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Forecasting future groundwater levels is important to water managers, who are
concerned with the management of limited water resources during drought periods.
Since historical monthly groundwater flows are highly dependent in space and time,
the stochastic time series model of groundwater flow should incorporate a structure
of corresponding temporal and spatial correlation. However, no such space-time
stochastic model currently exists for use in south Florida. Thus, the objective of
this paper is to report on the development of a space-time stochastic time series
model and to show its usefulness in south Florida.

A new form of time series model (STARX) is presented. The new model allows
time series information to be considered with the spatial structure of the system
being modeled. A new parameter estimation algorithm is also proposed, which
enables the modeler to accelerate convergence of parameter calibration and reduce
both computational time and memory space significantly. The proposed model
using this estimation algorithm has been applied to a multi-layered groundwater
system in Collier County, Florida.

Results of model verification showed that the STARX model using the estimation
algorithm not only preserves the historical statistics of mean, standard deviation,
and space-time correlations, but is also ideal for forecasting large scale problems.
The primary purpose of this paper is to discuss the development of this space-time
model with a parameter calibration procedure. The Collier County case shows a
successful local application. The STARX model may have potential applications
in forecasting regional groundwater levels in the other regions, and solving general
scientific and engineering problems involving high space-time correlation
coefficients.
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Abstract

To forecast spatially correlated monthly groundwater heads, a new form of space-time
autoregression with exogenous variables (STARX) model is presented, which incorporates
theories of multi-variate time series model and spatial structure of system. As a maximum
likelihood fitting of the STARX model, the expectation-maximization with a simplified
smoother estimator (EMSSE) algorithm is proposed, which uses the time-invariant concept
with an assumption of complete (no-missing) data. The EMSSE algorithm, compare to the
time-variant version, enables not only to accelerate convergence of parameter calibration, but
to reduce both computational time and memory space significantly. The proposed model with
estimation algorithm is applied to a multi-layered groundwater system in Collier County,
Florida. Results of model verification showed that the fitted STARX model preserves the
first four moments as well as space-time correlations of the historical data, and that the
STARX model with the proposed estimation algorithm is ideally suitable for the large scale
forecasting problems.



1. Introduction

Forecasting future groundwater heads is an important issue to water managers, who are

concerned with management of limited water resources during drought periods. There exist a

variety of stochastic forecasting techniques. One promising option is the Kalman filter

forecasting with an underlying system model, which might be either deterministic or

stochastic. The deterministic system model is physically-based and accurate, but complication

arises when applied with the Kalman filter algorithm. Another problem in this approach is

that it should accompany the forecasting of inputs. However, some input variables, like

rainfall to the groundwater system, are so uncertain that forecasting them results in significant

errors which make forecasting itself virtually meaningless. That is why the Kalman filtering

with a stochastic time series model is commonly used in practical forecasting problems, and

by the same reason, the Kalman filtering with a deterministic system model was eliminated

from the consideration in this paper.

When a stochastic time series model is fitted to the system, identification of model

structure and calibration of model parameters may become the main concerns. If spatial

correlation is dominant as in the ease of regional monthly groundwater heads, either

multivariate autoregressive moving average (MARMA) models or space-time ARMA

(STARMA) model is commonly applied. However, the pure MARMA model does not

properly account for the spatial structure of the system or so called the cross-boundary effects

[Bennett, 1979, page 8]. Thus, without properly discriminating neighbor stations, the pure

MARMA model applied to large systems may spread its regression weights to the entire

system due to a large degree of freedom. Also, the mathematics involved with the



sophisticated estimation procedures of the large scale MARMA model become burdensomep-4

That is why a family of univariate ARMA models have been extensively used in practical
groundwater forecasting problems [Shih et al, 1992; Graham and Tankersley, 1993].

A family of STARMA models offers a way of generalizing both the ARMA models
and the simultaneously specified spatial model by a hierarchical spatial ordering of neighbors.
Cressie [1991, page 4491 summarized several existing STARMA models, among them the
following two models were of interest since their structures are similar to that of the proposed
model. The STARMA model considered in Pfeifer and Deutsch [1980) is of the form

Np Nq mk
£t _ k 

-
On-k Nq+ 1 k WtFV-W2 

(1)

where for the nx fixed spatial locations, x is the (nxxl) state vector at time t, Np is the
temporal autoregressive order, Nq is the temporal moving average order, L and my are the k-th spatial orders of autoregressive and moving average terms, L and % are the parameters

(scalar) at k-th temporal order and i-th spatial order, respectively, WWi is the (nxxnx) matrix
of weight for the i-th spatial order, and w is the white noise vector. The other form of
STARMA model with exogenous term given by Stoffer [1985] is defined by

Nq Nk
_. -X t-t +  w E T tzf + t (2)

where, with the nx fixed stations, A, is the (nxxnx) diagonal space-time transition intensitymatrix at the i-th temporal lag, D is a known (nxxnx) distance matrix which expresses the
spatial relationship in the random field x, zt is the (nzx 1) covariate vector having nz fixed



locations in a covariate space, and TP is the (nxxnz) regression matrix.

In the above two models, the spatial parameters are pre-determined by either the
inverse distance weighing scheme or spatial statistics of covariance or semi-variogram. Then,
parameter calibration is used to find the optimal time dependent multipliers to the predefined
spatial structures. A difficulty in applying the above approaches is that it is hard to imagine
how spatial dependence can arise other sources than integration of causation over the system
[Cressie, 1991, page 450]. That is, defining the spatial weights W" or D, explicitly, rather
than from space-time correlation structure itself, may circumvent the real correlation system.
Also, such lumped spatial parameters over the entire space will lose the integrity of the local
correlation structures of the true system.

To overcome the above problems, this paper proposes a new form of the Space-Time
Auto-Regression with Exogenous variables (STARX) model suitable for a large scale
groundwater head forecasting problems. The large scale system referred in here is a system
which has more than 20 state variables, enough to cause divergence problem occasionally
during parameter calibration. Also included is a parameter calibration procedure by the
maximum likelihood (ML) method, as well as an application to the multi-layered groundwater
system in Collier County, Florida. The results of application revealed that the proposed
estimation algorithm provides an adequate tool for the simultaneous estimation of both model
parameters and error covariance terms, and that the fitted STARX model preserves the first-
four moments as well as space-time correlations of the historical data.
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2. The Proposed STARX Model.

