Technical Publication 92-05

A THREE-DIMENSIONAL FINITE DIFFERENCE GROUND WATER FLOW MODEL OF THE SURFICIAL AQUIFER SYSTEM, BROWARD COUNTY, FLORIDA

by
Jorge I. Restrepo
Cindy Bevier
David Butler
$$
D R E-314
$$

May 1992

This publication was produced at an annual cost of $\$ 1305.00$ or $\$ 2.61$ per copy to inform the public. 500492.

DRE Inventory Control \#314

Hydrogeology Division
Department of Research and Evaluation South Florida Water Management District

West Palm Beach, Florida

EXECUTIVE SUMMARY

Broward County, Florida is underlain by two aquifer systems: the Surficial Aquifer System and the deeper Floridan Aquifer System. This study focused upon the Surficial Aquifer System, which is widely used for potable and irrigation uses in the study area. The most productive zone of the Surficial Aquifer System is the Biscayne aquifer. The Biscayne aquifer is composed primarily of highly solutioned, extremely transmissive limestone. Most ground water in the study area is withdrawn from the Biscayne aquifer portion of the Surficial Aquifer System.

The Broward County ground water flow model was developed using the USGS three-dimensional finite difference flow code, MODFLOW. This code was chosen because it allows a detailed evaluation of ground water flow, is available in the public domain, is compatible with most computer systems, can be coupled with currently available solute transport models and contains many features which make it easy to use and modify. MODFLOW simulates ground water levels and flow using data describing aquifer characteristics and stresses to the aquifer, such as recharge, evapotranspiration, well withdrawals, and interactions with surface water bodies.

The Broward County model contains five vertical layers representing three different hydrogeologic zones within the Surficial Aquifer System. The horizontal model grid is divided into 100 rows and 134 columns. Each model cell is uniformly 1,000 feet in the east-west direction by 2,000 feet in the north-south direction.

Initial estimates of aquifer parameters were obtained from existing private consultant reports and from aquifer tests conducted by District staff. The model was calibrated by adjusting aquifer, canal, recharge and evapotranspiration parameters to better match computed ground water levels with observed historical ground water levels. Two calibration periods were selected: January 1983 through December 1985, and January 1989 through December 1989. Ground water withdrawal information for steady state and transient calibration was obtained from water use permits issued by the District and from public water supply information reported directly to the District.

The District's ARC/INFO geographic information system was used to create all time-independent information coverages for the
county. The time-independent information was assembled with time-dependent information (such as precipitation data from the District's DBHYDRO database) through a series of pre-processing programs. These programs computed and formatted the data for input into MODFLOW. Graphic representations of model results were created with several post-processing programs. The final model files were subjected to a thorough quality assurance/quality control (QA/QC) procedure by staff from the Lower District Planning Division and the Hydrogeology Division.

To ensure the best possible accuracy for evaluative or predictive purposes, the model was tested for sensitivity to different aquifer parameters and stresses. The model appears to be most sensitive to hydraulic conductivity and canal conductance changes. Accordingly, the model is especially responsive to canal water levels and ground water pumping rates.

Recommendations

Eastern Broward County is experiencing a deficit of water to supply its needs during dry periods, and depends heavily on the availability of aquifer storage and on water brought into the area from adjacent areas. As demands increase, so will the need for additional water supplements into the area. Supplemental supply alternatives for the county could include management of demands through water conservation, wastewater reuse, backpumping, implementation of aquifer storage and recovery (ASR) facilities, development of new surface water reservoirs, and desalinization of salt water for public supply.

Careful management of withdrawals from the Biscayne aquifer is needed to reduce the risk of saline water intrusion in eastern Broward County. Maximum withdrawals, minimum head levels and/or minimum net yearly ground water flows to the ocean should be established in coastal areas to reduce or slow salt water migration. Future requests for large scale withdrawals should be closely examined to ensure that the criteria can be maintained.

It is recognized that both water quality and water quantity are important and interdependent aspects of water resources. Future modeling efforts should be extended to include solute transport models, which will provide the District with effective
tools in the management of such complex issues as ground water storage of wastewater, artificial recharge, aquifer storage and recovery, location of landfills and salt water intrusion.

The integrated surface water/ground water system that provides water supply in southeast Florida has evolved as a result of local needs rather than as a result of a single comprehensive regional plan. In spite of the fundamental understanding of ground water and surface water hydrologies and their interrelations, the two are often considered independently in south Florida.

A fully integrated surface, unsaturated and saturated flow model should be implemented with rigorous representation and conceptualization of the physical processes, water allocation, and surface water body operations involved in a canal-aquifer system such as Broward County. To a large extent; the model should incorporate the entire physical conceptualization of the hydrologic cycle on a time scale ranging from daily to monthly. For a realistic assessment of short-term impacts such as: 1) availability of water in canals, 2) the effects of precipitation in surface water bodies or in the unsaturated zone, or 3) water levels in aquifers near canals, the model should simulate the system using short stress periods. Similarly, for a realistic allocation of water based on agricultural or other needs, short simulation stress periods are desirable.

Interfaces should be developed with the existing Palm Beach County model, with the Dade County model currently under development, and with the regional surface water system model. This will result in a truly regional model that encompasses the entire flow regime for
the Surficial Aquifer System in the Lower East Coast water supply planning area. This regional surface and ground water model would be particularly useful in evaluating the District's canal system, which maintains ground water levels and supplies many of the public water supply wellfields within the tri-county area.

The model can be used in the evaluation of water use permit applications for large uses. Where a finer scale or site-specific evaluation is required, the model can be used to provide boundary conditions. The model should continue to be improved and updated as additional information becomes available. Suggested improvements to the model include a finer grid spacing and shorter stress periods, ideally five days or less.

The Broward County model is sensitive to utility pumpage rates. Increased reporting and verification of public water supply pumpages and of large irrigation withdrawals on a well-by-well basis is recommended. Additional wells should be incorporated into the USGS monitoring well network in order to improve the regional ground water level information. Furthermore, additional aquifer testing should be required in areas where hydrogeologic information is lacking.

A new approach to computing evapotranspiration should be developed. Evapotranspiration values currently calculated are based on a modified Blaney-Criddle equation, which relies on temperature data. Errors due to the use of the Blaney-Criddle approach could be significant because it often results in the overestimation of irrigation demands.

TABLE OF CONTENTS

Page
EXECUTIVE SUMMARY i
LIST OF FIGURES v
LIST OF TABLES v
ACKNOWLEDGEMENTS vi
ABSTRACT vii
INTRODUCTION 1
Purpose and Scope 1
Location of Study Area 1
Hydrogeology 1
Surficial Aquifer System 1
Biscayne Aquifer 1
MODELING FORMULATION AND APPLICATION 5
Introduction 5
Discretization 5
Boundary Conditions 8
Hydraulic Characteristics 12
Transmissivity 12
Specific Yield and Storage 14
Vertical Conductance 14
Surface Water Interaction 14
Physical System Background 17
Model Input 18
Recharge 18
Evapotranspiration 22
Ground Water Use 23
Introduction 23
Public Water Supply Use 24
Non-Public Water Supply Use 24
CALIBRATION 25
Steady State Calibration 25
Transient Calibration 26
Calibration Results 28
Steady State Calibration Results 28
Transient Calibration Results 31
SENSITIVITY TESTING 35
CONCLUSIONS 37
RECOMMENDATIONS 39
REFERENCES 41

TABLE OF CONTENTS CONTINUED

Page
APPENDIX A: Hydrogeology and Structure Contour Data 43
APPENDIX B: Surface Water Data and Figures 65
APPENDIX C: Data and Figures Relating to Land Use, Recharge, Evapotranspiration and Water Use 83
APPENDIX D: Calibration Steady State Water Levels, Horizontal and Vertical Flow 137
APPENDIX E: Calibration Hydrographs 155
APPENDIX F: Sensitivity Data 207
APPENDIX G: Quality Assurance/Quality Control Procedure 259

LIST OF FIGURES

Figure Page
1 Study Area for the Broward County Model 2
23412A Horizontal Flow in Layer 3 Around Hypothetical Wellfield (Without Rechargedue to Agricultural Irrigation)30
12B Calibrated Horizontal Flow in Layer 3 in Area Around Hypothetical Wellfield 3013
Mass Balance for Modeled Area Within Broward County (Excluding Water Conservation Areas) 32
Mass Balance for Modeled Area Within Broward County (Excluding Water Conservation Areas) Showing Net Flow at Each Boundary 33
LIST OF TABLES
Table Page
1 MODFLOW Packages Used in the Broward County Model 6
2 Summary of Aquifer Test Data Used to Establish the Transmissivity of the Biscayne Aquifer Within the Surficial Aquifer System 13

ACKNOWLEDGEMENTS

There are a number of people whose knowledge and assistance were essential for the production of this document. The authors gratefully acknowledge them:

Scott Burns, former Director of the Hydrogeology Division, who provided administrative support and review.

The peer review committee, whose review was indispensable in producing an accurate and comprehensive document:

Leslie Wedderburn, Ph.D., Department of Research and Evaluation, SFWMD
James Harvey, Planning Department, SFWMD
Keith Smith, Hydrogeology Division, SFWMD
Steve Krupa, Lower District Planning, SFWMD
Rick Bower, Upper District Planning, SFWMD
Mary-Jo Shine, Upper District Planning, SFWMD
Emily Hopkins, Upper District Planning, SFWMD
Mary Halstead and others, Broward County Office of Environmental Services
Timothy Sharp, CH2M Hill, Inc.
Thomas Tessier, Geraghty \& Miller, Inc.
Pete Andersen, GeoTrans, Inc.
Greg Rawl, James M. Montgomery \& Associates
Mike Merritt, U. S. Geological Survey
John Lukasiewicz, Mike Bennett, Roberto Sanchez, Phil Fairbank, Pete Dauenhauer, and David Demonstranti, who helped assemble data packages and performed a variety of tasks.

Steve Krupa and Jeff Giddings, who provided insight and assistance in compiling public water supply data.

Joe Chapa, who was indispensable in linking the model into the Geographic Information System format.

Barbara Dickey, who obtained and processed the USGS observation well data used in calibration.

Donna DeMarco, for her assistance with the computer system.
Martin Braun, Tony Lubrano, Paul Benton, Jim MeDermott, Arthur Tassinari, Pete Dauenhauer and Bill Barfknecht, for their expertise in well drilling, geophysical logging, aquifer testing, and data collection. Also, Hydrowell, Inc., for providing us with core samples.

The U.S. Geological Survey, for providing essential water level information, digitized canal locations within Broward County, and hydrogeologic information.

Diane Bello, Janet Wise, Chris Madison, David Demonstranti and a number of other technicians who provided the graphics for this report.

We would also like to thank Hedy Marshall for her assistance, as well as her patience, during the editorial phase of this project.

Abstract

The Surficial Aquifer System is the primary source of potable and irrigation water in eastern Broward County. The most productive zone within the aquifer system is the Biscayne aquifer, which is present throughout most of the study area. A three-dimensional ground water flow model of the Surficial Aquifer System was developed using the U. S. Geological Survey MODFLOW code. The model is discretized into 100 rows, 134 columns, and five vertical layers. Initial aquifer parameters were obtained from private consultant reports and from aquifer tests conducted by District personnel. Two transient calibrations were performed (January 1983 through December 1985 and January 1989 through December 1989) by comparing simulated water levels to observed water levels. Two steady state calibrations were performed as well, using January 1983 and January 1989 conditions. Averaged 1989 conditions were also considered.

Based on the results of the calibration, adjustments were made to the aquifer parameters. Results of the sensitivity runs show that the Broward County model is most sensitive to hydraulic conductivity and canal conductance changes.

A fully integrated surface and ground water flow model should be implemented with rigorous representation and conceptualization of the hydrologic cycle. Regulatory criteria based on maximum withdrawals, minimum water levels or minimum net yearly ground water flows to the ocean should be established. A new approach to computing evapotranspiration should be developed.

INTRODUCTION

PURPOSE AND SCOPE

The purpose of this study was to develop a three-dimensional ground water flow model of the Surficial Aquifer System in eastern Broward County. The model is calibrated to recent data and will be used for predictive purposes, as a basis for ground water elements in the Broward County Water Supply Plan, and to assist in evaluating applications for water uses. Other possible applications of this model include:

1. Evaluation of short term drought management scenarios cturing declared water shortages,
2. Estimation of potential regional impacts of proposed new ground water uses, and
3. Conceptualization of regional effects of constructing new canals or changing the operational rules in existing canals.

LOCATION OF STUDY AREA

Broward County is located in southeast Florida. It is bounded on the north by Palm Beach County, on the east by the Atlantic Ocean, on the south by Dade County, and on the west by Collier and Hendry counties. Broward County encompasses approximately 1,200 square miles. The study area includes eastern Broward County and adjacent areas in Palm Beach and Dade counties. The buffer areas were chosen to provide suitable boundary conditions for the model; however, the primary study area is within Broward County (Figures 1 and 2).

HYDROGEOLOGY

Surficial Aquifer System

The Surficial Aquifer System is comprised of all saturated sediments from the water table down to the relatively impermeable sediments of the Intermediate Confining Unit overlying the Floridan Aquifer System. It is an unconfined aquifer system recharged by rainfall and by leakage from surface water bodies.

The Surficial Aquifer System is heterogeneous. In this study, the system was divided into three broad zones: the upper zone, the Biscayne aquifer, and the lower zone. The upper zone contains the sands, shells and silts of the water table sediments extending down to the top of the Biscayne aquifer. The Biscayne aquifer is made up of extremely permeable, massive biogenic limestone. The lower zone extends from the bottom of the Biscayne aquifer to the silts and clays of the

Intermediate Confining Unit. Figures 3A and 3B show general conceptual cross-sections of the Surficial Aquifer System in the north-to-south direction as well as the west-to-east direction. The Surficial Aquifer System tends to thicken toward the east. The reader is referred to the USGS publication Hydrogeology, Aquifer Characteristics, and Ground-Water Flow of the Surficial Aquifer System, Broward County, Florida, by Johnnie E. Fish, for more detailed information on the Surficial Aquifer System.

Biscayne Aquifer

The Biscayne aquifer underlies the upper zone of the Surficial Aquifer System throughout most of the study area. It is composed primarily of solution-riddled biogenic limestone. Hydraulic conductivities in the Biscayne aquifer often exceed $10,000 \mathrm{ft} / \mathrm{day}$ (Fish, 1988). The aquifer thickens to the east and the south, and extends upward towards land surface in southern Broward and Dade counties. Water levels in the Biscayne are almost identical to local water table levels, suggesting an unconfined system. However, aquifer tests of extremely permeable zones of the Biscayne may exhibit semiconfined behavior due to significant stratification and wide variations in permeabilities of overlying sediments (Fish, 1988).

Drilling logs, well cuttings and well sample descriptions from consultant reports were examined to delineate the base of the Surficial Aquifer System and the top elevation and thickness of the Biscayne aquifer within it (Appendix A, Table A-1 and Figure A-1). Also, several wells from the hydrogeologic cross-sections in Fish (1988) were used. Well cuttings and cores from District test wells constructed as part of this study were also examined. The base of the Surficial Aquifer System was selected by the occurrence of hydraulic conductivities of less than $10 \mathrm{ft} / \mathrm{day}$ (Fish, 1988), by lithologic logs citing increased clay content or significant and vertically continuous low permeability, and by examination of cores and split-spoon samples. The Biscayne aquifer was identified as those zones having hydraulic conductivities of $1,000 \mathrm{ft} / \mathrm{day}$ or more (Fish, 1988), by sample descriptions of solutioned crystalline limestone or reports of lost circulation during rotary drilling, and by examination of cores and split spoon samples. Structure contours of the Surficial Aquifer System and the Biscayne aquifer can be found in Appendix A, Figures A-2 through A-4.

FIGURE 1. Study Area for Broward County Model

FIGURE 2. Modeled Study Area

$$
\stackrel{5}{6}
$$

WEST

∞

MODELING FORMULATION AND APPLICATION

INTRODUCTION

Abstract

The U. S. Geological Survey modular three-dimensional finite-difference ground water flow code, commonly known as MODFLOW (McDonald and Harbaugh, 1988), was used in this study to simulate the ground water flow and the interaction of ground water and surface water systems. MODFLOW is capable of simulating ground water flow in anisotropic, heterogeneous, layered aquifer systems. The finite-difference approach is block-centered, meaning that the head values are calculated at the center of the cells. Layers may be simulated as confined, unconfined or convertible (confined/unconfined). This model was selected for the following reasons:

1. It is available in the public domain,
2. It is compatible with most computers with only minor modification,
3. The modular structure of the code and its excellent documentation allow modification of the code and the addition of new modules for specialty applications,
4. MODFLOW allows flexibility of data file structure and management, which facilitates the employment of and interaction with other software for data manipulation,
5. The cell-by-cell flow feature of the code can be used to:
A. evaluate in detail flow and head changes associated with various withdrawal scenarios, and
B. generate boundary conditions for higher-resolution models within the regional flow model,
6. It can be coupled with currently available nondensity dependent solute transport models, and
7. A stream package is available for MODFLOW.

The MODFLOW code is written in modular form. It consists of a main routine and a series of independent subroutines called modules. These modules are grouped into packages which address the general use of the model, specific features of the hydrologic system, or particular solution techniques. The hydrologic system packages simulate recharge, evapotranspiration from the saturated aquifer zone,
rivers, drains, wells, and other sources and sinks of water external to the model (boundary conditions). Three solution technique packages are available for simulating flow problems: 1) slice-successive over relaxation (SSOR), 2) strongly implicit procedure (SIP), and 3) the preconditioned conjugate gradient (PCG) method. The SIP method was used in this study because it was fast and caused no convergence problems. Table 1 lists the packages used in this study.

Three types of boundary conditions are available for the model formulation: prescribed head, prescribed flux and head-dependent flux. A prescribed head boundary is defined when the head at the boundary is specified as a known function of position and time. Similarly, prescribed flux is defined when the flux is specified as a known function of time at the outer edges of boundaries. The head-dependent flux boundary is defined when the ratio between the head gradient and flux is known. Constant head boundaries, which are a particular case of prescribed head boundaries, maintain the same user-specified head levels throughout the simulation.

Prescribed flux boundaries can be simulated in MODFLOW through the use of external source terms in the model. No-flow boundaries are a type of prescribed flux boundary for which no flow is simulated between the inactive cell and any adjacent active cell. Head-dependent flux boundaries generate a flux dependent on the computed head in the cell and a user-defined head assigned to the external source. Head-dependent flux boundaries can be simulated in MODFLOW through the use of general-head boundaries as well as the river, drain or ET packages. Prescribed head can be represented in MODFLOW as a particular case of head-dependent flux, where the flux can become as large as needed. All types of boundary conditions can be set anywhere within a model grid. A no-flow boundary is implicit along the outer edges and bottom layer of a model grid.

DISCRETIZATION

Space Discretization. The model grid contains uniform cells covering a two million square foot area, as shown in Figure 4. The grid is composed of 100 rows and 134 columns. Grid spacing is 1,000 feet wide (west to east) by 2,000 feet long (north to south). The model is divided vertically into five layers of varying thickness. Vertical discretization

TABLE 1
MODFLOW PACKAGES USED IN THE BROWARD COUNTY MODEL

MODFLOW PACKAGE	FUNCTION	USE IN MODEL
Basic	Handles model administration.	Used
Block Centered Flow	Computes coefficients of finite difference equations for ground water flow, in an isolated aquifer system considering constant head cells.	Used to represent aquifer system without constant head cells.
Well	Simulates a source or sink to the aquifer at a specific rate not affected explicitly by heads and cell area.	Used to simulate pumpage and injection wells.
River	Simulates the effects of river leakage. River may act as recharge or discharge sources depending on the head gradient between the river stage and the ground water regime.	Used to simulate the interaction between a surface water body and the aquifer in cells with maintained SFWMD canals, secondary canals with recharge systems, or secondary canals having free flow with SFWMD canals.
Drain	Simulates the effects of drains, which remove water from the aquifer when the head in the aquifer is higher than the head in the drain.	Used to simulate water levels in unmaintained canals and some lakes which are not isolated.
Recharge	Simulates recharge to the aquifer from deep percolation due to precipitation.	Used
Evapotranspiration	Simulates the effects of evapotranspiration from a saturated aquifer system.	Used
General Head Boundary	Simulates a source/sink of water outside model area which provides or removes water to a model active cell at a rate proportional to the head gradient between the source and the cell.	Used to simulate General Head Boundary conditions and prescribed heads.
Strongly Implicit Procedure (SIP)	Solves the model's finite difference equations using the SIP method.	Used
Observation Nodes	Generates computed aquifer heads for selected model cells.	Used for calibration and comparison purposes.

FIGURE 4. Broward County Model Grid
of the Surficial Aquifer System (Figure 5) was designed as follows:

1. Layer 1 contains all river, drain, recharge and evapotranspiration cells. Layer 1 extends from the water table to a maximum depth of - 15 feet National Geodetic Vertical Datum (NGVD), subject to a minimum saturated thickness of 15 ft . A maximum thickness of 22.5 feet was chosen to prevent drying of cells. The maximum thickness and minimum saturated thickness were selected in order to portray soil conditions and lakes while avoiding drying of cells during model simulations. Where layer 1 is absent (e.g. where the Biscayne aquifer rises towards land surface), the thickness of the layer is set to 15 feet, with corresponding changes in hydraulic conductivity as discussed in the transient calibration section.
2. Layer 2 extends from the bottom of layer 1 to approximately the top of the highly permeable limestones of the Biscayne aquifer. Where layer 2 is missing (e.g. where the Biscayne aquifer rises close to land surface), the thickness of the layer is set to 5 feet, with corresponding changes in hydraulic conductivity as discussed in the transient calibration section.
3. Layers 3 and 4 generally represent the Biscayne aquifer. The top of layer 3 was assigned to the first occurrence of highly permeable limestone in examined cores and well logs, at the top of strata identified as having hydraulic conductivities of at least $1,000 \mathrm{ft} / \mathrm{day}$ in hydrogeologic sections illustrated in Fish (1988). The top of layer 4 (bottom of layer 3) is approximately the midpoint of the Biscayne aquifer. Where the Biscayne aquifer is missing, layers 3 and 4 are reduced to a minimum thickness of three feet (six feet total), with corresponding changes in hydraulic conductivity as discussed in the transient calibration section.
4. Layer 5 begins approximately at the bottom of the Biscayne aquifer, or when the highly permeable limestones found above give way to significantly less permeable sands, silts, and shell. The bottom of layer 5 generally coincides with the bottom of the Surficial Aquifer System and the appearance of the green silts and sandy clay of the Intermediate Confining Unit.
Although layers 3 and 4 could be modeled by a single layer, the discretization selected correlates
with that used by Shine, et al., (1989) in a model of Palm Beach County. Figures A-5 through A-12 in Appendix A depict the elevation of the tops of layers 2 through 5 and their thicknesses.

Time Discretization. Transient discretization into 1 -month stress periods was chosen because of the availability of monthly pumping reports from public water utilities and computer storage considerations at the beginning of the modeling effort. Two transient calibration periods were simulated; the first period was from January 1983 through December 1985, and the second was from January 1989 through December 1989. Initially, the 1989 period was used only to verify the estimated parameters used for the 1983 through 1985 period. However, significant changes in canal operating systems and the addition and removal of other canals between 1985 and 1989 necessitated a second calibration period. The steady state model, which is a single time step or stress period with no water taken into or released from aquifer storage, uses both January 1983 and January 1989 conditions independently, as well as averaged 1989 conditions.

BOUNDARY CONDITIONS

The function of boundaries is to impose the effects of the external regional flow system on the modeled area. Selecting the correct boundary type and appropriate values is an important consideration, since the response of the model can be greatly affected by the choice of boundary conditions. Boundary conditions are expressed in mathematical equations which represent the physical conditions as interpreted by the modeler. In many cases, true physical boundaries are unknown or are at a great distance from the region of interest; therefore, model boundaries must be defined on a practical basis. Whether a model's boundaries are true physical conditions or practical representations, boundary condition specification is extremely important and requires an understanding of the mathematical role of boundary conditions as well as the hydrogeological environment.

A combination of no-flow, general-head, and general-head acting as prescribed head boundaries were used in this model. Figure 6 shows which cells are active, which are inactive and which are considered general-head boundaries. No-flow boundaries are implicit along the edges of the model.

The general-head boundary package was used to generate head-dependent flux and prescribed head boundaries. According to McDonald and Harbaugh (1988), a general-head boundary consists of a water source outside the modeled area which supplies or removes water to a model cell at a rate proportional

GENERAL LTHOLOGY		GENERAL HYDRAULIC CHARACTERISTICS	MODEL LAYER
QUARTZ SAND, SLLT, SHELL	$)^{2}$	MODERATELY PERMEABLE	1
			2
		BISCAYNE AQUIFER EXTREMELY PERMEABLE	
MASSIVE BIOGENIC LIMESTONE, OFTEN CRYSTALUNE \& HIGHLY SOLUTIONED; SAND; SHEIL			3
			4
MARL SHELL AND SAND; LMESTONE TALUS, GRADING TO CLAYEY SANDY GREEN SILT		MODERATE TO LOW PERMEABILTY BASE OF SURFICIAL AQUIFER SYSTEM	5

FIGURE 5. Generalized Hydrogeologic Column of the Surficial Aquifer System
and Corresponding Model Layers

FIGURE 6. Broward County Model Boundaries
to the head difference between the source and the cell. The rate at which water is supplied to a cell is given by:

$$
\begin{equation*}
Q_{m}=C_{m}\left(H_{m}-h\right) \tag{1}
\end{equation*}
$$

where
Q_{m} is the flow rate to or from the cell from boundary m ($\mathrm{ft} 3 /$ day),
C_{m} is the constant of proportionality for boundary m ($\mathrm{ft} 2 / \mathrm{day}$),
H_{m} is the average head at the source boundary $\mathrm{m}(\mathrm{ft})$, and
h is the average head in the cell (ft).
The constant of proportionality for boundary m defined herein as the horizontal conductance, C_{m}, (ft2/day) was calculated using equation 2 :

$$
\begin{equation*}
C_{m}=\frac{K_{b} b W}{F_{c} L} \tag{2}
\end{equation*}
$$

where
K_{h} is the horizontal hydraulic conductivity of the cell (ft/day);
b is the average thickness of the layer (ft),
W is the width of the cell (ft),
F_{c} is a dimensionless calibration factor for general-head boundary representation; for prescribed heads, this value ranged between 1 $\times 10^{-3}$ to 1×10^{-5}, and
L is the length of the assumed flow path line (ft).

