Technical Publication 92-05

A THREE-DIMENSIONAL FINITE DIFFERENCE GROUND WATER FLOW MODEL OF THE SURFICIAL AQUIFER SYSTEM, BROWARD COUNTY, FLORIDA

by

Jorge I. Restrepo Cindy Bevier David Butler

DRE-314

May 1992

This publication was produced at an annual cost of \$1305.00 or \$2.61 per copy to inform the public. 500 492.

3

DRE Inventory Control #314

Hydrogeology Division Department of Research and Evaluation South Florida Water Management District West Palm Beach, Florida

EXECUTIVE SUMMARY

Broward County, Florida is underlain by two aquifer systems: the Surficial Aquifer System and the deeper Floridan Aquifer System. This study focused upon the Surficial Aquifer System, which is widely used for potable and irrigation uses in the study area. The most productive zone of the Surficial Aquifer System is the Biscayne aquifer. The Biscayne aquifer is composed primarily of highly solutioned, extremely transmissive limestone. Most ground water in the study area is withdrawn from the Biscayne aquifer portion of the Surficial Aquifer System.

The Broward County ground water flow model was developed using the USGS three-dimensional finite difference flow code, MODFLOW. This code was chosen because it allows a detailed evaluation of ground water flow, is available in the public domain, is compatible with most computer systems, can be coupled with currently available solute transport models and contains many features which make it easy to use and modify. MODFLOW simulates ground water levels and flow using data describing aquifer characteristics and stresses to the aquifer, such as recharge, evapotranspiration, well withdrawals, and interactions with surface water bodies.

The Broward County model contains five vertical layers representing three different hydrogeologic zones within the Surficial Aquifer System. The horizontal model grid is divided into 100 rows and 134 columns. Each model cell is uniformly 1,000 feet in the east-west direction by 2,000 feet in the north-south direction.

Initial estimates of aquifer parameters were obtained from existing private consultant reports and from aquifer tests conducted by District staff. The model was calibrated by adjusting aquifer, canal, recharge and evapotranspiration parameters to better match computed ground water levels with observed historical ground water levels. Two calibration periods were selected: January 1983 through December 1985, and January 1989 through December 1989. Ground water withdrawal information for steady state and transient calibration was obtained from water use permits issued by the District and from public water supply information reported directly to the District.

The District's ARC/INFO geographic information system was used to create all time-independent information coverages for the county. The time-independent information was assembled with time-dependent information (such as precipitation data from the District's DBHYDRO database) through a series of pre-processing programs. These programs computed and formatted the data for input into MODFLOW. Graphic representations of model results were created with several post-processing programs. The final model files were subjected to a thorough quality assurance/quality control (QA/QC) procedure by staff from the Lower District Planning Division and the Hydrogeology Division.

To ensure the best possible accuracy for evaluative or predictive purposes, the model was tested for sensitivity to different aquifer parameters and stresses. The model appears to be most sensitive to hydraulic conductivity and canal conductance changes. Accordingly, the model is especially responsive to canal water levels and ground water pumping rates.

Recommendations

Eastern Broward County is experiencing a deficit of water to supply its needs during dry periods, and depends heavily on the availability of aquifer storage and on water brought into the area from adjacent areas. As demands increase, so will the need for additional water supplements into the area. Supplemental supply alternatives for the county could include management of demands through water conservation, wastewater reuse, backpumping, implementation of aquifer storage and recovery (ASR) facilities, development of new surface water reservoirs, and desalinization of salt water for public supply.

Careful management of withdrawals from the Biscayne aquifer is needed to reduce the risk of saline water intrusion in eastern Broward County. Maximum withdrawals, minimum head levels and/or minimum net yearly ground water flows to the ocean should be established in coastal areas to reduce or slow salt water migration. Future requests for large scale withdrawals should be closely examined to ensure that the criteria can be maintained.

It is recognized that both water quality and water quantity are important and interdependent aspects of water resources. Future modeling efforts should be extended to include solute transport models, which will provide the District with effective tools in the management of such complex issues as ground water storage of wastewater, artificial recharge, aquifer storage and recovery, location of landfills and salt water intrusion.

The integrated surface water/ground water system that provides water supply in southeast Florida has evolved as a result of local needs rather than as a result of a single comprehensive regional plan. In spite of the fundamental understanding of ground water and surface water hydrologies and their interrelations, the two are often considered independently in south Florida.

A fully integrated surface, unsaturated and saturated flow model should be implemented with rigorous representation and conceptualization of the physical processes, water allocation, and surface water body operations involved in a canal-aquifer system such as Broward County. To a large extent, the model should incorporate the entire physical conceptualization of the hydrologic cycle on a time scale ranging from daily to monthly. For a realistic assessment of short-term impacts such as: 1) availability of water in canals, 2) the effects of precipitation in surface water bodies or in the unsaturated zone, or 3) water levels in aquifers near canals, the model should simulate the system using short stress periods. Similarly, for a realistic allocation of water based on agricultural or other needs, short simulation stress periods are desirable.

Interfaces should be developed with the existing Palm Beach County model, with the Dade County model currently under development, and with the regional surface water system model. This will result in a truly regional model that encompasses the entire flow regime for the Surficial Aquifer System in the Lower East Coast water supply planning area. This regional surface and ground water model would be particularly useful in evaluating the District's canal system, which maintains ground water levels and supplies many of the public water supply wellfields within the tri-county area.

The model can be used in the evaluation of water use permit applications for large uses. Where a finer scale or site-specific evaluation is required, the model can be used to provide boundary conditions. The model should continue to be improved and updated as additional information becomes available. Suggested improvements to the model include a finer grid spacing and shorter stress periods, ideally five days or less.

The Broward County model is sensitive to utility pumpage rates. Increased reporting and verification of public water supply pumpages and of large irrigation withdrawals on a well-by-well basis is recommended. Additional wells should be incorporated into the USGS monitoring well network in order to improve the regional ground water level information. Furthermore, additional aquifer testing should be required in areas where hydrogeologic information is lacking.

A new approach to computing evapotranspiration should be developed. Evapotranspiration values currently calculated are based on a modified Blaney-Criddle equation, which relies on temperature data. Errors due to the use of the Blaney-Criddle approach could be significant because it often results in the overestimation of irrigation demands.

TABLE OF CONTENTS

Ŷ

...

<u> </u>	'age
EXECUTIVE SUMMARY	i
LIST OF FIGURES	· ·
LIST OF TABLES	 v
ACKNOWLEDGEMENTS	. v
ABSTRACT	vii
	411
INTRODUCTION	1
Purpose and Scope	1
Location of Study Area	1
Hydrogeology	1
Surficial Aquifer System	· 1
Biscavne Aquifer	. 1
	. 1
MODELING FORMULATION AND APPLICATION	5
Introduction	5
Discretization	5
Boundary Conditions	. 0
Hydraulic Characteristics	. 0
Transmissivity	19
Specific Viald and Storage	14
Vartical Conductance	14
Surface Water Interaction	14
Physical System Backmound	14
Madel Input	1/
	18
Fugnet remember in the second se	10
Crownd Water Has	22
	23
	23
Public water Supply Use	24
Non-Public Water Supply Use	24
	05
Step J. Stat. O-11b-sta	25
Transfort O 11 met	25
Calibration	26
Calibration Results	28
Steady State Calibration Results	28
Transient Calibration Results	31
SENSITIVITY TESTING	35
CONCLUSIONS	37
RECOMMENDATIONS	39
REFERENCES	41

•

TABLE OF CONTENTS CONTINUED

Page

APPENDIX A:	Hydrogeology and Structure Contour Data	43
APPENDIX B:	Surface Water Data and Figures	65
APPENDIX C:	Data and Figures Relating to Land Use, Recharge, Evapotranspiration and Water Use	83
APPENDIX D:	Calibration Steady State Water Levels, Horizontal and Vertical Flow	137
APPENDIX E:	Calibration Hydrographs	155
APPENDIX F:	Sensitivity Data	207
APPENDIX G:	Quality Assurance/Quality Control Procedure	259

LIST OF FIGURES

<u>Figure</u>	<u>P</u>	age
1	Study Area for the Broward County Model	2
2	Modeled Study Area	. 3
3	Generalized Hydrogeologic Cross Section of the Surficial Aquifer System in Broward County (3A - West to East, 3B - North to South)	4
4	Broward County Model Grid	7
5	Generalized Hydrogeologic Column of the Surficial Aquifer System and Corresponding Model Layers	9
6	Broward County Model Boundaries	10
7	Generalized Composite Transmissivity Map of the Surficial Aquifer System \ldots	15
8	Hydraulic Connection Between a Canal and an Aquifer	16
9	Layer 1 Cells Containing Rivers	19
10	Layer 1 Cells Containing Drains	20
11	Hypothetical Wellfield in Northern Broward County	29
12A	Horizontal Flow in Layer 3 Around Hypothetical Wellfield (Without Recharge due to Agricultural Irrigation)	30
12B	Calibrated Horizontal Flow in Layer 3 in Area Around Hypothetical Wellfield	30
13	Mass Balance for Modeled Area Within Broward County (Excluding Water Conservation Areas)	32
14	Mass Balance for Modeled Area Within Broward County (Excluding Water Conservation Areas) Showing Net Flow at Each Boundary	33

LIST OF TABLES

<u>Table</u>	<u>P</u>	age
1	MODFLOW Packages Used in the Broward County Model	6
2	Summary of Aquifer Test Data Used to Establish the Transmissivity of the Biscayne Aquifer Within the Surficial Aquifer System	13

ACKNOWLEDGEMENTS

There are a number of people whose knowledge and assistance were essential for the production of this document. The authors gratefully acknowledge them:

Scott Burns, former Director of the Hydrogeology Division, who provided administrative support and review.

The peer review committee, whose review was indispensable in producing an accurate and comprehensive document:

Leslie Wedderburn, Ph.D., Department of Research and Evaluation, SFWMD

James Harvey, Planning Department, SFWMD

Keith Smith, Hydrogeology Division, SFWMD

Steve Krupa, Lower District Planning, SFWMD

Rick Bower, Upper District Planning, SFWMD

Mary-Jo Shine, Upper District Planning, SFWMD

Emily Hopkins, Upper District Planning, SFWMD

Mary Halstead and others, Broward County Office of Environmental Services

Timothy Sharp, CH2M Hill, Inc.

Thomas Tessier, Geraghty & Miller, Inc.

Pete Andersen, GeoTrans, Inc.

Greg Rawl, James M. Montgomery & Associates

Mike Merritt, U.S. Geological Survey

John Lukasiewicz, Mike Bennett, Roberto Sanchez, Phil Fairbank, Pete Dauenhauer, and David Demonstranti, who helped assemble data packages and performed a variety of tasks.

Steve Krupa and Jeff Giddings, who provided insight and assistance in compiling public water supply data.

Joe Chapa, who was indispensable in linking the model into the Geographic Information System format.

Barbara Dickey, who obtained and processed the USGS observation well data used in calibration.

Donna DeMarco, for her assistance with the computer system.

Martin Braun, Tony Lubrano, Paul Benton, Jim McDermott, Arthur Tassinari, Pete Dauenhauer and Bill Barfknecht, for their expertise in well drilling, geophysical logging, aquifer testing, and data collection. Also, Hydrowell, Inc., for providing us with core samples.

The U.S. Geological Survey, for providing essential water level information, digitized canal locations within Broward County, and hydrogeologic information.

Diane Bello, Janet Wise, Chris Madison, David Demonstranti and a number of other technicians who provided the graphics for this report.

We would also like to thank Hedy Marshall for her assistance, as well as her patience, during the editorial phase of this project.

ABSTRACT

The Surficial Aquifer System is the primary source of potable and irrigation water in eastern Broward County. The most productive zone within the aquifer system is the Biscayne aquifer, which is present throughout most of the study area. A three-dimensional ground water flow model of the Surficial Aquifer System was developed using the U. S. Geological Survey MODFLOW code. The model is discretized into 100 rows, 134 columns, and five vertical layers. Initial aquifer parameters were obtained from private consultant reports and from aquifer tests conducted by District personnel. Two transient calibrations were performed (January 1983 through December 1985 and January 1989 through December 1989) by comparing simulated water levels to observed water levels. Two steady state calibrations were performed as well, using January 1983 and January 1989 conditions. Averaged 1989 conditions were also considered.

Based on the results of the calibration, adjustments were made to the aquifer parameters. Results of the sensitivity runs show that the Broward County model is most sensitive to hydraulic conductivity and canal conductance changes.

A fully integrated surface and ground water flow model should be implemented with rigorous representation and conceptualization of the hydrologic cycle. Regulatory criteria based on maximum withdrawals, minimum water levels or minimum net yearly ground water flows to the ocean should be established. A new approach to computing evapotranspiration should be developed.

PURPOSE AND SCOPE

The purpose of this study was to develop a three-dimensional ground water flow model of the Surficial Aquifer System in eastern Broward County. The model is calibrated to recent data and will be used for predictive purposes, as a basis for ground water elements in the Broward County Water Supply Plan, and to assist in evaluating applications for water uses. Other possible applications of this model include:

- 1. Evaluation of short term drought management scenarios during declared water shortages,
- 2. Estimation of potential regional impacts of proposed new ground water uses, and
- 3. Conceptualization of regional effects of constructing new canals or changing the operational rules in existing canals.

LOCATION OF STUDY AREA

Broward County is located in southeast Florida. It is bounded on the north by Palm Beach County, on the east by the Atlantic Ocean, on the south by Dade County, and on the west by Collier and Hendry counties. Broward County encompasses approximately 1,200 square miles. The study area includes eastern Broward County and adjacent areas in Palm Beach and Dade counties. The buffer areas were chosen to provide suitable boundary conditions for the model; however, the primary study area is within Broward County (Figures 1 and 2).

HYDROGEOLOGY

Surficial Aquifer System

The Surficial Aquifer System is comprised of all saturated sediments from the water table down to the relatively impermeable sediments of the Intermediate Confining Unit overlying the Floridan Aquifer System. It is an unconfined aquifer system recharged by rainfall and by leakage from surface water bodies.

The Surficial Aquifer System is heterogeneous. In this study, the system was divided into three broad zones: the upper zone, the Biscayne aquifer, and the lower zone. The upper zone contains the sands, shells and silts of the water table sediments extending down to the top of the Biscayne aquifer. The Biscayne aquifer is made up of extremely permeable, massive biogenic limestone. The lower zone extends from the bottom of the Biscayne aquifer to the silts and clays of the Intermediate Confining Unit. Figures 3A and 3B show general conceptual cross-sections of the Surficial Aquifer System in the north-to-south direction as well as the west-to-east direction. The Surficial Aquifer System tends to thicken toward the east. The reader is referred to the USGS publication <u>Hydrogeology</u>. Aquifer Characteristics, and <u>Ground-Water Flow of the Surficial Aquifer System</u>, <u>Broward County</u>, Florida, by Johnnie E. Fish, for more detailed information on the Surficial Aquifer System.

Biscayne Aquifer

The Biscayne aquifer underlies the upper zone of the Surficial Aquifer System throughout most of the study area. It is composed primarily of solution-riddled biogenic limestone. Hydraulic conductivities in the Biscayne aquifer often exceed 10,000 ft/day (Fish, 1988). The aquifer thickens to the east and the south, and extends upward towards land surface in southern Broward and Dade counties. Water levels in the Biscayne are almost identical to local water table levels, suggesting an unconfined system. However, aquifer tests of extremely permeable zones of the Biscayne may exhibit semiconfined behavior due to significant stratification and wide variations in permeabilities of overlying sediments (Fish, 1988).

Drilling logs, well cuttings and well sample descriptions from consultant reports were examined to delineate the base of the Surficial Aquifer System and the top elevation and thickness of the Biscayne aquifer within it (Appendix A, Table A-1 and Figure A-1). Also, several wells from the hydrogeologic cross-sections in Fish (1988) were used. Well cuttings and cores from District test wells constructed as part of this study were also examined. The base of the Surficial Aquifer System was selected by the occurrence of hydraulic conductivities of less than 10 ft/day (Fish, 1988), by lithologic logs citing increased clay content or significant and vertically continuous low permeability, and by examination of cores and split-spoon samples. The Biscayne aquifer was identified as those zones having hydraulic conductivities of 1,000 ft/day or more (Fish, 1988), by sample descriptions of solutioned crystalline limestone or reports of lost circulation during rotary drilling, and by examination of cores and split spoon samples. Structure contours of the Surficial Aquifer System and the Biscayne aquifer can be found in Appendix A, Figures A-2 through A-4.

FIGURE 1. Study Area for Broward County Model

FIGURE 2. Modeled Study Area

Generalized Hydrogeologic Cross Section of the Surficial Aquifer System in Broward County (3A - West to East, 3B - North to South)

INTRODUCTION

The U. S. Geological Survey modular three-dimensional finite-difference ground water flow code, commonly known as MODFLOW (McDonald and Harbaugh, 1988), was used in this study to simulate the ground water flow and the interaction of ground water and surface water systems. MODFLOW is capable of simulating ground water flow in anisotropic, heterogeneous, layered aquifer systems. The finite-difference approach is block-centered, meaning that the head values are calculated at the center of the cells. Layers may be simulated as confined, unconfined or convertible (confined/unconfined). This model was selected for the following reasons:

- 1. It is available in the public domain,
- 2. It is compatible with most computers with only minor modification,
- 3. The modular structure of the code and its excellent documentation allow modification of the code and the addition of new modules for specialty applications,
- 4. MODFLOW allows flexibility of data file structure and management, which facilitates the employment of and interaction with other software for data manipulation,
- 5. The cell-by-cell flow feature of the code can be used to:
 - A. evaluate in detail flow and head changes associated with various withdrawal scenarios, and
 - B. generate boundary conditions for higher-resolution models within the regional flow model.
- 6. It can be coupled with currently available nondensity dependent solute transport models, and
- 7. A stream package is available for MODFLOW.

The MODFLOW code is written in modular form. It consists of a main routine and a series of independent subroutines called modules. These modules are grouped into packages which address the general use of the model, specific features of the hydrologic system, or particular solution techniques. The hydrologic system packages simulate recharge, evapotranspiration from the saturated aquifer zone, rivers, drains, wells, and other sources and sinks of water external to the model (boundary conditions). Three solution technique packages are available for simulating flow problems: 1) slice-successive over relaxation (SSOR), 2) strongly implicit procedure (SIP), and 3) the preconditioned conjugate gradient (PCG) method. The SIP method was used in this study because it was fast and caused no convergence problems. Table 1 lists the packages used in this study.

Three types of boundary conditions are available for the model formulation: prescribed head, prescribed flux and head-dependent flux. A prescribed head boundary is defined when the head at the boundary is specified as a known function of position and time. Similarly, prescribed flux is defined when the flux is specified as a known function of time at the outer edges of boundaries. The head-dependent flux boundary is defined when the ratio between the head gradient and flux is known. Constant head boundaries, which are a particular case of prescribed head boundaries, maintain the same user-specified head levels throughout the simulation.

Prescribed flux boundaries can be simulated in MODFLOW through the use of external source terms in the model. No-flow boundaries are a type of prescribed flux boundary for which no flow is simulated between the inactive cell and any adjacent active cell. Head-dependent flux boundaries generate a flux dependent on the computed head in the cell and a user-defined head assigned to the external source. Head-dependent flux boundaries can be simulated in MODFLOW through the use of general-head boundaries as well as the river, drain or ET packages. Prescribed head can be represented in MODFLOW as a particular case of head-dependent flux, where the flux can become as large as needed. All types of boundary conditions can be set anywhere within a model grid. A no-flow boundary is implicit along the outer edges and bottom layer of a model grid.

DISCRETIZATION

Space Discretization. The model grid contains uniform cells covering a two million square foot area, as shown in Figure 4. The grid is composed of 100 rows and 134 columns. Grid spacing is 1,000 feet wide (west to east) by 2,000 feet long (north to south). The model is divided vertically into five layers of varying thickness. Vertical discretization

TABLE 1

MODFLOW PACKAGES USED IN THE BROWARD COUNTY MODEL

f

MODFLOW PACKAGE	FUNCTION	USE IN MODEL	
Basic	Handles model administration.	Used	
Block Centered Flow	Computes coefficients of finite difference equations for ground water flow, in an isolated aquifer system considering constant head cells.	Used to represent aquifer system without constant head cells.	
Well	Simulates a source or sink to the aquifer at a specific rate not affected explicitly by heads and cell area.	Used to simulate pumpage and injection wells.	
River	Simulates the effects of river leakage. River may act as recharge or discharge sources depending on the head gradient between the river stage and the ground water regime.	Used to simulate the interaction between a surface water body and the aquifer in cells with maintained SFWMD canals, secondary canals with recharge systems, or secondary canals having free flow with SFWMD canals.	
Drain	Simulates the effects of drains, which remove water from the aquifer when the head in the aquifer is higher than the head in the drain.	Used to simulate water levels in unmaintained canals and some lakes which are not isolated.	
Recharge	Simulates recharge to the aquifer from deep percolation due to precipitation.	Used	
Evapotranspiration	Simulates the effects of evapo- transpiration from a saturated aquifer system.	Used	
General Head Boundary	Simulates a source/sink of water outside model area which provides or removes water to a model active cell at a rate proportional to the head gradient between the source and the cell.	Used to simulate General Head Boundary conditions and prescribed heads.	
Strongly Implicit Procedure (SIP)	Solves the model's finite difference equations using the SIP method.	Used	
Observation Nodes	Generates computed aquifer heads for selected model cells.	Used for calibration and comparison purposes.	

FIGURE 4. Broward County Model Grid

of the Surficial Aquifer System (Figure 5) was designed as follows:

- 1. Layer 1 contains all river, drain, recharge and evapotranspiration cells. Layer 1 extends from the water table to a maximum depth of -15 feet National Geodetic Vertical Datum (NGVD), subject to a minimum saturated thickness of 15 ft. A maximum thickness of 22.5 feet was chosen to prevent drying of cells. The maximum thickness and minimum saturated thickness were selected in order to portray soil conditions and lakes while avoiding drying of cells during model simulations. Where layer 1 is absent (e.g. where the Biscayne aquifer rises towards land surface), the thickness of the layer is set to 15 feet, with corresponding changes in hydraulic conductivity as discussed in the transient calibration section.
- 2. Layer 2 extends from the bottom of layer 1 to approximately the top of the highly permeable limestones of the Biscayne aquifer. Where layer 2 is missing (e.g. where the Biscayne aquifer rises close to land surface), the thickness of the layer is set to 5 feet, with corresponding changes in hydraulic conductivity as discussed in the transient calibration section.
- 3. Layers 3 and 4 generally represent the Biscayne aquifer. The top of layer 3 was assigned to the first occurrence of highly permeable limestone in examined cores and well logs, at the top of strata identified as having hydraulic conductivities of at least 1,000 ft/day in hydrogeologic sections illustrated in Fish (1988). The top of layer 4 (bottom of layer 3) is approximately the midpoint of the Biscayne aquifer. Where the Biscayne aquifer is missing, layers 3 and 4 are reduced to a minimum thickness of three feet (six feet total), with corresponding changes in hydraulic conductivity as discussed in the transient calibration section.
- 4. Layer 5 begins approximately at the bottom of the Biscayne aquifer, or when the highly permeable limestones found above give way to significantly less permeable sands, silts, and shell. The bottom of layer 5 generally coincides with the bottom of the Surficial Aquifer System and the appearance of the green silts and sandy clay of the Intermediate Confining Unit.

Although layers 3 and 4 could be modeled by a single layer, the discretization selected correlates

with that used by Shine, et al., (1989) in a model of Palm Beach County. Figures A-5 through A-12 in Appendix A depict the elevation of the tops of layers 2 through 5 and their thicknesses.

Time Discretization. Transient discretization into 1-month stress periods was chosen because of the availability of monthly pumping reports from public water utilities and computer storage considerations at the beginning of the modeling effort. Two transient calibration periods were simulated; the first period was from January 1983 through December 1985, and the second was from January 1989 through December 1989. Initially, the 1989 period was used only to verify the estimated parameters used for the 1983 through 1985 period. However, significant changes in canal operating systems and the addition and removal of other canals between 1985 and 1989 necessitated a second calibration period. The steady state model, which is a single time step or stress period with no water taken into or released from aquifer storage, uses both January 1983 and January 1989 conditions independently, as well as averaged 1989 conditions.

BOUNDARY CONDITIONS

The function of boundaries is to impose the effects of the external regional flow system on the modeled area. Selecting the correct boundary type and appropriate values is an important consideration, since the response of the model can be greatly affected by the choice of boundary conditions. Boundary conditions are expressed in mathematical equations which represent the physical conditions as interpreted by the modeler. In many cases, true physical boundaries are unknown or are at a great distance from the region of interest; therefore, model boundaries must be defined on a practical basis. Whether a model's boundaries are true physical conditions or practical representations, boundary condition specification is extremely important and requires an understanding of the mathematical role of boundary conditions as well as the hydrogeological environment.

A combination of no-flow, general-head, and general-head acting as prescribed head boundaries were used in this model. Figure 6 shows which cells are active, which are inactive and which are considered general-head boundaries. No-flow boundaries are implicit along the edges of the model.

The general-head boundary package was used to generate head-dependent flux and prescribed head boundaries. According to McDonald and Harbaugh (1988), a general-head boundary consists of a water source outside the modeled area which supplies or removes water to a model cell at a rate proportional

MODEL	-	0	м	4		20 L	
GENERAL HYDRAULIC CHARACTERISTICS	MODERATELY PERMEABLE		BISCATNE AQUIFER	extremely Permeable	MODERATE TO	LOW PERMEABILITY	BASE OF SURFICIAL AQUIFER SYSTEM
GENERAL LITHOLOGY	QUARTZ SAND, SILT, SHELL		MASSIVE BIOGENIC LIMESTONE, OFTEN CRYSTALLINE & HIGHLY	solutioned; sand; shell	MARL, SHELL AND SAND;	LIMESTONE TALUS, GRADING TO CLAYEY SANDY CREEN SUIT	

Generalized Hydrogeologic Column of the Surficial Aquifer System and Corresponding Model Layers

FIGURE 5.

.

FIGURE 6. Broward County Model Boundaries

to the head difference between the source and the cell. The rate at which water is supplied to a cell is given by:

$$Q_m = C_m (H_m - h) \tag{1}$$

where

 $\mathbf{Q}_{\mathbf{m}}$ is the flow rate to or from the cell from boundary m (ft³/day),

 C_m is the constant of proportionality for boundary m (ft²/day),

 H_m is the average head at the source boundary m (ft), and

h is the average head in the cell (ft).

The constant of proportionality for boundary m defined herein as the horizontal conductance, C_{m} , (ft²/day) was calculated using equation 2:

$$C_m = \frac{K_h b W}{F_c L} \tag{2}$$

where

 K_h is the horizontal hydraulic conductivity of the cell (ft/day);

b is the average thickness of the layer (ft),

W is the width of the cell (ft),

 F_c is a dimensionless calibration factor for general-head boundary representation; for prescribed heads, this value ranged between 1 x 10⁻³ to 1 x 10⁻⁵, and

L is the length of the assumed flow path line (ft).

In order to simulate a constant head boundary around the active edges of the model, a large horizontal conductance value was assigned to the general-head cells, causing them to function as prescribed head cells. Prescribed head cells differ from constant head cells in that the head values can change between stress periods. The river package may also be used to create a prescribed head boundary; however, the disadvantage with utilizing the river package is that the actual physical system may not be well represented by vertical flow across an idealized streambed.

Several obvious boundaries were available for the Broward model: the Atlantic Ocean borders the entire eastern edge of the county, and Water Conservation Areas (1, 2A, 2B, 3A, and 3B) border the entire western edge (Figure 2). In the Water Conservation Areas, the boundaries were located far enough west of the levees to reduce any boundary impacts. Under current conditions, the C-15 canal and Lake Worth Drainage District (LWDD) canals in Palm Beach County provide a boundary along the northern edge of the model far enough from the political boundaries of Broward County to avoid boundary flow effects within the area of interest and to prevent stresses in the area of interest from affecting the boundary. In a similar fashion, the C-8 and C-304 canals in Dade County provide a boundary along the southern edge of the model. A detailed discussion of the boundary conditions used in the modeling domain follows.

Eastern Boundary. The Atlantic Ocean is utilized as the eastern boundary of the model. The ocean provides an infinite source of water (at a given head) which can be considered a head-dependent flow boundary at each of the aquifer layers. This boundary was represented using the general-head boundary package. Head elevations at the external source were set at the monthly mean sea level for all model layers. A conversion to equivalent fresh water head was not used. In layers 1 and 2, the eastern boundary cells are in direct contact with the ocean. Accordingly, horizontal conductance values were set large enough to provide an unlimited source/sink of water, thereby acting as a prescribed head boundary.

Layers 3, 4 and 5 were assumed not to be in direct contact with the ocean; therefore, a more restrictive general-head boundary was assigned, with a conductance closer to the actual inter-block transmissivity at the no-flow boundary. The horizontal conductance was decreased with depth in the three lower layers in order to simulate the increasing distance from the oceanic source/sink. Equation 2 was used to calculate the conductances. Conductances were reduced with depth by increasing the F_c calibration factor for each successive layer.

Western Boundary. Figure B-1 in Appendix B depicts the location of the Water Conservation Areas (WCAs) within the model area. The WCAs function as storage basins and their stages are generally controlled by the South Florida Water Management District. The WCAs have been divided into 5 pools and designated by number from north to south as WCAs 1, 2A, 2B, 3A, and 3B. Figures B-2 through B-6 in Appendix B illustrate the average monthly water levels from January 1989 through December 1989 for WCAs 1, 2A, 2B, 3A, and 3B, respectively. Information on the management of the WCAs can be found in An Atlas of Surface Water Management Basins in the Everglades: The Water Conservation Areas and Everglades National Park, by R. M. Cooper and J. Roy.

The WCAs provide a type of prescribed head boundary for the western edge of the model for the

top layers. Since head elevations in the WCAs change significantly with time, the general-head package was used to simulate the boundaries. In layer 1, the cells were given large conductance values. The large conductance values allow the cells to function as prescribed head cells. In layers 2 through 5, equation 2 was used to calculate the conductance; conductance then was decreased through the layers with depth to the limit of the actual inter-block transmissivity at the no-flow boundary. This was accomplished by increasing the $\mathbf{F}_{\mathbf{c}}$ calibration factor, as described in the discussion of the eastern boundary. As a result, the general-head cells in layers 2 through 5 may function more like general-head boundaries than prescribed head boundaries. The western model boundary extends far enough from the levees on the eastern side of the WCAs that stresses occurring within the developed areas of the county should not affect boundary flow conditions.

Northern Boundary. The northern boundary of the model was extended far enough north of the Broward County line to eliminate any boundary effects from the edges of the model. Water bodies near the northern edge of the study area used to simulate boundary conditions include C-15, WCA 1, WCA 2A, and canals within the Lake Worth Drainage District (LWDD). The water bodies were simulated with the general-head boundary package using the conductance term given in equation 2. Similar to the eastern and western boundaries, a large conductance was assumed in layer 1 to create a prescribed head boundary. The conductance was reduced with depth using the F_c calibration factor as previously explained.

Southern Boundary. The C-304 and C-8 Canals are located in the southern edge of the model. These canals are located far enough into Dade County that stresses occurring within Broward County should not effect the boundary flow conditions. General-head boundary conditions were assumed for all layers. A large conductance was assumed in layer 1 to establish a prescribed head boundary. The conductance in layers 2 through 5 was reduced with depth by increasing the F_c calibration factor in equation 2 as previously discussed.

HYDRAULIC CHARACTERISTICS

Transmissivity

Pre-calibration transmissivities for all layers in the model were initially based on estimates of hydraulic conductivity. Horizontal hydraulic conductivity of layer 1 was estimated to be twice the average vertical hydraulic conductivity of the soil profile, based on soil data obtained from the Soil Conservation Service soil surveys of Broward (1976) and Palm Beach (1978) counties, and on aquifer tests in the upper zone of the Surficial Aquifer System in Broward County. In cells containing lakes, the hydraulic conductivity was allowed to increase up to an additional 1,250 ft/day, depending on the size of the lakes. Since layer 1 is classified as unconfined, MODFLOW calculates the transmissivity of layer 1 by multiplying horizontal hydraulic conductivity by the elevation of the water table above the bottom of the layer.

Transmissivity of layers 2 and 5 were initially calculated as the product of layer thicknesses and a uniform horizontal hydraulic conductivity value of 50 ft/day. The 50 ft/day value was chosen to correspond with the hydraulic conductivity of non-Biscayne sediments used in the South Palm Beach County model (Shine, et al., 1989). As a result of the calibration process, final hydraulic conductivity values for layer 2 ranged between 30 and 1,130 feet per day. Transmissivity values ranged between 325 and 13,850 ft²/day for layer 2 and between 540 and 15,180 ft²/day for layer 5. These layers are classified as confined/unconfined, with the thicknesses of each layer remaining unchanged throughout the simulation. Storage coefficients may alternate between confined and unconfined values should the layers desaturate.

Initial transmissivity estimates for the Biscayne aquifer (layers 3 and 4) were based on a generalized transmissivity map of the Biscayne contained in a 1986 report by James M. Montgomery, Inc. Transmissivity value points along those contours as well as those from several aquifer performance tests (APTs) were kriged using Surfer (Version 4.12, Golden Software) and then converted to model cell values. The APT locations and transmissivity values used are shown in Table 2. The model cell transmissivity values were divided by the combined thickness of layers 3 and 4 to calculate hydraulic conductivity values. A value of 10,000 ft/day was set as a maximum limit for hydraulic conductivity of the Biscayne aquifer. Although this value can be exceeded in the Biscayne (Fish, 1988), the use of hydraulic conductivity values greater than 10,000 ft/day did not change model results. The thickness of the Biscayne then was multiplied by the hydraulic conductivity to regenerate transmissivity values. In areas where the Biscayne aguifer thins appreciably, yet is expected to conduct large volumes of water, a minimum thickness of 35 feet was used in recalculating the transmissivities. Where the Biscayne aquifer was absent, transmissivity was calculated by multiplying a minimum thickness of six feet (three feet each for layers 3 and 4) by the

TABLE 2Summary of Aquifer Test Data Used to Establish the
Transmissivity of the Biscayne Aquifer Within the Surficial
Aquifer System

Location or	Source of	Florida Sta Planar Co	Transmissivity (sq ft/day)	
Owner	Information	X (east)	Y (north)	
USGS PB 1574	Shine, 1989	760734	759816	31,000
Morikami Park	Shine, 1989	776734	759816	140,000
USGS PB 1581	Shine, 1989	771734	739816	88,000
Wellfield 3B	JMM, 1989	763734	605816	400,000
Quiet Waters Park	SFWMD ²	774734	721816	133,700
Tradewinds Park	SFWMD ²	771734	701816	198,000
Prospect Wellfield	CDM, 1980	758734	669816	260,000
Coral Springs	CDM, 1986	743734	707816	37,000
North Springs Improvement Dist.	G & J, 1979	729734	709816	10,000
Dixie Wellfield	CDM, 1980	753734	641816	140,000
Deerfield Beach	G & J, 1980	785734	715816	46,800

Abbreviations:

JMM - James M. Montgomery, Inc.CDM - Camp Dresser & McKee, Inc.G & J - Gee & Jenson, Inc.

¹The coordinates represent the centers of model cells where the transmissivity values were applied rather than exact coordinates of the pumping test wells.

²Conducted by SFWMD as part of this study.

average of the hydraulic conductivities of the adjoining cells in layers 2 and 5. In all of the above calculations, the Biscayne aquifer was treated as a single unit; transmissivities were halved to separate layers 3 and 4. Transmissivity values for either layer 3 or 4 ranged from 180 to 595,000 ft²/day. Hydraulic conductivity values for each layer were adjusted non-uniformly, to a maximum change of \pm 15 percent, during the calibration process.

The composite transmissivity (sum of all transmissivities in all layers) which approximates the transmissivity of the Surficial Aquifer System as a whole is shown in generalized transmissivity regions in Figure 7. Layer 1 transmissivities were based on the average water table elevation for the composite transmissivity calculations. Transmissivity contours for layers 2 through 5 may be found in Appendix A, Figures A-13 through A-15.

Specific Yield and Storage

Calibrated specific yield values in layer 1 range from 0.19 to 0.21, with an average value of 0.2, a typical value for unconfined aquifers (Walton, 1987). The specific yield was allowed to increase to a maximum value of 0.5 when large lakes were present in cells, depending on the size of the lakes.

Calibrated storage coefficients in layers 2 through 5 were set to a specific storage value of 5×10^{-6} ft⁻¹ multiplied by the aquifer thickness (feet). Final storage coefficient values varied as follows:

<u>LAYER</u>	<u>MINIMUM</u>	<u>MAXIMUM</u>
2	2 x 10 ⁻⁴	6 x 10 ⁻⁴
3	4 x 10 ⁻⁵	1 x 10 ⁻⁴
4	4 x 10 ⁻⁵	1 x 10 ⁻⁴
5	2 x 10-4	6 x 10 ⁻⁴

Specific yield and storage coefficients were adjusted non-uniformly in space during the calibration process.

Vertical Conductance

Within the MODFLOW model, vertical flow between layers is controlled by the vertical conductance coefficients (V_{cont}). V_{cont} is a composite term which is input into the model. V_{cont} is expressed in units of day⁻¹. It is calculated for the two nodes located at vertically adjacent geohydrologic units using the following equation based on the Vcont equation in MODFLOW (McDonald and Harbaugh, 1988):

$$V_{cont} = \frac{1}{\frac{b_{u}}{2K_{hu}A_{vh}}} + \frac{1}{\frac{b_{l}}{2K_{hl}A_{vh}}}$$
(3)

where

 b_u and b_i are the thicknesses of the upper and lower layers (ft),

 K_{hu} and K_{hl} are the horizontal hydraulic conductivities for the upper and lower layers (ft/day), and

 A_{vh} is the ratio of vertical to horizontal hydraulic conductivity (the vertical anisotropy factor) for each layer in consideration (dimensionless).

The factor A_{vh} was adjusted non-uniformly in space during the calibration process.

