_{h}^{*} b^{* W} L \tag{2}
\end{equation*}
$$

where

K_{h}	$=$ the horizontal hydraulic conductivity of the cell (ft/day),
b	$=$ the average thickness of the layer (ft),
W	= the width of the cell (ft), and
L	= the length of the assumed flow path line (ft).

Prescribed head cells differ from constant head cells in that the head values can change between stress periods and the conductance can be calculated according to the physical conditions of boundary cells.

Eastern Boundary

The eastern boundary of the model is either the Intracoastal Waterway or the ocean. In the original models, the boundary was treated as a constant head boundary at layer 1, and no-flow boundaries in the lower layers. Tidal waterbodies are actually infinite sources or sinks which can be considered a head-dependent flow boundary at each of the aquifer layers. This boundary was described using the general head boundary package. The monthly mean sea levels were used as the heads of the external sources. A conversion of salt water head to equivalent fresh water head was not used. In layers 1 and 2 , the eastern boundary cells were assumed in direct contact with the tidal water body. Accordingly, horizontal conductance values were set large enough to provide an unlimited source/sink of water, thereby acting as a prescribed head boundary. Layers 3, 4 and 5 are located within aquifer material and a more restrictive general head boundary was assigned. The horizontal conductance was decreased with depth in the three lower layers in order to simulate the salt water/fresh water interface along the coast.

Western Boundary

The western boundary was defined by canals, levees, Lake Okeechobee and the Water Conservation Area 1 (WCA-1). Since the surface water system exhibits a significant link with the underlying aquifers, and the water levels change significantly with time, the boundary was set as a general head boundary instead of a constant head boundary as in the original models. The general head cells differ from constant head cells in that the head values can change between stress periods and the recharge or discharge flows are calculated based on the conductances and head gradient between the assigned heads and the calculated heads of the corresponding cells. These designations are closer to reality. For simulating flow from WCA-1 into the modeled area, the boundary was located west of the perimeter levee. In layer 1, the cells were given large conductance values to allow the cells to function as prescribed head cells. In layers 2 through 5 , conductance was decreased from layer to layer with depth approaching the conductance calculated using the actual inter-block transmissivity in the lower layers. As a result, the general head cells in layers 2 through 5 may function more like general head boundaries than prescribed head
boundaries. The heads in all layers for the boundary were assumed the same as the water levels in the WCA-1 and the water levels in the L-10 canals. The western boundary extends far enough westward from the levees on the eastern side of the WCAs so that the boundary effects have little impact on the results caused by the stresses occurring within the developed areas.

Northern Boundary

The northern boundary of the model was placed five miles north of the Palm Beach County/Martin County border to reduce any boundary effects from the edges of the model to the areas of interest. Unlike the western boundaries, actual aquifer conductance values were used in the areas where canals do not exist. For the portion of the north boundary which is not controlled by canals or surface water bodies, the data for the general head boundary were obtained from the calibrated Martin County model.

Southern Boundary

The south boundary was set at the C-14 Canal which is located 7 miles south of the Palm Beach/Broward County border. The canal is located far enough into Broward County so that stresses occurring near the county border should not be affected by the boundary conditions or vice versa. General head boundary conditions are assumed for all layers. The conductance of layer one was estimated based on the data associated with C-14 canal. The conductance in layers 2 through 5 was estimated based on the aquifer hydraulic conductivity and the cell size of the model. The head values for all layers are assumed as the canal water levels for the modeling period.

HYDRAULIC CHARACTERISTICS

Conductivity

The hydraulic conductivity of the aquifer systems is a combination of the hydraulic conductivity values from the two previous Palm Beach models, the Martin County model and the Broward County model. The hydraulic conductivities of these models were based on aquifer tests. The conductivity values from the Martin County and Broward County models were used in the part of the model which covers portions of other counties. The conductivity values from the original Palm Beach models were used for the remaining areas. These three data sets formed the hydraulic conductivity arrays for the current Palm Beach County model. The conductivity values for layer 1 were directly used as model input. The hydraulic conductivity values were further adjusted in the calibration process. The values of hydraulic conductivity for layer 1 range between 2 feet/day and 668 feet/day.

Transmissivity

Pre-calibration transmissivities for all layers in the model were initially based on the hydraulic conductivity arrays described above. Transmissivity of layers 2 and 5 were calculated as the product of layer thicknesses and hydraulic conductivity values. Transmissivity values ranged between 1,015 and $64,122 \mathrm{ft} 2 /$ day for layer 2 and between 55 and $9,775 \mathrm{ft} 2$ /day for layer 5 . These layers are classified as confined/unconfined, with the thicknesses of each layer remaining unchanged throughout the simulation. Storage coefficients may alternate between confined and unconfined values should the layers desaturate. Initial transmissivity estimates for
layers 3 and 4 range from 875 to $115,840 \mathrm{ft} 2 /$ day and from 955 to $160,640 \mathrm{ft} 2 / \mathrm{day}$ respectively.

Specific Yield and Storage

Specific yield was set to a uniform value of 0.25 . Storage coefficient was set to a uniform value of 0.0001 . Repeated model runs at a range of values between 0.20 and 0.30 for specific yield and between 0.00005 and 0.0002 for storage coefficient show that the head change on average is not very sensitive to these two parameters. This is consistent with the sensitivity analysis results of Martin and Broward County models. By understanding that the set up of this model and the hydrogeologic conditions of the Palm Beach area have many similarities with the other two county models, it was assumed that the results of sensitivity analysis would be the same as those from Martin and Broward County models, as well as the previous Palm Beach models. Due to time constraints, a systematic sensitivity analysis to all model parameters was not carried out.

Vertical Conductance (Vcont)

The vertical conductances were calculated using the vertical hydraulic conductivity values divided by the distance between the center of the two adjacent layers. The vertical hydraulic conductivities were assumed equal to 0.1 times the horizontal hydraulic conductivities. Vcont between layer 1 and layer 2 is plotted in Figure 6.

Within the MODFLOW model, vertical flow between layers is controlled by the vertical conductance coefficients ($\mathrm{V}_{\text {cont }}$). $\mathrm{V}_{\text {cont }}$ is a composite term which is input into the model. $V_{\text {cont }}$ is expressed in units of day-1. It is calculated for two nodes located at vertically adjacent geohydrologic units as:

$$
\begin{equation*}
V_{\text {cont }}=\frac{1}{\frac{b_{u} / 2}{K_{u} * a}+\frac{b_{l} / 2}{K_{l} * a}} \tag{3}
\end{equation*}
$$

where
b_{u} and b_{1} are the thicknesses of the upper and lower layers (ft), $\mathrm{K}_{\mathbf{u}}$ and K_{1} are the horizontal hydraulic conductivities for the upper and lower layers (ft/day), and
a is the ratio of vertical to horizontal hydraulic conductivity (the vertical anisotropy factor) for each layer under consideration.
$V_{\text {cont }}$ was adjusted non-uniformly in space during the calibration process.

Figure 6. Vertical Conductance between Layer 1 and Layer 2

EVAPOTRANSPIRATION

The Modified Blaney-Criddle method (SFWMD, 1985) was used to calculate the potential evapotranspiration rate ($\mathrm{ft} / \mathrm{month}$). Temperature data collected in Palm Beach County from 1989 to 1990 were used. Crop coefficients were taken from values presented in SFWMD's Permit Information Manual Volume III (SFWMD, 1985). The land use information was obtained from the District's 1988 land use coverage. The ET surface was set to 1.5 feet below the land surface elevation. The extinction depth was determined based on land use type and crop rooting depth. The procedure used to generate the various ET arrays is discussed in detail in the following paragraphs.

Water loss through direct evaporation and through transpiration from the saturated zone by plants is simulated in the model by the evapotranspiration (ET) package of MODFLOW. The following assumptions are applied (McDonald and Harbaugh, 1988):

1. When the water table is at or above a specified elevation, termed "ET surface", ET loss from the water table occurs at a specified maximum rate.
2. When the depth of the water table below the ET surface exceeds a specified value, termed the "extinction depth" or "root zone", ET from the water table ceases.
3. ET from the water table varies linearly between the above limits.

ET Surface

The ET surface elevation is represented by the land surface elevation of the modeled area minus any significant capillary zone height. Initial land surface values were taken from USGS 7.5 minute topographic quadrangle maps and from additional control points such as land surface elevation from USGS monitor wells. These points were then contoured and smoothed using SURFER (Golden Software). Where water bodies such as lakes or borrow pits were present, the free water surface was used as the base elevation. The ET surface was then determined as 1.5 feet below land surface during the calibration process.

Maximum ET Rate

The maximum ET rate was estimated using the modified Blaney-Criddle equation. The basic form of the equation is

$$
\begin{equation*}
U=k^{*} k_{t}^{*}\left(P_{m}^{*} t_{m} / 100\right) \tag{4}
\end{equation*}
$$

where
$\mathrm{U}=$ the crop ET for the time period (i.e., a month) in inches per day from layer 1 ,
$\mathrm{k}=$ the consumptive use coefficient which varies according to the crop,
$k_{t}=$ the climatic coefficient which is related to the mean air temperature (defined as $\mathrm{k}_{\mathbf{t}}=.0173 \mathrm{t}-.314$),
$p=$ the percent of daytime hours during the month,
$\mathrm{t}=$ the mean temperature for the month, in degrees Fahrenheit, and
$\mathrm{m}=$ the month.

The consumptive use coefficient is defined:

$$
\begin{equation*}
k=k_{c} * k_{f} \tag{5}
\end{equation*}
$$

where
$\mathrm{k}_{\mathrm{c}}=$ the crop coefficient reflecting the growth state of the crop, and
$\mathrm{k}_{\mathrm{f}}=$ the coefficient reflecting the fraction of land surface which is covered with a specific type of vegetation. It varies between 0.1 and 1.0 . The specific values of k_{c} and k_{f} can be found in Appendix C of the Broward County Model Documentation (Restrepo, et al., 1992).

Temperature data were used from meteorological stations in West Palm Beach. Crop coefficients for each land use type (k_{c}) were either taken directly from or inferred from values presented in SFWMD's Permit Information Manual Volume III (1985). Values of k_{f} for urban land uses were determined for each land use type by examination of appropriate surface water permit data for ratios of pervious to impervious area. A k_{f} value of 1 was assigned to all land use types except urban and barren land.

Extinction Depth

Extinction depth represents the depth of the water table below the ET surface elevation beyond which evapotranspiration from the water table ceases. It physically represents the depth to which the roots of plants extend below land surface. Extinction depths in the model are related to land use and are based upon estimated root depths for various kinds of vegetation. Land use codes and their assigned extinction depth values are shown in Table 2 and Table 3 respectively.

Water Table and Capillary Fringe

The variation of evapotranspiration with the water table depth depends on the ground cover conditions. It is apparent that the deeper the roots, the greater the depth at which water losses occur. Even with relatively deep water tables, evapotranspiration does not necessarily cease because upward transport can still occur. Capillary rise is a function of soil grain size and can vary from 0.3 feet in a coarse gravel to 6 feet in clay (Fetter, 1980). Since MODFLOW does not address ET that occurs when the water table drops below the root zone, capillary fringe ET can be approximated by lowering the original ET surface by an amount equal to the capillary fringe height. To be physically accurate, however, the capillary zone height should be added to the water table level. Since the elevation of the water table changes with time, this raising of the available water level would need to be incorporated within the MODFLOW program. Therefore, in order to simplify the representation of the capillary fringe ET, the capillary zone height was represented in the ET surface values. The model results show that the actual ET is zero in the areas where the groundwater level is relatively deep. This is particularly true in cases where canals keep ground water levels below the root zone. There is ET in agricultural areas but it comes from irrigation water in the unsaturated zone. One of the disadvantages of the MODFLOW code is that ET from the unsaturated zone can not be simulated directly.

Table 2. SFWMD LAND USE AND LAND COVER CLASSIFICATION CODE

LEVELI LEVELII LEVELIII
(U) Urban and built-up land
(UR) Residential
(URSL) Single-family, Low Density (under 2 D.U./gross acre)
(URSM) Single-family, Medium Density (2 to 5 D.U./gross acre)
(URSH) Single-family, High Density (over 5 D.U./gross acre)
(URMF) Multi-family building
(URMH) Mobile homes
(UC) Commercial and Services
(UCPL) Parking lot
(UCSC) Shopping center
(UCSS) Sales and services
(UCCE) Cultural and Entertainment
(UCMC) Marine commercial (Marinas)
(UCHM) Hotel-Motel
(UI) Industrial
(UIJK) Junkyard
(UILT) Other light industrial
(UIHV) Other heavy industrial
(US) Institutional
(USED) Educational
(USMD) Medical
(USRL) Religious
(USMF) Military
(USCF) Correctional
(USGF) Governmental (other than military or correctional)
(USSS) Social services (Elks, Moose, Eagles)
(UT) Transportation
(UTAP) Airports
(UTAG) Small grass airports
(UTRR) Railroad yards and terminals
(UTPF) Port facilities
(UTEP) Electrical power facilities
(UTTL) Major transmission lines
(UTHW) Major highway and rights-of-way
(UTWS) Water supply plants
(UTSP) Sewerage treatment plants
(UTSW) Solid waste disposal

Table 2. (Continued)
$\begin{array}{ll}\text { (UTRS) } & \text { Antenna arrays } \\ \text { (UTOG) } & \text { Oil and gas storage }\end{array}$
(UO) Open and others

(UORC)	Recreational facilities
(UOGC)	Golf courses
(UOPK)	Parks
(UOCM)	Cemeteries
(UORV)	Recreational vehicle parks
(UOUD)	Open under development
(UOUN)	Open and undeveloped within
	urban area

(A) Agriculture

(AC) Cropland
(ACSC) Sugar cane
(ACTC) Truck crops
(ACRF) Rice fields
(AP) Pasture
(APIM) Improved pasture
(APUN) Unimproved pasture
(AM) Groves, Ornamentals, Nurseries, Tropical fruits
(AMCT) Citrus
(AMTF) Tropical fruits
(AMSF) Sod farms
(AMOR) Ornamentals
(AF) Confined feeding operations
(AFFL) Cattle feed lots
(AFDF) Dairy farms
(AFFF) Fish farms
(AFHT) Horse training and stables
(AFPY) Poultry
(R) Rangeland
(RG) Grassland
(RS) Scrub and brushland
(RSPP) Palmetto prairies
(RSSB) Brushland
(F) Forested uplands

Table 2. (Continued)
(FE) Coniferous

(FEPF)	Pine flatwoods
(FESP)	Sand pine scrub
(FECF)	Commercial forest (pine)

(FO) Non-coniferous

(FOAP)	Australian pine
(FOBP)	Brazilian pepper
(FOPA)	Palms
(FOSO)	Scrub oak
(FOOK)	Oak
(FOCF)	Commercial forest

(FM) Mixed forested
(FMTW) Temperate hardwoods
(FMCM) Cabbage palms/Melaleuca
(FMCO) Cabbage palms/Oaks
(FMPM) Pine/Melaleuca
(FMPO) Pine/Oak
(FMTH) Tropical hammocks
(FMOF) Old fields forested
(FMCD) Coastal dunes
(FMPC) Pine/Cabbage palms
(W) Wetlands
(WF) Forested fresh
(WFCM) Cypress/Melaleuca
(WFCY) Cypress
(WFWL) Willow
(WFME) Melaleuca
(WFSB) Scrub and brushland
(WFMX) Mixed forested
(WN) Non-forested fresh
(WNSG) Sawgrass
(WNCT) Cattail
(WNBR) Bullrush
(WNWC) Wire cordgrass
(WNAG) Mixed aquatic grass
(WNWL) Sloughs
(WS) Forested salt
(WSRM) Red mangrove
(WSBW) Black and White mangrove
(WM) Non-forested salt

Table 2. (Continued)

(WX) Mixed forested and non-forested fresh

(WXPP) Pine and wet prairies
(WXCP) Cypress domes and wet prairies
(WXHM) Hardwood marsh
(H) Water
(B) Barren land
(BB) Beaches
(BP) Extractive (strip mines, quarries, and gravel pits)
(BS) Spoil areas
(BL) Levees

* Documentation of major codes from "LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM, A TECHNICAL MANUAL", Department of Transportation, State Topographic Office Remote Sensing Center, Kuyper, Becker and Shopmyer, February 1981
$=$

号
0
0 n

Extinction
Depth
（feet）

Land Use Code

蚵定
事

THE SURFACE WATER SYSTEM IN THE MODELING AREA

The surface water system in the area consists mainly of canals and lakes. Many major and minor canals exist within the study area. Understanding the function of these canals and their relation to the ground water levels is essential in developing an effective model for the study area.

The major canals are managed by the South Florida Water Management District (SFWMD) through the use of pump stations and control structures (Sherwood, et al., 1973). During dry periods, water is transported via canals from Lake Okeechobee and the Water Conservation Areas into the study area for water supply, to maintain adequate water levels in the canals, and to prevent salt water intrusion. During wet periods, water is either discharged to the ocean or pumped into the Water Conservation Areas in order to reduce the potential for flooding.