In order to simulate a constant head boundary around the active edges of the model, a large horizontal conductance value was assigned to the general-head cells, causing them to function as prescribed head cells. Prescribed head cells differ from constant head cells in that the head values can change between stress periods. The river package may also be used to create a prescribed head boundary; however, the disadvantage with utilizing the river package is that the actual physical system may not be well represented by vertical flow across an idealized streambed.

Several obvious boundaries were available for the Broward model: the Atlantic Ocean borders the entire eastern edge of the county, and Water Conservation Areas ($1,2 \mathrm{~A}, 2 \mathrm{~B}, 3 \mathrm{~A}$, and 3B) border the entire western edge (Figure 2). In the Water Conservation Areas, the boundaries were located far enough west of the levees to reduce any boundary
impacts. Under current conditions, the C-15 canal and Lake Worth Drainage District (LWDD) canals in Palm Beach County provide a boundary along the northern edge of the model far enough from the political boundaries of Broward County to avoid boundary flow effects within the area of interest and to prevent stresses in the area of interest from affecting the boundary. In a similar fashion, the C-8 and C-304 canals in Dade County provide a boundary along the southern edge of the model. A detailed discussion of the boundary conditions used in the modeling domain follows.

Eastern Boundary. The Atlantic Ocean is utilized as the eastern boundary of the model. The ocean provides an infinite source of water (at a given head) which can be considered a head-dependent flow boundary at each of the aquifer layers. This boundary was represented using the general-head boundary package. Head elevations at the external source were set at the monthly mean sea level for all model layers. A conversion to equivalent fresh water head was not used. In layers 1 and 2 , the eastern boundary cells are in direct contact with the ocean. Accordingly, horizontal conductance values were set large enough to provide an unlimited source/sink of water, thereby acting as a prescribed head boundary.

Layers 3, 4 and 5 were assumed not to be in direct contact with the ocean; therefore, a more restrictive general-head boundary was assigned, with a conductance closer to the actual inter-block transmissivity at the no-flow boundary. The horizontal conductance was decreased with depth in the three lower layers in order to simulate the increasing distance from the oceanic source/sink. Equation 2 was used to calculate the conductances. Conductances were reduced with depth by increasing the F_{c} calibration factor for each successive layer.

Western Boundary. Figure B-1 in Appendix B depicts the location of the Water Conservation Areas (WCAs) within the model area. The WCAs function as storage basins and their stages are generally controlled by the South Florida Water Management District. The WCAs have been divided into 5 pools and designated by number from north to south as WCAs 1, 2A, 2B, 3A, and 3B. Figures B-2 through B-6 in Appendix B illustrate the average monthly water levels from January 1989 through December 1989 for WCAs 1, 2A, 2B, 3A, and 3B, respectively. Information on the management of the WCAs can be found in An Atlas of Surface Water Management Basins in the Everglades: The Water Conservation Areas and Everglades National Park, by R. M. Cooper and J. Roy.

The WCAs provide a type of prescribed head boundary for the western edge of the model for the
top layers. Since head elevations in the WCAs change significantly with time, the general-head package was used to simulate the boundaries. In layer 1 , the cells were given large conductance values. The large conductance values allow the cells to function as prescribed head cells. In layers 2 through 5, equation 2 was used to calculate the conductance; conductance then was decreased through the layers with depth to the limit of the actual inter-block transmissivity at the no-flow boundary. This was accomplished by increasing the F_{c} calibration factor, as described in the discussion of the eastern boundary. As a result, the general-head cells in layers 2 through 5 may function more like general-head boundaries than prescribed head boundaries. The western model boundary extends far enough from the levees on the eastern side of the WCAs that stresses occurring within the developed areas of the county should not affect boundary flow conditions.

Northern Boundary. The northern boundary of the model was extended far enough north of the Broward County line to eliminate any boundary effects from the edges of the model. Water bodies near the northern edge of the study area used to simulate boundary conditions include C-15, WCA 1, WCA 2A, and canals within the Lake Worth Drainage District (LWDD). The water bodies were simulated with the general-head boundary package using the conductance term given in equation 2. Similar to the eastern and western boundaries, a large conductance was assumed in layer 1 to create a prescribed head boundary. The conductance was reduced with depth using the F_{c} calibration factor as previously explained.

Southern Boundary. The C-304 and C-8 Canals are located in the southern edge of the model. These canals are located far enough into Dade County that stresses occurring within Broward County should not effect the boundary flow conditions. General-head boundary conditions were assumed for all layers. A large conductance was assumed in layer 1 to establish a prescribed head boundary. The conductance in layers 2 through 5 was reduced with depth by increasing the F_{c} calibration factor in equation 2 as previously discussed.

HYDRAULIC CHARACTERISTICS

Transmissivity

Pre-calibration transmissivities for all layers in the model were initially based on estimates of hydraulic conductivity. Horizontal hydraulic conductivity of layer 1 was estimated to be twice the average vertical hydraulic conductivity of the soil
profile, based on soil data obtained from the Soil Conservation Service soil surveys of Broward (1976) and Palm Beach (1978) counties, and on aquifer tests in the upper zone of the Surficial Aquifer System in Broward County. In cells containing lakes, the hydraulic conductivity was allowed to increase up to an additional $1,250 \mathrm{ft} / \mathrm{day}$, depending on the size of the lakes. Since layer 1 is classified as unconfined, MODFLOW calculates the transmissivity of layer 1 by multiplying horizontal hydraulic conductivity by the elevation of the water table above the bottom of the layer.

Transmissivity of layers 2 and 5 were initially calculated as the product of layer thicknesses and a uniform horizontal hydraulic conductivity value of $50 \mathrm{ft} / \mathrm{day}$. The $50 \mathrm{ft} / \mathrm{day}$ value was chosen to correspond with the hydraulic conductivity of nonBiscayne sediments used in the South Palm Beach County model (Shine, et al., 1989). As a result of the calibration process, final hydraulic conductivity values for layer 2 ranged between 30 and 1,130 feet per day. Transmissivity values ranged between 325 and $13,850 \mathrm{ft} 2 /$ day for layer 2 and between 540 and $15,180 \mathrm{ft}^{2 / d}$ day for layer 5. These layers are classified as confined/unconfined, with the thicknesses of each layer remaining unchanged throughout the simulation. Storage coefficients may alternate between confined and unconfined values should the layers desaturate.

Initial transmissivity estimates for the Biscayne aquifer (layers 3 and 4) were based on a generalized transmissivity map of the Biscayne contained in a 1986 report by James M. Montgomery, Inc. Transmissivity value points along those contours as well as those from several aquifer performance tests (APTs) were kriged using Surfer (Version 4.12, Golden Software) and then converted to model cell values. The APT locations and transmissivity values used are shown in Table 2. The model cell transmissivity values were divided by the combined thickness of layers 3 and 4 to calculate hydraulic conductivity values. A value of 10,000 ft /day was set as a maximum limit for hydraulic conductivity of the Biscayne aquifer. Although this value can be exceeded in the Biscayne (Fish, 1988), the use of hydraulic conductivity values greater than $10,000 \mathrm{ft}$ /day did not change model results. The thickness of the Biscayne then was multiplied by the hydraulic conductivity to regenerate transmissivity values. In areas where the Biscayne aquifer thins appreciably, yet is expected to conduct large volumes of water, a minimum thickness of 35 feet was used in recalculating the transmissivities. Where the Biscayne aquifer was absent, transmissivity was calculated by multiplying a minimum thickness of six feet (three feet each for layers 3 and 4) by the

TABLE 2 Summary of Aquifer Test Data Used to Establish the Transmissivity of the Biscayne Aquifer Within the Surficial Aquifer System

Location or Owner	Source of Information	Florida State Planar Coordinates		Transmissivity (sq ft/day)
	X (east)	Y (north)		
USGS PB 1574	Shine, 1989	760734	759816	31,000
Morikami Park	Shine, 1989	776734	759816	140,000
USGS PB 1581	Shine, 1989	771734	739816	88,000
Wellfield 3B	JMM, 1989	763734	605816	400,000
Quiet Waters Park	SFWMD 2	774734	721816	133,700
Tradewinds Park	SFWMD 2	771734	701816	198,000
Prospect Wellfield	CDM, 1980	758734	669816	260,000
Coral Springs	CDM, 1986	743734	707816	37,000
North Springs Improvement Dist.	G \& J, 1979	729734	709816	10,000
Dixie Wellfield	CDM, 1980	753734	641816	140,000
Deerfield Beach	G \& J, 1980	785734	715816	46,800

Abbreviations: JMM - James M. Montgomery, Inc.
CDM - Camp Dresser \& McKee, Inc.
G \& J - Gee \& Jenson, Inc.
${ }^{1}$ The coordinates represent the centers of model cells where the transmissivity values were applied rather than exact coordinates of the pumping test wells.
${ }^{2}$ Conducted by SFWMD as part of this study.
average of the hydraulic conductivities of the adjoining cells in layers 2 and 5 . In all of the above calculations, the Biscayne aquifer was treated as a single unit; transmissivities were halved to separate layers 3 and 4. Transmissivity values for either layer 3 or 4 ranged from 180 to $595,000 \mathrm{ft}^{2} / \mathrm{day}$. Hydraulic conductivity values for each layer were adjusted non-uniformly, to a maximum change of ± 15 percent, during the calibration process.

The composite transmissivity (sum of all transmissivities in all layers) which approximates the transmissivity of the Surficial Aquifer System as a whole is shown in generalized transmissivity regions in Figure 7. Layer 1 transmissivities were based on the average water table elevation for the composite transmissivity calculations. Transmissivity contours for layers 2 through 5 may be found in Appendix A, Figures A-13 through A-15.

Specific Yield and Storage

Calibrated specific yield values in layer 1 range from 0.19 to 0.21 , with an average value of 0.2 , a typical value for unconfined aquifers (Walton, 1987). The specific yield was allowed to increase to a maximum value of 0.5 when large lakes were present in cells, depending on the size of the lakes.

Calibrated storage coefficients in layers 2 through 5 were set to a specific storage value of $5 \times 10^{-6} \mathrm{ft}^{-1}$ multiplied by the aquifer thickness (feet). Final storage coefficient values varied as follows:

LAYER	MINIMUM	MAXIMUM
2	2×10^{-4}	6×10^{-4}
3	$4 \times 10{ }^{-5}$	1×10^{-4}
4	4×10^{-5}	1×10^{-4}
5	$2 \times 10-4$	6×10^{-4}

Specific yield and storage coefficients were adjusted non-uniformly in space during the calibration process.

Vertical Conductance

Within the MODFLOW model, vertical flow between layers is controlled by the vertical conductance coefficients ($\mathrm{V}_{\text {cont }}$). $\mathrm{V}_{\text {cont }}$ is a composite term which is input into the model. $V_{\text {cont }}$ is expressed in units of day ${ }^{-1}$. It is calculated for the two nodes located at vertically adjacent geohydrologic units using the following equation
based on the Vcont equation in MODFLOW (McDonald and Harbaugh, 1988):

$$
\begin{equation*}
V_{c o n t}=\frac{1}{\frac{b_{u}}{2 K_{h u} A_{v h}}}+\frac{1}{\frac{b_{l}}{2 K_{h l} A_{v h}}} \tag{3}
\end{equation*}
$$

where
b_{u} and b_{1} are the thicknesses of the upper and lower layers (ft),
K_{hu} and K_{hl} are the horizontal hydraulic conductivities for the upper and lower layers ($\mathrm{ft} /$ day), and
$A_{\text {vh }}$ is the ratio of vertical to horizontal hydraulic conductivity (the vertical anisotropy factor) for each layer in consideration (dimensionless).

The factor A_{vh} was adjusted non-uniformly in space during the calibration process.

The Surficial Aquifer System in the study area behaves as a semiconfined system. Calibrated values of the vertical anisotropy factor, $A_{v h}$, for the upper zone of the Surficial Aquifer System (layers 1 and 2) range from 0.02 to 0.08 , with an average value of 0.055 . The Biscayne aquifer (layers 3 and 4), when present, behaves as a single semiconfined unit. It is characterized by high values of hydraulic conductivity in any direction. The resulting high values of $\mathrm{V}_{\text {cont }}$ cause layer 3 to react to stress in a similar manner as layer 4. Vertical anisotropy values from 0.08 to 0.15 were used in the Biscayne, with an average value of 0.15 . Although this value appears low, it was found to yield acceptable results. Where the Biscayne aquifer is absent, the averaged value for layers 2 and 5 is used. Values of vertical anisotropy for the lower zone (layer 5) range from 0.02 to 0.09 , with an average value of 0.052 .

SURFACE WATER INTERACTION

The canals function as a source of recharge to the aquifer and a recipient of discharge from the aquifer. Canal-aquifer interaction is dependent on several factors:

1. the degree of hydraulic connection between the canal and the aquifer,
2. the difference in water level between the aquifer and the canal (see Figure 8),
3. the shape of the flow lines in the aquifer surrounding the canal reach (for example, the flow lines may be more vertical or more horizontal),

FIGURE 7. Generalized Composite Transmissivity Map of the Surficial Aquifer System

When the water level in an aquifer is higher than that in a canal that penetrates it, water moves toward the canal.

When the water level in a canal is ingher than that in the aquifer it penetrates, water moves into the aqulfer.

FIGURE 8. Hydraulic Connection Between a Canal and an Aquifer (after Klein, et al., 1975)
4. the local aquifer hydraulic conductivity associated with the canal reach,
5. the geometric characteristics of the cross-section of the canal reach, and
6. restricted seepage rates due to clogging of the canal reach by fine sediments of significantly lower hydraulic conductivity than the underlying material.
McDonald and Harbaugh (1988) approximated vertical leakage through the canal bed by the following equation:

$$
\begin{equation*}
Q=\frac{K L W}{M}\left(H_{c}-h\right) \tag{4}
\end{equation*}
$$

where
Q is the leakage through the reach of the canal bead (ft3/day),
K is the hydraulic conductivity of the canal bed (ft/day),
L is the length of the reach (ft),
W is the width of the canal (ft),
M is the thickness of the canal bed (ft),
H_{c} is the average monthly canal stage (ft), and
h is the average head in the aquifer cell containing the canal reach (ft).

Physical System Background

There are many major and minor canals within the study area. Understanding the function of these canals and their relation to the ground water levels is essential in developing an effective model for the study area.

Water levels in the major canals are maintained by the South Florida Water Management District (SFWMD) through the use of pump stations and control structures. Figure B-1 in Appendix B illustrates the location of SFWMD control structures and pump stations in the model area. Table B-1 in Appendix B lists the control elevations for SFWMD salinity control structures.

During dry periods, water is transported via canals from Lake Okeechobee and the Water Conservation Areas into the study area for water supply, to maintain adequate water levels in the canals, and to prevent salt water intrusion. During wet periods, water is either discharged to the ocean or pumped into the Water Conservation Areas in order to reduce the potential for flooding.

There are numerous secondary canals and lakes throughout the study area. Most of these canals are maintained by local water control districts (WCDs), drainage districts, or improvement districts. There are 26 drainage districts in Broward County. Figure B-7, Appendix B shows the location of the drainage districts in the model area and Table B-2 lists their permitted control elevations. Table $\mathrm{B}-2$ also indicates if the district has a recharge system which allows it to bring water into the district.

The Hillsboro Basin of the LWDD was divided into subareas based on control elevations and the operational procedure of the LWDD. Figure B-7 shows how the subareas of the Hillsboro Basin were divided and Table B-2 lists the control elevations. The subareas were similarly divided as outlined in the report Ground Water Resource Assessment of Eastern Palm Beach County, Florida (Shine, et al., 1989).

As shown in Table B-2, several districts have ground water recharge systems. Recently, the county-operated WCD 2 and the Sunshine Drainage District obtained water use permits to withdraw water from SFWMD canals to maintain water levels and to supply water to wellfields within their respective drainage districts. Withdrawals did not commence, however, during the first calibration period from 1983 to 1985. Old Plantation WCD and Plantation Acres Improvement District have pumps which are capable of bringing water into their systems as well; however, these pumps have never been used for recharge. The LWDD withdraws water from the Hillsboro Canal via pumps on the E-2-W Canal in order to maintain the control elevations in the canals shown in Table B-2. In addition, the City of Boca Raton withdraws water from the Hillsboro Canal into the E-2-E Canal to recharge the aquifer within the vicinity of its Western Wellfield in the Hillsboro Basin. The recharge systems for other districts consist of free flow with SFWMD canals, with the flow direction being dependent upon the difference in water levels between the individual drainage districts and the SFWMD canals. In some cases, the drainage district canals are allowed free flow when SFWMD canal elevations are higher than their own.

In the past, there were several farms located within the Pinetree, Cocomar, and Turtle Run WCDs. These farmers were part of the Deerfield Irrigation Company Inc. (DICl) (December 1991 meeting with T. Butler, former director of DICI and also personal communication with D. Markwood, Water Resource Management Division, Broward County). These farmers utilized a pump on the

Hillsboro Canal and a canal that runs parallel to US 441 to supply water to the farm ditches. Figure B-9 in Appendix B, modified from Broward County (1990), is a map which shows the major secondary canals and structures within the DICI. Due to the interconnection of the canals in the area and the hydraulic connection between the canals and the aquifer, the pumpage from the farmers in DICI helped recharge the aquifer throughout most of north central Broward County. By agreement between the farmers and the local drainage districts, the average water level in the main canal is 11.6 feet NGVD. However, the water level in the main canal can rise as high as 12 feet NGVD during the growing season and can drop to 11 feet NGVD at other times. The farmers attempt to maintain the levels in the irrigation ditches between 12 and 14 feet NGVD. The growing season usually begins in November and ends in April, although it can begin as early as September and end as early as January. The highest water levels occur in November, at the beginning of the dry season. The farmers lower the water level an average of two feet during the remainder of the growing season in order to protect the crop roots. The irrigated acreage within the DICI has decreased from about 2,700 acres in 1982 to about 850 acres by 1989. Many of the farmers moved out between 1980 and 1985.

An analysis of Tables B-1 and B-2 indicates that canal seepage from the Hillsboro Basin within the LWDD may also help maintain ground water elevations in Broward County. As shown in Tables B-1 and B-2, the LWDD maintains the water levels in the Hillsboro Basin canals at a higher level than either the Hillsboro Canal or any of the adjacent drainage district canals in Broward County. This operational procedure by the LWDD allows for seepage from the LWDD area into the Hillsboro Canal and underneath into the drainage districts in northern Broward County.

Several areas which are not included within an existing drainage district were grouped into a drainage basin as part of this study. In most of these areas, drainage elevations were established for flood protection purposes (personal communication with Tony Waterhouse, SFWMD). Figure B-8, Appendix B shows the location of these areas.

Model Input

The canals within the study area were classified as either rivers, tidal rivers or drains. The river category consists of canals owned by the SFWMD, canals owned by the drainage districts which had active recharge systems during the calibration period and canals having free flow with SFWMD canals. Tidal rivers are those rivers or
portions of rivers subject to tidal influences. The drain category consists of the remaining canals, which function as drains only and provide no recharge to the aquifer. The canal locations and widths were measured from aerial photos or obtained from SFWMD records. Canal bottom elevations were obtained from Corps of Engineers canal profile records or estimated when no other information was available. The data was digitized and put into ARC/INFO format. The model grid was superimposed on the river coverages, then each canal reach was placed in the appropriate cells using the ARC/INFO Geographic Information System. Figures 9 and 10 indicate which cells contain rivers or drains.

The canals classified as rivers and tidal rivers were simulated using the river package. Water may flow from the aquifer to the river or vice versa depending on the head gradient between the river and the aquifer. Average monthly canal stages were determined from the SFWMD data base and/or records. The remaining canals act as drains. Only layer 1 has river or drain cells. The difference between the river package and the drain package is that the drain package only allows flow from the aquifer to the drain.

Initial hydraulic conductivity values for both river and drain bottom sediments were estimated at $0.75 \mathrm{ft} / \mathrm{day}$. Through the calibration process, these values subsequently were adjusted to a value of 1.1 $\mathrm{ft} / \mathrm{day}$, with tidal river bottom sediments given a value of $0.52 \mathrm{ft} / \mathrm{day}$. The lower hydraulic conductivity value assigned to the tidal river sediments was based on the assumption that tidal channel bottoms probably contain a greater amount of fine-grained, low permeability mucks than do river or drain channel bottoms.

The thickness parameter M of equation 4 was varied during the calibration process after the above modifications to hydraulic conductivity were made. Beginning with an initial uniform bed thickness of one foot for all river and drain cells, thickness values were varied non-uniformly in space to achieve a satisfactory calibration. Final bed thickness values ranged from 0.7 to 1.25 feet.

RECHARGE

The average net recharge depth in a model cell resulting from precipitation, R_{p}, can be computed using the mass balance equation as:

$$
\begin{equation*}
R_{p}=P_{n}-Q_{d}-E T_{u}-E T_{s} \tag{5}
\end{equation*}
$$

where

FIGURE 9. Layer 1 Cells Containing Rivers

FIGURE 10. Layer 1 Cells Containing Drains
P_{n} is the average net precipitation depth over the cell not lost to interception or depressional storage,
Q_{d} is the average depth of water lost to surface drainage (not otherwise simulated using a MODFLOW package),
$E T_{u}$ is the average evapotranspiration depth from the unsaturated zone (not calculated by the evapotranspiration package in MODFLOW), and
ET_{5} is the average evapotranspiration depth from the saturated zone (calculated by the evapotranspiration package in MODFLOW).
Units may be any consistent unit of length; this model uses feet.

The evapotranspiration depth from the unsaturated zone, $\mathrm{ET}_{\mathfrak{u}}$, was not considered in this model. In areas where there is a significant unsaturated zone above the water table, however, the recharge calculations may become inaccurate without considering ET u_{u}. A portion of the calculated recharge, R_{p}, never reaches the aquifer because it is trapped and used by plants at the unsaturated zone. This limitation will be resolved in the complete recharge package (currently under development). In some cases, an overly high recharge rate caused by this limitation can be drained away by canals.

Net Precipitation. The average monthly net precipitation depth, P_{n}, for a cell can be approximated from the total monthly precipitation depth over the cell, P_{t}, as:

$$
\begin{equation*}
P_{n}=\operatorname{MAX}\left\{K_{i} P_{t}-\sum_{n=1}^{N} K_{d}(n), 0\right\} \tag{6}
\end{equation*}
$$

where
K_{i} is the interception coefficient,
$K_{d}(\mathbf{n})$ is the depth of daily depression storage loss (in feet, for this model), and
N is the total number of days in a given month.

Interception is that portion of gross precipitation which wets and adheres to aboveground objects until it returns to the atmosphere through evaporation (Bower, et al., 1990). The quantity of water intercepted depends upon the storm character, the season of the year, and the species, age, and density of the prevailing plants and trees. The total interception by an individual plant is directly related to the amount of foliage. For
non-urban land uses, extreme values of K_{i} can be defined as (Viessman, et al., 1977):

$$
K_{i}=\left\{\begin{array}{l}
1.00 \text { for clear bare ground surfoce }(0 \% \text { interception }) \\
0.75 \text { for dense closed forest }(25 \& \text { interception })
\end{array}\right.
$$

Values for K_{i} in urban areas ranged from 1.0 to 0.5 , depending upon the land use type. The value of K_{i} assigned to a model cell represented the weighted average of the K_{i} values for all land use types within the cell. Table C-2 in Appendix C lists land use codes and corresponding values for K_{i}.

Precipitation that reaches the ground surface may infiltrate, flow over the surface, or become trapped in numerous small depressions. The depression storage loss for impervious drainage areas varies from 0.05 inch, on a slope of 2.5 percent, up to 0.11 inch, on a slope of 1 percent (Bower, et al., 1990). The upper limit of 0.11 inch (0.009 feet) was assumed for the model. The model depression storage loss, K_{d}, was calculated as:

$$
\begin{equation*}
K_{d}=K_{d}^{\max }\left\{M A X\left\{\left[1-\left(\frac{K}{K_{m}}\right)^{\frac{1}{2}}\right], 0\right\}\right\} \tag{7}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{d}}{ }^{\text {max }}$ is the maximum daily depression storage losses for the stress period (an upper limit of 0.11 inches or 0.009 feet was assumed for each day),
K is the vertical hydraulic conductivity of the soil layer (in ft/day for this model), and
K_{m} is a calibration factor. It is the value of hydraulic conductivity at which infiltration is assumed to be nearly instantaneous, thus precluding evaporative losses from storage in depression (in ft/day for this model).
A (K / K_{m}) value of 0 , signifying an impervious drainage area, implies a K_{d} value of 0.11 inch per single precipitation event; and a ($\mathrm{K} / \mathrm{K}_{\mathrm{m}}$) value of 1 , a highly pervious area, implies a K_{d} value of 0 . Rainfall of less than the critical daily precipitation depth K_{d} evaporates and creates neither infiltration nor runoff drainage.

Only one precipitation event per rainy day of at least 0.11 inch was assumed. Interception storage capacity is usually reached early in a storm event. This implies that a larger fraction of rainfall is intercepted in depressions during numerous small storms than during one equivalent severe storm (Bower, et al., 1990).

The value of soil hydraulic conductivity, K, in a model cell was estimated by examination of the tables of saturated vertical permeability for applicable soil types found in Soil Conservation Service soil survey books (Pendleton, et al., 1976 and McCollum, et at., 1978). Soil permeability values ranged from $12 \mathrm{ft} /$ day to $40 \mathrm{ft} /$ day throughout the modeled area. The calibration factor, K_{m}, was set at $500 \mathrm{ft} /$ day.

Surface Drainage. The net average depth of water lost to surface drainage, Q_{d}, can be estimated by:

$$
\begin{equation*}
Q_{d}=K_{s} K_{a} P_{n} \tag{8}
\end{equation*}
$$

where
K_{s} is a coefficient relating the potential for runoff to surface drainage, and
K_{a} is a coefficient relating the potential for aquifer recharge from surface drainage.
K_{s} varies between 0 and 1 , depending on the potential of the land use type to generate surface drainage into a surface water body. K_{s} takes into account the effect of drainage systems which may recharge the unsaturated zone of the aquifer. The value of K_{a} is a function of the average hydraulic conductivity and the average slope of the land surface. Coefficient K_{u} has a value of 1 if there is no infiltration into the unsaturated zone, and has a value of 0 when rainfall completely recharges the unsaturated zone. Model values for K_{s} varied between 0.1 and 0.3 , with most values being 0.1 . Table C-2 in Appendix C shows land use codes and their assigned values for K_{s}. The value for K_{a} was defined as:

$$
\begin{equation*}
K_{\mathbf{a}}=K_{\mathbf{a}}^{\text {maxa }}\left(1-K / K_{\max }\right) \tag{9}
\end{equation*}
$$

where
$\mathrm{K}_{\mathrm{a}}{ }^{\text {max }}$ is the maximum value that K_{a} may take (less than or equal to 1),

K is the hydraulic conductivity of the soil layer, and
$K_{\text {max }}$ is the maximum soil hydraulic conductivity in the study area.
The net direct surface runoff in southeastern Florida is assumed to be relatively small. However, the effective recharge into the aquifer depends on the ground water storage available. In many cases, the ground water flow into the canals due to precipitation may be quite large, depending on the availability of stored ground water. At the same time, the amount of water released into the ocean due to a given precipitation event depends on the storage available in the surface water bodies and on
flood protection criteria imposed on canal systems. The lack of an integrated surface and ground water model in the current application is a shortcoming when generating global mass balance for the system.