The proposed STARX model is based on the theory of MARMA model with

incorporation of the spatial structure via the concept of spatial neighborhood. It is obvious

that adding exogenous term (covariate) improves estimation of state variable (variate) and

becomes a more physically-based model. Also use of covariate term, instead of the

simultaneous modeling of both variate and covariate, enables to reduce the model dimension

which is very critical in the calibration of a large scale system. The reasons for eliminating

the moving average term in the proposed model are that the moving average term causes

severe non-linearity that often adds difficulties in parameter calibration.

To formulate the STARX model, suppose that a spatial random vector denoted by x, at

time t, with t=1,...,T, is of interest to an investigator. With the nx fixed locations in space,

the decomposition of at is xt'=(x,,l...,x ) where (') indicates the transpose of either vector or

matrix. Further it is supposed that a spatial random vector of covariate denoted by z ' =

(z1 ,...,z. at time t may be measured concurrently from the nz fixed locations. For a

regional groundwater head forecasting problem, xJ may represent a potentiometric head at

time t and site j in a given aquifer, whereas z, may be either rainfall, evapotranspiration,

temperature, adjacent layer's head, or a composite of them, at time t and site j. Then, the

STARX model which describes the current state xt in terms of the previous states ({x_, ... tNq}

and the covariate {z, z.1, ..., z-m} can be expressed by

Nq Nk (3
x, =- E tD xt + E Ej z,_j + w,

i=l ]--O
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where Nq and Nk are the temporal orders of regression for xt and z, respectively, A, is the

(nxxnx) matrix of parameters for the vector xt,,, K, is the (nxxnz) matrix of parameters for the

covariate z , D, is the known (nxxnx) spatial index matrix (SIM) for the x., Ej is the

known (nxxnz) SIM for the zj, and w, is the (nxxl) multi-Gaussian white noise vector having

a covariance of Q. Either D or Ey needs not be a symmetric matrix. Notation (a) is the

Hadamard product which is an element-wise product of two matrices of the same size [Horn

and Johnson, 1985, page 321]. It is assumed that the Hadamard product has higher

precedence than that of matrix multiplication. Then, the relationships of both AoBC=(AoB)C

and AoBC*AO(BC) are satisfied, where (A, B, and C}EMn, with Mh,, is a (mxn) vector

space.

The m-th row and n-th column element d.. in Di matrix is defined by

d 1 if m- and n-th stations are an i-th time lag neighbor
m 0 otherwise

with a case of m=n as a default neighbor. The same definition is applied to the element e.

/A a lU ~ ~
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where the dimensions of the matrices in (4) are as follows: D(nxxns), E(nxxnc), A(nsxns),

O(nxxnc), x(t-1)(nsx ), z(t)(ncxl), =-[b,,...,c q] (nxxns), and Y=[Yo,....' '](nxxnc), with

ns=nxxNq, and nc-nzx(Nk+l). The third expression in (4) is exactly the same format as

that of a multivariate autoregressive model with a covariate term. However, it should be

noted that both ( and T in (4) are sparse matrices due to the Hadamard products. With

properly determined temporal orders Nq and Nk by the model identification procedure, the

equation (3) or (4) was defined as a STARX model of order (Nq,Nk), or simply a

STARX(Nq,Nk) process.

The proposed STARX model is different from the approaches in (1) or (2) since it

imposes the spatial structure of the system via SIMs without pre-constraining its parameters.

The STARX model is more flexible in its format than a MARMA model. That is, if the Di's

in Equation (3) are diagonal matrices with no covariate, the STARX model becomes a set of

univariate autoregressive models. Also, if the Di's and E,'s are unit matrices, the STARX

model is nothing but a multivariat, aiitnraanacir a nal _-
l-wIvsbh wGrr~I yJJV 1WW IIW BjL

I
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where Nq and Nk are the temporal orders of regression for xt and z4, respectively, Ai is the

(nxxnx) matrix of parpmeters for the vector xt, fJ is the (nxxnz) matrix of parameters for the

covariate z,_, Di is the known (nxxnx) spatial index matrix (SIM) for the xt4, E3 is the

known (nxxnz) SIM for the z, and w, is the (nxxl) multi-Gaussian white noise vector having

a covariance of Q. Either Di or E5 needs not be a symmetric matrix. Notation (o) is the

Hadamard product which is an element-wise product of two matrices of the same size [Horn

and Johnson, 1985, page 321]. It is assumed that the Hadamard product has higher

precedence than that of matrix multiplication. Then, the relationships of both AoBC=(AoB)C

and AoBC*Ao(BC) are satisfied, where {A, B, and C}EMI., with lM, is a (mxn) vector

space.

The m-th row and n-th column element di,. in Di matrix is defined by

d1 if m- and n-th stations are an i-th time lag neighbor
= { 0 otherwise

with a case of m=n as a default neighbor. The same definition is applied to the element e,.

in E matrix, indicating that x,. and z. are the j-th time lag neighbor. The application

section will show an example of how to determine SIMs by the first spatial order neighbors

using the Thiessen polygons.

The STARX model in (3) can now be rewritten in the block matrix forms of

xt [D 1 ... DPjoqA ... Ag I +[Eo ... EN[Qo * NkI +W

xt-N -Nk (4)

= DoAx(t-1) + E.Dz(t) + w,
= tx(t-1) + VZ(t) + w t



where the dimensions of the matrices in (4) are as follows: D(nxxns), B(nxx), A(nsns)-8

L(nxxnc), x(t-1)(nsxl), z(t)(ncxl), D=[ 1 9,,...,4i (nxxns), and T= o"..W J(nxxnc) with
"s=nxxNq; and nc=nzx(Nk+l). The third expression in (4) is exactly the same format as
that of a multivariate autoregressive model with a covariate term. However, it should be
noted that both ( and 'f in (4) are sparse matrices due to the Hadamard products. With
properly determined temporal orders Nq and Nk by the model identification procedure, the
equation (3) or (4) was defined as a STARX model of order (Nq,Nk), or simply a
STARX(Nq,Nk) process.