Most of the secondary canals and lakes throughout the study area are managed by local water control districts, drainage districts, or improvement districts. For example, the Hillsboro Basin is managed by the Lake Worth Drainage District (LWDD). The LWDD withdraws water from the Hillsboro Canal via pumps on the E-2-W Canal in order to maintain the control elevations in the canals. This operational strategy increases the ground water level of the basin and reduces salt water intrusion.

According to the previous discussion, the canals operated by the SFWMD, canals owned and operated by drainage districts which had active recharge systems during the calibration period, and canals, which are subject to tidal influences, are simulated using the river package. All other canals within the study area were simulated using the drain package.

Rivers

Rivers function as a source of recharge to the aquifer and a recipient of discharge from the aquifer. River-aquifer interaction is dependent on several factors:

1. the degree of hydraulic connection between the river and the aquifer,
2. the difference in water levels between the aquifer and the river,
3. the shape of the flow lines in the aquifer surrounding the river reach (for example, the flow lines may be more vertical or more horizontal),
4. the local hydraulic conductivity associated with the river reach,
5. the geometric characteristics of the cross-section of the river reach, and
6. restricted seepage rates due to clogging of the river reach by fine sediments of significantly lower hydraulic conductivity than the underlying material.

McDonald and Harbaugh (1988) approximated vertical leakage through the river bed by the following equation:

$$
\begin{equation*}
Q=K^{*} L^{*} W^{*}\left(H_{c}-h\right) / M \tag{6}
\end{equation*}
$$

where
$\mathrm{Q}=$ the leakage through the reach of the river bed (ft $3 / \mathrm{day}$),
$\mathrm{K}=$ the hydraulic conductivity of the river bed (ft/day),
L
$\mathrm{W}=$ the length of the reach (ft),
M = the width of the river (ft),
H_{c} = the thickness of the river bed (ft),
$\mathrm{h}=$ the average monthly river stage (ft), and

A total of 3,633 river reaches were identified and described in the river package. The rivers include the canals and lakes providing recharge to the underlaying aquifer. The river stages were set to the maintained elevations as reported in monthly average stage data from SFWMD and USGS. The bottom elevations of rivers were determined from construction drawings, survey maps, and topographic maps. The model cells containing rivers are plotted in Figure 7. All rivers are in the first layer of the model.

Drains

Drains are the canals which are not likely to provide recharge water to aquifers, instead, they only discharge water from aquifer. The drain elevations were set to control structure elevations or to canal bottom elevations if the canal was uncontrolled. Drain bed conductance was estimated using the method discussed in the river section. The cells containing drains are shown in Figure 8.

The information describing the canals in the areas overlapped with the Martin and Broward County models were entered into a Geographic Information System (GIS), then converted into the appropriate cells in the model grid using an ARC/INFO report file and a pre-processor. The information describing the canals in the remaining area of the model were converted into the new model format from the original model data sets, except that average monthly stage levels were used instead of stage levels averaged over the calibration period as was done in the original model.

The canals classified as drains were simulated using the drain package. Only layer 1 has drain cells. The difference between the river package and the drain package is that the drain package only allows flow from the aquifer into the drain.

The vertical hydraulic conductivity values for both river and drain cells were initially set as soil hydraulic conductivities or the values used in the original models. A vertical conductance was calculated for each river or drain reach in each model cell. Through the calibration process, the conductance values were adjusted. The thickness parameter M was assumed as 1.0 foot since there were no measured data available. The errors caused by this assumption were reduced during calibration process, since the values of conductance of river and drain were varied non-uniformly in space to achieve a satisfactory calibration. There are 7,286 reaches of rivers and drains in the model. Since it is not convenient to list this amount of data in this document, the information used for river and drain data is maintained in electronic format as the files "fort. 14 " and "fort.13". The files can be found, together with other

Figure 7. Cells Containing River Reaches

Figure 8. Cells Containing Drain Reaches
model input and output files, in the SFWMD Hydrogeology Division groundwater model information base. The files for the Palm Beach County model in the groundwater model information base are listed in Appendix F.

RECHARGE

The recharge to the aquifer from rainfall was estimated using daily rainfall data obtained from the SFWMD DBHYDRO database, GIS land use type, the GIS soil map with mean vertical hydraulic conductivity calculated for each soil type, interception coefficients for various plants, and surface runoff and soil storage coefficients. The meteorological stations that provided data for the model are shown in Figure 9. Rainfall records from these stations indicate that the amount of rainfall during the period of 1989 through 1990 is below normal, which resulted in less than normal recharge to the aquifer. Precipitation was regionalized throughout the model using a kriging algorithm. The recharge was calculated using a standard procedure described below:

The average recharge depth in a model cell resulting from precipitation, R_{p}. can be computed using the mass balance equation as:

$$
\begin{equation*}
R_{p}=P_{n}-Q_{d}-E T_{u} \tag{7}
\end{equation*}
$$

where
$P_{n}=$ the average net precipitation depth over the cell not lost to interception or depressional storage.
$Q_{\mathrm{d}}=$ the average depth of water lost to surface drainage (not otherwise simulated using a MODFLOW package).
$E T_{\mathbf{u}}=$ the average evapotranspiration depth from the unsaturated zone (not calculated by the evapotranspiration package in MODFLOW).

The evapotranspiration depth from the unsaturated zone, ET_{u}, was not considered in this model. In areas where there is a significant unsaturated zone above the water table, however, the recharge calculations may become inaccurate without considering $\mathrm{ET}_{\mathbf{u}}$.

Net Precipitation

The average monthly net precipitation depth, P_{n}, for a cell can be approximated from the total monthly precipitation depth over the cell, P_{t}, as:

$$
\begin{equation*}
P_{n}=M A X\left\{\left(K_{i}\right)\left\langle\left(P_{t}\right)-\left(S u m\left[K_{d}(n), n=1, N\right]\right), 0\right\}\right. \tag{8}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{K}_{\mathrm{i}} & =\text { the interception coefficient, } \\
\mathrm{K}_{\mathrm{d}}(\mathrm{n}) & =\text { the depth of daily maximum depression storage loss, and } \\
\mathrm{n} & =\text { the number of days in the month. }
\end{aligned}
$$

Figure 9. Rainfall Stations Supplying Precipitation Data

Interception is that portion of gross precipitation which wets and adheres to above ground objects until it returns to the atmosphere through evaporation (Bower, et al., 1990). The quantity of water intercepted depends upon the storm character, the season of the year, and the species, age, and density of the prevailing plants and trees. The total interception by an individual plant is directly related to the amount of foliage. For non-urban land uses, extreme values of K_{i} can be defined as (Viessman, et al., 1977):
$\mathrm{K}_{\mathrm{i}}=\quad 1.00$ for clear bare ground surface (0% interception)
$\mathrm{K}_{\mathrm{i}}=$
0.75 for dense closed forest $(25 \%$ interception $)$

Values for K_{i} in urban areas ranged from 1.00 to 0.50 , depending upon the land use type. The value of K_{i} assigned to a model cell represented the weighted average of the K_{i} values for all land use types within the cell.

Precipitation that reaches the ground surface may infiltrate, flow over the surface, or become trapped in numerous small depressions. The depression-storage loss for impervious drainage areas varies from 0.05 inch, on a slope of 2.5%, up to 0.11 inch, on a slope of 1% (Bower, et al., 1990). The upper limit of 0.11 inch was assumed for the model. The model depression storage loss, $\mathrm{K}_{\mathrm{d}}(\mathrm{d})$, or simply K_{d}, was calculated as:

$$
\begin{equation*}
K_{d}=K_{d}^{\max *} \operatorname{MAX}\left\{\left[1-S Q R\left(K / K_{m}\right)\right], 0\right\} \tag{9}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{d}}{ }^{\max }=$ the sum of maximum daily depression storage losses, in inches, for the stress period computed on a daily basis (an upper limit of 0.11 inches was assumed for each day).
$\mathrm{K} \quad=$ the vertical hydraulic conductivity of the soil layer.
$\mathrm{K}_{\mathrm{m}} \quad=$ a calibration factor. It is the value of hydraulic conductivity at which infiltration is assumed to be nearly instantaneous, thus precluding evaporative losses from storage in depression.

A value of $\left(\mathrm{K} / \mathrm{K}_{\mathrm{m}}\right)=0$, signifying an impervious drainage area, implies a value of $k_{d}=0.11^{\prime \prime}$ per single precipitation event, and a value of $\left(\mathrm{K} / \mathrm{K}_{\mathrm{m}}\right)=1$, a highly pervious area, implies a $K_{d}=0$. Rainfall of less than the critical daily precipitation depth K_{d} evaporates and creates neither infiltration nor runoff drainage.

Only one precipitation event per rainy day of at least $0.11^{\prime \prime}$ was assumed. Interception - storage capacity is usually reached early in a storm event. This implies that a larger fraction of rainfall is intercepted in depressions during numerous small storms than that during infrequent severe storms (Bower, et al., 1990).

The value of soil hydraulic conductivity, K, in a model cell was estimated by examination of the tables of saturated vertical permeability for applicable soil types found in Soil Conservation Service soil survey books (Pendleton, et al., 1976 and McCollum, et al., 1978). Soil permeability values ranged from 12 feet/day to 40 feet/day throughout the modeled area.

Surface Drainage

The surface drainage depth is defined as the difference between the net precipitation depth, P_{n}, and the net infiltration (Bower, et al., 1990). The net average depth of water lost to surface drainage, Q_{d}, can be estimated by:

$$
\begin{equation*}
Q_{d}=\left(K_{s}\right)\left(K_{a}\right)\left(P_{n}\right) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathrm{K}_{\mathrm{s}} & =\begin{array}{l}
\text { a coefficient relating the potential for runoff to surface drainage, and } \\
\mathrm{K}_{\mathrm{a}}= \\
\text { a coefficient relating the potential for aquifer recharge from surface } \\
\text { drainage. }
\end{array}
\end{aligned}
$$

K_{s} varies between 0 and 1 , depending on the potential of the land use type to have surface drainage into a surface water body. The value of K_{a} is a function of the average hydraulic conductivity and the average slope of the land surface. K_{a} takes into account the effect of drainage systems which may recharge the unsaturated zone of the aquifer. It has a value of 1 if there is no drainage into the unsaturated zone, and has a value of 0 when rainfall completely recharges the unsaturated zone. Model values for K_{s} varied between 0.1 and 0.3 , with most values being 0.1 . The value for K_{a} was defined as:

$$
\begin{equation*}
K_{a}=K_{a}^{\max }\left(1-K / K_{\max }\right) \tag{11}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{a}}^{\max }=$ the maximum value that K_{a} may take (less than or equal to 1), and
$\mathrm{K}_{\max }=$ the maximum soil hydraulic conductivity in the study area.

The lists of land use codes and corresponding values for $\mathrm{K}_{\mathrm{i}}, \mathrm{K}_{\mathrm{s}}$ and K_{a} can be found in Appendix C of the Broward Model Documentation (Restrepo, et al., 1992). The direct surface drainage in southeastern Florida is assumed to be relatively small. However, the effective recharge into the aquifer depends on the amount of ground water storage available. In many cases, the ground water flow into the canals due to precipitation may be quite large, depending on the availability of stored ground water. At the same time, the amount of water released into the ocean due to a given precipitation event depends on the storage available in the surface water bodies and on flood protection criteria imposed on canal systems.

PUBLIC WATER SUPPLY

The volume of pumpage from public water supply wells was obtained from the monthly pumpage reports supplied by the utilities. The pumpage of individual wells in each wellfield was estimated by two steps, 1) determine each well's percent contribution (based on pump capacity) to the total capacity of the wellfield, 2) multiplying that percent by the monthly raw water entering the treatment plant, as reported by the utility. The information used in the model is summarized in Appendix E. The location of these wells represented in the model can be found in Figure 10.

Figure 10. Cells Containing Public Water Supply Wells

NON-PUBLIC WATER SUPPLY

Non-public water supply includes agriculture, industry, golf course, nursery, and recreation area. When available, the actual pumpage was used. When the actual pumpage is not available, the modified Blaney-Criddle equation was used to calculate the crop water requirement and then to estimate the irrigation requirement based on rainfall, crop water requirement, crop type, and irrigation efficiencies. In reality, some of the water pumped from wells for irrigation is returned to the aquifer as recharge. The amount of recharge was calculated based on irrigation efficiency. It was assumed that the recharge is to layer 1 . The cells with non-public water supply were plotted in Figure 11. The information for non-public water supply is summarized in Appendix E.

Figure 11. Cells Containing Non-Public Water Supply Wells

MODEL CALIBRATION

Calibration was completed by running the revised model and comparing the model results with the measurable physical components of the hydrogeologic system. The measured ground water levels from 272 monitoring wells were compared with the simulated heads. If the simulated and the observed temporal variations of hydraulic head match reasonably well, the model is considered to be calibrated. If not, various parameters in the model are altered until the simulated and the observed heads are in reasonable agreement, which indicates that the model closely simulates the dynamics of the physical system.

Model calibration is a lengthy process involving professional judgment and trial and error. Five simulation periods were used in the initial calibration until relatively stable conditions in the aquifer systems were achieved (e.g. head levels were realistic and showed reasonable variation over time). The model was calibrated to both steady state and transient conditions. Initial steady state runs served to make the first adjustments to the aquifer parameters. The adjusted aquifer parameter data sets then were used in the transient calibration runs, where they were refined until the model was calibrated. Then, the steady state model was re-run using the data sets from the latest transient calibration to obtain a final steady state result.

The calibration period was January 1989 through June 1990. This period was chosen because it is the most recent period represented by ample water level observations, and it is a dry period. Locations of the monitor wells in each layer used in the calibration process are shown in Figures 12 through 16. The strongly implicit procedure (SIP) was the solution method used in the calibration process.

STEADY STATE CALIBRATION

Criteria

Average values of recharge, evapotranspiration, pumpage, and surface water stage elevations from January 1989 to June 1990 were used for steady state simulation. The simulated ground water levels were compared with the minimum to maximum water level range observed from January 1989 to June 1990 . If the simulated water levels fell within the range observed for that well or the difference between the average value of the observed water levels and the simulated water level is less than 1.0 foot, the well was considered calibrated.

Results

All time series data were calculated to monthly average values and used for the steady state simulation. The calibration residuals from average measured water levels are shown in Figure 17. The comparison between the simulated water levels, the average observed water levels, and the minimum and the maximum water levels is listed in Appendix A. Fifty-eight percent of the wells meet the calibration criteria. The relative magnitude of flow in vertical and horizontal flow directions for each layer, from the steady-state simulation, are presented in Appendix B.

Figure 12. Observation Wells, Layer 1

Figure 13. Observation Wells, Layer 2

Figure 14. Observation Wells, Layer 3

Figure 15. Observation Wells, Layer 4

Figure 16. Observation Wells, Layer 5

Figure 17. Steady State Calibration Residuals from Average Measured Water Levels

Figure 17. Steady State Calibration Residuals from Average Measured Water Levels (Continued)

Figure 17. Steady State Calibration Residuals from Average Measured Water Levels (Continued)

Figure 17. Steady State Calibration Residuals from Average Measured Water Levels (Continued)

Figure 17. Steady State Calibration Residuals from Average Measured Water Levels (Continued)

Figure 17. Steady State Calibration Residuals from Average Measured Water Levels (Continued)

TRANSIENT CALIBRATION

Criteria

The simulated hydrographs were compared with observed hydrographs at the end of each one month stress period. A well was considered calibrated if 75 percent of the simulated values fell within 1.0 foot difference from the observed values. Fiftyone percent of the wells meet this criteria. Half of the wells which do not meet the criteria were either explainable or can be considered calibrated by using water levels interpolated to the actual well locations.

Results

Appendix G is an example of the calibration results, which compare hydrographs for observed and simulated water levels at the end of each stress period. The transient simulations comprise 18 stress periods of one month each. Each stress period contained four time steps.

The wells were broken into three calibration categories: 1) wells that met the calibration criteria, 2) wells that did not meet the criteria but the reason for being outside the range is explainable, and 3) wells that did not meet criteria, indicating an area of the model that needs further refinement. Table 4 presents the current status of observation wells used in the transient model calibration.

Wells categorized as "explainable" did not meet calibration criteria but other influences prevented a better apparent calibration. One of the most common influences is that MODFLOW uses information and provides results only at the designated node, or center of the cell. In reality, the area represented by a cell may contain many pumping wells, monitor wells and other stresses such as rivers and drains. This situation is common throughout the Palm Beach County model, due to

Table 4. Transient Calibration Results

	layer 1		layer 2		layer 3		layer 4		layer 5	
	\#	\%	\#	\%	\#	\%	\#	\%	\#	\%
Calibrated	51	57	22	47	27	66	23	43	17	41
Explainable	17	19	13	28	10	24	15	28	13	32
Not Calibrated	21	24	12	25	4	10	16	29	11	27
Total	89		47		41		54		41	

\# = number of observation wells
$\%=$ percentage of observation wells in the respective layer
the size of the model cells. On the other hand, the observed water levels may only represent the water levels at a specific location, which is usually not the center of the cell. Examples of common situations include a monitoring well located near the edge of a cell, a monitoring well in the same cell with several pumping wells and their associated cones of depression, a monitoring well in an area of high ground water gradients, and several monitor wells located in the same cell showing different water levels.