The Surficial Aquifer System in the study area behaves as a semiconfined system. Calibrated values of the vertical anisotropy factor, Avh, for the upper zone of the Surficial Aquifer System (layers 1 and 2) range from 0.02 to 0.08, with an average value of 0.055. The Biscayne aguifer (layers 3 and 4), when present, behaves as a single semiconfined unit. It is characterized by high values of hydraulic conductivity in any direction. The resulting high values of V_{cont} cause layer 3 to react to stress in a similar manner as layer 4. Vertical anisotropy values from 0.08 to 0.15 were used in the Biscayne. with an average value of 0.15. Although this value appears low, it was found to yield acceptable results. Where the Biscayne aquifer is absent, the averaged value for layers 2 and 5 is used. Values of vertical anisotropy for the lower zone (layer 5) range from 0.02 to 0.09, with an average value of 0.052.

SURFACE WATER INTERACTION

The canals function as a source of recharge to the aquifer and a recipient of discharge from the aquifer. Canal-aquifer interaction is dependent on several factors:

- 1. the degree of hydraulic connection between the canal and the aquifer,
- 2. the difference in water level between the aquifer and the canal (see Figure 8),
- 3. the shape of the flow lines in the aquifer surrounding the canal reach (for example, the flow lines may be more vertical or more horizontal),

FIGURE 7. Generalized Composite Transmissivity Map of the Surficial Aquifer System

When the water level in a canal is higher than that in the aquifer it penetrates, water moves into the aquifer.

FIGURE 8. Hydraulic Connection Between a Canal and an Aquifer (after Klein, *et al.*, 1975)

s -

- 4. the local aquifer hydraulic conductivity associated with the canal reach,
- 5. the geometric characteristics of the cross-section of the canal reach, and
- 6. restricted seepage rates due to clogging of the canal reach by fine sediments of significantly lower hydraulic conductivity than the underlying material.

McDonald and Harbaugh (1988) approximated vertical leakage through the canal bed by the following equation:

$$Q = \frac{KLW}{M} (H_c - h)$$
 (4)

where

Q is the leakage through the reach of the canal bead (ft^{3}/day),

K is the hydraulic conductivity of the canal bed (ft/day),

L is the length of the reach (ft),

W is the width of the canal (ft),

M is the thickness of the canal bed (ft),

H_c is the average monthly canal stage (ft), and

h is the average head in the aquifer cell containing the canal reach (ft).

Physical System Background

There are many major and minor canals within the study area. Understanding the function of these canals and their relation to the ground water levels is essential in developing an effective model for the study area.

Water levels in the major canals are maintained by the South Florida Water Management District (SFWMD) through the use of pump stations and control structures. Figure B-1 in Appendix B illustrates the location of SFWMD control structures and pump stations in the model area. Table B-1 in Appendix B lists the control elevations for SFWMD salinity control structures.

During dry periods, water is transported via canals from Lake Okeechobee and the Water Conservation Areas into the study area for water supply, to maintain adequate water levels in the canals, and to prevent salt water intrusion. During wet periods, water is either discharged to the ocean or pumped into the Water Conservation Areas in order to reduce the potential for flooding. There are numerous secondary canals and lakes throughout the study area. Most of these canals are maintained by local water control districts (WCDs), drainage districts, or improvement districts. There are 26 drainage districts in Broward County. Figure B-7, Appendix B shows the location of the drainage districts in the model area and Table B-2 lists their permitted control elevations. Table B-2 also indicates if the district has a recharge system which allows it to bring water into the district.

The Hillsboro Basin of the LWDD was divided into subareas based on control elevations and the operational procedure of the LWDD. Figure B-7 shows how the subareas of the Hillsboro Basin were divided and Table B-2 lists the control elevations. The subareas were similarly divided as outlined in the report <u>Ground Water Resource Assessment of</u> <u>Eastern Palm Beach County, Florida</u> (Shine, et al., 1989).

As shown in Table B-2, several districts have ground water recharge systems. Recently, the county-operated WCD 2 and the Sunshine Drainage District obtained water use permits to withdraw water from SFWMD canals to maintain water levels and to supply water to wellfields within their respective drainage districts. Withdrawals did not commence, however, during the first calibration period from 1983 to 1985. Old Plantation WCD and Plantation Acres Improvement District have pumps which are capable of bringing water into their systems as well; however, these pumps have never been used for recharge. The LWDD withdraws water from the Hillsboro Canal via pumps on the E-2-W Canal in order to maintain the control elevations in the canals shown in Table B-2. In addition, the City of Boca Raton withdraws water from the Hillsboro Canal into the E-2-E Canal to recharge the aquifer within the vicinity of its Western Wellfield in the Hillsboro Basin. The recharge systems for other districts consist of free flow with SFWMD canals, with the flow direction being dependent upon the difference in water levels between the individual drainage districts and the SFWMD canals. In some cases, the drainage district canals are allowed free flow when SFWMD canal elevations are higher than their own.

In the past, there were several farms located within the Pinetree, Cocomar, and Turtle Run WCDs. These farmers were part of the Deerfield Irrigation Company Inc. (DICI) (December 1991 meeting with T. Butler, former director of DICI and also personal communication with D. Markwood, Water Resource Management Division, Broward County). These farmers utilized a pump on the

Hillsboro Canal and a canal that runs parallel to US 441 to supply water to the farm ditches. Figure B-9 in Appendix B, modified from Broward County (1990), is a map which shows the major secondary canals and structures within the DICI. Due to the interconnection of the canals in the area and the hydraulic connection between the canals and the aquifer, the pumpage from the farmers in DICI helped recharge the aquifer throughout most of north central Broward County. By agreement between the farmers and the local drainage districts. the average water level in the main canal is 11.6 feet NGVD. However, the water level in the main canal can rise as high as 12 feet NGVD during the growing season and can drop to 11 feet NGVD at other times. The farmers attempt to maintain the levels in the irrigation ditches between 12 and 14 feet NGVD. The growing season usually begins in November and ends in April, although it can begin as early as September and end as early as January. The highest water levels occur in November, at the beginning of the dry season. The farmers lower the water level an average of two feet during the remainder of the growing season in order to protect the crop roots. The irrigated acreage within the DICI has decreased from about 2,700 acres in 1982 to about 850 acres by 1989. Many of the farmers moved out between 1980 and 1985.

An analysis of Tables B-1 and B-2 indicates that canal seepage from the Hillsboro Basin within the LWDD may also help maintain ground water elevations in Broward County. As shown in Tables B-1 and B-2, the LWDD maintains the water levels in the Hillsboro Basin canals at a higher level than either the Hillsboro Canal or any of the adjacent drainage district canals in Broward County. This operational procedure by the LWDD allows for seepage from the LWDD area into the Hillsboro Canal and underneath into the drainage districts in northern Broward County.

Several areas which are not included within an existing drainage district were grouped into a drainage basin as part of this study. In most of these areas, drainage elevations were established for flood protection purposes (personal communication with Tony Waterhouse, SFWMD). Figure B-8, Appendix B shows the location of these areas.

Model Input

The canals within the study area were classified as either rivers, tidal rivers or drains. The river category consists of canals owned by the SFWMD, canals owned by the drainage districts which had active recharge systems during the calibration period and canals having free flow with SFWMD canals. Tidal rivers are those rivers or portions of rivers subject to tidal influences. The drain category consists of the remaining canals, which function as drains only and provide no recharge to the aquifer. The canal locations and widths were measured from aerial photos or obtained from SFWMD records. Canal bottom elevations were obtained from Corps of Engineers canal profile records or estimated when no other information was available. The data was digitized and put into ARC/INFO format. The model grid was superimposed on the river coverages, then each canal reach was placed in the appropriate cells using the ARC/INFO Geographic Information System. Figures 9 and 10 indicate which cells contain rivers or drains.

The canals classified as rivers and tidal rivers were simulated using the river package. Water may flow from the aquifer to the river or vice versa depending on the head gradient between the river and the aquifer. Average monthly canal stages were determined from the SFWMD data base and/or records. The remaining canals act as drains. Only layer 1 has river or drain cells. The difference between the river package and the drain package is that the drain package only allows flow from the aquifer to the drain.

Initial hydraulic conductivity values for both river and drain bottom sediments were estimated at 0.75 ft/day. Through the calibration process, these values subsequently were adjusted to a value of 1.1 ft/day, with tidal river bottom sediments given a value of 0.52 ft/day. The lower hydraulic conductivity value assigned to the tidal river sediments was based on the assumption that tidal channel bottoms probably contain a greater amount of fine-grained, low permeability mucks than do river or drain channel bottoms.

The thickness parameter M of equation 4 was varied during the calibration process after the above modifications to hydraulic conductivity were made. Beginning with an initial uniform bed thickness of one foot for all river and drain cells, thickness values were varied non-uniformly in space to achieve a satisfactory calibration. Final bed thickness values ranged from 0.7 to 1.25 feet.

RECHARGE

The average net recharge depth in a model cell resulting from precipitation, R_p , can be computed using the mass balance equation as:

$$R_p = P_n - Q_d - ET_u - ET_s \tag{5}$$

where

FIGURE 9. Layer 1 Cells Containing Rivers

Layer 1 Cells Containing Drains

 P_n is the average net precipitation depth over the cell not lost to interception or depressional storage,

 Q_d is the average depth of water lost to surface drainage (not otherwise simulated using a MODFLOW package),

ET_u is the average evapotranspiration depth from the unsaturated zone (not calculated by the evapotranspiration package in MODFLOW), and

 ET_s is the average evapotranspiration depth from the saturated zone (calculated by the evapotranspiration package in MODFLOW).

Units may be any consistent unit of length; this model uses feet.

The evapotranspiration depth from the unsaturated zone, ET_u , was not considered in this model. In areas where there is a significant unsaturated zone above the water table, however, the recharge calculations may become inaccurate without considering ET_u . A portion of the calculated recharge, R_p , never reaches the aquifer because it is trapped and used by plants at the unsaturated zone. This limitation will be resolved in the complete recharge package (currently under development). In some cases, an overly high recharge rate caused by this limitation can be drained away by canals.

Net Precipitation. The average monthly net precipitation depth, P_n , for a cell can be approximated from the total monthly precipitation depth over the cell, P_t , as:

$$P_{n} = MAX \{K_{i}P_{i} - \sum_{n=1}^{N} K_{d}(n), 0\}$$
(6)

where

K_i is the interception coefficient,

 $K_d(n)$ is the depth of daily depression storage loss (in feet, for this model), and

N is the total number of days in a given month.

Interception is that portion of gross precipitation which wets and adheres to aboveground objects until it returns to the atmosphere through evaporation (Bower, et al., 1990). The quantity of water intercepted depends upon the storm character, the season of the year, and the species, age, and density of the prevailing plants and trees. The total interception by an individual plant is directly related to the amount of foliage. For non-urban land uses, extreme values of K_i can be defined as (Viessman, et al., 1977):

$$K_i = \{ \frac{1.00}{0.75} \text{ for clear bare ground surface (0\% interception)} \\ interception \}$$

Values for K_i in urban areas ranged from 1.0 to 0.5, depending upon the land use type. The value of K_i assigned to a model cell represented the weighted average of the K_i values for all land use types within the cell. Table C-2 in Appendix C lists land use codes and corresponding values for K_i .

Precipitation that reaches the ground surface may infiltrate, flow over the surface, or become trapped in numerous small depressions. The depression storage loss for impervious drainage areas varies from 0.05 inch, on a slope of 2.5 percent, up to 0.11 inch, on a slope of 1 percent (Bower, et al., 1990). The upper limit of 0.11 inch (0.009 feet) was assumed for the model. The model depression storage loss, K_d , was calculated as:

$$K_{d} = K_{d}^{max} \{MAX \{ [1 - (\frac{K}{K_{m}})^{\frac{1}{2}}], 0 \} \}$$
(7)

where

 K_d^{max} is the maximum daily depression storage losses for the stress period (an upper limit of 0.11 inches or 0.009 feet was assumed for each day).

K is the vertical hydraulic conductivity of the soil layer (in ft/day for this model), and

 K_m is a calibration factor. It is the value of hydraulic conductivity at which infiltration is assumed to be nearly instantaneous, thus precluding evaporative losses from storage in depression (in ft/day for this model).

A (K/K_m) value of 0, signifying an impervious drainage area, implies a K_d value of 0.11 inch per single precipitation event; and a (K/K_m) value of 1, a highly pervious area, implies a K_d value of 0. Rainfall of less than the critical daily precipitation depth K_d evaporates and creates neither infiltration nor runoff drainage.

Only one precipitation event per rainy day of at least 0.11 inch was assumed. Interception storage capacity is usually reached early in a storm event. This implies that a larger fraction of rainfall is intercepted in depressions during numerous small storms than during one equivalent severe storm (Bower, et al., 1990). The value of soil hydraulic conductivity, K, in a model cell was estimated by examination of the tables of saturated vertical permeability for applicable soil types found in Soil Conservation Service soil survey books (Pendleton, et al., 1976 and McCollum, et at., 1978). Soil permeability values ranged from 12 ft/day to 40 ft/day throughout the modeled area. The calibration factor, K_m , was set at 500 ft/day.

Surface Drainage. The net average depth of water lost to surface drainage, Q_d , can be estimated by:

$$Q_d = K_s \ K_a \ P_n \tag{8}$$

where

 K_s is a coefficient relating the potential for runoff to surface drainage, and

 K_a is a coefficient relating the potential for aquifer recharge from surface drainage.

 K_s varies between 0 and 1, depending on the potential of the land use type to generate surface drainage into a surface water body. K_s takes into account the effect of drainage systems which may recharge the unsaturated zone of the aquifer. The value of K_a is a function of the average hydraulic conductivity and the average slope of the land surface. Coefficient K_a has a value of 1 if there is no infiltration into the unsaturated zone, and has a value of 0 when rainfall completely recharges the unsaturated zone. Model values for K_s varied between 0.1 and 0.3, with most values being 0.1. Table C-2 in Appendix C shows land use codes and their assigned values for K_s . The value for K_a was defined as:

$$K_a = K_a^{max} \left(1 \cdot K/K_{max} \right) \tag{9}$$

where

 K_a^{max} is the maximum value that K_a may take (less than or equal to 1),

K is the hydraulic conductivity of the soil layer, and

 K_{max} is the maximum soil hydraulic conductivity in the study area.

The net direct surface runoff in southeastern Florida is assumed to be relatively small. However, the effective recharge into the aquifer depends on the ground water storage available. In many cases, the ground water flow into the canals due to precipitation may be quite large, depending on the availability of stored ground water. At the same time, the amount of water released into the ocean due to a given precipitation event depends on the storage available in the surface water bodies and on flood protection criteria imposed on canal systems. The lack of an integrated surface and ground water model in the current application is a shortcoming when generating global mass balance for the system.

Rainfall stations from which total precipitation data were obtained are shown in Figure C-2, Appendix C. Precipitation was distributed throughout the model by the Theissen polygon method, which entails applying rainfall from the nearest active rainfall station to each model cell. Total precipitation polygons are shown in Figures C-3 and C-4 for January and July of 1989. Net recharge to the Surficial Aquifer System in Broward County is somewhat dependent upon land use type. For cells containing 50 percent or greater urban land uses, the ratio of net recharge to total precipitation was about 41 percent for January 1989 and about 55 percent for July 1989. In predominantly non-urban areas, the ratio of net recharge to total precipitation was approximately 55 percent in January 1989 and about 71 percent in July 1989. The effect of land use on net recharge to ground water should be explored further. A general land use map of Broward County is shown in Figure C-1, Appendix C.

EVAPOTRANSPIRATION

Water loss through direct evaporation and through transpiration from the saturated zone by plants is simulated in the model by the evapotranspiration (ET) package of MODFLOW. The following assumptions are applied (McDonald and Harbaugh, 1988):

- 1. When the water table is at or above a specified elevation, termed "ET surface", ET loss from the water table occurs at a specified maximum rate,
- 2. When the depth of the water table below the ET surface exceeds a specified value, termed the "extinction depth" or "root zone", ET from the water table ceases, and
- 3. ET from the water table varies linearly between the above limits.

ET surface. The ET surface elevation is represented by the land surface elevation of the modeled area minus any significant capillary zone height. Initial land surface values were taken from the most recently available USGS 7.5 minute topographic quadrangle maps and from additional control points such as land surface elevation from USGS monitor wells. These points were then contoured and smoothed using SURFER (Golden Software). Where water bodies such as lakes or borrow pits were present, the free water surface was used as the base elevation. The ET surface elevation was altered ± 1.5 feet for specific cells during the calibration process.

Maximum ET rate. The monthly potential evapotranspiration depth, ET, was estimated using the modified Blaney-Criddle equation. The basic form of the equation is:

$$U = k k_t \frac{p_m t_m}{100} \tag{10}$$

where

U is the crop ET for a given month in inches per day from layer 1,

k is a consumptive use coefficient which varies according to the crop type and growth stage,

 k_t is a climatic coefficient which is related to the mean monthly air temperature (It is defined as $k_t = .0173t - .314$, where t is Fahrenheit temperature),

 p_m is the percent of daytime hours of the year which occurred during the month, and

 t_m is the mean temperature for the month, in degrees Fahrenheit.

The consumptive use coefficient is defined as:

$$k = k_c \ k_f \tag{11}$$

where

 k_c is a crop coefficient reflecting the growth state of the crop (Table C-3, Appendix C), and

 k_f is a coefficient reflecting the fraction of land surface which is covered with a specific type of vegetation (also Table C-3). Values for K_f vary between 0.05 and 1.0.

Temperature data was used from rainfall stations in Pompano Beach and Fort Lauderdale. Crop coefficients for each land use type (k_c) were either taken directly from or inferred from values presented in Table C-1 and C-2, SFWMD's Permit Information Manual Volume III. Values of k_f for urban land uses were determined for each land use type by examination of appropriate surface water permit data for ratios of pervious to impervious area. A k_f value of 1 was assigned to all land use types except urban.

Extinction Depth. Extinction depth represents the depth of the water table below the ET surface elevation beyond which evapotranspiration from the water table ceases. It physically represents the depth to which the roots of plants extend below land surface. Extinction depths in the model are related to land use and are based upon estimated root depths for various kinds of vegetation (memorandum with list of vegetation types and root depths, dated April 26, 1990, from Thomas Teets to Michael Bennett, SFWMD). Land use codes and their assigned extinction depth values are shown in Table C-4, Appendix C.

Water Table and Capillary Fringe. The variation of evapotranspiration with the water table depth depends on the ground cover conditions. It is apparent that the deeper the roots, the greater the depth at which water losses occur. Even with relatively deep water tables, evapotranspiration does not necessarily cease because upward transport by capillary action can still occur. Capillary rise is a function of soil grain size and can vary from 0.3 feet in a coarse gravel to six feet in clay (Fetter, 1980). Since MODFLOW does not address ET occurring when the water table drops below the root zone. capillary fringe ET can be represented by reducing the original ET surface (land surface) by an amount equal to the capillary fringe height. To be physically accurate, however, the capillary zone height should be added to the water table level. Since the elevation of the water table changes with time, this raising of the available water level would need to be incorporated within the MODFLOW program. Therefore, in order to simplify the representation of the capillary fringe ET, the ET surface elevation can be lowered by an amount equal to the capillary zone height. In the current model, the capillary zone height was ignored, since the model is insensitive to changes in ET surface elevation or extinction depth. It is expected that the actual ET removed from the saturated ground water zone will be close to zero when a crop is well irrigated. This is because the water lost to ET comes from the irrigation system. The model indirectly simulates this effect, particularly in cases where grove canals keep ground water levels below the root zone.

GROUND WATER USE

Introduction

Data from individual water use permits issued by the SFWMD and user pumpage reports were used to prepare the well package of the model. All users of water are required to obtain a water use permit (SFWMD, 1985). There are two types of water use permits; individual and general. Individual permits are required from a user if the demand equals or exceeds 100,000 GPD. General permits are issued for uses under 100,000 GPD. The exceptions to the permitting requirement are single family homes, duplexes, and water used strictly for fire-fighting (SFWMD, 1985). The general permit and exempted uses were considered insignificant for a regional study and therefore were not included in the well package. The individual permits were divided into two categories: public water supply and non-public water supply.

Public Water Supply Use

At present there are 33 individual public water supply permits in Broward County. The permit files for each utility were reviewed for well locations and well construction data. Individual well locations were digitized and located on the model grid. Well construction data was used to determine in which model layers the withdrawals were occurring. Each utility was contacted concerning its wellfield operation schedule for each specific well. The wellfield operation schedules were used to accurately simulate the withdrawals. Public water supply wellfields in Palm Beach County and Dade County that are within the study area also were incorporated into the model. Figures C-5 and C-6 in Appendix C show the locations of all cells with public water supply uses within the study area. Table C-5 in Appendix C provides information on the utilities within Broward County.

Non-Public Water Supply Use

Most other uses of water within the study area consist of mining-dewatering, industrial, and agriculture uses. Table C-7 in Appendix C shows the locations of all cells containing non-public water supply water uses incorporated within the model.

Mining-dewatering is a short-term use. In most cases, the users are required to store the water on-site. The only water losses from this type of water use are due to evaporation, which is already accounted for in the ET package. In addition, water levels during mining-dewatering are lowered within a relatively small area, producing an insignificant impact in the context of a regional model with a coarse grid. For all of these reasons, miningdewatering uses were not incorporated into the model.

There are few industrial users of ground water in Broward County. The most significant ground water industrial withdrawal is from the Florida Power & Light plant, permit #06-00503-W. The SFWMD also classifies commercial, recreational, air-conditioning and various other types of water uses as industrial (SFWMD, 1985).

The largest non-public water supply use in Broward County is agricultural irrigation use. This category includes all farming, golf, recreational, landscaping and nursery uses. Since most agricultural users are not required to submit pumpage reports to the District, the withdrawals were estimated. The irrigation water requirements of different crops were calculated using a method described by the U.S. Soil Conservation Service (USDA, 1970). This method uses the modified Blaney-Criddle formula to approximate the water requirements of various crops. Factors such as crop type, soil type, air temperature, daylight hours, effective rainfall, and irrigation system efficiency are used to calculate the irrigation requirements of different crops found throughout the modeled area.

The irrigation requirements for each permitted use were estimated for each month of the two calibration periods (January 1983 through December 1985 and the calendar year of 1989). The monthly irrigation requirement for each permitted use was distributed among the withdrawal facilities in proportion to their pump capacities. Individual wells were then assigned to the proper model cell.

CALIBRATION

"Steady state" can be viewed as an average condition achieved over a long period of time, and assumes that no major changes in stress rates occur during that time. Assuming constant stress rates into and out of the aquifer, the period of time required to reach steady state depends on the aquifer properties. When the stresses that drive ground water flow change very slowly in time relative to the rate of change within the aquifer system, steady state assumptions are justified. In many cases, however, the steady state condition is hypothetical due to the artificially rapid changes applied to the aquifer system, and transient calibration processes need to be emphasized.

Before significant pumping or drainage of a system begins, a state of approximate equilibrium prevails in the undeveloped ground water reservoir. Under pre-development conditions, recharge to the system equals discharge from the system over time; hence, no net change in ground water storage occurs. Some type of pre-development condition for Broward County was present at the beginning of this century, for which little or no data exists. At the present time, the aquifer system is in a dynamic transient process. However, it can be said that the Broward model, on a monthly basis, behaves in "quasi-steady-state" manner due to the very high hydraulic conductivity of the Biscayne aquifer. As a result, the "memory" of the system is short. Memory of an aquifer system can be described as the length of time that a stress applied to a system continues to significantly affect the rate of change in water levels within that system. In general, the Broward model exhibits a system memory of less than two months.

Both steady state and transient conditions were taken into account in the model calibration process. Figure E-1 in Appendix E shows the locations of the observation wells used in this process. For calibration and verification purposes, two periods were considered. The first calibration period was from January 1983 through December 1985, and the second was from January 1989 through December 1989. The first multi-year period was chosen so that the effect of annual variations in canal stages, evapotranspiration, irrigation and seasonal rainfall could be explored. The second period was chosen because it encompassed a period of significantly below normal rainfall, and because of changes in canal operating schedules and addition or removal of canals in the time since the first calibration period. USGS observation well water

levels used in the calibration process are published in the annual USGS Water Resources Data reports for water years 1983 to 1986 and 1989 to 1990.

The calibrations were completed by a trial and error process. Small simulation periods were used in the transient simulations until relatively stable conditions in the aquifer systems were achieved (i.e. head levels were realistic and showed reasonable variation over time). Adjustments to parameters were made as necessary to adequately match computed and observed values.

STEADY STATE CALIBRATION

The steady state runs served six purposes:

- 1. to detect obvious errors in the input data sets to MODFLOW,
- 2. to make the initial adjustments to the aquifer parameters used in the model,
- 3. to generate starting heads for the transient runs,
- 4. to monitor parameter modifications in each transient calibration run,
- 5. to act as the base case for most of the sensitivity analyses, and
- 6. to act as the base case for predictive simulations.

The pumpage applied in the steady state runs comprises both estimated irrigation water use and reported public water supply pumpage for 1983 or 1989 runs. Data from January 1983 and January 1989 were applied to two separate sets of steady state runs. January 1983 represents a wet month and January 1989 represents a very dry month. The computed average conditions taken over the year 1989 were also used for comparative purposes. The January 1983 and 1989 values of recharge, evapotranspiration, and average surface water stage elevations were used and behaved as a "quasi-steady-state" condition. January conditions were found to be close to average input conditions for the system, with the exception of January 1989 rainfall conditions, which were exceptionally low. The model calibration is non-unique since different sets of parameters can give similar results. The final steady state runs provided much of the information used to describe the ground water flow regime in the study area.

Calibrated steady state heads in layer 1 representing end-of-month values are shown in Figure D-1, Appendix D. Since canal operating systems significantly changed from 1983 to 1989, calibration results from 1989 only are presented, as those more closely reflect current conditions. Simulated heads in other layers are not shown since the differences between layer heads are insignificant, except near surface water bodies and boundaries. Figure D-2 compares computed water levels to estimated observed water levels. The observed water levels used for interpretation during calibration are based on end-of-month field observations in wells and averaged monthly canal stages for the same month. The estimated errors in model water levels in all active cells are generally within the range of \pm one foot. The average canal stage elevation and the ground water heads were assumed to approximate steady state conditions under monthly average conditions for January 1983 and 1989.

TRANSIENT CALIBRATION

A series of transient runs were made to calibrate the model to observed water levels using historical meteorological conditions and either reported or estimated water use. The transient calibration simulates the periods of January 1983 through December 1985, and January 1989 through December 1989. The transient runs comprised 36 and 12 stress periods of one month each, respectively. Each month was simulated by a stress period comprising five time steps; the reader is referred to the MODFLOW definition of time steps and stress periods (McDonald and Harbaugh, 1988). The accuracy of the model is enhanced by using more time steps per stress period; however, sometimes the increased computer run time required for more time steps is prohibitive. In the case of the Broward County model, CPU run time did not change significantly with one or five time steps.

Starting heads for each calibration period were calculated from water level data obtained from USGS monitor wells and the average canal stage elevations and boundary head values for January 1983 and January 1989. The data was regionalized using a kriging interpolation technique, which provides a head value for every model cell. The kriged heads were used as starting heads for two onestress periods runs (January 1983 and January 1989) without application of recharge or pumping stresses, and with observation well head levels applied as constant head values in order to force the computed water levels near observation wells. The model head values generated from these runs were used as starting heads for the transient runs. Comparative hydrographs for observed and simulated water levels were generated for those cells that correspond to the location of USGS monitoring wells. These were used to aid in the interpretation of several MODFLOW runs, particularly with regard to how the simulated heads changed over time in response to varying stresses. The hydrographs are presented in Appendix E.

The goal of the calibration process was to reduce the difference between observed water levels in monitor wells and calculated water levels in the cells to within the tolerance of \pm one standard deviation of the fluctuation for a particular month. Standard deviations were determined from well water levels for all individual months, for the available online period of record. When water level data was not available for a given month for an observation well, the standard deviation was determined from water levels for all available months for that well. As stated previously, observation well water levels represent end-of-month values.

A satisfactory calibration was obtained. In most cases, average absolute errors were less than 0.75 feet. The average standard error for all observation wells is about 0.45 ft. Figures in Appendix E compare hydrographs of computed and observed water levels at the end of each stress period in 1989. The pattern match between simulated and historical water heads was acceptable. The absolute difference between computed and observed values was less than one foot or one standard deviation of the historical values for each month for most stress periods.

The acceptability of the matching varies somewhat based on discretization considerations such as distance of monitor wells from the center of a model cell, proximity to surface water bodies and the presence of pumping wells in a cell. Differences in computed and observed levels could be explained as follows:

1. The computed water levels represent the average water level over a model cell. If actual levels vary significantly across the 1,000 by 2,000 feet rectangular cell, monitor well levels may not closely match the computed levels. This is especially true where wells are located within public water supply wellfields and stresses on the aquifer cause steep gradients or where wells are located near surface water streams where strong natural gradients occur. In most cases, the gradient across a cell is sufficiently small that the monitor well represents the cell conditions. Cell-wide averaging effects are
evident in comparing observed and computed levels in the cells containing wells G2395 and G820A, where Fort Lauderdale's Prospect Wellfield is located.

2. Rainfall in the study area tends to occur as intense short-term events over relatively small areas. In many cases, ground water levels respond almost immediately to these events. Similarly, canal water levels respond with a small time lag to these intense storms. The precipitation is applied to the model as a total depth occurring over the month, whereas observation well heads represent end-of-month values. An end-of-month storm can result in locally high water levels in some wells and canals not well represented by the monthly time discretization in the model.

Modifications to achieve calibration are discussed in the following sections. As a general rule, changes to the model parameters during calibration were made in the following order:

- 1. river and drain conductances,
- 2. horizontal hydraulic conductivity,
- 3. vertical anisotropy of the layers,
- 4. ET surface elevation, and
- 5. storage coefficients.

These changes were made in conjunction with the application of recharge and evapotranspiration stresses. Recharge and evapotranspiration coefficients were adjusted slightly during calibration. The sensitivity of measured water levels to rainfall and changes in surface water levels complicates the calibration. Modifications made to aquifer characteristics during calibration process were relatively insignificant.

Layers 1 and 2, upper zone of Surficial Aquifer System: In the areas where this zone is present, the transmissivities were initially set as discussed in the section on hydraulic characteristics. Where layer 1 or 2 is absent, the transmissivity for missing layer is represented by the hydraulic conductivity of the subjacent cell multiplied by a minimum thickness (15 feet for layer 1 and five feet for layer 2). The best calibration for layers 1 and 2 was obtained by varying the vertical anisotropy within the range between 0.02 and 0.08, as discussed previously. Similarly, the specific yield in layer 1 and the storage coefficient in layer 2 were changed non-uniformly in space. Hydraulic conductivity also was adjusted non-uniformly in these layers, to a maximum change of ± 15 percent. The agreement

between observed and computed water levels is shown in the calibration hydrographs in Appendix E.

Layers 3 and 4, the Biscayne Aquifer: The initial transmissivity of these layers was set as discussed in the section on hydraulic characteristics. In areas where the Biscayne aquifer is missing, a transmissivity was assigned which represented a minimum thickness of three feet for layers 3 and 4 (six feet total) multiplied by the averaged hydraulic conductivity of the nearest cells in layers 2 and 5. Based on the calibration runs, V_{cont} was lowered to 25 percent of its original assigned value. Storage was set to 1.9 x 10-4 and remained essentially constant in space. During calibration, unusually small drawdowns were noted in the area of Prospect Wellfield. Localized adjustments to hydraulic conductivity within acceptable ranges (± 15 percent) succeeded in correcting the problem. Inspection of pumping records from this wellfield suggested that the problem was an underestimation of water use for water supply and injection. Based on discussions with utility personnel (personal communication between Steve Krupa, SFWMD, and Charles Petrone, City of Fort Lauderdale, July 8, 1991), well pumpages in the model were increased an additional 20 percent. After re-calibration and adjustment of hydraulic conductivities in layers 3 and 4, all observed and computed water levels were within the acceptable tolerances. This case also illustrates how cell-wide averaging effects in cells with steep head gradients can influence computed water levels and calibration.

Layer 5, lower zone of Surficial Aquifer System: Compared to the overlying aquifers, relatively little is known about the hydraulic characteristics of the lower zone. In calibrating the fifth layer, hydraulic conductivities were varied from 30 to 100 ft/day, which represent the usual range of transmissivities for this type of aquifer. There are no observation wells in layer 5. Heads in layer 5 are relatively insensitive to changes in hydraulic conductivity. Since observed and computed heads matched best in the lithologically similar layer 2 at a relatively uniform hydraulic conductivity of 50 ft/day, this value was applied to layer 5. Agreement of computed and observed heads was tested by varying vertical conductance. Lacking information of the degree of confinement between the Biscayne aquifer and layer 5, uniform values of vertical conductance for this boundary were tested. Observed and computed levels matched a little closer when the vertical conductance was varied up to ± 30 percent of the original values, particularly in the vicinity of some wellfields. Accordingly, a variable vertical

conductance for the boundary between layers 4 and 5 was developed.

CALIBRATION RESULTS

As already noted, the initial model is based on existing interpretations of the hydrogeology of Broward County to the extent possible. Calibration results are presented in the following paragraphs.

Steady State Calibration Results

Steady state calibration was used to detect data errors, poor assumptions, or poorly calibrated areas. Initial heads used in steady state calibration are representative of the end of January 1983 or 1989, depending on the calibration period. These values were chosen as a convenience in computing drawdowns, because the steady state solution is independent of initial head values. As previously stated, January water levels and stresses generally approximate average conditions. Horizontal and vertical flow components referred to in the following sections are depicted in Appendix D, Figures D-5 through D-13. Steady state results using averaged 1989 conditions are similar to those using January 1989 conditions, as the entire year was dry.

Horizontal flow in layers 1 and 2, upper zone of the Surficial Aquifer System. Horizontal flow in layers 1 and 2 is similar; however, Layer 1 shows a large flow component near major canal structures. In general, LWDD canals near the county line are draining into the Hillsboro Canal. Flows in northeast Broward (east of the Florida Turnpike) are parallel to the Hillsboro Canal. An essentially stagnant flow zone occurs west of the intersection of the county line and the Hillsboro Canal. Water from WCA 2A is moving east; however, it is largely intercepted by the L-36 canal. Greater flows are moving east out of WCA 2B, but again are intercepted for the most part by a canal, in this case the L-35A canal. North of the C-11 canal, between the North and South New rivers, eastward flow is intercepted by the L-37 canal. Between the C-11 and C-304 (Miami Canal) canals, ground water moves east and is only minimally intercepted by L-33. A small regional flow trends to the south in the southern part of study area. In general, no clear regional flow exists, except in the vicinity of canals and wellfields. A ground water mound exists just south of the intersection of State Road 7 and the Hillsboro Canal. This may be due to agricultural irrigation, relatively minimal stresses in this area or indirectly due to high water levels maintained in LWDD canals. Flow west out of the mound is intercepted by local drainage district canals. Flow east out of the mound goes to wellfields (Deerfield Beach, Broward County 2A, etc).

General statements about the potential for salt water intrusion can be made based on the magnitude and direction of ground water flow calculated by the model. Horizontal flow vectors along the coast which point west (Appendix D, Figures D-5 and D-6) may indicate the potential for salt water intrusion along the coast. The very small to non-existent flow vectors along the coast south of Atlantic Boulevard can be interpreted as a stationary salt water front. South of the Hillsboro Canal, in the area of the Deerfield Beach, Broward County 2A and Pompano Beach wellfields, the salt water front appears to be actively moving inland, as shown by the large westward flow vectors.

Horizontal flow in layers 3 and 4, the Biscayne Aquifer. Flow vectors in these layers are very similar to those in layers 1 and 2. For the most part, water in the WCAs moves to the east or southeast and is intercepted by canals as in the upper layers. The exceptions are that an underflow is present out of WCAs 2A and 2B and that much less flow moves eastward out of WCA 2A. Ground water flows from Palm Beach County into Broward County under the Hillsboro Canal east of Powerline Road.

In order to examine the effects of development on this underflow and to test the validity of the model boundaries, a hypothetical wellfield was simulated just south of the Hillsboro Canal and east of Powerline Road (Figure 11). The hypothetical wells were assigned a cumulative pumping rate of 3 million ft³/day. A significant flow from LWDD canals under the Hillsboro Canal was induced as these wells pumped (Figure 12A). Horizontal flows from Palm Beach County into Broward County increased by about 23 percent. At the Conservation Areas on the western boundary, the horizontal flow was unaffected. At the eastern boundary, westward horizontal flows into Broward County increased by about one percent. When the hypothetical wellfield was activated and recharge from agricultural irrigation was removed (as would be the case if the wellfield truly existed), flows out of LWDD canals at the county line increased about 32 percent. In the area bounding the hypothetical wells (approximately between columns 82 and 108 in the model), flows from Palm Beach County increased by about 250 percent. Outside of that area, northern boundary flows were unaffected.

Regional flow in layers 3 and 4 is more or less defined by the wellfields. A very small regional trend to the east exists.

Active salt water intrusion can be interpreted in these layers near the Deerfield Beach, Broward County 2A and Pompano Beach wellfields (Figures D-7 and D-8) based on large westward horizontal

FIGURE 11.

Hypothetical Wellfield in Northern Broward County

flow vectors computed in the model. The salt water front also appears to be moving westward near the Hollywood wellfield.

Horizontal flow in layer 5, lower zone of the Surficial Aquifer System. No clear regional ground water flow trend is evident in this layer. Compared to upper layers, flows toward wellfields are reduced in most areas, although still significant near the Prospect Wellfield in Fort Lauderdale. Flows eastward out of WCAs 2A, 2B, 3A and 3B are smaller than in the upper layers and are of similar magnitude to each other.

Salt water intrusion is suggested by westward flow in layer 5 along the coast near the Deerfield Beach, Broward County 2A and Pompano Beach wellfields, although to a lesser degree than in the upper layers. This can be seen in the computed horizontal flow vectors shown in Figure D-9.

The Surficial Aquifer System in the area of the Deerfield Beach, Broward 2A, and Pompano Beach wellfields should receive careful attention with regard to management of the saline intrusion problem. Model results imply that the salt water interface may be moving inland in the production zone of these wellfields.