Rainfall stations from which total precipitation data were obtained are shown in Figure C-2, Appendix C. Precipitation was distributed throughout the model by the Theissen polygon method, which entails applying rainfall from the nearest active rainfall station to each model cell. Total precipitation polygons are shown in Figures C-3 and C-4 for January and July of 1989. Net recharge to the Surficial Aquifer System in Broward County is somewhat dependent upon land use type. For cells containing 50 percent or greater urban land uses, the ratio of net recharge to total precipitation was about 41 percent for January 1989 and about 55 percent for July 1989. In predominantly non-urban areas, the ratio of net recharge to total precipitation was approximately 55 percent in January 1989 and about 71 percent in July 1989. The effect of land use on net recharge to ground water should be explored further. A general land use map of Broward County is shown in Figure C-1, Appendix C.

EVAPOTRANSPIRATION

Water loss through direct evaporation and through transpiration from the saturated zone by plants is simulated in the model by the evapotranspiration (ET) package of MODFLOW. The following assumptions are applied (McDonald and Harbaugh, 1988):

1. When the water table is at or above a specified elevation, termed "ET surface", ET loss from the water table occurs at a specified maximum rate,
2. When the depth of the water table below the ET surface exceeds a specified value, termed the "extinction depth" or "root zone", ET from the water table ceases, and
3. ET from the water table varies linearly between the above limits.
ET surface. The ET surface elevation is represented by the land surface elevation of the modeled area minus any significant capillary zone height. Initial land surface values were taken from the most recently available USGS 7.5 minute topographic quadrangle maps and from additional control points such as land surface elevation from USGS monitor wells. These points were then contoured and smoothed using SURFER (Golden Software). Where water bodies such as lakes or borrow pits were present, the free water surface was used as the base elevation. The ET surface elevation
was altered ± 1.5 feet for specific cells during the calibration process.

Maximum ET rate. The monthly potential evapotranspiration depth, ET, was estimated using the modified Blaney-Criddle equation. The basic form of the equation is:

$$
\begin{equation*}
U=k k_{t} \frac{p_{m} t_{m}}{100} \tag{10}
\end{equation*}
$$

where
U is the crop ET for a given month in inches per day from layer 1 ,
k is a consumptive use coefficient which varies according to the crop type and growth stage,
k_{t} is a climatic coefficient which is related to the mean monthly air temperature (It is defined as $k_{t}=.0173 \mathrm{t}-.314$, where ${ }_{t}$ is Fahrenheit temperature),
p_{m} is the percent of daytime hours of the year which occurred during the month, and
t_{m} is the mean temperature for the month, in degrees Fahrenheit.

The consumptive use coefficient is defined as:
$k=k_{c} k_{f}$
where
k_{c} is a crop coefficient reflecting the growth state of the crop (Table C-3, Appendix C), and
k_{f} is a coefficient reflecting the fraction of land surface which is covered with a specific type of vegetation (also Table C-3). Values for K_{f} vary between 0.05 and 1.0 .
Temperature data was used from rainfall stations in Pompano Beach and Fort Lauderdale. Crop coefficients for each land use type (k_{c}) were either taken directly from or inferred from values presented in Table C-1 and C-2, SFWMD's Permit Information Manual Volume III. Values of k_{f} for urban land uses were determined for each land use type by examination of appropriate surface water permit data for ratios of pervious to impervious area. $A \mathrm{k}_{\mathrm{f}}$ value of 1 was assigned to all. land use types except urban.

Extinction Depth. Extinction depth represents the depth of the water table below the ET surface elevation beyond which evapotranspiration from the water table ceases. It physically represents the depth to which the roots of plants extend below land surface. Extinction depths in the model are related to land use and are based upon estimated root
depths for various kinds of vegetation (memorandum with list of vegetation types and root depths, dated April 26, 1990, from Thomas Teets to Michael Bennett, SFWMD). Land use codes and their assigned extinction depth values are shown in Table C-4, Appendix C.

Water Table and Capillary Fringe. The variation of evapotranspiration with the water table depth depends on the ground cover conditions. It is apparent that the deeper the roots, the greater the depth at which water losses occur. Even with relatively deep water tables, evapotranspiration does not necessarily cease because upward transport by capillary action can still occur. Capillary rise is a function of soil grain size and can vary from 0.3 feet in a coarse gravel to six feet in clay (Fetter, 1980). Since MODFLOW does not address ET occurring when the water table drops below the root zone, capillary fringe ETT can be represented by reducing the original ET surface (land surface) by an amount equal to the capillary fringe height. To be physically accurate, however, the capillary zone height should be added to the water table level. Since the elevation of the water table changes with time, this raising of the available water level would need to be incorporated within the MODFLOW program. Therefore, in order to simplify the representation of the capillary fringe ET, the ET surface elevation can be lowered by an amount equal to the capillary zone height. In the current model, the capillary zone height was ignored, since the model is insensitive to changes in ET surface elevation or extinction depth. It is expected that the actual ET removed from the saturated ground water zone will be close to zero when a crop is well irrigated. This is because the water lost to ET comes from the irrigation system. The model indirectly simulates this effect, particularly in cases where grove canals keep ground water levels below the root zone.

GROUND WATER USE

Introduction

Data from individual water use permits issued by the SFWMD and user pumpage reports were used to prepare the well package of the model. All users of water are required to obtain a water use permit (SFWMD, 1985). There are two types of water use permits; individual and general. Individual permits are required from a user if the demand equals or exceeds 100,000 GPD. General permits are issued for uses under 100,000 GPD. The exceptions to the permitting requirement are single family homes, duplexes, and water used strictly for fire-fighting (SFWMD, 1985). The general permit and exempted uses were considered insignificant for a regional study and therefore were not included in the well
package. The individual permits were divided into two categories: public water supply and non-public water supply.

Public Water Supply Use

At present there are 33 individual public water supply permits in Broward County. The permit files for each utility were reviewed for well locations and well construction data. Individual well locations were digitized and located on the model grid. Well construction data was used to determine in which model layers the withdrawals were occurring. Each utility was contacted concerning its wellfield operation schedule for each specific well. The wellfield operation schedules were used to accurately simulate the withdrawals. Public water supply wellfields in Palm Beach County and Dade County that are within the study area also were incorporated into the model. Figures C-5 and C-6 in Appendix C show the locations of all cells with public water supply uses within the study area. Table C-5 in Appendix C provides information on the utilities within Broward County.

Non-Public Water Supply Use

Most other uses of water within the study area consist of mining-dewatering, industrial, and agriculture uses. Table C-7 in Appendix C shows the locations of all cells containing non-public water supply water uses incorporated within the model.

Mining-dewatering is a short-term use. In most cases, the users are required to store the water on-site. The only water losses from this type of water use are due to evaporation, which is already accounted for in the ET package. In addition, water levels during mining-dewatering are lowered within a relatively small area, producing an insignificant
impact in the context of a regional model with a coarse grid. For all of these reasons, miningdewatering uses were not incorporated into the model.

There are few industrial users of ground water in Broward County. The most significant ground water industrial withdrawal is from the Florida Power \& Light plant, permit \#06-00503-W, The SFWMD also classifies commercial, recreational, air-conditioning and various other types of water uses as industrial (SFWMD, 1985).

The largest non-public water supply use in Broward County is agricultural irrigation use. This category includes all farming, golf, recreational, landscaping and nursery uses. Since most agricultural users are not required to submit pumpage reports to the District, the withdrawals were estimated. The irrigation water requirements of different crops were calculated using a method described by the U. S. Soil Conservation Service (USDA, 1970). This method uses the modified Blaney-Criddle formula to approximate the water requirements of various crops. Factors such as crop type, soil type, air temperature, daylight hours, effective rainfall, and irrigation system efficiency are used to calculate the irrigation requirements of different crops found throughout the modeled area.

The irrigation requirements for each permitted use were estimated for each month of the two calibration periods (January 1983 through December 1985 and the calendar year of 1989). The monthly irrigation requirement for each permitted use was distributed among the withdrawal facilities in proportion to their pump capacities. Individual wells were then assigned to the proper model cell.

CALIBRATION

Abstract

"Steady state" can be viewed as an average condition achieved over a long period of time, and assumes that no major changes in stress rates oecur during that time. Assuming constant stress rates into and out of the aquifer, the period of time required to reach steady state depends on the aquifer properties. When the stresses that drive ground water flow change very slowly in time relative to the rate of change within the aquifer system, steady state assumptions are justified. In many cases, however, the steady state condition is hypothetical due to the artificially rapid changes applied to the aquifer system; and transient calibration processes need to be emphasized.

Before significant pumping or drainage of a system begins, a state of approximate equilibrium prevails in the undeveloped ground water reservoir. Under pre-development conditions, recharge to the system equals discharge from the system over time; hence, no net change in ground water storage occurs. Some type of pre-development condition for Broward County was present at the beginning of this century, for which little or no data exists. At the present time, the aquifer system is in a dynamic transient process. However, it can be said that the Broward model, on a monthly basis, behaves in "quasi-steady-state" manner due to the very high hydraulic conductivity of the Biscayne aquifer. As a result, the "memory" of the system is short. Memory of an aquifer system can be described as the length of time that a stress applied to a system continues to significantly affect the rate of change in water levels within that system. In general, the Broward model exhibits a system memory of less than two months.

Both steady state and transient conditions were taken into account in the model calibration process. Figure E-1 in Appendix E shows the locations of the observation wells used in this process. For calibration and verification purposes, two periods were considered. The first calibration period was from January 1983 through December 1985, and the second was from January 1989 through December 1989. The first multi-year period was chosen so that the effect of annual variations in canal stages, evapotranspiration, irrigation and seasonal rainfall could be explored. The second period was chosen because it encompassed a period of significantly below normal rainfall, and because of changes in canal operating schedules and addition or removal of canals in the time since the first calibration period. USGS observation well water
levels used in the calibration process are published in the annual USGS Water Resources Data reports for water years 1983 to 1986 and 1989 to 1990 .

The calibrations were completed by a trial and error process. Small simulation periods were used in the transient simulations until relatively stable conditions in the aquifer systems were achieved (i.e. head levels were realistic and showed reasonable variation over time). Adjustments to parameters were made as necessary to adequately match computed and observed values.

STEADY STATE CALIBRATION

The steady state runs served six purposes:

1. to detect obvious errors in the input data sets to MODFLOW,
2. to make the initial adjustments to the aquifer parameters used in the model,
3. to generate starting heads for the transient runs,
4. to monitor parameter modifications in each transient calibration run,
5. to act as the base case for most of the sensiti vity analyses, and
6. to act as the base case for predictive simulations.

The pumpage applied in the steady state runs comprises both estimated irrigation water use and reported public water supply pumpage for 1983 or 1989 runs. Data from January 1983 and January 1989 were applied to two separate sets of steady state runs. January 1983 represents a wet month and January 1989 represents a very dry month. The computed average conditions taken over the year 1989 were also used for comparative purposes. The January 1983 and 1989 values of recharge, evapotranspiration, and average surface water stage elevations were used and behaved as a "quasi-steady-state" condition. January conditions were found to be close to average input conditions for the system, with the exception of January 1989 rainfall conditions, which were exceptionally low. The model calibration is non-unique since different sets of parameters can give similar results. The final steady state runs provided much of the information used to describe the ground water flow regime in the study area.

Calibrated steady state heads in layer 1 representing end-of-month values are shown in Figure D-1, Appendix D. Since canal operating systems significantly changed from 1983 to 1989, calibration results from 1989 only are presented, as those more closely reflect current conditions. Simulated heads in other layers are not shown since the differences between layer heads are insignificant, except near surface water bodies and boundaries. Figure D-2 compares computed water levels to estimated observed water levels. The observed water levels used for interpretation during calibration are based on end-of-month field observations in wells and averaged monthly canal stages for the same month. The estimated errors in model water levels in all active cells are generally within the range of \pm one foot. The average canal stage elevation and the ground water heads were assumed to approximate steady state conditions under monthly average conditions for January 1983 and 1989.

TRANSIENT CALIBRATION

A series of transient runs were made to calibrate the model to observed water levels using historical meteorological conditions and either reported or estimated water use. The transient calibration simulates the periods of January 1983 through December 1985, and January 1989 through December 1989. The transient runs comprised 36 and 12 stress periods of one month each, respectively. Each month was simulated by a stress period comprising five time steps; the reader is referred to the MODFLOW definition of time steps and stress periods (McDonald and Harbaugh, 1988). The accuracy of the model is enhanced by using more time steps per stress period; however, sometimes the increased computer run time required for more time steps is prohibitive. In the case of the Broward County model, CPU run time did not change significantly with one or five time steps.

Starting heads for each calibration period were calculated from water level data obtained from USGS monitor wells and the average canal stage elevations and boundary head values for January 1983 and January 1989. The data was regionalized using a kriging interpolation technique, which provides a head value for every model cell. The kriged heads were used as starting heads for two onestress periods runs (January 1983 and January 1989) without application of recharge or pumping stresses, and with observation well head levels applied as constant head values in order to force the computed water levels near observation wells. The model head values generated from these runs were used as starting heads for the transient runs.

Comparative hydrographs for observed and simulated water levels were generated for those cells that correspond to the location of USGS monitoring wells. These were used to aid in the interpretation of several MODFLOW runs, particularly with regard to how the simulated heads changed over time in response to varying stresses. The hydrographs are presented in Appendix E.

The goal of the calibration process was to reduce the difference between observed water levels in monitor wells and calculated water levels in the cells to within the tolerance of \pm one standard deviation of the fluctuation for a particular month. Standard deviations were determined from well water levels for all individual months, for the available online period of record. When water level data was not available for a given month for an observation well, the standard deviation was determined from water levels for all available months for that well. As stated previously, observation well water levels represent end-of-month values.

A satisfactory calibration was obtained. In most cases, average absolute errors were less than 0.75 feet. The average standard error for all observation wells is about 0.45 ft . Figures in Appendix E compare hydrographs of computed and observed water levels at the end of each stress period in 1989. The pattern match between simulated and historical water heads was acceptable. The absolute difference between computed and observed values was less than one foot or one standard deviation of the historical values for each month for most stress periods.

The acceptability of the matching varies somewhat based on discretization considerations such as distance of monitor wells from the center of a model cell, proximity to surface water bodies and the presence of pumping wells in a cell. Differences in computed and observed levels could be explained as follows:

1. The computed water levels represent the average water level over a model cell. If actual levels vary significantly across the 1,000 by 2,000 feet rectangular cell, monitor well levels may not closely match the computed levels. This is especially true where wells are located within public water supply wellfields and stresses on the aquifer cause steep gradients or where wells are located near surface water streams where strong natural gradients occur. In most cases, the gradient across a cell is sufficiently small that the monitor well represents the cell conditions. Cell-wide averaging effects are
evident in comparing observed and computed levels in the cells containing wells G2395 and G820A, where Fort Lauderdale's Prospect Wellfield is located.
2. Rainfall in the study area tends to occur as intense short-term events over relatively small areas. In many cases, ground water levels respond almost immediately to these events. Similarly, canal water levels respond with a small time lag to these intense storms. The precipitation is applied to the model as a total depth occurring over the month, whereas observation well heads represent end-of-month values. An end-of-month storm can result in locally high water levels in some wells and canals not well represented by the monthly time discretization in the model.

Modifications to achieve calibration are discussed in the following sections. As a general rule, changes to the model parameters during calibration were made in the following order:

1. river and drain conductances,
2. horizontal hydraulic conductivity,
3. vertical anisotropy of the layers,
4. E'T surface elevation, and
5. storage coefficients.

These changes were made in conjunction with the application of recharge and evapotranspiration stresses. Recharge and evapotranspiration coefficients were adjusted slightly during calibration. The sensitivity of measured water levels to rainfall and changes in surface water levels complicates the calibration. Modifications made to aquifer characteristics during calibration process were relatively insignificant.

Layers 1 and 2, upper zone of Surficial Aquifer System: In the areas where this zone is present, the transmissivities were initially set as discussed in the section on hydraulic characteristics. Where layer 1 or 2 is absent, the transmissivity for missing layer is represented by the hydraulic conductivity of the subjacent cell multiplied by a minimum thickness (15 feet for layer 1 and five feet for layer 2). The best calibration for layers 1 and 2 was obtained by varying the vertical anisotropy within the range between 0.02 and 0.08 , as discussed previously. Similarly, the specific yield in layer 1 and the storage coefficient in layer 2 were changed non-uniformly in space. Hydraulic conductivity also was adjusted non-uniformly in these layers, to a maximum change of ± 15 percent. The agreement
between observed and computed water levels is shown in the calibration hydrographs in Appendix E.

Layers 3 and 4, the Biscayne Aquifer: The initial transmissivity of these layers was set as discussed in the section on hydraulic characteristics. In areas where the Biscayne aquifer is missing, a transmissivity was assigned which represented a minimum thickness of three feet for layers 3 and 4 (six feet total) multiplied by the averaged hydraulic conductivity of the nearest cells in layers 2 and 5. Based on the calibration runs, $\mathrm{V}_{\text {cont }}$ was lowered to 25 percent of its original assigned value. Storage was set to 1.9×10^{-4} and remained essentially constant in space. During calibration, unusually small drawdowns were noted in the area of Prospect Wellfield. Localized adjustments to hydraulic conductivity within acceptable ranges (± 15 percent) succeeded in correcting the problem. Inspection of pumping records from this wellfield suggested that the problem was an underestimation of water use for water supply and injection. Based on discussions with utility personnel (personal communication between Steve Krupa, SFWMD, and Charles Petrone, City of Fort Lauderdale, July 8, 1991), well pumpages in the model were increased an additional 20 percent. After re-calibration and adjustment of hydraulic conductivities in layers 3 and 4, all observed and computed water levels were within the acceptable tolerances. This case also illustrates how cell-wide averaging effects in cells with steep head gradients can influence computed water levels and calibration.

Layer 5, lower zone of Surficial Aquifer System: Compared to the overlying aquifers, relatively little is known about the hydraulic characteristics of the lower zone. In calibrating the fifth layer, hydraulic conductivities were varied from 30 to $100 \mathrm{ft} /$ day, which represent the usual range of transmissivities for this type of aquifer. There are no observation wells in layer 5. Heads in layer 5 are relatively insensitive to changes in hydraulic conductivity. Since observed and computed heads matched best in the lithologically similar layer 2 at a relatively uniform hydraulic conductivity of 50 $\mathrm{ft} / \mathrm{day}$, this value was applied to layer 5. Agreement of computed and observed heads was tested by varying vertical conductance. Lacking information of the degree of confinement between the Biscayne aquifer and layer 5 , uniform values of vertical conductance for this boundary were tested. Observed and computed levels matched a little closer when the vertical conductance was varied up to ± 30 percent of the original values, particularly in the vicinity of some wellfields. Accordingly, a variable vertical
conductance for the boundary between layers 4 and 5 was developed.

CALIBRATION RESULTS

As already noted, the initial model is based on existing interpretations of the hydrogeology of Broward County to the extent possible. Calibration results are presented in the following paragraphs.

Steady State Calibration Results

Steady state calibration was used to detect data errors, poor assumptions, or poorly calibrated areas. Initial heads used in steady state calibration are representative of the end of January 1983 or 1989, depending on the calibration period. These values were chosen as a convenience in computing drawdowns, because the steady state solution is independent of initial head values. As previously stated, January water levels and stresses generally approximate average conditions. Horizontal and vertical flow components referred to in the following sections are depicted in Appendix D, Figures D-5 through D-13. Steady state results using averaged 1989 conditions are similar to those using January 1989 conditions, as the entire year was dry.

Horizontal flow in layers 1 and 2, upper zone of the Surficial Aquifer System. Horizontal flow in layers 1 and 2 is similar; however, Layer 1 shows a large flow component near major canal structures. In general, LWDD canals near the county line are draining into the Hillsboro Canal. Flows in northeast Broward (east of the Florida Turnpike) are parallel to the Hillsboro Canal. An essentially stagnant flow zone occurs west of the intersection of the county line and the Hillsboro Canal. Water from WCA 2A is moving east; however, it is largely intercepted by the L-36 canal. Greater flows are moving east out of WCA 2B, but again are intercepted for the most part by a canal, in this case the L-35A canal. North of the C-11 canal, between the North and South New rivers, eastward flow is intercepted by the L-37 canal. Between the C-11 and C-304 (Miami Canal) canals, ground water moves east and is only minimally intercepted by L-33. A small regional flow trends to the south in the southern part of study area. In general, no clear regional flow exists, except in the vicinity of canals and wellfields. A ground water mound exists just south of the intersection of State Road 7 and the Hillsboro Canal. This may be due to agricultural irrigation, relatively minimal stresses in this area or indirectly due to high water levels maintained in LWDD canals. Flow west out of the mound is intercepted by local drainage district canals. Flow east out of the mound goes to wellfields (Deerfield Beach, Broward County 2A, etc).

General statements about the potential for salt water intrusion can be made based on the magnitude and direction of ground water flow calculated by the model. Horizontal flow vectors along the coast which point west (Appendix D, Figures D-5 and D-6) may indicate the potential for salt water intrusion along the coast. The very small to non-existent flow vectors along the coast south of Atlantic Boulevard can be interpreted as a stationary salt water front. South of the Hillsboro Canal, in the area of the Deerfield Beach, Broward County 2A and Pompano Beach wellfields, the salt water front appears to be actively moving inland, as shown by the large westward flow vectors.

Horizontal flow in layers 3 and 4, the Biscayne Aquifer. Flow vectors in these layers are very similar to those in layers 1 and 2 . For the most part, water in the WCAs moves to the east or southeast and is intercepted by canals as in the upper layers. The exceptions are that an underflow is present out of WCAs 2A and 2B and that much less flow moves eastward out of WCA 2A. Ground water flows from Palm Beach County into Broward County under the Hillsboro Canal east of Powerline Road.

In order to examine the effects of development on this underflow and to test the validity of the model boundaries, a hypothetical wellfield was simulated just south of the Hillsboro Canal and east of Powerline Road (Figure 11). The hypothetical wells were assigned a cumulative pumping rate of 3 million ft 3 /day. A significant flow from LWDD canals under the Hillsboro Canal was induced as these wells pumped (Figure 12A). Horizontal flows from Palm Beach County into Broward County increased by about 23 percent. At the Conservation Areas on the western boundary, the horizontal flow was unaffected. At the eastern boundary, westward horizontal flows into Broward County increased by about one percent. When the hypothetical wellfield was activated and recharge from agricultural irrigation was removed (as would be the case if the wellfield truly existed), flows out of LWDD canals at the county line increased about 32 percent. In the area bounding the hypothetical wells (approximately between columns 82 and 108 in the model), flows from Palm Beach County increased by about 250 percent. Outside of that area, northern boundary flows were unaffected.

Regional flow in layers 3 and 4 is more or less defined by the wellfields. A very small regional trend to the east exists.

Active salt water intrusion can be interpreted in these layers near the Deerfield Beach, Broward County 2A and Pompano Beach wellfields (Figures D-7 and D-8) based on large westward horizontal

FIGURE 11. Hypothetical Wellfield in Northern Broward County

FIGURE 12A. Horizontal Flow in Layer 3 Around Hypothetical Wellfield (Without Recharge due to Agricultural Irrigation)

FIGURE 12B. Calibrated Horizontal Flow in Layer 3 in Area Around Hypothetical Wellfield
flow vectors computed in the model. The salt water front also appears to be moving westward near the Hollywood wellfield.

Horizontal flow in layer 5, lower zone of the Surficial Aquifer System. No clear regional ground water flow trend is evident in this layer. Compared to upper layers, flows toward wellfields are reduced in most areas, although still significant near the Prospect Wellfield in Fort Lauderdale. Flows eastward out of WCAs 2A, 2B, 3A and 3B are smaller than in the upper layers and are of similar magnitude to each other.

Salt water intrusion is suggested by westward flow in layer 5 along the coast near the Deerfield Beach, Broward County 2A and Pompano Beach wellfields, although to a lesser degree than in the upper layers. This can be seen in the computed horizontal flow vectors shown in Figure D-9.

The Surficial Aquifer System in the area of the Deerfield Beach, Broward 2A, and Pompano Beach wellfields should receive careful attention with regard to management of the saline intrusion problem. Model results imply that the salt water interface may be moving inland in the production zone of these wellfields.

Vertical flow. Vertical ground water flows in layers 1 through 4 are similar in direction, yet consistently decrease in magnitude as the layers descend (Figure D-10 through D-13). In general, vertical flows are in the downward direction. Layers 1,2 and 3 (to a lesser degree) show large downward flows near and upstream of canal structures. Layers 1 and 2 show significantly larger downward flows in the area east of U.S. I between the Hillsboro Canal and Atlantic Boulevard than in other areas along the coast; this is probably due to stresses from wellfields.

Upward vertical flows occur in the Conservation Areas along the L-35A and North New River canals. Similar flows are observed along the eastern edges of WCAs 3A and 3B. This is presumably due to interception by levee canals.

Transient Calibration Results

Examples of Results. Figures 13 and 14 show the net rate change in different model parameters for each month of 1989 in that portion of the study area lying within Broward County. The Water Conservation Areas and tidal region are not included. Figure D-3 in Appendix D shows the
simulated heads in layer 1 for the end of the dry season in January 1989. The computed layer 1 heads for the end of the wet season in September 1986 are shown in Figure D-4.

In every stress period simulated for 1989, westward horizontal flows occurred along the coast, suggesting potential salt water intrusion. Ground water gradients in all model layers present serious concerns for wellfields along the coast, particularly those between the Hillsboro Canal and Atlantic Boulevard. The magnitude of this westward flow varied between 0.5 and 0.75 million $\mathrm{ft} 3 /$ day (for all layers combined) from month to month during 1989.