Other influences include the time of measurements, short term rainfall effects, uneven rainfall distributions, localized canal effects, and ET parameters. A detailed discussion of all possible influences can be found in the Broward County model documentation (Restrepo, et al., 1992) and the Martin County model documentation (Adams, 1992). Some of the wells that fit this category are listed and may be explained as follows: wells PB-832 and M3 are affected by their locations within model cells; if the interpolated water levels at the location of the well were used for calibration, the well would appear calibrated; wells M-1096 and M-1083 may be affected by location and canals, wells M-1039 and Station-V may be affected by localized cones of depression, wells M-1045, PB-1613, and PB-1615 may be affected by uneven rainfall distribution, wells M15 and M1 are in the same cell with different observed water levels, therefore, the model can only be calibrated against the observed water levels in one of the wells, in this case, M15 is calibrated and M1 is not. Wells PB692-S, EXECPLZA, DBC4, and PB692-D are all in row 78, column 72 but in layer 2, 3, 4, and 5 respectively, the first three wells have about same observed water levels and all are calibrated, but well PB692-D has much lower observed water levels than those of other wells. There was no pumpage in the layer 5 and the well could not be calibrated no matter how Vcont was adjusted. In this case, the model indicated that the recorded water levels in well PB692-D may not be accurate or the low water level is a result of a localized effect. Another such example is well DM3. The well is located in layer 5 , row 71 and column 72 , which is just two cells from the intracoastal waterway. The model simulated mean water level is 0.2 ft . Considering the hydraulic conditions around cell, the model results seem more reasonable than what was recorded. The mean, max, and min of the observed water levels of the well are -$19.64,-8.41$ and -36.6 respectively. Well DM3 is in the Boynton Beach wellfield. The low hydraulic head is a local effect and may be caused by the public water supply pumpage, this kind of local effect can not be simulated with the current model grid. These examples indicated that the model should be used to simulate regional water supply scenarios instead of site specific cases.

Figures 18 through 22 depict the average difference between observed and modeled water levels over the entire transient calibration period for each monitor well. This map gives a general indication of model calibration; however, if the model water level is much higher than observed during one stress period and then equally low at another time, they would, of course, cancel themselves out,resulting in a small average difference. But if a well or group of wells is consistently high or low, this would show up and give guidance on which areas need additional work. The computed steady state water levels for each layer are listed in Appendix A. The observed water levels of monitoring wells for each stress period of the transient simulation are listed in Appendix F, and hydrographs comparing observed and computed water levels over the transient time period are in Appendix G.

Figure 18. Difference Between Observed and Calculated Water Levels, layer 1

Figure 19. Difference Between Observed and Calculated Water Levels, layer 2

Figure 20. Difference Between Observed and Calculated Water Levels, layer 3

Figure 21. Difference Between Observed and Calculated Water Levels, layer 4

Figure 22. Difference Between Observed and Calculated Water Levels, layer 5

Volumetric Budget

The volumetric budget of the model shows the relative magnitude of flow components in the model area. By analyzing the volumetric budget, the key flow components can be identified and clues may be found for developing better management plans and practices. The volumetric budget can also be used to verify whether the model results are reasonable. A steady state volumetric budget for the model area is provided in Table 5. The inflow consists of 82 percent recharge from rainfall, 14 percent leakage from rivers, 2.4 percent from head dependent boundaries, and 2.6 percent return flow from irrigation. The outflow consists of 47 percent evapotranspiration from layer 1, 14 percent to well pumpage, 18 percent to boundaries, and 20.8 percent discharge from groundwater to the surface water system (6.3 percent discharge through drainage canals and 14.5 percent discharge through rivers).

Table 5. VOLUMETRIC BUDGET OF THE MODEL (STEADY-STATE CONDITIONS)

	RATE (Million Gallons/day)	RATE (Acre- Feet/day)	PERCENTAGE
IN FLOW	25		
Wells	0	77	1.5%
Drains	1,341	4,117	81.8%
Recharge	0	0	
ET	234	720	14.3%
River Leakage	39	121	2.4%
Head Dept. Boundaries	1,639	5,035	
Total In	233		
OUT	103	714	14.2%
Wells	0	317	6.3%
Drains	769	2,361	46.9%
Recharge	239	732	14.6%
ET	297	911	18.0%
River Leakage	1,641	5,035	
Head Dept. Boundaries			
Total Out			

In order to eliminate boundary effects on the budgets and show how groundwater in Palm Beach County was affected by different areas and major canal systems, a model volumetric budget for the area covered by the previous Palm Beach County models only was calculated and broken out further for specific boundaries and canal systems. The results are shown in Table 6.

Table 6. VOLUMETRIC BUDGET FOR THE AREA COVERED BY THE PREVIOUS PALM BEACH COUNTY MODELS

	$\begin{gathered} \text { IN* } \\ (\mathrm{ft} 3 / \mathrm{day}) \\ \times 103 \end{gathered}$	$\begin{gathered} \text { OUT* } \\ (\mathrm{ft} 3 / \mathrm{day}) \\ \times 103 \end{gathered}$	$\begin{gathered} \text { NET* } \\ (\mathrm{ft} 3 / \text { day }) \\ \times 103 \end{gathered}$	IN\%	OUT\%
Northern Boundary	50.14	545.53	-495.38	0.04\%	0.40\%
L-8 Boundary	23.83	1,293.37	-1,269.54	0.02\%	0.96\%
WCA-1	1,334.38	7.77	1,326.61	0.96\%	0.01\%
Ocean Boundary	67.34	4,744.50	4,677.16	0.05\%	3.51\%
River Leakage	18,528.04	36,018.63	-17,490.59	13.33\%	26.67\%
Drains	0	5,941.44	-5,941.44	0.00\%	4.40\%
Wells	3,324.17	32,832.79	-29,508.61	2.39\%	24.31\%
ET	0	53,006.65	-53,006.65	0.00\%	39.25\%
Recharge	115,460.69	0	115,460,69	83.10\%	0.00\%
Southern Boundary	156.75	655.23	-498.48	0.11%	0.49\%
TOTAL	138,945.34	135,045.91	13,253.77	100.00\%	100.00\%
C-51	96.01	3,794.38	-3,698.77	0.07\%	2.81\%
LWDD Canals	13,332.00	19,397.37	-6,065.36	9.60\%	14.36\%
Acme Canals	2,562.23	5,791.93	-3,229.70	1.84\%	4.29\%
Hills boro Canals	338.44	2,104.65	-1,766.21	0.24\%	1.56\%

The mass balances for the previous Palm Beach model area only show that recharge from rainfall is the largest water resources for the area. Canal systems in the area provide the second largest recharge to groundwater although the canal systems as a whole discharge more water than recharge. This means that the canal systems provide two important functions effectively, recharging groundwater where groundwater levels are lower than canal stages and discharging water where groundwater levels are higher. Best management of the canal system is one of the most important tasks for water managers. Among the canal systems, Lake Worth Drainage District canal system, ACME canal system, C-51, and Hillsboro canals contributed most of the recharge and discharge. Water exchange along county borders is not significant under the current condition. Although ET accounts for the largest loss of groundwater, well withdrawals are the second largest groundwater loss.

SENSITIVITY ANALYSIS

Systematic sensitivity analyses were not carried out for the revised model. However, the earlier tests of the model for initial re-calibration showed that the sensitivity analysis conducted in the original Palm Beach models is consistent with the updated model. The model is sensitive to the following parameters: canal conductance, canal water levels, ground water pumping rates, recharge from rainfall, and evapotranspiration. The model was fairly insensitive to hydraulic parameters in the non-pumpage areas and was moderately sensitive in the areas adjacent to pumping wells.

CONCLUSIONS

The revised and re-calibrated Palm Beach County MODFLOW model provides information on natural variations of ground water inflow and outflow from canal systems, the water conservation areas, evapotranspiration, and recharge to the water table from rainfall. It also provides information on impacts of ground water withdrawals and the ground water levels in unmonitored areas. Therefore, the model can be used to simulate different water supply scenarios under different hydrogeologic conditions.

In eastern Palm Beach County, public water supplies comprise the largest class of consumptive ground water use. For the calibration period, the model shows that the withdrawals account for 18.5 percent of total outflow from the area. ET from water table accounts for 41 percent of the total outflow, which is the largest water loss in the area. Recharge from rainfall to the water table accounts for 77 percent of total inflows to the area. Recharge from canals and surface water bodies to the aquifer accounts for 18.5 percent, which is consistent with the knowledge that the canal systems are widely used to maintain water levels, provide recharge to wellfields and prevent salt water intrusion. The head dependent boundaries provide 2.5 percent inflow to the modeled area, which mainly comes from the north and west boundaries and the water conservation area. Recharge from irrigation return water contributes 1.5 percent. Thirty-six (36) percent of the total discharge from groundwater is to canals and 6 percent is to the head dependent boundaries. The results from the model indicate that discharge from groundwater to canals exceeds recharge to the groundwater from canals throughout the study area as a whole.

The re-calibration effort has succeeded in producing a better model in the sense that it more accurately simulates the hydrogeologic system of eastern Palm Beach County. The revised model uses as much of the recently collected data and knowledge of the system as was available and could be incorporated within the manpower and time constraints of the re-calibration effort. Progress has been made from calibrating the models against 74 observation wells in a steady state mode to 272 wells in a transient simulation mode. However, to improve our understanding of the real system and enhance our predictive abilities, refining the model during its applications should continue to be an ongoing process.

RECOMMENDATIONS

The revised and re-calibrated Palm Beach model can be used as a tool for developing County-wide water supply plans and for assisting the development of the lower east coast regional water supply plan. The model can also be used in the evaluation of water use permit applications for regional uses. The ground water levels in the model can be checked against existing permits and new proposed control elevations. Where a finer scale or site-specific evaluation is required, the regional model can be used to provide boundary conditions. The data associated with the model can be used to develop localized models with finer grid resolution. The model should continue to be refined and updated as additional information becomes available. The model in its present configuration is not accurate in assessing ground water withdrawal impacts on a small scale. The model is also not accurate enough to be used in surface water permitting to determine exact control elevations or to set wetland elevations due to the way surface water interactions are simulated.

The model provides a water budget table with all the important flow components. These flow components provide information in terms of relative magnitude and may not present accurate quantities. For example, the discharge and recharge through canals accounted for 27 and 18.5 percent of total flows respectively. Unlike the calculated hydraulic heads, these flow components can not be verified against measurable data. The model can be calibrated with over-estimated inflow and over-estimated outflows, or vise versa. The potential errors come from the difficulties associated with defining the conductance of the canal bottoms; because the data on sedimentation thickness of canals and its hydraulic conductivity are sparse.

The model showed that the magnitudes of ET, recharge from rainfall, recharge from canals and the discharge from groundwater are much greater than the total well withdrawals from the system. It suggested that the accuracy of these model components in the simulation may be important in certain areas, particularly in the case that surface water from the regional system is brought to local areas for recharging the underlying aquifer or maintaining water levels for preventing salt water intrusion or meeting agricultural demands.

To improve the accuracy of the budget components of the model, a fully integrated surface, unsaturated and saturated flow model should be developed. Such a model should be rigorous in the representation and conceptualization of the water allocation and surface water body operations and other physical processes involved in a canal-aquifer system such as the Palm Beach County hydrogeologic system. The re-calibrated model indicated that the water resources system of Palm Beach County is a highly integrated surface water/ground water system. A water supply plan will definitely involve management and use of both surface water and ground water systems. With an integrated model, the alternative water supply plan scenarios can be simulated more accurately. The information about impacts of surface water and ground water can be provided simultaneously, and, more importantly, the interaction between surface water and ground water can be better understood.

The County-wide MODFLOW models are intended to be used with the regional South Florida Water Management Model (SFWMM) to develop water supply plans. If the County-wide models were developed using integrated models, the regional model could be used to set up boundary conditions. The consistency checks which must be carried out in the current modeling procedure could be eliminated. The speed of simulating different scenarios with conjunctive use of surface water and
ground water can be increased and the accuracy of the model results can be improved significantly.

New methods for calculating potential ET and the actual ET should be developed to improve their accuracy in the model. The ET rates currently calculated are based on a modified Blaney-Criddle equation, which relies on temperature to calculate monthly rates. Numerous studies, however, show that ET is also generally dependent on solar radiation and wind effects for south Florida conditions. ET estimates based on temperature alone are less accurate than estimates based on other methods for south Florida conditions. Currently, the District is investigating the application of the Penman-Monteith or modified Penman methods for improving the accuracy of the potential ET and a method for calculating ET from both unsaturated zones and saturated zones. When the new methods are tested and sufficient data collected to support the use of these methods, they should be used to improve the model's predictive abilities.

REFERENCES

Adams, Karin. 1992. A Three-Dimensional Finite Difference Ground Water Flow Model of the Surficial Aquifer in Martin County, Florida. SFWMD Technical Publication 92-02.

Bower, R.F., K.M. Adams, and J.I. Restrepo. 1990. A Three-Dimensional Finite Difference Ground Water Flow Model of Lee County, Florida. SFWMD Technical Publication 90-01.

Broward County. 1990. Aquifer Recharge for North Broward County.
Fetter, C.W., Jr. 1980. Applied Hydrogeology. Charles E. Merrill Publishing Co., Columbus, Ohio.

Fish, J.E. 1988. Hydrogeology, Aquifer Characteristics, and Ground-Water Flow of the Surficial Aquifer System, Broward County, Florida. U.S. Geological Survey Water Resources Investigations Report 87-4034.

MacVicar, Thomas K., Thomas Van Lent and Alvin Castro. 1984. South Florida Water Management Model Documentation Report. SFWMD Technical Publication 84-3.

McCollum, S.H., O.E. Cruz, L.T. Stem, W.H. Wittstruck, R.D. Ford, F.C. Watts. 1978. Soil Survey of Palm Beach County Area, Florida. U.S.D.A. Soil Conservation Service.

McDonald, M.G., and A.W. Harbaugh. 1988. A Modular Three-Dimensional FiniteDifference Ground-Water Flow Model. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6.

Pendleton, R.F., H.D. Dollar, L. Law, Jr. 1976. Soil Survey of Broward County Area, Florida. U.S.D.A. Soil Conservation Service.

Restrepo, Jorge I., Cindy Bevier and David Butler. 1992. A Three-Dimensional Finite Difference Ground Water Flow Model of the Surficial Aquifer System, Broward County, Florida. SFWMD Technical Publication 92-05.

Sherwood, C.B., H.J. McCoy, C.F. Galliher. 1973. Water Resources of Broward County, Florida. U.S. Geological Survey Report of Investigation No. 65.

Shine, M.J., D.G.J. Padgett, and W.M. Barfknecht. 1989. Ground Water Resource Assessment of Eastern Palm Beach County, Florida. SFWMD Technical Publication 89-4.

South Florida Water Management District. 1985. Management of Water UsePermit Information Manual Volume III, West Palm Beach, Florida.

Viessman, W., J.W. Knapp, G.L. Lewis and T.E. Harbaugh. 1977. Introduction to Hydrology. A Dun-Donnelley Publisher, New York.