Vertical flow. Vertical ground water flows in layers 1 through 4 are similar in direction, yet consistently decrease in magnitude as the layers descend (Figure D-10 through D-13). In general, vertical flows are in the downward direction. Layers 1, 2 and 3 (to a lesser degree) show large downward flows near and upstream of canal structures. Layers 1 and 2 show significantly larger downward flows in the area east of U.S. 1 between the Hillsboro Canal and Atlantic Boulevard than in other areas along the coast; this is probably due to stresses from wellfields.

Upward vertical flows occur in the Conservation Areas along the L-35A and North New River canals. Similar flows are observed along the eastern edges of WCAs 3A and 3B. This is presumably due to interception by levee canals.

Transient Calibration Results

Examples of Results. Figures 13 and 14 show the net rate change in different model parameters for each month of 1989 in that portion of the study area lying within Broward County. The Water Conservation Areas and tidal region are not included. Figure D-3 in Appendix D shows the simulated heads in layer 1 for the end of the dry season in January 1989. The computed layer 1 heads for the end of the wet season in September 1986 are shown in Figure D-4.

In every stress period simulated for 1989, westward horizontal flows occurred along the coast, suggesting potential salt water intrusion. Ground water gradients in all model layers present serious concerns for wellfields along the coast, particularly those between the Hillsboro Canal and Atlantic Boulevard. The magnitude of this westward flow varied between 0.5 and 0.75 million ft³/day (for all layers combined) from month to month during 1989.

Along the western model boundary, eastward horizontal flows occurred out of the Conservation Areas and along the eastern side of the levee canals during each stress period of 1989. The magnitude of these flows varies between 6.0 and 7.7 million ft^3/day for each stress period.

Horizontal flows from Palm Beach County into Broward County occurred during each stress period simulated in 1989 and in the steady state simulation as well. The magnitude of this southerly flow varied between 2.4 and 3.2 million ft³/day. Similarly, horizontal flows occurred from Broward County into Dade County during each stress period of 1989. The magnitude of the flows out of Broward County into Dade County varied between 3.3 and 3.9 million ft³/day.

On the average, water was provided to the Biscayne aquifer in Broward County from the following sources during 1989:

- 1. the upper zone of the Surficial Aquifer System contributed about 74 percent,
- 2. lateral boundary flow contributed an estimated 25 percent, and
- 3. the bottom zone of the Surficial Aquifer System provided about one percent.

Water entering the Biscayne aquifer from the upper layers came from recharge due to precipitation and, in some areas, from canal leakage. Lateral boundary inflows occurred primarily from the north and the west. Water from the Biscayne aquifer in Broward County flows out laterally into Dade County and, in some areas, into the ocean. These losses are equivalent to about 10 percent of the total inflow to the Biscayne aquifer.

SENSITIVITY TESTING

An important process in data collection is the determination of the data that are necessary to improve the reliability of the model. The Broward model was tested through sensitivity analyses in a effort to discover which data and processes most affect the model on a daily and a monthly basis.

To test the certainty of the parameter estimates used in the steady state model, sensitivity tests were performed. For example, the sensitivity of the model was tested first by varying the calibrated hydraulic conductivity upwards and downwards by an order of magnitude. Because layers 3 and 4 each exhibited sensitivity to one or more of these changes, a second set of sensitivity tests were conducted by doubling then halving hydraulic conductivity for each of the hydrogeologic zones in the Surficial System.

Other parameters examined in the sensitivity analyses were changes in recharge rate, ET rate, ET surface elevation, ET extinction depth, river and drain conductances, and vertical conductance. Sensitivity to changes in storage and starting heads were examined in the transient model. The model appears to be most sensitive to hydraulic conductivity and canal conductance changes. Accordingly, the model is sensitive to pumpage from the aquifer and water levels in canals. The role of canals in providing recharge to the aquifer can be seen clearly in the sensitivity run where recharge from precipitation was eliminated. The results of the sensitivity analyses are presented in Appendix F. A sensitivity analysis of initial water levels was carried out under both calibrated transient 1989 conditions and on non-stressed transient 1989 conditions (without recharge, ET, wells, river and drains). The water table elevation was increased and decreased by two feet in these simulations. In both the stressed and non-stressed cases, the model results became practically independent of initial conditions after two months of simulation. However, in some areas, particularly those with relatively low hydraulic conductivity, the effects of initial conditions continue for a significantly longer period.

Model sensitivity to general head boundary conductances was tested by both multiplying and dividing steady state conductance values by 2, 10 and 100. Doubling and halving the general head conductances had virtually no effect on the model. Multiplying and dividing by a factor of 10 showed only slight (\pm 0.1 feet) head variations in localized regions along the coast. The model was fairly insensitive along the coast to a reduction in conductance by a factor of 100, and was more sensitive in the WCA boundaries at this level. Sensitivity to conductance multiplied by 100 increased with descending layers along the coast, and also caused a 0.23 percent discrepancy in the mass balance at the end of the simulation.

•

CONCLUSIONS

The Biscayne aquifer is the most productive zone of the Surficial Aquifer System. Yields in the Biscayne aquifer increase significantly towards southern Broward County. Under current conditions, the most important sources of recharge to the Surficial Aquifer system are deep percolation from precipitation, leakage from canals, leakage from the Water Conservation Areas and leakage across the northern county line from Palm Beach County. Of the total net ground water recharge occurring during 1989 for the study area represented in Figures 13 and 14, rainfall provided approximately 84 percent of the total recharge, the western boundary contributed about 11 percent, with the remaining five percent coming from the northern boundary. In some areas, canals provide recharge to the aquifer; however, a net loss of ground water to canals occurs over the study area as a whole.

The largest ground water withdrawals in the Broward County area occur in the public water supply wellfields. Public water supply withdrawals account for approximately 54 percent of the total annual ground water losses in the study area represented in Figures 13 and 14. Leakage from the aquifer into canals accounts for an additional 24 percent of the total net ground water loss. Evapotranspiration from the saturated zone accounts for approximately 13 percent, and the southern and eastern boundaries contribute the remaining six percent and three percent, respectively.

Regional ground water flow in eastern Broward County is largely affected by the location of major wellfields and to some extent by the location of surface water bodies. Ground water flow from Water Conservation Areas 1, 2A and 2B is intercepted by the levee canals. This water then moves via canals to wellfields, leaks out into the aquifer, or enters the ocean as runoff. Ground water flow out of Conservation Areas 3A and 3B provides an important source of water to urban areas in southern Broward County.

Sensitivity simulations indicate that if canal water levels can be maintained during severe droughts (as in January 1989), significant decreases in ground water levels can be mitigated. The ground water regime in Broward County is driven by the surface water system and/or by deep percolation due to precipitation. The interrelation of the two conveys the urgency of developing a fully-coupled surface and ground water model.

Model simulations indicate that salt water intrusion may be taking place along the Atlantic coast. Westward horizontal flows in all model layers along coastal areas can be interpreted as a moving salt water/fresh water interface. These westward flows are largest in the area between the Hillsboro Canal and Atlantic Boulevard in northern Broward County.

RECOMMENDATIONS

Eastern Broward County is experiencing a deficit of water to supply its needs during dry periods, and depends heavily on the aquifer storage availability and on water brought into the area from adjacent zones. As demands increase, so will the need for additional water supplements.

Careful management of withdrawals from the Biscayne aquifer is needed to reduce the potential for saline water intrusion in eastern Broward County. Maximum withdrawals, minimum head levels and/or minimum net yearly ground water flows to the ocean should be established in coastal areas to reduce or slow salt water migration and to deter upconing of saline water into pumping wells. Future requests for large scale withdrawals should be closely examined to ensure that the criteria can be maintained.

Additional attention should be devoted to the management of water quality. It is recognized that both water quality and water quantity are important and interdependent aspects of water resources. Effective analysis of the aquifer with regard to storage of wastewater, artificial recharge, aquifer storage and recovery, and salt water intrusion requires a better understanding of solute transport within it.

The integrated surface water/ground water system that provides water supply in southeast Florida has evolved as a result of local needs rather than as a result of a single comprehensive regional plan. In spite of the fundamental understanding of ground water and surface water hydrologies and their interrelations, the two are often considered as being physically disconnected. Accordingly, an integrated model is a fundamental need in Broward County.

A fully integrated surface, unsaturated and saturated flow model should be developed for Broward County. Such a model should be rigorous in the representation and conceptualization of the water allocation and surface water body operations and other physical processes involved in a canal-aquifer system such as the one in place in Broward County. The model should incorporate, to a large extent, the entire physical conceptualization of the hydrologic cycle on a daily basis. The description of the complex process of infiltration and redistribution of water in the unsaturated and saturated soil should be given special attention. In order to provide a realistic assessment of short-term impacts such as: 1) availability of water in canals, 2) the effects of precipitation in surface water bodies or in the unsaturated zone, or 3) water levels in aquifers near canals, the model should simulate the system using short stress periods. Similarly, for a realistic allocation of water based on agricultural or other needs, short simulation stress periods are desirable. However, shorter stress periods do not require similarly shorter changes in ground water heads, except in areas close to canals. The concept of reach transmissivity to simulate canal-aquifer interaction should be explored as an alternative to the canal conductance approach currently used in MODFLOW when horizontal flow is predominant.

Interfaces should be developed with the existing Palm Beach County model, with the Dade County model currently under development, and with the regional surface water system. This will result in a truly regional model that encompasses the entire flow regime for the Surficial Aquifer System in the lower east coast water supply planning area. This regional surface and ground water model would be particularly useful in evaluating the District's canal system, which maintains ground water levels and supplies many of the public water supply wellfields within the tri-county area.

The Broward model can be used in the evaluation of water use permit applications for large uses. Where a finer scale or site-specific evaluation is required, the model can be used to provide boundary conditions. The model should continue to be refined and updated as additional information becomes available. Suggested refinements to the model include a finer grid spacing and smaller stress periods, ideally five days or less.

The difficulties involved in estimating parameters are closely related to the more general issue of data collection for surface-ground water models. A model can be developed with any amount of real data. However, the amount and quality of available data directly affects the credibility of the model application. The District's responsibility in collecting an optimal amount of dependable data for models implies the necessity of:

- 1. re-specifying data collection procedures,
- 2. improving data collection networks,
- 3. identification of critical data, and
- 4. accurate storage of data.

The Broward model is sensitive to utility pumpage rates. Increased reporting and verification of public water supply pumpages on a well-by-well basis, as well as the reporting of large agricultural withdrawals, is recommended. Additional wells in the USGS monitoring well network are needed in order to improve the regional information available. Furthermore, additional aquifer testing should be required in areas where hydrogeological information is lacking.

Problems arise in using MODFLOW to simulate free-surface bodies (e.g. wetlands) or large wellfields. During the course of a simulation or during the iterative determination of the water levels, cell heads may drop below the bottom elevation of an active cell or rise above the bottom elevation of an inactive cell. A cell may change from active to inactive in the standard version of MODFLOW. However, the inverse process reactivation of an inactive cell submerged during a simulation - is not possible with the current version of MODFLOW. It is recommended that this problem be addressed through the recently released USGS module called BCF2.

Calibration is a laborious and inaccurate task if carried out by trial and error. A semi-automatic

calibration procedure should be adopted. The surfacewater system and the aquifer system should be calibrated separately first, then together.

A new approach to computing evapotranspiration should be delineated. The ET rates currently calculated are based on a modified Blaney-Criddle equation, which relies on temperature to calculate monthly rates. Numerous studies, however, show that ET is dependent on solar radiation and that temperature approaches alone are the least accurate of ET estimation methods. Errors due to use of a temperature-dependent approach become apparent in the ground water model calibration process through the excessive ground water pumping rates for agricultural demands created by use of the Blaney-Criddle equation. It is recommended that the Penman-Monteith or modified Penman methods be explored. These methods require solar radiation, air temperature, humidity and wind speed data, some of which is already being collected by the District for some stations. Any new approach should be used consistently with any mathematical model or in any agricultural water use decision made in the District.

REFERENCES

Bower, R.F., K.M. Adams, and J.I. Restrepo, 1990. A Three-Dimensional Finite Difference Ground Water Flow Model of Lee County, Florida. SFWMD Technical Publication 90-01.

Broward County, 1990. Aquifer Recharge for North Broward County.

Camp Dresser & McKee, Inc., 1980. Dixie Wellfield Stress Analysis.

Camp Dresser & McKee, Inc., 1980. Prospect Wellfield Impact Analysis.

Camp Dresser & McKee, Inc., 1986. Water Use Permit Modification for the City of Coral Springs.

Cooper, R.M. and R. Roy, 1991. An Atlas of Surface Water Management Basins in the Everglades: The Water Conservation Areas and Everglades National Park, South Florida Water Management District Technical Memorandum.

Fetter, Jr., C.W., 1980. Applied Hydrogeology. Charles E. Merrill Publishing Co., Columbus, Ohio.

Fish, J.E., 1988. Hydrogeology, Aquifer Characteristics, and Ground-Water Flow of the Surficial Aquifer System, Broward County, Florida. U.S. Geological Survey Water Resources Investigations Report 87-4034.

Gee & Jenson, Inc., 1979. North Springs Improvement District Application for Consumptive Use Permit for Public Water Supply System.

Gee & Jenson, Inc., 1980. City of Deerfield Beach Hydrogeologic Evaluation.

James M. Montgomery, Inc. in association with Dames and Moore, 1986. The Study of Water Supply and the Selection of Future Wellfield Sites in Broward County, Florida.

James M. Montgomery, Inc., 1989. Broward County Office of Environmental Services Wellfield 3B Aquifer Performance Test.

Johnson, A.I., 1967. Specific Yield - Compilation of Specific Yields for Various Materials. Geological Survey Water-Supply Paper 1662-D.

Klein, H., J. Armbruster, B.F. McPherson, H.J. Freiberger, 1975. Water and the South Florida Environment. U. S. Geological Survey Water Resource Investigation 24-75. Klein, H. and J.E. Hull, 1978. Biscayne Aquifer, Southeast Florida. U.S. Geological Survey Water Resource Investigation 78-107.

McCollum, S.H., O.E. Cruz, L.T. Stem, W.H. Wittstruck, R.D. Ford, F.C. Watts, 1978. Soil Survey of Palm Beach County Area, Florida. U.S.D.A. Soil Conservation Service.

McDonald, M.G., and A.W. Harbaugh, 1988. A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6.

Pendleton, R.F., H.D. Dollar, L. Law, Jr., 1976. Soil Survey of Broward County Area, Florida. U.S.D.A. Soil Conservation Service.

Restrepo, J.I., 1990. Water Recharge To and Evapotranspiration From the Aquifer System. Unpublished.

Sherwood, C.B., H.J. McCoy, C.F. Galliher, 1973. Water Resources of Broward County, Florida. U.S. Geological Survey Report of Investigation No. 65.

Shine, M.J., D.G.J. Padgett, and W.M. Barfknecht, 1989. Ground Water Resource Assessment of Eastern Palm Beach County, Florida. SFWMD Technical Publication 89-4.

South Florida Water Management District, 1977. Drainage Basins in Broward County, Florida.

South Florida Water Management District, 1985. Management of Water Use-Permit Information Manual Volume III. West Palm Beach, FL.

South Florida Water Management District, continuously updated. Structure Operation Manuals. Operations Maintenance Division.

United States Department of Agriculture, Soil Conservation Service. 1970. Irrigation Water Requirements. Technical Release No. 21.

Viessman, W., J.W. Knapp, G.L. Lewis and T.E. Harbaugh, 1977. Introduction to Hydrology. A Dun-Donnelley Publisher, New York.

Walton, William C., 1987. Groundwater Pumping Tests. Lewis Publishers, Inc., Chelsea, Michigan.

APPENDIX A

HYDROGEOLOGY AND STRUCTURE CONTOUR DATA

LIST OF FIGURES - APPENDIX A

<u>Figure</u>		Paqe
A-1.	Location of Wells Used for Lithological Data	47
A-2.	Elevation of the Base of the Surficial Aquifer System	49
A-3.	Elevation of the Top of the Biscayne Aquifer	50
A-4.	Thickness of the Biscayne Aquifer	51
A-5.	Elevation of the Top of Layer 2	52
А-б.	Thickness of Layer 2	53
A-7.	Elevation of the Top of Layer 3	54
A-8.	Thickness of Layer 3	55
A-9.	Elevation of the Top of Layer 4	56
A-10.	Thickness of Layer 4	57
A-11.	Elevation of the Top of Layer 5	58
A-12.	Thickness of Layer 5	59
A-13.	Transmissivity of Layer 2	60
A-14.	Transmissivity of Layer 3	61
A-15.	Transmissivity of Layer 4	62
A-16	Transmissivity of Layer 5	63

LIST OF TABLES - APPENDIX A

<u>Table</u>	<u> </u>	<u>'aqe</u>
A-1.	Wells Used to Develop Structure Contours of the Surficial	
	Aquiter System, Broward County	48

Table

.

FIGURE A-1. Location of Wells Used for Lithological Data

WELL NAME	FLORIDA PLANARS X(EAST) Y(NORTH)		TOTAL DEPTH	BASE OF SAS	TOP OF BA	BOTTON OF BA	THICKNESS OF BA	COMMENTS
PB1581	771417	738488	-303	-283	-70	-163	93	Shine, 1989.
PB1428	730051	734406	+204	-177	NP	NP	NP	Fish, 1988.
G2323	760673	725395	-278	-262	-85	-145	60	Fish, 1968.
РТе	772708	721937	-145	BTD	-79	-135	56	Quiet Waters Pk, SFWMD well.
G2325	784803	725550	-311	-260	-65	-110	45	Fish, 1968.
WP	768942	712827	-135	BTD	-80	вто	>55	Winston Park, JMM/Dames & Moore, 1986.
E2	742000*	710900*	-176.5	-165	-102	-125	23	N.Springs Imp. Dist. Gee & Jenson, 1979.
PTS	772135	702448	-279	-229	-57	-152	95	Tradewinds Park, SFWMD well.
INJ2	755950	693864		-228	-38	-138	100	Samples from Margate Injection well #2.
PT1-D4	792481	696927	-134.5	BTD	-31	eto	>103	Pompano Airfield, SFWMD well.
G2344	788186	693768	-461	-320	-45	-112	67	Fish, 1988.
G2342	780435	690055	-291	-275	-90	-140	50	Fish, 1968.
G2341	729658	689372	-189	-125	NP	NP	NP	Fish, 1986.
PT2	775357	663696	-171	BTD	-70	BTD	>101	Mills Pond Park, SFWMD well.
G2345	759331	646935	-320	-265	-50	-125	75	Fish, 1968.
G2347	779357	637570	-471	-330	-35	-140	105	Fish, 1968.
РТЗ	754800	645200	-136	BTD	-70	BTD	>66	Heritage Park, SFWMD well.
62322	739564	644396	-229	-195	-50	-122	72	Fish, 1966.
PT4-C1	713743	652942	-117	-107	Ş	-87	55	Markham Park, SFWMD well.
G2321	707796	852812	-279	-113	-47	-83	36	Fish, 1968.
E8	774900*	675400*	-103	BTD	-47	BTD	>56	Prospect Wellfield MW7, CDM, 1980.
G2317	692129	590142	-135	-90	-10	-80	50	Fish, 1988.
G2318	715768	590456	-205	-130	·20	-107	87	Fish, 1968.
62327	747494	597190	-275	-260	-45	-120	75	Fish, 1968.
G2328	777579	602321	-290	-280	-20	-140	120	Fish, 1968.
G2311	682659	627759	-195	-183	-11	-64	53	Fish, 1988.
G2319	671406	658809	-208	-200	-20	-36	16	Fish, 1988.
G2312	676930	689524	-208	-200	NP	NP	NP	Fish, 1968.

SAS - Surficial Aquifer System

BA - Biscayne aquifer

NP - Not present

BTD - Below total depth

* - Location estimated

** - Observed only 300 ft of samples

Total depth, base of Sufficial Aquifer System, and Biscayne aquifer elevations reported in feet NGVD. Total depths of wells from Fish, 1988, were estimated from hydrogeological cross-sections.

TABLE A-1.

Wells Used to Develop Structure Contours of the Surficial Aquifer System, Broward County

FIGURE A-4. Thickness of the Biscayne Aquifer

FIGURE A-9. Elevation of the Top of Layer 4

.

FIGURE A-14. Transmissivity of Layer 3

APPENDIX B

SURFACE WATER DATA AND FIGURES

.

.

LIST OF FIGURES - APPENDIX B

Figure	<u>P</u>	<u>age</u>
B-1.	Major Water Bodies Within Study Area	69
B-2.	Average Monthly Water Level for WCA 1	71
B-3.	Average Monthly Water Level for WCA 2A	72
B-4.	Average Monthly Water Level for WCA 2B	73
B-5.	Average Monthly Water Level for WCA 3A	74
B-6.	Average Monthly Water Level for WCA 3B	75
B-7.	Drainage Districts Within Study Area	76
B-8.	Broward Model Drainage Basins	77
B-9.	Primary Canals Within the Deerfield Irrigation Company Area	81

LIST OF TABLES - APPENDIX B

Table	Pa	age
B-1.	SFWMD Canals With Control Elevations	70
B-2 .	Drainage District Control Elevations	78

. . .

CANAL NAME	STRUCTURE NAME	WET SEASON CONTROL ELEVATION	DRY SEASON CONTROL ELEVATION
C-15 Canal	S-40	8.2	8.2
Hillsboro	G-56	7.5	8.0
Cypress Creek	S-37A	3.5	3.5
Cypress Creek	S-37B	7.5	7.5
Old Pompano	G-57	4.5	4.5
Middle River	S-36	4.5	4.5
C-12	S-33	3.5	3.5
North New River	G-54	3,5	3.5
South New River	S-13	1.6	1.6
Snake Creek	S-29	2.0	2.0
Arch Creek	G-58	1.8	1.8
C-8	S-28	1.8	1.8
Miami Canal	S-26	2.5	2.5

TABLE B-1. SFWMD Canals With Control Elevations

/

FIGURE B-4. Average Monthly Water Level for WCA 2B

TABLE B-2

DRAINAGE DISTRICT CONTROL ELEVATIONS

DRAINAGE DISTRICTS	WET SEASON TARGET CONTROL ELEVATION	DRY SEASON TARGET CONTROL ELEVATION	RECHARGE System
Bailey Drainage	4.0	4.0	N
Central Broward East	3.0	3.0	Y(1)
Central Broward West	4.0	4.0	Y(1)
Cocomar NE	11.0	11.0	Y(2)
Cocomar NW	11.0	11.0	Y(2)
Cocomar SE	9.5	9.5	Y(2)
Cocomar SW	8.5	9.5	Y(2)
Coral Bay	9.5	9.5	Y(2)
CSID East	6.5	7.0	N
CSID West	6.5	7.0	N
Indian Trace Basin 1	4.0	4.0	N
Indian Trace Basin 2	4.0	4.0	N
Lauderdale Isles	Tidal	Tidal	N
LWDD 1	9.3	9.3	Y(2)
LWDD 2	7.5	7.5	N
LWDD 3	14.5	14.5	Y(2)
LWDD 4	8.0	8.0	N
LWDD 5	16.0	16.0	Y(2)
LWDD 6	13.0	13.0	Y(2)
LWDD7	4.3	4.3	N
LWDD 8	8.5	8.5	Y(2)
North Lauderdale	7.5	7.5	Y(3)
NSID East	9.0	10.0	N
NSID West	8.0	7.0	N
Old Plantation	4.0	4.0	Y(4,5)
Pinetree	11.0	12.0	Y(2)
Plantation Acres	3.5	4.5	Y(5)
Ravenswood	2.0	2.0	N
South Broward Basin 1	2.5	2.5	N
South Broward Basin 2	2.7	2.7	N
South Broward Basin 3	3.0	3.0	N
South Broward Basin 4	3.5	3.5	Y(6)
South Broward Basin 5	4.0	4.0	Y(6)
South Broward Basin 6	4.0	4.0	Y(6)

TABLE B-2 (Continued)DRAINAGE DISTRICT CONTROL ELEVATIONS

DRAINAGE DISTRICTS	WET SEASON TARGET CONTROL ELEVATION	DRY SEASON TARGET CONTROL ELEVATION	RECHARGE SYSTEM
South Broward Basin 7	2.7	2.7	N
South Broward Basin 8	3.5	3.5	Y(6)
South Broward Basin 8A	2.7	2.7	Y(6)
South Broward Basin 9	4.0	4.0	Y(6)
South Broward Basin 10	4.0	4.0	Y(6)
South Broward Basin 12	3.5	3.5	Y(6)
Sunrise 1	4.1	4.1	Y(7)
Sunrise 3A	5.5	5.5	Y(7)
Sunrise 3B	5.0	5.0	Y(7)
Sunrise 3C	6.5	6.5	Y(7)
Sunrise 3D	5.0	5.0	Y(7)
Sunrise 5	5.5	5.5	Y(7)
Sunrise 6A	5.5	5.5	Y(7)
Sunrise 6B	5.5	5.5	Y(7)
Sunrise 7	4.5	4.5	Y(7)
Sunshine	7.5	7.5	Y(8)
Tamarac, City of	6.3	6.3	Y(3)
Tindall Hammock East	Tidal	Tidal	N/A
Tindall Hammock West	3.5	3.5	Y(4)
Turtle Run	9.5	9.5	Y(2)
Twin Lakes	N/A	N/A	N
WCD1	N/A	N/A	N/A
WCD2 Central	10.0	10.0	Y(9)
WCD2 East	8.5	8.5	Y(9)
WCD2 West	10.0	10.0	Y(9)
WCD3 East	8.5	8.5	N
WCD3 West	9.0	9.0	Ν
WCD4 Central	6.0	6.0	N
WCD4 East	3.5	4.5	N
WCD4 West	7.5	7.5	Y(3)
West Lauderdale	4.0	4,0	N
West Parkland	8.0	8.0	Ν
Whispering Woods	11.5	11.5	Y(2)

TABLE B-2 (Continued)

Key to Table B-2

- 1. The recharge system consists of free flow between the CBDD canals and the C-11 Canal.
- 2. The water levels in the drainage district are maintained by the diversion of water from the Hillsboro Canal into the canals of the drainage district.
- 3. The recharge system consists of free flow with the C-14 Canal.
- 4. The recharge system consists of free flow with the North New River Canal.
- 5. Pumps are present to recharge the drainage district.
- 6. The recharge system consists of free flow between the SBDD canals and either the C-9 or C-11 canal.
- 7. The recharge system consists of free flow between the City of Sunrise's canals and the C-13 Canal.
- 8. The Sunshine Drainage District received a consumptive use permit to withdraw water from the C-42 Canal in order to maintain the water levels within the drainage district.
- 9. Broward County received a consumptive use permit to withdraw water from the Hillsboro Canal to maintain water levels within the drainage district. The water is pumped into the C-2 Canal of WCD2.

APPENDIX C

DATA AND FIGURES RELATING TO LAND USE, RECHARGE, EVAPOTRANSPIRATION AND WATER USE

LIST OF FIGURES - APPENDIX C

Figure	<u>P</u>	<u>age</u>
C-1.	General Land Use, Level 1, Broward County, 1988	87
C-2.	Location of Rainfall Stations Used in Recharge Package	93
C-3.	Total Precipitation (inches) in Study Area, January 1989	94
C-4.	Total Precipitation (inches) in Study Area, July 1989	95
C-5.	Location of Public Water Supply Permits in Study Area	104
С-б.	Location of Public Water Supply Wells and Pumping Rates (Cubic Ft/day)	105
C-7.	Location of Non-Public Water Supply Wells and Pumping Rates (Cubic Ft/day)	106
C-8.	Cells Containing Wells Injecting to the Surficial Aquifer System	107

LIST OF TABLES - APPENDIX C

<u>Table</u>		<u>Page</u>
C-1.	SFWMD Land Use and Land Cover Classification Code	. 88
C-2.	Coefficients Used in Recharge Preprocessing	. 96
C-3.	Crop Coefficients Used in ET Preprocessing	. 99
C-4.	Extinction Depths Used in ET Preprocessing	103
C-5.	Legend for Public and Non-Public Water Supply Spreadsheets	108
C-6.	Public Water Supply Spreadsheet	111
C-7.	Non-Public Water Supply Spreadsheet	121

TABLE C-1. **S.F.W.M.D.** LAND USE AND LAND COVER CLASSIFICATION CODE

LEVELI LEVELII LEVELIII

(U) Urban and built-up land

(UR) Residential

(URSL) Single-family, Low Density (under 2 D. U./gross acre)
(URSM) Single-family, Medium Density (2 to 5 D.U./gross acre)
(URSH) Single-family, High Density (over 5 D.U./gross acre)
(URMF) Multi-family building
(URMH) Mobile homes

1

(UC) Commercial and Services

(UCPL)	Parking lot
(UCSC)	Shopping center .
(UCSS)	Sales and services
(UCCE)	Cultural and Entertainment
(UCMC)	Marine commercial (Marinas)
(UCHM)	Hotel-Motel

(UI) Industrial

(UIJK)	Junkyard
(UILT)	Other light industrial
(UIHV)	Other heavy industrial

(US) Institutional

(USED) Educational
(USMD) Medical
(USRL) Religious
(USMF) Military
(USCF) Correctional
(USGF) Governmental (other than military or correctional)
(USSS) Social services (Elks, Moose, Eagles)

(UT) Transportation

(UTAP) Airports
(UTAG) Small grass airports
(UTRR) Railroad yards and terminals
(UTPF) Port facilities
(UTEP) Electrical power facilities
(UTTL) Major transmission lines
(UTHW) Major highway and rights-of-way
(UTWS) Water supply plants
(UTSP) Sewerage treatment plants
(UTSW) Solid waste disposal

(UTRS)	Antenna arrays
(UTOG)	Oil and gas storage

(UO) Open and others

(UORC)	Recreational facilities
(UOGC)	Golf courses
(UOPK)	Parks
(UOCM)	Cemeteries
(UORV)	Recreational vehicle parks
(UOUD)	Open under development
(UOUN)	Open and undeveloped within
	urban area

(A) Agriculture

(AC) Cropiand

(ACSC)	Sugar cane
(ACTC)	Truck crops
(ACRF)	Rice fields

(AP) Pasture

(APIM)	Improved pasture
(APUN)	Unimproved pasture

(AM) Groves, Ornamentals, Nurseries, Tropical fruits

(AMCT)	Citrus
(AMTF)	Tropical fruits
(AMSF)	Sod farms
(AMOR)	Ornamentals

(AF) Confined feeding operations

(AFFL)	Cattle feed lots
(AFDF)	Dairy farms
(AFFF)	Fish farms
(AFHT)	Horse training and stables
(AFPY)	Poultry

(R) Rangeland

(RG) Grassland

(RS) Scrub and brushland

(RSPP)	Palmetto prairies
(RSSB)	Brushland

(F) Forested uplands

TABLE C-1. SFWMD Land Use and Land Cover Classification Code (Continued)

(FE) Coniferous

(FEPF)	Pine flatwoods
(FESP)	Sand pine scrub
(FECF)	Commercial forest (pine)

(FO) Non-coniferous

(FOAP) (FOBP)	Australian pine Brazilian pepper
(FOPA)	Palms
(FOSO)	Scrub oak
(FOOK)	Oak
(FOCF)	Commercial forest

(FM) Mixed forested

- (FMTW) Temperate hardwoods
- (FMCM) Cabbage palms/Melaleuca
- (FMCO) Cabbage palms/Oaks
- (FMPM) Pine/Melaleuca
- (FMPO) Pine/Oak
- (FMTH) Tropical hammocks
- (FMOF) Old fields forested
- (FMCD) Coastal dunes
- (FMPC) Pine/Cabbage palms

(W) Wetlands

(WF) Forested fresh

(WFCM) Cypress/Melaleuca
(WFCY) Cypress
(WFWL) Willow
(WFME) Melaleuca
(WFSB) Scrub and brushland
(WFMX) Mixed forested

(WN) Non-forested fresh

(WNSG) Sawgrass
(WNCT) Cattail
(WNBR) Bullrush
(WNWC) Wire cordgrass
(WNAG) Mixed aquatic grass
(WNWL) Sloughs

(WS) Forested salt

(WSRM) Red mangrove (WSBW) Black and White mangrove

(WM) Non-forested salt

TABLE C-1. SFWMD Land Use and Land Cover Classification Code (Continued)

(WX) Mixed forested and non-forested fresh

(WXPP) Pine and wet prairies(WXCP) Cypress domes and wet prairies(WXHM) Hardwood marsh

(H) Water

(B) Barren land

(BB) Beaches
(BP) Extractive

(strip mines, quarries, and gravel pits)

(BS) Spoil areas

(BL) Levees

* Documentation of major codes from "LAND USE, COVER AND FORMS CLASSIFICATION SYSTEM, A TECHNICAL MANUAL", Department of Transportation, State Topographic Office Remote Sensing Center, Kuyper, Becker and Shopmyer, February 1981

* 3

·

TABLE C-2. Coefficients Used in Recharge Preprocessing

Land Use	Ki	Ks	Ka
U	.75	.10	.10
UR	.70	.10	.10
URSL	.80	.10	.10
URSM	.75	.10	.10
URSH	.70	.10	.10
URMF	.65	.10	.10
URMH	.60	.10	.10
UC	.50	.30	.10
UCPL	.50	.30	.10
UCSC	.50	.30	.10
UCSS	.50	.30	.10
UCCE	.60	.20	.10
UCMC	.50	.20	.10
UCHM	.50	.20	.10
UI	.50	.30	.10
UIJK	.50	.30	.10
UILT	.50	.20	.10
UIHV	.50	.30	.10
US	.50	.20	.10
USED	.60	.20	.10
USMD	.50	.30	.10
USRL	.50	.20	.10
USMF	.50	.20	.10
USCF	.50	.20	.10
USGF	.50	.20	.10
USSS	.50	.20	.10
UT	.60	.20	.10
UTAP	.60	.20	.10
UTAG	.70	.10	.10

Land Use	Ki	Ks	Ka
AMOR	.70	.10	.10
AF	.90	.10	.10
AFFL	.90	.10	.10
AFDF	.90	.10	.10
AFFF	.90	.10	.10
AFHT	.90	.10	.10
AFPY	.90	.10	.10
R	.75	.10	.10
RG	1.00	.10	.10
RS	.80	.10	.10
RSPP	.75	.10	.10
RSSB	.80	.10	.10
F	.85	.10	.10
FE	.85	.10	.10
FEPF	.85	.10	.10
FESP	.85	.10	.10
FECP	.85	.10	.10
FO	.85	.10	.10
FOAP	.85	.10	.10
FOBP	.85	.10	.10
FOPA	.85	.10	.10
FOSO	.85	.10	.10
FOOK	.85	.10	.10
FOCF	.85	.10	.10
FM	.85	.10	.10
FMTW	.85	.10	.10
FMCM	.85	.10	.10
FMCO	.85	.10	.10
FMPM	.85	.10	.10

TABLE C-2. Coefficients Used in Recharge Preprocessing (Continued)

	·		
Land Use	Кі	Ks	Ka
UTRR	.60	.10	.10
UTPF	.60	.20	.10
UTEP	.60	.10	.10
UTTL	.60	.10	.10
UTHW	.60	.10	.10
UTWS	.60	.10	.10
UTSP	.60	.20	.10
UTSW	.60	.10	.10
UTRS	.60	.10	.10
UTOG	.60	.20	.10
UO	.98	.10	.10
UORC	.90	.10	.10
UOGC	.75	.10	.10
UOPK	.90	.10	.10
UOCM	.90	.10	.10
UORV	.80	.20	.10
UOUD	.98	.10	.10
UOUN	.75	.10	.10
А	.80	.10	.10
AC	.95	.10	.10
ACSC	.83	.10	.10
ACTC	.95	.10	.10
ACRF	.86	.10	.10
AP	.83	.10	.10
APIM	.83	.10	.10
APUN	.83	.10	.10
AM	.85	.10	.10
AMCT	.85	.10	.10
AMTF	.85	.10	.10
AMSF	.90	.10	.10

Land Use	Ki	Ks	Ka										
FMPO	.85	.10	.10										
FMTH	.85	.10	.10										
FMOF	.85	.10	.10										
FMCD	.85	.10	.10										
FMPC	.85	.10	.10										
W	.90	.10	.10										
WF	.85	.10	.10										
WFCM	.85	.10	.10										
WFCY	.85	.10	.10										
WFWL	.85	.10	.10										
WFME	.87	.10	.10										
WFSB	.80	.10	.10										
WFMX	.80	.10	.10										
WN	.9 0	.10	.10										
WNSG	.90	.10	.10										
WNCT	.90	.10	.10										
WNBR	.90	.10	.10										
WNWC	.90	.10	.10										
WNAG	.90	.10	.10										
WNWL	.90	.10	.10										
ws	.85	.10	.10										
WSRM	.85	.10	.10										
WSBW	.85	.10	.10										
WM	.90	.10	.10										
wx	.90	.10	.10										
WXPP	.90	.10	.10										
WXCP	.90	.10	.10										
WXHM	.90	.10	.10										
Н	1.00	.10	.10										
Land	Cove	ered				M	onth						
------	-------------	------	-----	-----	-----	-----	------	-----	-----	-----	-----	-------	-------------
Use	%	1	2	3	4	5	6	7	8	9	10	11	12
U	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80 -	.80
UR	.48	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
URSL	.67	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
URSM	.53	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
URSH	.45	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
URMF	.33	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
URMH	.40	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UC	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UCPL	.25	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UCSC	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UCSS	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UCCE	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UCMC	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UCHM	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UI	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UIJK	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UILT	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UIHV	.05	.80	.80	.80	.80		.80	.80	.80	.80	.80	.80	.8 0
US	.7 0	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USED	.70	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USMD	.60	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USRL	.70	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USMF	.60	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USCF	.70	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USGF	.70	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
USSS	.70	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UT	.50	,80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTAP	.10	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80