The proposed STARX model is different from the approaches in (1) or (2) since it
imposes the spatial structure of the system via SIMs without pre-constraining its parameters.
The STARX model is more flexible in its format than a MARMA model. That is, if the D,'sin Equation (3) are diagonal matrices with no covariate, the STARX model becomes a t set of

Sunivariate autoregressive models. Also, if the Di's and E,'s are unit matrices, the STARX
model is nothing but a multivariate autoregressive model with an exogenous term.

3. ML Fitting by the Expectation-Maximization Algorithm

There are a several different parameter estimation techniques available for the
stochastic time series models. These methods includes the method of moment, least square
method, ML method, etc. The ML method attempts to incorporate all the information into a
model by working with the complete distribution of the measurement. This is why ML
estimates are preferred over the other methods for stochastic time series models. If the
objective is just fitting of the STARX model, one may use the Gauss-Newton algorithm or the
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scoring algorithm [Harvey, 1990, page 134]. However, the ultimate objective of fitting the

proposed STARX model in here is forecasting by the Kalman filter algorithm. The Kalman

filter seeks to provide the minimum error variance estimator for the state vector with

balancing both the model and output errors, given the measurements. Thus, the Kalman

filter forecasting requires system model parameters, noise covariance terms, and the updated

state and error covariance terms. Those of which should be calibrated simultaneously,

requiring a special algorithm rather than conventional optimization methods.

It was known that the EM algorithm [Dempster et al., 1977] can be applied in

conjunction with the modified Kalman smoother estimators to derive a simple recursive

procedure for the ML fitting of multivariate ARMA models [Stoffer, 1985; Shumway, 1988, p.

173]. The EM algorithm is an alternative non-linear optimization algorithm ideally suitable

for an incomplete data set. The term "incomplete data" implies the existence of two sample

spaces: a measured part and an unmeasured part. With some incompletely measured data Y

which is also a function of a known signal process X and a noise process V, it was defined

that InL(X,V I 0) is a log likelihood based on the complete data, and that InL(Y I 0) is a log

likelihood based on the incomplete data, where 0 is the parameter set of the model to be

estimated. Both X and V are not directly measured, but only indirectly expressed through Y.

Then, the EM algorithm is designed to find 0 iteratively by maximizing the expectation of the

complete-data log likelihood conditioned on the measured data Y. A conditional expectation

of the log likelihood at the i-th iteration can be defined by

Q( Id = E, [ In L(X,V;) IY;O1.



p-10Then, the expectation step (E-step) computes Q(8 I O) from the above log likelihood function

of the time series model, and the maximization step (M-step) chooses 0i+I to maximize
Q( 1 O0) using one of the optimization techniques. Since the X process cannot be measured
directly, the above equation (5) can be written in terms of the Kalman smoother estimators.

To apply the Kalman filter recursion, the STARX model should be transformed into
the state-space form, which consists of the state and measurement equations. The state
equation of the STARX model in (4) can be written by

x(t) = x(t-1) +Yz(O +w(t) - [0 I x(-1)j + w(t) = OX(t-1) + w(6)

where x(t)'=[x',...,x-Ne'](nsx1), z(t)'=[z ,...,,]J(ncxl), w(t)'=[w,', O,...,O](nsxl) are
augmented vectors, and the parameter matrices are given by

0 ...... Oft .o- .Nq

I o o 0 0 ... 0
0 - 0 ad .

0 1 0 0o ... o

with I and 0 are the identity and zero matrices. To allow for the possibility of missing data
and the existence of measurement noise, the measurement equation is written by

Yr = M(t) x(t) + vt  (7)
where ye is the (nxx 1) measurement vector at time t, M(t)=[M,O,...,0] is the (nxxns)
measurement matrix (whose element {mu} in M is 1 if i=j, or 0 if iwj), and the
measurement noise v, is the (nxx 1) multi-Gaussian white noise having v,=N(0,R). With (6)
and (7), the joint log likelihood of the complete data x(1),...,x(T) [Stoffer, 1985] is
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InL . -InZ| - [x(O)- l] E- 1[x(O)-p]
2 2

-- lnJQI - 1 [x(t)-eX(t-1)J' Q*-1[x(t)-oX(t-1)] (8)
2 2-1r

- I RI - yr (yj-Mrx(t)l' R-'[y,-Mrx(t)]

where p=E[x(0)], E=cov[x(0)], and Q'=E[w(t)w(t)'].

The problem of estimating x(t) in (6) can be approached by the expectation of it

conditioning on the measurements y,... Yr and z, ... , zr as

i -= E [x(t) I Y,...,y, z,...,z,] (9)

where s is the span of the measurement. Defining that the estimation error 4 is the true value

xt minus the estimated value ', that is, 34=(x, - %), the error covariance is expressed by

p =E [(x4 -irS(x-tS -4') y Y,...,y, lz,..,zs] (10)

and the one-time lag error covariance may be written by

Then, the following three problems occur when estimating the q", p s, and p,: if t=s, it is

called the filtering problem; if t<s, it is the smoothing problem; and if t>s, it is the

forecasting problem. From the above definitions of conditional expectations, the modified

Kalman smoother is derived. The results applied to the STARX model with the

corresponding the EM steps were summarized in Appendix.

The following is the summarized estimation procedure: With an assumed initial

parameter set
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(0) = {(), Q*(O), R(O), A(), and (0)}

where (0) indicates the initial step before iterations, the i-th iteration computes the Kalman

smoother estimators and the E-step (A4 through A16) with computing the following

incomplete-data log-likelihood [Gupta and Mehra, 1974; and Shumway and Stoffer, 1981]

T
-21nL(Y;O) , E In iM(t) p-IM(ty I +

t= (12)

z [y,-M(x'-] [M(t) p-'M(t)'+R-' Iyt-Mct)x-']
t=1

where ~' and p,"_ are from the forward recursion. Then, the M-step recalibrates the

parameters kE(A17), Q';+,(A18), and R 1,(A19). The reason why the ML function is

multiplied by -2 is that this ML function is the same as that of the least square objective

function. Then, the objective function of the optimization is minimizing equation (12).