APPENDIX A

Model Results for Steady State Simulation

LIST OF TABLES - APPENDIX A

Table

A-1 Comparison of the Variation Range of Observed Water Levels to the Water Levels Simulated under Steady-State Conditions
 65

LIST OF FIGURES - APPENDIX A

Figure Page
A-1 Maps of Average Water Levels of Layer 1 70
A-2 Maps of Average Water Levels of Layer 2 71
A-3 Maps of Average Water Levels of Layer 3 72
A-4 Maps of Average Water Levels of Layer 4 73
A-5 Maps of Average Water Levels of Layer 5 74

Table A-1. Comparison of the Variation Range of Observed Water Levels to the Water Levels Simulated under Steady-State Conditions

Layer	Row	Columa	Weil-ID	Simulated Water Level (ft)	Observed Mean Level (ft)	oinserved Minimum Level (It)	observed Maximum Level (ft)	$\begin{aligned} & \text { Calibration } \\ & \text { Status } \end{aligned}$
2	1	66	M-1073	3.354	3.640	2.640	4.240	* Cailbrated
5	2	67	M-1095	1.818	1.500	1. 250	2.500	* cal.frrated
2	3	25	M-1243	14.662	20.730	19.830	21.900	Not Calibrated
3	3	65	M-1093	1.979	2.280	1.780	2.870	* Calibrated *
4	3	68	M-1070	1. 100	0.960	0.790	1.270	* calibrated
4	4	67	M-1071	2.402	1.920	1.430	2.700	* Calibrated
1	4	57	M-1072	2.460	1.930	1.440	2.720	* CALIBEATED
1	5	10	M-1086	19.563	20.020	18.040	22.430	* CALIbrated
3	5	10	M-1088	19.577	19.980	18.020	22.440	* calibrated
3	5	67	M-1094	1.911	2.090	1.650	2.950	* Calibrated
2	5	67	JDSPMW1	1.921	1.830	0.850	2.550	* Calibrated
4	5	68	SW-1	2.143	3.090	2.450	4.250	* calibrated
1	6	10	M-1046	21.698	21.240	19.170	23.500	* calibrated
2	6	21	M-1085	17.903	22.500	21.920	23.060	Not Calibrated
3	6	46	M-1096	19.225	20.600	18.700	21.650	* Calibrated
1	6	46	M-1083	19.258	20.650	18.760	21.850	* Calibrated
1	6	65	M-1233	2.217	2.940	1.100	3.920	* Calibrated
4	6	65	M-1230	2.178	2.010	1.240	3.480	* Calibrated
2	6	67	JDSPMw3	0.881	0.250	-0.460	2.010	* calibrated
1	7	62	M-1232	2.891	4.440	3.510	5.810	Not Calibrated
4	7	62	M-1229	1.939	3.770	3.150	5.280	Not Calibrated
4	7	69	SW-3	0.748	1.300	0.860	4.310	* Calibrated
1	8	60	LOX.R4	2.333	1.500	0.920	2.150	* CAlibrated
2	a	67	T-5	0.733	1.450	c. 990	2.270	* Calibrated
4	a	63	T-23-1	0.284	0.680	-3.120	1.920	* Calibrated
4	8	68	PB-890	0.284	2.530	1.680	3.100	Not Calibrated
2	8	68	P3-727	0.230	1.650	1.050	2.290	Not Calibrated
3	8	69	M-1025	1.120	1.700	1.320	2.420	* calibrated *
2	8	69	PB-746	1.123	1.640	0.090	2.210	* calitbrated
3	8	69	D1-4	1.120	1.940	1.630	2.330	* calibrated
4	8	69	D3-5	1.112	1.680	1.290	2.360	* calibrated
4	8	69	D1-4	1.112	1.940	1.630	2.330	* calibrates
2	8	69	M-1024	i. 128	1.640	1.270	2.460	* calibrated
2	8	69.	S1-4	1.128	2.030	1.700	2.610	* calibrated
3	E	69	D2-5	1.120	1.610	i. 240	2.610	* calibrated
4	8	59	M-1039	1.112	0.510	0.150	1.190	* calibrated
1	日	69	PB-565	1.161	1.300	0.730	1.990	* Calibrated
2	日	69	M-1029	1.128	1.630	1.240	2.640	* calitbrated
2	8	59	PB-872	1.128	0.620	0.270	1.370	* Calibrated
1	8	69	PB-565	1.161	1.380	0.400	2.380	- calibrated
3	8	69	D3-5	1.120	1.680	1.290	2.360	* calibrated
4	8	69	D2-5	1.112	1.610	1.240	2.610	* Calibrated
2	9	68	T-4	1.564	1.390	0.830	1.970	* Calibrated
4	9	63	RD-1	1.530	1.390	0.990	1.960	* Calibrated
2	9	68	T-3	1.564	1.320	0.200	1.970	* calibrated
3	9	68	RD-1	1. 547	1.390	0.990	1.960	* calibrated
2	9	68	RD-1	1.564	1.390	0.990	1.960	* calibrated
2	9	68	PB-722	1.564	1.380	0.950	2.020	* Calibrated
4	9	69	PB-595	1.832	0.610	-2.420	3.240	* calibrated
3	9	69	D1-3	1.884	0.920	-1.620	2.050	* Calibrated
2	9	69	S1-3	1.916	0.910	-1.070	2.080	* Calibrated
1	9	69	51-3	1.969	0.910	-1.070	2.080	* Calibrated
2	9	69	T-1	1.916	1.680	1.230	2.640	* Calibrated
1	9	70	PB-731	1.261	1.420	0.350	2.340	* Calibrateo
,	10	34	M-1045	23.109	24.480	23.110	25.060	Not Calibrated
1	10	50	M-140	15.979	15.140	13.840	17.440	* caijerated *
1	10	51	M-1234	14.239	15.210	13.360	16.890	* Calibrated
3	10	51	M-1231	14.177	14.730	13.010	17.120	* calcbrated
1	10	60	LOX.R3	4.088	3.440	3.120	4.410	* calibrated
3	10	68	PB-892	1.485	1.350	0.950	2.060	* calibrated
4	10	68	PB-891	1.459	2.500	1.180	2.080	* calibrated
2	10	68	PB-721	1.511	2.320	0.340	2.020	* Calibrated

Table A-1. Comparison of the Variation Range of Observed Water Levels to the Water Levels Simulated under Steady-State Conditions (Continued)

Layer	Row	Columa	Nell-ID	Simulated Water Level(ft)	Observed Mean Level (ft)	Observed Minimurn Level (ft)	Observed Maximum Level (ft)	$\begin{aligned} & \text { Calibration } \\ & \text { Status } \end{aligned}$
2	10	68	PB-720	1.511	1.510	1.150	2.970	* calibrated
2	10	69	T-2	0.571	1.560	1.190	2.320	* Calibrated
2	10	69	PB-932	0.571	1.520	0.700	2.150	* calibrated **
4	10	69	T-7R-1	0.622	-1.170	-3.450	1.870	* Calibrated *
2	10	69	S1-2	0.571	0.230	-1.020	1.830	* Calibrated *
1	10	69	s1-2	0.618	0.230	-1.020	1.830	* Cailbrated
5	11	65	W	0.669	0.910	0.080	1.730	* calimbated
1	12	38	P5-689	22.992	23.950	22.290	24.500	* CALIBRATED
1	13	52	PB-1548	15.915	15.730	14.290	16.930	* cajibrated
3	13	52	PB-1547	15.881	15.930	13.900	17.570	* Cailsrated
4	13	58	PB-1649	11.134	10.350	9.200	11.570	* calibrated
1	13	58	PB-1648	11.141	10.720	9.550	11.790	* calibrated *
4	13	63	PB-832	1.059	-0.380	-1.330	0.750	Not Calibrated
5	13	64	Y	-1.719	-1.310	-2.660	-0.680	* calibrated *
1	13	64	c	-1.466	-1.130	-1.930	-0.110	* Calibrated *
4	13	64	B	-1.707	-0.370	-1.690	0.870	Not Calibrated
1	13	64	R	-1.466	-1.490	-3.550	-0.300	* Caribrated *
1	13	64	V	-1.466	1.040	0.190	1.740	Not Calıbrated
4	13	64	Q	-1. 707	-5.800	-9.980	-3.730	Not Callbrated
4	13	64	U	-1.707	-0.180	-0.870	0.230	Not Calibrated
1	13	65	T	-0.864	0.210	-0.950	1.140	* calibrated *
5	13	65	5	-0.910	-1.910	-2.600	-1.050	Not Calibrated
1	14	64	K-3	-11.369	-3.960	-6.660	-0.660	Not Calibrated
1	14	64	L-3	-11.369	-5.770	-3.220	-2.350	Not Calibrated
2	14	64	K-2	-11.384	-6.890	-9.380	-3.630	Not Calibrated
2	14	64	I-2	-11.384	-5.350	-8.050	-2.620	Not Salibrated
4	14	64	L-1	-11.513	-7.260	-9.570	-4.420	Not Calibrated
4	14	64	N	-11.513	-5.750	-8. 490	1.690	Not Calibrated
4	13	65	PB-789	-0.905	1.060	0.100	2.440	Not Calibrated
I	14	55	X	0.194	2.260	1.130	3.130	Not Calibrated
4	15	63	FB-92日	0.137	7.160	6.410	7.770	Not Calibrated
1	15	63	PB-711	0.279	7.770	7.060	3.440	Not Salibrated
1	15	63	PB-927	0.279	6.210	3.790	10.990	Not Caisibrated
,	15	63	Pb-925	0.139	6.530	4.240	13.140	Not Calibrated
1	15	49	PB-1524	16.571	17.280	16.070	18.600	* Calibrated *
3	16	49	PB-1552	16.584	17.360	16.080	18.690	* Calibrated *
1	16	59	PB-875	13.208	12.530	11.320	13.330	* Calibrated *
3	16	59	PB-880	13.219	12.530	12.250	13.250	* Calibrated *
4	16	65	2	-4.926	0.450	-0.530	2.170	Not Calubrated
4	17	30	P3-1613	22.212	23.610	21.540	24.340	* Calibrated *
1	17	30	PB-1615	22.225	23.780	21.710	24.420	* calibrated
1	17	61	PE-1520	12.758	11.940	11.330	12.890	* calibrated
1	20	63	PB-1521	7.290	12.600	11.460	13.680	Not Calibrated
3	20	64	M9	6.751	7.410	5.360	8.940	- calibrated *
3	22	64	M8	4.940	3.930	2.510	6.380	* Calibrated
3	23	64	M7	3.060	2.020	0.440	4.100	* Calibrated
4	23	65	M10	2.717	2.310	1.120	4.650	* Calibrated
5	23	65	M10	2.747	2.310	1.120	4.650	* calibrated
3	23	65	M10	2.707	2.310	1.120	4.650	* calibrated
4	23	66	M11	6.004	6.030	5.040	7.910	* calibrated
4	23	68	M12	7.596	6.130	5.450	7.350	Not Calibrated
5	23	68	M12	7.593	6.130	5.450	7.350	Not Calibrated
	24	62	M3S	11.564	13.530	12.350	14.480	Not Callbrated
3	24	62	M3	11.531	13.100	11.910	14.230	Not Galıbrated
4	24	63	M2	7.454	7.070	5.890	9.540	* Calibrated *
3	24	64	M1	3.103	1.790	0.760	4.100	* Calibrated *
3	24	64	M15	3.103	2.720	2.280	3.010	* cairbrated
,	24	64	M1	3.117	1.790	0.760	4.100	* calierated
4	24	68	M13	8.092	7.310	6.550	8.450	* calibrated
1	24	68	M13s	8.134	6.210	5.670	7.180	Not Calibrated
5	24	68	M13	3.083	7.310	6.550	8.450	* Calibrated *
1	25	30	PB-831	19.332	20.930	18.740	22.440	* Calibrated *

Table A-1. Comparison of the Variation Range of Observed Water Levels to the
Water Levels Simulated under Steady-State Conditions (Continued)

Layer	Row	Col umm	Well-ID	```Simulated Water Level(ft)```	Observed Mean LeveI (ft)	Observed Minimum Level (ft)	Observed Maximum Level (ft)	Calibration Status
4	25	64	M4	6.541	1.540	-0. 0.110	3.140	Not Calibrated
3	25	64	M4	6.526	1.540	-0.110	3.140	Not Calıbrated
4	26	64	M5	10.512	11.060	9.520	11.920	* CALIbrated *
1	26	64	M5S	10.544	13.140	12.900	13.610	Not Calibrated
3	26	64	M5	10.507	11.060	9.520	11.920	* CALIBRATED *
4	27	64	M6	13.539	11.940	11.190	12.590	Not Calibrated
3	27	64	M6	± 3.550	11.940	11.190	12.590	Not Calibrated
3	29	70	M14	1.679	1.420	0.640	1.880	* CAIIbRATED *
2	30	56	PB-109	15.589	16.250	15.160	17.620	* CALIBRATED *
5	33	73	32 ND 57	3.072	5.200	4.470	6.340	Not Calibrated
5	34	73	20TH ST	3.412	4.720	3.830	5.580	Not Calıbrated
5	34	74	PB-632	1.809	3.060	2.460	3.780	Not Calibrated
5	36	56	LONE PIN	11.080	9.550	9.010	10.560	Not Calibrated
2	45	54	TW2	6.340	8. 660	2.800	13.830	* CALIBRATED *
2	45	54	TWA	6.340	7.060	2.660	15.410	* CALIBRATED *
2	45	54	TWC	6.340	7.670	4.380	9.800	* calibrated
1	44	56	PB-561	12.668	12.120	10.950	13.070	* CALIBRATED *
2	44	54	TWS	10.982	12.190	10.490	13.410	* CAIIBRATED
2	45	54	TWE	6.340	6.660	I. 580	9.660	* CAIIBRATED
2	45	54	TW1	6.340	6.300	5.160	7.240	* calibrated *
2	44	54	TW4	10.982	10.870	a. 200	11.950	* CALIbrated *
2	45	55	PW9	10.479	11.370	10.680	12.180	* CALIbrated *
4	47	69	PB-809	9.419	9.860	9.120	10.760	* CALIBRATED *
3	47	74	PB-835B	5.203	2.130	0.820	3.220	Not Calibrated
1	49	73	PB-99	8.210	6.930	6.180	7.620	Not Calıbrated
1	57	73	PB-1639	1.319	3.400	2.670	3.940	Not Calibrated
1	57	73	PE-88	1.319	2.900	2.020	3.860	Not Calibrated
1	58	73	P8916	0.319	2.800	1.400	7.300	Not Calibrated
5	58	74	PB694	1.571	2.540	1. 700	4.000	* calibrated *
1	58	74	P6898	1.575	2.670	1.900	3.400	* Calibrated *
5	58	74	P8889	1.571	2.920	2.300	3.300	Not Calibrated
5	58	74	PB-889	1.571	2.870	2.290	3.610	Not Calibrated
1	61	54	PE-683	15.327	14.230	12.420	15.570	* Calibrated *
5	61	74	PB-834B	2.511	1.650	0.290	3.020	* Calibrated *
5	63	73	* 3	4.640	4.950	3.320	8.900	* calibrated
3	63	74	\#11	2.668	2.080	1.280	3.200	* CALIERATED *
3	63	74	\#12	2.668	3.730	2.730	5.230	Not Calibrated
1	65	62	PB-445	15.067	17.370	16.480	17.880	Not Calibrated
5	71	72	DM3	0.200	-19.640	-36.600	-8.410	Not Calibrated
1	71	73	SM1	0.548	4.860	4.250	5.420	Not Calibrated
5	71	73	DM1	0.759	0.490	-1.290	6.210	* CALIBRATED *
4	71	73	DM4	0.621	-0.960	-2.010	-0.010	Not Calibrated
3	72	66	\#1	11.694	12.160	11.440	12.940	* CALIBRATED *
5	75	73	PB-692	1. 464	0.170	-0.330	0.680	Not Calubrated
4	77	72	DBC3	1.758	2.550	0.050	4.300	* CALIBRATED *
2	78	72	P6692-S	1.589	2.080	1. 100	3.500	* CAlibrated *
3	78	72	EXECPLZA	1. 569	1.350	-0.600	3.300	* Calibrated *
5	78	72	PB692-D	1.497	0.070	-0.400	0.500	Not Callirated
4	78	72	DBC4	1.546	2.210	0.040	4.100	* CALIBRATED *
2	79	72	P $3690-5$	-1.774	1.400	0.070	2.700	Not Calibrated
3	79	72	DBC5	-1.772	1.100	-1.100	2.900	Not Calibrated
4	80	72	DBC6	0.683	1.610	0.300	3.000	* CALIERATED *
2	83	62	PB-900	15.271	14.440	13.860	15.330	* Calibrated *
5	85	72	PB-1496	1.331	2.490	1.610	3.490	Not Calibrated
4	85	$7:$	PB-1151	3.457	2.980	2.060	3.960	* CaLIbrated *
5	85	72	P8948	1.331	1.210	0.500	2.080	* CALIBRATED *
1	85	71	PB-1159	3.477	3.130	1.690	4.540	* Calibrated *
1	85	71	PB-1160	3.477	4.900	3.650	8.430	Not Salubrated
1	85	72	PB-1495	1.446	2.780	1.910	3.990	Not Calibrated
1	85	72	PB-1006	1. 446	2.060	1.280	2.540	* Calibrated *
3	85	72	PB-947	1.378	2.740	1.810	3.590	Not Calibrated
3	85	72	PE-896	1.378	2.700	1.330	3.710	Not Calibrated

Table A-1.
 Comparison of the Variation Range of Observed Water Levels to the Water Levels Simulated under Steady-State Conditions (Continued)