TABLE C-3. Crop Coefficients Used in ET Preprocessing

Land	Cov	ered				M	lonth						
Use	%	1	2	3	4	5	6	7	8	9	10	11	12
UTAG	.20	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTRR	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTPF	.05	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTEP	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTTL	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTHW	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTWS	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTSP	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTSW	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTRS	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UTOG	.50	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UO	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UORC	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UOGC	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UOPK	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UOCM	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UORV	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UOUD .	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
UOUN	.90	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80	.80
AC	.90	.41	.44	.63	.67	.64	.69	.72	.71	.72	.86	.74	.64
ACSC	.90	.39	.30	.53	.61	.70	.79	.79	.84	.73	.88	.72	.69
ACTC	.85	.44	.71	.82	.78	.53	.49	.57	.44	.71	.82	.78	.53
ACRF	.90	.39	.30	.53	.61	.70	.79	.79	.84	.73	.88	.72	.69
AP	.90	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
APIM	.90	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
APUN	.90	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AM	.85	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AMCT	.85	.63	.66	.68	.70	.71	.71	.71	.71	.7	.68	.67	.64
AMTF	.85	.27	.42	.58	.70	.78	.81	.77	.71	.63	.54	.43	.3
AMSF	.90	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55

 TABLE C-3.
 Crop Coefficients Used in ET Preprocessing (Continued)

Land	Cov	ered				M	lonth					<u> </u>	
Use	%	1	2	3	4	5	6	7	8	9	10	11	12
AMOR	.85	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AF	.76	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AFFL	.75	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AFDF	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AFFF	.75	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AFHT	.75	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
AFPY	.75	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
R	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
RG	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
RS	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
RSPP	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
RSSB	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
F	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FE	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FEPF	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FESP	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FECF	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FO	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FOAP	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FOBP	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FOPA	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FOSO	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FOOK	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FOCF	.80	.61	.71	.91	1.06	1.13	1.15	1.15	1.14	1.08	.98	.84	.69
FM	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
FMTW	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMCM	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMCO	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMPM	,80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMPO	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55

TABLE C-3. Crop Coefficients Used in ET Preprocessing (Continued)

Land	Cov	ered				М	onth						
Use	%	1	2	3	4	5	6	7	8	9	10	11	12
FMTH	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMOF	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMCD	.80	.49	.57	.73	.87	.67	.92	.92	.91	.87	.79	.67	.55
FMPC	.80	.49	.57	.73	.85	.67	.92	.92	.91	.87	.79	.67	.55
w	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WF	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WFCM	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WFCY	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WFWL	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WFME	.80	.73	.84	.99	1.14	1.24	1.30	1.28	1.22	1.14	1.05	.90	.75
WFSB	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WFMX	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	89	.77	.64
WN	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
WNSG	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
WNCT	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
WNBR	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
WNWC	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
WNAG	.80	.49	.57	.73	.85	.90	.92	.92	.91 ·	.87	.79	.67	.55
WNWL	.80	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
WS	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WSRM	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WSBW	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WM	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
wx	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WXPP	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WXCP	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
WXHM	.80	.62	.71	.76	.97	1.05	1.11	1.09	1.04	.97	.89	.77	.64
н	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55
В	1.0	.49	.57	.73	.85	.90	.92	.92	.91	.87	.79	.67	.55

TABLE C-3. Crop Coefficients Used in ET Preprocessing (Continued)

	Extinction		Extinction		Extinction
Land Use Code	Depth (feet)	Land Use Code	Depth (feel)	Land Use Code	Depth (feet)
:	4 -	1000	-	aa	
: : :	·	2000	1.0	FOCF	7.0
UR	1.0	NOPK	1.25	F.M	2.40
URSL	1.0	NOCM	1.0	FMTW	5.0
URSM	1.0	UORV	1.25	FMCM	1.5
URSH	1.0	UOUD	1.0	FMCO	1.5
URMF	1.0	NOUN	1.25	FMPM	2.0
URMH	9	A	1.4	FMPO	3.0
110	01	AC	1.65	FMTH	1.5
11CPI	01	ACSC	3.0	FMOF	2.0
1 CSC	01	ACTC	1.0	FMCD	3.0
UCSS	1.0	ACRF	1.0	FMPC	2.0
UCCE	1.0	AP	2.5	N	2.25
UCMC	1.0	APIM	2.5	WF	3.35
UCHM	1.0	APUN	2.5	WFCM	6.0
5	1.0	AM	2.25	WFCY	6.0
UJK	1.0	AMCT	3.0	WFWL	1.0
UILT	1.0	AMTF	3.0	WFME	1.5
VHU	1.0	AMSF	1.25	WFSB	1.5
SU	1.0	AMOR	1.5	WFMX	2.5
USED	1.0	AF	1.0	NN	1.5
USMD	1.0	AFFL	1.0	DSNM	2.5
USRL	1.0	AFDF	1.0	WNCT	2.5
USMF	1.0	AFFF	1.0	WNBR	1.0
USCF	1.0	AFHT	1.0	WNWC	1.0
USGF	1.0	AFPY	1.0	WNAG	1.0
USSS	1.0	24	2.0	TMNM	1.0
TU	1.0	RG	2.0	MS	3.0
UTAP	1.0	RS	2.0	WSRM	3.0
UTAG	1.0	RSPP	2.0	WSBW	3.0
UTRR	1.0	RSSB	2.0	MM	1.25
UTPF	1.0	ب عرُ	2.30	МХ	4.0
UTEP	1.0	FE	2.65	WXPP	2.5
UTTL	1.0	FEFF	2.0	WXCP	4.5
WHTU	0.1	FESP	5.0	WXHM	4.5
UTWS	1.0	FECP	1.0	н	6.0
UTSP	1.0	FO	2.0	4	. 20
UTSW	1.0	FOAP	1.0		
UTRS	1.0	FOBP	1.0		
UTOG	1.0	FOPA	1.5		
00	1.10	FOSO	1.5		
UORC	1.0	FOOK	5.0		

TABLE C-4. Extinction Depths Used in ET Preprocessing

FIGURE C-6. Location of Public Water Supply Wells and Pumping Rates (Cubic Ft/day)

FIGURE C-7. Location of Non-Public Water Supply Wells and Pumping Rates (Cubic Ft/day)

FIGURE C-8. Cells Containing Wells Injecting to the Surficial Aquifer System

TABLE C-5. Legend for Public and Non-Public Water Supply Spreadsheets

AN.ALL. = Annual Permitted Allocation ALL.UNT. = Annual Allocation Units 01 = MGD02 = MGM03 = MGY04 = AC-FTMAX DAY = Maximum Daily Permitted Allocation DAY UTS. = Daily Allocation Units MAXMO = Maximum Monthly Permitted Allocation 01 = MGD02 = MGM03 = AC-FTCO = County Code (from permit number) DATE ISS = Date Permit Issued (mo/yr)USE TYPE = AG, IND, GLF, PWS, COM, REC SRC = Source (SW,GW, BOTH) NO.WLS. = Number of ACTIVE permitted wells SWPMPS = Number of Surface Water Pumps AQ. = Aquifer01 = Water Table02 =Surficial (Semi-confined) 03 = Lower Tamiami 04 = Sandstone05 = mid-Hawthorn06 =lower Hawthorn 07 =Suwannee 08 = Floridan09 = BiscayneCROP TYPE = Blaney-Criddle Code 11 = Alfalfa12 = Avacado13 = Citrus14 = Grapes15 = Turf16 = Suger Beet20 = Pasture51 = Dry Beans52 =Green Beans 53 = Grain Corn54 = Silage Corn55 =Sweet Corn 56 = Melons57 = Peas58 = Potato59 = Soybeans60 = Tomato61 =Small Vegetables 5 or 70 =Nursery RAINST = Rain Station Code Number 1 = NAPLES2 = FT. MYERS3 = WEST PALM BEACH

TABLE C-5. Legend for

Legend for Public and Non-Public Water Supply Spreadsheets (Continued)

4 = STUART

- 5 = FT. LAUDERDALE
- 6 = KISSIMMEE
- 7 = MELBOURNE
- 8 = ORLANDO
- 9 = TITUSVILLE
- 10 = FELLSMERE
- 11 = FT. PIERCE
- 12 = OKEECHOBEE
- 13 = AVON PARK
- 14 = MOORE HAVEN
- 15 = LABELLE
- 16 = BELLE GLADE
- 17 = LOXAHATCHEE
- 18 = JUPITER
- 21 = TAMIAMI 4
- 22 = HOMESTEAD
- 23 = POMPANO BEACH
- 24 = INDIANTOWN
- 25 = HYPOLUXO
- 26 = BIG CYPRESS
- 27 = EVERGLADES
- 28 = HIALEAH
- 29 = LAKE PLACID
- 30 = MERRIT ISLAND
- 31 = VERO BEACH
- IRR ACRES = Number of irrigated acres IRR EFF = Irrigation system efficiency STS = Status
 - ------
 - 01 = Existing02 = Proposed
 - 2 110 posed
 - 03 =Stand By/Backup
 - 04 = To Be Plugged
- DPTH CODE = Datum for Elevations
 - 01 = NGVD
 - 02 = Land Surface
- PMPINT = Depth to Pump Intake (Weils Only) PUMP TYPE
 - 01 = Centrifical (suction)
 - 02 = Lift (turbine, jet, submersible)
 - 03 = Unknown

PUMP CAP. = Capacity in GPM (SW & GW Facilities) 01 = Unknown

MTR? = Is use Metered by Volume or Power

Consumption and Reported to the District? Y = Yes

$$t = tes$$

N = No

YPLNR = North Planar Coordinate

XPLNR = East Planar Coordinate

Water Supply Spreadsheet			. MAX DAY DATE USE SRC.NO. SW . DAY UTS.COISS.TYPE WLS. PMPS OWNER CO PERMIT NO.SAID LAD LAMAD HAMAD AG		WELL DPTH PMP PUMP PUMP DIA, CODE TD CD INT TYPE CAP. MTR? XPLNR YPLNR COMMENTS	0.81 01 06 2/89 PWS GV 3 SEMINOLE TRIBE OF FLORIDA 06 06-00001-4 09	12.00 02 105 96 30 02 1100 k 756751 618409 THIS PROJECT IS WOT A PERMIT ; BUT RATHER A WORK PLAN. 12.00 02 72 58 30 02 1200 k 756289 618339 THE PLAN WAS SIGNED BY DISTRICT STAFF IN FEBRUARY 1989. 12.00 02 72 58 30 02 800 k 756079 618351 THE PVS PROJECTIONS ARE FOR THE YEAR 1998. 12.00 02 72 58 30 02 800 k 756079 618351 THE PVS PROJECTIONS ARE FOR THE YEAR 1998. HOLLYHOOD RESERVATION. WELL 17 IS USED FOR STANDBY AND WELL 18 IS A MONITORING WELL. THIS DISCUSSION ONLY COVERS THE WELLS AT THE HOLLYHOOD RESERVATION.	0.73 01 06 2/85 PWS GW 3 ROYAL UTILITIES COMPANY 06 06-00003-W 09 8.00 02 140 127 02 1350 Y 747602 708623 PERMIT # 06-00003-W WAS ORIGINALLY ISSUED TO UNIVERSITY 12.00 02 165 140 02 1350 Y 747130 708326 UTILITIES ON SEPTEMBER 13, 1974, 1T WAS TRANSFERRED TO 12.00 02 138 132 02 1350 Y 747375 707978 ROYAL UTILITIES IN SEPTEMBER 1988.	7.00 01 06 2/84 PUS GV 3 CITY OF NORTH LAUDERDALE 06 06-00004-V 09 24.00 02 129 106 02 2500 Y 756069 685379 THE ORIGINAL PERMIT WAS ISSUED TO THE CITY IN SEPTEMBER 1974. 24.00 02 128 105 02 2500 Y 755546 684744 THE PERMIT WAS REISSUED IN MAY 1979 AND FEBRUARY 1984. 24.00 02 128 103 02 2500 Y 755553 684259 A RENEWAL APPLICATION IN HOUSE.	27.45 01 06 6/89 PMS GV 28 CITY OF HOLLYMOOD 06 06-00038-4 09 12.00 26 55 01 700 760751 610284 06 00638-4 09 12.00 26 53 02 1000 769776 610545 1HE CITY IS ATTEMPTING CONDITIONS OF THE PERMIT, 12.00 26 53 02 1000 769776 610545 1HE CITY IS ATTEMPTING CONDITIONS OF THE PERMIT, 12.00 26 53 02 1000 769776 610552 0RDECE THE POTENTIAL FOR SALINE WATER INTRUSION. 12.00 26 52 01 700 769778 610755 0RDITION 26 REQUIRES THAT WELLS 16 12.00 26 52 01 1000 769774 611111 PLACED ON 27 REQUIRES THAT WELLS 16 12.00 26 52 01 1000 769774 6111140 CONDITION 27 REQUIRES THAT WELLS 16 12.00 26 1100 769770 6111140 CONDITION 27 REQUIRES THE CITY SUBMIT THE WELL 12.00 27 100 769770 6111140
ly Spre			DATE US ISS. TY			2/89 Pt	888 888 888	2/85 Pu 127 140 132	2/84 Pu 106 105 105	6 6 6 6 6 6 6 6 6 6 6 6 6 6
ddn	RM1TS =		د. د			90	5 2 2 2 2 2	06 165 138	06 129 128	⁸ 22225522502255
Water S	SUPPLY PE		MAX DA Day UT		WELL 0P 01A. COI	0.81 01	12.00 02 12.00 02 12.00 02	0.73 01 8.00 02 12.00 02 12.00 02	7.00 01 24.00 02 24.00 02 24.00 02	27.45 12.00 10.00 12.00 12.00 10.00 12.00 10.00 10.00 12.00 10.000
blic	WATER		ALL. UNT.		STS	03	282	8222	0 0000	82222222222222222222222222222222222222
C-6. Pu	COUNTY PUBLIC	EADINGS	AN. ALL.	EADINGS	FACILITY NUMBER	173.74	0600001-16 0600001-17 0600001-19	157.00 0600003-1 0600003-2 0600003-3	1600.00 0600004-1 0600004-2 0600004-3	8202.01 0600038-1 0600038-2 0600038-5 0600038-5 0600038-7 0600038-7 0600038-7 0600038-7 0600038-7 0600038-12 0600038-13 0600038-13
TABLE	BROWARD I	LINE 1 H	PERMIT NO.	LINE 2 H	PERMIT NO.	060001		060003	060004	0600038

•					
		09 N JULY, 1975. 986 AND WILL EXPIRE	09 95. THAT 11 WELLS WERE	09 SEPTEMBER 1975. THE 1986. THE PERMIT A RENEVAL APPLICATION	09 RPORT WELLFIELD. TER INTRUSION PROBLEMS,
	262288233862233	K WATER COMPANY 06 06-00043-W 18 BROADVIEW RECEIVED ITS ORIGINAL PERMIT IN 94 THE PERMIT WAS REISSUED AGAIN IN APRIL 19 84 IN APRIL 1991.	ATION 06 06-00044-W 60 THE CITY RECEIVED IT ORIGINAL PERMIT ON A 56 THE PERMIT WILL EXPIRE NON AUGUST 15, 199 79 ON OCTOBER 11, 1989, MR. ENTUS INDICATED 43 CONSTRUCTED. 81 92 93 93 94 95 95 95 96 96 97 97 97 97 98 98 97 97 97 97 98 97 97 97 97 97 98 97 97 97 97 97 98 97 97 97 97 97 97 97 97 97 97 97 96 97 97 97 97 97 96 97 97 97 97 97 97 97 97 96 97 97 97 97 97 97 97 97 97 97 97 97 97	AR 06 06-00054-V B9 THE CITY RECEIVED ITS ORIGINAL PERMIT IN 35 PERMIT WAS REISSUED IN 1984 AND AGAIN IN 78 EXPIRED IN JUNE 1988. THE APPLICANT HAS 64 IN HOUSE. 77 25 41 27 27 27	ND BEACH 06 06-00070-W 75 75 WELLS 1 THROUGH 16 ARE LOCATED AT THE AIR 73 WELL ONE IS ABANDONED. DUE TO SALINE WAI
ntinued)	770667 6094 770528 6104 770528 6104 770521 6103 769703 6124 769703 6122 76974 6115 769754 6112 769704 6126 768779 6099 768673 6094 768673 6094 768673 6094 768673 6094 767703 6094	8R0ADVIEW PARI 757043 6426 757011 6419 757003 64231	2117 OF PLANI 751214 65271 751214 6527 751214 6527 751177 6532 751177 6532 751198 6529 751198 6529 75193 6533 752093 6533 752165 6533 752165 6533 753165 6533 753457 6533	2117 OF MIRAN 756217 60131 755247 60113 755682 6010 755789 6011 755126 6012 755061 5996 755061 5995 755041 5993 75511 5993	211Y OF POMPA 788053 6915 787808 6923 788415 6938
heet (Co	900 N 1000 N 1200 N 1200 N 1200 N 1200 N 2400 N 2400 N 2400 N 2400 N 2400 N 2400 N 2400 N 2400 N 2400 N	450 N 450 N 650 N 650 N	13 13 13 13 13 13 13 13 13 13 13 13 13 1	9 550 N 550 N 500 N 500 N 1100 N 1100 N 70 N 70 N	22 1500 N 1500 N
y Spreads	115 115 115 115 115 115 115 115 115 115	/86 PWS GV 84 02 98 02 107 02	775 Pus Gu 50 86 75 70	 (86 Puss GW (100 02 	/87 Pus Gu 02 02
lqqu	152 1123 1123 1123 1123 1123 1123 1123 1	06 94 120	06 58 95 75 75 75 75 75 75 75 75 75 75 75 75 75	06 110 110 110 110 110 110 110 110 110 1	06 5 136 107
: Water S	10.00 02 10.00 02 14.00 02 14.00 02 14.00 02 14.00 02 14.00 02 20.00 02 000	0.99 01 10.00 02 10.00 02 12.00 02	13 . 94 01 8 . 00 02 8 . 00 02 8 . 00 02 8 . 00 02 8 . 00 02 12 . 00 02 13 . 00 02 14 . 00 02 15 . 00 02 15 . 00 02 17 . 00 02	5.30 01 8.00 02 6.00 02 8.00 02 8.00 02 12.00 02 8.00 02 8.00 02 8.00 02	25.50 01 16.00 02 16.00 02
: C-6. Public	0600038-14 01 0600038-15 01 0600038-15 01 0600038-17 01 0600038-17 01 0600038-21 01 0600038-22 01 0600038-22 01 0600038-22 01 0600038-22 01 0600038-22 01 0600038-25 01 0600038-25 01 0600038-25 01 0600038-26 01 0600038-27 01 0600038-27 01	278.80 03 0600043-1 01 0600043-2 01 0600043-3 01	3100.00 03 060004-1 01 060004-2 01 0600044-5 01 0600044-5 01 0600044-6 01 0600044-7 01 0600044-9 01 0600044-10 01 0600044-11 01 0600044-12 02 0600044-12 02	1241.00 03 0600054-2 01 0600054-2 01 0600054-3 01 0600054-3 01 0600054-8 01 00 0500054-8 01 00 0500050 00 000054-8 000050 00 00 000050-8 000050 0000000000000000000000000000000	7612.00 03 0600070-1 04 0600070-2 02 0600070-3 01
TABLE		060043	⁴ 7000990 112	0600054	0600070

099 694418 WELLS 2 AND 8 ARE USED ONLY WHEN NECESSARY. 0241 695138 UELLS 17 TO 22 ARE LOCATED AT THE PALM AIRE WELLFIELD. 7883 695229 DUE TO POTENTIAL IMPACTS ON THE GOLF COURSE, THE PALM AIRE 7944 696496 WAS LIMITED TO 6 MGD. THE CITY HAS AN APPLICATION 7248 697522 IN HOUSE IN ORDER TO INCREASE THE ALLOCATION 7248 697725 IN HOUSE IN ORDER TO INCREASE THE ALLOCATION 7248 697527 IN HOUSE IN ORDER TO INCREASE THE ALLOCATION 7248 697525 IN HOUSE IN ORDER TO INCREASE THE ALLOCATION 7214 699453 699453 7224 699455 IN HOUSE IN ORDER TO INCREASE THE ALLOCATION 7225 699557 700646 700645 700645 690516 0021 700646 69044 7719 690705 690746 1531 691468 691468 1531 691381 691381	C OF TAMARAC 06 06-00071-W 09 1764 678886 TAMARAC WAS ISSUED A PERMIT IN 1976 WITH AN ANNUAL ALLOCATION 859 678904 OF 3831 MGY. 09 1354 678035 OF 3831 MGY. 09 1354 678910 THE PERMIT UAS REISSUED IN 1986 FOR AN ANNUAL ALLOCATION 1355 679035 OF 2510 MGY. MANUAL ALLOCATION 13065 679035 OF 2510 MGY. MANUAL ALLOCATION 1505 679035 OF 2510 MGY. MANUAL ALLOCATION 1610 679036 OF 2510 MGY. MANUAL ALLOCATION 1010 679036 THE UITHORANAL CAPACITIES OF UELLS 1 THROUGH 9 MAS DECLINED 1010 679129 679129 S670179 S670129 S670129 1012 678276 678276 S670179 THROUGH OUT THE YEARS. S610 S79298 1012 679276 679219 S77219 S77268 S79206 S79219	<pre>7 OF DEERFIELD 06 06-00032-W 09 2883 722667 WELL # 1 HAS BEEN CAPPED AND ABANDONED. 2883 722647 WELLS # 2, 3, AND 9 ARE USED ONLY TO MEET PEEK DEMANDS. 3656 723015 WELLS # 17 THROUGH 20 ARE 1 THE WESTERN WELLFIELD. 2687 721518 DUE TO POLLUTION PROBLEMS, THE WESTERN WELLFIELD UAS 1198 721508 USED SPARINGLY IN THE PAST. 1140 72182 1140 72182 1140 72182 2011 72182 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2011 722037 2012 721452 2013 722037 2013 722037 2013 722037 2014 722037 2015 722037 2015 722037 2015 722037 2015 722037 2015 72203 2015 72203 2015 72203 2015 72204</pre>
12200 N 12200 N 1200 N 120	19 550 N 74 550 N 76 550 N 74 550 N 74 550 N 74 555 N 74 74 555 N 74 74 555 N 74 74 655 N 74 74 74 74 74 74 74 74 74 74 77 74 77 77	20 CIT 700 N 79 700 N 79
88888888888888888888888888888888888888	22222222222222222222222222222222222222	PHS GV PHS GV PH
7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	36 1/87 126 111 126 111 126 110 117 100 117 100 117 100 117 100 117 100 117 100 117 100 117 100 117 100 117 100 117 100 1160 111 160 111 160 111 160 111 160 111 160 111	86 5/85 1110 1110 1110 1110 1110 1100 1100 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100
65 66 <td< td=""><td>12.00 12.000</td><td>72.00 02 72.00 02 72.</td></td<>	12.00 12.000	72.00 02 72.00 02 72.
89999999999999999999999	90 00 00 00 00 00 00 00 00 00 00 00 00 0	8 848888888888888888888888888888888888
0600070-4 0600070-5 0600070-7 0600070-8 0600070-10 0600070-11 0600070-11 0600070-15 0600070-15 0600070-17 0600070-17 0600070-17 0600070-17 0600070-21 0600070-21 0600070-21	2700.1 0600071-7 0600071-7 0600071-7 0600071-7 0600071-7 0600071-7 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-15 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17 0600071-17	4270. 0600082-1 0600082-2 0600082-4 0600082-4 0600082-6 0600082-7 0600082-8 0600082-8 0600082-8 0600082-9
	L 7 000 30	0600082

TABLE C-6. Public Water Supply Spreadsheet (Continued)

	06 06-00100-W 20100-W 20100-W 20100-W 20100-W 20100-W 20100-W 20100-W 201011 1982. Wells 6 and 7 were completed in August 1988. Wells 1 Through 5 Were Installed Prior to 1980. The X and Y coordinates were taken from permit file.	D BEACH D6 06-00101-U 09 PERMIT 06-00101-U WAS ORIGINALLY ISSUED IN MARCH, 1977. The Permit Was Reissued in 1980 and in 1981. The Permit Expired on November 12, 1986. The Town has a renewal APPLICATION IN HOUSE.	RINGS 06 06-00102-W	ON D6 06-00103-W 09 ACCORDING TO THE FILE, THE INDIVIDUAL WELLS ARE NOT METERED HOWEVER, THE FLOW INTO AND FROM THE PLANT IS METERED. PERMIT # 06-00103-W WAS ORIGINALLY ISSUED ON MARCH 10,1977. THE PERMIT WAS REISSUED ON MARCH 13, 1986 FOR AN ALLOCATION OF 1650 MGY AND 4 ADDITIONAL WELLS. ON JUNE 11, 1987,
721556 720876 720876 719711 719886 718651 718651 718623 717474 718623	694954 695571 695571 693081 696908 697933	KILLSBOR 706948 706889 707250 707250	CORAL SP 706913 706913 706514 706551 706551 706551 706551 706551 7054571 705457 7039161 7039161 702947 702947 702947 702947 702968	PLANTATT 652510 653796 653346 651740 652515 652515
792777 793074 793091 793100 793104 793104 792485 786737 786355 786355 786355	CSID 742401 742429 7422395 7422395 742727 742727 742727 740491	TOWN OF 791441 791142 790796 790618	C117 05 748858 748858 748858 748856 748856 74872 74872 748603 748613 748613 748613 748613 748631 748631 748873 750137 750137 750269	CITY 0F 737971 737971 738938 738938 738991 738091
700 N 700 N 700 N 700 N 700 N 700 N 2800 Y 2800 Y 2800 N	7 700 Y 700 Y 700 Y 700 Y 1700 Y 1200 Y 1200 Y	4 250 N 250 N 1200 N	NNNN 444444444444444444444444444444444	8 1400 N 1400 N 1400 N 1400 N 1400 N
40 02 40 02 40 02 40 02 40 02 46 00 46 00 46 00 46 00 46 00 46 00 40 000 40 000 40 0000000000	PWS GV 30 02 30 02 30 02 30 02 30 02 30 02 30 02	mg sma	888 888 888 888 888 888 888 888 888 88	Pus Gu 02 22 22 22 22 22
3 8 2 8 2 8 2 8 2 8 5 8 5 8	9/87 60 60 60 60 60 60 60 60 60 60 60 60 60	11/81 61 64 128 128	10/87 77 53 53 53 53 53 53 53 53 53 53 53 53 53	6/87 100 100 100 100 100
85 85 96 96 10 10 10 10 10 10 10	105 105 120 120 120	06 71 104 138	06 135 155 155 155 155 155 155 155 155 155	130 130 130 130 130
14.00 02 14.00 02 14.00 02 14.00 02 14.00 02 14.00 02 14.00 02 20.00 02 20.00 02 20.00 02	5.59 01 8.00 02 8.00 02 8.00 02 16.00 02 16.00 02 16.00 02	1.90 01 8.00 02 8.00 02 12.00 02 12.00 02	9.55 01 10.00 02 12.00 02 12.00 02 15.00 02 16.00 02 16.00 02 16.00 02 16.00 02 16.00 02 20.00 02 000 02 000 00 0000000000	6.41 01 14.00 02 14.00 02 14.00 02 14.00 02 14.00 02 14.00 02
2222222222	0 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	o 8222222222222222222222222222222222222	822222 822222
0600082-11 0600082-12 0600082-13 0600082-14 0600082-15 0600082-15 0600082-16 0600082-18 0600082-19 0600082-19 0600082-19	1300.0 0600100-1 0600100-2 0600100-3 0600100-3 0600100-5 0600100-5	409.0 0600101-1 0600101-2 0600101-3 0600101-3	2120.0 0600102-2 0600102-3 0600102-4 0600102-4 0600102-6 0600102-7 0600102-9 0600102-9 0600102-12 0600102-13 0600102-15 0600102-15 0600102-15 0600102-15 0600102-15 0600102-15 0600102-16 0000102-16 00000102-16 0000002-16 0000002-17 000000000000000000000000000000000000	1650.0 0600103-1 0600103-2 0600103-3 0600103-4 0600103-4
	0600100	0600101	0600102	0600103
		114		

TABLE C-6. Public Water Supply Spreadsheet (Continued)

-

٠

•				
652464 THE APPLICANT RECEIVED APPROVAL FOR 4 ADDITIONAL WELLS AND 652881 WELLS AND PERMISSION TO ABANDON THE 4 ORIGINAL WELLS. 652898 ON JANUARY 9, 1989, THE CITY OF PLANTATION RECEIVED A PERMIT TO ABANDON ITS ORIGINAL 4 PRODUCTION WELLS.	COUNTY CORRECTIONAL 06 06-00104-W 09 618368 THE PERMIT EXPIRED ON JULY 9, 1986. THE FACILITY RECEIVES 618453 DRINKING WATER FROM THE COUNTY.	COUNTY UTILITIES 06 06-00112-W 09 679723 THE PERMIT WAS ORIGINALLY ISSUED TO BROADVIEW UTILITIES 679761 ON MAY 12, 1977. THE PERMIT WAS TRANSFERRED TO THE COUNTY 679639 AND REISSUED ON MARCH 10, 1988.	SUMRISE0606-00120-W09671117HELLS LABELED "A" ARE LOCATED AT PLANT 1; WELLS671117HELLS LABELED "A" ARE LOCATED AT PLANT 1; WELLS670167FIRELED "B" ARE AT PLANT 2; WELLS LABELED C ARE AT670377THE APPLICANT HAS PROPOSED TO EXPAND PLANT 1 BY ADDING670377THE APPLICANT HAS PROPOSED TO EXPAND PLANT 1 BY ADDING670377THE APPLICANT HAS PROPOSED TO EXPAND PLANT 1 BY ADDING670377THE CITTY WILL BASE THE NEW WELL LOCATIONS ON THE670277REAUGUST 17: 1982.THE CITTY WILL BASE THE NEW WELL LOCATIONS ON THE670370THE CITTY WILL BASE THE NEW WELL LOCATION OF 4950 MGV. THE PERMIT66964 DISTRICT FOR AN ANNUAL ALLOCATION OF 4970 MG ON660637660377DECENBER 10, 1987. THE PERMIT WAS REISSUED AGAIN ON660637DECENBER 10, 1987. THE PERMIT WAS REISSUED AGAIN ON660550G60550CCODER 6, 1988 WITH AN INCREASED ALLOCATION OF 6200 MG.660550640750640750640750640750640750640750640750640750640750640750640750640750640850640750640750640750640850640750640750640750640850640750640750640750640850640850640850640750640850 <td></td>	
739821 740023 739712	BROWARD (690555 690402	BROWARD 760607 760424 760428	CITY OF 142304 742304 742068 742068 742068 742063 742146 742146 742146 742146 74111 7411637 7411637 741637 741637 741200 741200 741200 741200 741200 741200 741200 741200 741250 741250 741250 741750	
N 0051 N 0051	2 120 N 125 N	3 400 Y 1000 Y 1050 Y	35 000 000 000 000 000 000 000 000 000 0	
05 65 05 65 05 65	81 PVS GV 60 03 56 03	8 PWS GV 00 02 00 02 05 02	82233333333333333333333333333333333333	
<u> </u>	10/1	3/8		
130	နိုင်္စဆို	06 112 115	8121252222826888666666666666666666666666	
14.00 02 14.00 02 14.00 02	0.14 01 12.00 02 12.00 02	1.02 01 12.00 02 12.00 02 12.00 02		
0600103-6 01 0600103-7 01 0600103-8 01	43.50 03 0600104-1 01 0600104-2 01	268.60 03 0600112-1 01 0600112-2 01 0600112-3 01	6290.00 03 0600120-2A 01 0600120-5A 01 0600120-6A 01 0600120-1A 01 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 0600120-1B 02 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 0600120-1BA 02 06001	
	0600104	0600112	06-00120	

.

TABLE C-6. Public Water Supply Spreadsheet (Continued)

CITY OF MARGATE 06 06-00121-W 694027 WELL CONSTRUCTION DATA TAXEN FROM THE PACKAGE MR. VAN ACKER 693659 SENT ME ON 12-19-89. 693629 THERE ARE ONLY 13 WELLS. DUE TO MIS-MUMBERING, THE THREE NEW 693647 WELLS WERE INITIALLY LABELED 12, 12, AND 14. THIS MISTAKE WAS 694047 CORRECTED HERE. SEE PAGE 4 OF 1977 STAFF REPORT. 6936355 VERY LITTLE DATA WAS GIVEN FOR THE EXISTING 10 WELLS 693912 693912 693593 693593 693518	FORT LAUDERDALE0.60.6-00123-U0.96466046466046466046466047011An THO VELLFIELD ARE LABELED WITH A "D" AND THE WELLS AT645833THE DIXIE WELLFIELD ARE LABELED WITH A "D" AND THE WELLS AT645834THE WELLFIELD ARE LABELED WITH A "D".THE645034TOTAL NUMBER OF WELLS IS 75, 26 WELLS ARE64504TOTAL NUMBER OF WELLS IS 75, 26 WELLS ARE64572MELLFIELD AND 409 WELLS IO A MAXIMUM UNITHOMANAL OF 2064727DIXTE WELLFIELD AND 409 WELLS CONTE AND 10AMMAMAL OF 2064723MGD DUE TO POTENTIAL SALINE WATER INTRUSION PROBLEMS. AT64727THE PROSPECT WELLFIELD, THE PRISON PROBLEMS. AT647223MGD DUE TO POTENTIAL SALINE WATER INTRUSION PROBLEMS. AT64727THE PROSPECT WELLFIELD, THE CITY PROES NOT USE WELLS 1642223MGD DUE TO POTENTIAL SALINE WATER INTRUSION64710364207364107364203364102364101364203364103364422364103364102364103364103364103364103364103640033640033640033640033641036400336400336400336400336410364003364003364003364003364103640033640033640033640033641036400336400336400336400364003364003364003364003640033640033640033640036400336400336400364003364003364003640033640033
Y 758050 Y 758557 Y 758557 Y 758209 Y 757209 Y 757209 Y 757269 Y 757269 Y 757269 Y 757269	C117Y 05 C17Y 05 758922 N 750273 N 750273 N 759842 N 7598424 N 759562 N 759562 N 759562 N 759562 N 759562 N 759854 N 759854 N 759854 N 759854 N 759854 N 759854 N 759854 N 759854 N 759854 N 759857 N 759857 N 759857 N 759857 N 759857 N 759857 N 759857 N 759857 N 759857 N 755867 N 755867 N 755867 N 755867 N 755867 N 755867 N 755867 N 755867 N 755867 N 755875 N 755867 N 755875 N 755867 N 755875 N 755875 N 755875 N 755867 N 7558658 N 7558658 N 7557558 N 7558658 N 7557558 N 755758 N
12 800 1000 1000 1000 1000 1500 1500 1500	75 600 600 600 600 600 600 600 600 600 60
Pus 2000000000000000000000000000000000000	38 28 <td< td=""></td<>
	 シマンククライトあるるのろうろうろうようようようちのあるようのののでははの。 シーレートを見てるいたしていたいしてきるのようのののではは、
12.00 10	% %
° • • • • • • • • • • • • • • • • • • •	822222222222222222222222222222222222222
3600.0 0600121-1 0600121-2 0600121-2 0600121-5 0600121-5 0600121-6 0600121-9 0600121-9 0600121-10 0600121-11 0600121-12	1916.0 1916.0
0600121	0600123

		6	09 JELLS ARE JEW WELLS :CEIVED :CEIVED	09 WATER USE AND 1989. DTHER WELL	60
			TEM 2. THESE 4 AND 9 ARE THE A 77, THE CITY RE IIT WAS REISSUED II OF 923 MGY.	ANT RECEIVED A IN 1981, 1987 / RY WELLS. THE C	DECTDICTED THE
		06-00129-и	06-00134-W ELCATED AT SYS MELLS 7, 8, NOVEMBER 17, 15 NOVEMBER 17, 15 NOVEMBER AN ANNUAL T FOR AN ANNUAL T FOR AN ANNUAL MEY. THE PERM INUAL ALLOCATION	6 06-00135-W 1977, THE APPLIC 11T WAS RENEWED 3 ARE THE PRIMAR 3 ARE THE PRIMAR	5 06-00138-W
	· ·	90	UKLLS 5 AND 6 ARE FOR EMERGENCY USE at system 2. ON a Water USE permi Allocation of 572 in 1979 for AN AN	PINES OC ON NOVEMBER 17, 1 PERMIT. THE PERM WELLS 6, 7, AND 8 ARE STANDBY.	LE CM ALICLET 17 100
ed)	677753 6777576 6777376 6777428 6777428 6777457 6777457 677382 677382 677382 677382 677382 677382 677382 677382 677382 677382 677382 677383 677743 677383 677383 677383 677383 677383 677383 677383 677383 677383 677383 677383 677743 677383 677743 677833 677743 677833 677743 677833 677833 677833 677743 677833 677743 677833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 777833 7777833 777783 77777777	LAUDERHII 661643 661458 661458 661358 661509 66128 66128 661938	DAVIE 633264 633428 633428 633420 633420 633420 621925 621925 621925 621925 621925 621925 621925 621925 621925	PEMBROKE 6112200 611950 611685 611685 611685 611855 611855 611855 612100 612100 612100	HALLANDA
Continu	766801 765045 765045 765045 765045 76598 765988 765123 765123 765123 765123 765123 765123 765123 765123 7655585 765585 765585 765585	CITY OF 756639 756489 756461 756461 756627 756700 75673 756973	C117 OF 752008 751973 751973 752249 752150 749749 748774 748774 748774 748774	CITY OF 747700 747700 747700 747700 74760 74760 74760 74760 752500 752500 752500	CITY OF
sheet (C	2100 N 2100 N	7 500 11000 1500 2800 2800 2800 2800	9 550 Y 550 Y 700 Y 700 Y 700 Y 700 Y 1400 Y 1400 Y	8 2000 Y 1000 Y 2100 Y 2100 Y 2100 Y 1500 Y 1500 Y	80 s o
Spreads	2223288282828282 22238828282828282 2223882828282	6 PWS GW 80 PWS GW 80 02 80 02 80 80 80 80 80 80 80 80 80 80 80 80 80	5 Pws 64 90 100 02 25 125 02 00 100 02 33 133 02 00 100 02 33 133 02 00 02 00 02 00 02 00 00 00 00 00 00 00 00 00 00 00 00 0	9 PMS GU 09 40 02 09 40 02 09 40 02 09 40 02 03 40 02 002 40 02 002 40 02 002 40 02 002 40 02 002 40 02 002 40 02	HD SM4 2
Supply	\$\$\$\$ <u>6</u> \$\$\$\$\$\$\$\$\$\$\$\$ 	06 6/8 111 25 154 111 25 154 111 25 154 111 25 154 111 25 115 115 115 115 115 115 115 115 115 11	06 4/8 110 111 110 1110 110 1110 115 1115 110 1110 110 1110 110 1110 110 1110	06 8/8 112 112 1112 1112 1112 1112 1112 1112	06 8/8
c Water (17.00 02 17.00 02 17.	10.06 01 8.00 02 12.00 02 12.00 02 12.00 02 24.00 02 24.00 02 24.00 02 24.00 02	4.31 01 10.00 02 10.00 02 12.00 02 12.00 02 12.00 02 20.00 02 20.00 02 20.00 02 20.00 02 20.00 02	10.14 12.00 12.00 12.00 12.00 12.00 12.00 16.00 16.00 10.00 10.00 10.00 10.00 00 10.00 00 10.00 00 10.00 00 10.00 00 10.00 00 10.00 00 10.00 100	3.50 01
Publik	23.35 23.55 25	2510.00 03 29-1 01 29-2 01 29-5 01 29-5 01 29-5 01 29-7 01	1124.20 03 34.1 34.2 34.2 34.5 34.5 34.5 34.6 03 34.7 01 34.9 01 34.9 01	2847.00 03 135-1 03 135-2 03 135-3 03 135-4 03 135-6 01 135-6 01 135-8 01	
BLE C-6.	10050 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020 10020	29 060011 060011 060011 060011 060011 060011 060011 060011	134 06001 06001 06001 06001 06001 06001 06001 06001 06001	135 06001 06001 06001 06001 06001 06001	138 ·
IA		06001	89 9117	0090	0090

