LAKE OKEECHOBEE WATER QUALITY MONITORING PROGRAM

ANNUAL REPORT YEAR FOUR OCTOBER 1986 -SEPTEMBER 1987

In Partial Fulfillment of Specific Condition (VIE) of Florida Department of Environmental Regulation Permit No. 50-0679349

South Florida Water Management District
August 1988

LIS'T OF TABLES

Table 1. Summary of Water Quality Management Strategy for Lake Okeechobee Inflow Structures 6
Table 2. Water Quality Parameters 10
Table 3. Lake Okeechobee Average Water Quality Data October 1986 - September 1987 13
Table 4. Mean Water Quality Data for Lake Okeechobee Tributaries and Water Conservation Area Inflows and Outflows October 1986 - September 1987 16
Table 5A. Discharge Comparisons for Lake Okeechobee and the Water Conservation Areas 18
Table 5B. Phosphorus Load Comparisons for Lake Okeechobee 19
Table 5C. Nitrogen Load Comparisons for Lake Okeechobee 20
Table 6. Comparison of Flow-Weighted Concentrations 22
Table 7. Surface Water Atrazine Residues - 1987 28
Table 8. Sediment Pesticide Residue Summary 29
Table 9. Comparison of Zinc Phosphide Levels from Samples Collected on Three Dates in 1986-87 31

LIST OF FIGURES

Figure 1. Lake Okeechobee Operation Permit Sampling Stations 9
Figure 2. Mean Annual Lake Okeechobee Total N and Total P Concentrations 14
Figure 3. Annual Trophic State Indices for Lake Okeechobee 26

EXECUTIVE SUMMARY

This annual report on the Lake Okeechobee water quality monitoring program covers the period of October 1, 1986 to September 30, 1987. This is the fourth year of the South Florida Water Management District's (SFWMD)'s Operating Permit issued by the Florida Department of Environmental Regulation for water control structures discharging to the lake. Included are: (1) water quality summaries for the lake, its inflows and outflows, and pump discharges to the Water Conservation Areas; (2) phosphorus and nitrogen inputs from each major lake tributary; (3) an update on the lake's trophic state; and (4) results of pesticide monitoring at water control structures in the Everglades Agricultural Area.

Average water quality values in Lake Okeechobee for the year 1986-87 were within historical ranges. Total phosphorus rose from the previous year to 0.095 mg P/L. This is the highest mean value since 1984. The mean total nitrogen concentration also increased to $1.84 \mathrm{mg} \mathrm{N} / \mathrm{L}$. The mean chlorophyll a concentration ($24.5 \mathrm{mg} / \mathrm{m}^{3}$), an indicator of phytoplankton biomass, remained near the historical average. These nutrient and chlorophyll levels are indicative of a eutrophic condition. The lake experienced blue-green algal blooms during the year, but none reached the magnitude of the bloom that impacted the lake in the summer of 1986. Anabaena circinalis was a dominant species again in the spring of 1987.

Lake inflows in 1986-87 were generally below the 1973-79 base period averages, as they have been throughout the Operating Permit period. Total phosphorus and nitrogen loadings from those inflows identified in the Permit were 68 and 78 percent below the target phosphorus and nitrogen loading rates, respectively. Individually, all inflows met their target loads except S-133, which slightly exceeded its five-year target nitrogen load. The Interim Action Plan (IAP) kept nutrient inputs from the Everglades Agricultural Area (EAA) well below target levels. The IAP, however,
resulted in greater discharges to the Water Conservation Areas. Loadings from S-191 were 49 percent below the phosphorus target and 37 percent under the target for nitrogen. The S-154 basin, which is another watershed impacted by dairy and cattle operations, contributed a significant amount of phosphorus for its size. No target loads are established for this basin by the Permit, but the basin greatly exceeds the target loading rate set by the SFWMD.

Preliminary trend analysis indicates that phosphorus concentrations in the Taylor Creek/Nubbin Slough basin are declining. Best Management Practices were implemented in 98 percent of the basin's defined critical acreage by the end of 1987. The annual flow-weighted phosphorus concentration at $\mathrm{S}-191$ was $0.667 \mathrm{mg} / \mathrm{L}$, which meets the three year target concentration of $0.67 \mathrm{mg} / \mathrm{L}$. The flow-weighted nitrogen concentration was $2.19 \mathrm{mg} / \mathrm{L}$, which is slightly greater than the target of $1.72 \mathrm{mg} / \mathrm{L}$.

Phosphorus concentrations in the Lower Kissimmee River (C-38) basin continue to be higher than in the 1970's. The flow-weighted phosphorus concentration for 1986-87 was $0.260 \mathrm{mg} / \mathrm{L}$, which is lower than in the previous year, but still twice the base-period average.

S-154 has the highest phosphorus concentrations of any inflow. The 1986-87 flow-weighted concentration was $0.895 \mathrm{mg} / \mathrm{L}$.

Over the first four years of the Operating Permit, which were relatively dry years, annual nutrient loading from most inflows averaged less than the target loads specified in the Permit. For phosphorus, these included the S-2, S-4, Harney Pond Canal, Lower Kissimmee River, Taylor Creek/Nubbin Slough, and Fisheating Creek basins. Those inflows that were more than 10 percent above their targets included S-3 and S-133. Most inflows also met their target nitrogen loads over the four year period, except for S-2, S-3, S-127, and S-133.

Pesticide monitoring was conducted at six SFWMD EAA pump stations in January, April, May, and July, 1987. No detectable residues were found in either
the water or sediment in January. In April, atrazine residues were detected in water samples at three sites. Atrazine was detected in the water again at all six sites in May and at two sites in July. The highest atrazine value measured was not high enough to cause a toxic effect in fish or invertebrates, or an adverse health effect in humans. The compounds 2,4-D, ametryne, and DDE were found in some of the sediment samples collected in July. This is the first time that 2,4-D and ametryne have been detected in sediment samples at these stations. The DDE could be relic residue from the past use of DDT, since DDT has been banned since 1974. No water quality or health standards exist for agricultural chemical residues in the sediment.

A separate investigation of the rodenticide zinc phosphide was conducted in January 1987 at the same pump stations to determine if detectable quantities were still present in water samples after the period of application to sugarcane fields. Small quantities were detected at all six sites. No State of Florida standards or U.S. EPA guidelines exist for this compound.