4. Simplified Kalman Smoother for Complete-data Sets

The above EM algorithm with the Kalman smoother estimator, although it has a

greatest advantage when it is used for incomplete-data sets, can be simplified when a

complete-data set is available. The expectation-maximization with a simplified smoother

estimator (EMSSE) was derived with time-invariant error covariance terms in both the

forward and backward recursions. The concept of time-invariance in Kalman filtering was

briefly discussed by Lainiotis [1978], where the partitioned filter was solved in the form of

time-invariance and steady-state (Weiner) filter.

Without missing data, the measurement equation can be written by
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Yt = M x(t) + vt  (13)

where the measurement matrix (nxxns) becomes M=[I,0,...,O0], with I and 0 are identity and

zero matrices, respectively, each of which has a dimension of (nxxnx). Since M is time-

invariance, ptt' l , pj, and Kt in the forward recursion are also time-invariance. Using p l (-p t-'l),

Po(--pt), and K(=Kt, equations (A5), (A6), and (A8) can be rewritten as

p, Po'+ Q ...(a)
K = pM' [M pM'+Rj -  ...(b) (14)

Po ° (I-KM) pt ...(c)

which can be estimated independently from the state estimation in each iteration. The

equation (14) is a set of simultaneous equations having three unknowns and three known

terms (@ , Q, and R). The explicit solution of (14) is unknown to the author, but an iteration

method was used: Since the Kalman forward recursion is designed to obtain the minimum

mean-squared error estimators, optimal p1 , K, and Po in each iteration can be obtained, with

an initial assumption of po which satisfies the positive semi-definition matrix, by solving the

above three equations sequentially and repeatedly until the estimators are stabilized. The

experiment showed that less than 10 iteration leads to a good convergence in general.

For the backward recursion, the time-invariant estimator J(=J) is obtained by

J = p o*' [p1-r (15)

and, with notations of p 0(-=pTt and pT-,(-pT.2) , the smoother error covariances are

PoT - PoTI = Po - J p1J' (16)



PSr - Jp J' - py', - J+ pW' (17)

Again, since the above equations are derived under the condition of minimum mean-squared

error estimation, an iteration of each equation, with an initial assumption of it which satisfies

the positive semi-definition matrix, will result in the optimal pT and pl'.

Alternatively, equations (16) and (17) can be solved explicitly by the Kronecker sum

properties [Bellman, 1970, page 125]: Since both (16) and (17) have the form of

X - UXV= W (18)

where X is an unknown matrix, and U, V, and W are known coefficient matrices, the solution

of the above equation to X is given by

X = UkW V. (19)
k-0

In practice, summation in the above equation may continue until the term UkWVk at k is

insignificant. The condition in (19) is that the sum of any two characteristic roots

(eigenvalues) of U and V is non-zero. This condition will be satisfied when both U and V

are the stability matrices which satisfy that all of the eigenvalues of U and V have negative

real parts. Since V=U' for both (16) and (17), and J, po, and pl are all positive semi-definite

matrices, the characteristic polynomials of both U and V are the same and the stability matrix

conditions are automatically satisfied.

After solving the error covariances in equations (14) through (17), the forward

recursion for t=1,...,T is given by

p-14
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- + K(y,-Mx-') (21)

with computing the log likelihood function in (12) with pl instead of p,"'. Then, the

backward recursion for t=T,T-1,...,1 is computed by

T t-i T t-1 (22

and the EM estimates are computed by (A15) through (A19) in Appendix.

The great advantage of EMSSE is that whenever complete-data is available, the

computational load is significantly reduced due to the reduced number of matrix inversions

for both K and J. The larger the system is, the greater is the reduction of computational

loads. Also, the EMSSE algorithm eliminates requirement of a large memory space for ptt,

which should have a dimension of [(nxxNq)2T] to link the forward and backward recursions.

The other advantage is that use of time-invariant parameters eliminates the effect of the initial

assumption of the error covariances (po, p,, Por, and p T) provided in each iteration of

estimation, and consequently escalates the convergence rate of the estimation algorithm.

5. Application

5.1. Description of the Model Area and Historical Groundwater Head Data

The model area consists of the western half of Collier County and a small portion of

the southwestern Lee County, Florida. This area is characterized by moderately drained

sandy soils with extensive agricultural and urban development. This area receives an average

of 1380 millimeters of rainfall annually, with about 60 percent occurring during the wet
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season (mid May-October). Without having a significant surface water inflow source or

storage, the area relies mainly on the groundwater sources to meet water use demands. Thus,

this area typically experiences water shortage problems. The area's hydrogeology consists of

four underlying fresh water aquifers as described in Table 1, which provide most of the

region's water supplies. The top three aquifers are separated from each other by semi-

confining beds having low permeable materials, however a significant amount of inter-aquifer

flows take place due to the leaky structure. These three aquifers are extensively developed

because of their low salinity content. The mid-Hawthorn aquifer is separated from the

sandstone aquifer by a low permeable confining unit, and not highly utilized due to increased

well depth, high salinity, and low yield. Currently, the U.S. Geological Survey (USGS)

maintains about 150 monitoring wells in this area, from which piezometric heads are

collected. After eliminating stations whose records are inconsistent or having sampling

intervals greater than a month, only 115 gaging stations were selected (refer to Table 1 and

Figure 1). The periods of record range from early 1900's through August 1993, and a full-

fledged monitoring program began in 1987; from that time, a complete-data is available.

A volumetric water budget analysis in this area by Bennett [1992] showed that layer 1

receives 95% of its inflow from the local rainfall and releases about 16% of its outflow to

layer 2. Layer 2 receives about 82% of its inflow from the layer-i and releases only 9% of

its outflow to layer 3. Layer 3 receives 54% of its inflow from layer 2 and 43% of it from

layer 4 while releasing 40% of outflow to layer 2. Layer 4 receives most of its inflow

through upward leakage from the deeper aquifer and releases most of its outflow to layer 3.