(0	60286
ontinue	1717141
ieet (Co	1041 Y
breadsh	40 02
S.	6 0
Supply	68
ter S	00 02
Sa	20.0
Public \	03
9. U	0600138-5
ABLE	

	06 06-00142-W 09 PERMITTED 13.31 MGD 15 A REDUCTION FROM THE PREVIOUSLY MITTED 15.07 MGD UHICH WAS PERMITTED ON JUNE 12, 1986. URE PLANS INCLUDE JOINING THE REGIONAL WELLFIELD SYSTEM	<pre>ITIES 06 06-00145 09 L 1 WILL BE PLACED ON STANDBY WHEN WELLS 5 AND 6 ARE UGHT ON LINE. THE COUNTY HAS AN APPLICATION iN HOUSE. THE APPLICATION, THE CITY INTENDS TO PROVIDE DANIA WITH MGD. ACCORDING TO PAGE 2 OF THE APPLICATION, WELLS ND 2 HAVE FLOWMETERS. URE PLANS INCLUDE JOINING THE REGIONAL WELLFIELD.</pre>	ND 1B C FILE THE PRIMARY WELLFIELD FOR BOTH SERVICE AS. WELLFIELD 1A IS THE PRIMARY WELLFIELD FOR BOTH SERVICE AS. WELLFIELD 1B (WELLS 18-5B) IS USED FOR STANDBY. MIT # 06-00146-W WAS ORIGINALLY ISSUED IN JANUARY 1978 AN ANNUAL ALLOCATION OF 2140 MGY. THE PERMIT WAS SUED IN JUNE 1986 WITH AN ANNUAL ALLOCATION OF 3382 MGY. AND JUNE 1986 WITH AN ANNUAL ALLOCATION OF 3382 MGY.	06 06-000147 09 LS A THROUGH F ARE AT THE 38 WELLFIELD; WELLS 1 OUGH 3 ARE AT THE 3C WELLFIELD. THE COUNTY HAS ENEWAL APPLICATION IN HOUSE TO SUPPLY HALLANDALE WITH ER. EVENTUALLY, THE 38 SERVICE AREA WILL BE SUPPLIED H WATER FROM THE REGIONAL WELLFIELD; AND THE 3B LFIELD WILL BE SOLD. THE 3C SERVICE AREA WILL BE 2 TO A NEIGHBORING UTILITY.
602866 602689 604495 603867	COUNTY ZA 713259 THE 713259 THE 7132512 PER 7132515 PER 7132515 PER 7132515 712649 712649 712959 712959 715130	COUNTY UTIL 628436 WEL 628137 BRO 628137 BRO 628137 BRO 628137 BRO 62840 1.0 625412 1 A 625512 1 A 625307 FUT	COUNTY 1A A 669064 WEL 668495 ARE 668495 ARE 668495 ARE 668593 RE1 FOR 668593 RE1 668871 FOR 668593 RE1 6683925 6682759 6682759 682759 682759 682755 683075 683075 682818 682758 7758 7758 7758 7758 7758 7758 7758	COUNTY 602337 HEL 602307 THR 602429 A R 597123 HAT 597123 HIT 597123 VEL 597123 SOL
777141 777116 776431 775109	BROWARD 792872 792714 793774 793774 792700 792700 792478 792134 792134 790750 790750 788267 788267	BROMARD 762545 762548 762892 762101 761522 761502	BROWARD 761085 761085 760668 76076884 759957 760884 760884 760884 779257 779255 779253 779250 779280 779408	BROWARD 755640 755640 755881 768548 768548 768548 768548 768548
1041 Y 1041 Y 2083 Y 2431 Y	9 600 N 800 N 3000 Y 1800 N 2100 N 2100 N 2200 Y 2500 N 2500 N	6 540 Y 610 Y 815 N 750 N 1100 N	11500 N 11500 N 11500 N 11500 N 2100 N 225	930 N 930 N 1200 N 1200 N 2100 N 2100 N 350 Y
40 02 40 02 42 02 42 02	PWS GM 02 02 02 02 02 02 02 02 02 02 02 02 02	75 01 25 01 25 01 25 01 25 01 20 02 20 02 20 02 20 02 20 02	PUS 60 00 00 00 00 00 00 00 00 00 00 00 00	PUS 64 0 22 0 22 0 22 0 22 0 22 0 22 0 22 0 2
40 40 66 101	9/88 154 107 125 125 156 80 85	4/87 55 55 55 116 75 75	9/88 72 72 75 75 75 75 70 102 102 102 102 102 102	2/86 102 100 100 50
68 68 97 107	08 178 178 178 178 150 150 150 150	06 65 65 110 110	80 11 15 15 15 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	⁸⁰ 0125558558555855555555555555555555555555
20.00 02 20.00 02 20.00 02 20.00 02	19.98 01 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 20.00 02 24.00 02 24.00 02 24.00 02 24.00 02 24.00 02	5.43 01 12.00 02 12.00 02 12.00 02 14.00 02 20.00 02 20.00 02	11.80 01 12.00 02 12.00 02 12.00 02 20.00 02 20.00 02 20.00 02 20.00 02 20.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02	6.30 01 6.00 02 8.00 02 10.00 02 18.00 02 24.00 02 24.00 02 24.00 02 6.00 02 6.00 02
8822	82222222228	6 86555588	0 8222222228888888888888888888888888888	0 822228822
0600138-5 0600138-6 0600138-7 0600138-8	4860.0 0600142-1 0600142-2 0600142-5 0600142-5 0600142-5 0600142-5 0600142-8 0600142-10 0600142-10 0600142-11	1565.0 0600145-1 0600145-2 0600145-3 0600145-5 0600145-5 0600145-5	3310.0 0600146-1A 0600146-2A 0600146-2A 0600146-5A 0600146-5A 0600146-6A 0600146-8A 0600146-28 0600146-4B 0600146-4B 0600146-4B	1690.0 0600147-A 0600147-B 0600147-E 0600147-C 0600147-F 0600147-F 0600147-1 0600147-1
	0600142	0600145	9710090	0600147
		118		

 TABLE C-6.
 Public Water Supply Spreadsheet (Continued)

 0600147-3
 01
 10.00
 02
 500
 755313
 602182

								•	
0600170	340.00 0 0600170-2 0600170-3 0600170-3 0000170-3	8	22222 2683 269	8/88 89 87 89 90	PWS GU 02 02 02	4 550 Y 200 Y 700 Y 700 Y	FERNCREST 755136 (755151 (755151 (755205 (755376 (UTILITIES 06 36227 36401 36482 36495	06-00170-4
0600187	770.00 0 0600187-A 0 0600187-B 0 0600187-C 0 0600187-E 0 0600187-F 0 0600187-F 0 0600187-F 0	3 3.00 1 12.00 1 12.00 1 12.00 1 12.00 1 12.00 1 12.00 1 12.00 1 12.00 1 13.00	. 8	9/82 93 120 120 88 88 100 65	En Sud	7 1000 500 500 700 700 700 1050	CITY OF D/ 778335 C 77856 C 77856 C 77856 C 77856 C 778598 C 778617 C 778617 C 771885 C 771885 C 771885 C	WIA 06 223904 WELLS G AND H ARE 223382 THE WESTERN WELLF 223287 ON DECEMBER 9, 19 223067 FOR AN ANNUAL ALE 519915 DECEMBER 9, 1987. 219916 HOUSE - FUTURE PL 223988	06-00187-W 0 THE PRIMARY WELLS AND ARE LOCATED IN TELD. THE OTHER WELLS ARE USED AS NEED 15.1 THE CITY RECEIVED A WATER USE PERMI 182, THE CITY RECEIVED A WATER USE PERMI COATION OF 770 MGY. THE PERMIT EXPIRED COATION OF 770 MGY. THE PERMIT EXPIRED THE CITY HAS A RENEWAL APPLICATION IN ANS FOR DANIA ARE UNCERTAIN.
0600242	186.10 0 0600242-1 0 0600242-2 0	3 0.76 0 1 10.00 0	1 06 2 140 2 140	3/85 140 140	PWS GW 30 02 30 02	2 400 Y 400 Y	PARKLAND U 754679 754391	UTILITIES 06 26750 ON MAY 17, 1979, 25139 UITH AN ANNUAL AL REISSUED IN 1985.	06-00242-4 0 PARKLAND UTILITIES WAS ISSUED A PERMIT LOCATION OF 198 MGY. THE PERMIT WAS
0600274	259.00 0 0600274-2 0 0600274-2A 0 0600274-7 0	13 1.41 0 13 24.00 0 13 24.00 0 13 24.00 0	2 130 2 130 2 130 2 120	10/88 70 70 70 70	PWS 64 46 02 40 02 40 02	5 700 N 750 N 650 N	QISN	06 NSID HAS 3 EXISTI ADDITIONAL WELLS. ACCORDING TO MR.	 06-00274-4 NG WELLS AND PROPOSES TO INSTALL 10 NG WELLS AND PROPOSES TO INSTALL 10 ONLY WELLS 2 AND 2A ARE CURRENTLY ACT PERRON, DNLY 2 WELLS ARE ACTIVE.
0600365	1190.00 5 0600365-1E 0 0600365-2E 0 0600365-3E 0 0600365-3W 0 0600365-4W 0 0600365-5W 0 0600365-5W 0 0600365-5W 0	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8888888470 - 00 - 00 - 00 - 00 - 00 - 00 - 00 -	8/8 88 70 70 70 70 70 70 70 70	812 822 922 922 922 922 922 922 922 922 92	10 700 600 1100 1100 1100	COOPER CI 738890 738693 738693 738787 738787 738693 727948 727948 727538 727538 727538 727538 727538 727538 727593 728970	TY 06 226615 WELLS AT THE EAST 226633 WELLS AT THE WEST 226475 WELL 2 AT THE WEST 226475 WELL 2 AT THE WEST 226475 WELL 2 AT THE WEST 227528 6, AND 7 AT THE V 227708 06-00365-W WAS 0F 527619 NOVEMBER 1981. 1 527494 PERMIT 06-00137-V 526885 526909	 06-00365-W WELLFIELD ARE LABELED WITH AN "E" AND TERN WELLFIELD ARE LABELED WITH A "W". TRU WELLFIELD HAS BEEN ABANDONED. WELLS WELLFIELD ARE PROPOSED. PERMIT METLY IN 1986 AND 1989 ISINCORPORATED INTO PERMIT 06-00365-W
0600435	239.44 (0600435-1 (0600435-2 (0600435-2 (03 1.05 0 01 12.00 0 11 12.00 0 11 12.00 0	66668	9/87) 40) 42) 42	PUS 64 32 02 34 02 32 02	3 700 Y 700 Y 700 Y	SOUTH BRO 712357 712101 711747	JARD UTILITIES INC. 06 622017 SOUTH BROWARD UT1 622020 SEPTEMBER 1982. 622012 UTILITY HAS A REN	06-00435-U LITIES RECEIVED ITS ORIGINAL PERMIT IN THE PERMIT WAS REISSUED IN 1987. THE JEWAL APPLICATION IN HOUSE.

.

	ADINGS (EXIST	TNG WA1	TER USE F	>ERM11	s)		ŭ 0 0 0 0 0 0									6) 11 14 17 18 19 19			
•ERMIT •ERMIT	AN. ALL.	ALL. UNT.	MAX MC MO. UT). IS. CO	DATE	USE TYPE	SRC.NC	.s.	ta A S A S A	OWNER			00	AQ T	KPETYPE	RAIN ST	ACRES	IRR EFF	
INE 2 HE	ADINGS (FACIL	ITIES 1	INFORMAT 1	ION FO	R EAC	H PER	417)					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	4 4 4 1 1 1 1	4 4 4 4 1	0 4 1 1 1	2 1 1 1 1 1 1		8 6 7 8 8 8 8 8	
PERMIT NO.	FACILITY NUMBER	uf STS D1	ELL DF	PTH 7	9 0		PUMP F	UMP AP. M	TR?)	KPLNR 1	rplnr sf	C COMMENT	Ś						
	rr 81 15 81 16 81 17 81 18 81 18 81 18 81 18 81 19 81 19 19 19 19 19 19 19 19 19 19 19 19 19	11 81 11 81 14 811			14 14 14 14 14 14 14 14 14 14 14 14 14 14				14 14 14 11 12 14 13 14			I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I		1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	61 81 71 81 81 81 81 81 81 81 81 81 81 81 81 81 81 81		41 85 92 93 91 92 91 92 92 93 91 9		
060001	0600001-1	53	14.90 00 3.00	, 80 20	2/89	, AG	BOTH 01	150 N	in Ser L	MINOLE	524101 St	FLORIDA	IECT IS NO	1 A PEI	15 0. MIT; BI	t 5 JT RATHE	78.9 R A UOR	0 0.75 K PLAN	
	0600001-2 0600001-3	568		2 2 2 2		000	558	N N 3	いたお	59270 59270	523807 GU	U BETWEEN I I NO ANNUAL	HE DISTRI ALLOCATI	ON WAS	GIVEN	FOR THE	AGRICUL	RIBE. TURAL	
	0600001-5	555	- 00 00 - 2 - 00	7 77 7 7 70 7	<u> </u>		553			289999	523407 GH	I DISTRICT.	HOWEVER	HEK IK	DISCUS		Y COVER	HE 12 THE	
	0600001-7	55	2.00 02	2 2 2 2 2 2			55	N N 09		59275	625078 GN	I WELLS 19) RESERVAT AND 20 AR	E FOR	SEMINOLI	E ESTATE	S AND		
	0600001-8 0600001-9	55	2.00 2.00 0.0	20 20 20	~ ~	00	55	и и 60 х		59281 - 59864 <	622058 GN 521719 GN	HOLLYWOOD) MOBILE E	STATES	, RESPE	CTIVELY.			
	0600001-10	53	2.00 0	2 60	~ ~		65	N 09	N i	59889	621489 GI								
	0600001-12	55	n m v n m v	7 2 2 2 2	~ ~		55		~ F	11776	071410 01 20074 01	. -							
	0600001-13	55	2.00 0	5 2 2	~ ~	0	55	60 N	. r.	57710	620905 GI								
	0600001-14 0600001-15	25	2-00 0	22	~ ~	o c	55	09 N	N F	59996	619898 GI	- - -							
	0600001-19	55	2.00 0	ッッ 오		.0	55	8 8	- 1-	56129	618430 GI								
	0600001-20	6	1.50 0	2 5	-	0	10	60 N	~	56808	618451 GI	~							
060007	22.20 0600007-1 0600007-2	0 0 0 0 0 0	0.14 0 8.00 0 8.00 0	55 50 50	6/74	¥C	03 03	2 600 Y 600 Y	0 CI	TY OF P 80529 80610	0MPANO, 1 695674 GI 695654 GI	HOUSING AUTH	HORITY OG LATION EFF BE 75%.	09 Ictenc	15 0. Y WAS N ERMIT E	B 23 DT GIVEN XPIRED I	44.5 ; HOUEV N 1984.	0 0.75 FR,	
0600021	125.4(0600021-1 0600021-2	0 0 0 0 0	18.72 0 6.00 6.00	2 06	4/86	O GLF	5 55 8	0 750 N 750 N	8 N N N N N N N N N N N N N N N N N N N	LASSIS 52867 52883	GOLF PRO 702690 SI 702601 SI	PERTIES INC. 4 THE SOURC	. Oc 16 of surf	s 09 : ace ua	15 0. Ter 15	Z Z3 AN DN-SI	100.0 Te lake	0 0.75	
0600024	778.77 0600024-58 0600024-58 0600024-68 0600024-68	4 82222	118.63 0 6.00 0 12.00 0 12.00 0	8 K K K K 8 K K K K	10 ²	17 GLF	801H 03 03 03 03	7 50 к 133 к 133 к	8 ~ ~ ~ ~ ~ ~	A CORPO 74497 72033 72354 70539	RAT 10N 690232 G 690459 G 690446 G 688340 G	H SURFACE I M MOST OF 1 J FROM THE	06 Jater Pump Fie Vell A Permit IS 3 to the P	5 09 • 4 HAS • 4 HAS • 4 HAS • 4 HAS • 4 HAS • 4 HAS • 5 HAS • 5 HAS • 5 HAS • 5 HAS • 5 HAS • 6 HAS	15 0. BEEN A P INFOR 0-8-87. EE, THE	4 23 BANDONED MATION V WITHDRA	662.0 ÅS NISS MALS WI	0 0.75 iing Ll Be	

TABLE C-7. Non-Public Water Supply Spreadsheet BROWARD COUNTY NON PUS WATER USE THROUGH 11/89

TABLE	: C-7.	Non-P	'ublic/	Wat	er Su	lqqı	y Sp	readsh	eet (C	Conti	nued)			-	
	0600024-7 0600024-8 0600024-11 0600024-1 0600024-3 0600024-9A1 0600024-9A1 0600024-9A 0600024-9B 0600024-9B	-~	10.00 10.00 00.00	60.00	100		888888888888888888888888888888888888888	133 N 400 N 450 N 450 N 450 600 S 450 S 450 S 450 S 450 S 50 S 50 S 50 S 50 S 50 S 50 S 50 S	02222269922 02222269922 02222269922 02222269922 02222269922 02222269922 02222269922 0222222	01710 07710 07723 0773 0773 0773 0773 0773 0773 07	588291 Gu 588067 Gu 588067 Gu 588087 Gu 586073 Su 586073 Su 586873 Su 586875 Su 587958 Su 587758 Su 57758 Su 57	EQUALLY DISTRIBUTED BETWEEN THE B ON-SITE LAKES, AND CANAL C-14. T GIVEN HERE IS BASED ON THE 1987 P GIVEN HERE IS BASED ON THE 1987 P	BISCAYNE THE INFOF PERMIT.	AQUIFER, MATION	
0600025	5 30.6 0600025-1 0600025-2 0600025-3 0600025-4	00 01 01 01 01 01 01 01 01 01 01 01 01 0	8.00 8.00 8.00 8.00 8.00	58888	06 4/1 40 40 40 40	5	LF 64 03 03 03 03 03 03 03 03 03 03 03 03 03	4 600 N 600 N 600 N 600 N	0 C117 792 792 793 793	437 0F PG	MPAND BE/ 598916 Gu 598873 Gu 599312 Gu 598843 Gu	CH 06 09 15 0.4 THIS AREA HAS EXPERIENCED SALINE TO ALLEVIATE THIS PROBLEM, THE DI THE PERMITTEE TO UTILIZE WASTE WA COURSE IRRIGATION.	23 Water En Istrict F Ater For	350.95 0.75 JCROACHMENT. LECOUTRED GOLF	10 I
060026	5 51.1 0600026 0600026	13 03 01 01	10.65	02 (3/E 3/E	9 6	LF SW	0 650 650	2 CITY 735 735	0F PE	EMBROKE PI 513714 SW 513714 SW	NES 06 09 15 3.6 THE DIAMETERS AND PUMP TYPE ARE APPLICANT ALSO HAS A 200 GPM JOCK	5 UNKNOUN. (EY PUMP.	80.00 0.75 THE	io.
060034	4 73.7 0600034-1 0600034-2 0600034-2 0600034-4	8 03 01 01 01	11.24 6.00 6.00 6.00	88888	%2 201 201 201 201	°88888 °	66666 1	4 320 N 320 N 320 N	. 0 DEER 790 790 790 790	(FIELD 1344 1929 1929 1282 1752	Country (724733 Gu 722887 Gu 722680 Gu 724368 Gu	LUB 06 09 15 0.4	53	62.70 0.75	<u>د</u>
060035	9 352.0 0600039-1	00 04	34.90	02 02	36 9/7 550	78 C	LF GW 03	1 1750	0 WYNM 768	100R L1	INITED PAI 597663 GU	TNERSHIP 06 09 15 0.2 THE 350-FOOT WELL DEPTH SEEMS AND	23 OMALOUS.	130.00 0.50	0
9600048	8 17.6 0600048-1	55 03 01	2.69 8.00	02 (36 5/6	39 A	01 81	00 <u>5</u>	2 H1GK 785	11 AND N	13255 SU	T. ASSOCIATION W 06 09 15 0.4	53	15.00 0.75	ŝ
060051	2 72.3 0600052-1 0600052-2 0600052-3	% 0000	12.00 12.00 12.00	0 -	36 578 70 83 83	39 G 92 78	LF GW 02 02 02	3 1100 N 750 N 750 N	0 C117 777 777 777	0F HG	0LLYW000 505050 GW 507965 GW 507620 GW	06 09 15 0.8 DUE TO POTENTIAL PROBLEMS WITH SA ENCROACHMENT WITHIN THE AREA, THE GIVEN AN ALLOCATION OF 72.34 MGY YIELD OF 13 INCHES/ACRE.	5 aline wat e permiti based ob	229.00 0.50 Er Ee Mas I A Basin	0
060005!	5 477.4 0600055-1 0600055-2 0600055-3 0600055-4	6 9 9 9 9 9 9 9 9 9 9 9 9	98.54 18.00 18.00 66.00 66.00	02 (36 7/1	4 4	9 0 0 8 0	0 18000 18000 0 0	4 MECC 759 756 759	A FARM 479 273 571 355	45 INC 725722 SU 726809 SU 725767 SU 726828 SU	06 09 63 0.2 Facilities 3 and 4 are uithdraual Both culverts are 66 inches BY 22 Applicant also has a drainage cul The Hillsbord canal is the surfac	23 L CULVER1 22 FEET. LVERT. CE WATER	488.00 0.50 'S. THE SOURCE.	0
060005(6 335.2 0600056-1 0600056-2 0600056-3 0600056-4 0600056-4	% 855555	53.05 12.00 4.00 6.00 6.00	288888	×28888 888888 8	8000000 2000000000000000000000000000000	۲ 2222222	600 Y 600 Y 600 Y 600 Y 600 Y	0 F1.L 759 756 756 756	AUDERC 437 6 974 6 022 6 125 6	ALE COUN 546874 GU 546797 GU 549341 GU 549347 GU 549125 GU	RY CLUB 06 09 15 0.4 THERE IS NO WELL LABELED AS # 6.	Ś	280.00 0.75	6

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

-	vc 06 09 15 0.4 23 20.00 0.75	LUB, INC 06 09 15 0.4 5 173.20 0.75 411 # 06-00062-W IS INCLUDED IN THIS PERMIT.	LUB, INC. 06 09 15 0.4 5 64.70 0.50 SURFACE WATER SOURCE IS AN ON-SITE LAKE.	RVICES INC 06 09 15 0.4 5 26.82 0.75	RDENS 06 09 15 0.4 23 40.00 0.50 PERMIT EXPIRED ON 4/89 AND HAS NOT BEEN RENEWED. ANNUAL ALLOCATION WAS 43.3 ACRE FEET (14.1 MG).	06 09 15 0.8 5 30.00 0.20 PERMITTEE GROUS POTTED NURSERY PLANTS. SUANT TO CURRENT PERMITTING CRITERIA, POTTED NTS RECEIVE A 20% IRRIGATION EFFICIENCY. A FIELD PECTION ON 7-27-89 INDICATED THAT THE PROPERTY BEEN SOLD AND THE WATER USE PERMIT IS NO GER APPLICABLE.	06 09 15 0.8 23 27.00 0.20 09 15 0.8 23 7.00 0.85 CROP TYPE IS NURSERY STOCK. PURSUANT TO SFAMD ICY NURSERY STOCK RECEIVES THE SAME ALLOCATION GRASS. THE SURFACE WATER SOURCE IS ON-SITE IDS. ACCORDING TO EXHIBIT 4, WELL 1 ANO IPS #2, E1, E2, AND E3 ARE LOCATED ON LAKE 1; L 2 AND PUMPS 3, 4, E4, AND E5 ARE ATED ON LAKE 2; AND WELL 3 AND IPS 5, E6, AND E7 ARE LOCATED ON LAKE 3.	RAVICES INC 06 09 15 0.4 5 18.75 0.75 Surface water source is canal n-9
649363 GW	AKES ESTATES, 11 711958 GU	HILLS COUNTRY CI 619676 SU PERI 619637 SU 619601 SU	HILLS COUNTRY CI 619562 SU THE	4TER MEMORIAL SEI 615247 Gu 615211 Gu 615113 Gu 614799 Gu 615110 Gu 615241 Gu	LAWN MEMORIAL GAI 701045 GW THE 701102 GW THE	L NURSERY 625104 SW THE 625037 SW PUR: 625040 SW PLAI 625604 SW INS: 625604 SW HAS 625604 SW HAS	RAFT 718473 GW THE 718473 GW THE 717771 GW AS 717771 GW AS 718444 SW PON 718189 SW WEL 718189 SW WEL 718176 SW LOC 718176 SW LOC 718176 SW PUM 818 818 818 818 818 818 818 818 818 81	INTER MEMORIAL SE 618961 SU THE
757394	0 WILLOW L 788216	3 EMERALD 767655 767684 767684	1 EMERALD 766168	0 FRED HUN 757661 757658 757654 758509 758509 759868	0 FOREST 1 785969 787223	6 NATIONAL 752063 731606 731606 731095 7312827 731438	11 KEVIN KI 778238 778725 778248 778248 779241 779241 7792475 778755	2 FRED HU 752706
150 Y	1 690 N	000 2000 2000	390	6 500 N 160 N 20 N 240 N 240 N 260 N	2 500 N 300 N	0 1960 150 150 150	800 N 800 N 1250 N 1250 1 1250	0 265
02	AG GW 15 02	GLF SW 03 03 03	GLF SN 03	AG 6W 10 02 10 01 10 01 10 02 10 01	AG GV 03 03	A6 0 0 0 0 0 0 0 0 0	AG 801H 10 01 10 01 01 01 01 01 01 01 01 01 01	AG SU 5 01
30	1/89 90	6/89	9/78	4/89 103 60 60 60 60 60	9/78	4/89	5/89	4/89
8	80 80	06	8	85 20 20 20 20 20 20 20 20 20 20 20 20 20	00 100 100	90	06 170 170	90
12.00 02	3.58 02 8.00 02	32.81 02	12.00	5.08 02 8.00 02 4.00 02 2.00 02 4.00 02 2.00 02	10.80 02 6.00 02 6.00 02	17.64 02 6.00 8.00 8.00 6.00 2.00 2.00 2.00	75.44 02 8.90 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 02 5.00 03 5.00 02 5.00 03 5.00 03 5.00 03 5.00 03 5.00 03 5.00 04 5.00 05 5.00 05 5.00 05 5.00 05 5.00 05 5.00 05 5.00 05 5.00 05 5.00 05 5.00 05 5.00	3.65 02 3.00
600056-7 01	23.53 03 600059-1 01	207.38 03 600061-1 01 600061-2 01 600061-3 01	70.10 04 600062-1 01	32.11 03 600063-1 01 600063-2 01 6000633-3 01 600063-4 01 600063-6 01	43.30 04 1600068-1 01 1600068-2 01	96.22 03 0600069-1 01 0600069-2 01 0600069-3 01 0600069-4 01 0600069-6 01	91.40 03 3600074-14 01 3600074-24 02 3600074-24 02 3600074-82 01 0600074-61 01 0600074-62 01 3600074-62 01 3600074-65 01 3600074-65 02 0600074-67 02 060074-67 02 00074-67 02 000774-600770007000000000000000000000000	22.45 03 0600075-1 01
0	0600059	060061 0 0 0 0	0600062 0	0600063	0600068 (000000	0600074	0600075

-							
	0.75 TEM.	0.75	0.75	0.50	0.50 X TEM	0.20	0.75
	- 00 - SAS:	AREA (-00 (AL.	00.	4 755 8751 4 755 407	8	8
	550.	4 SIH	115. CANF	. 2	281. LAKE NLY A IS N	16.	245.
	SITE SITE	23 1N T	23 NPTKE	ŝ	23 SITE IGN O IGN O THE P	Ś	23
	"No	8 Blem	TUR	t	2 ON- ASS ASS OF OF	4	N
	°₽ E	PRO	THE.	o.	0. 1 HE 0ULD 0ULD 0ULD 1 NS 10NS 89,		ő
		15 15 A	15 E 15	15	15 E 15 IA W IA W MD11 -15-	₽	15
<i>.</i>	06.09 WATER SOURC	06 09 R INTRUSION	06 09 WATER SOURC	06 09	06 09 WATER SOURC FRICT CRITER EFFICIENCY. ALLOCATION W ALLOCATION V LIMITING CO	06 09	06 09
	THE SURFACE	:H Saline Vatei	THE SURFACE	URSERY	ED THE SURFACE CURRENT DIS- IRRIGATION THE ANNUAL PART OF THE PART OF THE		LI AT I ON
otinued) 618787 SV	VILLAGE EASI 721539 SU 721539 SU 721814 SU 721814 SU 720849 SU 719430 SU 719438 SU 719438 SU 719438 SU 717761 SU 717761 SU 717763 SU 717779 SU	POMPANO BEAC 693839 GW 693761 GW	LMS, LTD 676491 GW 677418 GW 675071 SW	DAJRY PALM N 639606 SU 639337 SU	, INCORPORAL 686171 SW 686247 SW 686247 SW 686247 SW 686247 SW 686247 SW 686269 SW 686269 SW	C.NAUGLE 627560 SH 627577 SH	S GOLF ASSOC
heet (Coi 752679	22 CENTURY 780603 781875 781649 783301 783301 783301 783313 784512 784512 784512 784512 784512 784512 784512 784513 784553 784553 784533 784549 782535 784549 782535 782555 785555 7825555 7825555 7825555 7825555 7825555 7825555 7825555 7825555 7825555 7825555 78255555 78255555 78255555 7825555555555	0 C11Y OF I 792774 I 792088	1 SABAL PA 1 756608 1 758983 757647	1 FORMANS 752207 753341	6 MONTHOOD 740710 74087 74080 740909 741018 741018 741018 7410909 740909	Z RICHARD 743250 743480	B NOODLAND
eads	1050 950 820 820 820 820 820 820 820 820 820 82	2 400 1 370 1	2 750 750 4500	0 5000	750 750 750 750 750 750 750 750	0 1500 1500	0
ply Spr 5 01	a 999999999999999999999999999999999999	AG GU 02 02	GLF BOTH 02 02 03	AG SW 1	GLF SU 03 03 03 03 03	AG SW 03 03	GLF SW
- Sup	6/80	7/89	3/89	4/89	2/82	5/89	1/90
ate	90	888	06 70 80	90	90	8	8
Š	03	050	0220	02	62	05	20
Public	87.13	0.04 6.00 6.00	21.53 10.00 10.00	4.26 12.00 36.00	79.00 6.00 6.00 6.00 6.00 6.00	11.37 6.00 6.00	45.87
5 5	822222222222222222222222222222222222222	655	8022	663	8666666	6 55	03
C-7. N 3600075-2	549.14 549.14 549.14 549.14 540076-7 560076-7 5600076-9 560076-9 560076-11 560076-12 560076-14 560076-14 560076-14 560076-12 560076-12 560076-12 560076-12 560076-20 560076-20 560076-21 560076-20 5600	15.90 3600081-1 3600081-2	144.21 0600083-1 0600083-2 0600083-3	26.94 9600087-1 3600087-2	529.00 0600089-1 0600089-2 0600089-3 0600089-4 0600089-5	71.84 0600090-1 0600090-2	307.22
	200090	0600081	0600083	0600087	000089	0600030	0600094

	-								
	THE SURFACE WATER SOURCES ARE ON-SITE LAKES AND CANALS.	06 09 63 0.2 23 100.00 0.50 THE SURFACE WATER SOURCE IS THE HILLSBORD CANAL.	06 09 THIS PERMIT IS FOR AIR CONDITIONING (INDUSTRIAL WATER USE).	06 09 15 0.4 5 150.00 0.75 THE SURFACE WATER SOURCE ARE THE ON-SITE LAKES.	CLUB 06 09 15 0.8 5 212.00 0.50 The permit expired on 4-15-89 and the permittee is working to renew the permit. The permittee is currently experiencing a water intrusion problem.	06 09 15 0.2 23 35.00 0.75 THE SURFACE WATER SOURCE IS ON-SITE LAKES	06 09 57 0.2 5 1360.00 0.50 THE PERMITTEE GROWS SWEET CORN.	& SPA 06 09 15 0.2 5 243.00 0.75 THE SURFACE WATER SOURCES ARE THE ON-SITE LAKES.	O ASSOC., INC. 06 09 15 0.8 23 20.00 0.75 The surface water source is the C-14 canal.
tinued)	675445 SW 676180 SW 676320 SW 673579 SW 673579 SW 672521 SW 672094 SW 672094 SW 672094 SW	H.S. 727308 SW	OINT, INC. 689954 GM	SIDQRE 605115 SW 605132 SW 605126 SW 607162 SW	DGE COUNTRY 670706 GW 670693 GW 670888 GW	CEMETERIES 682126 SW 682287 SW 682408 SW	FARMS 657103 SW 658795 SW SW	URE RESORT 652160 SM 652141 SW 652141 SW 652141 SW 6447438 SW 6449800 SW 649799 SW 649799 SW	ARDENS COND 691766 SH 691761 SU 691733 SU 691742 SU 691749 SU 691754 SU
heet (Coi	751670 753647 752524 752524 751468 751468 753523 753523 755161	1 MCJUNKIN 754577	0 GARDEN F 4 789883	4 JAFFEE 1 766800 766974 767151 767151	0 CORAL R1 4 789656 4 789384 4 789584	3 CATHOLIC 761758 761782 761782 761764	2 J. H. W. 737676 730295	6 BONAVEN1 706358 706552 706552 706120 706120 706120 706120	6 0R10LE (754626 754770 755248 755366 755923
reads	00000000000000000000000000000000000000	00007	140 1	0 700 250 500	450) 450) 450)	0 352 352 352	0 24000 16000	0 600 600 600 600 600 600 600 600 600 6	0 3500 3500 3500 3500 3500
upply Spi	66666666666666666666666666666666666666	39 AG SV 12	35 IND GU 65 65 01	39 GLF SW 5 02 5 03 5 03 5 03	78 GLF GW 85 02 85 02 85 02 85 02	/88 AG SW 3 03 3 03 3 03 3 03	77 AG SW 03 03	39 GLF SW 3 01 3 01 3 02 3 02 3 02 3 02 3 02	96 86 03 04 03 04 03 04 03 04 03 04 03 04 03 04 03 05 04 03 05 04 03 05 04 03 05 05 05 05 05 05 05 05 05 05 05 05 05
er S	·	4/8	4 6/1	5//5	22 6 2 2	12,	14	5/1	54
Vati		8	- A - A	8	8000 80000	8	8	8	8
-Public V	2000.444444 2000.000.000 2000.000.000 2000.0000 2000.0000 2000.00000000	20.09 02 14.00 02	0.21 01	28.42 6.00 6.00 28.42 6.00 28.42 6.00 28.42 20.02 28.42 28.42 20.02 28.42 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.02 28.42 20.00 20.02 28.42 20.02 28.42 20.02 20.02 28.42 20.00 20.02 20.00 20.02 20.00 20.02 20.000 20.000 20.000 20.000 20.00000000	12.00 02 12.00 02 12.00 02	6.55 02 3.00 02 3.00 02 3.00 02	11 83.0 0 02 24.00	47.84 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9.0	3.29 3.20 9.00 9.00 9.00 9.00 9.00 9.00 9.00 9
jon	222222222	0 03	<u>8</u> 6	82222	6666	3993	3222	8222222	8222222
C-7.	0600094-1 0600094-2 0600094-3 0600094-5 0600094-5 0600094-6 0600094-7	90.61 0600096-1	73.65 0600098-1	179.61 0600099-1 0600099-2 0600099-3 0600099-3	230.00 0600105-1 0600105-2 0600105-3	43.89 0600108 0600108 0600108	1470.00 0600107-1 0600107-2 0600107-3	309.85 0600108-1 0600108-2 0600108-3 0600108-4 0600108-4 0600108-5	20.77 0600110-1 0600110-2 0600110-3 0600110-4 0600110-5
TABLE		0600096	0600098	0600090	0600105	0600106	0600107	0600108	0600110