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

LAKE OKEECHOBEE WATER QUALITY MONITORING PROGRAM

YEAR FOUR - OCTOBER 1986 - SEPTEMBER 1987
 INTRODUCTION

Lake Okeechobee is a shallow, eutrophic lake that is impacted by agricultural runoff. As part of its management of this lake, the South Florida Water Management District (SFWMD) has been monitoring the water quality of Lake Okeechobee and its inflows and outflows since 1973. The first seven years of study (April 1973 - March 1980) were summarized in SFWMD Technical Publication No. 81-2 (Federico et al. 1981) and are referred to here as the 1973-79 base period.

In response to recommendations of the 1981 report, nutrient loading allocations were assigned to each watershed within the Okeechobee basin on the basis of drainage area (SFWMD 1982). In September 1983, the Florida Department of Environmental Regulation issued a five-year Operating Permit to the SFWMD for the operation of its inflow structures around Lake Okeechobee. Specific Condition (V) of this Operating Permit establishes nutrient loading targets for each major watershed (Tables 5a, 5b, and 5c). Overall, these targets call for a 24 percent reduction in the average phosphorus load and 39 percent reduction in average nitrogen load relative to the $1973-79$ base period. To ensure that nutrient reductions are uniformly achieved, the target loads for each inflow cannot be exceeded by more than 10 percent when the Permit expires in September 1988. Further limitations on nutrient loads were set for those basins (S-2, S-3, and S-191) that were deemed critical to the SFWMD's nutrient control strategy. S-2 and S-3 are required to achieve their loading targets in three, rather than five, years. Likewise, S-191 is restricted to three-year target loads of 139 tons of phosphorus and 388 tons of nitrogen, and maximum concen tration limits of $0.67 \mathrm{mg} \mathrm{P} / \mathrm{L}$ and $1.72 \mathrm{mg} \mathrm{N} / \mathrm{L}$.

These target levels were designed to substantially reduce the loads from those basins with the highest nutrient runoff rates, while setting interim goals for the five-year duration of the Permit. Thus, the S-2 and S-3 basins were required to meet the SFWMD's loading allocations for nitrogen and phosphorus, whereas the Taylor Creek/Nubbin Slough and Lower Kissimmee River basins are required to reduce their nutrient inputs to the lake, but these reductions are not as stringent as the maximum allowable loads established by the SFWMD. The Permit does not require nutrient loading reductions from the other sub-basins.

This report provides an update on the effectiveness of the SFWMD's management actions to reduce tributary nutrient loads to the target levels. The report covers the period of October 1, 1986, to September 30, 1987. Active nutrient control options have been implemented in the S-2 and S-3 basins by using the Interim Action Plan (IAP), and in the Taylor Creek/Nubbin Slough basin by encouraging and supporting agricultural Best Management Practices (BMPs) (Table 1). Similar BMP programs are beginning to be implemented in the Lower Kissimmee River basin, including the $\mathrm{S}-1.54$ sub-basin. The water quality management strategy in lower-priority basins during these first four years consisted of regulatory control of new drainage systems to improve the quality of water being delivered off site. This form of regulatory control is effective only when land use intensifies and new drainage systems are needed. With the exception of the BMP programs on the north side of the lake, there has been no retrofitting of existing drainage systems for the purpose of improving water quality.

In addition to the current activities, the Governor's Lake Okeechobee Technical Advisory Council (LOTAC II) has recommended the management options listed below to improve the water quality of the lake's inflows (LOTAC 1988). The SFWMD has taken the lead role in evaluating many of these options.

TABLE 1. SUMMARY OF WATER QUALITY MANAGEMENT STRATEGY FOR LAKE OKEECHOBEE INFLOW STRUCTURES

Structure	Management Strategy
S-2	Interim Action Plan (July 1979)
S-3	Interim Action Plan (July 1979)
S-4	Regulatory Control of New Drainage Systems
S-191	Best Management Practices (1981)
S-65E	Best Management Practices (1988)
S-154	Best Management Practices (1988)
S-84	Regulatory Control of New Drainage Systems
S-71	Regulatory Control of New Drainage Systems
S-72	Regulatory Control of New Drainage Systems
S-127	Regulatory Control of New Drainage Systems
S-129	Regulatory Control of New Drainage Systems
S-131	Regulatory Control of New Drainage Systems
S-133	Regulatory Control of New Drainage Systems
S-135	Regulatory Control of New Drainage Systems

Everglades Agricultural Area

1. Refine the IAP to further reduce phosphorus loadings to the lake and Water Conservation Areas (WCAs), and identify a nutrient removal site to protect WCAs 1 and 2.
2. Control point source phosphorus loading from municipalities.
3. Study and implement BMPs, if they are found acceptable.
4. Evaluate the Holey Land for nutrient removal capabilities and consequent ecological effects.
5. Investigate the feasibility of flow-way construction for nutrient assimilation.
6. Study aquatic and wetland plant management systems.
7. Accelerate the planning and design of the L-8 water supply augmentation project.

Taylor Creek/Nubbin Slough and Lower Kissimmee River Basins

1. Accelerate BMP implementation where appropriate, provide additional funding, continue BMP monitoring, and develop a demonstration program for dairy waste management education.
2. Continue the aquifer storage and recovery demonstration program and plan full implementation if the demonstration is successful.
3. Determine the magnitude of adverse environmental effects resulting from the proposed diversion of Taylor Creek/Nubbin Slough runoff to the Indian River.

S-4/Caloosahatchee Basin

Model the downstream effects of the proposed S-4 diversion to Caloosahatchee River, determine the potential use of Lake Hicpochee for phosphorus retention, and examine the routing of Industrial Canal water to Lake Hicpochee.

MATERIALS AND METHODS

Lake Okeechobee

Eight stations were monitored in the limnetic zone of Lake Okeechobee along with 17 inflow/outflow structures and Fisheating Creek (Figure 1). The frequency of monitoring and the parameters measured are shown in Table 2. Water quality in the lake was measured monthly. Sampling of inflows and outflows around the lake was conducted every two to four weeks, depending on discharge. Sampling and analytical procedures have been described by Federico et al. (1981).

Water Conservation Areas

Water quality and discharge data from three pump stations (S-6, S-7, and S-8) discharging into the WCAs from the Everglades Agricultural Area (EAA) are also included in this report.

Taylor Creek/ Nubbin Slough

Water quality from 22 stations in the Taylor Creek/ Nubbin Slough basin was sampled at two to four week intervals for the parameters listed in Table 2.