Layer	Row	Column	Well-ID	Simulated Water Level (ft)	Observed Mean Level (ft)	Observed Mınimism Level (ft)	Observed Maximum Level (ft)	Calibration Status
3	85	72	P8947	1.378	2.490	1.860	3.360	Not Calibrated
1	85	72	PB895	1.446	2.490	1.910	3.310	Not Calibrated
5	85	72	PB-948	1.331	1.380	0.380	2.240	* CALIBRATED *
1	85	72	PB-895	1.446	2.660	$\pm .760$	3.490	Not Calibrated
1	86	62	PB-1661	14.626	14.570	14.260	15.390	* CALIERATED *
1	86	65	PB-1660	11.019	13.310	12.970	14.660	Not Calibrated
1	86	71	PB-1158	2.512	3.540	2.500	4.740	* CALIBRATED *
1	87	63	PB-1492	12.956	13.710	13.210	14.160	* CALIBRATED
1	87	67	PB-1493	6.445	5.620	5.060	6.200	* CALIBRATED
1	87	71	PB-1452	2.585	2.980	2.200	3.500	* CALIBRATED
4	88	65	PB-1491	6.192	0.380	-2.680	4.060	Not Calibrated
3	88	65	PB-1491	6.244	0.380	-2.680	4.060	Not Calibrated
1	88	66	PB-1079	6.645	7.430	6.100	8.670	* cazibrated *
I	88	70	PB-457	3.052	4.350	3.480	5.690	Not Calibrated
5	88	71	PB-1457	2.290	3.780	2.240	4.550	* CALIBRATED *
1	89	67	PB-1074	5.140	4.710	4.110	5.550	* CALIBRATED *
1	89	69	PB-541	3.123	3.250	2.020	4.480	* CALIBRATED
1	89	70	PB-447	2.812	2.650	1.260	4.400	* CALIBRATED
5	89	70	PB-1456	2.733	3.500	2.270	4.890	* calibrated
1	89	71	2B-459	2.197	3.590	2.700	4.370	Not Calubrated
1	90	69	PB-540R	2.788	2.730	1.160	4.160	* Calibrated *
1	90	70	PB-466R	2.388	2.220	1.400	3.260	* calibrated *
3	91	66	PB-732	4.530	4.760	4.150	6.240	* Calibrated *
1	91	70	PB-470	1.556	6.400	4.960	7.510	Not Calıbrated
3	92	69	PB-567	1.621	2.020	1.110	2.900	* Calibrated *
1	92	69	PB-1075	1.573	2.080	1. 440	2.690	* cajibrated
1	92	69	2B-449	1.573	1.260	0.610	1.790	* CALIBRATED
1	92	70	PB-1454	1.246	2. 490	0.330	2.250	* calibrated
1	92	71	PB-460	1.506	1.950	1.450	2.590	* Calibrated *
1	93	66	PB-754	4.257	2.640	1.800	3.220	Not Calibrated
1	93	67	PB-T53	2.724	2.230	1.720	2.400	* CALIBRATED *
5	93	67	PB-1455	2.935	3.160	2.740	3.830	* CALIBRATED
1	93	69	PB-450	1.581	1.410	0.790	1.890	* CALIBRATED
1	93	69	2B-498	1.581	1.100	0.470	1.530	* CALIbrated
4	93	69	PB-490	1.616	1.150	0.430	1.730	* CALIbPATED *
5	93	69	PB-492	1.622	1.370	0.520	2.590	* CALIbrated *
5	93	69	PB-491	1.622	3.290	2.400	4.240	Not Calibrated
1	93	69	PB-500	1. 581	2.560	1.250	3.980	* CALIBRATED *
1	94	65	PB-1076	7.182	7.410	7.080	7.870	* CALIbrated
1	94	55	PB-1077	5.300	5.760	4.860	6.440	* calirbated
1	94	69	PB-543	1.515	1.940	1.070	3.330	* CALIBRATED
1	94	70	PB-465	1.570	2.120	1.420	2.860	* cailbrated
1	94	71	PB-462	1.452	2.270	1. 630	2.740	* calibrated *
1	95	67	PB-752	3.191	2.640	1.940	3.540	* Calibrated *
1	95	70	PB-454R	1.592	2.780	2.530	2.970	Not Galibrated
1	95	72	PB-502	1.317	2.640	2.150	3.140	Not Calibrated
1	96	64	PG-1618	8.669	8.540	7.850	8.870	* CALIBRATED *
4	96	65	PB-1063	7.445	6.710	5.930	7.510	* CALIBRATED *
4	97	66	D1A	4.899	1.060	0.510	1.850	Not Callbrated
5	97	67	D11	2.773	0.850	0.220	1.570	Not Calibrated
5	98	68	D13	0.753	0.950	0.190	1.720	* CALIBRATED *
5	97	69	D12	1.117	1.120	0.530	1.920	* CALIBRATED *
2	98	65	S1A	5.644	4.250	3.320	5.670	* Calibrated *
2	98	65	52	3.259	0.730	-0.590	1.850	Not Calibrated
4	98	66	D2A	3.323	1.090	-0.620	7.430	* CALIBRATED *
5	98	67	D10	1. 6.52	0.170	-0.970	I. 130	Not Sasibrated
2	98	67	510	1. 6.31	-0.320	-1.940	1.010	Not Calibrated
1	98	6 E	S7A	0.737	0.350	-0.810	$\therefore .300$	* CALIBRATED *
5	98	58	D7	0.753	0.300	-0.870	1.250	* Calibrated *
4	98	68	D17	0.723	-0.270	-1.890	0.980	* calibrated *
4	98	69	D14A	0.878	1.370	0.760	2.060	* Caligrated *
2	99	62	S4	8.583	7.810	7.150	8.370	* calibrated *

Table A-1. Comparison of the Variation Range of Observed Water Levels to the Water Levels Simulated under Steady-State Conditions (Continued)

Layer	Row	Column	We:l-ID	Simulated Water Level (ft)	Observed Mean Level (ft)	Observed Manimurn Level (ft)	Observed Maximum Level (ft)	Calabration status
5	99	62	D4	8.589	6.950	0.240	8.260	Not Calibrated
2	99	66	\$12	2.354	0.340	-0.690	1.290	Not Galibrated
5	99	69	D16	0.533	1. 640	0.580	2.790	Not Calibrated
4	99	69	D15A	0.536	0.070	-1.190	1.230	* Calibrated *
2	100	64	S3	7.015	7.540	6.270	8.140	* calibrated
5	100	64	D3	6.833	7.000	6.320	7.570	* Calibrated *
2	100	65	S5	3.090	-0.490	-1.910	1.140	Not Calibrated
5	100	65	D5	3.201	0.380	-2.190	2.300	Not Calibrated
1	100	67	S 11	-0.854	0.010	-1.070	1.010	* CALIBRATED *
2	100	69	S6	0.119	0.910	-0.060	1.740	* CALIBRATED
5	100	69	D6	0.108	0.940	0.050	1.770	* CALIBRATED *
2	101	65	513	3.146	4.260	3.210	5.440	Not Calibrated
2	101	68	S16	-1.906	-2.410	-3.710	-0.770	* CALIBRATED *
2	101	68	S9	-1.906	-1.840	-3.080	-0.800	* CALIBRATED
5	101	68	D9	-2.594	-1.780	-3.020	-0.770	* CALIBRATED
5	103	69	SWIM1	0.219	0.900	0.070	1.950	* Cali brated
3	104	67	MUDPOHP	0.420	0.860	-0.050	2.100	* CALIBRATED
4	106	68	G-2277	0.370	-0.210	-1.470	0.920	* CALIBRATED
1	107	58	G-2147	0.159	-0.380	-1.780	1.770	* CALIBRATED
3.	109	66	G-2344A	0.655	-0.140	-1.420	1.190	* CALIBRATED
3	109	67	G-2480	0.594	0.870	0.320	1.520	* Calibrater
4	1:0	66	G-2062	0.917	0.180	-0.870	3.870	* CALIBRATED
5	110	68	G-2055	0.593	1.530	0.910	1.850	* CAIIERATED *
4	110	68	G-20.54	0.596	2.040	1.580	2.430	Not Calibrated

[^0]

Figure A-1. Maps of Average Water Levels of Layer 1

Figure A-2. Maps of Average Water Levels of Layer 2

Figure A-3. Maps of Average Water Levels of Layer 3

Figure A-4. Maps of Average Water Levels of Layer 4

Figure A-5. Maps of Average Water Levels of Layer 5

APPENDIX B

Magnitude and Direction of Flow

LIST OF FIGURES - APPENDIX B

Figure Page
B-1 Magnitude and Direction of Vertical Flow of Layer 1 77
B-2 Magnitude and Direction of Vertical Flow of Layer 2 78
B-3 Magnitude and Direction of Vertical Flow of Layer 3 79
B-4 Magnitude and Direction of Vertical Flow of Layer 4 80
B-5 Magnitude and Direction of Horizontal Flow of Layer 1 81
B-6 Magnitude and Direction of Horizontal Flow of Layer 2 82
B-7 Magnitude and Direction of Horizontal Flow of Layer 3 83
B-8 Magnitude and Direction of Horizontal Flow of Layer 4 84
B-9 Magnitude and Direction of Horizontal Flow of Layer 5 85

Figure B-1. Magnitude and Direction of Vertical Flow of Layer 1

Figure B-2. Magnitude and Direction of Vertical Flow of Layer 2

Figure B-3. Magnitude and Direction of Vertical Flow of Layer 3

Figure B-4. Magnitude and Direction of Vertical Flow of Layer 4

Figure B-5. Magnitude and Direction of Horizontal Flow in Layer 1

Figure B-6. Magnitude and Direction of Horizontal Flow in Layer 2

Figure B-7. Magnitude and Direction of Horizontal Flow in Layer 3

Figure B-8. Magnitude and Direction of Horizontal Flow in Layer 4

Figure B-9. Magnitude and Direction of Horizontal Flow in Layer 5

APPENDIX C

Maps of Model Layer Elevation

LIST OF FIGURES - APPENDIX C

Figure Page
C-1 Land Surface Elevation 89
C-2 Bottom Elevation of Layer 1 90
C-3 Bottom Elevation of Layer 2 91
C-4 Bottom Elevation of Layer 3 92
C-5 Bottom Elevation of Layer 4 93
C-6 Bottom Elevation of Layer 5 94

Figure C-1. Land Surface Elevation

Figure C-2. Bottom Elevation of Layer 1

Figure C-3. Bottom Elevation of Layer 2

Figure C-4. Bottom Elevation of Layer 3

Figure C-5. Bottom Elevation of Layer 4

Figure C-6. Bottom Elevation of Layer 5

APPENDIX D

Maps of Model Layer Thickness

LIST OF FIGURES - APPENDIX D

Figure Page
D-1 Thickness of Layer 2 97
D-2 Thickness of Layer 3 98
D-3 Thickness of Layer 4 99
D-4 Thickness of Layer 5 100

Figure D-1. Thickness of Layer 2

Figure D-2. Thickness of Layer 3

Figure D-3. Thickness of Layer 4

APPENDIX E

Information Used for Calculating Pumpage

LIST OF TABLES - APPENDIX E

Tables Page
E-1 Public Water Supply Spreadsheet 103
E-2 Non-Public Water Supply Spreadsheet 111
Table E-1. Public Water Supply Spreadsheet

\qquad

Table E-1.

Abstract

\qquad

 - \qquad

${ }^{7}$
s

$\stackrel{3}{9}$

Public Water

-	\cdots	-	m	\bigcirc	- 0			-
\cdots	\cdots	∞	-	\cdots	m		9	-
6	ξ	$\begin{aligned} & \text { B } \\ & \stackrel{0}{6} \\ & \stackrel{0}{2} \end{aligned}$	\%	\%	\%	${ }^{8}$	\%00$\stackrel{\circ}{8}$	\%
					$\stackrel{\circ}{9}$			$\stackrel{\text { ¢ }}{\substack{\text { j }}}$
	$\stackrel{\infty}{\infty}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$		富	$\stackrel{\otimes}{\stackrel{9}{i}}$		$\stackrel{\stackrel{\rightharpoonup}{E}}{\stackrel{y}{4}}$	$\stackrel{8}{8}$
							$\stackrel{\square}{\square}$	

y

．${ }^{\text {㫧曷 }}$	$8{ }^{8}$			5
				星䍂
－${ }^{\text {a }}$				官
				\％
		显 ${ }^{\text {a }}$		of
思以－	－			浱
号－20x		8 8 ${ }_{4}$		${ }^{3}$
				\％

\qquad

Abstract

\qquad

\qquad

 Table E－2．Non－Public Water Supply Spreadsheet（Continued）

\therefore ald 0
$\square \stackrel{\square}{9}$

0 स 4 स

络
票

5000433m 500049 于и		
5000434 M		
50004344		
5000.45 F		
500048 \％		
5000502 m		
5000521.1 .6		
500053446		
500095sm	iline meier doif courga	678
5009560 k	GER LIMItz	041378
5000560 k		
		081578
5000577 W		
5000 5：3im	：	
5000578 Bx		
Scoos \％$^{\text {a }}$		
500058\％		
$\begin{aligned} & 5000599 \% \text {. } \\ & \text { suinu } \end{aligned}$	CORZO．PEDEO R．	081078
S000 817 lim		
500066776		
50006.2 Fk		
5000631／WILLCW EEED As80ctat		
500066595		
5000655 W		
5000655 sm		
500067009		
00670w		
$50006971 / 121579$		
5000697 k		
$5000703 \mathrm{3m}$		

\qquad

 Table E－2．Non－Public Water Supply Spreadsheet（Continued）

8080	$\stackrel{9}{7}$	81	感笑
岢	8	－	寧

	\pm	\sim	0	θ

∞	∞	∞	∞	∞
∞	∞	∞	∞	∞
∞	\vdots	∞	$\stackrel{\infty}{\infty}$	∞
$\dot{\infty}$	0	0	0	0

Abstract

\cdots a | ∞ | | |
| :--- | :--- | :--- |

∞	∞	0	-	
∞	∞	∞	-	-

臬	$\frac{\mathrm{R}}{\mathrm{R}}$	동	息	E空品	퐁	管	者		$$	砍	豆登	空	$\frac{\text { 参 }}{6}$	F	息
3	\＄	釉	\cdots	응욲	$\stackrel{\infty}{*}$	\％	㐌	¢			¢ ¢ ¢	gid	亚		
0	$\stackrel{\square}{\circ}$	9	\cdots	它守宫	$\stackrel{*}{*}$	${ }_{*}^{*}$	\pm	\square			「边	\cdots	品		
8	$\stackrel{\sim}{-}$	$\stackrel{\square}{\square}$	9	感突过	∞	8	9	－	\cdots	8	灾㗁	둥	$\underset{\sim}{3}$	8	－
n	${ }_{0}$	9	\cdots	風定	\％	－ه্ণী	$\stackrel{1}{9}$	品灾	9	刃	$\stackrel{9}{7}$	¢ ${ }^{4}$	－	\cdots	\pm
$\stackrel{5}{5}$	5	n	F	名里号	A	$\stackrel{18}{8}$	8	$\stackrel{18}{2}$	$\stackrel{1}{2}$		${ }_{7} \mathrm{~F}$	$\stackrel{9}{8}$	定	只	
\％	8	号	8	988	¢	8	1	ה8	\pm	9	回守	8 B	官	呂	暏
¢	9	8	$\stackrel{\square}{\square}$	W8\％	∞	8	$\stackrel{\sim}{\sim}$	cis	5	$\underline{\square}$	¢	－	8	$\dot{8}$	$\stackrel{4}{4}$

n	$\stackrel{\square}{8}$	$\stackrel{\sim}{n}$	$\stackrel{\sim}{\sim}$	\cdots

Nin 品

－óo o $\dot{0} \dot{\circ}$

若

\qquad
\qquad

\qquad

 gevig

－ $\rightarrow \infty \quad$－

－ 0 in

8
$\stackrel{n}{2}$
\sim

安

路 皆
N 788
蛍

포
Hi
0
0
0

$*$

思

焉
等

9
\vdots
\vdots

$\rightarrow シ$
$\underset{\rightarrow}{\infty} \underset{\sim}{x}$

．

\qquad

\qquad

43002006 4300200 \$	Jotin D. a xancy P. martin 9/85
4300200 m	
43002003	
4300200w	
430C202W	Little clus como assoc. b/sis
4300203 w	
4300928	S.N. \& Stephiry knight 5 S.4/88
0600007\%	CIPY O\% FCNPAFO, HODSING A9/74
0600007\%	
0600024*	FRA Corperations 10/b7
0600024w	
0.600024%	
0.6000844	
06000244	

APPENDIX F

Model Input Data

LIST OF TABLES - APPENDIX F

Tables Page
F-1 List of Data Files for Palm Beach Model 123
F-2 Observed Water Levels of Monitoring Wells for Each Stress Period 124

Table F-1. List of Data Files for Palm Beach Model

Following files are located at /net/wmd11/usr2/users//ason/PBSS for steady state calibration or PBTS for transient state calibration. The length unit is feet and the time unit is day for all corresponding tiles.
fort. 1 Basic package
fort. 11
fort. 12
fort. 13
fort. 14
fort. 15
fort. 17
fort. 18
fort. 19
fort. 20
Block center flow control filie
Public water supply pumpage
Drain package
River package
ET control file
General head boundary
Recharge control file
SIP solver file
Non-public water supply pumpage
fort. 22 Output control file
fort. 24 Observation well nodes
fort. 28 Recharge file
fort. 29 IBOUND file
fort. 30 Starting heads
fort. 32 Transmissivity for layer 2 through layer 5
fort. 33 Layer conductivities
fort. 34 Layer bottom elevations
fort. $35 \quad$ VCONT file
fort. 37 Aquifer top elevations for layer 2 through layer 5
fort. 70 ET surface
fort. 71 Maximum ET rates
fort. 72 Extinction depth array
fort. 91 Model simulated heads
fort. 92 Model simulated drawdowns
fort. 99 Cell by cell flow terms