Along the western model boundary, eastward horizontal flows occurred out of the Conservation Areas and along the eastern side of the levee canals during each stress period of 1989 . The magnitude of these flows varies between 6.0 and 7.7 million $\mathrm{ft}^{3} /$ day for each stress period.

Horizontal flows from Palm Beach County into Broward County occurred during each stress period simulated in 1989 and in the steady state simulation as well. The magnitude of this southerly flow varied between 2.4 and 3.2 million $\mathrm{ft}^{3} /$ day. Similarly, horizontal flows occurred from Broward County into Dade County during each stress period of 1989. The magnitude of the flows out of Broward County into Dade County varied between 3.3 and 3.9 million $\mathrm{ft} 3 / \mathrm{day}$.

On the average, water was provided to the Biscayne aquifer in Broward County from the following sources during 1989:

1. the upper zone of the Surficial Aquifer System contributed about 74 percent,
2. lateral boundary flow contributed an estimated 25 percent, and
3. the bottom zone of the Surficial Aquifer System provided about one percent.
Water entering the Biscayne aquifer from the upper layers came from recharge due to precipitation and, in some areas, from canal leakage. Lateral boundary inflows occurred primarily from the north and the west. Water from the Biscayne aquifer in Broward County flows out laterally into Dade County and, in some areas, into the ocean. These losses are equivalent to about 10 percent of the total inflow to the Biscayne aquifer.

FIGURE 13.

SENSITTVITY TESTING

An important process in data collection is the determination of the data that are necessary to improve the reliability of the model. The Broward model was tested through sensitivity analyses in a effort to discover which data and processes most affeet the model on a daily and a monthly basis.

To test the certainty of the parameter estimates used in the steady state model, sensitivity tests were performed. For example, the sensitivity of the model was tested first by varying the calibrated hydraulic conductivity upwards and downwards by an order of magnitude. Because layers 3 and 4 each exhibited sensitivity to one or more of these changes, a second set of sensitivity tests were conducted by doubling then halving hydraulic conductivity for each of the hydrogeologic zones in the Surficial System.

Other parameters examined in the sensitivity analyses were changes in recharge rate, ET rate, ET surface elevation, ET extinction depth, river and drain conductances, and vertical conductance. Sensitivity to changes in storage and starting heads were examined in the transient model. The model appears to be most sensitive to hydraulic conductivity and canal conductance changes. Accordingly, the model is sensitive to pumpage from the aquifer and water levels in canals. The role of canals in providing recharge to the aquifer can be seen clearly in the sensitivity run where recharge from precipitation was eliminated. The results of the sensitivity analyses are presented in Appendix F.

A sensitivity analysis of initial water levels was carried out under both calibrated transient 1989 conditions and on non-stressed transient 1989 conditions (without recharge, ET, wells, river and drains). The water table elevation was increased and decreased by two feet in these simulations. In both the stressed and non-stressed cases, the model results became practically independent of initial conditions after two months of simulation. However, in some areas, particularly those with relatively low hydraulic conductivity, the effects of initial conditions continue for a significantly longer period.

Model sensitivity to general head boundary conductances was tested by both multiplying and dividing steady state conductance values by 2,10 and 100 . Doubling and halving the general head conductances had virtually no effect on the model. Multiplying and dividing by a factor of 10 showed only slight (± 0.1 feet) head variations in localized regions along the coast. The model was fairly insensitive along the coast to a reduction in conductance by a factor of 100 , and was more sensitive in the WCA boundaries at this level. Sensitivity to conductance multiplied by 100 increased with descending layers along the coast, and also caused a 0.23 percent discrepancy in the mass balance at the end of the simulation.

CONCLUSIONS

The Biscayne aquifer is the most productive zone of the Surficial Aquifer System. Yields in the Biscayne aquifer increase significantly towards southern Broward County. Under current conditions, the most important sources of recharge to the Surficial Aquifer system are deep percolation from precipitation, leakage from canals, leakage from the Water Conservation Areas and leakage across the northern county line from Palm Beach County. Of the total net ground water recharge occurring during 1989 for the study area represented in Figures 13 and 14, rainfall provided approximately 84 percent of the total recharge, the western boundary contributed about 11 percent, with the remaining five percent coming from the northern boundary. In some areas, canals provide recharge to the aquifer; however, a net loss of ground water to canals occurs over the study area as a whole.

The largest ground water withdrawals in the Broward County area occur in the public water supply wellfields. Public water supply withdrawals account for approximately 54 percent of the total annual ground water losses in the study area represented in Figures 13 and 14. Leakage from the aquifer into canals accounts for an additional 24 percent of the total net ground water loss. Evapotranspiration from the saturated zone accounts for approximately 13 percent, and the southern and eastern boundaries contribute the remaining six percent and three percent, respectively.

Regional ground water flow in eastern Broward County is largely affected by the location of major wellfields and to some extent by the location of surface water bodies. Ground water flow from Water Conservation Areas 1, 2A and 2B is intercepted by the levee canals. This water then moves via canals to wellfields, leaks out into the aquifer, or enters the ocean as runoff. Ground water flow out of Conservation Areas 3A and 3B provides an important source of water to urban areas in southern Broward County.

Sensitivity simulations indicate that if canal water levels can be maintained during severe droughts (as in January 1989), significant decreases in ground water levels can be mitigated. The ground water regime in Broward County is driven by the surface water system and/or by deep percolation due to precipitation. The interrelation of the two conveys the urgency of developing a fully-coupled surface and ground water model.

Model simulations indicate that salt water intrusion may be taking place along the Atlantic coast. Westward horizontal flows in all model layers along coastal areas can be interpreted as a moving salt water/fresh water interface. These westward flows are largest in the area between the Hillsboro Canal and Atlantic Boulevard in northern Broward County.

RECOMMENDATIONS

Eastern Broward County is experiencing a deficit of water to supply its needs during dry periods, and depends heavily on the aquifer storage availability and on water brought into the area from adjacent zones. As demands increase, so will the need for additional water supplements.

Careful management of withdrawals from the Biscayne aquifer is needed to reduce the potential for saline water intrusion in eastern Broward County. Maximum withdrawals, minimum head levels and/or minimum net yearly ground water flows to the ocean should be established in coastal areas to reduce or slow salt water migration and to deter upconing of saline water into pumping wells. Future requests for large scale withdrawals should be closely examined to ensure that the criteria can be maintained.

Additional attention should be devoted to the management of water quality. It is recognized that both water quality and water quantity are important and interdependent aspects of water resources. Effective analysis of the aquifer with regard to storage of wastewater, artificial recharge, aquifer storage and recovery, and salt water intrusion requires a better understanding of solute transport within it.

The integrated surface water/ground water system that provides water supply in southeast Florida has evolved as a result of local needs rather than as a result of a single comprehensive regional plan. In spite of the fundamental understanding of ground water and surface water hydrologies and their interrelations, the two are often considered as being physically disconnected. Accordingly, an integrated model is a fundamental need in Broward County.

A fully integrated surface, unsaturated and saturated flow model should be developed for Broward County. Such a model should be rigorous in the representation and conceptualization of the water allocation and surface water body operations and other physical processes involved in a canal-aquifer system such as the one in place in Broward County. The model should incorporate, to a large extent, the entire physical conceptualization of the hydrologic cycle on a daily basis. The description of the complex process of infiltration and redistribution of water in the unsaturated and saturated soil should be given special attention. In order to provide a realistic assessment of short-term
impacts such as: 1) availability of water in canals, 2) the effects of precipitation in surface water bodies or in the unsaturated zone, or 3) water levels in aquifers near canals, the model should simulate the system using short stress periods. Similarly, for a realistic allocation of water based on agricultural or other needs, short simulation stress periods are desirable. However, shorter stress periods do not require similarly shorter changes in ground water heads, except in areas close to canals. The concept of reach transmissivity to simulate canal-aquifer interaction should be explored as an alternative to the canal conductance approach currently used in MODFLOW when horizontal flow is predominant.

Interfaces should be developed with the existing Palm Beach County model, with the Dade County model currently under development, and with the regional surface water system. This will result in a truly regional model that encompasses the entire flow regime for the Surficial Aquifer System in the lower east coast water supply planning area. This regional surface and ground water model would be particularly useful in evaluating the District's canal system, which maintains ground water levels and supplies many of the public water supply wellfields within the tri-county area.

The Broward model can be used in the evaluation of water use permit applications for large uses. Where a finer scale or site-specific evaluation is required, the model can be used to provide boundary conditions. The model should continue to be refined and updated as additional information becomes available. Suggested refinements to the model include a finer grid spacing and smaller stress periods, ideally five days or less.

The difficulties involved in estimating parameters are closely related to the more general issue of data collection for surface-ground water models. A model can be developed with any amount of real data. However, the amount and quality of available data directly affects the credibility of the model application. The District's responsibility in collecting an optimal amount of dependable data for models implies the necessity of:

1. re-specifying data collection procedures,
2. improving data collection networks,
3. identification of critical data, and
4. accurate storage of data.

The Broward model is sensitive to utility pumpage rates. Increased reporting and verification of public water supply pumpages on a well-by-well basis, as well as the reporting of large agricultural withdrawals, is recommended. Additional wells in the USGS monitoring well network are needed in order to improve the regional information available. Furthermore, additional aquifer testing should be required in areas where hydrogeological information is lacking.

Problems arise in using MODFLOW to simulate free-surface bodies (e.g. wetlands) or large wellfields. During the course of a simulation or during the iterative determination of the water levels, cell heads may drop below the bottom elevation of an active cell or rise above the bottom elevation of an inactive cell. A cell may change from active to inactive in the standard version of MODFLOW. However, the inverse process reactivation of an inactive cell submerged during a simulation - is not possible with the current version of MODFLOW. It is recommended that this problem be addressed through the recently released USGS module called BCF2.

Calibration is a laborious and inaccurate task if carried out by trial and error. A semi-automatic
calibration procedure should be adopted. The surface water system and the aquifer system should be calibrated separately first, then together.

A new approach to computing evapotranspiration should be delineated. The ET rates currently calculated are based on a modified Blaney-Criddle equation, which relies on temperature to calculate monthly rates. Numerous studies, however, show that ET is dependent on solar radiation and that temperature approaches alone are the least accurate of ET estimation methods. Errors due to use of a temperature-dependent approach become apparent in the ground water model calibration process through the excessive ground water pumping rates for agricultural demands created by use of the Blaney-Criddle equation. It is recommended that the Penman-Monteith or modified Penman methods be explored. These methods require solar radiation, air temperature, humidity and wind speed data, some of which is already being collected by the District for some stations. Any new approach should be used consistently with any mathematical model or in any agricultural water use decision made in the District.

REFERENCES

Bower, R.F., K.M. Adams, and J.I. Restrepo, 1990. A Three-Dimensional Finite Difference Ground Water Flow Model of Lee County, Florida. SFWMD Technical Publication 90-01.

Broward County, 1990. Aquifer Recharge for North Broward County.

Camp Dresser \& McKee, Inc., 1980. Dixie Wellfield Stress Analysis.

Camp Dresser \& McKee, Inc., 1980. Prospect Wellfield Impact Analysis.
Camp Dresser \& McKee, Inc., 1986. Water Use Permit Modification for the City of Coral Springs.
Cooper, R.M. and R. Roy, 1991. An Atlas of Surface Water Management Basins in the Everglades: The Water Conservation Areas and Everglades National Park, South Florida Water Management District Technical Memorandum.

Fetter, Jr., C.W., 1980. Applied Hydrogeology. Charles E. Merrill Publishing Co., Columbus, Ohio.
Fish, J.E., 1988. Hydrogeology, Aquifer Characteristics, and Ground-Water Flow of the Surficial Aquifer System, Broward County, Florida. U.S. Geological Survey Water Resources Investigations Report 87-4034.
Gee \& Jenson, Inc., 1979. North Springs Improvement District Application for Consumptive Use Permit for Public Water Supply System.

Gee \& Jenson, Inc., 1980. City of Deerfield Beach Hydrogeologic Evaluation.

James M. Montgomery, Inc. in association with Dames and Moore, 1986. The Study of Water Supply and the Selection of Future Wellfield Sites in Broward County, Florida.
James M. Montgomery, Inc., 1989. Broward County Office of Environmental Services Wellfield 3B Aquifer Performance Test.

Johnson, A.I., 1967. Specific Yield - Compilation of Specific Yields for Various Materials. Geological Survey Water-Supply Paper 1662-D.

Klein, H., J. Armbruster, B.F. McPherson, H.J. Freiberger, 1975. Water and the South Florida Environment. U. S. Geological Survey Water Resource Investigation 24-75.

Klein, H. and J.E. Hull, 1978. Biscayne Aquifer, Southeast Florida. U.S. Geological Survey Water Resource Investigation 78-107.
McCollum, S.H., O.E. Cruz, L.T. Stem, W.H. Wittstruck, R.D. Ford, F.C. Watts, 1978. Soil Survey of Palm Beach County Area, Florida. U.S.D.A. Soil Conservation Service.

McDonald, M.G., and A.W. Harbaugh, 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6.
Pendleton, R.F., H.D. Dollar, L. Law, Jr., 1976. Soil Survey of Broward County Area, Florida. U.S.D.A. Soil Conservation Service.

Restrepo, J.I., 1990. Water Recharge To and Evapotranspiration From the Aquifer System. Unpublished.

Sherwood, C.B., H.J. McCoy, C.F. Galliher, 1973. Water Resources of Broward County, Florida. U.S. Geological Survey Report of Investigation No. 65.

Shine, M.J., D.G.J. Padgett, and W.M. Barfknecht, 1989. Ground Water Resource Assessment of Eastern Palm Beach County, Florida. SFWMD Technical Publication 89-4.
South Florida Water Management District, 1977. Drainage Basins in Broward County, Florida.

South Florida Water Management District, 1985. Management of Water Use-Permit Information Manual Volume III. West Palm Beach, FL.

South Florida Water Management District, continuously updated. Structure Operation Manuals. Operations Maintenance Division.
United States Department of Agriculture, Soil Conservation Service. 1970. Irrigation Water Requirements. Technical Release No. 21.
Viessman, W., J.W. Knapp, G.L. Lewis and T.E. Harbaugh, 1977. Introduction to Hydrology. A Dun-Donnelley Publisher, New York.

WaIton, William C., 1987. Groundwater Pumping Tests. Lewis Publishers, Inc., Chelsea, Michigan.

APPENDIX A

HYDROGEOLOGY AND STRUCTURE CONTOUR DATA

LIST OF FIGURES - APPENDIX A

Fiqure Page
A-1. Location of Wells Used for Lithological Data 47
A-2. Elevation of the Base of the Surficial Aquifer System 49
A-3. Elevation of the Top of the Biscayne Aquifer 50
A-4. Thickness of the Biscayne Aquifer 51
A-5. Elevation of the Top of Layer 2 52
A-6. Thickness of Layer 2 53
A-7. Elevation of the Top of Layer 3 54
A-8. Thickness of Layer 3 55
A-9. Elevation of the Top of Layer 4 56
A-10. Thickness of Layer 4 57
A-11. Elevation of the Top of Layer 5 58
A-12. Thickness of Layer 5 59
A-13. Transmissivity of Layer 2 60
A-14. Transmissivity of Layer 3 61
A-15. Transmissivity of Layer 4 62
A-16 Transmissivity of Layer 5 63
LIST OF TABLES - APPENDIX A
Table Page
A-1. Wells Used to Develop Structure Contours of the Surficial Aquifer System, Broward County 48

FIGURE A-1. Location of Wells Used for Lithological Data

WELL MAME	$\begin{aligned} & \text { FLORIDA } \\ & \text { X(EASY) } \end{aligned}$	PLAMARS Y（MORTH）	TOTAL DEPTH	$\begin{aligned} & \text { BASE OF } \\ & \text { SAS } \end{aligned}$	JOP OF是	воттOM OF B4	THICKNESS OF BA	COMLIENTS
P81591	771417	738488	－309	－283	． 70	－183	83	Shine， 1890.
PB1428	730051	734408	－204	－177	NP	NP	NP	Flah， 1908.
G2323	780673	725395	－278	－282	85	－145	60	Finh， 1988.
PTS	772706	721937	． 745	日TD	． 78	－135	58	Qulet Wetere Pk，SFWMD well．
G2305	784003	725550	－311	－280	．85	－110	45	Finh， 1988.
Wp	788942	712927	－135	BTD	－ 00	BTD	＞55	Wineton Perk，JMM／Damoz \＆Moore． 1986.
E2	742000＊	710900＊	－176．5	－185	． 102	－125	23	N．Bpringe Imp．Dist Goe ti Jenson， 1979.
PTS	772135	702448	－279	－229	－ 57	－182	85	Tradewinds Park，SFWMD well．
WUS2	785050	093864	＊＊	－228	－38	.138	100	Samples from Margate Injection wedl \＃2．
PT1－04	782481	090927	－134．5	BTD	－31	日T0	>103	Pompano Aldfeld，SFWMD well．
C 2344	789198	603768	－461	－320	－45	－1t2	87	Fith，1988．
G2342	780435	690055	－291	－275	－ 80	－140	50	Finh，1986．
G2341	729659	689372	－189	－125	NP	NP	NP	Fleh， 1988.
P12	775367	803898	$\cdot 171$	BTD	． 70	9TD	≥ 101	Mills Pond Park，SFWMO well．
02345	758331	846935	－320	－285	． 50	－125	75	Fish， 1888.
62347	778357	637570	－471	．330	－35	－140	105	Fish，198g．
PT3	754800	645200	－136	日T0	－70	ETD	＞66	Heritage Park，SFWMD well．
62322	730504	644380	－229	－185	． 50	－122	72	Flah， 1808.
PT4C1	713743	852942	－117	－107	－32	－87	55	Markham Park，SFWMD well．
02321	707798	852812	－279	－113	－47	－89	36	Fish，1pes．
Es	774900＊	675400＊	－103	日TD	-47	ETD	>56	Prospect Wellifeld MW7，CDM， 1060.
G2317	602129	500142	＋135	-90	－10	－80	50	Fish， 1988.
G2318	715788	590456	－205	－130	2	－107	87	Fish， 1868.
G2327	747494	597100	－275	-260	－45	-120	75	Flah， 1989.
G2328	777578	802321	－290	－280	20	－140	120	Fish， 1988.
62311	682659	627750	196	－183	11	64	53	Fish， 1988.
G2318	871408	650809	－208	－200	－20	38	16	Fish， 1988.
G2312	976030	689524	－200	． 200	NP	NP	NP	Flah， 1089.
SAS－Surflcial Aquifer Syctam BA－Biscayne equifer NP－Not prosent BTD－Balow total depth －Location estimated ＊＊－Observed only 300 ft of samples								

Total depth，base of Surficial Aquifer System，And Blecayne equifer elevations reported in feet NGVD．Total depths of wells from Flah，iage，were eatimated from hydrogeological croap－gections．

TABLE A－1．Wells Used to Develop Structure Contours of the Surficial Aquifer System，Broward County

FIGURE A-2. Elevation of the Base of the Surficial Aquifer System

FIGURE A-3. Elevation of the Top of the Biscayne Aquifer

FIGURE A-4. Thickness of the Biscayne Aquifer

FIGURE A-5. Elevation of the Top of Layer 2

FIGURE A-6. Thickness of Layer 2

FIGURE A-7. Elevation of the Top of Layer 3

FIGURE A-8. Thickness of Layer 3

FIGURE A-9. Elevation of the Top of Layer 4

FIGURE A-10. Thickness of Layer 4

FIGURE A-11. Elevation of the Top of Layer 5

FIGURE A-12. Thickness of Layer 5

FIGURE A-13. Transmissivity of Layer 2

FIGURE A-14. Transmissivity of Layer 3

FIGURE A-15. Transmissivity of Layer 4

FIGURE A-16. Transmissivity of Layer 5

APPENDIX B

SURFACE WATER DATA AND FIGURES

LIST OF FIGURES - APPENDIX B

Figure Page
B-1. Major Water Bodies Within Study Area 69
B-2. \quad Average Monthly Water Level for WCA 1 71
B-3. \quad Average Monthly Water Level for WCA 2A 72
B-4. Average Monthly Water Level for WCA 2B 73
B-5. \quad Average Monthly Water Level for WCA 3A 74
B-6. Average Monthly Water Level for WCA 3B 75
B-7. Drainage Districts Within Study Area 76
B-8. Broward Model Drainage Basins 77
B-9. Primary Canals Within the Deerfield Irrigation Company Area 81
LIST OF TABLES - APPENDIX B
Table Page
B-1. SFWMD Canals With Control Elevations 70
B-2. Drainage District Control Elevations 78

FIGURE B-1. Major Water Bodies Within Study Area

CANAL NAME	STRUCTURE NAME	WET SEASON CONTROL ELEVATION	DRY SEASON CONTROL ELETION
C-15 Canal	S-40	8.2	8.2
Hillsboro	G-56	7.5	8.0
Cypress Creek	S-37A	3.5	3.5
Cypress Creek	S-37B	7.5	7.5
Old Pompano	G-57	4.5	4.5
Middle River	S-36	4.5	4.5
C-12	S-33	3.5	3.5
North New River	G-54	3.5	3.5
South New River	S-13	1.6	1.6
Snake Creek	S-29	2.0	2.0
Arch Creek	G-58	1.8	1.8
C-8	S-28	1.8	1.8
Miami Canal	S-26	2.5	2.5

TABLE B-1. SFWMD Canals With Control Elevations

FIGURE B-2. Average Monthly Water Level for WCA 1

FIGURE B-3. Average Monthly Water Level for WCA 2A

FIGURE B-4. Average Monthly Water Level for WCA 2B

FIGURE B-5. Average Monthly Water Level for WCA 3A

FIGURE B-6. Average Monthly Water Level for WCA 3B

FIGURE B-7. Drainage Districts Within Study Area

FIGURE B-8. Broward Model Drainage Basins

TABLE B-2
DRAINAGE DISTRICT CONTROL ELEVATIONS

DRAINAGE DISTRICTS	WET SEASON TARGET CONTROL ELEVATION	DRY SEASON TARGET CONTROL ELEVATION	RECHARGE SYSTEM
Bailey Drainage	4.0	4.0	N
Central Broward East	3.0	3.0	Y(1)
Central Broward West	4.0	4.0	$Y(1)$
Cocomar NE	11.0	11.0	Y(2)
Cocomar NW	11.0	11.0	$Y(2)$
Cocomar SE	9.5	9.5	$Y(2)$
Cocomar SW	8.5	9.5	$Y(2)$
Coral Bay	9.5	9.5	Y(2)
CSID East	6.5	7.0	N
CSID West	6.5	7.0	N
Indian Trace Basin 1	4.0	4.0	N
Indian Trace Basin 2	4.0	4.0	N
Lauderdale Isles	Tidal	Tidal	N
LWDD 1	9.3	9.3	$\mathrm{Y}(2)$
LWDD 2	7.5	7.5	N
LWDD 3	14.5	14.5	Y(2)
LWDD 4	8.0	8.0	N
LWDD 5	16.0	16.0	Y(2)
LWDD 6	13.0	13.0	$Y(2)$
LWDD 7	4.3	4.3	N
LWDD 8	8.5	8.5	Y(2)
North Lauderdale	7.5	7.5	$Y(3)$
NSID East	9.0	10.0	N
NSID West	8.0	7.0	N
Old Plantation	4.0	4.0	$Y(4,5)$
Pinetree	11.0	12.0	$Y(2)$
Plantation Acres	3.5	4.5	$\mathrm{Y}(5)$
Ravenswood	2.0	2.0	N
South Broward Basin 1	2.5	2.5	N
South Broward Basin 2	2.7	2.7	N
South Broward Basin 3	3.0	3.0	N
South Broward Basin 4	3.5	3.5	Y(6)
South Broward Basin 5	4.0	4.0	$Y(6)$
South Broward Basin 6	4.0	4.0	$Y(6)$

TABLE B-2 (Continued)
DRAINAGE DISTRICT CON'TROL ELEVATIONS

drainage districts	WETSEASON target CONTROL elevation	DRY SEASON target CONTROL elevation	RECHARGE system
South Broward Basin 7	2.7	2.7	N
South Broward Basin 8	3.5	3.5	$\mathrm{Y}(6)$
South Broward Basin 8A	2.7	2.7	Y(6)
South Broward Basin 9	4.0	4.0	Y(6)
South Broward Basin 10	4.0	4.0	$\mathrm{Y}(6)$
South Broward Basin 12	3.5	3.5	Y(6)
Sunrise 1	4.1	4.1	Y(7)
Sunrise 3A	5.5	5.5	Y(7)
Sunrise 3B	5.0	5.0	Y(7)
Sunrise 3C	6.5	6.5	$\mathrm{Y}(7)$
Sunrise 3D	5.0	5.0	Y(7)
Sunrise 5	5.5	5.5	Y(7)
Sunrise 6A	5.5	5.5	Y(7)
Sunrise 6B	5.5	5.5	Y(7)
Sunrise 7	4.5	4.5	Y(7)
Sunshine	7.5	7.5	$\mathrm{Y}(8)$
Tamarac, City of	6.3	6.3	Y(3)
Tindall Hammock East	Tidal	Tidal	N/A
Tindall Hammock West	3.5	3.5	Y(4)
Turtle Run	9.5	9.5	Y(2)
Twin Lakes	N/A	N/A	N
WCD1	N/A	N/A	N/A
WCD2 Central	10.0	10.0	$\mathrm{Y}(9)$.
WCD2 East	8.5	8.5	Y(9)
WCD2 West	10.0	10.0	$\mathrm{Y}(9)$
WCD3 East	8.5	8.5	N
WCD3 West	9.0	9.0	N
WCD4 Central	6.0	6.0	N
WCD4 East	3.5	4.5	N
WCD4 West	7.5	7.5	Y(3)
West Lauderdale	4.0	4,0	N
West Parkland	8.0	8.0	N
Whispering Woods	11.5	11.5	Y(2)

TABLE B-2 (Continued)

Key to Table B-2

1. The recharge system consists of free flow between the CBDD canals and the C-11 Canal.
2. The water levels in the drainage district are maintained by the diversion of water from the Hillsboro Canal into the canals of the drainage district.
3. The recharge system consists of free flow with the C-14 Canal.
4. The recharge system consists of free flow with the North New River Canal.
5. Pumps are present to recharge the drainage district.
6. The recharge system consists of free flow between the SBDD canals and either the C-9 or C-11 canal.
7. The recharge system consists of free flow between the City of Sunrise's canals and the C-13 Canal.
8. The Sunshine Drainage District received a consumptive use permit to withdraw water from the C-42 Canal in order to maintain the water levels within the drainage district.
9. Broward County received a consumptive use permit to withdraw water from the Hillsboro Canal to maintain water levels within the drainage district. The water is pumped into the C-2 Canal of WCD2.

```
SCALE I' = 24000'
```

FIGURE B-9. Primary Canals Within the Deerfield Irrigation Company Area

APPENDIX C

DATA AND FIGURES RELATING TO LAND USE, RECHARGE, EVAPOTRANSPIRATION AND WATER USE

LIST OF FIGURES - APPENDIXC

Figure Page
C-1. General Land Use, Level 1, Broward County, 1988 87
C-2. Location of Rainfall Stations Used in Recharge Package 93
C-3. Total Precipitation (inches) in Study Area, January 1989 94
C-4. Total Precipitation (inches) in Study Area, July 1989 95
C-5. Location of Public Water Supply Permits in Study Area 104
C-6. Location of Public Water Supply Wells and Pumping Rates (Cubic Ft/day) 105
C-7. Location of Non-Public Water Supply Wells and Pumping Rates (Cubic Ft/day) 106
C-8. Cells Containing Wells Injecting to the Surficial Aquifer System 107
LIST OF TABLES - APPENDIX C
Table Page
C-1. \quad SFWMD Land Use and Land Cover Classification Code 88
C-2. Coefficients Used in Recharge Preprocessing 96
C-3. Crop Coefficients Used in ET Preprocessing 99
C-4. Extinction Depths Used in ET Preprocessing 103
C-5. Legend for Public and Non-Public Water Supply Spreadsheets 108
C-6. Public Water Supply Spreadsheet 111
C-7. Non-Public Water Supply Spreadsheet 121

FIGURE C-1. General Land Use, Level 1, Broward County, 1988

TABLE C-1.