These results indicates that layer 1 and 4 are not significantly affected by the adjacent layers,
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while layer 2 is influenced by layer 1, and layer 3 is affected by both layer 2 and 4.

Experiment of the EMSSE algorithm in this study revealed that a STARX model

having more than 50 state variables was extremely inefficient in calibration. Thus, instead of

a STARX model comprising all aquifer layers simultaneously, the following three separate

STARX models were developed:

Model I : for layer 1 with no-covariate,

Model II : for layer 2, with layer 1 as covariate, and

Model T : for layer 3 and 4, with layer 2 as covariate.

5.2. Treatments of the Raw Data

Seasonality

Seasonality in time series is a regular change in the data values that occurs at the same

time in a given period. The monthly groundwater heads in the model area have strong

seasonalities (Figure 2). Unlike monthly means, the monthly standard deviations during the

wet season are smaller than those of the dry season except for the Surficial aquifer, because

most summer rainfalls induce near maximum groundwater heads due to the high permeable

confining units. Several methods are available to handle the seasonality in time series model,

among which the multiplicative explanatory variable approach by the standardization

procedure [Salas et al., 1980, page 241] was adopted, because this approach is very simple in

nature and does not increase the number of model parameters. If a time series uu

(untransformed) at a site i is measured during t=1,...,T, ut. can be rewritten to u,. using the

seasonal notation t(1,..,co) and year v(=1,...,N), where r is a number of season (12 month) in
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a year and N is the number of years, with T--N. Then the standardization

U, j -IP "Xr,o - (23)
OTj,

will remove the seasonality, where p., and acr are the seasonal mean and standard deviation,

respectively, at site i and month c. After standardization, the series x,V should be written as

x series to fit for the STARX model. This standardized series xt; has a mean of 0 and a

variance of 1, if each month's data meets the normality condition. Then, the correlation

coefficient of this standardized series is the same as covariance.

Normality

Several statistical tests are available for testing the hypothesis that a given series is

normally distributed. The skewness test of normality [Salas et al., 1985, page 92] is based on

the fact that the skewness coefficient for a normal variable is zero. An estimation of the

skewness of a time series ut, t=1,...,T is given by

T

-1

Y " (24)

where pi is the sample mean at site i. The 1-ac probability limits is defined by tu 1 (6/IT) 1

where ul.2 is the 1-a/2 quantile of the standard normal distribution. If the estimated y, is

within the probability limit, the hypothesis of normality is accepted, or otherwise rejected. If

data is non-normal, several transformation techniques are available. Since some groundwater

heads in the model area did not satisfy the hypothesis of normality, the following Box-Cox
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transformations [Bras and Rodriguez-Iturbe, 1985, page 73] was used:

(25)
xtj_

where i is the transformation parameter to be estimated. Using a simple trial and error

method, X,'s, i=1,...115, were calibrated, whose values range from -0.6 to 2.2 with an average

of 0.43. After the Box-Cox transformation, the Ti's (mean ± standard deviation of yi's) were

improved from -0.065±0.35 to -0.042±0.26. Moreover, the number of sites accepted by the

normality assumption with a=0.1 was increased frbm 92 to 106 sites (92.2% accepted). In

addition, the logarithm, exponential, and power transformations were tried to improve

normality conditions, but the Box-Cox transformation was superior to the other methods.

Temporal Trends

One of the common non-stationarities in groundwater head data was a temporal trend

which is a long, consistent change in the time series values from beginning to end. Temporal

trends can be modeled by either linear, quadratic, or cubic pattern. A simple linear trend

model [Shumway, 1988, page 124] was used which is the form of

Ut = lo + Pl t + Ct (26)

where e is the model noise, 0i. and Bi.i are regression parameters estimated by

(28)po0 = u- - P1D t*
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T

(t-t')(u4-ui)

1- tA T (27)

'r (t-t)
t-i

where t and ui* are the means over the time axis and observed sample series, respectively.

Then, the detrended series can be modeled by

x = ut - po - t P(l t
= (utj - uz)-P, (t-t*).

After standardization and the Box-Cox transformation, the temporal trend in each site was

removed before parameter calibration. For i=1,...,115, the estimated Bo,'s have a mean of -

0.0465, a standard deviation of 0.144, and a maximum of 0.318; whereas the estimated 01.,'s

have a mean of 0.0036, a standard deviation of 0.009, and a maximum of 0.028.

5.3 Neighbor Sites Determined by the Thiessen Polygons.

As mentioned before, the SIM's matrices are constructed by the binary weights with

the concept of neighbor which can be determined by the sampling grid. Sampling grid can be

either regular or irregular spacings. For an irregularly spaced system, either the spatial

statistics or the spatial ordering scheme can be used to determine the neighbors. For example

of the spatial statistics, Stoffer [1986] used semi-variogram after assuming that the first and

second spatial orders are stationary. If a fitted semi-variogram has a significant sill value, the

range of the semi-variogram can be used as a boundary for selecting neighbors. However, it

is usually difficult to find such a distinct sill or range in practical cases. Moreover, an

assumption of spatial stationarity makes the procedure simple, but loses the local correlations
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due to the use of the lumped spatial function.

The spatial ordering scheme is determined by the lagging of adjacency of boundary

cells [Bennett, 1979 p. 481]. The first order sites are the ones which have right adjoined

common boundaries to the site of interest. Spatial orders can be extended to the second or

higher orders. However, Bennett [1979 p.48 4] pointed out that "extension to high-order lags

becomes very dubious since there is no simple or objective rule by which the contiguity

(lagged) counts can be made." Thus, the first spatial order was used in here to build the SIM

matrices. Furthermore, the assumptions of D=,...,DNq=D and E0=,...,EN=E were used in the

STARX model for simplicity in the STARX model.