Nutrient Loadings

Calculated nutrient loading rates for the major lake inflows are compared to target loading rates later in this report. Target loads deal only with portions of the lake basin identified as "controllable sources" by the SFWMD's Lake Okeechobee Water Quality Management Plan (SFWMD 1982). Consequently, inputs from the Upper Kissimmee and the Lake Istokpoga basins are not included in the target loads for S-65E, S-71, S-72, and S-84. In Tables 5a, 5b, and 5c (see Results and Discussion section), the discharge and nutrient loads from the outflow of Lake Kissimmee (S-65)

Fig. 1. Lake Okeechobee Operation Permit Sampling Stations

TABLE 2. WATER QUALITY PARAMETERS

Sampling Frequency			
Lake Limnetic	Lake Okeechobee	Taylor Creek/	
Water Quality	Inflows/ Outflows	Nubbin	
Stations	and WCA Inflows	Slough Basin	Parameter
Monthly	$2-4$ Weeks	Not Sampled	Temperature
Monthly	$2-4$ Weeks	Not Sampled	Dissolved Oxygen
Monthly	$2-4$ Weeks	$2-4$ Weeks	Specific Conductance
Monthly	$2-4$ Weeks	$2-4$ Weeks	pH
Monthly	$2-4$ Weeks	$2-4$ Weeks	Turbidity
Monthly	$2-4$ Weeks	$2-4$ Weeks	Color
Monthly	$2-4$ Weeks	$2-4$ Weeks	Nitrite
Monthly	$2-4$ Weeks	$2-4$ Weeks	Nitrate
Monthly	$2-4$ Weeks	$2-4$ Weeks	Ammonia
Monthly	$2-4$ Weeks	$2-4$ Weeks	Total Nitrogen
Monthly	$2-4$ Weeks	$2-4$ Weeks	Total Kjeldahl Nitrogen
Monthly	$2-4$ Weeks	$2-4$ Weeks	Ortho Phosphorus
Monthly	$2-4$ Weeks	$2-4$ Weeks	Total Phosphorus
Monthly	$2-4$ Weeks	Not Sampled	Total Suspended Solids
Monthly	$2-4$ Weeks	Not Sampled	Alkalinity
Monthly	$2-4$ Weeks	Not Sampled	Chloride
Monthly	NotSampled	Not Sampled	Chlorophylla
Quarterly	Quarterly	Not Sampled	Total Iron

were subtracted from those at S-65E to obtain values for the Lower Kissimmee basin. Likewise, the discharge and loads from the Lake Istokpoga outflow (S-68) were subtracted from the values at S-71, S-72, and S-84. The discharge from S-68 was divided among S-71, S-72, and S-84 in proportion to the amount of water that these three structures discharged into Lake Okeechobee.

Pesticide Monitoring

The SFWMD routinely monitors pesticides and herbicides quarterly at six pump stations (S-2, S-3, S-4, S-6, S-7, and S-8) that discharge from the EAA. During 1987, both water and sediment samples were taken on January 27 and July 21. Water
samples were also collected on April 14, 1987. The water samples were surface grab samples and the sediment samples were collected with a petite Ponar dredge. The compounds monitored, along with their detection limits, are listed in Appendix C.

On January 14 and 27, 1987, samples were collected at the six pump stations to monitor for the presence of zinc phosphide, the active ingredient in a rodenticide used to control cotton rats in sugarcane. The objective was to determine if detectable quantities of zinc phosphide were still present in the water during a typical application season.

A follow-up sampling trip was also conducted on May 28, 1987, at the six pump stations to monitor for the presence of atrazine, since it had been detected in some water samples collected in April. Atrazine is the active ingredient in a herbicide used on sugarcane.

All sample bottles for pesticide monitoring were teflon or aluminum foil-capped glass and were supplied by the contract laboratory (Everglades Laboratories, Inc. of West Palm Beach, Certification No. 86109, for zinc phosphide; Environmental Science and Engineering, Inc. of Gainesville, Certification No. T82067, for sediment analysis; and University of Miami, Certification No. 76290, for water analysis). All samples were placed on ice and shipped to the lab within 48 hours of collection. Analyses were performed in accordance with U.S. EPA, American Standard Testing Methods, APHA Standard Methods, or other approved methods.

RESULTS AND DISCUSSION

Water Quality Data Summary

Table 3 summarizes the water quality at each station in Lake Okeechobee and the lake average for the year. Water quality did not vary substantially between stations and measurements were generally within the range of values reported in previous years.

Although the lake phosphorus concentration doubled from 1973 to 1984, it declined in the next two years. The 1985-86 average total phosphorus concentration was $0.063 \mathrm{mg} / \mathrm{L}$. This is the lowest mean concentration since 1977 (Figure 2). No definitive reason can be given for this trend, but the decline coincides with two years of relatively low phosphorus inputs and lower lake stage. The same pattern was observed during the 1980-81 drought. In 1986-87, average total phosphorus rose again to $0.095 \mathrm{mg} / \mathrm{L}$, which is the highest value since 1984.

The mean total nitrogen concentration in 1986-87 ($1.84 \mathrm{mg} / \mathrm{L}$) was also higher than in 1985-86 (Figure 2).

The average annual chlorophyll a concentration, a measure of phytoplankton biomass, was $24.5 \mathrm{mg} / \mathrm{m}^{3}$. This is similar to other yearly values for the period of record. The massive algal bloom that appeared in the summer of 1986 did not re-occur in 1987, although the same blue-green species, Anabaena circinalis, was present in bloom proportions in May and June. The data gathered from the eight limnetic stations discussed here are not sufficient to fully document these algal blooms, since the most dense areas of the blooms tend to form closer to shore. The SFWMD monitors 35 additional sites in the near-shore and littoral zones where the densest blooms are usually found. These sites have been sampled since late 1986 and the results will be presented in a separate report when enough data have been collected to determine seasonal trends.
TABLE 3. LAKE OKEECHOBEE AVERAGE WATER QUALITY DATA

Station	Temperature (Celsius)	Dissolved Oxygen (mg/L)	Specific Conductance (micromhos $/ \mathrm{cm}$)	pH	Turbidity (NTU)	Color (PTU)	Total Suspended Solids $(\mathrm{mg} / \mathrm{L})$	$\mathrm{NO}_{2}-\mathrm{N}$ (mg/L)	$\mathrm{NO}_{3}-\mathrm{N}$ $(\mathrm{mg} / \mathrm{L})$
L001	24.9	8.3	565	8.2	16.9	38	12	0.005	0.064
L002	25.1	8.7	573	8.2	15.9	36	12	0.005	0.070
L003	25.3	8.4	593	8.0	24.7	35	18	0.004	0.175
L004	25.3	8.3	591	8.0	32.9	33	19	0.005	0.143
L005	25.7	9.0	596	8.4	13.1	31	10	0.004	0.081
L006	25.4	8.1	602	8.1	28.4	31	12	0.004	0.202
L007	25.3	8.5	606	8.1	16.4	33	8	0.004	0.181
L008	25.4	8.6	604	8.1	29.3	41	16	0.005	0.147
Lakewide Average	25.3	8.5	591	8.1	22.2	35	13	0.005	0.133