LEVELI LEVELII LEVELIII

(U) Urban and built-up land
(UR) Residential
(URSL) Single-family, Low Density (under 2 D.U./gross acre)
(URSM) Single-family, Medium Density (2 to 5 D.U./gross acre)
(URSH) Single-family, High Density (over 5 D.U./gross acre)
(URMF) Multi-family building
(URMH) Mobile homes
(UC) Commercial and Services

(UCPL)	Parking lot
(UCSC)	Shopping center.
(UCSS)	Sales and services
(UCCE)	Cultural and Entertainment
(UCMC)	Marine commercial (Marinas)
(UCHM)	Hotel-Motel

(UI) Industrial
(UIJK) Junkyard
(UILT) Other lightindustrial
(UIHV) Other heavy industrial
(US) Institutional

(USED)	Educational
(USMD)	Medical
(USRL)	Religious
(USMF)	Military
(USCF)	Correctional
(USGF)	Governmental (other than military or correctional)
(USSS)	Social services (Elks, Moose, Eagles)

(UT) Transportation
(UTAP) Airports
(UTAG) Small grass airports
(UTRR) Railroad yards and terminals
(UTPF) Port facilities
(UTEP) Electrical power facilities
(UTTL) Major transmission lines
(UTHW) Major highway and rights-of-way
(UTWS) Water supply plants
(UTSP) Sewerage treatment plants
(UTSW) Solid waste disposal

TABLE C-1. SFWMD Land Use and Land Cover Classification Code (Continued)

(UTRS) Antenna arrays
(U'TOG) Oil and gas storage
(UO) Open and others
(UORC) Recreational facilities
(UOGC) Golf courses
(UOPK) Parks
(UOCM) Cemeteries
(UORV) Recreational vehicle parks
(UOUD) Open under development
(UOUN) Open and undeveloped within urban area
(A) Agriculture
(AC) Cropland
(ACSC) Sugar cane
(ACTC) Truck crops
(ACRF) Rice fields
(AP) Pasture
(APIM) Improved pasture
(APUN) Unimproved pasture
(AM) Groves, Ornamentals, Nurseries, Tropical fruits
(AMCT) Citrus
(AMTF) Tropical fruits
(AMSF) Sod farms
(AMOR) Ornamentals
(AF) Confined feeding operations
(AFFL) Cattle feed lots
(AFDF) Dairy farms
(AFFF) Fish farms
(AFHT) Horse training and stables
(AFPY) Poultry
(R) Rangeland
(RG) Grassland
(RS) Scrub and brushland
(RSPP) Palmetto prairies
(RSSB) Brushland
(F) Forested uplands

TABLE C-1. SFWMD Land Use and Land Cover Classification Code (Continued)

(FE) Coniferous

(FEPF)	Pine flatwoods
(FESP)	Sand pine scrub
(FECF)	Commercial forest (pine)

(FO) Non-coniferous

(FOAP)	Australian pine
(FOBP)	Brazilian pepper
(FOPA)	Palms
(FOSO)	Scrub oak
(FOOK)	Oak
(FOCF)	Commercial forest

(FM) Mixed forested
(FMTW) Temperate hardwoods
(FMCM) Cabbage palms/Melaleuca
(FMCO) Cabbage palms/Oaks
(FMPM) Pine/Melaleuca
(FMPO) Pine/Oak
(FMTH) Tropical hammocks
(FMOF) Old fields forested
(FMCD) Coastal dunes
(FMPC) Pine/Cabbage palms
(W) Wetlands
(WF) Forested fresh
(WFCM) Cypress/Melaleuca (WFCY) Cypress
(WFWL) Willow
(WFME) Melaleuca
(WFSB) Scrub and brushland
(WFMX) Mixed forested
(WN) Non-forested fresh
(WNSG) Sawgrass
(WNCT) Cattail
(WNBR) Bullrush
(WNWC) Wire cordgrass
(WNAG) Mixed aquatic grass
(WNWL) Sloughs
(WS) Forested salt
(WSRM) Red mangrove
(WSBW) Black and White mangrove
(WM) Non-forested salt

TABLE C-1. SFWMD Land Use and Land Cover Classification Code (Continued)
(WX) Mixed forested and non-forested fresh
(WXPP) Pine and wet prairies
(WXCP) Cypress domes and wet prairies
(WXHM) Hardwood marsh
(H) Water
(B) Barren land
(BB) Beaches
(BP) Extractive (strip mines, quarries, and gravel pits)
(BS) Spoil areas
(BL) Levees

* Documentation of major codes from "LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM, A TECHNICAL MANUAL", Department of Transportation, State Topographic Office Remote Sensing Center, Kuyper, Becker and Shopmyer, February 1981

FIGURE C-2. Location of Rainfall Stations Used in Recharge Package

FIGURE C-3. Total Precipitation (inches) in Study Area, January 1989

FIGURE C-4. Total Precipitation (inches) in Study Area, July 1989

TABLE C-2. Coefficients Used in Recharge Preprocessing

Land Use	Ki	Ks	Ka	Land Use	Ki	Ks	Ka
U	. 75	. 10	. 10	AMOR	. 70	. 10	. 10
UR	. 70	. 10	. 10	AF	. 90	. 10	. 10
URSL	. 80	. 10	. 10	AFFL	. 90	. 10	. 10
URSM	. 75	. 10	. 10	AFDF	. 90	. 10	. 10
URSH	. 70	. 10	. 10	AFFF	. 90	. 10	. 10
URMF	. 65	. 10	. 10	AFHT	. 90	. 10	. 10
URMH	. 60	. 10	. 10	AFPY	. 90	. 10	. 10
UC	. 50	. 30	. 10	R	. 75	. 10	. 10
UCPL	. 50	. 30	. 10	RG	1.00	. 10	. 10
UCSC	. 50	. 30	. 10	RS	. 80	. 10	. 10
Ucss	. 50	. 30	. 10	RSPP	. 75	. 10	. 10
UCCE	. 60	. 20	. 10	RSSB	. 80	. 10	. 10
UCMC	. 50	. 20	. 10	F	. 85	. 10	. 10
UCHM	. 50	. 20	. 10	FE	. 85	. 10	. 10
UI	. 50	. 30	. 10	FEPF	. 85	. 10	. 10
UIJK	. 50	. 30	. 10	FESP	. 85	. 10	. 10
UILT	. 50	. 20	. 10	FECP	. 85	. 10	. 10
UIHV	. 50	. 30	. 10	FO	. 85	. 10	. 10
US	. 50	. 20	. 10	FOAP	. 85	. 10	. 10
USED	. 60	. 20	. 10	FOBP	. 85	. 10	. 10
USMD	. 50	. 30	. 10	FOPA	. 85	. 10	. 10
USRL	. 50	. 20	. 10	FOSO	. 85	. 10	. 10
USMF	. 50	. 20	. 10	FOOK	. 85	. 10	. 10
USCF	. 50	. 20	. 10	FOCF	. 85	. 10	. 10
USGF	. 50	. 20	. 10	FM	. 85	. 10	. 10
USSS	. 50	. 20	. 10	FMTW	. 85	. 10	. 10
UT	. 60	. 20	. 10	FMCM	. 85	. 10	. 10
UTAP	. 60	. 20	. 10	FMCO	. 85	. 10	. 10
UTAG	. 70	. 10	. 10	FMPM	. 85	. 10	. 10

TABLE C-2. Coefficients Used in Recharge Preprocessing (Continued)

Land Use	Kj	Ks	Ka
UTRR	.60	.10	.10
UTPF	.60	.20	.10
UTEP	.60	.10	.10
UTTL	.60	.10	.10
UTHW	.60	.10	.10
UTWS	.60	.10	.10
UTSP	.60	.20	.10
UTSW	.60	.10	.10
UTRS	.60	.10	.10
UTOG	.60	.20	.10
UO	.98	.10	.10
UORC	.90	.10	.10
UOGC	.75	.10	.10
UOPK	.90	.10	.10
UOCM	.90	.10	.10
UORV	.80	.20	.10
UOUD	.98	.10	.10
UOUN	.75	.10	.10
A	.80	.10	.10
AC	.95	.10	.10
ACSC	.83	.10	.10
ACTC	.95	.10	.10
ACRF	.86	.10	.10
AP	.83	.10	.10
APIM	.83	.10	.10
APUN	.83	.10	.10
AM	.85	.10	.10
AMCT	.85	.10	.10
AMTF	.85	.10	.10
AMSF	.90	.10	.10

Land Use	Ki	Ks	Ka
FMPO	.85	.10	.10
FMTH	.85	.10	.10
FMOF	.85	.10	.10
FMCD	.85	.10	.10
FMPC	.85	.10	.10
W	.90	.10	.10
WF	.85	.10	.10
WFCM	.85	.10	.10
WFCY	.85	.10	.10
WFWL	.85	.10	.10
WFME	.87	.10	.10
WFSB	.80	.10	.10
WFMX	.80	.10	.10
WN	.90	.10	.10
WNSG	.90	.10	.10
WNCT	.90	.10	.10
WNBR	.90	.10	.10
WNWC	.90	.10	.10
WNAG	.90	.10	.10
WNWL	.90	.10	.10
WS	.85	.10	.10
WSRM	.85	.10	.10
WSBW	.85	.10	.10
WM	.90	.10	.10
WX	.90	.10	.10
WXPP	.90	.10	.10
WXCP	.90	.10	.10
WXHM	.90	.10	.10
H	1.00	.10	.10

TABLE C-3. Crop Coefficients Used in ET Preprocessing

$\begin{aligned} & \text { Land } \\ & \text { Use } \end{aligned}$	Covered						Month						
	\%	1	2	3	4	5	6.	7	8	9	10	11	12
U	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. $80-$. 80
UR	. 48	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
URSL	. 67	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
URSM	. 53	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
URSH	. 45	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
URMF	. 33	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
URMH	. 40	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UC	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UCPL	. 25	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UCSC	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80.	. 80	. 80
UCSS	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UCCE	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UCMC	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UCHM	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UI	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UIJK	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UILT	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UIHV	. 05	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
US	. 70	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USED	. 70	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USMD	. 60	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USRL	. 70	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USMF	. 60	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USCF	. 70	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USGF	. 70	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
USSS	. 70	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UT	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTAP	. 10	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80

TABLE C-3. Crop Coefficients Used in ET Preprocessing (Continued)

Land Use	Covered						Month						
	\%	1	2	3	4	5	6	7	8	9	10	11	12
UTAG	. 20	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTRR	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTPF	. 05	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTEP	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTTL	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTHW	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTWS	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTSP	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTSW	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTRS	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UTOG	. 50	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
Uo	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UORC	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UOGC	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UOPK	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UOCM	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UORV	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UOUD	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
UOUN	. 90	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80	. 80
AC	. 90	. 41	. 44	. 63	. 67	. 64	. 69	. 72	. 71	. 72	. 86	. 74	. 64
ACSC	. 90	. 39	. 30	. 53	. 61	. 70	. 79	. 79	. 84	. 73	. 88	. 72	. 69
ACTC	. 85	. 44	. 71	. 82	. 78	. 53	. 49	. 57	. 44	. 71	. 82	. 78	. 53
ACRF	. 90	. 39	. 30	. 53	. 61	. 70	. 79	. 79	. 84	. 73	. 88	. 72	. 69
AP	. 90	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
APIM	. 90	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
APUN	. 90	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
AM	. 85	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55
AMCT	. 85	. 63	. 66	. 68	. 70	. 71	. 71	. 71	. 71	. 7	. 68	. 67	. 64
AMTF	. 85	. 27	. 42	. 58	. 70	. 78	. 81	. 77	. 71	. 63	. 54	. 43	. 3
AMSF	. 90	. 49	. 57	. 73	. 85	. 90	. 92	. 92	. 91	. 87	. 79	. 67	. 55

TABLE C-3. Crop Coefficients Used in ET Preprocessing (Continued)

Land Use	Covered $\%$											1	2	3

TABLE C-3. Crop Coefficients Used in ET Preprocessing (Continued)

Land Use	Covered $\%$										1	2	3

FIGURE C-5. Location of Public Water Supply Permits in Study Area

FIGURE C-6. Location of Public Water Supply Wells and Pumping Rates (Cubic Ft/day)

FIGURE C-7. Location of Non-Public Water Supply Wells and Pumping Rates (Cubic Ft/day)

FIGURE C-8. Cells Containing Wells injecting to the Surficial Aquifer System

TABLE C-5. Legend for Public and Non-Public Water Supply Spreadsheets
AN.ALL. $=$ Annual Permitted Allocation
ALL.UNT. = Annual Allocation Units
$01=\mathrm{MGD}$
$02=\mathrm{MGM}$
$03=\mathrm{MGY}$
04 = AC-FT
MAX DAY $=$ Maximum Daily Permitted Allocation
DAY UTS. $=$ Daily Allocation Units
MAXMO $=$ Maximum Monthly Permitted Allocation
$01=\mathrm{MGD}$
$02=\mathrm{MGM}$
$03=\mathrm{AC}-\mathrm{FT}$
$\mathrm{CO}=$ County Code (from permit number)
DATE ISS = Date Permit Issued (mo/yr)
USE TYPE $=A G, I N D, G L F, P W S, C O M, R E C$
SRC = Source (SW,GW, BOTH)
NO.WLS. = Number of ACTIVE permitted wells
SWPMPS = Number of Surface Water Pumps
AQ. = Aquifer
$01=$ Water Table
$02=$ Surficial (Semi-confined)
$03=$ Lower Tamiami
$04=$ Sandstone
$05=$ mid-Hawthorn
$06=$ lower Hawthorn
$07=$ Suwannee
$08=$ Floridan
$09=$ Biscayne
CROP TYPE = Blaney-Criddle Code
11 = Alfalfa
$12=$ Avacado
$13=$ Citrus
$14=$ Grapes
$15=$ Turf
$16=$ Suger Beet
$20=$ Pasture
$51=$ Dry Beans
$52=$ Green Beans
$53=$ Grain Corn
$54=$ Silage Corn
$55=$ Sweet Corn
$56=$ Melons
$57=$ Peas
$58=$ Potato
$59=$ Soybeans
$60=$ Tomato
$61=$ Small Vegetables
5 or $70=$ Nursery
RAINST $=$ Rain Station Code Number
$1=$ NAPLES
$2=$ FT. MYERS
$3=$ WEST PALM BEACH

TABLE C-5. Legend for Public and Non-Public Water Supply Spreadsheets (Continued)
$4=$ STUART
$5=$ FT. LAUDERDALE
$6=$ KISSIMMEE
$7=$ MELBOURNE
$8=$ ORLANDO
$9=$ TITUSVILLE
$10=$ FELLSMERE
$11=$ FT. PIERCE
$12=$ OKEECHOBEE
$13=$ AVON PARK
$14=$ MOORE HAVEN
$15=$ LABELLE
$16=$ BELLE GLADE
$17=$ LOXAHATCHEE
$18=$ JUPITER
$21=$ TAMIAMI 4
$22=$ HOMESTEAD
$23=$ POMPANO BEACH
$24=$ INDIANTOWN
$25=$ HYPOLUXO
$26=$ BIG CYPRESS
$27=$ EVERGLADES
$28=$ HIALEAH
$29=$ LAKE PLACID
$30=$ MERRIT ISLAND
$31=$ VERO BEACH

IRR ACRES = Number of irrigated acres
IRR EFF = Irrigation system efficiency
STS = Status
$01=$ Existing
$02=$ Proposed
$03=$ Stand By/Backup
$04=$ To Be Plugged
DPTH CODE = Datum for Elevations
$01=\mathrm{NGVD}$
$02=$ Land Surface
PMPINT = Depth to Pump Intake (Wells Only)
PUMP TYPE
$01=$ Centrifical (suction)
$02=$ Lift (turbine, jet, submersible)
$03=$ Unknown
PUMP CAP. = Capacity in GPM (SW \& GW Facilities)
$01=$ Unknown
MTR? = Is use Metered by Volume or Power
Consumption and Reported to the District?

$$
\begin{aligned}
& \mathrm{Y}=\mathrm{Yes} \\
& \mathrm{~N}=\mathrm{No}
\end{aligned}
$$

YPLNR $=$ North Planar Coordinate
XPLNR $=$ East Planar Coordinate
TABLE C－6．
Public Water Supply Spreadsheet

through 10／89
LINE 1 HEADINGS

SEMINOLE TRIBE OF FLORIDA O6 06－00001－W
756751
618409 THIS PROJECT IS NOT A PERMIT ；BUT RATHER A WORX PLAN 09
XPLNR YPLNR COMMENTS
$==================================$
SEMINOLE TR1BE OF FLORIDA
756751 618409 THIS PROJEC

3
1100 N
1200 N
800 N
ヨ 킁～～
资品品品
呂定思品
$9 \mathscr{N} N$
Б录资
－ 880

응잉
$\quad 173.74$
$0600001-16$
$0600001-17$
$0600001-19$
0600001
$\begin{array}{lllllll}\text { PERMIT FACILITY } & \text { WELL OPTH } & & \text { PMP PUMP PUMP } \\ \text { NUMBER } & \text { STS DIA．} & \text { CODE TD } \\ \text { NO } & \text { TD } \\ \text { INT TYPE CAP．}\end{array}$
LINE 2 HEADINGS

궁종옹
$\frac{\stackrel{9}{3}}{\frac{2}{2}}$
 708326 UTILITIES ON SEPTEMBER 13， 1974.
707978 ROYAL UTILITIES IN SEPTEMBER 1988.
告
옹
$\begin{array}{ll}747602 & 708623 \\ 747130 & 708326 \text { PERMIT \＃} 06-00003-W \text { WAS ORIGINALLY ISSUED TO UNIVERSITY } \\ 747375 & 707978 \text { REPTEMBER } 13,1974 . \text { IT WAS TRANSFERRED TO }\end{array}$
CITY OF NORTH LAUDERDALE 06 06－00004－W 09
$756069 \quad 685379$ THE ORIGINAL PERMIT WAS ISSUED TO THE CITY IN SEPTEMBER 1974. 755546684744 THE PERMIT WAS REISSUED IN MAY 1979 AND FEBRUARY 1984.
$\begin{array}{cccc}\text { CITY OF } & \text { HOLLYWOOD } & 06 \quad 06-00038-\mathrm{H} & 09\end{array}$

769771	
769776	610504 IN ACCORDANCE WITH THE LIMITING CONDITIONS OF THE PERMIT，
10645 tHE CITY IS ATTEMPTING TO SHIFT ITS PUMPAGE TO THE WEST IN	

769713610736 ORDER TO REDUCE THE POTENTIAL FOR SALINE WATER INTRUSION．
$\begin{array}{lll}769786 \\ 769770 & 610852 \\ 61111 & \text { PLIMCED ON STANDBY ONCE WELLS } 28 \text { AND } 29 \text { ARE IN } \\ \text { IN SERVICE．}\end{array}$

mg88

궁 \mathbb{O} 응

告
呂只管资
录

옹Nㅇ
ㄷNㅇㅇㅇㅇㅇㅇㅇㅇㅇㅈNㅇNㅇNㅇㅇㅇㅇㅇ

오오N

M

$\quad 1600.00$
$0600004-1$
$0600004-2$ 음

770667609427
770667609427 7exic
 $\begin{array}{ll}769697 & 612208 \\ 769746 & 611727\end{array}$ $769746 \quad 611727$ maze

 $712809 \quad 997892$ 767703
768673
60945448 $\begin{array}{ll}768673 & 608448 \\ 767970 & 608770\end{array}$

3
450 N
450 N
650 N
킁Nㅇ

 88888888888888

Mロ 2700090

$$
\begin{array}{ll}
\text { BROADVIEW PARK WATER COMPANY } 06 \\
7570 \angle 3 & 06-00043-\mathrm{W} \\
09
\end{array}
$$

 $\begin{array}{ll}3100.00 & 03 \\ 0600044-1 & 01 \\ 0600044-2 & 01 \\ 0600044-3 & 01 \\ 0600044-4 & 01 \\ 0600044-5 & 01 \\ 0600044-6 & 01 \\ 0600044-7 & 01 \\ 0600044-8 & 01 \\ 0600044-9 & 01 \\ 0600044-10 & 01 \\ 0600004-11 & 01 \\ 060044-12 & 02 \\ 0600044-13 & 02\end{array}$

g

06 06-00070-W

.

管	3	
$\frac{8}{6} 989.9$	$\stackrel{\sim}{0}$	
으으으으윳으으응	8	-
	$\bar{\square}$	-
-	in	88
-	\cdots	.

NㅓㅇNㅇㅇNㅇㅇㅁㅇㅈㅇㅈㅇㅇㅇㅇ 엉와웅여왕
88888888 年 8
Public Water Supply

 8888888888 ～8888888

 06000082－ 0600082 0600082 $0600082-$ 0600082 0600082－18 0600082－20
 694954 PERMIT $06-00100-W$ WAS ORIGINALLY ISSUED 1988 PERMIT 06－00100－W WAS ORIGINALLY ISSUED ON MARCH 10， 1987 WELLS 1 THROUGH 5 WERE INSTALLED PRIOR TO 19 WELLS 1 THROUGH 5 WERE INSTALLED PRIOR TO 1980.
THE X AND Y COORDINATES WERE TAKEN FROM PERMIT FILE． the x and r coordinates here taken from permit file．

 08888880
 $\quad 1300.00$
$0600100-1$
$0600100-2$
$0600100-3$
$0600100-4$
$0600100-5$
$0600100-6$
$0600100-7$

09
TOWN OF
791441
706948 PERMIT $06-00101-W$ WAS ORIGINALLY ISSUED IN MARCH， 1977. 791142706889 THE PERMIT WAS REISSUED IN 1980 AND IN 1981．THE PERMIT 790796707250 EXPIRED ON NOVEMBER 12，1986．THE TOWN HAS A RENEWAL 790618706669 APPLICATION IN HOUSE．

CORAL SPRINGS

$06 \quad 06-00102-W$

7
5
8
答
둥
gRN品品
동Nㅇㅁㅁ
88888
$-\infty \infty \underset{\sim}{\sim}$

产

8	\％
	－
	～
8	

0600101

0600102

TABLE C－6．
IHE APPLICANT RECEIVED APPROVAL FOR 4 ADDITIONAL WELLS AND ON January 9，1989，THE CITY OF PLANTATION
RECEIVED A PERMIT TO ABANDON ITS ORIGINAL 4 PRODUCTION WELLS．

BROWARD COUNTY CORRECTIONAL 06 O6－00104－W
690555
618368 THE PERMIT EXPIRED ON JULY $9,1986 . \quad$ THE FACILITY RECEIVES
690402
618453 DRINKING WATER FROM THE COUNTY．

g

m
要品品
\％8를

응

\qquad en
Be
공종ㅇ

등

0600112

$\frac{3}{2}$

品只员只员员品品促品

 88888888888889898898889888888888888888

 앙ㅇㅇㅇㅇㅇㅇㅇㅇ응

 TABLE C－6．Public Water Supply Spreadsheet（Continued）

옹

06－00129－W
 06

CITY OF LAUDERHILL $\begin{array}{ll}756639 & 661643 \\ 756489 & 661458\end{array}$ $\begin{array}{ll}756489 & 661458 \\ 756461 & 661832\end{array}$ 756627 756701509 661833 $\begin{array}{ll}756700 & 661833 \\ 756282 & 661428\end{array}$
 ∞ \cdots 0 0 0 0
 ～镸号号号号品品品

管

\＆ミニ出出に

88888888

M5
8
문Numon
 6210090

 m 688888888

$\begin{array}{ccc}\text { CITY OF PEMBROKE PINES } \\ 74700 & 612200 & \text { ON NOVEMBER } \\ 17,1977 \text {－THE APPLICANT RECEIVED A WATER USE }\end{array}$
REMIT WAS RENEWED IN 1981， 1987 and 1989. 8 are the primary wells．the other well WELL STANDBY．
 747700
74700

8

0600135

8

5Ñㅇ̃ㅇㅇ
mi88운

8

0600138

TABLE C－6．Public Water Supply Spreadsheet（Continued）

$\begin{array}{ll}777141 & 602866 \\ 777116 & 602689\end{array}$

 7764316044952A

9	BROWARO	COUNTY 2A 06	06－00142－W 09
600	792872	713259 the PERMITTED 13.31	mgd is a reduction from the previousty
2100	792714	713212 PERMITIED 15.07 MGD	UHICH WAS PERMITTED ON JUNE 12， 1986.
800	793774	713295 future plans includ	e joining the regional wellfield system．
3000	792220	713251	
1800	792770	712644	
2100	792478	712646	
4000	792134	712649	
3100	789828	712933	
2400	790750	712959	
2500	788267	714517	
2500	788252	715130	