Layer	Row	Coiutin mell-ID	Year	Jan.	Feb. M	March	April	May	Sune	July	Aug.	Sep.	oct.	Nov,	Sec.
2	1	M-1073	1989	3.72	3.53	4.20	4.05	3.47	2.54	3.57	4.24	3.95	3.76	3.65	3.95
			1990	3.65	3.95	3.50	3.37	3.12	3.20						
5	2	67 x-1095		1.46	1.35-	-99.99	1.53	1.43	1.33	$\pm .27$	1.53	1.65	1. 50	1.51	1.41
				1. 51	1.41	1.25	2.50	1.27	1.45						
2	3	$5 \mathrm{M}-1243$		20.30	20.46	20.51	21.01	19.83	21.19	20.55	20.99	21.46	21.90	20.87	20.89
				20.67	20.89	20.16	21.11	20.27	19.83						
3	3	66 y-1093		2.24	2.05	2.71	2.87	1.99	2.25	2.20	2.57	2.26	2.56	2.10	2.65
				2.10	2.65	2.17	2.11	+. 78	1.83						
4	3	W-1070		0.89	0.90	-99.99	1.27	$\pm .04$	0.82	0.88	1.00	1.09	1.02	5. 02	0.94
				1.02	0.94	0.83	0.90	0.79	1.04						
4	4	67 m-1071		1.96	1.68	2.51	2.70	2.78	1.80	1.87	2.23	1.70	1.86	1.69	2.29
				1.69	2.28	1.82	1.73	2.43	1.59						
1.	4	M-:072		1.91	1.68	2.52	2.72	1.82	1.85	1.89	2.24	1.7	1.87	$\therefore 70$	2.27
				1.70	2.27	1.83	1.72	$\pm .44$	7.65						
1	5	10		19.19	18.44	18.62	18.82	18.04	20.02	19.18	21.87	21.8:	22.43	23.29	20.89
		3-1086		21.29	20.89	20.04	20.15	19.14	18.32						
3	5	9-1088		19.12	18.76	17.34	18.75	18.02	19.98	19.09	21.83	21.60	22.44	21.11	20.68
				21.11	20.68	19.85	20.03	19.03	± 8.25						
3	5	M-1094		2, 14	1.92	2.79	2.95	2.10	1.95	$2.03-$	-99.99	1.80	-99. 39	1.87	2.42
				1. 87	2.42	1.93	1.81	1.65	1.84						
2	5	67		2.22	1.87	2.44	2.55	2.33	1.95	1.78	1.71	1.54	1.64	1.84	I. 94
				1.84	1.84	-99.99-9	-99.99-	-99.99	0.85						
4	5	68	$\begin{gathered} -99.99-9 \\ 2.75 \end{gathered}$		99.99	-99.99-9	-99.99	4.25	2.55	2.45	99.99	3.25	3.35	2.75	3.24
					3.24	3.24	3.45	3.25	2.45						
\pm	6	10		20.28	20.06	20.75	20.28	19.17	22.16	20.37	23.50	23.19	99.99	22.11	22.02
				22.11	22.02	21.13	21.67	20.52	19.71						
2	5	21		22.71	22.69	21.922	22.46	22.60	22.67	22.55	23.06	22.76	22.51	22.61	99.99
				$22.61-9$	99.99	$22.08-9$	-99.99	22.17	22.07						
3	6	45		19.80	19.07	19.77	20.09	18.75	20.01	20.84	21.20	21.35	21.65	21.04	$2+15$
		M-1096		21.04	21.15	21.032	21.31	20.81	20.81						
1	6	46		$=9.80$	19.09	19.702	20.76	18.76	20.64	20.98	21.13	21.31	21.85	20.77	21.11
				20.77	21.11	20.94	21.32	20.73	20.92						
1	6	65		2.60	1.10	3.15	3.79	2.80	3.00	3.62	3.92	3.16	$\pm .59$	2.90	3.54
		M-1233		2.90	3.54	2.88	2.79	2.72	2.89						
4	6	$65 \mathrm{M}-1230$		1.70	1.30	1.80	2.65	1.24	1.82	2.45	2.34	1.98	3.48	1.93	2.15
				1.93	2.15	2.03	1.76	1.74	1.74						
2	6	67 2-SPMW3		0.45	-0.07	0.68	0.70	0.51	-0.04	-0.04	-0.21	-0.46	-0.18	0.16	0.25
				0.16	0.25	0.35	-0.09-	99.99	2.01						
1	7	$62 x-1232$		4.06	3.87	4.20	5.05	3.83	4.96	5.81	5.67	4.40	4.37	4.13	4.99
				4.13	4.99	4.13	3.80	3.51	4.02						
4	7	$62 \underline{2}-1229$		3.56	3.36	3.59	4.16	3.15	5.23	4.72	4.59	3.63	3.55	3.49	4.08
				3.48	4.08	3.40	3.25	3.23	3.35						
4	7	$69 \sin -3$		- $39.99-9$	99.99-	-99.99-9	99.99	4.31	1.15	0.86-	99.9]	1.15	1.38	0.36	1.10
				0.86	1.10	1.04	1.02	1.05	1.06						
\pm	9	$6050 X . \mathrm{R4}$		$\therefore .41$	1.36	1.49	1.36	1.36	1.36	1.44	1.81	1.97	2.15	1.63	1.45
				-. 63	1.46	1.40	1.35-	99.99	0.92						
2	8	$67>5$		$=.12$	1.06	1.56	2.17	1.25	1.40	1.36	1.33	1.41	1.98	1.45	$\therefore 50$
				5.45	: 60	0.99	1.24	1.39	1.68						
4	8	$58=-23-1$		$-\mathrm{F} .94$	-3.12	1.57	-0.73	1.92	1.32	1.56	0.86	0.91	1.81	1.30	1.91
				1.10	1.91	1.17	1-39-	99.99	-1.15						
4	8	$68 \equiv 5-890$		1.69	1.89	2.62	3.10	2.71	2.35	2.51	2. 37	2.51	3.01	2.49	2.80
				2.49	2.8 C	2.27	2.47	2.68	2.87						
2	8	68 2e-727		2.26	1.47	1.44	1.93	2.29	1.41	1.82	2.10	1.89	1.61	1.49	1.42
				1.49	1.42	1.05	1.14	1.48	1.98						
3	8	69 M-1025		1.48	1.35	1.78	2.42	1.82	1.57	1. 61	1. 73	1.90	2.22	1.58	1.71
				1.58	1.71	1.32	1.48	1.51	-. 77						
2	8	69 こE-T46		1.91	0.09	2.21	2.09	1.27	1.45	1.58	1.84	$2.02-$	99.99-	99.99	1.64
				-39.99	1.64	1.41	1.59	1.86	1.95						
3	8	$692 i-4$		2.33-9	99.99	1.95-9	99.99	2.23	1.76	1.79	1.85	1.94	2.29	1,72	2.11
				1.72	2.11	1.63	1.76	1.36	1.85						
4	8	69 33-5		-. 47	1.33	1.80	2.36	1.79	1.55	1.59	1.70	1.95	2.23	1.59	1.65
				: . 58	1.66	1.29	1.47	1.50	1.76						
4	8	$695-4$		2.33-9	99.99	1.95-9	99.99	2.23	1.76	1.79	1.85	1.94	2.29	1.72	2.11
				1.72	2.11	1.63	1.76	1.96	1.85						
2	8	69 M-1024		1.43	2.27	1.74	2.46	1.78	1.46	1.57	1.65	1.83	2.12	1.50	1. 56
				1.50	1.66	1.27	1.42	1.41	1.73						
2	8	$595:-4$		2.61-9	99.99	2.02-9	99.99	2.56	1.76	1.83	1. 94	2.94	2.27	1.70	2.18
				1.70	2.18	1.73	1.78	2. 00	2.33						
3	8	$69-2-5$		1.59	1.42	1.74	2.51	1.85	1.42	1.53	1.56	$1.72-$	99.90	2.37	1.68
				$\therefore .37$	1.69	1.24	1.41	1.47	1. 77						
4	8	$69 \mathrm{~N}-1039$		0.35	0.15	0.78	1.19	0.92	0.23	0.45	0.67	0.86	0.59	0.41	0.35
				$\bigcirc .41$	0.35	0.22	0.32	0.34	0.64						

Note: -99.99 means no data for the period.

Table F-2.
Observed Water Levels of Monitoring Wells for Each Stress Period (Continued)

Layer	Row	Column He:1-ID	Year	E an .	Feb. M	March	Apris	May	June	July	Aug -	Sep.	Det.	Nov.	Dec.	
1	B	69	-989	1.07	0.73	1.18	1.79	1.99	1.31	1.31	1.38	1.24	1.15	2.35	1.17	
			1990	- 1.35	1.17	1.26	-99.99-	99.99	-99.99							
2	8	69		1.50	1.46	1.72	2.64	1.87	1.43	1.50	1. 59	1.73	1.99	1.25	1.72	
				2.25	1.72	1.24	1.40	1.56	1.75							
2	8	69		0.52	0.61	0.60	1.37	0.77	0.45	0.29	0.54	0.76	1.14	0.56	0.51	
				0.56	0.51	$0.27-$	-99.99	0.74	0.42							
1	9	69		$\pm .10$	0.40	+. 58	2.38	1.66	0.97	1.59	1.29	1.24	1.55	0.92	1.71	
		E3-565		0.92	1.71	1.09	1.30	1.59	1.84							
3	8	69		$\therefore .47$	1.33	1.80	2. 36	1.79	1.55	I. 59	1.70	1.88	2.23	1.56	1.66	
		[$3-5$		1.58	1.66	1.29	1.47	1.50	1.76							
4	8	69		1.59	1.42	1.74	2.61	1.85	1.42	1.53	1. 56	1.72-99.99		1.37	1.68	
		L2-5		1.37	1.68	1.24	1.61	1.47	1.77							
2	9	68		3.92	0.83	1.32	1.97	1.64	-99.99	1.30	1.13	1.31	1.96	1.33	1.56	
		±-4		1.33	1.56	0.96	1.31	1.44	1.77							
4	9	68		1.07	1.04	1.31	1.92	1.46	1.18	1.09	1.14	1.36	1.95	I. 43	1.42	
				i. 43	1.42	0.99	1.36	1.65	1.79							
2	9	68		0.96	0.69	1.44	0.20	1. 65	1.09	1.36	7.05	1.17	1.74	1.32	1.72	
		I-3		1.32	1.72	1.23	I. 35	1.80	1.97							
3	9	68		1.07	1.04	1.31	1.92	1.46	1.18	1.09	1.14	1.36	1.96	1.43	1.42	
				1.43	1.42	0.99	1.36	1.65	1.79							
2	9	68		1.07	2.04	1.31	1.92	1.46	1.18	1.09	1.14	1. 36	1.96	1.43	1.42	
		Ri-1		$\pm .43$	1.42	0.99	2.36	1.65	1.79							
2	9	68		1.09	1.08	1.28	1.81	1.33	1.18	1.05	1.23	1.42	2.02	1.43	2.39	
				1.43	1.39	0.95	1.37	1.68	1.59							
4	9	69 F		0.56	-2.42	0.92	3.24	0.78	0.25	0.38	0.65	0.83	1.04	0.44	0.99	
				3.44	0.99	0.13	0.43	0.69	0.61							
3	9	69 :		1.46	1.25	1.39	0.01	-1.01	-1.62	-0.46	1.28	1.56	1.41	i. 35	1.29	
				2.35	1.29	$1.0 .5$	1.20	2.05	1.59							
2	9	69		- 46	1.25	-0.70	C. 56	-0.54	-1.07	-0.04	1.26	1.53	1.37	1.34	1.30	
				2.34	1.30	1.05	1.21	2.08	$\therefore .69$							
1	9	59		1.46	1.25	-0.70	0.56	-0.54	-1.07	-0.04	1.26	1.53	1.37	1.34	1.30	
				$\therefore .34$	+ 30	1.05	2.21	2.08	1.63							
2	9	69 I-1		$\therefore .66$	1.60	1.67	2.64	1.78	1.23	1.34	1.56	1.80	1.92	1.02	1.64	
				$\because 62$	1.64	1.26	1.38	1.85	1.98							
3	9	70 FE-731		$\therefore 31$	0.35	1.35	1.70		2.34	1.09	1.46	1.5e	1.09	1.57	1.35	
				$=57$	$1.36-$	-99.99	1.35	1.66	1.76							
1	10	$34 \mathrm{M}-1045$		23.62	23.72	23.59	24.76	23.11	24.71	24.66	25.01	25.06	-99.99	24.86	24.81	
				24.86	24.81	24.57	24.84	24.38	24.77							
\div	10	$50 \mathrm{x}-140$		$\therefore 4.33$	13.84	14.04	14.38	14.19	14.03	15.23	17.44	17.34-	-99.99-	-99.99-	-99.99	
				$-\ni 末 .99-9$	$-99.99-3$	$-39.99-$	$-99.99-9$	$-99.99-9$	$-99,93$							
1	10	$514-1234$		-3.68 $=123$	$\pm 3-49$ 15	14.33 14	14.67	13.361	14.99	15.97	16.89	16.82	16.73	15.23	15.70	
3	± 0	51 M-1231		-8.23	$13.40=$	14.11	- 4.3 .95	99.99 13.28	13.59 14.95							
		- ${ }^{-1}$		- -1.15	15.09	14.19	14.25	13.51	13.01							
1	10	60 ĽX.R3		3.13	3.13	3.13	3.25	3.12	3.12	3.41	4.15	4.12	4.41	3.42	3.17	
				3.42	3.17-9	-99.99-99	-99.99-	99.99-9	99.99							
3	10	$68 \mathrm{FE}-892$: 17	1.33	1.24	1.56	1.15	1.27	0.99	1.42	1.49	2.06	1.33	1.37	
				-. 53	1.37	0.35	1.35	1.54	1.06							
4	10	68 P9-691		-. 31	1.28	1.47	2.08	2.22	1.22	$=19$	2.31	1.51	1.85	โ. 63	1.50	
				-. 63	1.50	1.19	1.41	1.88	1. 91							
2	10	68 ミ®-721		$\therefore 11$	1.27	1.17	1.55	1.09	1.18	0.94	1.24	1.52	2.02	1.50	1.35	
				-. 50	1.35	$\pm .08$	2.34	1. 51	1.00							
2	10	68 FB-720		$\therefore .34$	1.34	1.40	2.05	1.16	1.19	1.18	1.17	1.36	2.97	1.69	1.55	
				-. 69	1.65	1.27	1.30	1.69	1.15							
2	10	$69 \mathrm{~T}-2$		$\therefore .30$	1.32	1.52	2.32	1.64	1. 30	1.19	$\pm .40$	1.55	1.98	1.67	1.68	
				$\therefore .67$	1. 68	1.27	1.37	1.82	1.33							
2	13	69 P3-932		-. 55	1.42	1.34	2.06	0.99	0.70	1.19	1.48	1.72-3	99.99	1.62	1.85	
				-. 62	1.85	1.27	1.39	2.15	1.72							
4	10	69 - - -		$\therefore .37$	$-1.36-$	-2.49	1.87	-3.45	0.39	1.02	-2.49	-2.45	-2. 50	-2. -6 б	-2.10	
				-2.66	-2.10	0.40	-2.45	-0.97	1.63							
2	20	$69 \mathrm{~s}=-2$		$\therefore 33$	0.22	-0.37	1.83	-1.02	0.35	0.96	-0.28	-0. 0.13	-0.21	-0.31	-0.18	
		6		$-5.31-$	-0.18	0.21	-0.29	1.02	1.58							
1	10	$595:-2$		-. 33	0.22	-0.37	1.83	-1.02	0.35	0.96	-0.28	-0.13	-0.21	-0.31	-0.19	
				-0.31-	-0.18	0.21 -	-0.29	1.02	1.58							
5	11	66 x		$\therefore .68$	1.51	1.18	1.73	C. 2 B	1.38	0.09	1.30	1.00	0.94	c. $10-$	9g. 99	
				2.10-9	99.99	0.43-9	99.99-9	99.99	1.03							
1	12	$38 \mathrm{PE}-689$		-93.99-9	99.992	23.092	24.08	22.292	24.25	23.852	24.352	24.182	24.50	24.02	24.17	
				24.022	24.172	24.012	24.21	23.872	24.21							
1	13	$52 \mathrm{PB-1548}$		-92.99-9	99.991.	14.701	15.08	14.28 $=$	-6.50 1	16.72	16.97	16.371	15.17	15.50	15.01	
				$\pm \pm .601$	16.011	15.391	15.81	15.291	15.23							
3	13	52 P3-1547		-93.99-9	99.991	14.691	14.51	13.9017	17.521	17.451	17.57	16.981	16.58	15.79	16.24	
				15.791	16.241	15.46 i	15.98 1	5.331	14.97							

Note: -99. 99 meand no data for the f (Exiod.