Without having any natural geographic boundaries, the Thiessen polygons were used

to define the boundaries of gaging stations. An advantage of the Thiessen polygons method

in selecting neighbors is that it accounts for both distance and directional components

simultaneously. The Thiessen polygon is a convex polygon whose boundary defines the area

that is closest to the site of interest relative to all other sites [Environmental System Research

Institute, 1992]. It is geometrically defined by the perpendicular bisectors of the lines which

connect all neighbor sites (Figure 3a). When the covariate z, is used in the STARX model,

the covariate Thiessen polygons should be constructed site by site. That is, if the nx state

vector and the nz covariate vector are used, a total nx maps should be prepared, each of

which is constructed on the covariate space with adding a site from the variate space. Figure

3b shows examples of some covariate polygons. From those Thiessen polygons, all sites

whose boundaries are joined by lines were considered as the first spatial order neighbors, and

whose the corresponding elements in the SIM's are coded as 1, or otherwise 0. If two sites
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were joined by a point (for example, site #7 and #12, or #26 and #40 in Figure 3a), they

were classified as the second-order neighbors, but if two sites were joined by a point and a

line (site #26 and #40 in Figure 3a), they were classified as the first-order neighbors.

5.4. Calibration of the STARX Model

To determine the temporal order of a multivariate autoregressive model, either the

Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC) can be used.

Using the residual sum of products RSP~T,,.i[wt'wJ, where w, is the model noise estimated

by the ML method, the form of AIC [Shumway, 1988, page 167] is given by

AIC(Nnq)lInI TI+2 nx2 Ng (30)
T T

where nx is the dimension of state vector, and T is the record length. Then the model order

is selected whose AIC is smallest of all. The term InlRSPI, which is the reduced likelihood

[Blockwell and Davis, 1987, page 280], is equivalent to the first term of the ML function in

(12). Note that if the conditional fitting procedure leading to the RSP is applied, T in

equation (30) should be replaced by the number of effective observations (T-Nq). Since

(nxNq) is the number of effective parameters of an autoregressive model, the number of

effective parameters for a STARX model is [nx2Nq+nxxnzx(Nk+l)]. The BIC [Shumway,

1988, page 167] chooses the model order Nq that minimizes

BIC(Nq)=1n RSP ' nx lnT
T T

Using the EMSSE algorithm, several alternative STARX models having different
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temporal orders were calibrated, from which ML function, AIC, and BIC were computed

(Table 2). The period of record of the calibration was from January 1978 to December 1992,

while pi and as. in (23) were computed by all available historical data, which range from 7

years to 42 years. Based on the estimated AIC's and the first term of ML function,

STARX(2,no), STARX(1,0), and STARX(3,0) were selected for Model I, II, and In,

respectively.

5.5. Verification

Two of the common applications of the stochastic time series model is stochastic data

generation and forecasting. Thus, verification of the calibrated STARX model was focused

on those two aspects.

Data Generation

When data generation, Mt in the measurement equation (7) is nothing but an identity

matrix and can be ignored. Substituting all x, terms in (3) with (yt-v) and rearranging for y,

results in the following recursion equation:

Np Nk Nq

Yr - ED, + EE + E n J w,+ v- ED A v. (31)
4-i j-0 J-1

With x(0)=N(p,E), the initial condition of generated series becomes yo=N(p,E+R). To

generate data by (31), a complete set of covariate series z, (which should also be generated

beforehand), noise series wt and vt, and the assumed initial data yo should be provided.
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Using the calibrated Model I, y, series (t=1,...,1600, i=1,...,48) were generated. After

discarding the first several data (t=1,...,100) to eliminate the impact of initial measurement yo,

5 sets of y series (t=1,...,T with T=100, 300, 500, 1000, and 1500) were taken from the

generated, and spatial averages of the first four moments were computed, some of which are

scaled so that theoretical values of them are all zeros (Figure 4). Asymptotic values of them

converge to near zeros, implying that the first four moments were preserved by the fitted

STARX model. Also, an investigation of preserving the space-time correlations of the fitted

STARX model was done using the generated time series (Figure 5). This comparison

revealed that the correlations were reasonably well preserved, particularly those of zero time

lag (cross-correlations).

Forecasting

By definition, forecasting is the unconditional prediction (ex ante prediction) [Harvey,

1991, page 14]. Since the EMSSE algorithm uses the state-space formulation of the STARX

model, the Kalman forward recursion in the EMSSE algorithm can easily be applied to

forecast the future state. That is, at the present time t, the forecasted state of the STARX

model (4) for the lead time I can be given by

x(t+) = 4x(t-1+1) + iz(t+t) (32)

which is the minimum variance forecasting. The covariate z(t+l) should be forecasted

beforehand. The forecasted error variance is simply given by
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po(t*l) = epo(t-1+1/)' + Q' (33)

where Q'=E[w(t)w(t)'l.

In order to show the forecasting ability of the three fitted STARX models, the

groundwater heads for l=1,...,12 were forecasted at the end of December 1992. From the

forecasting error covariance po in equation (33), the spatial mean and standard deviation of

the forecasted error (polf) were computed (Table 3). The values in this table are those of

standardized series having a mean of zero and a variance of one. The statistics at the first

row (l<1) in this table are for the calibration case, Which are constant during the period of

calibration since complete data were used in each model. An interesting thing to note is that

the forecasting errors increased significantly at the first lead time, then remained almost

constant thereafter. Figure 6 shows the contour maps of both historical and forecasted

groundwater heads for each layer at the selected lead times (1=1,2, and 4 month). Due to the

irregular distribution of gaging stations, layers below the Surficial Aquifer display only a

portion of the contours within the model area. Conclusively, the forecasted heads matched

reasonable well with those of historical heads for l=1, but forecasting errors increased

significantly for 1>1.
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6. Conclusions

This paper presents a new form the STARX model with its ML fitting method by the

EMSSE algorithm for a complete data set. The proposed EMSSE algorithm can estimate both

model parameters and error covariances simultaneously, so that this estimation algorithm can

be easily extended to the Kalman filter forecasting. The EMSSE algorithm, compare to the

time-variant version, enables not only to accelerate convergence of parameter estimation, but

to reduce both computational load and memory requirement. Therefore, this algorithm can

ideally suitable for the large scale problems.