TABLE C-7. No	an-Puk	olicV	Vati	er Supp	IV Spi	readsh	eet (Con	itinued)	· ·	
0600122 208.08	03 5:	7.12 0	5	3/89	AG GW	39	0 CITY OF	FORT LAUDER	20ALE 06 09 15 0 4 5 301 50 0 75	
0600122-1	53	8. 8 9	М	5	8	80 N	774959	677830 GW	THESE WELLS ARE USED TO IRRIGATE PARKS AND OTHER	-
2-2210090	53	88	2		88	300 N 300 N	775018	677259 GU	FACILITIES THROUGHOUT THE CITY. WELLS 24 THROUGH	
5-2310000 7-6610040	58	30	vr		38		12061	6/6299 GW	30 ARE LOCATED ADJACENT TO THE TIDAL PORTION OF THE	
0600122-5	55		9.0		35	150 N	785471	6/4951 GW	NORTH FORK OF THE NEW RIVER CANAL. THE CITY WILL EVENTIALLY VISE CITY VALED TO IDDICATE TURES ADDIC	
0600122-6	010	000.9	10	ŗ	8	N 007	765096	661314 GU	THEREFORE. THE POTENTIAL FOR SALINE LADE AKEAS.	
0600122-7	01 10	0.00.0	N	0	50	400 N	766135	661368 GN	WILL BE REDUCED. WELL 15 HAS BEEN INCLUDED IN	
0600122-8	10	0 00	2	ξΩ.	5	NO	766915	659027 GW	THE CITY'S SALT PROGRAM. THE WELL CONSTRUCTION	
0600122-9	55	88		8 3	88	N : 0 0	7169917	658657 GW	DETAILS FOR MANY OF THE WELLS WERE NOT	
			~ ~	3 9	31		766897	658342 GW	GIVEN AT TIME OF PERMIT REISSUANCE.	
0000122-11	55	33	n y	zo u	23	2:00	765816	657382 GV		
12210000	55		≍‡ vr		38		7/5020			
0600122-14	56			2	3 5		12860/	6569477 GU		
0600122-15	55		10	5.6	35		672002	M9 110000		
0600122-16	50		í í	2	9.5		775350	N9 527259		
0600122-17	10	00.0	N		88	150 N	783935	622200 GM		
0600122-18	7 10	.00 0	2		20	400 N	784284	655088 GW		
0600122-19	7 10	0 00 .	ŝ		8	300 N	783693	654487 GW		
0600122-20	10	.00 0	ŝ		20	300 N	776654	652728 GW		
0600122-21	01 10	0.00.0	~	Я	02	400 N	260062	665084 GU		
0600122-22	7 10	000.	2		02	150 N	782205	661138 GW		
0600122-23	01 7	0 00 .	2		05	150 N	774583	651344 GW		
0600122-24	5	.00 0	N	7	20	80 N	768594	650397 GW		
0600122-25	5	.00 0	~ '	6	02	80 N	706077	650459 GW		
0600122-26	5	0 00 .	N	4	02	N O	773145	650755 GV		
0600122-27	5	000.9	~	5	2	80 N	775995	650661 GW		
0600122-28	53	000	~	<u>س</u> ا	8	80 N	777625	650903 GW		
0/00122-29	53		N I	וניא	8	80 N	780742	651066 GV		
05-2210000	53		~ ~	2	83		781097	651117 GU		
12-2210000	53	00.0	~ ~		20	150 N	768062	646849 GU		
22-2210000 26-2210000	58	n 9 8 -	.		38		781297	647475 GW		
25-2210000	55	38	л <i>и</i>		38		77,800	646057 GU		
0600122-35	56	88	v 0		38	N 001	780111	041224 GV		
0600122-36	. 10		. <i>م</i>		95		778133	441340 CH		
0600122-37	01 10	000.0	۲ ۵	-	9.5	2002 N	770460	641207 GU		
0600122-38	10	0.00.0		ξ	8	500 N	778720	640325 GU		
0600122-39	10	.00 0	~		02	N 0	779265	638108 GV		
0600126 32.50	04	.21 0	ð ~	10/77	AG SU	c	3 FAST MAR	CH NIESEDY	VORTH THE 04 00 15 0.3 32 34 00 60	
0600126-1			5		5 2	2500	757506	77570 611	THE DEDUITTEE COLUR 13 0.4 23 20.00 0.30	
0600126-2 0600126-3	555				ខេត	888 888	202127 207127 277127	727726 SW 727555 SW	THE PERMITTEE BRUNS NURSERT STUCK IN CUNTAINERS. The Permit Expired on April 15, 1989 And HAS NOT BEEN RENEWED.	
	20	2	ن م	007 1	100					
0600130-1	35	10	รั	65 65	20 20 20 20	. 400 N	2 SOUTH BR 772139	GWARD PARK 619916 GM	DISTRICT 06.09 15 0.4 5 100.00 0.75 THE SURFACE WATED CONDER 12 AUCONCOLOGIO 75	
0600130-2	5	00.9	2	5	6	200 N	772061	620280 GH	THE ACTIVE WHEN BOUCH 13 MI ON STIE FAME.	
0600130-3	53	00.0	~	\$; ;	53	200 N	772625	618928 GN		
0600130-5	55	58	N	3	58	N 002	7712062	619657 GU 418758 SU		
					ļ))]				

06 09 57 0.4 5 2400.00 0.50 09 15 0.4 5 3616.00 0.50 THE SURFACE WATER SOURCES ARE THE-NORTH NEW RIVER 240.00 0.75 700.00 0.50 9.00 0.20 8.00 0.75 06 09 63 0.2 23 700.00 THE SURFACE WATER SOURCE IS THE HILLSBORD CANAL. 06 09 15 0.4 5 240.00 SURFACE WATER IS THE ON-SITE LAKE 06 09 15 0.8 5 9 The surface water source is an on-site lake. ŝ THE EXISTING PERMIT EXPIRED ON 4-15-89 2.0 FACILITIES 1 AND 2 ARE CULVERTS. ΰ CANAL AND THE C-42 CANAL. 8 8 644.677 GU THE SOURCE OF 648786 GU SYSTEM. O CITY OF LAUDERDALE LAKES COUNTRY CLUB NURSERIES 623452 SU 623352 SU 729649 SW 728635 ns sn CHARLES W. ß 772178 619719 SH 760152 668807 GW 9 OLD PLANTATION WCD Non-Public Water Supply Spreadsheet (Continued) 646207 646397 655416 660524 655408 642108 644060 645464 655511 655431 646272 642013 644214 645514 644117 644134 645571 645381 647331 JACARANDA 733564 733525 NATIONAL 740413 739284 738763 738763 738704 738107 738107 HENDRIX, 735413 751095 751140 751996 750452 751400 751508 740723 735609 730267 730345 735507 740799 747232 740632 N 4 N 800 Y 800 Y 300 S 600 250 500 Y 200 14000 0 45000 45000 45000 45000 45000 45000 45000 45000 0 200 7500 45000 0 0 80TH 02 02 02 02 02 02 9 C C SW 38 3 GL F 99 86 22 $\sim \sim$ 10/86 AG No. ÅG 80 40 40 5/89 7/89 7/89 4/89 115 115 125 90 8 8 1.57 02 10.00 02 8 888 888 1858.70 02 55 48.00 115.56 18.00 28.00 5.29 6.00 45.47 10.00 10.00 6.00 10.00 6.00 4.00 5 Ю 8222228 855 85 55 287.37 0600149-1 28.87 3.52 545.31 0600185-11 0600185-12 0600185-13 0600185-14 0600185-15 0600185-10 0600130-6 0600131-1 0600131-2 0600185-4 0600185-5 0600149-4 0600149-5 0600155-1 0600181-1 0600185-9 0600155-2 0600185-6 0600185-7 0600185-8 0600149-2 0600149-6 0600149-3 0600185-1 0600185-2 0600185-3 TABLE C-7. 0600185 0600185 0600149 0600155 0600181 0600131

90.30 0.75 THE SOURCES FOR SURFACE WATER ARE THE ON-SITE ង THERE ARE TWO TYPES OF WATER USES; GOLF **7**,0 LAKE SYSTEM AND THE C-14 CANAL ñ COURSE AND RECREATIONAL 60 90 **3 POMPANO PARK RACEWAY** 688568 GU 688610 GU 688610 GU 688138 GU 688138 GU 688336 SU 688336 GU 688336 GU 688177 GU 685863 GU 685863 GU 776830 777532 777566 777722 777755 778024 778596 779931 778689 5206222 200 N 36 N 36 N 36 N 36 N 36 N 30 N 30 N 30 N 30 N 30 N 얻 GLF BOTH 222222 22 222 5 සි සි සි සි සි 888 8 8 8 8 8 8 8 8 888 8/87 _ର ଅଷିଷ ଷ ଷ 888 80 2.00 8.8 4.8 12.99 8222222 222222 106.22 0600193-9 0600193-10 0600193-11 0600193-6 0600193-7 0600193-2 0600193-1 0600193-5 0600193-8 0600193-4 0600193

	-	•							SYSTEM.	
	·	152.00 075 -	25.00 0.50 L. .N.	20.00 0.20 MD.	170.00 0.50 Lakes.		25.00 0.75	300.00 0.75	68.20 0.75 AKE AND CANAL	115.00 0.75 AKE SYSTEM.
		23 CANAL	5 r canai unkhơi	5 11E POI	5 4-SITE FIMATE	er use	23	ν μ̈́	5 51 TE L	23 SITE L
		.2 E C-2	.4 County L Are	5-NO	.4 The on An Est	L WATI	4		1.2 IE OV-5	1.2 IE ON-5
		IS 0 IS TH	15 0 15 0 15 A 15 A	IS O IS AN	15 C 5 ARE 0NLY	ATIONA	5	15 IS CA	15	15 15 (
·	•	06 09 1 JRFACE WATER SOURCE	COUNTY 06 09 1 Dreace water source) and CD depth of th	06 09 1 JRFACE WATER SOURCE	06 09 1 JRFACE WATER SOURCES ANUAL ALLOCATION IS	06 09 PERMIT IS FOR RECREM	60 90	. 06 09 . JRFACE WATER SOURCE	06 09 JRFACE WATER SOURCE	06 09 Jrface water system
			WARD (The Sl The To	THE SL	THE ST THE ST	THIS F		87 번 전	THE SI	THE SI
inued)	686826 GH 686218 GN 686034 GN	NLASSIS 724078 Su 723243 Su 722836 Su 722825 Su	OL CCC, BRO 643483 GV 643931 SV	5. NAUGLE 623395 SW	COUNTRY CLU 626070 SU 627022 SU	COUNTY PARKS 717911 GW	ANIELS 695821 GV	 COUNTRY CLI 670570 SU 670515 SU 670515 SU 6670515 SU 669006 SU 668953 SU 666811 SU 666657 SU 666657 SU 666657 SU 	651219 SW 651219 SW 53452 SV 653452 SV 655411 SV 655411 SV	COUNTY PARKS 704191 SU
eet (Cont	777397 776729 776729 776737	4 GEORGE V/ 781509 781395 779846 779846	1 HIGH SCH 720428 719823	1 RICHARD (748333	2 DAKRIDGE 765068 767052	0 Broward (776009	0 RICHARD 1 788334	10 INVERRAR 752363 752363 752363 752358 754358 754358 75437 748794 748793 748793 748793 748793 748793 748793 750326	6 STILES C 718911 716885 716885 716885 716804 716804	2 BROWARD (769632
adsh	1800 N 36 N 36 N	0 150 75	700 200	0.00	0 600 600 600 600	1 520 N	1 200 N	800 800 800 800 800 800 800 800 800 800	22 22 22 25 0 25 25 25 25 25 0 25 25 25 25 25 0	0 00
pre	- - 5 5 5	<u>38888</u>	33 33 W	38	<u>3888</u>	25	55	3588888888888	8222222	3.5
NV S	888	GLF	PG AG	AG	9 V V	ONI	90 V	9 8	AG	۳
dn	8888	/80	62/9	6/86	18/3	2/85 140	5/89 60	\$/89	9/88	4/89
ter	සි සි සි	7 90	90 90	90	90	170	100	80	90 90	80
Na.	05 05 05 05	05	02	05	05	01 02	65 65	05	05	610
Public'	8.00 2.00 2.00	28.46 8.00 8.00 8.00 8.00 8.00	7.10 10.00	14.21 6.00	48.30	0.75 12.00	4.48 6.00	56.83 4.000 12.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000 13.000	13.43 7.50 7.50 7.50 7.50 7.50 7.50	21.53 6.00
-uo	222	82222	66	03	6 2 2	03	03	82222222222	8222222	50 10
C-7. N	0600193-13 0600193-14 0600193-15	190.61 0600244-1 0600244-2 0600244-3 0600244-3	28.20 0600245-1 0600245-2	89.80 0600253-1	153.00 0600307-1 0600307-2	113.8£ 0600310-1	29.41 0600336-1	359.2' 0600344-1 0600344-1 0600344-5 0600344-5 0600344-7 0600344-7 0600344-7 0600344-7 0600344-7 0600344-7 0600344-7 0600344-7	86.94 0600345-1 0600345-2 0600345-5 0600345-5 0600345-5	144.2 0600347-1
TABLE (0600244	0600245	0600253	0600307	0600310	0600336	0600344	0600345	0600347

ABLE C-	7. No	Ju-Pu	olic We	ater	Supp	oly S	prea	dshe	et (Cont	inued)	
0600354 06 06 06	26.19 500354-1 500354-2 500354-3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.14 02 4.00 02 2.50 3.00	06 45	12/88	9 d	01 H	150 N 150 N 125	2 BROWARD 750915 751105 751275	COMMUNITY CO 609566 GW 609457 SW 609552 SW	DILLEGE 06 09 15 0.4 5 21.87 0.75 The Surface water Source is the ON-Site Lake System
0600357 00 00 00 00	22.35 500357-1 500357-2 500357-3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.40 02 4.00 01 4.00 01 4.00 01	90	3/89	474 94	SN 0228	350 350 300	4 PALM AIR 774542 774642 774550 774550 774550	le country cl. 688050 Su 687947 Su 687932 Su 687995 Su	UB APARTMENTS 06 09 15 0.4 23 19.00 0.75 THE SURFACE WATER SOURCE IS THE ON-SITE LAKE SYSTEM. THE PROJECT SITE IS LOCATED UPSTREAM OF THE SALINITY CONTROL STRUCTURES ON THE POMPANO AND CYPRESS CREEK CANALS. PUMP # 4 IS PROPOSED.
0600371 00 00	500371-1 500371-2 500371-3	10 10 10	54.09 02 12.00 02	130	1/82	AG	BOTH 03 2 03 2 03 6	- 000 200 x	2 CRYSTAL 777268 774920 774929	LAKE FARM #1 708878 Gu 710153 Su 709464 Su	THE SURFACE WATER SOURCE IS A CAWAL. THE SURFACE WATER SOURCE IS A CAWAL. THE PERMITTEE ALSO RECEIVED 20 INCHES/ACRE FOR FLOOD CREDIT. NO ANNUAL ALLOCATION WAS GIVEN.
0600374 00 00	17.90 500374-1 500374-2 500374-3	86 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.73 02 4.00 02 2.00 02	8 8 8 8 8	7/89	AG	80TH 01 03 4	2 100 и 500 и	1 HOME GAR 693399 693398 693398 693437	DENS ASSOCIA 632442 GM 632265 GU 631667 SW	ATES, INC. 06 09 15 3.6 5 28.00 0.75 THE SURFACE WATER SOURCE IS AN INDIAN TRACE DRAINAGE DISTRICT CANAL.
0600375	126.66	. 03	19.98 02	80	2/88	AG	BOTH	-	8 UNIVERSI	TY OF FLORID	04 06 09 15 0.4 5 25.00 0.75 06 15 0.4 5 25.00 0.75
ĞĞĞĞĞĞĞĞĞ , ,	600375-1 600375-2 600375-3 600375-4 600375-5 600375-6 600375-8 600375-8	222222222	2.50 02	D M	_		8222222222	300 N 0 N 100 N 100 N 100 N 0 N 0 N	749515 749951 749954 749556 749525 748560 748560 748584 748584 7485853 7485853 7485853	639171 SV 636428 SV 636428 SV 638988 SV 638988 SV 636671 GV 636671 GV 636842 SW 636842 SW 636842 SW	THE SURFACE WATER SOURCE IS THE ON-SITE LAKE AND CANAL SYSTEM. THE PERMITTEE IS GROWING 25 ACRES OF GRASS AND 20 ACRES OF POTTED NURSERY STOCK. HOWEVER, PURSUANT TO DISTRICT POLICY NURSERY STOCK RECEIVES THE SAME ALLOCATION AS GRASS. POTTED NURSERY STOCK IS ASSIGNED AN IRRIGATION EFFICIENCY 20%. IN ADDITION, THE PERMITTEE HAS A 5-ACRE FISH FARM. THE ALLOCATION FOR THE FISH FARM WAS BASED ON EVAPOTRANSPIRATION RATES.
0600376 0 0	56.43 600376-1 600376-2	0 01 01 01	8.43 0; 4.00 4.00	5 06	2/89	GLF	8 13 28	0 275 325	2 BROKEN 1 747196 748092	JOODS COUNTRY 706147 SM 707125 SW	Y CLUB 06 09 15 0.2 23 45.00 0.75 The surface water sources are on-site lakes and canals.
0600377 0	106.77 600377-1	, 03 01	16.97 00 10.00	s 06	6/8)	GLF	05	200	1 COUNTRY 737504	CLUB OF COR 701735 SW	AL SPRINGS 06 09 15 0.8 23 103.00 0.75 The surface water source is an on-site lake.
0600380 0 0	27.55 600380-1 600380-2	50 000	8.93 0. 12.00 0.	330	4/86	AG	80TH 03 03	1 500 N	1 FRED SPI 772927 774897	EAR INC 706835 GU 708041 SW	06 09 63 0.8 23 60.00 0.50 Facility # 1 1S A Weil; Facility # 2 1S A PUMP. This Permit Expired on 6-1-89.
0600382 0 0	54.3 600382-1 600382-2 600382-3	8655 8655	11.31 0 6.00 0 6.00 0 6.00 0	8	4/89	94 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	8888	400 275 275	3 Broward 739336 739336 739336	COUNTY PARK: 619219 SU 619219 SU 619219 SU	S AND RECREATION 06 09 15 0.4 5 113.60 0.75 THE SURFACE WATER SOURCE IS AN ON-SITE LAKE. THE PERMITTEE HAS A MODIFICATION IN HOUSE AT THE PRESENT TIME.
0600383 0 0	94.1 1600383-1 1600383-2	822	14.34 0 12.00 0 9.50	88 88	4/89	0 GLF	BOTH 02 02	1 975 N 720	1 HS RH L 768332 768333	W & BJ BROUD 673331 GH 673482 SH	THE SURFACE WATER SOURCE IS AN ON-SITE LAKE.

.

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

.

۰.

								ES			
94.50 0.75 Kes.	17.50 0.75	3000.00 0.50 1000.00 0.50 0 CANAL.	160.00 0.75 AKE.	117.00 0.75 Lake system.	102.00 0.50	150.00 0.50 675.00 0.50 0 CANAL VIA CANAL.	72.00 0.50	20.00 0.75 20.00 0.75 RUS AND 20 ACRI	115.00 0.50 IINTO CANAL.	170.00 0.50	170.00 0.75 Kes and Ponds.
23 Ite la	ស	23 23 LISBOR	5 81TE L	23 -SITE	23	23 23 LLSBOR F A-4	N	۲ د ۲	23 RTON M	ស	TE LA
0.2 E ON-SI	0.8	0.2 0.2 The HII	0.4 AN ON-9	0.4 THE ON- P.	0.8	0.8 0.8 IHE HII ISTRIC	0.8 DIC1.	0.4 0.4 ACRES (0.2 The tai	0.2 9.	0.4 E ON-S
15 Jes ar	د	15 57 2E 1S	15 2E 15	15 Def 15 EY PUM	63	63 62 5E 1S IROL D	15 F THE	15 13 20 20	63 CE 1S	63 4-15-8	15 CES AR
06 09 WATER SOURC	60 90	06 09 09 Water Sourc	06 09 Mater Sourc	06-09 WATER SOURC	09 09	DICI 06 09 09 WATER SOURC	06 09 1 IS PART OF	06 09 09 EE IS GROWIA STOCK.	06 09 Water Sourc	06 09 Expired on 4	06 09 Hater Sourc
LUB FHE SURFACE	SCHOOL	VC. Thë surface	Sort The Surface	ihe surface The pump # 4		CO. INC. (C The Surface The Pinetree	TD THIS PROJECT	THE PERMITTE DF NURSERY \$	The surface	THE PERMIT E	NNIS CLUB . The surface
NTER GOLF CI 710676 SN 710443 SN) BEACH HIGH 714153 GW 713716 GN 713558 GN	(TY FARMS, I) 732951 SW 1	(111LS GOLF RE 635404 SM 635599 SW 635599 SW 634047 GW 634047 GW) ANDERSON 708414 SW 1 708598 SW 1 708535 SW 7 708600 SW	км 711046 SW	719797 SW	TI6574 SW	GARDENS 637780 SW 632894 SW	C" FARM, INC. 700170 SW	CH FARM, INC 719705 SW	X GOLF & TEI 608186 SW
2 TAM 0°SHA 779993 782561	0 DEERFIELC 788826 789296 789310 78883	1 D. S. 86/ 730284	3 ROLLING F 742061 742343 742343 742099 745052 745052 745052 745052	4 A. HAROLL 780218 781555 781597 781597 781597	1 WILES FAF 761522	2 DEERFIELC 761151 766073	1 BUTLER PI 769373	2 FLAMINGO 726819 727299	1 SMITTY "	1 SMITTY ") 763830	8 HOLLYBRD 740340
250	200 N 200 N 350 N 350 N 350 N 350 N	0 30000	400 N N N N N N N N N N N N N N N N N N	200 600 120	0 10000	0 22000 22000	0 10000	200 200	0 8000	0 10000	0 180
GLF SW 12 02 12 02	AG GV 02 02 02 02 02	AG SU 03	GLF BOTH 12 02 12 02 12 02 12 02 02 02 02	GLF SU 02 02 01	AG SW 6 03	AG SW 03 03	AG SW 4 02	AG SV 03 03	AG SW 03	AG SW 03	GLF SW 03
4/89	2/89 60 60 60	2/82	10/89 90 90 90	3/89	12/89	3/89	4/80	4/89	3/82	3/82	1/89
90	80000	90	80 80 80 80 80 80 80 80 80 80 80 80 80 8	<u>8</u>	90	90	90	90	90	90	90
17.69 02 6.00 02 6.00 02	2.88 02 6.00 02 6.00 02 6.00 02 6.00 02	1296.00 02 30.00	30.31 02 4.00 02 6.00 02 8.00 02 8.00 02 8.00 02 8.00 02 8.00 02	20.97 02 8.00 10.00 10.00 6.00	120.00 02 20.00 01	950.40 02 36.00 36.00	11.20 02 24.00 01	7.63 02 4.00 4.00	27.50 02 16.00	41.00 02 16.00	32.21 02
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 01000 03	6	8 22222222	88555	0 03	0 0 0 0 0 0 0	2 03 01	7 03 10	0 03 01	0 03 01	5 01 01
118.5 0600384 - 1 0600384 - 2	18. 1 [,] 0600385 0600385 0600385 0600385	0600388-1	191.5 0600393-1 0600393-2 0600393-3 0600393-2A 0600393-2B 0600393-2B	137.6. 0600394-1 0600394-2 0600394-3 0600394-4	1080.0 0600395-1	9250.0 0600396-1 0600396-2	23.3 0600397-1	34.3 0600398-1 0600398-2	26.9 0600401-1	39.8 0600401-1	203.5 0600406-1
0600384	0600385	0600388 0600388	0600393	0600394	0600395	0600396 0600396	0600397	0600398 0600398	0600401	0600402	0600406

E C-7.	Non	-Public V	/ate	ir Suj	pply	Spre	adsh	eet (C	ontinu((pa					.			
00406-3 00406-3 00406-5 00406-5 00406-8 00406-8	5222222	8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,3,00 8,5,000 8,5,0000000000				322333333	60 50 50 50 50 50 50 50 50 50 50 50 50 50	7403 7401 7401 7401 7401 7402	24 60/82 24 60615 34 60562 39 60549 39 60549 71 60461	55555555555555555555555555555555555555	·					•	-	
600407 53	88 03 01	8.53 02 8.00 02	8×0	3/89	GLF	64 05	1 600 N	0 COOPEI	₹ C11Y GO 49 627800	LF COU	RSE, INC. The total de	06 09 EPTH GIVEN 11	15 0. V TABLE	4 SHOULD	45.00 0. BE VERIFII	.75 19.		
38 1600408-2 1600408-2 1600408-5 1600408-5 1600408-5 1600408-5 1600408-7 1600408-7 1600408-8 1600408-8 1600408-8	85555555555555555555555555555555555555	6.06 2.00 2.00 2.00 2.00 2.00 2.00 2.00	8	4/89	GLF	¥222222222	- <u>555555555555</u> 5	9 1H0MA 75090 75040 75035 74881 74881 7491 7491	S N. KEAR 55 64550 55 645270 53 64762 54 64762 54 64762 54 64762 54 64762 54 64762 54 64832 56 648832 56 648832 56 64964 51 5 64950	ระกายสาร ระกาศการสาร เ	THE SURFACE	06 09 HATER SOURCI	15 0 E 13 THE E 14	.4 5 INTERNAL	32-00 0. CANAL SY	. 75 STEM.		
65 0600412-1 0600412-2 0600412-3 0600412-3	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	12.16 02 4.00 01 6.00 01 6.00 01 8.00 01	8	3/89	GLF G	02 02 SW	0 265 620 1040	4 TOURN 7322 7322 7323 7323	AMENT PLA 42 69913 50 69923 34 69919 59 69907	YERS C 9 SW 0 SW 8 SW 7 SW	1UB AT EAGL	e tr 06 09 Vater Sourc	15 3 E IS AN	.6 23 0N-SITE L	102.00 D. .AKE.	.75		
152 0600414-1	00 03	186.00 02	90	5/82	AG	SU . 03 15	0000	н Е. Р. -	CROSSMAN	FARMS SW	THE SURFACE	06 09 WATER SOURCI	57 0 E IS THI	.2 23 : HILLSBOR	210.00 0 to canal.	8.		
79 0600416-1 0600416-2 0600416-3	010	25.30 05 8.00 02	8 <u>,</u> 8, <u>0</u>	5/82 0	GLF	вотн 03 03 03	N 006 000 N 006	2 WILLI. 7697 7698(AM LEONAR 67 72455 77 72448 53 72434	25 E E	THE SURFACE THE ESTIMATI THE PERMIT.	06 09 WATER SOURCI ED ANNUAL ALI	15 0 ES ARE 1 LOCATION	.8 23 DN-SITE LA V IS 79.65	102.42 0 AKES. 5 MG. 17	.50 Is not	PART O	ц.
65 0600431-1 0600431-2 0600431-3	5.26 03 01 01	10.32 05 6.00 02 6.00 02 6.00 02	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3/89 0 27 0 22 0 22	ិសសស និ	3525	¥ 300 ⊀ 300 ≺ 300 ≺	0 BROWAI 7834 7811: 7823	RD COUNTY 12 63278 24 63210 36 63146	AVIAT 18 Gu 15 Gu 2 Gu	ION DEPT. THE WELLS A CORRESPONDI	06 09 Re labeled 4 Ng Staff Repi	15 0 , 5, ANI 0R1.	4 5 0 6 IN TAE	54.50 0 BLE A OF TI	د تا		
42 0600483-1 0600483-2	2.33 03 1 01	6.54 02 3.00 01 3.00 01	8	3/89	2 AG	U S 10	0 180 180	2 RACAL 7177 7191	MILGO, I 53 65817 14 65841	NC. 8 SW 8 SW	THE SURFACE	06 09 Hater Sourc	15 0 E IS AN	.2 5 ON-SITE L	33.20 0 .Ake systei	£		
113 0600496-1 0600496-3 0600496-3	S. 75 03 01 01 01	18.00 0; 6.00 6.00 4.00	8	3/89	AG	8655 %	0 565 265 265	3 AMACO 7299. 7299	RP, INC. 31 60616 70 60612 36 60618	S S S S S S S S S S S S S S S S S S S	THE SURFACE	06 09 Water Squrc	15 0 E IS A (.4 5 DN-SITE LA	95.00 D 1KE.	ĸ		
135 0600503-4	5.16 03 184 01	0.43 01 20.00 02	85 25	- 12/8 5 5	33 IND 5 -23	BOTH 02	2 3000 N	8 FLOR1 7620	DA POWER 86 62936	s Ligh	it company The surface	06 Water Sourci	E IS THI	E DAINA CL	JTOFF CANAI	L: A		

v)

TABLE	C-7. No	n-Public W	ater	Sup	μ	Spre	adsh	eet (Con	tinued)	
0600741	99.99 0 0600741-1 0 0600741-2 0 0600741-3 0 0600741-4 0 0600741-5 0	75.23 02 75.23 02 75.290 75.20 75.000 75.00 75.00 75.000 75.000 75.000 75.0000000000	8	8/89	90 V	8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 40 655 655 655	5 WYNMOOR 1 770063 770395 771550 771314 771510	-TD. 699772 Su 699859 Su 700554 Su 700554 Su	06 09 15 0.4 25 85.00 0.75 THE SURFACE WATER SOURCE IS THE ON-SITE LAKE SYSTEM.
0600763	36.5 0 0600763-1 0 0600763-2 0	3 0.12 01 1 8.00 02 1 8.00 02	8528	5/86 25 25	QNI	808	2 40 N 40 N	0 BUD GOOD 746620 746617	612789 GW 612868 GW	06 09 THIS PERMIT IS FOR INDUSTRIAL WATER USE, KYDROCARBON RECOVERY. PLANAR COORDINATES WERE GIVEN
0600786	118.00 0 0600786-1 0 0600786-2 0 0600786-3 0	3 0.35 01 1 8.00 02 1 8.00 02 1 8.00 02	80 05 05 05 05	8/86 5 5 5	1ND 30 30	9222	3 150 N 150 N	0 AMERICAN 773243 773155 773183	V. MUELLER 674629 GW 674129 GW 673952 GW	D6 09 THIS IS AN INDUSTRIAL WATER USE PERMIT FOR A CONTAMINATION CLEANUP AFTER PASSING THROUGH AN AIR-STRIPPER, THE WATER IS DISCHARGED INTO A FRENCH DRAIN.
0600814	10.37 0 0600814-1 0	3 0.86 02 1 2.00	90	4/86	AG	SW 03	20 0	1 PARKWOOD 737365	HOME OUNERS 672762 SU	X ASSOC. 06 09 15 0.2 5 11.98 0.75 The surface water source is an on-site lake.
0600837	9.70 0 0600837-1 0 0600837-2 0	1 9.70 01 2 24.00 01 2 24.00 01	8	3/87	REC 44 44 44	03 SK	0 5750 Y 5750 Y	2 Broward (782807 782873	county wrmd 725535 Su 725534 Su	06 THE SURFACE WATER SOURCE IS THE HILLSBORD CANAL. THE COUNTY DESIRES TO PLACE PUMPS ON THREE NORTH-SOUTH CANALS
0600862	2630.00 0 0600862-1 0 0600862-2 0	3 7.20 01 1 8.00 01 1 8.00 01	90	7/87	140 14 14	033 N	0 2500 2500	2 TURTLE RU 757040 758097	JN JOINT VEN 708783 SW 707134 SW	VIURE 06.09 THIS IS A DEWATERING OPERATION. EVEN THOUGH SURFACE WATER PUMPS ARE USED, THE PERMITTEE IS WITHDRAWING GROUND WATER.
0600888	3.60 0 0600888-1 0	1 8.64 01 1 2.00 02	06 8	10/87	v IND 5	GU 03	800 5000 N	0 WASTE MAI	NAGEMENT OF GW	NORTH AMERICA 06 09 THE DEWATERING OPERATION CEASED OPERATION IN MAY 1988.
0600889	169.38 169.38 169.38 169.38 169.38 169.38 169.38 169.38 160.0889-1 160.0889-5 160.0889-8 160.0889-8 160.0889-1 10.60.0889-11 16.00889-11 16.00889-11 16.00889-15 16.00889-15 16.00889-15 16.00889-15 16.00889-15 16.00889-16 16.00889-17 16.00889-17 16.00889-17 16.00889-17 16.00889-18 16.00889-17 16.00889-17 16.00889-18 16.00889-18 16.00889-18 16.00889-18 16.00889-18 16.00889-18 16.00889-18 16.00889-18 16.00889-19 16.00889-19 16.00889-19 16.00889-18 16.00889-18 16.00889-18 16.00889-19 16.00889-19 16.00889-19 16.00889-19 16.00889-10 16.00889-	2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00	⁵ 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5	48888888888888888888888888888888888888	89999999999999999999999999999999999999	00000000000000000000000000000000000000	IS CHAPEL TO	29999999999999999999999999999999999999	06 09 15 3.6 5 265.00 0.75 ALL FACILITIES WERE PROPOSED AT TIME OF PERMIT ISSUANCE. MORE ACCURATE WELL LOCATIONS MAY BE FOUND IN THE WELL COMPLETION REPORTS WHICH THE PERMITTEE IS REOUIRED TO SUBMIT. FACILITIES 1 THROUGH 30 ARE WELLS; 31-66 ARE SURFACE WATER PUMPS. NONE OF THE WELLS WERE CONSTRUCTED AS OF 11-14-89.

.

			-																																										I VER.
																														-														UER	NEL
																																											1		ORTH
																																										0.75	TEM.	SURFA	THEN
																																										00.1	SYS 3		AND
																	•																									13,	LAKI	82	STEN
					•																																					ŝ	-SITE	ARE	KE SY
																																										0.4	HE ON	THERE PV AD	21
																																										5	1 SI	IHAT ISED	IS-NO
																																										•	URCE		ž
•																																										90	ER SC	ND ICA	FROM
												,																														INC	HAT		ATER
																																										CLUB	JRFAC	TIMI	AN K
																																										NTRY	HE SI	H BH BH	UTHON I
~	3	33	32	3	33	32	; 3	. HS	ЯN	ß	Su	N.	Su	NS.	3.2							, J	53	5 7	: B	SW	SW	МS	SW	Su	Su	3.5		5 25	. MS	MS	SW	SЧ	NS	ß	SH S	З Ц	R.	3.9	5
ued																																										RIDG	2144	2637	38
ntin				·																																						SLAND	2 2	33 ~ 0	53
<u></u>																																										I NE I	73703	73827	2850
leet	_			_		_	-																																			4 4			-
dsb	50 N	05 C		20 8	205 N 12		202	ß	22	ŝ	ß	ß	2	នេះ	ភ រ	25	2 Ş	2 2	25			2	2	ŝ	ß	20	20	8	3	20	33	2.5	2 2	ន	2 2	3	20	20	2	ß	8	0	900		8 8
prea	. –								-		-		, -													_	-	-		.		- •		–	. –	-	-				-	3	m		, מו
IV S	000	60 00 00 00 00 00 00 00 00 00 00 00 00 0		60 0	000		80 09 0 09	0	0	0	0	¢	0	0 () C	> 0	- C) C		, c	• •	0	0	0	0	0	0	с , (Þ¢	- c		0	0	0	0	0	0	0	GLF S		00	
dan	9	99	88	60	33	8 9	33								,																											/88			
er S	60	99	0,00	60	9 S	2 5	33	I I																																		36 36			
Wat	05	28	28	20	88	32	32	l																																		02			
olic	2.00	88	38	2.00	88		8.8	5.00	5.00	8.2	8	8:	8	8.8	38	30	88	38	38	38	38	88	88	5.00	5.0	2.00	2.00	5.00	2.00	8 5	8 8 5 8	3.8	38	5.00	5.00	2.00	2.00	2.00	2.0	5.0	3.00	5.39	6.00	88	6.9 8
-Pul																																										2			
Von	02	88	38	8	88	38	38	8	8	02	8	8	8	88	38	38	38	9 5	35	35	95	38	10	10	8	02	02	8	02	8	23	38	38	28	0	02	20	20	2	05	02	5 03	5	55	55
	9-22	5 5 6	5 K	9-26	9-27		5 2 2 2 2 2 2	9-31	9-32	6-33	۲. ۲	ት እ	8	9-37		5 - C	0-7-0	1	27-0	77-6	57-0	9-49-6	27-6	9-48	67-6	9-50	9-51	9-52	9-53	9-54	5	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9-58	6-26	09-61	9-61	9-62	9-63	3-6	62	99-60	160.4	-8-1 -8-1		-7-80 -7-80
5	60088	60088	ouuoo 60088	60088	60088 60088		60088 60088	60088	60088	60088	60088	60088	60088	60088			00000	88009	00088	60088	60088	60088	60088	60088	60088	60088	60088	60088	60088	60088	60088		60088	6008	60088	60088	60088	60088	60085	60085	60085		6009	2009	96009
LEC	Ő	o ¢	ð	ō	o d	o d	οđ	Ó	õ	Ó	Ó	Ó	Ó	00	o d	50	50	o c	o d	0	o d	o d	Ó	0	0	0	•	¢	0	0	00	50	90	0	0	0	0	0		· د	0	908	0	50	
TAB																																										0090			
TABLE	C-7. Non	1-Public Wa	ater	Supp	oly S	preads	heet (Co	ntinued)	•••																																				
---------	--	--	---	------------------	--	---	--	---	---																																				
0600914	13.41 03 0600914-1 02	2.12 02 3.00	90	4/88	VC St	4 0 5 250	1 ALFRED 744626	L. SIMPSON 643821 SV	06 09 15 0.4 5 11.20 0.75 THE SURFACE WATER SOURCE IS AN OW SITE LAKE.																																				
0600915	183.96 03 0600915-1 01 0600915-2 0600915-3	0.50 01 6.00 4.00	88888	4/8 80	10000 11	200 g	0 RICK CA N 760600 N 760601 N 760601	SE ACURA 655375 GW 655375 GW 655375 GW	06 09 5 THIS IS AN INDUSTRIAL PERMIT. IT WAS CANCELED ON SEPTEMBER 20TH, 1989.																																				
0600921	31.35 03 0600921-1 01	4.68 02 6.00	8	5/88	AG 0.51	009 7	1 STAR OF 755352	DAVID MEMORI 681890 SW	AL GARDENS 06 09 15 0.2 23 25.00 0.75 The surface water source is an on-site pond.																																				
0600937	531.00 03 0600937-1 01	5.90 01 12.00	90	7/88	15 QN I 20	4 0 4100	1 WINSTON	PARK, LTD Sw	06 THIS IS A DEWATERING OPERATION.																																				
0600945	89.80 03 0600945-1 01 0600945-2 01 0600945-3 01	14.21 02 12.00 02 16.00 02 12.00 02	8 8 8 8 8 8 8 8 8	9/88 50 50	Seco Se	4 1000 1 2000 1 2000	0 NATIONA N 732706 N 733034 N 7330355	L NURSERIES L 624142 GW 624137 GW 624162 GW	IMITED 06 09 15 0.4 5 20.00 0.20 THE ACTUAL CROP TYPE IS NURSERY STOCK, POTTED FOLIAGE PLANTS. ACCORDING TO DISTRICT POLICY, NURSERY STOCK RECEIVES THE SAME SUPPLEMENTAL CROP REQUIREMENT AS GRASS.																																				
6760090	30.60 03 0600949-1 02 0600949-2 02	4.72 02 7.50 7.50	8	9/88	AG AG	225 225	2 SHELL 0 717247 717270	IL COMPANY 655291 SU 655170 SW	06 09 15 0.2 5 24.00 0.75 THE SURFACE WATER SOURCE IS THE AN ON-SITE LAKE. ONLY PUMP STATION # 4 IS COVERED UNDER THE PERMIT.																																				
0600950	102.26 03 0600950-1 01 0600950-2 01 0600950-3 01 0600950-4 01 0600950-4 01 0600950-6 01	21.30 02 4.00 02 6.00 02 4.00 02 4.00 02 4.00 02	90	9/88	90000000000000000000000000000000000000	20020000 2002000 2002000	6 BROWARD 724943 724997 725074 72563 724997 724563	COUNTY (C.B. 610108 SW 610198 SW 610108 SW 611001 SW 6110054 SW	SMITH PARK) 06 09 15 3.6 5 160.00 0.75 The surface water source is the on-site lake system.																																				
0600951	5.29 03 0600951-1 02	5 0.81 02 3.00 02	06 84	9/88 82	0 Q 9 Q	ж 3 100	0 TIVOLI N 789426	VENTURES, LII 719844 GW	11ED 0609150.4234.500.75 THE PROJECT SITE IS LOCATED IN AN AREA WHERE SALINE WATER INTRUSION IS A POTENTIAL PROBLEM.																																				
0600954	43.45 03 0600954-1 01 0600954-2 01	5.56 02 1 12.00 02 10.00 02	06 43 45	8/88 16 16	900 940	400 400	0 GULFSTR Y 781667 Y 781585	EAM PARK RAC 600450 GW 600588 GW	ING ASSOC. 06 09 15 0.8 5 16.50 0.75 IN ADDITION TO IRRIGATING 16.5 ACRES OF GRASS, THE PERMITTEE ALSO UTILIZES WATER TO MAINTAIN A 15.2 ACRE DIRT TRACK.																																				
0600960	1830.00 03 0600960-1 01 0600960-2 01	3 155.00 02 1 24.00 01 1 42.00 01	8	11/88	IND S -1 0 -4	ж 3 10000 0	1 BROWARD Y 765796 765946	0 COUNTY PARK 5 690037 SW 5 689050	S & RECREATION 06 Facility # 2 is a culvert.																																				
0600964	29.65 0: 0600964-1 01 0600964-2 01 0600964-4 01 0600964-4 01 0600964-5 01 0600964-5 01 0600964-8 01 0600964-8 01	 4.50 5.00 5.00 6.00 7.00 7.00 8.00 7.00 7.00 8.00 7.00 7.00<td>45</td><td>12/88</td><td>90000000 94 94</td><td>01H 120 1 120 1 1500 1 1500 1 1500 1 120 1 120 1 120</td><td>7 SUNBEAN 736027 736027 735279 73492 734516 734616 734616 734616</td><td>A PROPERTIES, 597225 SW 597555 SW 597743 SW 597743 SW 597743 SW 597743 SW 597743 SW 597743 SW</td><td>INC. 06 09 15 0.4 5 24.76 0.75 The surface water sources are the on-site lakes and the palm canal. Pump # 4 is an emergency fire pump. It is only used in the event of a fire or insufficient supply of potable water.</td>	45	12/88	90000000 94 94	01H 120 1 120 1 1500 1 1500 1 1500 1 120 1 120 1 120	7 SUNBEAN 736027 736027 735279 73492 734516 734616 734616 734616	A PROPERTIES, 597225 SW 597555 SW 597743 SW 597743 SW 597743 SW 597743 SW 597743 SW 597743 SW	INC. 06 09 15 0.4 5 24.76 0.75 The surface water sources are the on-site lakes and the palm canal. Pump # 4 is an emergency fire pump. It is only used in the event of a fire or insufficient supply of potable water.																																				