Table F-2. Observed Water Levels of Monitoring Wells for Each Stress Period (Continued)

Iayer	Row	Column Well-id	Year Jan. Feb. March April May June	Juiy	Aug	Se	oct.	Nov.	Dec.						
4	13	$58 \mathrm{~PB}-1649$	1989-99.99-99.99 9.20 10.37 $9.40 \quad 9.87$	11.57	11.50	10.65	10.67	10.26	10.64						
			$\begin{array}{llllllllllll}1990 & 10.25 & 10.64 & 10.47 & 10.04 & 9.97 & 10.15\end{array}$												
1	13	58 PB-1648	$-99.99-99.99 \quad 9.8510 .44 \quad 9.5510 .12$	11.69	11.79	10.96	11.14	10.59	11.28						
			10.5911 .2810 .7910 .4510 .5710 .35												
4	13	$63 \mathrm{~PB}-832$	$0.18-0.39-0.35-99.99-0.42-1.00$	0.63	0.14	0.02	-0.07	-1.33	-0.63						
			-1.33-0.63-0.88 0.75-0.65-0.48												
5	13	64 Y	-0.68-99.99-99.99-2.66-99.99-99.99	-0.90-99.99-99.99			-1.02-99.99-99.99								
			-99.99-99.99-1.71-99.99-99.99-1.01												
1	13	64 c	-1.93-99.99-99.99-0.86-99.99-99.99	-1.84-99.99-99.99			-1.09	-99.99-	-99.99						
			- $59.99-99.99-0.11-99.99-99.99-0.93$												
4	13	64 B	-0.09 $0.61-0.54-1.14-1.69-0.21$	-0.49	0.87	-0.95		0.11	-0.72-99.99						
			$-\mathrm{C} .72-99.99-0.64-99.99-99.99 \quad 0.06$												
1	13	64 F	-0.30-99.99-99.99-0.50-99.99-99.99	-0.83-99.99-99.99			-1.78	-99.99-	-99.99						
			-99.99-99.99-3.55-99.99-99.99-1.95												
1	13	64 V	$\begin{array}{lllllll}0.99 & 1.47 & 1.19 & 0.79 & 0.19 & 1.04\end{array}$	c. 54	1.44	1.17		1.54	0.85-99.99						
			$0.85-99.99 \quad 0.69-99.99-99.99 \quad 1.74$												
4	13	64 Q	-9.98-99.99-99.99-4.83-99.99-99.99	$-3.73-99.99-99.99$			-5.13-99.99-99.99								
			-99.99-99.99-6.33-99.99-99.99-4.83												
4	13	640	0.18-99.99-99.99-0.87-99.99-99.99	-0.22-99.99-99.99			0.18-99.99-99.99								
			-99.99-99.99-0.57-99.99-99.99 0.23												
1	13	65 T	$1.14 \begin{array}{llllll}14 & 0.74 & 0.44 & 0.99 & -0.06 & 0.54\end{array}$	-0.43	0.40	0.59	0.15	-0.40-99.99							
			-0.40-99.99-0.95-99.99-99.99 0.09												
5	13	65 s	$-1.05-99.99-99.99-1.15-99.99-99.99$	-2.59-99.99-99.99			-2.60-	-99.99-99.99							
			$-99.99-99.99-2.45-99.99-99.99-1.65$												
1	14	$64 \mathrm{~K}-3$	-0.66-99.99-99.99-2.01-99.99-99.99	-4.54-99.99-99.99			-5.95-99.99-99.99								
			-99.99-99.99-5.66-99.99-99.99-99.99												
1	14	$64 \mathrm{~L}-3$	-2.35-99.99-99.99-3.08-99.99-99.99	-6.03-99.99-99.99			-7.51-99.99-99.99								
			-99.99-99.99-8.22-99.99-99.99-7.43												
2	14	$64 \mathrm{Z}-2$	-3.63-99.99-99.99-4.51-99.99-99.99	-6.53-99.99-99.99			-3.59-99.99-99.99								
			-99.99-99.99-9.38-99.99-99.99-8.73												
2	14	$64 \mathrm{I}-2$	-2.62-99.99-99.99-3.26-99.99-99.99	-5.04-99.39-99.99			-7.72-99.99-99.99								
			-99.99-99.39-8.05-99.99-99.99-7.39												
4	14	64 L-1	-4.42-99.99-99.99-5.22-99.99-99.99	-7.01-99.99-99.99			-9.57-99.99-99.99								
			-99.99-99.99-9.17-99.99-99.99-8.17												
4	14	64 N	1.89-99.99-99.99-6.64-99.99-99.99	-6.14-99.99-99.99			-6.92-99.99-99.99								
			-99.99-99.99-8.49-99.99-99.99-8.29												
4	13	65 FE-789	-99.99-99.99 $2.27 \quad 2.44 \quad 1.83 \quad 1.46$	1.69	i. 71	1.25	0.78	0.43	0.25						
			$0.430 .26 \quad 0.10 \quad 0.32 \quad 0.77 \quad 0.92$												
1	14	66 X	3.13-99.99-99.99 2.53-99.99-99.99	1.13-99.97-99.99			1.86-99.99-99.99								
			-99.99-99.99 2.84-99.99-99.99 2.13												
4	15	$63 \mathrm{~PB}-928$	$\begin{array}{lllll} -99.99-99.99 & 7.46 & 7.77 & 7.06 & 6.98 \end{array}$	7.36	7. 60	6.94	6.72	5.41	7.52						
			$\begin{array}{llllll}6.41 & 7.52 & 7.47 & 7.26 & 6.93 & 7.1\end{array}$												
1	15	63 ミ3-711	-99.99-99.99 $\quad 7.97$ 9.44 $7.77 \quad 7.67$	0.41	8.43	7.55	7.29	7.06	7.91						
			$7.06 \quad 7.91 \begin{array}{lllll}7.933 & 7.75 & 7.45 & 7.62\end{array}$												
\div	15	$63 \mathrm{FE}-927$	3.79-99.99-99.39 6.93-99.99-99.99	4.71-97.99-99.99			4.74-09.99-99.99								
			-99.99-99.99 10.99-97.99-99.99-99.99												
4	i5	53 FS-926	4.54-99.99-99.99 6.25-99.99-99.99	4.49-99.99-99.99			4.24-99.99-99.99								
			-99.99-99.9913.14-99.99-99.93-99.99												
1	16	$49 \mathrm{~PB}-1524$	$\begin{aligned} & -99.99-99.99 \quad 16.31 \quad 16.84 \quad 16.07 \quad 27.90 \end{aligned}$	$17.79=$	- 8.60	18.14	28.25	17.23	17.32						
			$17.2317 .32 \quad 16.97 \quad 17.01 \quad 16.72 \quad 16.81$												
3	16	$49 \mathrm{~PB}-1552$	$-99.99-99.9916 .4616 .9616 .08 ~$ 17.95	17.961	18.69	28.33	18.42	27.30	17.37						
			$17.3017 .3716 .9917 .0516 .7816 .72 ~$												
1	16	$59 \mathrm{P3-875}$	-99.99-99.99-99.9911.32-99.9911.58	12. 38	13.33	12.92	13.00	12.49	12.92						
			$12.49 \quad 12.92 \quad 12.6212 .42 \quad 12.1412 .45$												
3	16	59 PB-880	-99.99-99.99-99.9911.25-99.99-99.99	12.76	13.25	12.83	12.92	12.38	12.86						
			$12.3412 .8612 .5212 .3112 .22 ~ 12.34 ~$												
4	16	652.	$\begin{array}{llllllll}2.17 & 1.37 & 0.77 & 1.55 & 0.77 & 0.47\end{array}$	0.42	0.57	0.24	-0.65	-0.39-99.99							
			-0.39-99.99-0.53-99.99-99.99-0.10												
4	17	30 FE-1613	-99.99-99.99-99.99 23.41 21.5423 .95	23.44	$24.10-99.99$		24.34	23.83	23.88						
			23.83 23.88 23.49-99.99-99.99 23.63												
1	17	30 FB-1615	-99.99-99.99-99.99 23.9921.7124.13	23.60	$24.21-99.99$		24.42	23.9423 .98							
			$23.9423 .9823 .70-99.99-99.9423 .76$												
1	17	61 FB-1520	-99.99-99.99 12.07 12.35 11.42 12.03	12.45	12.89	$12.25-$	-99.99	11.6912 .12							
			$11.6912 .11 \quad 11.6411 .4511 .3311 .68$												
1	20	63 PB-1521	-99.99-99.99-99.99 13.27 12.43-99.99	12.85	13.68	13.46	13.34	12.78	12.46						
			12.7812 .4611 .8711 .8011 .4611 .72												
3	20	$64 \mathrm{M9}$	$\begin{array}{llllll}8.94 & 8.34 & 8.49 & 7.92 & 8.50 & 8.21\end{array}$	$\begin{array}{ll} 2 & \\ \frac{1}{6} & 8.30 \end{array}$	7.46	7.54	7.6 .6	7.21	7.04						
			$\begin{array}{lllllll}7.21 & 7.04 & 6.25 & 6.19 & 5.70 & 5.36\end{array}$												
3	22	64 M ${ }^{\text {P }}$	$\begin{array}{lllllll}5.38 & 5.11 & 5.21 & 4.47 & 4.43 & 3.50\end{array}$	3.78	3.79	3.55	3.98	3.13	3.93						
			$3.13 \begin{array}{llllll}3.93 & 3.38 & 3.29 & 3.18 & 2.51\end{array}$												
3	23	64 Mr	$\begin{array}{lllllll}4.10 & 2.75 & 3.00 & 3.00 & 2.20 & 1.64\end{array}$	1.82	$\therefore 60$	1.57	2.52	1.28	2.25						
			$1.28 \quad 2.25 \quad 1.60 \quad 1.55 \quad 1.44 \quad 0.44$												

Note: -99.99 means no data for the period.

Table F-2. Observed Water Levels of Monitoring Wells for Each Stress Period (Continued)

Layer	Row	Colum	Well-ID	Year	J Jan.	Feb. M	March	April	May	June	July	Alug.	Sep.	oct.	Nov.	Dec.				
4	23	65	M10 I	$\begin{aligned} & 1989 \\ & 1990 \end{aligned}$	4.65	3.90	3.65	3.17	2.81	2.25	2.39	1.80	1.58	1.97	1.72	1.67				
					1.72	1.67	1.57	1.69	1.12	2.18										
5	23	65	413		4.65	3.90	3.65	3.17	2.81	2.25	2.39	$\therefore .80$	1.58	1.97	1.72	1.67				
					1.72	1.87	1.57	1.69	2. 12	2.19										
3	23	65	Mis		4.65	3.90	3.65	3.17	2.81	2.25	2.39	$\pm .80$	1.59	1.97	1.72	1.67				
					1.72	1.67	1. 57	1.69	1.12	2.13										
4	23	66	MI 1		7.91	7.41	7.08	6.76	6.86	5.33	6.30	5.86	5.77	5.75	5.65	5.35				
					5.65	5.35	5.26	5.21	5.09	5.04										
4	23	58	M12		7.35	6.71	6.79	6.59	6.63	6.17	6.33	5.76	5.58	6.46	5.65	5.45				
					5.65	5.45	5.66	5.89	6.11	5.99										
5	23	68	M12		7.35	6.71	6.78	6.59	6.63	5.17	6.33	5.76	5.68	6.46	5.65	5.45				
					5.65	5.45	5. 66	5.89	6.11	5.99										
1	24	62	M3s	12.35-99.99-99.99-99.99					12.66	12.53	12.92-99.99		14.48	14.33	13.69	13.67				
					13.69	13.67	14.17	13.82	13.37	13.98										
3	24	62	M3		12.33	11.91	13.47	12.83	12.72	12.55	13.00	13.37	14.23	14.13	13.31	13.00				
					13.31	13.00	1.3 .42	13.22	12.85	13.21										
4	24	63	M2		9.54	8.56	9.42	8.51	7.56	6.38	6.08	6.43	6.51	6.74	6.37	6.47				
					6.37	6.47	6.75	6.57	5.89	6.47										
3	24	64	M1		4.10	2.78	3.36	3.40	1.75	1.22	0.98	0.90	0.76	1.65	1.17	$\therefore .46$				
					1.17	1.46	1.59	1.72	1.51	1.17										
3	24	64	M1 5	2.61-99.99-99.99-99.99					2.59-99.99		3.01-99.99-99.99			2.92-99.99-99.99						
					-99.99-9	-99.99	2.70	2.28	2.61	3.00										
4	24	64	M1		4.10	2.78	3.36	3.40	1.75	1.22	0.98	0.90	0.76	1.65	2.17	1.46				
					1.17	1.45	1.59	1.72	1.51	1.27										
4	24	68	M13		9.45	9.16	4.00	7.93	7.65	7. $6.51-99.99$		7.05	7.00	7.15	7.15	7.14				
					7.15	7.14	6.85	6.81	6.58											
1	24	68	M135	$5.80-99.79-99.99-99.99$					6.24	$\begin{array}{ll} 4 & 0.74 \\ 7 & 7.18 \\ 5 & 7.41 \end{array}$	4-99.99	-99.99	$9-99.99-99.99$		6.30	6.19				
						6.19	5.95	5.77	5.67											
5	24	68	M13		$\begin{array}{r} 8.45 \\ 7.15 \end{array}$	8.167.14	8.006.85	$\begin{aligned} & 7.93 \\ & 6.81 \end{aligned}$	$\begin{aligned} & 7.65 \\ & 6.68 \end{aligned}$		-99.99	7.05	7.00	7.15	7.15	7. 14				
										$\begin{array}{r} 6.55 \\ 20.08 \end{array}$										
\because	25	30	PS-931		$19.46=$	-8.90	: 9.49	19.20	18.74		19.80	21.95	22.44	22.19	22.29	22.18				
					22.29	22.18	2:.43	21.61	21.49	$2 I .09$										
4	25	64	$\mathrm{M4}$		3.14	1.90	2.39	1.95	0.99	0.64	-0.11	1.54	0.96	1.17	1.62	0.97				
					$\pm .02$	0.97	2.53	2.18	1.49	2.95										
3	25	64	Ms		3.14	1.90	2.39	2.95	0.99	0.64	-0.1:	1.54	0.96	1.17	1.02	0.97				
					1.02	0.97	2.53	2.18	1.49	2.95										
4	26	64	M5		15.34	9.71	11.14	10.24	10.52	9.52	10.57	11.54	11.31	11.90	11.52	11.11				
					11.521	11.11	11.67	11.55	11.20	11.92										
1	26	64	M5S		-99.99-9	99,99-	-99.99-9	199.99	12.90-9	-99.99-	99.90	$99.99-$	-99.99	13.61	12.98	99.99				
					12.98-9	99.99	13.25	13.01	99.99	13.28										
3	2ϵ	64	MS		10.34	9.71	11.14	10.24	1c. 62	9. 9.5	1 C .57	11. 54	15.91	$\therefore 3.90$	11.52	11.11				
					11.521	11.11	11.67	11.56	11.20	11.92										
4	27	64	M6		± 1.81	11.29	12.24	11.69	12.18	11.19	11.68	11.94	12,52	12.42	12.02	11.67				
					12.021	11.67	12.22	12.00	11.82	12.59										
3	27	64	M6		: -91	11.29	12.24	11.69	12.18	11.19	± 1.69	11.94	12.52	12.42	12.02	11.67				
					12.02	± 1.67	12.22	12.JC	1:. 82	12.59										
3	27	70	Mi4		0.83-9	99.99-	-99.99-99	99.99	0.64-3	-93.99	1.57-	-99.99-	-99.99	1.96	99.99	99.99				
					-99.99-9	99.99	$\therefore .65$	1.53	1.88	:. 43										
1	30	56	FB-109		15.081	15.78	16.70	17.23	15.161	15.18	17.62	17.40	16.49	16.76	16.16	16.53				
					16.161	16.53	15.99	1.5 .72	15.401	15.56										
5	33	73	32 ND ST		6.34	5.59	5.09	5.26	4.76	6.25	4.67	5.07	4.76	5.26	4.93	5.57				
					4.93	5.57	4.72	4.47	5.28	5.05										
5	34	73	20 TH ST		5.44	4.77	4.77	5.35	4.60	4.52	4.35	4.60	4.52	5.02	4.45	5.58				
					4.44	5.58	4.31	4.23	3.93	4.66										
5	34	74	PE-632		-99.99	3.36-9	99.99	2.94	99.99-9	99.99	2.77-	-99.99-39	39.99	$3.78-$	-99.99-	-99.99				
					-97.99-9	99.99-	92.99	2.46	99.99	3.06										
5	36	66	LONE PIN		9.31	9.39	9.81	10.56	9.31	9.31	9.64	10.22	9.64	9.36	9.22	9.57				
					9.22	9.67	9.33	9.04	9.01	9.94										
2	45	54	TW2		$12.05-9$					29.99	6.98	7.96	$13.53-9$	99.99	9.21	9.63				
					9.21	9.53-9	-99.99	9.35-	99.99	8. 80										
2	45	54	TWA		$1 \Xi .41-9$	99.99			2.56	5.33	5.49	6.41	$5.49-9$	49.99	8.49	6.41				
					B.49	6.41	99.99	9.16-	99.99	8.58										
2	45	54	TWC		3.80-9	99.99	6.13-9	99.99	4.38-9	-99.99	6.30	7.22	$7.00-99$	99.99	9.98	8.30				
					2.83	8.30-	-39.99	8.35-	99.99	8.55										
1	44	56	PB-561		11.361	10.95	11.51	12.33	11.341	11.44	11.97	12.76	12.611	12.35	12.23	13.07				
					12.231	13.071	12.761	12.20	11.681	12.22										
2	44	54	Tw5		$11.24-9$	99.991	11.74-9	99.99	10.49-9	-99.99	13.32	13.41	12.66-99	99.99	11.99	12.91				
					11.991	12.91-9	99.991	11.41-	99.991	12.24										
2	45	54	TWH		9.65-9	99.99	5.65-9	99.99	1.58	4.25	5.50	6.33	4, 33-9	99.99	7.83	8.75				
					7.83	8.75-9	99.99	7.58-9	99.99	9.58										
2	45	54	TW1		6.16-9	99.99	5.26-9	99.99-9	99.99-9	99.99	5.49	6.41	6.37-9	99.99	6.33	7.24				
					C. 33	7.24-9	99.99	6.08	99.99	6, 49										

Note: -99.99 means no data for the period.