The presented methodologies were applied to the multi-layered aquifer system in

Collier County, Florida, with discussions on the identification, calibration, and verification

processes of the STARX model. Verification of the fitted STARX models was focused on

both the data generation and forecasting abilities. Results of verification showed that the

fitted STARX models preserved the first four moments as well as space-time correlations of

the historical data. Comparison of the forecasted and historical heads showed reasonable

agreements particularly for the small lead time.
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Appendix: Expectation-Maximization Algorithm with the Kalman Smoothed Estimator

With the state-space format of the STARX model in equations (6) and (7), the

modified Kalman smoother estimator

x = E [x(t) Y,,--...,Yp z,,...,z (Al)

is obtained from the minimizing the mean square error

PT-E [-,(x-;-xi)' I y,,...yP z,..,z9 (A2)

and the error covariance for one-time lagging state vectors

Pt,-i =E [(xt* -x )(X- -X 1)' I Yi,...,Yr z,..., A. (A3)

The detailed derivations of the above conditional expectations can be found from Jazwinski

[1970, page 201] and Shumway and Stoffer [1981]. The final results applied to the STARX

model are as follows: First, the forward recursion for t=1,...,T, is given by

x- -=0 - + V z(t) (A4)

p- = Opf-- t + Q* (A5)

K, = p:-M(t)" [M(t) pt-'M(t) + R]-' (A6)

, = x-1 + K, [yt - M(t) x- l] (A7)

P t = pf-'+K, M(t) pr- (A8)



where Q'- E[w(t) w(t)] =
0o, Q=E[w, wi, and R-E[v vi].

In order to calculate the smoothers, the backward recursion for t=T,T-1,...,1, is performed by

Jr- - Pr :-) (A9)

I = -1 + J -, ( -- et -) (A10)

p,, = P + ,_} (p -Pt-1 ) Jr- (All)

Also, an one-time lagged smoothed error covariances, for t=T,T-1,...,2, is

Pt1;-2 =- Pt-1 t-2 + J-IlrP -1 ] -_- .l -2 (A12)

(A 3)

where, KT and PTTi 1 are those from the last time step in the forward recursion. The equation

(5) of the STARX model can be given by [see Stoffer, 1985]

Q(O ) = -In 1 -- tr (E- p T(o) + (xT(O)-p) (x o)-)')
2 2~o,

-- InIQI -- tr Q01 [C - OS,(1)- - S/(1)0' + OS-t (0)9'])2 2 - (A14)

-jln Ri - t -'{R- E [cy,-MAOTT,)',-M( r)"t) +M(t),pM(t)'])

where xT(O)=N(p,E), IAI is the determinant of a matrix A, trA is the trace of A, and

p-2 8

with, p,r-1 = - -KM(7)] 4 pI-'
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S 1 F(0) F= (A15)

S,(1) = [B G] (AI6)

T T+xTxT T T+ T
with A= (Pr 4i tI), BE (p,-i+xi 1), C= X1(p,T+i, ) F=E [ fzZ(t)J,

t-i t-1 t-I t-1

T T
G= [.irz(t)l, and H=E [z(tz(t)z( .

1-1 tl-1

with % is the first sub-vector in the T=[xT ,...,x,T ']. The dimensions are: S.,(O)

(naxna), S,(1) (nxxna), A(nsx), B (nxxns), C (nxxnx), F (nsxnc), G (nxxnc), and H (ncxnc),

with na=ns+nc. The maximization step is obtained by maximizing (A14) with respect to the

parameters 0, Q, and R. The resulting regression estimators are:

<i+ = D** [St(1) S-_l(0)'] (A17)

Q1+ = - IC - O,zSp(1)y - St(1)0l+," + Oe,,St_,(O)eO,,'] (A18)

e rE ly -M(t)T][(y-M(tyr]' +M(t) p,7 M(t)'} (A19)

where D' =

D, ... Dq.-1 DN4 Eo ... Em

I ... 0 0 0 ... o

0: ... I 0 . .. O
0 ... I 0 0 ... 0



p-30
References

Bellman, R, Methods of Nonlinear Analysis, Volume I, Academic Press, New York, 1970.

Bennett, R. J. Spatial Time Series: Analysis-Forecasting-Control, Pion Ltd., 207 Brondesbury

Park, London, 1979.

Bennett M. W., A three-dimensional finite difference ground water flow model of western

Collier county, Florida, Tech. Pub. #92-04, South Florida Water Management District,

West Palm Beach, Florida, 1992.

Box, G. E. P., and G. M. Jenkins, Time Series Analysis: Forecasting and Control, revised ed.,

Prentice-Hall, Englewood Cliffs, N.J., 1976.

Bras, R. L., and I. Rodriguez-Iturbe, Random Functions and Hydrology, Addison-Wesley,

Reading, Mass., 1985.

Brockwell, P. J., and R. A. Davis, Time Series Theory and Methods, Springer-Verlag, N.Y., 1987.

Cressie, N. A. C., Statistics for Spatial Data. John Wiley & Sons Inc., New York, 1991.

Dempster, A. P., N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via

the EM algorithm, Journal of Royal Statistical Society B, 39, 1-38, 1977.

Environmental Systems Research Institute, "Understanding GIS: The Arcllnfo Method",

Environmental Systems Research Institute Inc., CA, 1992.

Graham, W.D., and C. Tankersley, Forecasting piezometric head levels in the Floridan aquifer:

A Kalman filtering approach, Water Resour. Res., 29(11), 3791-3800, 1993.

Gupta, N. K., and Mehra, R.K., Computational aspects of maximum likelihood estimation and

reduction in sensitivity function calculation, IEEE Trans. on Automatic Contl., 19, 1970.

Harvey, A. C., The Econometric Analysis of Time Series, Second Edition, The MIT Press,



p-31

Cambridge, Massachusetts, 1990.

Horn, R.A., and C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, N.Y., 1985.

Jazwinski, A. H., Stochastic Processes and Filtering Theory, Academic Press, New York, 1970.

Lainiotis, D. G., Partitioned Filters, Applications of Kalman Filter to Hydrology, Hydraulics, and

Water Resources, p.71-81, edited by C. Chiu, Univ. of Pittsburgh, Pittsburgh, PA, 1978.