Station	$\begin{aligned} & \mathrm{NH}_{4}-\mathrm{N} \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	Total N (mg/L)	$\begin{aligned} & \text { Ortho-P } \\ & (\mathrm{mg} / \mathrm{L}) \end{aligned}$	Total P (mg/L)	Total Alk. $\left(\mathrm{mg} / \mathrm{L} \mathrm{CaCO}_{3}\right)$	Chloride $(\mathrm{mg} / \mathrm{L})$	Total Iron (mg/L)	Chlorophylla ($\mathrm{mg} / \mathrm{m}^{3}$)	Secchi Depth (meters)
L001	0.01	1.85	0.017	0.087	107.5	80.8	0.35	31.7	0.55
L002	0.01	1.83	0.016	0.084	108.9	81.3	0.33	34.3	0.49
L003	0.02	1.91	0.033	0.111	114.7	82.9	0.96	24.4	0.35
L004	0.01	1.86	0.030	0.115	112.0	84.0	1.32	20.5	0.34
L005	0.10	1.74	0.016	0.061	109.2	83.8	0.39	25.7	0.69
L006	0.02	1.80	0.043	0.108	115.6	85.3	0.77	15.8	0.44
L007	0.02	1.85	0.036	0.088	113.6	87.7	0.53	21.2	0.75
L008	0.01	1.90	0.030	0.103	115.5	85.4	0.88	22.7	0.45
Lakewide Average	0.03	1.84	0.028	0.095	112.1	83.9	0.69	24.5	0.51

figune 2. mean annual lake dkeechobee total n and total P CONCENTRATIONS

Lake inflow and outflow water quality data are shown in Table 4. Water quality data for major pump stations (S-6, S-7, and S-8) that discharge into the WCAs from the EAA are also included in this table.

Water quality data for stations in the Taylor Creek/ Nubbin Slough basin are listed in Appendix A. These data will also be summarized in a separate report (1987 Annual Report, Rural Clean Waters Program, Taylor Creek/ Nubbin Slough) that will be completed by the end of 1988 .

Discharges, Nutrient Loads, and Flow-Weighted Nutrient Concentrations

Table 5a compares discharges from Lake Okeechobee and the WCA inflows during the first four years of the permit period to the 1973-1979 base period. Inflows have been mostly below the 1973-79 base period averages during the permit period, especially in the last three years. The total discharge from controllable-source basins in the latest year was almost 80 percent below the 1973-79 annual average inflow. Individually, nearly all inflows were below average. The LAP was in effect all year, so S-2 and S-3 inputs were greatly reduced. In fact, S-2 pumped only one day during the year and S-3 was completely inactive. (Appendix B summarizes the backpumping activity at S-2 and the criteria used to determine whether or not to pump). However, discharges from S-6, S-7, and S-8 were larger due to the diversion of EAA runoff to the WCAs.

The 1986-87 phosphorus and nitrogen loads from controllable sources were 68 and 78 percent below the Operating Permit's target loads, respectively (Tables 5b and 5c). Taylor Creek/Nubbin Slough, the Lower Kissimmee River, the Harney Pond Canal (S-71), and Fisheating Creek were the major nutrient contributors. The target loads were met at all inflows except $\mathrm{S}-133$, which slightly exceeded its fiveyear target nitrogen load. The EAA pump stations (S-2, S-3, and S-4) were more
TABLE 4.

$\begin{aligned} & \text { Z } \\ & \text { N } \\ & \text { D } \\ & \text { Z } \end{aligned}$		$\begin{aligned} & \text { 옹 } 8.8 \mathrm{O} \\ & 0.80 \\ & 0.0 \end{aligned}$	$\begin{aligned} & \mathbf{N}_{1} \mathbf{N}_{\mathbf{O}}^{\mathbf{O}} \mathbf{O} \\ & \mathbf{O} \end{aligned}$
		サ업心め	5－r m－
80	$0 \infty \infty \infty$ 		욱
象気	น 	Ho 둥	－¢ ¢ \％
饱	م促 だだがたががががが	$\underset{\infty}{\sim} \underset{\infty}{\infty}$	$\underset{\sim}{\square}$
	 	ボ F Hi M N	
	 	م $10^{\circ} 0^{\circ} 10^{\circ}$	
	 N N N N N M N N N N N N		
$\stackrel{: 口}{9}$	 		

TABLE 4 （CONTINUED）．MEAN WATER QUALITY DATA FOR LAKE OKEECHOBEE
AND OUTFLOWS SEPTEMBER 1987
登

0.11
0.12
0.19
0.15
0.14
0.15
0.09
0.15
0.72
0.63
0.36
0.34
0.68
0.54
0.40 0.19
0.13
0.39
0.09
0.59
 $\underset{\text {（mg／L）}}{\text { Chloride }}$
 93.5
104.0 ${ }^{\circ}$ か が 10 $\stackrel{4}{-1}$ 0
 Total
Alkalinity
（mg／L
$\left.\mathrm{CaCO}_{3}\right)$
 132.7

124.4 ＋í $\stackrel{-}{8}$ | ∞ |
| :--- |
| -9 |
| -1 |

 0.119
0.097
0.204
0.280
0.103 0.103
0.085 0.160 0.074 0.190 0.202

0.049 0.108 0.740 | 4 |
| :--- |
| 8 | 0.098 0.062

0.065
0.122
0.065

0.151	6	19
-8		
0	0	
0	0	0.060 0.060

0.012
0.152 0.152
0.205 0.042 0.031 0.080
0.020 0.143 0.148
0.026 0.065 0.648 0.063 0.008

 1.99
2.38
1.99
1.64
2.52

O． $\stackrel{N}{8}_{0}^{10}$ 8 $\stackrel{\infty}{-}$ © © ${ }^{9} 8$ $\stackrel{N}{\stackrel{N}{\circ}}$ 0.03 0.09
0.08
0.08
0.04
0.05