,

TABLE C-7. Non-Public Water Supply Spreadsheet (Continued)

). 75 JER 732-X.	D75 EPORT.	0.75		EPORT.	L PLANTS.		0.75	TEM.			
35.50 (Ke. Ment ord	13.00 (Staff re	25.60 (6.40 (DS.	STAFF RE	NAMENTAL		71.95 (AKE SYS!			
5 •SITE LA DEVELOP	S IN THE	ŝ	SITE PON	IN THE	GROUS OR		\$	I-SITE L			
0.2 AN ON- UNDER	0.4 GIVEN	3.6	SE ON-	GI VEN	Y AND (0.2	THE O			
15 CE IS VERED	15 WERE	ភូ វ	CES AI	WERE	JRSER'		5	CE IS			
LION 06 09 E WATER SOURC	06 09 COORDINATES	06 09 09	E WATER SOUR	COORDINATES	ITEE OWNS A NI		00 00	E WATER SOUR			
IRPORA URFAC ROJEC	LANAR		URFAC	LANAR	FERMIT			SURFAC			
INT CO THE S THE P	D. THE P		THE S	THE P	THEP		INC.	THE S			
Developme 56328 Su 56643 Su	CLATES, L1 66125 GM	RPORATION	527382 SH	526664 SW	525998 SW	525095 SW	/ELOPMENT 1	537608 SW	537632 Su	934645 SW	534628 SW
IFIRS1 547 6 351 6	C ASSC 014 6	SY COF	578 6	582 6	203	5). DE/	213	315 6	379 (026
AMER 7227	1 E D (763(OFON +	683	688	6883	688	C.M.1	207	707	202	708
0 2 325 325	100 Y 0	7	1400	1400	1400	1400	0	8	8	200	200
- 1 3 5 5	90	Яł	01	6	5	01	ns	0	01	10	10
, a	10 10	AG					AG.				
1/86	3/89 40	4/89					5/89				
8	96 100	90					90				
8	52	0 02	_	~	~	~	5 02	~	~	_	-
000 000	2.4 10.4	6.6(5.0	5.0(5.0	5.0(14.16	6.0	6.0	6.0	6.0
65 G	82	03	02	05	02	05	03	05	02	02	02
45.27 0600969-1 0600969-2	15.57 0601009-1	31.70	0601038-1	0601038-2	0601038-3	0601038-4	71.74	0601047-1	0601047-2	0601047-3	0601047-4
0600969	0601009	0601038 0601038					0601047				

APPENDIX D

CALIBRATION STEADY STATE WATER LEVELS, HORIZONTAL AND VERTICAL FLOW

LIST OF FIGURES - APPENDIX D

<u>Figure</u>		<u>Page</u>
D-1.	Calibrated Steady State Water Levels (Ft) in Layer 1	141
D-2.	Difference Between Steady State Observed and Computed Water Levels (Ft) in Layer 1	142
D-3.	Transient Simulated Water Levels (Ft) for January 1989, Layer 1	143
D-4.	Transient Simulated Water Levels (Ft) for September 1989, Layer 1	144
D-5.	Horizontal Flow in Layer 1	145
D-6.	Horizontal Flow in Layer 2	146
D-7.	Horizontal Flow in Layer 3	147
D-8.	Horizontal Flow in Layer 4	148
D-9.	Horizontal Flow in Layer 5	149
D-10.	Vertical Flow in Layer 1	150
D-11.	Vertical Flow in Layer 2	151
D-12.	Vertical Flow in Layer 3	152
D-13.	Vertical Flow in Layer 4	153

.

·

FIGURE D-2. Difference Between Steady State Observed and Computed Water Levels (Ft) in Layer 1

FIGURE D-7. Horizontal Flow in Layer 3

FIGURE D-11. Vertical Flow in Layer 2

FIGURE D-13. Vertical Flow in Layer 4

APPENDIX E

CALIBRATION HYDROGRAPHS

. .

LIST OF FIGURES - APPENDIX E

<u>Figure</u>		<u>Page</u>
E-1.	Observation Wells Used in Model Calibration	158
E-2	Calibration Hydrographs	159

FIGURE E-1. Observation Wells Used in Model Calibration

Figure E-2. Calibration Hydrographs

For each observation well, two graphs are shown. The first graph shows head values in feet for referenced and calculated values in the applicable cell. The second graph plots the difference between the two. The solid parallel lines seen in the first graph represent +/- one standard deviation taken over all historical water level records available for that station. The dashed lines represent +/- one standard deviation taken over historical records available for the standard station.

- -

REFERENCED AND CALCULATED NODE HEADS 1989, Station G-1213

. . .

REFERENCED AND CALCULATED NODE HEADS 1989, Station G-2032

İ
APPENDIX F

SENSITIVITY DATA

Parameter Change: Hydraulic Conductivity /2 Layer(s): 1 & 2 Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev 1 3006 5774 8780 0.02 -0.02 -0.01 0.04 0.04 0.04 0.29 -0.58 2 2791 5989 8780 0.02 -0.02 -0.01 0.04 0.03 0.04 0.29 -0.39 2624 6156 8780 0.02 -0.01 -0.01 0.04 0.03 0.04 0.29 -0.27 3 0.02 -0.01 -0.01 0.29 -0.27 4 2641 6139 8780 0.04 0.03 0.04 5 2694 6086 8780 0.04 0.04 0.29 -0.26 0.02 -0.01 -0.01 0.03 lay....layer numtl.....total number of cells experiencing change in head upmean..........average increase in head elevation dwmean..... head elevation tlmean.....average change in head elevation dwstd.....dwstd..... tlstd.....for changes in elevation maxlev.....maximum increase in head elevation occurring minlev.....maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	<u>IN</u>		<u>001</u>
Storage	N/A		N/A
RiverLeakage	-1%		-1%
Head Dep Bounds	-1%		-1%
Drains	N/A		-1%
ET	N⁄A		+1%
Total	-1%	•	-1%

Para Layo Baso Dry,	Parameter Change: Hydraulic Conductivity * 2 Layer(s): 1 & 2 Base Case Compared To: Steady State 1989 Dry/mound cells: none										
Est (ma for	Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)										
lay	numup	numdw	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev
1	5840	2940	8780	0.03	-0.02	0.01	0.06	0.05	0.06	1.00	-0.28
2	5943	2837	8780	0.03	-0.02	0.01	0.06	0.05	0.06	0.62	-0.28
3	6017	2763	8780	0.02	-0.02	0.01	0.05	0.05	0.05	0.45	-0.28
4	6052	2728	8780	0.02	-0.02	0.01	0.05	0.05	0.05	0.45	-0.28
5	6054	2726	8780	0.02	-0.02	0.01	0.05	0.05	0.05	0.45	-0.28
lay nume nume upme dwme tlme upst tlst max1 minl	ip iw iw id id id ev ev			laye numb tota aver aver aver star star star star star	er oer of c age of c age inc age dec age cha dard de dard de dard de mum inc	cells wi cells wi crease in crease in crease in eviation eviation crease in crease in	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in erienci elevati evation ward ch wnward ch anges i elevati elevati	head e head e ng char on anges i changes n eleva on occu	elevation ige in h n eleva in eleva ition irring irring	on head tion evation
			Volu	umetric	Changes	from B	ase Cas	e			

	IN	<u>OUT</u>
Storage	N/A	N/A
River Leakage	+2%	+3%
Head Dep Bounds	+2%	+2%
Drains	N/A	+3%
ET	N/A	-1%
Total	+2%	+2%

Parameter Change: Transmissivity / 2 Layer(s): 3 & 4 Base Case Compared To: Steady State 1989 Dry/mound cells: lay col row reference value new value 86 -6.9265 0.10000E+31 1 42 -7.5741 1 87 41 0.10000E+31 1 87 42 -10.757 0.10000E+31 1 88 41 -8.3746 0.10000E+31 1 88 42 -12.600 0.10000E+31 1 89 42 -10.173 0.10000E+31 1 24 0.10000E+31 115 -2.6863 25 -2.1649 0.10000E+31 1 115 1 116 23 -2.6972 0.10000E+31 1 116 24 -4.0743 0.10000E+31 25 -3.1083 0.10000E+31 1 116 23 -3.3227 0.10000E+31 1 117 1 24 -4.8886 0.10000E+31 117 25 -4.0265 0.10000E+31 1 117 1 -5.3707 0.10000E+31 118 24 0.10000E+31 1 118 25 -4.9876 -5.2041 0.10000E+31 1 119 24 1 119 25 -4.9617 0.10000E+31

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)

lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev

1	3539	5223	8762	0.07	~0.30	-0.15	0.10	0.63	0.52	0.68 -8.39
2	3484	5296	8780	0.09	-0.33	-0.16	0.12	0.77	0.64	0,70 -13.89
3	3589	5191	8780	0.10	-0.35	-0.17	0.13	0.78	0.64	0.83 -13.93
4	3585	5195	8780	0.10	-0.35	-0.17	0.13	0.78	0.64	0.83 -13.92
5	3678	5102	8780	0.09	-0.35	-0.17	0.13	0.78	0.64	0.83 -13.42

laylayer
numupnumber of cells with increase in head elevation
numdwnumber of cells with decrease in head elevation
numtl
upmeanaverage increase in head elevation
dwmean
tlmean
upstd
dwstdstandard deviation for downward changes in elevation
tlstd in elevation
maxlev
minlev

Volumetric Changes from Base Case

	IN	<u>0UT</u>					
Storage	N/A	N/A					
River Leakage	-2%	-14%					
Head Dep Bounds	-31%	-37%					
Drains	N/A	-25%					
ET	Ń/A	-4%					
Total	-14%	-14%					

Parameter Ch Layer(s): 3 Base Case Co Dry/mound ce	ange: Tran & 4 mpared To: 11s: None	smissivity ' Steady Stat	* 2 :e 1989					
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)								
lay numup num	ndw numtl (upmean dwmea	in tlmean	upstd	dwstd	tlstd n	naxlev	minlev
1 5499 33 2 5443 33 3 5526 33 4 5530 33 5 5483 33	281 8780 337 8780 254 8780 250 8780 297 8780	0.25 -0.0 0.26 -0.1 0.27 -0.1 0.27 -0.1 0.27 -0.1	9 0.12 1 0.12 2 0.12 2 0.13 2 0.12	0.46 0.47 0.48 0.48 0.48	0.15 0.17 0.19 0.19 0.19	0.41 0.43 0.44 0.44 0.44	7.76 7.70 7.72 7.72 7.46	-0.92 -0.93 -1.08 -1.08 -1.08
laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring minlevmaximum decrease in head elevation occurring								
	Volum	netric Chang	es from B	ase Cas	e 			
INOUTStorageN/AN/ARiver Leakage+3%+19%Head Dep Bounds+55%+76%DrainsN/A+47%ETN/A+8%Total+24%+24%								

Para Laye Base Dry/	Parameter Change: Transmissivity / 2 Layer(s): 5 Base Case Compared To: Steady State 1989 Dry/mound cells: None										
Est (me foi	Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)										
lay	numup	numdw	numt]	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev
1 2 3 4 5	3460 3419 3527 3536 3686	5320 5361 5253 5244 5094	8780 8780 8780 8780 8780 8780	0.01 0.01 0.02 0.02 0.02	-0.01 -0.01 -0.01 -0.01 -0.02	0.00 0.00 0.00 0.00 0.00	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.04 0.04 0.04 0.04 0.04	0.27 0.27 0.28 0.28 0.36	-0.37 -0.37 -0.47 -0.47 -0.65
lay. numu numt upme dwme tlme upst dwst tlst maxl minl	laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtl										
			Volu	umetric	Changes	s from B	ase Cas	e			
Stor Rive Head Drai ET Tota	age er Leak Dep E ns 	cage Bounds	<u>IN</u> N/A 0% -1% N/A N/A -1%					<u>OUT</u> N/A -1% -2% -1% 0% -1%			

Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)								
ılev								
).32).32).34).34).56								
550/53/058/800.03-0.020.010.070.050.070.99-0.56laynumupnumber of cells with increase in head elevationnumdwnumber of cells with decrease in head elevationnumtl								
d ot								

Parameter Change: River and Drain Conductances / 2 Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None							
Estimated Statist (mean with 1 or for sample size	ics for aquifer d more values, std too small shows 9	lrawdowns (new h with 7 or more v 19.99)	ead - referenc values, and	e head):			
lay numup numdw n	umtl upmean dwmea	n tlmean upstd	dwstd tlstd	maxlev minlev			
1 4041 4739 2 3960 4820 3 3941 4839 4 3941 4839 5 3959 4821	8780 0.15 -0.2 8780 0.15 -0.2 8780 0.14 -0.2 8780 0.14 -0.2 8780 0.14 -0.2 8780 0.14 -0.2	2 -0.05 0.14 1 -0.05 0.13 0 -0.05 0.13 0 -0.05 0.13 0 -0.05 0.13 0 -0.05 0.13	0.23 0.27 0.22 0.25 0.21 0.25 0.21 0.25 0.21 0.25	1.09 -2.27 0.70 -1.58 0.64 -1.17 0.64 -1.17 0.64 -1.14			
laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage change in head elevation upstdaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstd							
	Volumetric Chang	es from Base Cas	se				
$\begin{array}{cccc} & \underline{IN} & & \underline{OUT} \\ Storage & N/A & & N/A \\ River Leakage & -23\% & & -32\% \\ Head Dep Bounds & -14\% & & -4\% \\ Drains & N/A & & +2\% \\ ET & N/A & & +10\% \\ Total & -14\% & & -14\% \end{array}$							

.

.

Parameter Change: River and Drain Conductances * 2 Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None								
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)								
lay numup numd	w numtl upmea	n dwmean	tlmean	upstd	dwstd	tlstd r	naxlev	minlev
1 4593 418 2 4627 415 3 4698 408 4 4715 406 5 4741 403	7 8780 0.1 3 8780 0.1 2 8780 0.1 5 8780 0.1 9 8780 0.1	4 -0.11 4 -0.10 3 -0.10 3 -0.10 3 -0.10	0.02 0.02 0.02 0.02 0.02	0.17 0.15 0.14 0.13 0.13	0.12 0.10 0.10 0.10 0.10	0.20 0.17 0.17 0.17 0.16	2.12 1.39 0.92 0.92 0.90	-1.61 -0.63 -0.59 -0.59 -0.59
laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring minlevmaximum decrease in head elevation occurring								
	Volumetri	c Changes	s from B	ase Cas	e 			
Storage River Leakage Head Dep Bound Drains ET Total	<u>IN</u> N/A +33% s +19% N/A N/A +20%			. –	<u>OUT</u> N/A +43 +6% +19 -6% +20	% %		

Parameter Change: River and Drain Conductances / 10									
Base Case Compared To: Steady State 1989									
Dry/mound cells:	Dry/mound cells: lay col row reference value new value								
	1 87	42	-10.75	7	0.1	0000E+3	31		
	1 88	42	-12.60	0	0.1	0000E+3	31		
	1 89	42	-10.1/	<u>ა</u> ი	0.1	000000000000000000000000000000000000000	51 21		
	1 110	24	-4.0/4	5	0.1	00001+3	,		
Estimated Statis (mean with 1 or for sample size	tics for aqu more values too small s	uifer dr s, std w shows 99	awdowns ith 7 or .99)	(new he more v	ad - re alues,	ference and	e head):	:	
lay numup numdw	numtl upmear	n dwmean	tlmean	upstd	dwstd	tlstd	maxlev	min]ev	
1 3840 4936	8776 0.63	3 -1.21	-0.41	0.53	1.26	1.36	3.42	-7.82	
2 3761 5019	8780 0.61	-1.17	-0.41	0.51	1.22	1.32	2.52	-6.09	
3 3766 5014	8780 0.60) -1.16	-0.41	0.51	1.19	1.30	2.35	-5.02	
4 3764 5016	8780 0.60		-0.41	0.51	1.19	1.30	2.35	-5.00	
5 3//2 5008	8/80 0.00	0 -1.10	-0.41	0.51	1.13	1.23	2.34	-4.32	
lay									
Volumetric Changes from Base Case									
	<u>IN</u>				<u>out</u>				
Storage	N/A				N/A	• ·			
River Leakage	-56%				-//	%			
nead Dep Bounds Drains	-33% N/A				-0%	%			
ET	N/A				+52	~			
Total	-34%				-34	%			

Parameter Change: River and Drain Conductances * 10 Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None										
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)										
lay numup numdw n	umtl upmean	dwmean	tlmean	upstd	dwstd	tlstd i	maxlev	minlev		
1 4468 4312 2 4540 4240 3 4612 4168 4 4638 4142 5 4652 4128	87800.3287800.3087800.2887800.2887800.28	-0.26 -0.22 -0.21 -0.21 -0.21	0.04 0.05 0.05 0.05 0.05	0.39 0.33 0.30 0.30 0.30	0.36 0.25 0.24 0.24 0.24	0.48 0.39 0.37 0.37 0.37	5.59 3.54 2.23 2.23 2.19	-5.96 -1.82 -1.78 -1.78 -1.77		
5 4652 4128 8780 0.28 -0.21 0.05 0.30 0.24 0.37 2.19 -1.77 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring maximum decrease in head elevation occurring										
	Volumetric	Changes	from Ba	ise Case	e 					
IN OUT Storage N/A River Leakage +209% Head Dep Bounds +86% Drains N/A ET N/A Total +110%										

Parameter Change: VCONT / 2 Layer(s): 1 & 2 Base Case Compared To: Steady State 1989 Dry/mound cells: None Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlew 1 4118 4662 8780 0.05 -0.15 -0.06 0.06 0.20 0.18 0.96 -1.57 2 3506 5274 8780 0.04 -0.17 -0.09 0.04 0.21 0.19 0.27 -1.10 3 3357 5423 8780 0.05 -0.21 -0.11 0.06 0.26 0.24 0.46 -1.77 5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.46 -1.77 5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.45 -1.74 laylayer numupnumber of cells with increase in head elevation numdw													
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean timean upstd dwstd tlstd maxlev minlew 1 4118 4662 8780 0.05 -0.15 -0.06 0.06 0.20 0.18 0.96 -1.52 2 3506 5274 8780 0.04 -0.17 -0.09 0.04 0.21 0.19 0.27 -1.10 3 3357 5423 8780 0.05 -0.21 -0.11 0.06 0.26 0.24 0.46 -1.72 4 3353 5427 8780 0.05 -0.21 -0.11 0.06 0.26 0.24 0.46 -1.77 5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.46 -1.77 1aynumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numdwaverage increase in head elevation dwmeanaverage change in head elevation dwmeanstandard deviation for downward changes in elevation upstdstandard deviation for downward changes in elevation maxlevmaximum increase in head elevation occurring minlevmaximum increase in head elevation occurring minlevmaximum increase in head elevation occurring MNA N/A River Leakage -10% -10% -4% Drains N/A -4% Drains N/A -7% ET N/A +2%	Para Laye Base Dry/	Parameter Change: VCONT / 2 Layer(s): 1 & 2 Base Case Compared To: Steady State 1989 Dry/mound cells: None											
lay numup numdw numtl upmean dwmean timean upstd dwstd tistd maxlev minlew 1 4118 4662 8780 0.05 -0.15 -0.06 0.06 0.20 0.18 0.96 -1.55 2 3506 5274 8780 0.04 -0.17 -0.09 0.04 0.21 0.19 0.27 -1.10 3 3357 5423 8780 0.05 -0.21 -0.11 0.06 0.26 0.24 0.46 -1.77 5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.46 -1.77 5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.45 -1.74 lay	Esti (me for	Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
1 4118 4662 8780 0.05 -0.15 -0.06 0.06 0.20 0.18 0.96 -1.57 2 3506 5274 8780 0.04 -0.17 -0.09 0.04 0.21 0.19 0.27 -1.16 3 3357 5423 8780 0.05 -0.21 -0.11 0.06 0.26 0.24 0.46 -1.77 4 3353 5427 8780 0.05 -0.21 -0.11 0.06 0.26 0.24 0.46 -1.77 5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.45 -1.74 1ay	lay	numup	numdw	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev	
lay	1 2 3 4 5	4118 3506 3357 3353 3364	4662 5274 5423 5427 5416	8780 8780 8780 8780 8780 8780	0.05 0.04 0.05 0.05 0.05	-0.15 -0.17 -0.21 -0.21 -0.21	-0.06 -0.09 -0.11 -0.11 -0.11	0.06 0.04 0.06 0.06 0.06	0.20 0.21 0.26 0.26 0.25	0.18 0.19 0.24 0.24 0.24	0.96 0.27 0.46 0.46 0.45	-1.52 -1.10 -1.78 -1.77 -1.74	
Volumetric Changes from Base CaseINOUTStorageN/AN/ARiver Leakage-10%Head Dep Bounds-4%DrainsN/A-7%ETN/A+2%	lay. numu numd upme dwme tlme upst dwst tlst maxl minl	5 3364 5416 8780 0.05 -0.21 -0.11 0.06 0.25 0.24 0.45 -1.74 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation maximum increase in head elevation occurring											
INOUTStorageN/AN/ARiver Leakage-10%Head Dep Bounds-4%DrainsN/A-7%ETN/A+2%				Volu	umetric	Changes	s from B	ase Cas	e				
	Stor Rive Head Drai ET	age Ir Leak Dep B ns	cage Sounds	<u>IN</u> N/A -109 -4% N/A N/A	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				 <u>OUT</u> N/A -10 -4% -7% +2%	%			

.

Parameter Cha Layer(s): 1 & Base Case Com Dry/mound cel	nge: VCON 2 pared To: ls: None	T * 2 Steady	State	1989					
Estimated Sta (mean with 1 for sample s	tistics f or more ize too s	or aqui values, mall sh	fer dra std wi ows 99.	wdowns th 7 or 99)	(new he more v	ad - re alues,	ference and	head):	
lay numup num	dw numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd n	naxlev	minlev
1 4630 411 2 5066 37 3 5246 35 4 5243 35 5 5247 35	50 8780 14 8780 34 8780 37 8780 33 8780	0.09 0.10 0.12 0.12 0.12	-0.03 -0.03 -0.03 -0.03 -0.03	0.03 0.05 0.06 0.06 0.06	0.14 0.14 0.17 0.17 0.17	0.05 0.03 0.04 0.04 0.04	0.12 0.12 0.15 0.15 0.15	1.06 0.80 1.25 1.24 1.21	-0.76 -0.23 -0.33 -0.33 -0.32
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev		laye numb numb tota aver aver stan stan stan stan	r er of c age inc age dec age cha dard de dard de dard de num inc num dec	ells wi ells wi r of ce rease in rease in viation viation viation rease in	th incr th decr lls exp n head for up for do for ch for ch n head n head	ease in ease in elevation elevation ward cho wnward cho anges in elevation	head el head el ng chang on anges ir changes n elevat on occur on occur	evatio evatio je in h in eleva in ele ion ring ring	n ead tion vation
	Volur	netric (Changes	from Ba	ase Cas	e 			
Storage River Leakage Head Dep Bound Drains ET Total	<u>IN</u> N/A +9% is +3% N/A N/A +5%					<u>OUT</u> N/A +8% +5% -8% -1% +5%			

,

Parameter Change: Layer(s): 1 & 2 Base Case Compare Dry/mound cells:	VCONT / 4 d To: Steady None	State 1989								
Estimated Statist (mean with 1 or for sample size	ics for aqui more values, too small sh	fer drawdowns std with 7 or ows 99.99)	(new hea more va	d - refe lues, an	rence he d	≀ad):				
lay numup numdw n	umtl upmean	dwmean tlmean	upstd (dwstd t	lstd max	lev minlev:				
1 4095 4685 2 3389 5391 3 3242 5538 4 3251 5529 5 3261 5519	87800.1187800.0987800.1187800.1187800.11	-0.36 -0.14 -0.42 -0.22 -0.53 -0.29 -0.53 -0.29 -0.53 -0.29	0.14 0.10 0.13 0.13 0.13	0.48 0.50 0.62 0.62 0.62	0.43 2 0.47 0 0.58 1 0.58 1 0.58 0	10 -3.31 .64 -2.45 .00 -4.03 .00 -4.02 .98 -3.96				
5 3261 5519 8780 0.11 -0.53 -0.29 0.13 0.62 0.58 0.98 -3.96 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring minley										
	Volumetric	Changes from E	lase Case	-						
Storage River Leakage Head Dep Bounds Drains ET Total	<u>IN</u> N/A -20% -8% N/A N/A -11%			<u>OUT</u> N/A -21% -8% -12% +4% -11%						

Parameter Change Layer(s): 1 & 2 Base Case Compar Dry/mound cells:	e: VCONT * 4 red To: Stead None	y State	1989					
Estimated Statis (mean with 1 or for sample size	stics for aqu more values too small s	ifer dra , std wi hows 99.	awdowns ith 7 or 99)	(new he more v	ad - re alues,	ference and	head):	
lay numup numdw	numtl upmean	dwmean	tlmean	upstd	dwstd	tlstd m	naxlev	minlev
1 4594 4186 2 5040 3740 3 5196 3584 4 5198 3582 5 5193 3587	87800.1587800.1687800.2087800.2087800.20	-0.06 -0.04 -0.05 -0.05 -0.05	0.05 0.08 0.09 0.09 0.09	0.22 0.22 0.27 0.27 0.27	0.09 0.05 0.07 0.07 0.07	0.20 0.20 0.25 0.25 0.25	1.76 1.33 2.10 2.08 2.01	-1.28 -0.41 -0.64 -0.63 -0.59
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev	lay num num tot ave ave ave sta sta sta sta sta	er ber of c ber of c al numbe rage inc rage dec rage cha ndard de ndard de imum inc imum dec	cells wi cells wi crease i crease i nge in viation viation crease i crease i	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in elevati elevati evation ward ch wnward anges i elevati	head el head el ng chang on anges ir changes n elevat on occur	levatio levatio ge in h in eleva in ele ion ring ring	n ead tion vation
	Volumetric	Changes	from B	ase Cas	e			
Storage River Leakage Head Dep Bounds Drains ET Total	<u>IN</u> N/A +18% +5% N/A N/A +8%			· .	<u>OUT</u> N/A +13 +11 +14 -1% +8%	% %		

Parameter Layer(s): Base Case Dry/mound	Change 3 & 4 Compar cells:	e: VCON red To: None	IT / 2 Steady	/ State	1989					
Estimated (mean wi for samp	Statis th 1 or le size	stics f more too s	for aqui values, mall sh	ifer dra , std wi nows 99.	wdowns ith 7 or 99)	(new he more v	ad - re alues,	ference and	e head):	;
lay numup	numdw	numt1	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev
1 4528 2 4447 3 4599 4 4593 5 4558	4252 4333 4181 4187 4222	8780 8780 8780 8780 8780 8780	0.00 0.00 0.00 0.00 0.01	0.00 0.00 -0.01 0.00 -0.01	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.02	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.02	0.04 0.04 0.04 0.05 0.46	-0.09 -0.09 -0.09 -0.09 -0.46
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev			laye numb tota aver aver aver stan stan stan stan maxi	er of c ber of c age inc age dec age cha dard de dard de dard de mum inc	cells wi cells wi crease i crease i crease i crease i crease i crease i crease i	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in elevati elevati evation ward ch wnward anges i elevati	head e head e ng char on anges i changes n eleva on occu	elevation levation ige in f in eleva in eleva iring irring	on iead ition evation
		Volu	metric	Changes	from B	ase Cas	e 			
Storage River Leal Head Dep I Drains ET Total	kage Bounds	<u>IN</u> N/A 0% 0% N/A N/A 0%					OUT N/A 0% 0% 0% 0% 0%			

Parameter Change: VCONT * 2 Layer(s): 3 & 4 Base Case Compared To: Steady State 1989 Dry/mound cells: None											
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay numup numdw	numtl upmean	dwmean tlme	an upstd	dwstd	tlstd n	naxlev	minlev				
1 4146 4634 2 4111 4669 3 4225 4555 4 4416 4364 5 4659 4121	87800.0087800.0087800.0087800.0087800.00	0.00 0. 0.00 0. 0.00 0. 0.00 0. 0.00 0.	00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.00 00 0.01	0.00 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.01	0.02 0.03 0.05 0.03 0.35	-0.01 -0.01 -0.02 -0.03 -0.31				
5 4659 4121 8780 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.											
	Volumetric	Changes fro	m Base Cas	e 							
Storage River Leakage Head Dep Bounds Drains ET Total	<u>IN</u> N/A 0% 0% N/A N/A 0%		,	<u>OUT</u> N/A 0% 0% 0% 0%							

Parameter Change Layer(s): 3 & 4 Base Case Compare Dry/mound cells:	: VCONT / 4 ed To: Stead None	y State 198	9							
Estimated Statist (mean with 1 or for sample size	tics for aqu more values too small s	ifer drawdo , std with nows 99.99)	wns (new he 7 or more v	ad - ref alues, a	Ference and	head):				
lay numup numdw n	numtl upmean	dwmean tlm	ean upstd	dwstd	tlstd n	naxlev	minlev			
1 4531 4249 2 4491 4289 3 4575 4205 4 4566 4214 5 4445 4335	87800.0087800.0087800.0087800.0087800.01	0.00 0 0.00 0 -0.01 0 -0.01 0 -0.01 0	.000.00.000.00.000.00.000.00.000.04	0.01 0.01 0.01 0.01 0.02	0.01 0.01 0.01 0.01 0.04	0.03 0.05 0.07 0.11 1.24	-0.12 -0.17 -0.23 -0.11 -0.97			
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev	5 4445 4335 8780 0.01 -0.01 0.00 0.04 0.02 0.04 1.24 -0.97 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring									
	Volumetric	Changes fr	om Base Cas	e						
Storage River Leakage Head Dep Bounds Drains ET Total	<u>IN</u> N/A 0% 0% N/A N/A 0%			OUT N/A 0% 0% 0% 0%						

. .