 욱～～ 앙ㅇㅇㅡㅡㅡㅇ号

 テーッか

9
$\stackrel{\cong}{0}$
영́ㅇㅡㅡㄹ
$\mathfrak{\sim}$

$\begin{array}{cc}0600138-5 & 03 \\ 0600138-6 & 03 \\ 0600138-7 & 01 \\ 0600138-8 & 01 \\ 4860.00 & 03 \\ 0600142-1 & 01 \\ 0600142-2 & 01 \\ 0600142-3 & 01 \\ 0600142-4 & 01 \\ 0600142-5 & 01 \\ 0600142-6 & 01 \\ 0600142-7 & 01 \\ 0600142-8 & 01 \\ 0600142-9 & 01 \\ 0600142-10 & 02 \\ 0600142-11 & 02\end{array}$

0600145

售

 © 88888888888888

${ }_{0600146-1 \mathrm{~A}}{ }^{3310.00}$ $0600146-1 A$
$0600146-2 A$

 $0600146-7 \mathrm{~A}$
$0600146-8 \mathrm{~A}$

 $\stackrel{4}{2}$
～
응융
응응후운은
 용ㅇㅇㅇㅇㅇㅇㅇㅇ

8

table c-6.
Public Water Supply Spreadsheet (Continued)

$\begin{array}{lllllllllll}01 & 10.00 & 02 & 80 & 73 & 02 & 500 & \gamma & 755313 & 602182\end{array}$

8
TABLE C－7，Non－Public Water Supply Spreadsheet BROWARD COUNTY NON PWS WATER USE $=====================================$
THROUGH $11 / 89$

LINE 2 HEADINGS（FACILITIES INFORMATION FOR EACH PERMIT）
$\begin{array}{llrlllll}\text { PERMIT FACILITY } & \text { WELL } & \text { OPTH } & \text { PMP PUMP PUMP } \\ \text { NO．} & \text { NUMBER } & \text { STS DIA．CODE TD CD INT TYPE CAP．MTR？KPLNR YPLNR SRC }\end{array}$
 $\begin{array}{llll} & \text { CROPSOIL RAIN JRR } & \text { IRR } \\ \text { CO AO TYPETYPE SI } & \text { ACRES EFF }\end{array}$

DATE USE SRC．NO．SW SW OMPS OWNER MO．DATE USE SRC．NO． UTS．CO lSS．TYPE MAX
MO． ALL．
UNT．
 $\begin{array}{rlll}150 \mathrm{~N} & 759477 & 624101 & \text { SW THIS PROJECT IS NOT A PERMIT；BUT RAIHER A WORK PLAN } \\ 60 \mathrm{~N} & 759568 & 623865 \mathrm{GW} \text { BETWEEN THE DISTRICT AND THE SEMINDLE INDIAN TRIBE，}\end{array}$ NO ANNUAL ALLOCATION WAS GIVEN FOR THE AGRICULTURAL USE．THERE ARE OTHER TRIBE LOCATIONS WITHIN THE DISTRICT．HOWEVER，THIS DISCUSSION ONLY COVERS THE
HOLLYWOOD RESERVATION． WELLS 19 AND 20 ARE FOR SEMINOLE ESTATES AND
HOLLYWOOD MOBILE ESTATES，RESPECTIVELY． 5
0
0
9
0
0
0
8
9
9 MnNuvinvinvinumi－
 $\begin{array}{lllllll}\text { VALASSIS GOLF PROPERTIES INC．O6 OS } & 15 & 0.2 & 23 & 700.00 & 0.75 \\ 752867 & 702690 & \text { SW THE SOURCE OF SURFACE WATER IS AN ON－SITE LAKE．} \\ 752883 & 702601 & 5 W\end{array}$
$0609 \quad 15 \quad 0.4 \quad 23$ $33 \quad 662.00 \quad 0.75$ SURFACE WATER PUMP 4 HAS BEEN ABANDONED．
MOST OF THE WELL AND PUMP INFORMATION WAS MISSING ACCORDING TO THE PERMITTEE，THE WITHDRAWALS WILL bE部宿
 $z=$
080
呙呙 $2 x=2$
NGMM
 8
-8

4

$\stackrel{N}{2}$
8998888888888888
 응ㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇㅇ은 －

0600001

N
Nog

$0600021 \quad 125.4003$

M 음
$0600024 \quad 778.74$

AN．

PERMI T
NO．
NO．
Non－Public Water Supply Spreadsheet（Continued）
goually distriguted between the biscayne aquifer， ON－SITE LAKES，AND CANAL C－14．THE INFORMATION
GIVEN HERE IS BASED ON THE 1987 PERMIT．

 770723
773275
688089
N
$769216 \quad 684857$ SW
7692256847458
$769102 \quad 686620 \mathrm{SW}$
HJVヨ8 ONVdWOd to RLIJ 0

s．

$6 W$
03
03
03
03
4／15 GLF
Nㅗㅇ
g왕ㅇㅇㅇ
$\begin{array}{lllll}600 \mathrm{~N} & 793419 & 699312 \mathrm{GW} & \text { THE PERMITTEE TO UTILILE WASTE WATER FOR GOLF } \\ 600 \mathrm{~N} & 793915 & 698843 \mathrm{GW} & \text { COURSE IRRIGATION．}\end{array}$
$80.00 \quad 0.75$
뽁

$$
3.6 \quad 5
$$

$$
\begin{aligned}
& \text { ND PUMP TYPE } \\
& \text { HAS A ARE UNKNOWN. } \\
& \begin{array}{lllll}
060 & \text { GPM } & \\
\text { JOCKEY PUMP. }
\end{array}
\end{aligned}
$$

$$
36 \quad 09 \quad 15
$$

3 CITY OF PEMBROKE PINES 06 $\begin{array}{llll}735712 & 613714 & \text { SW THE DIAMETERS AND PUMP } \\ 735712 & 613714 & \text { SW APPLICANT ALSO HAS A } 200\end{array}$
o deerfielo country club $\begin{array}{ll}790344 & 724733 \mathrm{GW} \\ 790929 & 722887 \mathrm{GW}\end{array}$
$\begin{array}{ll}799929 & 722887 \mathrm{GW} \\ 790282 & 722680 \mathrm{GW}\end{array}$
$\begin{array}{lll}790282 & 722680 \text { GW } \\ 789752 & 724368 \text { GW }\end{array}$

179

응응으응
5～～告贸～
88888
$-\infty \infty^{0} \infty$
TABLE C－7． 0600024－7 $\begin{array}{ll}06000024-8 & 01 \\ 0600024-11 & 01 \\ 0600024-1 & 01\end{array}$ 0600024－2 01 0600024－3 0600024－9A1 0600024－9A2 $0600024-$ 0600024－10 01

0600025

$0600026 \quad 51.1303$

01
01 $0600034 \quad 73.7603$

060005272.3403

－ 0800
馬 5
4
岕

$5 \quad 280.000 .75$

중Nㅇㅇㅁㅇㅇㅇㅇ
品号品品品

NㅗㅇNㅇㅇㅇㅇㅇ
我呙

97°
 06000055－4
$0600056 \quad 335.26$
TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

 NORTH FORK OF THE NEW RIVER CANAL．THE CITY WILL EVENTUALLY USE CITY WATER TO IRRIGATE these areas． therefore，the potential for saline water intrusion WILL be reduced．well 15 has been included in

 28E259 918592
657175
今
6802559
527559
765836
765821
775296
780761
775350
只会
哭哭
No
號
会角

会先采
絃
N
菏资
资

No
으N
No
号

0888
080 been renewed．

$$
\begin{array}{llll}
06 & 09 & 15 & 0.2
\end{array} 23
$$

$23 \quad 26.00 \quad 0.50$
STOCK In CONTAINERS．
15,1989 AND HAS NOT
$\begin{array}{llllllll}\text { DISTRICT } & 06 & 09 & 15 & 0.4 & 5 & 100.00 & 0.75 \\ \text { THE SURFACE } \\ \text { WATER SOURCE } & \text { IS AN } & \text { ON－SITE } & \\ \text { LAKE．}\end{array}$

\sim

4

8
NㅡㅁNㅇㅇㅇ す88888 ＠ommiv

N

0600130
TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

$$
\begin{array}{ll}
16 & \text { BOTH } \\
01 \\
01 \\
03
\end{array}
$$

AG BOTH

$$
1
$$

$$
18 \text { University of florida }
$$

$$
\begin{array}{lll}
749575 & 639171 & \mathrm{SW} \\
749951 & 636428 & \mathrm{SW} \\
749954 & 637343 & \mathrm{sW}
\end{array}
$$

$$
\begin{array}{rrrr}
300 \mathrm{~N} & 749575 & 639171 \mathrm{SW} \\
0 \mathrm{~N} & 749951 & 636428 & \mathrm{SW}
\end{array}
$$

SYSTEM.

THE SURFACE WAT $693399 \quad 632442$ GH $\begin{array}{lll}693398 & 632265 & \text { GW }\end{array}$

$$
\begin{array}{lll}
748564 & 636671 & \mathrm{GW} \\
748584 & 636763 & \mathrm{SW}
\end{array}
$$

$$
\begin{array}{cccc}
\mathrm{N} & 749607 & 636573 & \mathrm{SW} \\
\mathrm{~N} & 748564 & 636671 & \mathrm{GW} \\
\mathrm{~N} & 748584 & 636763 & \mathrm{SW} \\
\mathrm{~N} & 78653 & 636842 & \mathrm{SW} \\
\mathrm{~N} & 748653 & 636842 & \mathrm{SW} \\
\mathrm{~N}
\end{array}
$$

$\begin{array}{rrrrrrrr}0 & 2 \text { broken woods country club } & 0609 & 15 & 0.2 & 23 & 45.00 & 0.75 \\ 275 & 747196 & 706147 & \text { SW } & \text { THE SURFACE WATER SOURCES ARE ON-SITE LAKES ANO CANALS. }\end{array}$

 FACILITY \# 1 IS A WELl: FACILITY \# 2 IS A PUMP.
THIS PERMIT EXPIRED ON $6-1-89$. PRESENT TIME.

$$
\begin{array}{lll}
749607 & 636573 & \mathrm{SW} \\
748564 & 636671 & \mathrm{GW} \\
748584 & 636763 & \mathrm{SW}
\end{array}
$$

$$
\begin{array}{lll}
748584 & 636763 & \mathrm{SW} \\
748653 & 636842 & \mathrm{SW}
\end{array}
$$

$$
\begin{array}{lll}
747196 & 706147 & \mathrm{SW} \\
748092 & 707125 & \mathrm{SW}
\end{array}
$$

3 BROWARD COUNTY PARKS ANO RECREATION $0609 \quad 15 \quad 0.4 \begin{array}{llllll} & 15 & 113.60 & 0.75\end{array}$ THE SURFACE WATER SOURCE IS AN ON-SIt
THE PERMITIEE HAS A MODIFICATION IN HOUSE AT the

RED SPEAR INC
772927
774897
706835
708041
SW

$$
\begin{aligned}
& \text { THE ALLOCATION FOR THE FIS } \\
& \text { EVAPOTRANSPIRATION RATES. }
\end{aligned}
$$

듬ㄷㅇㅇㅇ응
MS I

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued) Non-Public
 $\begin{array}{ll}740993 & 607825 \\ 741324 & 606153 \\ 740134 & 65620\end{array}$ $\begin{array}{ll}740134 \\ 739409 & 605495\end{array}$

739449	
739428	605085

TABLE C－7．Non－Public Water Supply Spreadsheet（Continued）

$\begin{array}{ll}762211 & 629364 \\ 762698 & 61052 \\ \text { SW }\end{array}$
 N ${ }^{120}$ iciac sing $\begin{array}{ll}762924 & 631019 \text { SW } \\ 763073 & 631487 \text { SW }\end{array}$ 762866631334 SW 58000 ， 02 02
02
02
02
02
02
02
02 $20.0002 \quad 55 \quad 55-23$ 20．00
7.13
12.88
7.13
12.88

600
3000
58000 $7.13 \longrightarrow 02$ 01
01
01
01
01
01
01
01 4 A
4 B
4 A 1
5 A
5 B
5
5
5 A 1管号号 $060050303-4$ $0600553-$ 06000503－5 0600503－5 2 FWCD INC．

721210607079 SH THE SURFACE WATER SOURCE IS THE ON－SITE LAKE SYSTEM．
7241336059011 SW 6 FWDC INC．
720862605562 SW 72086260502 SW 722469
723849
604500
SW

12.1302	06	$2 / 89$	GLF SH	
4.0001			-3	02
4.00	01			

－出 $\begin{array}{rr}58.34 & 03 \\ 0600515-1 & 01 \\ 060515-2 & 01\end{array}$
0600515
$\begin{array}{llllll} & 06 & 09 & 15 & 3.6 & 5\end{array} 91.28 \quad 0.75$
 0 os

Na
in
in

？

TABLE C－7．Non－Public Water Supply Spreadsheet（Continued）

\section*{$5 L^{\circ} 0000^{\circ} 58$
 | W3ISAS $3 X 甘$ |
| :---: |
| $00-58$ |
 $\Sigma \Sigma$
 NO HH
 Sl 6090
 the－surface water source}

～O
종ㄷㅇ
IND
冬留MMM
$\begin{array}{llllll}15.23 & 02 & 06 & 8 / 89 & A G\end{array}$
3.00
4.00
3.00
3.00
3.00

ㄷ

0.3501 03
01
01
01
01
01

M
03
01
01
$0600786 \quad 118.0003$
this permit is for industrial hater use，hydrocarbon recovery． planar coordinates were given

0 AMERICAN V．MUELLER

0600744
0600763

0609
THIS IS AN INDUSTRIAL hater uSE PERMIT FOR a CONTAMINATION CLEANUP． AFTER PASSIng throug into a french drain． 674629 GW
674129 GW 674129 GW
673952 GW 673952 GW
773183

$$
11.98 \quad 0.75
$$

2 BROWARD COUNTY WRMD 06
$\begin{array}{ccc}0 & 2 \text { BROWARD COUNTY WRMD } \\ 6750 & Y & 782807 \\ 725535 & \text { SW }\end{array}$

[^0]55
02
4／89 AG SW

$$
\begin{aligned}
& 0.8602 \\
& 2.00
\end{aligned}
$$

$$
\begin{array}{lrr}
06 & 3 / 87 & \text { REC } \\
& & \text { SW } \\
4 & 03
\end{array}
$$

$$
\begin{aligned}
& \text { PARKWOOD HOME OWNERS ASSOC. } 0609 \text { is } 0.2 \text { 5 } 15 \text { 11.9 } \\
& 737365 \text { } 672762 \text { SW THE SURFACE HATER SOURCE IS AN ON SITE LAKE. }
\end{aligned}
$$

$$
\overline{0}
$$

$0600814 \quad \begin{aligned} & 10.3703 \\ & 0600814-1\end{aligned}$
$0600786-2$
$0600786-3$

$$
001
$$

Non－Public Water Supply Spreadsheet（Continued）

888888888
888888888
888888888

TABLE C－7．Non－Public Water Supply Spreadsheet（Continued） $0600914 \quad 13.4103 \quad 2.1202 \quad 06 \quad 4 / 88$ AG SW $\quad 0 \quad 1$ ALFRED L．SIMPSON $0600914-1 \quad 02$ $0600915 \quad 183.9603$
sw

$$
\begin{aligned}
& 5 W \\
& 02
\end{aligned}
$$

$$
\begin{array}{r}
0609 \\
\text { ISTRIA: }
\end{array}
$$

$00-75$

$$
0 \text { RICK CASE ACURA }
$$

录志

$\begin{array}{lllllll}1 & \text { STAR OF DAVID MEMORIAL GARDENS } & 06 & 09 & 15 & 0.2 & 23 \\ 755352 & 681890 & \text { SW } & \text { THE SURFACE WATER SOURCE } & \text { IS AN ON－SITE POND．}\end{array}$ the same The surface waier source is the an on－site lake．
ONLY pump station \＃ 4 IS covered under the permi

$$
\begin{gathered}
\text { O6 } \\
\text { This is a dewatering operation. }
\end{gathered}
$$ ACCORDING TO DISTRICT POLICY，NURSERY STOCK RECEIVES

SUPPLEMENTAL CROP REOUIREMENT AS GRASS． $\begin{array}{llll}225 & 717247 & 655291 & \text { SW } \\ 225 & 717270 & 655170 & \text { SW ONLY PUMP STATION \＃} 4 \text { IS COVERED UNDER THE PERMIT．}\end{array}$

3
200
50
100
WINSTON PARK，LTD
1 WINSTON PARK，
600
GW
01
01
01

$$
03
$$

$$
\begin{array}{r}
3 \\
1000
\end{array}
$$

$\begin{array}{cccccccc}0 \text { NATIONAL } & \text { NURSERIES LIMITED } & 06 & 09 & 15 & 0.4 & 5 & 20.00 \\ 732706 & 624142 \mathrm{GW} & \text { THE ACTUAL CROP TYPE } 15 & 0.20 \\ \text { NURSERY STOCK，POTTED FOLIAGE PLANTS．}\end{array}$
6 BROWARD COUNTY（C．B．SMITH PARK） $060915 \quad 3.6$ 5 160.000 .75
2 ShELL OIL COMPANY $0609 \quad 15 \quad 0.2 \quad 5 \quad 24.000 .7$
㡡
OW
01
01
01
SW
01
01

$$
\begin{array}{ll}
724943 & 610108 \\
724997 & 610198 \\
725074 & 610108 \mathrm{SW}
\end{array}
$$

$\begin{array}{lll}725074 & 610108 & \text { SW } \\ 723681 & 611001 & \text { SW }\end{array}$
$\begin{array}{ll}723681 & 611004 \\ 724499 & 610954 \\ 724568 & 611097 \\ \mathrm{SW}\end{array}$
500 － 7 TIVOLI

$\begin{array}{crrrl}0 & 1 & \text { BROWARD COUNTY PARKS \＆RECREATION O6 } \\ 10000 \text { Y } & 765796 & 690037 \text { SW FACILITY．} \# 2 \text { IS A CULVERT．} \\ 0 & 765946 & 689050\end{array}$
1 canal． PUE SURFA 4 IS AN EMERGENCY FIRE PUMP．IT IS ONLY USED IN THE
EVENT OF A FIRE OR INSUFICIENT SUPPLY OF POTABLE WATER．

공 장 옹
공․․
$9_{2}^{7}-7$
등

9
$\stackrel{2}{2}$

8
N
N N N N N N N Nㅇㅇ
$\begin{array}{cccc}0.81 & 02 & 06 & 9 / 88\end{array}$ AG
4.7202
7.50
7.50
$\stackrel{\text { 은 }}{\text { N }}$

$\begin{array}{cccc}0.81 & 02 & 06 & 9 / 88\end{array} \quad$ AG
3 옹

555555

0600950 ${ }_{0600950-1}^{102.26}$
0600949
$\begin{array}{rr}30.60 & 03 \\ 0600949-1 & 02 \\ 0600949-2 & 02\end{array}$
$0600921 \begin{array}{r}31.3503 \\ 0600921-1\end{array}$
$0600937 \begin{array}{rr}531.00 & 03 \\ 0600937-1 & 01\end{array}$
$0600945 \begin{array}{rr}89.80 & 03 \\ 0600945-1 & 01\end{array}$
$\begin{array}{ll}89.80 \\ 0600945-1 & 01 \\ 0600945-2 & 01\end{array}$
$0600945-2$
$0600945-3$
．
$\begin{array}{rr}43.45 & 03 \\ 0600954-1 & 01 \\ 0600954-2 & 01\end{array}$
$\begin{array}{rr}1830.00 & 03 \\ 0600960-1 & 01\end{array}$
0600954
0600951
Non－Public Water Supply Spreadsheet（Continued）
 OEDC ASSOCIATES，LTD．$\quad 0609 \quad 15 \quad 0.4 \quad 5 \quad 13.00 \quad 0.75$ － 1 ？
공 4 nososy corporation
$\begin{array}{llllll}09 & 15 & 3.6 & 5 & 25.60 & 0.75 \\ 09 & 15 & 3.6 & 5 & 6.40 & 0.20 \\ \text { SOURCES ARE ON－SITE PONOS．}\end{array}$ 06
0
THE PLANAR COORD INALES WERE GIVEN IN THE STAFF REPORT．
THE PERMITEE OWNS A NURERE AND GROWS ORNAMENTAL PLANTS．

귿ㅎ
ジロがあ
$\begin{array}{lll}2.46 & 02 & 100 \\ 4.00 & 02 & 100\end{array}$
$6.6002 \quad 06$ 4／89 AG

$200 \quad 708026 \quad 634628$ sW

APPENDIX D

CALIBRATION STEADY STATE WATER LEVELS, HORIZONTAL AND VERTICAL FLOW

LIST OF FIGURES - APPENDIX D

Figure Page
D-1. Calibrated Steady State Water Levels (Ft) in Layer 1 141
D-2. Difference Between Steady State Observed and Computed Water Levels (Ft) in Layer 1 142
D-3. Transient Simulated Water Levels (Ft) for January 1989, Layer 1 143
D-4. Transient Simulated Water Levels (Ft) for September 1989, Layer 1 144
D-5. Horizontal Flow in Layer 1 145
D-6. Horizontal Flow in Layer 2 146
D-7. Horizontal Flow in Layer 3 147
D-8. Horizontal Flow in Layer 4 148
D-9. Horizontal Flow in Layer 5 149
D-10. Vertical Flow in Layer 1 150
D-11. Vertical Flow in Layer 2 151
D-12. Vertical Flow in Layer 3 152
D-13. Vertical Flow in Layer 4 153

FIGURE D-1. Calibrated Steady State Water Levels (Ft) in Layer 1

FIGURE D-2. $\begin{aligned} & \text { Difference Between Steady State Observed and Computed Water } \\ & \text { Levels }(\mathrm{Ft}) \text { in Layer } 1\end{aligned}$

FIGURE D-3. Transient Simulated Water Levels (Ft) for January 1989, Layer 1

FIGURE D-4. Transient Simulated Water Levels (Ft) for September 1989, Layer 1

FIGURE D-5. Horizontal Flow in Layer 1

FIGURE D-6. Horizontal Flow in Layer 2

FIGURE D-7. Horizontal Flow in Layer 3

FIGURE D-8. Horizontal Flow in Layer 4

FIGURE D-9. Horizontal Flow in Layer 5

FIGURE D-10. Vertical Flow in Layer 1

FIGURE D-11. Vertical Flow in Layer 2

FIGURE D-12. Vertical Flow in Layer 3

FIGURE D-13. Vertical Flow in Layer 4

APPENDIX E

CALIBRATION HYDROGRAPHS

LIST OF FIGURES - APPENDIX E

Figure Page
E-1. Observation Wells Used in Model Calibration 158
E-2 Calibration Hydrographs 159

FIGURE E-1. Observation Wells Used in Model Calibration

Figure E-2. Calibration Hydrographs
For each observation well, two graphs are shown. The first graph shows head values in feet for referenced and calculated values in the applicable cell. The second graph plots the difference between the two. The solid parallel lines seen in the first graph represent $+/$ - one standard deviation taken over all historical water level records available for that station. The dashed lines represent $+/$ one standard deviation taken over historical records available for the particular month for that station.
 Layer 3 Row 11 Column 126 Hist.Std.Dev. O.5 NOTE: Observed * Calculated x

 Extreme Errors [$-1.5,2.3]$ Averoge Absolute Error 1.01 Standard Error :. 21
 Layer 4 Row 80 Column 104 Hist.Std.Dev. 0.7 NOTE: Observed * Colçulated \times

Extreme Errors [$-2.5,0.1$] Averoge Absolute Error 0.48 Stondard Error 0.67

DIFFERENCE PLOT

 DIFFERENCE PLOT
 Extreme Errors [-2.1, -0.6] Average Absolute Error 1.35 Standord Error 0.45
 Loyer 5 Row 13 Column 124 Hist.Std.Dev. 0.6 NOTE: Observed * Calculoted x

Extreme Errors [- 0.5, 1.0] Average Absolute Error 0.53 Standard Error 0.42
 Loyer 5 Row 13 Column 125 Hist.Std.Dev. 0.6 NOTE: Observed * Calculated x

DIFFERENCE PLOT

 Loyer 5 Row 17 Colurnn 111 Hist.Std.Dev. 0.4 NOTE: Observed * Calculoted x

Extreme Errors [- $1.3,0.3]$ Average Absolute Error 0.47 Standord Error 0.52

DIFFERENCE PLOT

Loyer 2 Row 24 Column 93 Hist.Std.Dev. 0.3 NOTE: Observed * Calculated \times

DIFFERENCE PLOT

DIFFERENCE PLOT

 Layer 1 Row 32 Column 120 Hist.Std.Dev. 0.3 NOTE: Observed * Caiculated x

 Loyer 3 Row 34 Column 114 Hist.Std.Dev. 0.7 NOTE: Observed * Calculated x

 Layer 3 Row 42 Column 101 Hist.Std.Dev. 0.9 NOTE: Observed * Colculated x

Extreme Errors [-3.0, -0.3] Averoge Absolute Error 1.78 Stondord Error 0.82

DIFFERENCE PLOT

DIFFERENCE PLOT

DIFFERENCE PLOT

 Extreme Errors $\left[\begin{array}{ll}-2.2, & 0.0\end{array}\right]$ Average Absolute Error 0.45 Stondord Error 0.59

REFERENCED AND CALCULATED NODE HEADS 1989, Station G-2034.
 Layer 2 Row 72 Column 29 Hist.Std.Dev. 0.8 NOTE: Observed * Calculoted x

Extreme Errors [$-1.3,1.0$] Average Absolute Error 0.74 Standard Error 0.78
 Loyer 1 Row 75 Column 95 Hist.Std.Dev. 0.3 NOTE: Observed * Colculated x
 Extreme Errors [- 1.2, 0.0] Averoge Absolute Error 0.87 Stondord Error 0.20

 Extreme Errors [-0.7, 0.8] Average Absolute Error 0.28 Standard Error 0.52

APPENDIX F

SENSITIVITY DATA

Parameter Change: Hydraulic Conductivity $/ 2$ Layer(s): 1 \& 2 Base Case Compared To: Steady State 1989 Dry/mound cells: none

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)

lay numup numdw numt 1 upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	3006	5774	8780	0.02	-0.02	-0.01	0.04	0.04	0.04	0.29	-0.58
2	2791	5989	8780	0.02	-0.02	-0.01	0.04	0.03	0.04	0.29	-0.39
3	2624	6156	8780	0.02	-0.01	-0.01	0.04	0.03	0.04	0.29	-0.27
4	2641	6139	8780	0.02	-0.01	-0.01	0.04	0.03	0.04	0.29	-0.27
5	2694	6086	8780	0.02	-0.01	-0.01	0.04	0.03	0.04	0.29	-0.26

1ay............................. 1 ayer
numup............................
numdw.........................number of cells with decrease in head etevation
numtl........................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean........................average decrease in head elevation
tlmean.......................average change in head elevation
upstd......................standard deviation for upward changes in elevation
dwstd........................standard deviation for downward changes in elevation
tlstd.......................standard deviation for changes in elevation maxlev........................maximum increase in head elevation occurring minlev...............................