Pfeifer, P. E. and Deutsch, S. J. Identification and interpretation of first order space-time

ARMA modelling, Technometrics, 22, 397-408, 1980.

Salas, J. D., J. W. Delleur, V. Yevjevich, and L. W. Lane, Applied Modeling of Hydrologic Time

Series, Water Resources Publications, Fort Collins, Colo., 1980.

Shih, G., W. S. Burns, and R. F. Bower, A ground water drought management model for Collier

county, Florida, Tech. Pub. #92-01, South Florida Water Mgt. District, West Palm Beach

Florida, 1992.

Shumway, R. H., Applied Statistical Time Series Analysis, Prentice Hall, Englewood Cliffs, N.J.,

1988.

Shumway, R. H., and D. S. Stoffer, Time series smoothing and forecasting using the EM

algorithm, Tech. Report No. 27, Div of Statistics, University of California, Davis,

California, 1981.

Stoffer, D. S. Maximum likelihood fitting of STARMAX models to incomplete space-time series

data, Time Series Analysis: Theory and Practice 6, page 283-296, edited by O. D.

Anderson, J. K. Ord, and E. A. Robinson, North-Holland, Amsterdam, 1985.

Stoffer, D. S. Estimation and identification of space-time ARMAX models in the presence of

missing data. Journal of the American Statistical Association, 81, 762-772, 1986.



p-32

List of Figures

Figure 1. Locations of the selected groundwater gaging stations in each layer.

Figure 2. Spatially averaged monthly (a) means and (b) standard deviations of the historical

groundwater heads in the model area. NGVD is the National

Figure 3. Thiessen polygons with gaging stations for (a) Di matrix in Model 1, and (b) E

matrix in Model II. The hatched polygons in (b) were created on Layer 1 space

with introducing arbitrary sites from layer 2 (# 52, 78, and 89), where the dashed

lines are those of the original polygons of layer 1.

Figure 4. Spatially averaged statistics of the generated data versus time step

Figure 5. Comparison of the space-time correlations between the historical and generated

(1500 time step) heads at Layer 1, with an arbitrary reference level (0.4). The

correlation coefficient curve for each time lag were was obtained, after computing

the correlation coefficients with respect to the all possible distances within a space

domain, by fitting the cubic regression equation with respect to distances.

Figure 6. Comparison of historical and forecasted groundwater head contour maps (in

meter).



Table 1. Approximate Hydraulic Properties in!

Layer Name of Aquifer
aquifer thickness

(meters)

Layer 1 Surficial 12-18
aquifer

Layer 2 Lower Tamiami 20-400
aquifer

Layer 3 Sandstone 46-76
aquifer

Layer 4 Mid-Hawthorn 50-125
aquifer

* K, is the horizontal hydraulic conductivity, and T is

Each Aquifer

KH or T'

(m/day)

30-1000

900-3000

15-2300

46-110

# of selected
gaging
stations

48

43

14

10

the transmissivity in the confined aquifer.

p- 33



Maximum likelihood values with information criteria.

The 1st The 2nd -21nL
Nq Nk term of term of (A)+(B) AIC BIC

-21nL(A) -21nL(B)

-13678

-15956

-15638

- -16288

Model I,
2977

613

236
122

nx-48

-10701
-15343

-15402

-16166

-91.0
-97.9

-41.1

5.9

-22.4
39.3

164.7

280.3

Model II,
- -11667 3111

- -16558 853
- -17628 344

0 -17814 1420

0 -15076 334
0 -15792 140

1 -16418 193
1 -12188 62
1 -14546 34

Model III,
- -3673 1871

-5644 1802

- -8765 1274

0 -5350 1833
0 -8406 1555
0 -9716 600

1 -7530 1753
1 -9336 662

1 -8941 307

2 -8452 218
2 -8779 99
3 -6753 15

nx=43, nz=48

=8555
-15705

-17284

-16394

-14742

-15652

-16225

-12125

-14512

nx=24, nz=43

-1802

-3843

-7491

-3517

-6852

-9116

-5777

-8674

-8634

-8234
8680

-6738
Ref.: The selected models are marked by the bold face.

Table 2.
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-72.6
-125.6

-101.4

-147.1
-77.9

-44.3

-110.3

-7.2

5.9

-17.5

-15.1

63.8

-51.0

73.2

161.8

26.7

184.9

253.0

6.5

9.7

-9.4

6.4

-8.4

-8.3

-1.4

-10.0

22.1

19.7

45.1

95.7

-10.6

-24.6

-60.8

-23.6

-55.6

-72.6
-44.2

-70.1

-55.1

-53.2

-45.0

-7.2
Ret: The selected models are marked by the bold face.



Table 3. Spatial mean and standardization deviations of the standardized forecasted
error, p 1 2.

Lead Model I Model II Model II
Time I

Mean S.D.' Mean S.D.* Mean S.D.

<1 0.260 0.044 0.251 0.062 0.242 0.066

1 0.421 0.067 0.640 0.232 0.641 0.339

2 0.484 0.071 0.651 0.232 0.684 0.319

3 0.526 0.075 0.652 0.232 0.720 0.292

4 0.544 0.078 0.652 0.232 0.734 0.281

5 0.559 0.081 0.652 0.232 0.738 0.279

6 0.570 0.084 0.652 0.232 0.742 0.276

7 0.579 0.087 0.652 0.232 0.743 0.275

8 0.586 0.092 0.652 0.232 0.744 0.275

9 0.592 0.096 0.652 0.232 0.744 0.274

10 0.596 0.099 0.652 0.232 0.744 0.274

11 0.601 0.103 0.652 0.232 0.744 0.274

12 0.604 0.106 0.652 0.232 0.744 0.274

* S.D. is the standard deviation
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Figure 2b

(b)
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Figure 3

(a) (b)

LEGEND N Thiessen Polygon ® Polygon for Covariate* Monitoring Site
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Figure 5a

(a) For historical heads
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Figure 5b

(b) For generated heads
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Figure 6