Para Laye Base Dry/I	meter r(s): Case mound	Change 3 & 4 Compar cells:	e: VCON red To: None	⊺ * 4 Steady	State	1989		·			
Estin (mea for	mated an wit sampl	Statis h 1 or e size	stics f r more e too s	or aqui values, mall sh	fer dra std wi ows 99.	wdowns th 7 or 99)	(new he more v	ad - re alues,	ference and	head)	:
layı	numup	numdw	numt]	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	min]ev
1 2 3 4 5	4838 4799 4899 5042 5231	3942 3981 3881 3738 3549	8780 8780 8780 8780 8780 8780	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $	0.00 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.02	0.00 0.00 0.00 0.00 0.01	0.04 0.05 0.07 0.05 0.57	-0.01 -0.02 -0.03 -0.05 -0.52
lay numup numdv numti upmea dwmea tlmea upsto dwsto tlsto maxle minle				laye numb numb tota aver aver stand stand stand stand stand	r er of c ar of c age inc age dec age cha dard de dard de dard de num inc	ells wi ells wi r of ce rease in rease in nge in l viation viation viation rease in	th incr th decr lls exp head head el for up for do for ch head o head o	ease in ease in elevation elevation ward cha wnward changes in elevation	head e head e ng chan on anges i changes n eleva on occu	levatic levatic ge in h in eleva tion rring rring	on head tion evation
			Volu	metric (Changes	from Ba	ase Cas	e 			
Stora River Head Drair ET Total	ige Leak Dep Bi Is	age ounds	<u>IN</u> N/A 0% 0% N/A N/A 0%					<u>OUT</u> N/A 0% 0% 0% 0%			

Parameter Change: Increase Extinction Depth 1 Foot Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None											
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay numup	numdw	numt1	upmean	dwmean	tlmean	upstd	dwstd	tlstd	max]ev	minlev	
1 8 2 2 3 9 4 3 5 2	8772 8778 8771 8777 8778	8780 8780 8780 8780 8780 8780	0.00 0.00 0.00 0.00 0.00	-0.03 -0.03 -0.03 -0.03 -0.03	-0.03 -0.03 -0.03 -0.03 -0.03	0.00 99.99 0.00 99.99 99.99	0.05 0.05 0.05 0.05 0.05	0.05 0.05 0.05 0.05 0.05	0.00 0.00 0.00 0.00 0.00	-0.48 -0.47 -0.46 -0.46 -0.46	
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev	5 2 8778 8780 0.00 -0.03 -0.03 99.99 0.05 0.05 0.00 -0.46 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring minley										
		Volu	umetric	Changes	s from B	ase Cas	e				
Storage River Leal Head Dep I Drains ET Total	INOUTStorageN/AN/ARiver Leakage+2%-2%Head Dep Bounds+1%-2%DrainsN/A-11%ETN/A+65%Total+1%+1%										

,

Parameter Layer(s): Base Case Dry/mound	Change 1 Comparc cells:	: Decr ed To: None	ease Ex Steady	tinctio State	n Depth 1989	l Foot					
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay numup	numdw i	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev	
1 7698 2 7592 3 7629 4 7653 5 7688	1082 1188 1151 1127 1092	8780 8780 8780 8780 8780 8780	0.02 0.02 0.02 0.02 0.02	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.02 0.01 0.01 0.01 0.01	0.03 0.03 0.03 0.03 0.03	0.00 0.00 0.00 0.00 0.00	0.03 0.03 0.03 0.03 0.03	0.43 0.42 0.42 0.42 0.42	-0.01 -0.01 -0.01 -0.01 -0.01	
lay numup numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev	5 7688 1092 8780 0.02 0.00 0.01 0.03 0.00 0.03 0.42 -0.01 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation										
		Volu	metric	Changes	from Ba	ase Cas	e 				
INOUTStorageN/ARiver Leakage-2%Head Dep Bounds-2%DrainsN/AETN/AFotal1%											
iotai	otal -1% -1%										

Parameter Change Layer(s): 1 Base Case Compar Dry/mound cells:	: Increase L ed To: Stead None	and Surf y State	Face Ele 1989	vation	l Foot					
Estimated Statis (mean with 1 or for sample size	tics for aqu more values too small s	ifer dra , std wi hows 99.	wdowns th 7 or 99)	(new he more v	ad - re alues,	ference and	head):			
lay numup numdw	numtl upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev		
1 8641 139 2 8550 230 3 8573 207 4 8604 176 5 8669 111	87800.0287800.0287800.0287800.0287800.02	0.00 0.00 0.00 0.00 0.00	0.02 0.02 0.02 0.02 0.02	0.04 0.04 0.04 0.04 0.04	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $	0.04 0.04 0.04 0.04 0.04	0.43 0.42 0.42 0.42 0.42	0.00 0.00 0.00 0.00 0.00		
<pre>lay numupnumdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev</pre>	5 8669 111 8780 0.02 0.00 0.02 0.04 0.00 0.04 0.42 0.00 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring									
	Volumetric	Changes	from B	ase Cas	e					
Storage River Leakage Head Dep Bounds Drains ET	<u>IN</u> N/A -2% -3% N/A N/A N/A				<u>OUT</u> N/A +2% +11? -72?	6				
IUCAI	- 270				- 270					

Parameter Change: Decrease Land Surface Elevation 1 Foot Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 13 8767 8780 0.00 -0.05 -0.05 0.00 0.08 0.08 0.00 -0.67 2 9 8771 8780 0.00 -0.05 -0.05 0.00 0.08 0.08 0.00 -0.67 3 14 8766 8780 0.00 -0.05 -0.05 0.00 0.08 0.08 0.00 -0.65 4 14 8766 8780 0.00 -0.05 -0.05 0.00 0.08 0.08 0.00 -0.65 5 15 8765 8780 0.00 -0.05 -0.05 0.00 0.08 0.08 0.00 -0.65												
lay numup numdw numtl upmean. dwmean. tlmean. upstd dwstd tlstd maxlev. minlev.	5 15 8765 8780 0.00 -0.05 -0.05 0.00 0.08 0.08 0.00 -0.65 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring minlow											
		Volume	etric	Changes	from Ba	ase Case	<u>;</u>					
INOUTStorageN/AN/ARiver Leakage+4%-4%Head Dep Bounds+3%-3%DrainsN/A-19%ETN/A+75%Total+3%+3%												

Parameter Change: Increase Land Surface Elevation 2 Feet Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 2 3 4 5	8622 8533 8561 8591 8653	158 247 219 189 127	8780 8780 8780 8780 8780 8780	0.03 0.02 0.02 0.02 0.02	0.00 0.00 0.00 0.00 0.00	0.02 0.02 0.02 0.02 0.02	0.05 0.05 0.05 0.05 0.05	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $	0.05 0.05 0.05 0.05 0.05	0.43 0.42 0.42 0.42 0.42	0.00 0.00 0.00 0.00 0.00	
lay numup numut upmea dwmea tlmea upsto dwsto tlsto maxle minle				laye numb tota aven aven aven star star star star star star	er of c ber of c al number age inc age cha adard de adard de adard de inum inc	cells wi cells wi crease i crease i unge in eviation eviation crease i crease i	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in elevation elevation ward cho wnward cho anges in elevation	head e head e ng chan on anges i changes n eleva on occur on occur	levatio levatio ge in h in eleva in ele tion rring rring	n ead tion vation	
			Volu	metric	Changes	from B	ase Cas	e ·				
INOUTStorageN/ARiver Leakage-3%Head Dep Bounds-3%DrainsN/AFTN/A-96%												

Parameter Change: Decrease Land Surface Elevation 2 Feet Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 1 8779 8780 0.00 -0.12 -0.12 99.99 0.18 0.18 0.00 -1.35 2 1 8779 8780 0.00 -0.12 -0.12 99.99 0.18 0.18 0.00 -1.35 3 6 8774 8780 0.00 -0.12 -0.12 99.99 0.18 0.18 0.00 -1.32 3 6 8774 8780 0.00 -0.12 -0.12 99.99 0.17 0.17 0.00 -1.31 4 8 8772 8780 0.00 -0.12 -0.12 0.00 0.17 0.17 0.00 -1.31 5 7 8773 8780 0.00 -0.12 -0.12 0.00 0.17 0.17 0.00 -1.31												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev		layer number total average average average standan standan standan standan standan	of c of c numbe ince dec c cha rd de rd de rd de rd de n inc	ells wi ells wi rease in rease in rease in viation viation rease in rease in	th incre th decre lls expe n head of head ele for up for dow for cha n head of n head of	ease in ease in elevatio elevatio ward cha wnward c anges in elevatio	head el head el g chang n nges ir hanges elevat n occur n occur	levatio levatio ge in h in eleva in ele cion ring ring	n ead tion vation			
	Vol	umetric Cha	anges	from Ba	ase Case	9						
Storage River Leakag Head Dep Bou Drains ET Total	<u>IN</u> N/A unds +5% N/A N/A +6%	%	_			<u>OUT</u> N/A -9% -6% +264 +6%	%					

,

Parameter Change: Increase Max ET Rate to 120% of Original Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 352 8428 8780 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.00 -0.07 2 346 8434 8780 0.00 0.00 0.00 0.00 0.01 0.01 0.00 -0.07 3 377 8403 8780 0.00 0.00 0.00 0.00 0.01 0.01 0.00 -0.06 4 381 8399 8780 0.00 0.00 0.00 0.01 0.01 0.00 -0.06 5 388 8392 8780 0.00 0.00 0.00 0.00 0.01 0.01 0.00 -0.06												
5 388 8392 8780 0.00 0.00 0.00 0.00 0.01 0.01 0.00 -0.06 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring												
	Volumetric (Changes from E	ase Cas	9								
INOUTStorageN/AN/ARiver Leakage0%0%Head Dep Bounds+1%0%DrainsN/A-2%ETN/A+18%Total+.5%+.5%												

Para Laye Base Dry/	Parameter Change: Decrease Max ET Rate to 80% of Original Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)													
lay	lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 2 3 4 5	1846231887800.000.000.000.010.000.010.080.002836141987800.000.000.000.010.000.010.060.003833144987800.000.000.000.010.000.010.060.004837540587800.000.000.000.010.000.010.060.005845732387800.000.000.000.010.000.010.060.00												
lay. numu numo numt upme dwme tlme upst dwst tlst maxl minl	ip iw an an d d d ev ev			lay(numl tota aven aven stan stan stan stan stan	er oer of o al numbe rage ind rage ded rage cha ndard de ndard de imum ind imum ded	cells wi cells wi crease i crease i ange in eviation eviation crease i crease i	th incr th decr 11s exp n head n head for up for do for ch n head n head	ease in ease in erienci elevati evation ward ch wnward anges i elevati elevati	head of head of ng char on anges f changes n eleva on occu	elevation elevation in elevation in elevation in elevation urring urring	on Dead ation evation		
			Volu	umetric	Changes	from B	ase Cas	e					
Stor Rive Head Drai ET Tota	INOUTStorageN/AN/ARiver Leakage0%0%Head Dep Bounds-1%0%DrainsN/A+2%ETN/A-18%Total5%5%												

Parameter Change: Increase Recharge Rate to 120% of Original Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay	numup	numdw	numt1	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxlev	minlev	
1 2 3 4 5	8779 8777 8669 8683 8699	1 3 111 97 81	8780 8780 8780 8780 8780 8780	0.04 0.04 0.04 0.04 0.04	0.00 0.00 0.00 0.00 0.00	0.04 0.04 0.04 0.04 0.04	0.03 0.03 0.03 0.03 0.03	99.99 99.99 0.00 0.00 0.00	0.03 0.03 0.03 0.03 0.03 0.03	0.18 0.18 0.18 0.18 0.18	0.00 0.00 0.00 0.00 0.00	
lay. numu numd numt dwme tlme upst dwst tlst tlst maxl minl				laye numb tota aver aver star star star star star	er oer of o al numbe rage ind rage ded rage cha ndard de ndard de imum ind imum ded	cells wi cells wi crease i crease i ange in eviation eviation crease i crease i	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in erienci elevati evation ward ch wnward anges i elevati elevati	head e head e ng char on anges changes n eleva on occu	elevation elevation in eleva in eleva	on Dead ation evation	
			Volu	umetric	Changes	s from B	ase Cas	e				
Stor Rive Head Drai ET Tota	age r Leak Dep E ns 1	cage Bounds	<u>IN</u> N/A -3% -1% N/A N/A +3%					 <u>OUT</u> N/A +4% +3% +10 +4% +3%	%			

Parameter Change: Decrease Recharge Rate to 80% of Original Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 0 8780 8780 99.99 -0.04 -0.04 99.99 0.03 0.03 0.00 -0.19 2 0 8780 8780 99.99 -0.04 -0.04 99.99 0.03 0.03 0.00 -0.19 3 20 8760 8780 0.00 -0.04 -0.04 0.00 0.03 0.03 0.00 -0.19 4 19 8761 8780 0.00 -0.04 -0.04 0.00 0.03 0.03 0.00 -0.19 5 19 8761 8780 0.00 -0.04 -0.04 0.00 0.03 0.03 0.00 -0.19												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev		layer number total averag averag averag standa standa standa standa	of c numbe e inc e dec e cha rd de rd de rd de m inc m dec	cells wi cells wi crease in crease in crease in crease in eviation crease in crease in	th incre th decre lls expe n head e nead ele for up for dow for cha n head e	ease in ease in elevation elevation ward cha wnward cha anges in elevation	head e head e ng chan on anges i changes n eleva on occu	levatio levatio ge in h n eleva in ele tion rring rring	n ead tion vation			
	Volu	metric Ch	anges	from Ba	ase Case	e 						
Storage River Leakag Head Dep Bou Drains ET Total	IN N/A N/A Inds +1% N/A N/A -3%					<u>OUT</u> N/A -3% -3% -9% -3% -3%						

Parameter Change: Recharge = 0 Layer(s): 1 Base Case Compared To: Steady State 1989 Dry/mound cells: None													
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)													
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev													
1 0 8780 8780 99.99 -0.21 -0.21 99.99 0.18 0.18 0.18 0.00 -0.95 2 0 8780 8780 99.99 -0.21 -0.21 99.99 0.17 0.17 0.00 -0.94 3 19 8761 8780 0.00 -0.21 -0.21 0.00 0.16 0.16 0.00 -0.93 4 22 8758 8780 0.00 -0.21 -0.21 0.00 0.16 0.16 0.00 -0.93 5 20 8760 8780 0.00 -0.21 -0.21 0.00 0.16 0.16 0.00 -0.93													
<pre>lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev</pre>	5 20 8760 8780 0.00 -0.21 -0.21 0.00 0.16 0.16 0.00 -0.93 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring												
	Volume	tric Change	es from B	ase Cas	e 								
INOUTStorageN/AN/ARiver Leakage+20%-16%Head Dep Bounds+7%-11%DrainsN/A-39%ETN/A-17%Total-12%													

Parameter Change: Specific Yield / 2 Layer(s): 1 Base Case Compared To: Transient 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
12182659887800.02-0.010.000.020.010.010.08-0.0522406637487800.02-0.010.000.020.000.010.09-0.0332586619487800.02-0.010.000.020.000.010.09-0.0242591618987800.02-0.010.000.020.000.010.09-0.0252627615387800.02-0.010.000.020.000.020.09-0.02												
5 2627 6153 8780 0.02 -0.01 0.00 0.02 0.00 0.02 0.09 -0.02 laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for changes in elevation tlstdstandard deviation for changes in elevation maximum increase in head elevation occurring												
	Volumetric	Changes	from Ba	ase Cas	e .							
INOUTStorage-5%-7%River Leakage-1%0%Head Dep Bounds-1%-1%DrainsN/A+1%ETN/A+1%Total-1%-1%												

Parameter Change: Specific Yield * 2 Layer(s): 1 Base Case Compared To: Transient 1989 Dry/mound cells: None													
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)													
lay	lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 2 3 4 5	1 6078 2702 8780 0.01 -0.03 0.00 0.01 0.03 0.03 0.07 -0.16 2 5751 3029 8780 0.01 -0.03 0.00 0.01 0.03 0.03 0.04 -0.16 3 5477 3303 8780 0.01 -0.03 0.00 0.01 0.03 0.03 0.03 -0.16 4 5514 3266 8780 0.01 -0.03 0.00 0.01 0.03 0.03 0.03 -0.16 5 5515 3265 8780 0.01 -0.03 -0.01 0.01 0.03 0.03 0.03 -0.16												
lay. numu numu dwme tlme upst tlst tlst maxl minl	p w an an d d d ev ev			laye numb tota aver aver star star star star star	er oer of o al numbe rage ind rage deo rage cha ndard de ndard de ndard de imum ind imum deo	cells wi cells wi crease i crease i ange in eviation eviation crease i crease i	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in erienci elevati elevation ward ch wnward anges i elevati	head e head e ng char on anges f changes n eleva on occu on occu	elevation nge in l in eleva in eleva	on iead ation evation		
			Volu	umetric	Changes	from B	ase Cas	e 					
Stor Rive Head Drai ET Tota	INOUTStorage+8%+12%River Leakage+2%-1%Head Dep Bounds+1%+2%DrainsN/A-2%ETN/A-1%Total+2%												

-

Parameter Change: Storage Coefficient / 10 Layer(s): 3, 4 & 5 Base Case Compared To: Transient 1989 Dry/mound cells: None												
Esti (me for	Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with I or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay	lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev											
1 2 3 4 5	0 0 0 0	8780 8780 8780 8780 8780 8780	8780 8780 8780 8780 8780 8780	99.99 99.99 99.99 99.99 99.99 99.99	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	99.99 99.99 99.99 99.99 99.99 99.99	0.00 0.00 0.00 0.00 0.00	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00$	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	
lay. numu numu upme dwme tlme upst dwst tlst maxl minl	5 0 8780 8780 99.99 0.00 0.00 99.99 0.00 0.00 0.00											
			Volu	umetric	Changes	from B	ase Cas	e 				
Stor Rive Head Drai ET Tota	INOUTStorage0%0%River Leakage0%0%Head Dep Bounds0%0%DrainsN/A0%ETN/A0%Total0%											

.

Parameter Change: Storage Coefficient * 10 Layer(s): 3, 4 & 5 Base Case Compared To: Transient 1989 Dry/mound cells: None												
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)												
lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxlev minlev												
1 2 3 4 5	0 0 0 0	8780 8780 8780 8780 8780 8780	8780 8780 8780 8780 8780 8780	99.99 99.99 99.99 99.99 99.99	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	99.99 99.99 99.99 99.99 99.99 99.99	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00	
lay numup. numdw. numtl. upmean dwmean tlmean upstd. dwstd. tlstd. maxley minley	5 0 8780 8780 99.99 0.00 0.00 99.99 0.00 0.00 0.00											
			Volu	umetric	Changes	from B	ase Cas	e				
INOUTStorage0%River Leakage0%Head Dep Bounds0%DrainsN/AETN/AIntal0%												

Param Layer Base Dry/m	eter Ch (s): 1 Case Co ound ce	nange ompar ells:	: Incr ed To: None	ease St Transi	arting ent 198	Head El 9, 1st	evation stress	s By +2 period	Feet only		
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay n	umup nu	ımdw	numtl	upmean (dwmean	t]mean	upstd	dwstd	tlstd n	naxdif	mindif
1 2 3 4 5	8737 8681 8673 8690 8716	43 99 107 90 64	8780 8780 8780 8780 8780 8780	0.23 0.24 0.23 0.23 0.23	0.00 0.00 0.00 0.00 0.00	0.23 0.23 0.23 0.23 0.23	0.14 0.12 0.10 0.11 0.11	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $	0.14 0.12 0.11 0.11 0.11	0.80 0.62 0.51 0.51 0.50	0.00 0.00 0.00 0.00 0.00
laylayernumupnumber of cells with increase in head elevationnumdwnumber of cells with decrease in head elevationnumtltotal number of cells experiencing change in headupmeanaverage increase in head elevationdwmeanaverage decrease in head elevationtlmeanaverage change in head elevationupstdstandard deviation for upward changes in elevationdwstdstandard deviation for downward changes in elevationtlstdstandard deviation for changes in elevationmaxlevmaximum increase in head elevation occurringminlevmaximum decrease in head elevation occurring											
Volumetric Changes from Base Case											
Storag River Head I Drains ET Total	ge Leakag Dep Bou s	e nds	<u>IN</u> +5599 -34% -11% N/A N/A +1149	%				<u>OUT</u> +375 +615 +905 +145 +395 +116	8% % 3% % 4%		
Parameter Change: Increase Starting Head Elevations By +2 Feet Layer(s): 1 Base Case Compared To: Transient 1989, 1st stress period only - no wells, rivers, drains, recharge, or ET Dry/mound cells: None											
--	---	--	--	--	--------------------------------------	--------------------------------------	--------------------------------------	--			
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay numup numdw n	umtl upmean d	wmean tlm	nean upstd	dwstd t	lstd ma	xdif mi	indif				
187404028690903867810248684965872258	8780 0.35 8780 0.33 8780 0.32 8780 0.32 8780 0.32 8780 0.31	0.00 0 0.00 0 0.00 0 0.00 0 0.00 0	0.340.140.330.120.310.120.310.120.310.12	0.00 0.00 0.00 0.00 0.00	0.14 0.13 0.12 0.12 0.12	0.83 0.64 0.55 0.55 0.55	0.00 0.00 0.00 0.00 0.00				
lay											
	Volumetric Cl	hanges fr	om Base Case	_							
Storage River Leakage Head Dep Bounds Drains ET Total	<u>IN</u> +377% N/A -16% N/A N/A +189%			<u>OUT</u> +209% N/A +126% N/A N/A +189%							

Parameter Layer(s): Base Case Dry/mound	Change 1 Compar cells:	: Decr ed To: None	ease Si Transi	tarting ient 198	Head El 39, 1st	evation stress	s By -2 period	Feet only		
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)										
lay numup	numdw	numt1	upmean	dwmean	tlmean	upstd	dwstd	tlstd I	maxdif	mindif
1 4 2 3 3 30 4 26 5 22	8776 8777 8750 8754 8758	8780 8780 8780 8780 8780 8780	0.00 0.00 0.00 0.00 0.00	-0.24 -0.24 -0.24 -0.24 -0.24	-0.24 -0.24 -0.24 -0.24 -0.24 -0.24	99.99 99.99 0.00 0.00 0.00	0.14 0.12 0.11 0.11 0.11	0.14 0.12 0.11 0.11 0.11	$0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 $	-0.81 -0.62 -0.52 -0.51 -0.51
lay										
		Volur	metric	Changes	from B	ase Cas	e 			
Storage River Leak Head Dep B Drains ET Total	age ounds	<u>IN</u> +341% +81% +38% N/A N/A +110%	/~ /~				<u>0UT</u> +66 -27 -66 -26 +11	7% % % % 0%		

Para Laye Base drai Dry/	ameter er(s): e Case ins, re 'mound	Change 1 Compar echarge cells:	e: Deci ed To: e, or l : None	rease Si Transi ET	tarting ent 1989	Head El 9, 1st s'	evation tress pe	s By -2 eriod on	Feet ly - no	wells,	rivers,
Esti (me for	imated an wit samp]	Stati: ch 1 où le size	stics f r more e too s	for aqu values small sl	ifer dra , std w [.] nows 99.	awdowns ith 7 or .99)	(new he more v	ad - re alues,	ference and	head):	
lay	numup	numdw	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxdif	mi <mark>ndif</mark>
1 2 3 4 5	4 0 26 24 22	8776 8780 8754 8756 8758	8780 8780 8780 8780 8780 8780	0.00 99.99 0.00 0.00 0.00	-0.34 -0.33 -0.31 -0.31 -0.31	-0.34 -0.33 -0.31 -0.31 -0.31	99.99 99.99 0.00 0.00 0.00	0.14 0.13 0.12 0.12 0.12	0.14 0.13 0.12 0.12 0.12	0.00 0.00 0.00 0.00 0.00	-0.83 -0.64 -0.55 -0.55 -0.55
laylayernumupnumber of cells with increase in head elevationnumdwnumber of cells with decrease in head elevationnumtltotal number of cells experiencing change in headupmean											
			Volu	ımetric	Changes	s from B	ase Cas	e 			
Stor Rive Head Drai ET Tota	age r Leak Dep B ns 1	age Jounds	<u>IN</u> +304 N/A +64% N/A N/A +189	 %				<u>OUT</u> +26: N/A -31: N/A N/A +19:	2% % 0%		

245

· ·

Par Lay Bas Dry	Parameter Change: General Head Boundary Conductance * 10 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none										
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay	numup	numdw	numt]	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxdif	mindif
1 2 3 4 5 Note	4680 4693 4750 4756 4762 a: Stat	4100 4087 4030 4024 4018 tistics	8780 8780 8780 8780 8780 8780 5 refle	0.00 0.00 0.00 0.00 ect ent	0.00 0.00 0.00 0.00 ire mode	0.00 0.00 0.00 0.00 el area	0.01 0.00 0.00 0.00 0.01	0.00 0.00 0.00 0.00 0.01 ease in	0.01 0.00 0.00 0.01 head o	0.20 0.03 0.06 0.09 0.47	-0.08 -0.01 -0.05 -0.09 -0.42
numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation tlstdstandard deviation for changes in elevation maxlevmaximum increase in head elevation occurring minlevmaximum decrease in head elevation occurring											

Volumetric Changes from Base Case

	<u>IN</u>	<u>OUT</u>
Storage	N/A	N/A
RiverLeakage	0%	0%
Head Dep Bounds	+1%	+3%
Drains	N/A	0%
ET	N/A	0%
Total	+1%	+1%

.

Parameter Change: General Head Boundary Conductance * 10 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif 1 3784 3037 6821 0.00 0.00 0.00 0.00 0.00 0.00 0.10 -0.03 3790 3031 6821 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 2 3808 3013 6821 0.00 -0.01 3 0.00 0.01 0.00 0.00 0.00 0.00 4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 -0.01 3811 3010 6821 5 3828 2993 6821 0.00 0.00 0.00 0.00 0.00 0.00 0.03 -0.01 Note: Statistics reflect model area within Broward County only lay....layer numup.....number of cells with increase in head elevation upmean..........average increase in head elevation tlmean...........average change in head elevation dwstd.....dwstd.html deviation for downward changes in elevation tlstd......for changes in elevation maxlev......maximum increase in head elevation occurring minlev......maximum decrease in head elevation occurring _____ Volumetric Changes from Base Case

	IN	<u>OUT</u>
Storage	N/A	N/A
River Leakage	0%	0%
Head Dep Bounds	+1%	+3%
Drains	N/A	0%
ET	N/A	0%
Total	+1%	+1%

Parameter Change: General Head Boundary Conductance * 0.1 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none											
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay	numup	numdw	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxdif	mindif
1 2 3 4 5 Note	3813 3809 3762 3754 3759 : Stat	4967 4971 5018 5026 5021 istics	8780 8780 8780 8780 8780 8780 refle	0.00 0.00 0.00 0.00 0.00 ct enti	0.00 0.00 0.00 0.00 0.00 re mode	0.00 0.00 0.00 0.00 0.00 el area	0.00 0.00 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.01 0.01 0.01 0.01 0.01	0.09 0.09 0.42 0.42 0.41	-0.17 -0.20 -0.44 -0.44 -0.44
<pre>laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation dwstdstandard deviation for downward changes in elevation</pre>											

tlstd......standard deviation for changes in elevation maxlev.....maximum increase in head elevation occurring minlev.....maximum decrease in head elevation occurring

Volumetric Changes from Base Case

<u>IN</u>	<u>OUT</u>
N/A	N/A
0%	0%
-3%	-7%
N/A	0%
N/A	0%
-1%	-1%
	<u>IN</u> N/A 0% -3% N/A N/A -1%

Parameter Change: General Head Boundary Conductance * 0.1 Lavers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif 0.00 0.00 0.00 0.00 0.01 0.00 0.01 -0.11 1 2754 4067 6821 0.01 0.01 0.01 -0.20 2 2750 4071 6821 0.00 0.00 0.00 0.00 3 2723 4098 6821 4 2716 4105 6821 0.00 0.00 0.00 0.00 0.01 0.00 0.01 -0.10 0.00 0.00 0.01 -0.10 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.01 0.01 -0.10 5 2719 4102 6821 0.00 Note: Statistics reflect model area within Broward County only lay....layer numup.....number of cells with increase in head elevation numdw.....number of cells with decrease in head elevation numtl.....total number of cells experiencing change in head upmean.....average increase in head elevation dwmean.....average decrease in head elevation tlmean.....average change in head elevation dwstd.....dwstd.extendard deviation for downward changes in elevation tlstd.....for changes in elevation

Volumetric Changes from Base Case

	IN	<u>OUT</u>
Storage	N/A	N/A
RiverLeakage	0%	0%
Head Dep Bounds	-3%	-7%
Drains	N/A	0%
ET	N/A	0%
Total	-1%	-1%

Para Laye Base Dry	ameter ers: A e Case /mound	Change 11 Compar cells	e: Gen red To : non	eral Hea : Steady e	ad Boun / State	dary Con 1989	ductanc	:e * 2			
Est (me for	imated ean wi ^ samp`	Stati: th 1 or le size	stics r more e too :	for aqui values, small sh	ifer dra , std w nows 99	awdowns ith 7 or .99)	(new he more v	ad - re alues,	ference and	e head):	:
lay	numup	numdw	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxdif	mindif
1	4334	4446	8780	0 00	0 00	0 00	0 00	0 00	0 00	0 02	-0 01
2	4350	4430	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
3	4404	4376	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.03	-0.03
4	4414	4366	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.04	-0.04
5	4414	4366	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.11	-0.10
Note	e: Stat	tistics	s refle	ect enti	re mode	el area					
lay.	•••••			laye	er						
numu	ір			numb	per of a	cells wi	th incr	ease in	head e	elevatio	on 🛛
numo	lw			numŁ	per of c	cells wi	th decr	ease in	head e	elevatio	on j
numt	:1			tota	l numbe	er of ce	lls exp	erienci	ng chan	nge in h	nead
upme	ean			aver	age inc	crease i	n head	elevati	on		
dwme	ean			aver	age dec	crease i	n head	elevati	on		
time	ean		• • • • • •	aver	age cha	inge in	head el	evation			
upst	d			stan	idard de	eviation	for up	ward ch	anges 1	n eleva	ition
dwst	.d		• • • • • •	star	dard de	eviation	for do	wnwara	cnanges	in ele	evation
LISU				stan	idard de	eviation	TOP CN	anges n alouatiu	n eleva	ltion wwing	
minl	ev		•••••	maxi mavi	mum doo	rease 1 roaco i	n nead	alovati	on occu	uring Irring	
	G7			IIIax I	mum uet	יובמסב וו	n neau	CICAGLI		н ниу –	

Volumetric Changes from Base Case

	<u>IN</u>	<u>OUT</u>
Storage	N/A	N/A
River Leakage	0%	0%
Head Dep Bounds	0%	+1%
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

Parameter Change: General Head Boundary Conductance * 2 Lavers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) upstd dwstd tlstd maxdif mindif lay numup numdw numtl upmean dwmean tlmean 0.00 0.02 0.00 3405 3416 6821 0.00 0.00 0.00 0.00 0.00 1 0.01 0.00 0.00 0.00 0.00 0.00 2 3422 3399 6821 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 3 3445 3376 6821 0.00 0.01 0.00 0.00 0.00 0.00 0.00 4 3452 3369 6821 0.00 0.00 5 3459 3362 6821 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 Note: Statistics reflect model area within Broward County only lay....layer numup.....number of cells with increase in head elevation numdw.....number of cells with decrease in head elevation numtl.....total number of cells experiencing change in head upmean.....average increase in head elevation dwmean.....average decrease in head elevation tlmean.....average change in head elevation upstd......standard deviation for upward changes in elevation dwstd.....dwnward changes in elevation tlstd.....for changes in elevation minlev.....maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	IN	<u>TUO</u>
Storage	N/A	N/A
RiverLeakage	0%	0%
Head Dep Bounds	0%	+1%
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

Para Laye Base Dry/	meter rs: Al Case mound	Change 11 Compai cells:	e: Geno red To : none	eral Hea : Steady e	ad Bound / State	dary Con 1989	ductanc	e * 0.5			
Esti (me for	Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)										
lay	numup	numdw	numtl	upmean	dwmean	tlmean	upstd	dwstd	tlstd	maxdif	mindif
1	397 1	4809	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.02
2	3956	4824	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.01	-0.03
3	3903	4877	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.05	-0.06
4	3900	4880	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.06	-0.06
5	3905	4875	8780	0.00	0.00	0.00	0.00	0.00	0.00	0.09	-0.09
Note	: Stat	istics	s refle	ect enti	ire mode	el area					
lay. numu numd upme dwme tlme upst dwst tlst maxl minl	p w an an an d d d ev ev			laye numb tota aver aver stan stan stan stan	er oer of o oer of o age inc age dec age cha dard de dard de mum inc mum dec	cells wi cells wi crease i crease i crease i eviation eviation crease i crease i	th incr th decr lls exp n head n head for up for do for ch n head n head	ease in ease in erienci elevati elevation ward ch wnward ch anges i elevati elevati	head e head e ng char on anges i changes n eleva on occu	elevation age in h in eleva in eleva in eleva in eleva in eleva in eleva in eleva in eleva in eleva	on head ation evation

Volumetric Changes from Base Case

	IN	<u>OUT</u>
Storage	N/A	N/A
RiverLeakage	0%	0%
Head Dep Bounds	- 1%	+1%
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

Parameter Change: General Head Boundary Conductance * 0.5 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif 0.00 -0.02 3965 6821 0.00 0.00 0.00 0.00 0.00 0.00 1 2856 0.00 0.00 0.00 0.00 0.00 0.00 -0.03 2839 3982 6821 0.00 2 2814 4007 0.00 0.00 -0.01 0.00 0.00 0.00 0.00 3 6821 0.00 0.00 0.00 0.00 -0.01 0.00 0.00 4 2812 4009 6821 0.00 0.00 0.00 0.00 -0.01 5 2820 4001 6821 0.00 0.00 0.00 0.00 0.00 Note: Statistics reflect model area within Broward County only lay....layer numup.....number of cells with increase in head elevation numdw.....number of cells with decrease in head elevation numtl.....total number of cells experiencing change in head upmean.....average increase in head elevation dwmean.....average decrease in head elevation tlmean.....average change in head elevation dwstd.....dwstd.eviation for downward changes in elevation tlstd.....for changes in elevation

Volumetric Changes from Base Case

-

	IN	<u>0UT</u>
Storage	N/A	N/A
River Leakage	0%	0%
Head Dep Bounds	-1%	+1%
Drains	N/A	0%
ET	N/A	0%
Total	0%	0%

Parameter Change: General Head Boundary Conductance * 100 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none											
Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99)											
lay	numup	numdw	numtl u	ıpmean d	lwmean t	lmean	upstd	dwstd	tlstd	maxdif	mindif
1 2 3 4 5 Note	5011 5031 5098 5100 5096 : Stat	3769 3749 3682 3680 3684 istics	8780 8780 8780 8780 8780 reflec	0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 re model	0.00 0.00 0.00 0.00 0.00 area	0.05 0.00 0.00 0.00 0.01	0.02 0.00 0.00 0.00 0.01	0.04 0.00 0.00 0.00 0.01	1.24 0.04 0.07 0.12 0.83	-0.56 -0.01 -0.05 -0.12 -0.75
<pre>laylayer numupnumber of cells with increase in head elevation numdwnumber of cells with decrease in head elevation numtltotal number of cells experiencing change in head upmeanaverage increase in head elevation dwmeanaverage decrease in head elevation tlmeanaverage change in head elevation upstdstandard deviation for upward changes in elevation</pre>											

dwstd.....standard deviation for downward changes in elevation tlstd.....standard deviation for changes in elevation maxlev.....maximum increase in head elevation occurring minlev.....maximum decrease in head elevation occurring

Volumetric Changes from Base Case

-

	IN	<u>OUT</u>
Storage	N/A	N/A
River Leakage	+3%	+1%
Head Dep Bounds	+4%	+11%
Drains	N/A	0%
ET	N/A	0%
Total	+3%	+2%

Parameter Change: General Head Boundary Conductance * 100 Lavers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aguifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif -0.16 4044 2777 6821 0.00 0.00 0.00 0.01 0.01 0.01 0.73 1 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 2 4056 2765 6821 0.00 0.00 0.00 0.01 -0.01 3 0.00 0.00 2735 6821 0.00 4086 0.02 0.00 0.00 0.00 -0.01 4087 0.00 0.00 0.00 4 2734 6821 0.00 0.05 -0.01 5 4092 2729 6821 0.00 0.00 0.00 0.00 0.00 Note: Statistics reflect model area within Broward County only lay....layer numup.....number of cells with increase in head elevation numdw.....number of cells with decrease in head elevation numtl.....total number of cells experiencing change in head upmean.....average increase in head elevation dwmean..... head elevation tlmean.....average change in head elevation

upstd.....standard deviation for upward changes in elevation dwstd.....standard deviation for downward changes in elevation tlstd.....maximum increase in head elevation occurring minlev.....maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	<u>IN</u>	OUT
Storage	N/A	N/A
River Leakage	+3%	+1%
Head Dep Bounds	+4%	+11%
Drains	N/A	0%
ET	N/A	0%
Total	+3%	+2%

Parameter Change: General Head Boundary Conductance * 0.01 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aquifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif 3945 4835 8780 -0.01 1 0.01 -0.02 0.05 0.03 0.06 0.67 -1.032 3951 4829 8780 0.01 -0.02 -0.01 0.03 0.07 0.05 0.68 -1.20 3 3915 4865 8780 0.01 -0.03 2.06 -0.01 0.05 0.09 0.07 -2.39 4 4868 8780 3912 0.01 -0.03 -0.01 0.05 0.08 0.07 2.03 -2.36 5 3914 4866 8780 0.01 -0.03 -0.01 0.04 0.08 0.07 1.70 -2.05 Note: Statistics reflect entire model area lay....layer numup.....number of cells with increase in head elevation upmean......head elevation dwmean..... head elevation tlmean..... head elevation upstd.....the upstd..... dwstd.....dwstd.....dvard deviation for downward changes in elevation tlstd.....for changes in elevation maxlev.....maximum increase in head elevation occurring minlev.....maximum decrease in head elevation occurring

Volumetric Changes from Base Case

	IN	<u>out</u>
Storage River Leakage	N/A	N/A
Head Dep Bounds	-17%	- 30%
Drains ET	N/A N/A	- 2% - 4%
Total	-7%	-7%

Parameter Change: General Head Boundary Conductance * 0.01 Layers: All Base Case Compared To: Steady State 1989 Dry/mound cells: none Estimated Statistics for aguifer drawdowns (new head - reference head): (mean with 1 or more values, std with 7 or more values, and for sample size too small shows 99.99) lay numup numdw numtl upmean dwmean tlmean upstd dwstd tlstd maxdif mindif 1 2866 3955 6821 0.00 -0.02 -0.01 0.00 0.05 0.04 0.05 -0.68 0.00 -0.02 -0.01 0,00 0.05 0.04 0.07 -1.20 2 2868 3953 6821 2849 3972 0.07 0.00 -0.02 -0.01 0.00 0.05 0.04 -0.99 3 6821 0.04 0.07 -0.990.00 -0.02 -0.01 0.00 0.05 4 2847 3974 6821 5 2848 3973 6821 0.00 -0.02 -0.01 0.00 0.05 0.04 0.07 -0.98 Note: Statistics reflect model area within Broward County only lay....layer numup.....number of cells with increase in head elevation numdw.....number of cells with decrease in head elevation numtl.....total number of cells experiencing change in head upmean.....average increase in head elevation dwmean.....average decrease in head elevation tlmean.....average change in head elevation dwstd.....dwnward changes in elevation tlstd.....for changes in elevation maxlev.....maximum increase in head elevation occurring

Volumetric Changes from Base Case

minlev.....maximum decrease in head elevation occurring

	IN	<u>OUT</u>
Storage	N/A	N/A
River Leakage	+1%	- 4%
Head Dep Bounds	-17%	- 30%
Drains	N/A	- 2%
ET	N/A	- 4%
Total	-7%	- 7%

APPENDIX G

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURE

.

.

.

QUALITY ASSURANCE/QUALITY CONTROL PROCEDURE

The South Florida Water Management District developed a quality assurance/quality control (QA/QC) procedure pertaining to ground water flow models as they progressed from the development stage to use by the Planning Department. The process involves a series of iterations between the model developer and the end user in the Planning Department as well as a peer review team selected for each model.

Each model is evaluated in terms of: a) acceptability and b) impacts of deficiencies on application of the model. Acceptability is divided into three categories: 1) meets all standards of completeness and accuracy, 2) meets main standards, however enhancements are necessary to improve the overall accuracy of the model, and 3) does not meet standards and the model is not ready for use. All parameters that did not meet standards were corrected as a first priority. Parameters needing enhancements were prioritized into those that should be upgraded before the models are used to minimize future problems and those items which can be continually enhanced even while the model is in use.

The QA/QC checklist is divided in two parts; a conceptualization section and a data sets section. The conceptualization section is a narrative discussion of the methodology and assumptions used in creating the data sets. It covers such topics as boundary conditions, time and space discretization, recharge and evapotranspiration calculations, water use data sources and assumptions, aquifer parameters, creation of parameters for rivers and drains, and calibration criteria. This discussion was intended to familiarize the user with all assumptions used in creating the model to make them aware of situations which may affect results. The data set checklist includes all data sets used in the model and verifies that there are no data anomalies. Data was checked both graphically and numerically. Three-dimensional plots of many arrays were created to point out errant data points. Contour plots were compared with data points used to create them to make sure they were accurate. The minimum and maximum value for each plot was determined and checked for reasonableness. River, drain and general head cell values were also printed spatially and checked for reasonableness and consistency between cells. All well locations were verified both in row, column and planar coordinate formats. Modeled pumpage was compared to permitted allocations for reasonableness. The volumetric budget was also checked to determine if anything was out of proportion.

Some data corrections were made and changes in recharge and evapotranspiration sections resulted in model modifications. Finally, agreement was reached and checklists from the peer review panel were approved with no unacceptable sections and several sections identified as acceptable under current conditions with future enhancements necessary.