Volumetric Changes from Base Case

	IN	OUT
Storage	N/A	N/A
River Leakage	-1%	-1%
Head Dep Bounds	-1%	-1%
Drains	N/A	-1%
ET	N/A	$+1 \%$
Total	-1%	-1%

Parameter Change: Hydraulic Conductivity * 2
Layer(s): 1 \& 2
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	5840	2940	8780	0.03	-0.02	0.01	0.06	0.05	0.06	1.00	-0.28
2	5943	2837	8780	0.03	-0.02	0.01	0.06	0.05	0.06	0.62	-0.28
3	6017	2763	8780	0.02	-0.02	0.01	0.05	0.05	0.05	0.45	-0.28
4	6052	2728	8780	0.02	-0.02	0.01	0.05	0.05	0.05	0.45	-0.28
5	6054	2726	8780	0.02	-0.02	0.01	0.05	0.05	0.05	0.45	-0.28

numup.............................
numdw.........................number of cells with decrease in head elevation
numtl.......................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
t1mean........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation tlstd........................standard deviation for changes in elevation maxlev........................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	IN	OUT
Storage	N/A	N/A
River Leakage	$+2 \%$	$+3 \%$
Head Dep Bounds	+2\%	$+2 \%$
Drains	N/A	$+3 \%$
ET	N/A	-1%
Total	$+2 \%$	$+2 \%$

Parameter Change: Transmissivity / 2
Layer(s): 3 \& 4
Base Case Compared To: Steady State 1989
Dry/mound cells: lay col row reference value nalue

1	86	42	-6.9265	$0.10000 \mathrm{E}+31$
1	87	41	-7.5741	$0.10000 \mathrm{E}+31$
1	87	42	-10.757	$0.10000 \mathrm{E}+31$
1	88	41	-8.3746	$0.10000 \mathrm{E}+31$
1	88	42	-12.600	$0.10000 \mathrm{E}+31$
1	89	42	-10.173	$0.10000 \mathrm{E}+31$
1	115	24	-2.6863	$0.10000 \mathrm{E}+31$
1	115	25	-2.1649	$0.10000 \mathrm{E}+31$
1	116	23	-2.6972	$0.10000 \mathrm{E}+31$
1	116	24	-4.0743	$0.10000 \mathrm{E}+31$
1	116	25	-3.1083	$0.10000 \mathrm{E}+31$
1	117	23	-3.3227	$0.10000 \mathrm{E}+31$
1	117	24	-4.8886	$0.10000 \mathrm{E}+31$
1	117	25	-4.0265	$0.10000 \mathrm{E}+31$
1	118	24	-5.3707	$0.10000 \mathrm{E}+31$
1	118	25	-4.9876	$0.10000 \mathrm{E}+31$
1	119	24	-5.2041	$0.10000 \mathrm{E}+31$
1	119	25	-4.9617	$0.10000 \mathrm{E}+31$

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxiev minlev

1	3539	5223	8762	0.07	-0.30	-0.15	0.10	0.63	0.52	0.68	-8.39
2	3484	5296	8780	0.09	-0.33	-0.16	0.12	0.77	0.64	0.70	-13.89
3	3589	5191	8780	0.10	-0.35	-0.17	0.13	0.78	0.64	0.83	-13.93
4	3585	5195	8780	0.10	-0.35	-0.17	0.13	0.78	0.64	0.83	-13.92
5	3678	5102	8780	0.09	-0.35	-0.17	0.13	0.78	0.64	0.83	-13.42

lay 1 ayer
numup..............................
numdw.......................... number of cells with decrease in head elevation
numtl.......................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean........................average decrease in head elevation
tlmean.......................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation
tlstd......................standard deviation for changes in elevation
maxlev......................maximum increase in head elevation occurring
minlev.......................maximum decrease in head elevation occurring

Parameter Change: Transmissivity * 2
Layer(s): 3 \& 4
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	5499	3281	8780	0.25	-0.09	0.12	0.46	0.15	0.41	7.76	-0.92
2	5443	3337	8780	0.26	-0.11	0.12	0.47	0.17	0.43	7.70	-0.93
3	5526	3254	8780	0.27	-0.12	0.12	0.48	0.19	0.44	7.72	-1.08
4	5530	3250	8780	0.27	-0.12	0.13	0.48	0.19	0.44	7.72	-1.08
5	5483	3297	8780	0.27	-0.12	0.12	0.48	0.19	0.44	7.46	-1.08

lay.............................. 1 layer
numup.........................number of cells with increase in head elevation numdw..........................number of cells with decrease in head elevation numt 1........................total number of cells experiencing change in head upmean.........................average increase in head elevation dwmean........................average decrease in head elevation t]mean...........................average change in head elevation upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in eTevation tlstd.......................standard deviation for changes in elevation
 minlev.........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	$-\ldots$ -	
	IN	OUT
Storage	N/A	$+19 \%$
River Leakage	$+3 \%$	$+76 \%$
Head Dep Bounds	$+55 \%$	$+47 \%$
Drains	N/A	$+8 \%$
ET	N/A	$+24 \%$

Parameter Change: Transmissivity / 2
Layer(s): 5
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	3460	5320	8780	0.01	-0.01	0.00	0.04	0.04	0.04	0.27	-0.37
2	3419	5361	8780	0.01	-0.01	0.00	0.04	0.04	0.04	0.27	-0.37
3	3527	5253	8780	0.02	-0.01	0.00	0.04	0.04	0.04	0.28	-0.47
4	3536	5244	8780	0.02	-0.01	0.00	0.04	0.04	0.04	0.28	-0.47
5	3686	5094	8780	0.02	-0.02	0.00	0.04	0.04	0.04	0.36	-0.65

1ay................................. 1 ayer
numup.................................
numdw.........................number of cells with decrease in head elevation
numtl.........................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean......................average decrease in head elevation
tlmean.......................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev......................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

Parameter Change: Transmissivity * 2
Layer(s): 5
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev mintev

1	5144	3636	8780	0.02	-0.02	0.01	0.06	0.04	0.06	0.61	-0.32
2	5068	3712	8780	0.02	-0.02	0.01	0.06	0.04	0.06	0.60	-0.32
3	5147	3633	8780	0.03	-0.02	0.01	0.06	0.05	0.06	0.72	-0.34
4	5163	3617	8780	0.03	-0.02	0.01	0.06	0.05	0.06	0.73	-0.34
5	5075	3705	8780	0.03	-0.02	0.01	0.07	0.05	0.07	0.99	-0.56

1 1ay 1 ayer
 numdw.......................... number of cells with decrease in head elevation numtl..........................total number of cells experiencing change in head upmean........................average increase in head elevation dwmean.......................average decrease in head elevation tlmean.......................average change in head elevation upstd........................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd........................standard deviation for changes in etevation maxlev.........................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

Parameter Change: River and Drain Conductances / 2
Layer(s): l
Base Case Compared To: Steady State 1989 Dry/mound cells: None

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numt $\begin{aligned} & \text { upmean dwmean tlmean } u p s t d \text { dwstd tistd maxiev minlev }\end{aligned}$

1	4041	4739	8780	0.15	-0.22	-0.05	0.14	0.23	0.27	1.09	-2.27
2	3960	4820	8780	0.15	-0.21	-0.05	0.13	0.22	0.25	0.70	-1.58
3	3941	4839	8780	0.14	-0.20	-0.05	0.13	0.21	0.25	0.64	-1.17
4	3941	4839	8780	0.14	-0.20	-0.05	0.13	0.21	0.25	0.64	-1.17
5	3959	4821	8780	0.14	-0.20	-0.05	0.13	0.21	0.25	0.64	-1.14

1 ay layer
numup................................. numdw..........................number of cells with decrease in head elevation numtl........................total number of cells experiencing change in head upmean......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	
	N/A	$\frac{\text { OUT }}{}$
Storage	-23%	
River Leakage	-32%	
Head Dep Bounds	-14%	-4%
Drains	N/A	$+2 \%$
ET	N/A	$+10 \%$
Total	-14%	-14%

Parameter Change: River and Drain Conductances * 2
Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	4593	4187	8780	0.14	-0.11	0.02	0.17	0.12	0.20	2.12	-1.61
2	4627	4153	8780	0.14	-0.10	0.02	0.15	0.10	0.17	1.39	-0.63
3	4698	4082	8780	0.13	-0.10	0.02	0.14	0.10	0.17	0.92	-0.59
4	4715	4065	8780	0.13	-0.10	0.02	0.13	0.10	0.17	0.92	-0.59
5	4741	4039	8780	0.13	-0.10	0.02	0.13	0.10	0.16	0.90	-0.59

1ay.............................. 1 ayer
numup............................

numtl.........................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean.......................average change in head elevation
upstd........................standard deviation for upward changes in elevation
dwstd.......................standard deviation for downward changes in elevation
tlstd.......................standard deviation for changes in elevation
maxlev........................maximum increase in head elevation occurring
minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	QUT
Storage	N/A	N/A
River Leakage	+33\%	+43\%
Head Dep Bounds	+19\%	+6\%
Drains	N/A	+19\%
ET	N/A	-6\%
Total	+20\%	+20\%

Parameter Change: River and Drain Conductances / 10 Layer(s): I
Base Case Compared To: Steady State 1989
Dry/mound cells: lay col row reference value nalue

1	87	42	-10.757	$0.10000 \mathrm{E}+31$
1	88	42	-12.600	$0.10000 \mathrm{E}+31$
1	89	42	-10.173	$0.10000 \mathrm{E}+31$
1	116	24	-4.0743	$0.10000 \mathrm{E}+31$

Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	3840	4936	8776	0.63	-1.21	-0.41	0.53	1.26	1.36	3.42	-7.82
2	3761	5019	8780	0.61	-1.17	-0.41	0.51	1.22	1.32	2.52	-6.09
3	3766	5014	8780	0.60	-1.16	-0.41	0.51	1.19	1.30	2.35	-5.02
4	3764	5016	8780	0.60	-1.16	-0.41	0.51	1.19	1.30	2.35	-5.00
5	3772	5008	8780	0.60	-1.16	-0.41	0.51	1.19	1.29	2.34	-4.92

1 ay . 1 ayer
numup.......................... numdw.........................number of cells with decrease in head elevation numt 7. ...total number of cells experiencing change in head upmean.......................average increase in head elevation dwmean.......................average decrease in head elevation tlmean.......................average change in head elevation upstd........................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev.........................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

Storage
River Leakage
Head Dep Bounds
Drains
ET
Total N/A
-34\%

- 56%
-33\%

OUT

IN	\quad OUT
N/A	

-77\%
-8\%
-53\%
$+52$
-34\%

Parameter Change: River and Drain Conductances * 10 Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	4468	4312	8780	0.32	-0.26	0.04	0.39	0.36	0.48	5.59	-5.96
2	4540	4240	8780	0.30	-0.22	0.05	0.33	0.25	0.39	3.54	-1.82
3	4612	4168	8780	0.28	-0.21	0.05	0.30	0.24	0.37	2.23	-1.78
4	4638	4142	8780	0.28	-0.21	0.05	0.30	0.24	0.37	2.23	-1.78
5	4652	4128	8780	0.28	-0.21	0.05	0.30	0.24	0.37	2.19	-1.77

numup........................number of cells with increase in head elevation
numdw..............................
numtl......................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean........................average decrease in head elevation
tlmean........................average change in head elevation
upstd.....................standard deviation for upward changes in elevation
dwstd........................standard deviation for downward changes in elevation
tlstd........................standard deviation for changes in elevation
maxtev.......................maximum increase in head elevation occurring
minlev.......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case		
	IN		
	Ntorage	N/A	OUT
River Leakage	$+209 \%$	N/A	
Head Dep Bounds	$+86 \%$	$+232 \%$	
Drains	N/A	$+33 \%$	
ET	N/A	$+130 \%$	
Total	$+110 \%$	-8%	
		$+110 \%$	

Parameter Change: VCONT / 2
Layer(s): 1 \& 2
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxiev minlev

1	4118	4662	8780	0.05	-0.15	-0.06	0.06	0.20	0.18	0.96	-1.52
2	3506	5274	8780	0.04	-0.17	-0.09	0.04	0.21	0.19	0.27	-1.10
3	3357	5423	8780	0.05	-0.21	-0.11	0.06	0.26	0.24	0.46	-1.78
4	3353	5427	8780	0.05	-0.21	-0.11	0.06	0.26	0.24	0.46	-1.77
5	3364	5416	8780	0.05	-0.21	-0.11	0.06	0.25	0.24	0.45	-1.74

1ay...
numup....................................... numdw..........................number of cells with decrease in head elevation numtl........................total number of cells experiencing change in head upmean.........................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd.......................standard deviation for downward changes in elevation
tlistd........................ standard deviation for changes in elevation
maxlev.......................maximum increase in head elevation occurring
minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	N/A	N/A
River Leakage	-10%	-10%
Head Dep Bounds	-4%	-4%
Drains	N / A	-7%
ET	N/A	$+2 \%$
Total	-5%	-5%

Parameter Change: VCONT * 2 Layer(s): 1 \& 2
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxiev minlev

1	4630	4150	8780	0.09	-0.03	0.03	0.14	0.05	0.12	1.06	-0.76
2	5066	3714	8780	0.10	-0.03	0.05	0.14	0.03	0.12	0.80	-0.23
3	5246	3534	8780	0.12	-0.03	0.06	0.17	0.04	0.15	1.25	-0.33
4	5243	3537	8780	0.12	-0.03	0.06	0.17	0.04	0.15	1.24	-0.33
5	5247	3533	8780	0.12	-0.03	0.06	0.17	0.04	0.15	1.21	-0.32

1ay.............................. 1 ayer
numup........................number of cells with increase in head elevation
numdw.........................number of cells with decrease in head elevation
numtl.........................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean........................average decrease in head elevation
tlmean.........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation tlstd......................standard deviation for changes in etevation maxlev.......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	N/A	N/A
River Leakage	+9\%	+8\%
Head Dep Bounds	+3\%	+5\%
Drains	N/A	+8\%
ET	N/A	-1\%
Total	+5\%	+5\%

Parameter Change: VCONT / 4
Layer(s): 1 \& 2
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean timean upstd dwstd tistd maxlev minlev

1	4095	4685	8780	0.11	-0.36	-0.14	0.14	0.48	0.43	2.10	-3.31
2	3389	5391	8780	0.09	-0.42	-0.22	0.10	0.50	0.47	0.64	-2.45
3	3242	5538	8780	0.11	-0.53	-0.29	0.13	0.62	0.58	1.00	-4.03
4	3251	5529	8780	0.11	-0.53	-0.29	0.13	0.62	0.58	1.00	-4.02
5	3261	5519	8780	0.11	-0.53	-0.29	0.13	0.62	0.58	0.98	-3.96

1ay................................ 1 ayer
numup.................................
numdw..........................number of cells with decrease in head elevation
numtl........................total number of cells experiencing change in head
upmean........................average increase in head elevation
dwmean........................average decrease in head elevation
t1mean.........................average change in head elevation
upstd......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation
tlistd.......................standard deviation for changes in elevation
maxlev.......................maximum increase in head elevation occurring
minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	N/A	N/A
River Leakage	-20%	-21%
Head Dep Bounds	-8%	-8%
Drains	N/A	-12%
ET	N/A	$+4 \%$
Total	-11%	-11%

Parameter Change: VCONT * 4 Layer(s): 1 \& 2 Base Case Compared To: Steady State 1989 Dry/mound cells: None

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev mintev

1	4594	4186	8780	0.15	-0.06	0.05	0.22	0.09	0.20	1.76	-1.28
2	5040	3740	8780	0.16	-0.04	0.08	0.22	0.05	0.20	1.33	-0.41
3	5196	3584	8780	0.20	-0.05	0.09	0.27	0.07	0.25	2.10	-0.64
4	5198	3582	8780	0.20	-0.05	0.09	0.27	0.07	0.25	2.08	-0.63
5	5193	3587	8780	0.20	-0.05	0.09	0.27	0.07	0.25	2.01	-0.59

Tay layer
numup................................ numdw............................ numtl.......................total number of cells experiencing change in head upmean......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd........................standard deviation for changes in elevation maxlev.........................maximum increase in head elevation occurring minlev................................


```
Parameter Change: VCONT / 2
Layer(s): 3 & 4
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
```

lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	4528	4252	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.04	-0.09
2	4447	4333	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.04	-0.09
3	4599	4181	8780	0.00	-0.01	0.00	0.00	0.01	0.01	0.04	-0.09
4	4593	4187	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.05	-0.09
5	4558	4222	8780	0.01	-0.01	0.00	0.02	0.01	0.02	0.46	-0.46

Storage
River Leakage
Head Dep Bounds
Drains
ET
Total

IN	$\frac{\text { OUT }}{N}$
N/A	

0% 0\%
0% 0\%
N/A 0\%
N/A 0\%
0% 0\%

Parameter Change: VCONT * 2
Layer(s): 3 \& 4
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	4146	4634	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.02	-0.01
2	4111	4669	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.03	-0.01
3	4225	4555	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.05	-0.02
4	4416	4364	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.03	-0.03
5	4659	4121	8780	0.00	0.00	0.00	0.01	0.01	0.01	0.35	-0.31

1ay layer
numup.........................number of cells with increase in head elevation
numdw.........................number of cells with decrease in head elevation
numtl.........................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean........................average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation
tlstd.......................standard deviation for changes in elevation
maxlev........................maximum increase in head elevation occurring
minlev.......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case		
	IN	OUT	
Storage	N/A	N/A	
River Leakage	0%		0%
Head Dep Bounds	0%	0%	
Drains	N/A	0%	
ET	N/A	0%	
Total	0%	0%	

```
Parameter Change: VCONT / 4
Layer(s): 3 & 4
Base Case Compared To: Steady State 1989
Dry/mound cells: None
```

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	4531	4249	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.03	-0.12
2	4491	4289	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.05	-0.17
3	4575	4205	8780	0.00	-0.01	0.00	0.00	0.01	0.01	0.07	-0.23
4	4566	4214	8780	0.00	-0.01	0.00	0.00	0.01	0.01	0.11	-0.11
5	4445	4335	8780	0.01	-0.01	0.00	0.04	0.02	0.04	1.24	-0.97

Parameter Change: VCONT * 4 Layer(s): 3 \& 4
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	4838	3942	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.04	-0.01
2	4799	3981	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.05	-0.02
3	4899	3881	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.07	-0.03
4	5042	3738	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.05	-0.05
5	5231	3549	8780	0.00	0.00	0.00	0.01	0.02	0.01	0.57	-0.52

lay............................ 1 ayer
numup........................number of cells with increase in head elevation
numdw.........................number of cells with decrease in head elevation
numtl.......................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean......................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd.......................standard deviation for downward changes in elevation
tlstd........................standard deviation for changes in elevation
maxlev.......................maximum increase in head elevation occurring
minlev.......................maximum decrease in head elevation occurring

Parameter Change: Increase Extinction Depth 1 Foot
Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	8	8772	8780	0.00	-0.03	-0.03	0.00	0.05	0.05	0.00	-0.48
2	2	8778	8780	0.00	-0.03	-0.03	99.99	0.05	0.05	0.00	-0.47
3	9	8771	8780	0.00	-0.03	-0.03	0.00	0.05	0.05	0.00	-0.46
4	3	8777	8780	0.00	-0.03	-0.03	99.99	0.05	0.05	0.00	-0.46
5	2	8778	8780	0.00	-0.03	-0.03	99.99	0.05	0.05	0.00	-0.46

lay.............................. 1 ayer
numup.........................number of cells with increase in head elevation
numdw................................ numt1.........................total number of cells experiencing change in head
upmean..........................average increase in head elevation
dwmean.........................average decrease in head elevation
tlmean........................ average change in head elevation
upstd.......................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev......................maximum increase in head elevation occurring minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	
	N.	
Storage	N	
River Leakage	$+2 \%$	-2%
Head Dep Bounds	$+1 \%$	-2%
Drains	N/A	-11%
ET	N/A	$+65 \%$
Total	$+1 \%$	$+1 \%$

Parameter Change: Decrease Extinction Depth 1 Foot
Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	7698	1082	8780	0.02	0.00	0.02	0.03	0.00	0.03	0.43	-0.01
2	7592	1188	8780	0.02	0.00	0.01	0.03	0.00	0.03	0.42	-0.01
3	7629	1151	8780	0.02	0.00	0.01	0.03	0.00	0.03	0.42	-0.01
4	7653	1127	8780	0.02	0.00	0.01	0.03	0.00	0.03	0.42	-0.01
5	7688	1092	8780	0.02	0.00	0.01	0.03	0.00	0.03	0.42	-0.01

lay layer
numup.. numdw............................. numt1.......................total number of cells experiencing change in head upmean.......................average increase in head elevation dwmean......................average decrease in head elevation tlmean.......................average change in head elevation upstd.....................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd......................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

Parameter Change: Increase Land Surface Elevation 1 Foot Layer(s): 1
 Base Case Compared To: Steady State 1989
 Dry/mound cells: None

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	8641	139	8780	0.02	0.00	0.02	0.04	0.00	0.04	0.43	0.00
2	8550	230	8780	0.02	0.00	0.02	0.04	0.00	0.04	0.42	0.00
3	8573	207	8780	0.02	0.00	0.02	0.04	0.00	0.04	0.42	0.00
4	8604	176	8780	0.02	0.00	0.02	0.04	0.00	0.04	0.42	0.00
5	8669	111	8780	0.02	0.00	0.02	0.04	0.00	0.04	0.42	0.00

1 ay
1 ayer
numup.. of cells with increase in head elevation
numdw..........................
numtl........................total number of cells experiencing change in head
upmean........................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean......................average change in head elevation
upstd.......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxtev......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	
	N/A	OUT
Storage	-2%	$+2 \%$
River Leakage	-2%	$+2 \%$
Head Dep Bounds	-3%	$+11 \%$
Drains	N/A	-72%
ET	N/A	-2%

Parameter Change: Decrease Land Surface Elevation 1 Foot Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxiev mintev

1	13	8767	8780	0.00	-0.05	-0.05	0.00	0.08	0.08	0.00	-0.67
2	9	8771	8780	0.00	-0.05	-0.05	0.00	0.08	0.08	0.00	-0.66
3	14	8766	8780	0.00	-0.05	-0.05	0.00	0.08	0.08	0.00	-0.65
4	14	8766	8780	0.00	-0.05	-0.05	0.00	0.08	0.08	0.00	-0.65
5	15	8765	8780	0.00	-0.05	-0.05	0.00	0.08	0.08	0.00	-0.65

1 1ay . 1 ayer
numup.........................number of cells with increase in head elevation numdw........................number of cells with decrease in head elevation numt1.........................total number of cells experiencing change in head upmean.......................average increase in head elevation dwmean.........................average decrease in head elevation tlmean........................average change in head elevation upstd.......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd........................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev.........................maximum decrease in head elevation occurring

	Vol	
	IN	OUT
Storage	N/A	N/A
River Leakage	+4\%	-4\%
Head Dep Bounds	+3\%	-3\%
Drains	N/A	-19\%
ET	N / A	+75\%
Total	+3\%	+3\%

Parameter Change: Increase Land Surface Elevation 2 Feet
Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numt 1 upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	8622	158	8780	0.03	0.00	0.02	0.05	0.00	0.05	0.43	0.00
2	8533	247	8780	0.02	0.00	0.02	0.05	0.00	0.05	0.42	0.00
3	8561	219	8780	0.02	0.00	0.02	0.05	0.00	0.05	0.42	0.00
4	8591	189	8780	0.02	0.00	0.02	0.05	0.00	0.05	0.42	0.00
5	8653	127	8780	0.02	0.00	0.02	0.05	0.00	0.05	0.42	0.00

1ay.............................. layer
numup........................number of cells with increase in head elevation numdw........................number of cells with decrease in head elevation numtl.........................total number of cells experiencing change in head upmean........................average increase in head elevation dwmean......................... average decrease in head elevation tlmean........................average change in head elevation upstd........................standard deviation for upward changes in elevation dwstd.........................standard deviation for downward changes in elevation t1std........................standard deviation for changes in elevation maxlev........................maximum increase in head elevation occurring minlev.........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	$--1 N$	
	N/A	NUT
Storage	N/A	
River Leakage	-3%	$+2 \%$
Head Dep Bounds	-3%	$+3 \%$
Drains	N/A	$+14 \%$
ET	N/A	-96%
Total	-2%	-2%

Parameter Change: Decrease Land Surface Elevation 2 Feet Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxiev minlev

1	1	8779	8780	0.00	-0.12	-0.12	99.99	0.18	0.18	0.00	-1.35
2	1	8779	8780	0.00	-0.12	-0.12	99.99	0.18	0.18	0.00	-1.32
3	6	8774	8780	0.00	-0.12	-0.12	99.99	0.17	0.17	0.00	-1.31
4	8	8772	8780	0.00	-0.12	-0.12	0.00	0.17	0.17	0.00	-1.31
5	7	8773	8780	0.00	-0.12	-0.12	0.00	0.17	0.17	0.00	-1.31

1ay 1 ayer
numup.......................................
numdw.........................number of cells with decrease in head elevation
numt1........................total number of cells experiencing change in head
upmean........................average increase in head elevation
dwmean...................... average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxtev........................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

| | Volumetric Changes from Base Case | |
| :--- | :--- | :--- | :--- |
| | IN | OUT |
| Storage | N/A | N/A |
| River Leakage | $+1 \%$ | -9% |
| Head Dep Bounds | $+5 \%$ | -6% |
| Drains | N/A | -37% |
| ET | N/A | $+264 \%$ |
| Total | $+6 \%$ | $+6 \%$ |

Parameter Change: Increase Max ET Rate to 120% of Original Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	352	8428	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.00	-0.07
2	346	8434	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.00	-0.06
3	377	8403	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.00	-0.06
4	381	8399	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.00	-0.06
5	388	8392	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.00	-0.06

Parameter Change: Decrease Max ET Rate to 80% of OriginaT Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxlev minlev

1	8462	318	8780	0.00	0.00	0.00	0.01	0.00	0.01	0.08	0.00
2	8361	419	8780	0.00	0.00	0.00	0.01	0.00	0.01	0.06	0.00
3	8331	449	8780	0.00	0.00	0.00	0.01	0.00	0.01	0.06	0.00
4	8375	405	8780	0.00	0.00	0.00	0.01	0.00	0.01	0.06	0.00
5	8457	323	8780	0.00	0.00	0.00	0.01	0.00	0.01	0.06	0.00

numup.........................number of cells with increase in head elevation numdw........................number of cells with decrease in head elevation numtl........................total number of cells experiencing change in head upmean......................average increase in head elevation dwmean.........................average decrease in head elevation
tlmean........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev.........................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

Parameter Change: Increase Recharge Rate to 120% of Original Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with l or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxiev minlev

1	8779	1	8780	0.04	0.00	0.04	0.03	99.99	0.03	0.18	0.00
2	8777	3	8780	0.04	0.00	0.04	0.03	99.99	0.03	0.18	0.00
3	8669	111	8780	0.04	0.00	0.04	0.03	0.00	0.03	0.18	0.00
4	8683	97	8780	0.04	0.00	0.04	0.03	0.00	0.03	0.18	0.00
5	8699	81	8780	0.04	0.00	0.04	0.03	0.00	0.03	0.18	0.00

lay................................ 1 ayer
numup.........................number of cells with increase in head elevation
numdw........................number of cells with decrease in head elevation
numtl........................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean........................average decrease in head elevation
tlmean.......................average change in head elevation
upstd......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation
tlstd........................standard deviation for changes in elevation
maxlev.......................maximum increase in head elevation occurring
minlev................................