Table F-2. Observed Water Levels of Monitoring Wells for Each Stress Period (Continued)

Note: -99.99 meath no data for the period.

Table F-2. Observed Water Levels of Monitoring Wells for Each Stress Period (Continued)

Note: -99.99 means mo data for the period.

Layer	Row	colum	Nell-ID	Year	r Jan.	Feb.	March	April	May	June	July	Aug.	ep	Oct.	Nov.	Dec.								
5	93	67	23-1455	1989	$9 \quad 3.52$	3.17	3.24	2.96	2.80	3.35	3.53	3.83	3.42	3.58	2.99	2, 82								
				1990	02.99	2.82	2.85	2.74	2.84	3.47														
1	93	69	28-450	-99.99 1.13-99.99				1.23-99.99-99.99			$1.77-99.99-99.99$			1.89-99.99-99.99										
				-99.99-99.99-99.99				$0.79-99.991 .67$																
1	93	69	23-498		-99.99-		-99.99	0.90-99.99-99.99			1.26-99.99-99.99			1.53-99.99-99.99										
					-99.99-	-99.99	0.47-99.99		$1.32-99.99$															
4	93	69	23-490		1.37	0.81	1.13	0.92	0.83	1.23	1.23	1.73	1.59	1.64	1.21	1.26								
					1.21	1.26	0.65	0.43	0.91	1.26														
5	93	69	PB-492		1.36	0.64	1.37	1.25	0.72	1.17	$\therefore .40$	2.59	2.20	1.81	1.72	1.76								
					1.72	1.76	1.09		0.52	1.02														
5	93	69	PB-491		3.08	2.40	3.01	2.71	2.89	3.56	3.44	4.24	4.22-99.99		3.87	3.39								
					3.87	3.39	2.55-99.99		2.77	3.19			$2.92-99.99-99.99$											
1	93	59	PB-500		-99.99	1.25	-99.99	2.11-99.99-99.99								3.11-99.99-99.99								
					-99.99-	-99.99	-99.99	$7.23-99.99-99.99$																
1	94	65	PE-1076		-99.99	7.28	-99.99				7.97-99.99-99.99			7.58-99.99-99.99										
					-99.99-99.99-99.99			7.08-99.99-99.99																
1	94	66	PB-1077		$-99.995 .78-99.99$$-99.99-99.99-99.99$			5.54-99.99-99.99 4.96-99.99 5.56			6.44-99.99-99.99			6. 37-99.99-99.99										
1	94	69	PB- 543		-99.99 1.62-99.99$-99.99-99.99-99.99$			-99.99-99.99-99.99			1.88-99.99-99.99			3.33-99.99-99.99										
								$1.07-99.991 .81$																
1	94	70	PB-465		$\begin{array}{r}-99.99-99.99-99.99 \\ -99.99 \\ \hline\end{array}$			1.62	-99.99-	99.93	2.8E-99.99-99.99			2.75-99.99-99.99										
					$\begin{aligned} & -99.99-99.99-99.99 \\ & -99.99 \quad 1.87-99.99 \end{aligned}$			$1.42-99.99$ 2.33																
1.	94	71	2B-462					$\begin{array}{r} 2.24-99.99-99.99 \\ 1.63-99.99 \\ 2.58 \end{array}$			2.58-99.99-99.99			2,74-99.99-99.99										
					-99.99-99.99-99.99																			
1	95	67	FB-752		$\begin{aligned} & -99.99 \\ & -99.99- \end{aligned}$	2.50	-99.99	2.35-99.99-99.99			3.05-99.99-99.99			$3.54-99.99-99.99$										
						-99.99-99.99-99.99		1.94-99.99 2.45																
1	95	70	EB-4 54R		-99.99	2.97	-99.99	99,99	-99.99-9	99.99	2.53-99.99-99.99			2.77-99.99-99.99										
					-99.99-99.99-99.99			2.81-99.99 2.84																
1	95	71	FB-502		$\begin{aligned} & -99.99 \\ & -99.99 \end{aligned}$	$2.35-99.99$$-99.99-99.99$		2.65-99.99-99.99-			-99.99-99.99-99.99			3.14-99.99-99.99										
								$2.15-99.992 .89$$8.62-99.99-99.99$																
1	96	64	PB-1610		$-99.99-99.99-99.99$$-99.998 .87-99.99$						8.83-99.99-99.99			8.67-99.99-99.99										
					-99.99-99.99-99.99			7.85-99.99 8.			7.14	3.34	7.51	7.28	6.44	6.57								
4	96	65	PB-1063		7.16	6.34	7.01	6.76	6.75	6.75														
			D1A		6.44	6.57	5.07	5.930.82	6.010.51	6.711.31														
4	97	65			1.13	0.90	0.81				1.22	1.47	1.34	1.85	1.30	0.92								
					1.30	0.92	0.72	0.750.34	0.870.37	0.941.34														
5	97	67	011		0.65	0.46	0.22				1.04	1.37	1.31	1.57	1.24	0.78								
					1.24	0.78	0.44	0.57	0.37 0.62	0.921.72														
5	98	68	013		$\begin{aligned} & 0.82 \\ & 1.28 \end{aligned}$	0.44	0.19		0.42		1.15	1. 61	1.42	1.55	1.28	0.85								
						0.85	0.51	0.69	0.69	1.17														
5	97	69	D12		0.92	0.69	0.70	0.62	0.53	1.74	1.32	1.43	1.60	1.92	1.40	0.96								
					1.40	0.96	C. 95	1.12	0.98	1.07														
2	98	65	51A		-99.99-9	-99.99	3.87	3.84	3.32	5.67	5.03	5.41	4.19	4.87	4.48	4.34								
					4.43	4.34	3.47	3.48	3.37	3.82														
2	99	66	32		1. 14	0.75	0.57	0.45	-0.59	0.63	0.26	1.02	0.97	1.85	1.63	0.84								
					1.65	0.84	0.36	0.16	0.23	0.46														
4	98	66	D2A		1.14	0.74	0.54	0.44	-0.62	7.43	0.14	1.0.	0.93	1.84	1.58	0.82								
					1. 58	0.82	0.34	0.17	0.24	0.48														
5	98	67	010		-0.28	-0.33	-0.97	-0.39	-0.53	0.92	0.59	1.13	0.98	0.91	0.48	0.:3								
					0.48	0.13	-0.30	-0.25	-0. 15	0.48														
2	98	67	510		-1.47	-0.86	-1.94	-0.77	-0.94	0.67	0.41	1.01	0.93	0.43	-0.49	-0.17								
					-0.49	-0.17	-0.75	-0.91	-0. 54	0.31														
1	98	58	S7A		0.26	-0.33	-0.81	-0.36	-0.28	1.19	0.81	1.30	1.04	0.92	0.59	0.27								
					0.59	0.27	-0.15	-0.12	-0.03	1.09														
5	98	68	DT		0.20	-0.37	-0.87	-0.40	-0.28	1.15	0.75	2.26	0.83	0.87	0.56	0.36								
					0.56	0.36	-0.21	-0.07	-0.06	0.78														
4	98	68	D17		-0.61	-1.02	-1.89	-0.97	-0.02	0.72	0.41	0.99	0.88	$0.23-$	99.99	-0.25								
					-99.99	-0.25	-0.75	-0.77	-0.54	0.43														
4	98	69	D14A		1.16	0.94	0.76	0.92	0.78	2.05	1.52	2.03	1.83	1.36	1.81	1.25								
					1.81	1.25	0.93	1.14	1.08	1.44														
2	99	62	54		7.63	7.73	7.29	7.38	7.15	8. 26	7.70	3.28	7.85	0.13	7.94	7.84								
					7.94	7.84	7.46	7.93	7.79	8.37														
5	99	62	D4		7.90	7.87	6.69	6.73	6.49	0.24	7.11	7.60	7.47	8.20	7.45	7.06								
					7.45	7.06	6.88	7.81	6.98	8.26														
2	99	65	512		0.61	-0.01	-0.31	-0.21	-0.69	0.54	0.43	1.12	1.08	1.29	0.91	0.41								
					0.91	0.41	-0.10	-0.25	-0.18	$0 . \pm 9$														
5	99	69	016		1.80	1.06	0.81	1.96	0.58	2.48	2.79	2.35	2.21	1.99	2.22	1.63								
					2.22	1.63	1.16	1.03	1.01	2. 53														
4	99	69	D15A		$0.33-$	-0.69	-1.19	-0.82	-0.85	0.82	0.63	1.23	1.13	0.57	0.41	0.06								
					0.41	0.06	-0.41-	-0.36	-0.49	0.43														
2	100	64	53		6.27	6.82	7.03	7.04	7.03	8.04	7.51	8.04	7.93	7. 96	7.91	7.74								
					7.91	7.74	7.11	7.77	7.80	9. 14														

Note: -99.99 means no dasa for the pertod.

Table F-2. Observed Water Levels of Monitoring Wells for Each Stress Period (Continued)

Layer	Row	Column	Well-ID	Year	Jan.	Feb. Ma	Mareh	Apfil	May	\une	July	Aug.	ep	ct	Nov.	Dec.									
5	100	64	D3	1989	6.32	6.87	6.44	6.44	6.40	7.48	6.88	7.40	7.17	7,34	7.23	7.24									
				1990	7.23	7.14	6.52	7.09	7.27	7.57															
2	100	65	s5		-0.71	-1.08	-1. 26	0.67	-1.91	-0.70	-0.76	0.56	0.45	1.14	0.06	-0.09									
					0.06	-0.09	-1.32	-1.19	-1.43	-1.19															
5	100	65	D5		0.14	-0.13	-0.36	0.84	-1.31	1.74	-0.16	1.44	1.28	2.30	1.39	1.04									
					1.39	1.04	-1.38	-2.19	-0.29	-0.01															
1	100	67	511		0.34	-0. 32	-0.64	-0.57	-1.07	0.18	0.10	0.86	0.68	1.02	0.60	0.11									
					0.60	0.11	-0.44	-0.58	-0.55	-0.16															
2	100	69	S6		1.24	0.69	0.15	0.37	-0.06	1.74	1,10	1.64	1.54	1.39	1.49	0.87									
					1.49	0.87	0.43	0.37	0.31	0.76															
5	100	69	D6		1.16	0.75	0.44	0.39	0.05	1.77	1.09	1.64	1.54	1.39	1.49	0.94									
					1.49	0.94	0.64	0.37	0.34	0.76															
2	101	65	S13		4.23	3.81	3.52	4.05	3.21	4.20	4.34	5.22	5.10	5.44	4.37	4.55									
					4.87	4.55	3.82	3.77	3.34	3.97															
2	101	68	S16		-1.78	-2.99	-3.71	-3.18	-3.52	-0.77	-1.99	-1.75	$- \pm .83$	$-\div .49$	-2.18	-2.35									
					-2.18	-2.35	-2.94	-3.05	-2.98	-2.36															
2	101	68	59		-1. 30	-2.40	- 3.08	-2.52	-3.00	-1.29	-1.56	-0.80	-1.10	-0.99	-1.41	-1.73									
					-1,41	-1.73	-2.28	-2.40	-2.38	-1.72															
5	101	68	D9		-1.28	-2.34-	-3.02	-2.45	-2.98	-1.26	-1.53	-0.77	-0.94	-0.97	-1.34	-1.67									
					-1.34	-1.67	-2.27	-2.35	-2.27	-1.67															
5	103	69	SWIM1		1.70	1.03	0.60	0.48	0.15	0.81	1.15	1.80	1.95	1.49	1.05	1.01									
					1.05	1.01	0.41	0.07	0.17	0.35															
3	104	67	MODPCHP		1.80	1.00	0.55	0.26	0.10	0.45	1.10	1.95	2.10	1.57	1.08	1.00									
					1.08	1.00	0.30	-0.03	-0.05	0.21															
4	106	68	G-2277		$0.81-99.99-99.99$$-99.99-99.99-0.91$			$\begin{aligned} & -0.06-99.99-99.99-99.99 \\ & -1.47-1.28 \quad 0.92 \end{aligned}$				$-99.99-99.99$		0.49-99.99-99.99											
1	107	68	G-2147		$\begin{aligned} & -99.99-99.99-99.99- \\ & -99.99-99.99-1.71 \\ & -0.42-99.99-99.99 \end{aligned}$			$\begin{gathered} -99.99-99.99-9 \\ -1.78 \quad 1.01 \end{gathered}$		$\begin{gathered} 99.99- \\ 1.77 \end{gathered}$	99.99	$-0.96-99.99$		$-0.64-99.99-99.99$											
3	109	66	G-2344A					-99.99		$\begin{array}{r} -99.99- \\ -0.69 \end{array}$	$\begin{aligned} & -99.99 \\ & -99.99 \end{aligned}$	0.68-99.99		1.18-99.99-99.99											
3	109	67			$-99.99-99.99-0.18-99.99-0.10-0.69$							2.23-99.99													
			-2490		$\begin{aligned} & -99.99-99.99 \\ & -99.99-99.99 \end{aligned}$		$\begin{array}{r} 99.99-99.99-99.99-99.99 \\ 0.39-99.99 \quad 0.32 \quad 0.91 \end{array}$				-99.99			. $52-99.99-99.99$											
4	110	66	G-2062		$-0.04-99.99$$-99.99-99.99$		$\begin{gathered} 0.01 \\ -0.79-9 \end{gathered}$	$\begin{gathered} -0.57 \\ -99.99 \end{gathered}$	$\begin{gathered} -0.87-99.99 \\ 99.99 \quad 0.14 \end{gathered}$			-0.28-99.99		3.87-99.99-99.99											
5	110	68	G-20.55	$2.85-99.99-99.99$$-99.99-99.990 .91$				$\begin{aligned} & 1.89-99.99 \\ & 1.36-99.99 \end{aligned}$		$\begin{aligned} & 99.99-99.99 \\ & 1.48 \end{aligned}$		1.51-99.99		1.54-99.99-99.99											
4	110	68	G-2054		1.85	-99.99	$2.43-$	-99.99	1.58-9	99.99-	99.99	2.02	2.34-	99.99-	99.39-	09.99									
					-99.99	-99.99-9	99.99-	99.99	99.99																

Note: -99.99 means no data for the period

APPENDIX G

Selected Hydrograph Comparison

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Station:TWA

DIFFERENCE PLOT

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Stotion:DM1
 $\begin{array}{lllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Layer 5 Row 71 Column 73 NOTE: Observed * Calculated x
DIFFERENCE PLOT

$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jon Feb Mor Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mor Apr May Jun
 $\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jon Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jon Feb Mar Apr May Jun Loyer 3 Row 78 Column 72 NOTE: Observed * Calculated \times

$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mor Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
 Layer 5 Row 85 Column 72 NOTE: Observed * Calculated x

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Station:PB-1496

$\begin{array}{lllllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mor Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Layer 5 Row 85 Column 72 NOTE: Observed * Colculated x

OIFFERENCE PLOT

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Station:PB-541

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jon Feb Mar Apr May Jun Loyer 1 Row 89 Column 69 NOTE: Observed * Colculated x

DIFFERENCE PLOT

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Station:PB-1079

$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Loyer 1 Row 88 Column 66 NOTE: Observed * Calculated x

DIFFERENCE PLOT

$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jon Feb Mar Apr May Jun

DIFFERENCE PLOT
 $\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mor Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr Moy Jun

REFERENCED AND CALCULAJED NODE HEADS 1989-1990 Station:PB-754

DIFFERENCE PLOT

DIFFERENCE PLOT

 Layer 1 Row100 Column 67 NOTE: Observed * Calculated x

DIFFERENCE PLOT

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Station: MUDPOHP

 Loyer 3 Row 104 Column 67 NOTE: Observed * Calculated x

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT

$\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jon Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun

DIFFERENCE PLOT

DIFFERENCE PLOT

REFERENCED AND CALCULATED NODE HEADS 1989-1990 Station:PB-754
 $\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May jun Loyer 1 Row 93 Column 66 NOTE: Observed * Colculoted x

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT
 $\begin{array}{llllllllllllllllll}0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17\end{array}$ Jan Feb Mor Apr Moy Jun Jul Aug Sep Oct Nov Dec Jan Feb Mor Apr May Jun

[^0]: Percent of nodes calibrated $=58.08$
 Percent of nodes with water level less than one foot diff from mean $=59.93$
 Number of Calibrated Nodes $=158$
 Number of Total Nodes $=272$
 Number of Nodes with Water Levels Less Than One Foot Diff from Mean $=163$