\qquad 0.624
0.158
0.102
0.115
0.017
0.050
0.279
0.056
0.706
0.135
0.113
0.055
0.022
0.308
0.006 0.015
0.010
0.181
0.009
0.148 1810
0%
-10
-100 Lake Inflows S－2 127 N
 Lake Outflows HGS－3 HGS－4 HGS－5 S－77 S－308C

[^0]

TABLE 5A. DISCHARGE COMPARISONS FOR LAKE OKEECHOBEE AND THE WATER CONSERVATION AREAS

Structure or Basin	Discharge (ac-ft/yr)					
	Average 1973-79	1983-84	1984-85	1985-86	1986-87	Average 1983-87
S-2	195,880	51,047	164,863	11,648	868	57,107
S-3	55,733	23,171	145,422	6,153	0	43,687
S-4	34,887	74,580	4,036	11,669	4,169	23,614
S-127	10,886	33,685	1,769	9,006	11,052	13,878
S-129	11,169	14,682	1,964	1,009	6,674	6,082
S-131	5,277	5,607	960	1,751	1,614	2,483
S-133	15,680	50,384	7,652	5,528	13,428	19,248
S-135	17,432	32,947	7,476	14,479	11,328	16,558
S-71*	81,408	67,760	14,935	66,274	29,900	44,717
S-72*	17,432	6,727	49	9,068	1,200	4,261
S-84*	68,442	61,586	12,452	22,504	0	24,136
S-65E**	589,326	244,275	82,826	128,440	97,194	138,184
S-154	--	25,785	12,202	31,689	12,899	20,644
S-191	153,586	108,073	71,304	100,272	54,673	83,581
Fisheating Cr.	203,449	230,128	67,184	101,211	70,416	117,235
TOTAL***	1,460,587	1,004,652	582,892	489,012	302,516	594,768
S-6	140,966	161,437	89,802	279,829	111,881	156,789
S-7	134,819	326,829	185,987	286,269	112,466	209,274
S-8	263,967	492,227	265,511	488,786	160,786	334,255

* DISCHARGES FOR S-71, S-72, AND S-84 DO NOT INCLUDE INPUTS FROM LAKE ISTOKPOGA THROUGH S-68.
** DISCHARGES FROM S-65E DO NOT INCLUDE INPUTS FROM THE UPPER KISSIMMEE BASIN THROUGH S-65.
*** THE TOTAL LAKE OKEECHOBEE INFLOW DOES NOT INCLUDE INPUTS FROM THE LAKE ISTOKPOGA AND UPPER KISSIMMEE BASINS, THE S- 154 BASIN, DIRECT PRECIPITATION, AND OTHER MINOR BASINS IN ORDER TO BE CONSISTENT WITH THE TARGET LOADING RATES IN TABLES 5B AND 5C.

TABLE 5B. PHOSPHORUS LOAD COMPARISONS FOR LAKE OKEECHOBEE

Structure or Basin	Total Phosphorus Load (tons/yr)						
	Average 1973-79	Target	1983-84	1984-85	1985-86	1986-87	Average 1983-87
S-2	35	[18]	18.6	45.1	3.6	0.2	16.9
S-3	7	[7]	11.8	37.3	2.1	0.0	12.8
S-4	15	15	58.1	2.1	2.8	1.2	16.1
S-127	7	7	15.3	0.4	2.9	4.8	5.9
S-129	3	3	2.3	0.3	0.1	1.4	1.0
S-131	1	1	0.6	0.1	0.2	0.2	0.3
S-133	7	7	26.7	2.3	1.9	3.4	8.6
S-135	4	4	3.9	1.0	1.3	1.0	1.8
S-71*	47	47	33.5	12.0	36.5	18.0	25.0
S-72*	8	11	3.7	0.1	6.0	1.0	2.7
S-84*	6	13	8.2	0.3	5.0	0.0	3.4
S-65E**	108	86	111.5	27.5	104.3	34.4	69.4
S-154	--	--	33.4	10.1	50.0	15.7	27.3
S-191	189	$\begin{gathered} 98 \\ (139) \end{gathered}$	146.2	88.5	115.7	49.6	100.0
Fisheating Cr.	65	65	82.9	32.6	32.6	8.8	39.2
TOTAL***	502	382	523.3	249.6	315.0	124.0	303.0

* PHOSPHORUS LOADS FOR S-71, S-72, AND S-84 DO NOT INCLUDE INPUTS FROM LAKE ISTOKPOGA THROUGH S-68.
** PHOSPHORUS LOADS FROM S-65E DO NOT INCLUDE INPUTS FROM THE UPPER KISSIMMEE BASIN THROUGH S-65.
THE TOTAL LAKE OKEECHOBEE PHOSPHORUS LOAD DOES NOT INCLUDE INPUTS FROM THE LAKE ISTOKPOGA AND UPPER KISSIMMEE BASINS, THE S-154 BASIN, DIRECT PRECIPITATION, AND OTHER MINOR BASINS IN ORDER TO PROVIDE A COMPARISON WITH THE TARGET LOADING RATE.
[] TARGET LOADS FOR S-2 AND S-3 TO BE MET IN THE THIRD YEAR OF THE PERMIT.
() TARGET LOAD FOR S-191 TO BE MET IN THE THIRD YEAR OF THE PERMIT.

TABLE 5C. NITROGEN LOAD COMPARISONS FOR LAKE OKEECHOBEE

Structure or Basin	Total Nitrogen Load (tons/yr)						
	Average 1973-79	Target	1983-84	1984-85	1985-86	1986-87	$\begin{aligned} & \text { Average } \\ & 1983-87 \end{aligned}$
S-2	1,548	[156]	485.6	1,243.9	114.3	6.8	462.6
S-3	373	[95]	255.3	852.3	59.5	0.0	291.8
S-4	142	142	275.4	22.8	33.0	15.5	86.7
S-127	34	34	100.5	5.3	25.1	32.0	40.7
S-129	33	33	30.8	4.5	3.1	19.1	14.4
S-131	13	13	12.2	1.8	4.6	4.5	5.8
S-133	41	41	144.8	18.4	14.4	52.1	57.4
S-135	51	51	74.5	20.3	36.9	29.3	40.3
S-71*	323	323	238.9	105.4	326.2	193.0	215.9
S-72*	86	132	24.7	0.1	51.9	5.5	20.6
S-84*	110	258	132.1	34.0	103.7	0.0	67.5
S-65E**	997	838	295.1	33.4	432.5	13.0	193.5
S-154	--	--	--	--	92.6	39.2	65.9
S-191	479	258	283.6	209.1	279.4	163.0	233.8
		(388)					
Fisheating Cr.	575	575	432.0	151.4	257.4	103.6	236.1
TOTAL***	4,805	2,949	2,785.5	2,702.7	1,742.0	637.4	1,966.9