Parameter Change: Decrease Recharge Rate to 80% of Original Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	0	8780	8780	99.99	-0.04	-0.04	99.99	0.03	0.03	0.00	-0.19
2	0	8780	8780	99.99	-0.04	-0.04	99.99	0.03	0.03	0.00	-0.19
3	20	8760	8780	0.00	-0.04	-0.04	0.00	0.03	0.03	0.00	-0.19
4	19	8761	8780	0.00	-0.04	-0.04	0.00	0.03	0.03	0.00	-0.19
5	19	8761	8780	0.00	-0.04	-0.04	0.00	0.03	0.03	0.00	-0.19

1ay..
numup................................. numdw.............................. numtl.......................totat number of cells experiencing change in head upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean.......................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd.........................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

| | Volumetric Changes from Base Case | |
| :--- | :--- | :--- | :--- |
| | IN | |
| | N/A | OUT |
| Storage | $+3 \%$ | -3% |
| River Leakage | N/A | |
| Head Dep Bounds | $+1 \%$ | -3% |
| Drains | N/A | -9% |
| ET | N/A | -3% |
| Total | -3% | -3% |

```
Parameter Change: Recharge =0
Layer(s): 1
Base Case Compared To: Steady State 1989
Dry/mound cells: None
```

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)

1 ay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxiev minlev

1	0	8780	8780	99.99	-0.21	-0.21	99.99	0.18	0.18	0.00	-0.95
2	0	8780	8780	99.99	-0.21	-0.21	99.99	0.17	0.17	0.00	-0.94
3	19	8761	8780	0.00	-0.21	-0.21	0.00	0.16	0.16	0.00	-0.93
4	22	8758	8780	0.00	-0.21	-0.21	0.00	0.16	0.16	0.00	-0.93
5	20	8760	8780	0.00	-0.21	-0.21	0.00	0.16	0.16	0.00	-0.93

1 ay 1 ayer
numup.........................number of cells with increase in head elevation numdw.........................number of cells with decrease in head elevation numtl.......................total number of cells experiencing change in head upmean.......................average increase in head elevation dwmean.....................average decrease in head elevation tlmean.......................average change in head elevation upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	N/A	N/A
River Leakage	+20\%	-16\%
Head Dep Bounds	+7\%	-11\%
Drains	N/A	-39\%
ET	N/A	-17\%
Total	-12\%	-12\%

Parameter Change: Specific Yield / 2 Layer(s): 1
Base Case Compared To: Transient 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	2182	6598	8780	0.02	-0.01	0.00	0.02	0.01	0.01	0.08	-0.05
2	2406	6374	8780	0.02	-0.01	0.00	0.02	0.00	0.01	0.09	-0.03
3	2586	6194	8780	0.02	-0.01	0.00	0.02	0.00	0.01	0.09	-0.02
4	2591	6189	8780	0.02	-0.01	0.00	0.02	0.00	0.01	0.09	-0.02
5	2627	6153	8780	0.02	-0.01	0.00	0.02	0.00	0.02	0.09	-0.02

1ay
1 ayer
numup............................ numdw.........................number of cells with decrease in head elevation numtl.......................total number of cells experiencing change in head upmean.......................average increase in head elevation
dwnean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd......................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

Parameter Change: Specific Yield * 2
Layer(s): 1
Base Case Compared To: Transient 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)

1 lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	6078	2702	8780	0.01	-0.03	0.00	0.01	0.03	0.03	0.07	-0.16
2	5751	3029	8780	0.01	-0.03	0.00	0.01	0.03	0.03	0.04	-0.16
3	5477	3303	8780	0.01	-0.03	0.00	0.01	0.03	0.03	0.03	-0.16
4	5514	3266	8780	0.01	-0.03	0.00	0.01	0.03	0.03	0.03	-0.16
5	5515	3265	8780	0.01	-0.03	-0.01	0.01	0.03	0.03	0.03	-0.16

Tay................................ 1 ayer

numdw.................................
numtl........................total number of cells experiencing change in head
upmean........................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd........................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlistd........................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	+8\%	+12\%
River Leakage	+2\%	-1\%
Head Dep Bounds	+1\%	+2\%
Drains	N/A	-2\%
ET	N/A	-1\%
Total	+2\%	+2\%

Parameter Change: Storage Coefficient / 10 Layer(s): 3, 4 \& 5
Base Case Compared To: Transient 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with l or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxiev minlev

1	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
2	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
3	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
4	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
5	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00

lay 1 ayer
numup..................................
numdw. number of cells with decrease in head etevation
numt1.........................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean......................average decrease in head elevation
tlmean........................average change in head elevation
upstd.....................standard deviation for upward changes in elevation dwstd.....................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	
	0%	000
Storage	0%	0%
River Leakage	0%	0%
Head Dep Bounds	0%	0%
Drains	N/A	0%
ET	N/A	0%

Parameter Change: Storage Coefficient * 10
Layer(s): 3, 4 \& 5
Base Case Compared To: Transient 1989
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean timean upstd dwstd tistd maxlev minlev

1	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
2	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
3	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
4	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00
5	0	8780	8780	99.99	0.00	0.00	99.99	0.00	0.00	0.00	0.00

numup..................................
numdw....................... number of cells with decrease in head elevation
numt1........................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation
dwstd.....................standard deviation for downward changes in elevation
t1std....................... standard deviation for changes in elevation
maxlev......................maximum increase in head elevation occurring
minlev.........................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	
	IN	OUT
Storage	0%	0%
River Leakage	0%	0%
Head Dep Bounds	0%	0%
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

Parameter Change: Increase Starting Head Elevations By +2 Feet Layer(s): l
Base Case Compared To: Transient 1989, lst stress period only Dry/mound cells: None

Estimated Statistics for aquifer drawdowns (new head - reference head):
 (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)

lay numup numdw numt 1 upmean dwmean tlmean upstd dwstd tistd maxdif mindif

1	8737	43	8780	0.23	0.00	0.23	0.14	0.00	0.14	0.80	0.00
2	8681	99	8780	0.24	0.00	0.23	0.12	0.00	0.12	0.62	0.00
3	8673	107	8780	0.23	0.00	0.23	0.10	0.00	0.11	0.51	0.00
4	8690	90	8780	0.23	0.00	0.23	0.11	0.00	0.11	0.51	0.00
5	8716	64	8780	0.23	0.00	0.23	0.10	0.00	0.11	0.50	0.00

lay . 1 ayer
numup......................... number of cells with increase in head elevation numdw.........................number of cells with decrease in head elevation numt1.........................total number of cells experiencing change in head upmean.......................average increase in head elevation dwmean........................average decrease in head elevation tlmean......................average change in head elevation upstd.......................standard deviation for upward changes in elevation dwstd.....................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev........................maximum decrease in head elevation occurring

Parameter Change: Increase Starting Head Elevations By +2 Feet Layer(s): 1
Base Case Compared To: Transient 1989, lst stress period only - no wells, rivers, drains, recharge, or ET
Dry/mound cells: None

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with l or more values, std with 7 or more values, and for sample size too small shows 99.99)

lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	8740	40	8780	0.35	0.00	0.34	0.14	0.00	0.14	0.83	0.00
2	8690	90	8780	0.33	0.00	0.33	0.12	0.00	0.13	0.64	0.00
3	8678	102	8780	0.32	0.00	0.31	0.12	0.00	0.12	0.55	0.00
4	8684	96	8780	0.32	0.00	0.31	0.12	0.00	0.12	0.55	0.00
5	8722	58	8780	0.31	0.00	0.31	0.12	0.00	0.12	0.55	0.00

lay layer
numup.......................number of cells with increase in head elevation
numdw..................................... of cells with decrease in head elevation
numtl......................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd......................standard deviation for changes in elevation maxlev.......................maximum increase in head elevation occurring minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	+377\%	
River Leakage	N/A	N/A
Head Dep Bounds	-16\%	+126\%
Drains	N/A	N/A
ET	N/A	
Total	+189\%	+189\%

Parameter Change: Decrease Starting Head Elevations By -2 Feet Layer(s): l
Base Case Compared To: Transient 1989, lst stress period only Dry/mound cells: None

Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	4	8776	8780	0.00	-0.24	-0.24	99.99	0.14	0.14	0.00	-0.81
2	3	8777	8780	0.00	-0.24	-0.24	99.99	0.12	0.12	0.00	-0.62
3	30	8750	8780	0.00	-0.24	-0.24	0.00	0.11	0.11	0.00	-0.52
4	26	8754	8780	0.00	-0.24	-0.24	0.00	0.11	0.11	0.00	-0.51
5	22	8758	8780	0.00	-0.24	-0.24	0.00	0.11	0.11	0.00	-0.51

lay............................ 1 ayer
numup.........................number of cells with increase in head elevation numdw.......................number of cells with decrease in head elevation numtl.......................total number of cells experiencing change in head upmean.......................average increase in head elevation dwmean........................average decrease in head elevation tlmean........................average change in head elevation upstd......................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev..............................
minlev.......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	+341\%	+667\%
River Leakage	+81\%	-27\%
Head Dep Bounds	+38\%	-27\%
Drains	N/A	-66\%
ET	N/A	-26\%
Total	+110\%	+110\%

Parameter Change: Decrease Starting Head Elevations By -2 Feet
Layer(s): 1
Base Case Compared To: Transient 1989, lst stress period only - no wells, rivers, drains, recharge, or ET
Dry/mound cells: None
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numt 1 upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	4	8776	8780	0.00	-0.34	-0.34	99.99	0.14	0.14	0.00	-0.83
2	0	8780	8780	99.99	-0.33	-0.33	99.99	0.13	0.13	0.00	-0.64
3	26	8754	8780	0.00	-0.31	-0.31	0.00	0.12	0.12	0.00	-0.55
4	24	8756	8780	0.00	-0.31	-0.31	0.00	0.12	0.12	0.00	-0.55
5	22	8758	8780	0.00	-0.31	-0.31	0.00	0.12	0.12	0.00	-0.55

1 ay 1ayer
numup.....................................
numdw.........................number of cells with decrease in head elevation numt1.........................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd........................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev......................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	
	Storage	$+304 \%$
River Leakage	N/A	OUT
Head Dep Bounds	$+64 \%$	N/A
Drains	N/A	-31%
ET	N/A	N/A
Total	$+189 \%$	N/A
		$+190 \%$

Parameter Change: General Head Boundary Conductance * 10
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	4680	4100	8780	0.00	0.00	0.00	0.01	0.00	0.01	0.20	-0.08
2	4693	4087	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.03	-0.01
3	4750	4030	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.06	-0.05
4	4756	4024	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.09	-0.09
5	4762	4018	8780	0.00	0.00	0.00	0.01	0.01	0.01	0.47	-0.42
Note:	Statistics reflect entire model area										

	. 1 ayer
numup.	.number of cells with increase in head elevation
numdw. .	. number of cells with decrease in head elevation
numtl.	total number of cells experiencing change in head
upmean.	.average increase in head elevation
dwmean	average decrease in head elevation
tlmean.	.average change in head elevation
upstd.	standard deviation for upward changes in elevation
dwstd.	.standard deviation for downward changes in elevation
t1std.	.standard deviation for changes in elevation
maxlev	.maximum increase in head elevation occurring
minlev.	.maximum decrease in head elevation occurring

Volumetric Changes from Base Case IN OUT

Storage	N/A	N/A
River Leakage	0%	0%
Head Dep Bounds	$+1 \%$	$+3 \%$
Drains	N/A	0%
ET	N/A	0%
Total	$+1 \%$	$+1 \%$

```
Parameter Change: General Head Boundary Conductance * 10
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
```

Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numt \rceil upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	3784	3037	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.10	-0.03
2	3790	3031	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
3	3808	3013	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.01
4	3811	3010	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.01
5	3828	2993	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.03	-0.01

Note: Statistics reflect model area within Broward County only
1ay
1ayer
numup..........................number of cells with increase in head elevation numdw........................number of cells with decrease in head elevation numtl.......................total number of cells experiencing change in head upmean.......................average increase in head elevation
dwmean......................average decrease in head elevation
tlmean......................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation t1std......................standard deviation for changes in elevation maxlev........................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

	IN	OUT
	N/A	N/A
Storage	0%	0%
River Leakage	$+3 \%$	
Head Dep Bounds	$+1 \%$	0%
Drains	N/A	0%
ET	N/A	$+1 \%$
Total	$+1 \%$	

Parameter Change: General Head Boundary Conductance * 0.1 Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numt $\begin{aligned} & \text { upmean dwmean } t \text { lmean } u p s t d \text { dwstd } \text { tlstd maxdif mindif }\end{aligned}$

1	3813	4967	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.09	-0.17
2	3809	4971	8780	0.00	0.00	0.00	0.00	0.01	0.01	0.09	-0.20
3	3762	5018	8780	0.00	0.00	0.00	0.01	0.01	0.01	0.42	-0.44
4	3754	5026	8780	0.00	0.00	0.00	0.01	0.01	0.01	0.42	-0.44
5	3759	5021	8780	0.00	0.00	0.00	0.01	0.01	0.01	0.41	-0.44
Note: Statistics	reflect entire model	area									

1ay............................... 1 ayer
numup..........................number of cells with increase in head elevation
numdw........................number of cells with decrease in head elevation
numtl.........................total number of cells experiencing change in head
upmean........................average increase in head elevation
dwmean.........................average decrease in head elevation
tlmean........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation
tlstd.......................standard deviation for changes in elevation
maxlev.......................maximum increase in head elevation occurring
minlev......................maximum decrease in head elevation occurring

	Volumetric Changes from Base Case	
	IN	OUT
Storage	N/A	N/A
River Leakage	0\%	0\%
Head Dep Bounds	-3\%	-7\%
Drains	N/A	0\%
ET	N/A	0\%
Total	-1\%	-1\%

Parameter Change: General Head Boundary Conductance * 0.1 Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxdif mindif

1	2754	4067	6821	0.00	0.00	0.00	0.00	0.01	0.00	0.01	-0.11
2	2750	4071	6821	0.00	0.00	0.00	0.00	0.01	0.01	0.01	-0.20
3	2723	4098	6821	0.00	0.00	0.00	0.00	0.01	0.00	0.01	-0.10
4	2716	4105	6821	0.00	0.00	0.00	0.00	0.01	0.00	0.01	-0.10
5	2719	4102	6821	0.00	0.00	0.00	0.00	0.01	0.01	0.01	-0.10
Note: Statistics	reflect mode	area within	Broward County	only							

numup.	. . l aymber of cells with increase in head elevation
numdw.	..number of cells with decrease in head elevation
numt1	.total number of cells experiencing change in head
upmean	.average increase in head elevation
dwmean	..average decrease in head elevation
t1mean	.average change in head elevation
upstd.	.standard deviation for upward changes in elevation
dwstd.	.standard deviation for downward changes in elevation
tlstd	..standard deviation for changes in elevation
maxlev	. maximum increase in head elevation occurring
minlev	.maximum decrease in head elevation occurring

Volumetric Changes from Base Case

IN OUT

Storage	N/A	N/A
River Leakage	0%	0%
Head Dep Bounds	-3%	-7%
Drains	N/A	0%
ET	N/A	0%
Total	-1%	-1%

Parameter Change: General Head Boundary Conductance * 2
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	4334	4446	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.02	-0.01
2	4350	4430	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
3	4404	4376	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.03	-0.03
4	4414	4366	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.04	-0.04
5	4414	4366	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.11	-0.10

1ay............................ 1 ayer
numup........................number of cells with increase in head elevation
numdw.........................number of cells with decrease in head elevation
numtl.......................total number of cells experiencing change in head
upmean.......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd.......................standard deviation for upward changes in elevation
dwstd......................standard deviation for downward changes in elevation
tlstd........................standard deviation for changes in elevation
maxlev........................maximum increase in head elevation occurring
minlev.......................maximum decrease in head elevation occurring

	IN	OUT
Storage	N/A	N/A
River Leakage	0%	0%
Head Dep Bounds	0%	$+1 \%$
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

```
Parameter Change: General Head Boundary Conductance * 2
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
```

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	3405	3416	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.02	0.00
2	3422	3399	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
3	3445	3376	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
4	3452	3369	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
5	3459	3362	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00

Note: Statistics reflect model area within Broward County only
1 ay
layer
numup............................... numdw....................... number of cells with decrease in head elevation numt1.........................total number of cells experiencing change in head upmean........................average increase in head elevation dwmean......................average decrease in head elevation tlmean........................average change in head elevation upstd......................standard deviation for upward changes in elevation dwstd.......................standard deviation for downward changes in elevation tlstd.......................standard deviation for changes in elevation maxlev.......................maximum increase in head etevation occurring minlev........................maximum decrease in head elevation occurring

	IN	OUT
	N/A	N/A
Storage	0%	0%
River Leakage	0%	$+1 \%$
Head Dep Bounds	N/A	0%
Drains	N/A	0%
ET	0%	0%

Parameter Change: General Head Boundary Conductance * 0.5 Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	3971	4809	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.02
2	3956	4824	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.03
3	3903	4877	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.05	-0.06
4	3900	4880	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.06	-0.06
5	3905	4875	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.09	-0.09

Note: Statistics reflect entire model area
1 ay
layer
numup.........................number of cells with increase in head elevation
numdw.........................number of cells with decrease in head elevation
numtl..........................total number of cells experiencing change in head
upmean......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean........................average change in head elevation
upstd......................standard deviation for upward changes in elevation
dwstd........................standard deviation for downward changes in elevation
tlstd...................... standard deviation for changes in elevation
maxlev........................maximum increase in head elevation occurring
minlev..........................maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	IN	OUT
Storage	N/A	
River Leakage	0%	0%
Head Dep Bounds	-1%	$+1 \%$
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

```
Parameter Change: Genera] Head Boundary Conductance * 0.5
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
```

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numt 1 upmean dwmean tlmean upstd dwstd tistd maxdif mindif

1	2856	3965	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.02
2	2839	3982	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.03
3	2814	4007	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01
4	2812	4009	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01
5	2820	4001	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.00	-0.01
Note: Statistics reflect model area within Broward County only											

1 ay

Volumetric Changes from Base Case

IN OUT
Storage
N/A
N/A
River Leakage 0\%
0% 0\%
Head Dep Bounds
-1%
$+1 \%$
Drains
N/A
N/A
Total 0\%
ET

0\%
0\%
0%

Parameter Change: General Head Boundary Conductance * 100
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxdif mindif

1	5011	3769	8780	0.00	0.00	0.00	0.05	0.02	0.04	1.24	-0.56
2	5031	3749	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.04	-0.01
3	5098	3682	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.07	-0.05
4	5100	3680	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.12	-0.12
5	5096	3684	8780	0.00	0.00	0.00	0.01	0.01	0.01	0.83	-0.75

Note: Statistics reflect entire mode] area
1ay............................. 1 ayer
numup........................number of cells with increase in head elevation numdw.......................number of cells with decrease in head elevation numt1.........................total number of cells experiencing change in head upmean.........................average increase in head elevation dwmean........................average decrease in head elevation tlmean........................average change in head elevation upstd........................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation tlstd.........................standard deviation for changes in elevation maxlev........................maximum increase in head elevation occurring minlev.......................maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	IN	OUT
	N/A	N/A
Storage	$+3 \%$	$+1 \%$
River Leakage	$+11 \%$	
Head Dep Bounds	$+4 \%$	0%
Drains	N/A	0%
ET	N/A	$+2 \%$

Parameter Change: General Head Boundary Conductance * 100
Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head):
(mean with 1 or more values, std with 7 or more values, and
for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tistd maxdif mindif

1	4044	2777	6821	0.00	0.00	0.00	0.01	0.0	0.01	0.73	-0.16
2	4056	2765	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00
3	4086	2735	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.01
4	4087	2734	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.02	-0.01
5	4092	2729	6821	0.00	0.00	0.00	0.00	0.00	0.00	0.05	-0.01
Note: Statistics											
1ay........................layer											
numup....................number of cells with increase in head elevation											
numdw....................................... of cells with decrease in head elevation numt 1 total number of cells experiencing change in head											
upmean..............average increase in head el evation											
dwmean...................average decrease in head elevation											
tlmean.................average change in head elevation											
upstd.......................standard deviation for upward changes in elevation dwstd..................... standard deviation for downward changes in elevation											
tlstd................ standard deviation for changes in elevation											
maxlev.......................maximum increase in head elevation occurring minlev.............................											

Volumetric Changes from Base Case

	IN	OUT
	N/A	N/A
Storage	$+3 \%$	$+1 \%$
River Leakage	$+11 \%$	
Head Dep Bounds	+4\%	0%
Drains	N/A	0%
ET	N/A	$+2 \%$

Parameter Change: General Head Boundary Conductance * 0.01

 Layers: AllBase Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif

1	3945	4835	8780	0.01	-0.02	-0.01	0.03	0.06	0.05	0.67	-1.03
2	3951	4829	8780	0.01	-0.02	-0.01	0.03	0.07	0.05	0.68	-1.20
3	3915	4865	8780	0.01	-0.03	-0.01	0.05	0.09	0.07	2.06	-2.39
4	3912	4868	8780	0.01	-0.03	-0.01	0.05	0.08	0.07	2.03	-2.36
5	3914	4866	8780	0.01	-0.03	-0.01	0.04	0.08	0.07	1.70	-2.05

Volumetric Changes from Base Case

	IN	OUT
Storage	N/A	N/A
River Leakage	+1\%	-4%
Head Dep Bounds	-17\%	-30%
Drains	N/A	-2%
ET	N/A	-4%
Total	-7%	-7%

Parameter Change: General Head Boundary Conductance * 0.01 Layers: All
Base Case Compared To: Steady State 1989
Dry/mound cells: none
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)
lay numup numdw numt 1 upmean dwmean $t 1 m e a n$ upstd dwstd $t 1 s t d$ maxdif mindif

1	2866	3955	6821	0.00	-0.02	-0.01	0.00	0.05	0.04	0.05	-0.68
2	2868	3953	6821	0.00	-0.02	-0.01	0.00	0.05	0.04	0.07	-1.20
3	2849	3972	6821	0.00	-0.02	-0.01	0.00	0.05	0.04	0.07	-0.99
4	2847	3974	6821	0.00	-0.02	-0.01	0.00	0.05	0.04	0.07	-0.99
5	2848	3973	6821	0.00	-0.02	-0.01	0.00	0.05	0.04	0.07	-0.98
ote: Statistics reflect model area within Broward County oniy											

lay layer
numup.............................. numdw.........................number of cells with decrease in head elevation numtl........................total number of cells experiencing change in head upmean......................average increase in head elevation
dwmean.......................average decrease in head elevation
tlmean.......................average change in head elevation
upstd......................standard deviation for upward changes in elevation dwstd......................standard deviation for downward changes in elevation
tlstd.......................standard deviation for changes in elevation maxlev.........................maximum increase in head elevation occurring minlev.........................maximum decrease in head elevation occurring

Volumetric Changes from Base Case

IN OUT

Storage	N/A	N/A
River Leakage	$+1 \%$	-4%
Head Dep Bounds	-17%	-30%
Drains	N/A	-2%
ET	N/A	-4%
Total	-7%	-7%

APPENDIX G

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURE

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURE

The South Florida Water Management District developed a quality assurance/quality control ($\mathrm{QA} / \mathrm{QC}$) procedure pertaining to ground water flow models as they progressed from the development stage to use by the Planning Department. The process involves a series of iterations between the model developer and the end user in the Planning Department as well as a peer review team selected for each model.

Each model is evaluated in terms of: a) acceptability and b) impacts of deficiencies on application of the model. Acceptability is divided into three categories: 1) meets all standards of completeness and accuracy, 2) meets main standards, however enhancements are necessary to improve the overall accuracy of the model, and 3) does not meet standards and the model is not ready for use. All parameters that did not meet standards were corrected as a first priority. Parameters needing enhancements were prioritized into those that should be upgraded before the models are used to minimize future problems and those items which can be continually enhanced even while the model is in use.

The QA/QC checklist is divided in two parts; a conceptualization section and a data sets section. The conceptualization section is a narrative discussion of the methodology and assumptions used in creating the data sets. It covers such topics as boundary conditions, time and space discretization, recharge and evapotranspiration calculations, water use data sources and assumptions, aquifer parameters, creation of parameters for rivers and drains, and calibration criteria. This discussion was intended to familiarize the user with all assumptions used in creating the model to make them aware of situations which may affect results. The data set checklist includes all data sets used in the model and verifies that there are no data anomalies. Data was checked both graphically and numerically. Three-dimensional plots of many arrays were created to point out errant data points. Contour plots were compared with data points used to create them to make sure they were accurate. The minimum and maximum value for each plot was determined and checked for reasonableness. River, drain and general head cell values were also printed spatially and checked for reasonableness and consistency between cells. All well locations were verified both in row,column and planar coordinate formats. Modeled pumpage was compared to permitted allocations for reasonableness. The volumetric budget was also checked to determine if anything was out of proportion.

Some data corrections were made and changes in recharge and evapotranspiration sections resulted in model modifications. Finally, agreement was reached and checklists from the peer review panel were approved with no unacceptable sections and several sections identified as acceptable under current conditions with future enhancements necessary.

[^0]: 0609