* NITROGEN LOADS FOR S-71, S-72, AND S-84 DO NOT INCLUDE INPUTS FROM LAKE ISTOKPOGA THROUGH S-68.
** NITROGEN LOADS FROM S-65E DO NOT INCLUDE INPUTS FROM THE UPPER KISSIMMEE BASIN THROUGH S-65.
*** THE TOTAL LAKE OKEECHOBEE NITROGEN LOAD DOES NOT INCLUDE INPUTS FROM THE LAKE ISTOKPOGA AND UPPER KISSIMMEE BASINS, THE S-154 BASIN, DIRECT PRECIPITATION, AND OTHER MINOR BASINS IN ORDER TO PROVIDE A COMPARISON WITH THE TARGET LOADING RATE.
[] TARGET LOADS FOR S-2 AND S-3 TO BE MET IN THE THIRD YEAR OF THE PERMIT.
() TARGET LOAD FOR S-191 TO BE MET IN THE THIRD YEAR OF THE PERMIT
than 90 percent below their target loads and S-191 was 49 and 37 percent below its target phosphorus and nitrogen loads, respectively.

No target loads are designated for the S-154 basin by the Operating Permit, but the basin does contribute a significant amount (5 percent) of the total lake phosphorus loading even though its drainage area is relatively small. The SFWMD's phosphorus allocation for this basin is 4 tons per year. This allocation has been greatly exceeded in the four years since reliable discharge data has become available. Phosphorus input was 15.7 tons in 1986-87.

Table 6 summarizes the flow-weighted nutrient concentrations for selected inflows. The average phosphorus concentration from all inflows combined was $0.301 \mathrm{mg} / \mathrm{L}$ in $1986-87$, which is slightly more than the base period average.

In the Lower Kissimmee River (C-38) basin, phosphorus concentrations at S-65E are usually higher than at the outlet from Lake Kissimmee at S-65. Agricultural activity in the C-38 basin (especially in Pools D and E) contributes to progressively higher phosphorus levels downstream in the canal (Federico 1982). Flow-weighted concentrations for the C-38 basin are calculated after subtracting the phosphorus load from S-65. In 1985-86, the concentration was nearly $0.6 \mathrm{mg} / \mathrm{L}$, which is over four times the base period average for this basin. This was due to high concentrations at S-65E in July and August of that year. These concentrations have since returned to the normal range. However, the flow-weighted values for the C-38 basin have been higher than the base period average throughout 1983-87, which suggests a trend toward increasing phosphorus contributions from agricultural operations in the basin. The 1986-87 concentration was $0.260 \mathrm{mg} / \mathrm{L}$.

The flow-weighted phosphorus concentration for Taylor Creek/Nubbin Slough at S-191 has been declining over the last four years. A preliminary trend analysis has also indicated a downward trend in phosphorus levels since 1978 (SFWMD 1988a).
TABLE 6. COMPARISON OF FLOW-WEIGHTED CONCENTRATIONS

Structure or Basin	Average 1973-79	1983-84	1984-85	1985-86	1986-87	$\begin{aligned} & \text { Average } \\ & 1983-87 \\ & \hline \end{aligned}$
Total Phosphorus (mg/L)						
S-2	0.132	0.268	0.201	0.227	0.139	0.218
S-3	0.095	0.374	0.188	0.251	--	0.215
S-4	0.314	0.573	0.388	0.176	0.212	0.501
S-65E (Without S-65 Input)	0.135	0.336	0.244	0.597	0.260	0.369
S-191*	0.906	0.995	0.913	0.848	0.667	0.880
S-71 (Without S-68 Input)	0.425	0.364	0.591	0.405	0.443	0.411
Fisheating Creek	0.235	0.265	0.357	0.237	0.092	0.246
S-154	--	0.953	0.609	1.160	0.895	0.972
Average for Total Lake Inflow from all Controllable - Source Basins (Except S-154)	0.253	0.383	0.315	0.515	0.301	0.375
Total Nitrogen (mg/L)						
S-2	5.82	7.00	5.55	7.22	5.73	5.96
S-3	4.92	8.10	4.31	7.11	--	4.91
S-4	2.56	2.72	4.16	2.08	2.73	2.70
S-65E (Minus S-65 Input)	1.24	0.89	0.30	2.48	0.10	1.03
S-191*	2.29	1.93	2.16	2.05	2.19	2.06
S-71 (Minus S-68 Input)	2.92	2.59	5.19	3.62	4.75	3.55
Fisheating Creek	2.08	1.38	1.66	1.87	1.08	1.48
S-154	--	--	--	2.15	2.23	2.35
Average for Total Lake Inflow from all Controllable - Source Basins (Except S-154)	2.42	2.04	3.41	2.59	1.55	2.43

[^1]The implementation of BMP's in the Taylor Creek/Nubbin Slough basin was most intense in 1986. By the end of 1986 , BMP's were installed on 78 percent of the critical acreage in the basin. Because BMP implementation has not been completed until recently, S-191 did not meet its concentrations of $0.67 \mathrm{mg} \mathrm{P} / \mathrm{L}$ and $1.72 \mathrm{mg} \mathrm{N} / \mathrm{L}$ by the third year of the Operating Permit as scheduled. By the end of 1987, however, BMP's were in place on 98 percent of the critical acreage and the S-191 flow-weighted phosphorus concentration ($0.667 \mathrm{mg} / \mathrm{L}$) did meet the target level. The 1986-87 nitrogen concentration of $2.19 \mathrm{mg} / \mathrm{L}$ was still above the target, but is not considered to be excessively high.

The calculated flow-weighted phosphorus and nitrogen concentrations for the Harney Pond Canal were relatively high ($0.443 \mathrm{mg} P / L$ and $4.75 \mathrm{mg} \mathrm{N} / \mathrm{L}$), but were within the range of the historical record. Outflow from Lake Istokpoga acts to dilute phosphorus runoff from this basin, so actual concentrations measured at S-71 are usually not as high as these flow-weighted values.

Although not a major source of flow, the S-154 basin was one of the major phosphorus contributors in 1986-87. Its flow-weighted phosphorus concentration was the highest of all the inflows ($0.895 \mathrm{mg} / \mathrm{L}$).

Flow-weighted nutrient values at S-2 were less than those of the previous year. At S-4, they were about the same as the year before. Determining the significance of trends from these data is difficult because these pump stations all discharged very low volumes during 1986-87 (Table 5). No flow-weighted concentrations are given for S-3 because this station did not pump during the year.

Trends in flow-weighted concentrations for individual inflows must be regarded with caution, especially in years of low flow. This is because discharge events in low flow years are important to water quality, but are rare, and are less likely to be sampled adequately in such years. Therefore, only flow-weighted concentrations for the major inflows are reported in Table 6.

In summarizing the 1986-87 data, phosphorus and nitrogen loads to the lake were below the target loads due to low discharges, the IAP, and BMP implementation in the Taylor Creek/Nubbin Slough basin. The lower portion of the Kissimmee River has tended to exhibit higher phosphorus concentrations in recent years, and the S-154 and Harney Pond Canal basins are also areas of concern. In the fourth year following the issuance of the Operating Permit, the only inflow to exceed its target nutrient loads was S-133. However, annual loadings are strongly dependent on the amount of runoff and targets may be exceeded in years with greater discharge. For instance, preliminary data being collected in 1987-88 suggest that the target loads may be exceeded due to greater rainfall and runoff in the basin (SFWMD 1988b). Consequently, the targets are more appropriately viewed as long-term average goals.

Tables 5 b and 5 c list average nutrient loads for the first four years of the Operating Permit. During this relatively dry period, most lake inflows were no greater than 10 percent above their target loads for phosphorus. These included the S-2, S-4, Harney Pond Canal, Lower Kissimmee River, Taylor Creek/Nubbin Slough, and Fisheating Creek basins. The exceptions were S-3 (83\% above target) and S-133 (23% above target). Most inflows also met their target loading rates for nitrogen, except for S-2 (197% above), S-3 (207% above), S-127 (20% above), and S-133 (40% above). If the SFWMD had not suspended the IAP during the summer of 1985 for water supply backpumping, the average S-2 and S-3 loads for these four years would have been nearly 50 percent less (15.6 tons phosphorus and 384.1 tons nitrogen). Even though there are no target loading rates for S-154 under the present Operating Permit, the SFWMD has calculated a maximum allowable phosphorus loading rate for this basin of 4 tons per year. S-154's average phosphorus loading rate of 27.3 tons per year was almost six times greater than its allowable rate.

Lake Okeechobee Trophic Status

Trophic state indices (TSI's) based on total phosphorus, total nitrogen, and chlorophyll a concentrations have been used to evaluate Lake Okeechobee's trophic status over the years. Federico et al. (1981) explained how these indices are derived from the water quality data. The indices range from 0 to 100 , with 0 to 53 being classified as oligotrophic to mesotrophic, 53 to 70 being eutrophic, and above 70 being considered hypereutrophic. These indices provide a convenient way of classifying the lake and charting trends in trophic state, but are not precise indicators of a lake's actual trophic condition. It is also important to recognize that the categories cited rely heavily on data from northern temperate-zone lakes outside of Florida.

Over the period of record for water quality data, Lake Okeechobee has been classified as eutrophic (Figure 3). In recent years though, the TSI based on phosphorus levels (but no other TSI) indicates that the lake borders on the hypereutrophic classification. This TSI moved back to the middle of the eutrophic range in 1985-86 and up again in 1986-87. The chlorophyll TSI, meanwhile, remained in the mid-eutrophic range. Phytoplankton biomass (as indicated by the chlorophyll TSI) did not follow the increase in total phosphorus.

Pesticides

Routine Pesticide Monitoring

Sixty-seven compounds were analyzed from samples collected on January 27, 1987, and 65 compounds were analyzed from samples collected on April 14 (Appendix C). No detectable levels of pesticide or herbicide residues were found in the January samples, but the herbicide atrazine was found in the surface water at S-4 (3.5 ppb), S-6 (4.0 ppb) and S-7 (8.9 ppb) in April. None of the six pump stations were active at the time of the April sampling. The minimum detection limit

for this compound was 0.1 ppb . This was the first time atrazine had been detected in the SFWMD's monitoring program.

Atrazine is a non-restricted use, selective herbicide that is registered for use on sugarcane, corn, and turf grasses. Application rates vary, with up to 4 pounds of the commercial product applied per acre. Atrazine is typically applied to sugarcane fields during the fall through spring. The positive field results are probably a reflection of sampling during a period of application. Also, roughly one inch of rain fell over the EAA about two weeks before the April sampling, potentially triggering a runoff event that could have contained some atrazine. The half-life of atrazine is very site-specific, but is approximately 10 days in the water and 45 days in the soil.

Atrazine is considered only slightly toxic. The LD_{50} for rats is $3,080 \mathrm{mg} / \mathrm{kg}$ body weight. (The term LD_{50} is a calculated lethal oral dose of an acutely-administered substance that is expected to cause death in 50 percent in a population of a test animal species). The LC_{50} (lethal concentration) for fish ranges from 6.3 to 78.0 ppm and the LC_{50} (48 hour) for freshwater invertebrates ranges from 0.72 to 6.7 ppm . The highest field result of 10.8 ppb is not high enough to cause a possible toxic effect on fish or invertebrates.

To calculate the maximum level of atrazine in drinking water at which adverse health effects would not be anticipated, an EPA-developed acceptable daily intake (ADI) value of $0.0375 \mathrm{mg} / \mathrm{kg} /$ day was used. This results in a maximum atrazine level of 1.3125 ppm (or 1312.5 ppb). This value is the maximum contaminant level in drinking water at which adverse health effects would not be anticipated in the average adult, based on a 70 kg body weight and the ingestion of two liters of water per day. This calculated value is over 100 times more than the highest value (8.9 ppb) detected. If this calculation is performed for a small child of 10 kg body weight who consumes one liter of water per day, the maximum contaminant level is 0.375 ppm (or 375 ppb). Again, this value is about 35 times more than the field
results and, therefore, the measured levels of atrazine do not indicate a possible adverse health problem. No State of Florida surface water or drinking water quality standards, or EPA guidelines exist for atrazine.

Due to the detection of positive atrazine residues, additional water samples were taken on May 28. None of the pump stations were active at the time of sampling, but water was flowing out of Lake Okeechobee to the EAA at S-2 and S-3. Even though there was outflow from the lake, small amounts of atrazine were found in the canals downstream from these structures. Low levels of atrazine were found at the other four pump stations as well (Table 7). The concentrations reported for April and May are orders of magnitude below the levels that would be anticipated to cause adverse effects on fish, invertebrates, or humans.

TABLE 7. SURFACE WATER ATRAZINE RESIDUES - $\mathbf{1 9 8 7}^{1}$

	Date of Sampling			
Station		April 14	May 28	
July 21				
S-2		ND^{2}	0.4	ND
S-3	ND	0.2	ND	
S-4	3.54	0.3	ND	
S-6	4.0	1.8	ND	
S-7	8.9	0.2	2.91	
S-8	ND	0.3	0.77	
Detection Limit	0.1	0.2	0.1	

${ }^{1}$ UNITS OF UG/L OR PPB
 ${ }^{2}$ ND - NOT DETECTED

On July 21, water and sediment samples were collected again and analyzed for 67 compounds (Appendix C). Atrazine was once again found in the surface water, but only at S-7 and S-8 (Table 7). At the time of sample collection, S-7 was pumping and S-8 was discharging through the gravity gate to the WCAs. One week before sampling, various amounts of rain (over one inch at S-7) fell over the EAA,
potentially triggering a runoff event which could have contained atrazine. The levels found in the July sampling were not high enough to cause a possible toxic effect on fish, invertebrates, or humans.

Pesticide residues of 2,4-D, ametryne, and DDE were found in the July sediment samples (Table 8). This is the first time that 2,4-D and ametryne have been detected in sediment samples at these stations. Positive pesticide residues in the sediment give an indication of the previous presence of a compound in the water column. No State of Florida or EPA criteria or standards exist for pesticide residues in sediment.

TABLE 8. SEDIMENT PESTICIDE RESIDUE SUMMARY ${ }^{1}$ - JULY 21, 1987

	Station			
Compound	$\underline{S-2}$	$\underline{\mathrm{~S}-3}$	$\underline{\mathrm{~S}-4}$	$\underline{\mathrm{~S}-6}$
$2,4-\mathrm{D}$	ND^{2}	ND	1,960	996
Ametryne	98.5	ND	135	194
PP'DDE	101	18.2	57.2	ND

${ }^{1}$ UNITS OF UG/KG OR PPB
${ }^{2}$ ND - NOT DETECTED

The non-restricted use, selective herbicide 2,4-D was detected at S-4 and S-6. This compound is registered for use on a variety of row crops, ornamentals, turf grasses, and noncrop areas as well as aquatic applications. It is considered moderately toxic (acute oral LD_{50} for rats of $375 \mathrm{mg} / \mathrm{kg}$ body weight). Reported half-lives in natural waters range from a few days to several months depending on factors such as temperature, pH , light intensity, herbicide formulation, and oxygen concentration. This compound degrades relatively quickly in the environment, with residue half-lives generally not exceeding several weeks in plants, soil, and water. It is rapidly eliminated by animals and is not bioaccumulated. This herbicide is used
by the SFWMD to control water hyacinth and water lettuce. At the time of sampling, the SFWMD had not utilized 2,4-D for approximately one year in those canals where it was detected. Because of its short environmental half-life, the presence of 2,4-D indicates significant usage in the private sector.

Ametryne was found at S-2, S-4, and S-6. It is a non-restricted use selective terrestrial herbicide used on corn, sugarcane, grapefruit, and oranges. Technical (pure) ametryne is slightly toxic (acute oral LD_{50} for rats of $1750 \mathrm{mg} / \mathrm{kg}$ body weight). It also has a low LC_{50} toxicity for fish. Based on published adsorption partition coefficient values for this compound and similar compounds, ametryne would be moderately persistent in soils (half life between 20 and 100 days) and slightly to moderately mobile. During a runoff event, ametryne could be transported in appreciable proportion with both sediment and water.

The compound DDE was detected at S-2, S-3, and S-4. DDE is one of the degradation products of DDT and its presence at these sites could be a relic residue from the past use of DDT, since DDT has been banned since 1974. Previous samples from other SFWMD programs have randomly detected DDE in the sediment. Follow-Up Monitoring for Zinc Phosphide

On September 23, 1986, the rodenticide zinc phosphide was found in water samples at five of the six sites (S-2, S-3, S-4, S-6, S-7, and S-8) sampled in the EAA (SFWMD 1988a). This was unexpected since it was thought that the compound degraded immediately when exposed to water.

A follow-up sampling event was conducted on January 14, 1987, at the same sites. None of the pump stations were active at the time of sampling. Of the six water samples collected, all had positive results (Table 9). The concentrations were similar to the September values.

TABLE 9. COMPARISON OF ZINC PHOSPHIDE LEVELS FROM SAMPLES COLLECTED ON THREE DATES IN 1986-87

	Sampling Date		
Station	$\frac{9 / 23 / 86}{}$	$\underline{1 / 14 / 87}$	$\underline{1 / 26 / 87}$
S-2	0.006	0.004	<0.001
S-3	0.002	0.002	<0.001
S-4	<0.001	0.002	<0.001
S-6	0.005	0.005	<0.001
S-7	0.005	0.006	<0.001
S-8	0.003	0.002	<0.001

ALL VALUES ARE IN UNITS OF MG/L (OR PPM) PHOSPHINE

Twelve days later, on January 27, water samples for zinc phosphide analysis were collected again. This time, the concentrations were below the minimum detection limit of $0.001 \mathrm{mg} / \mathrm{L}$.

Zinc phosphide is usually applied aerially to sugarcane from September to December. Because the application was assumed to have been completed by December, the presence of the compound in the pump station water samples in mid-January was not anticipated. However, the detected values were not very high and the compound was not detectable by the end of the month. Either zinc phosphide persisted in the water longer than expected or the compound was applied to the sugarcane fields immediately before the January 14 sampling event. In either case, the compound's presence in both the September and January samples was likely the result of separate applications of the pesticide before each sampling event.

The bioaccumulation potential of zinc phosphide is small, but the compound is acutely toxic. It is possible to calculate the level of zinc phosphide in drinking water at which adverse health effects would not be anticipated. Using an EPA-developed verified reference dose (this is comparable to an acceptable daily intake value) of $0.0004 \mathrm{mg} / \mathrm{kg} /$ day for aluminum phosphide, an outdoor fumigant for burrowing
rodent control, a 0.014 ppm contaminant level was calculated. This value represents the maximum contaminant level in drinking water at which adverse health effects would not be anticipated in the average adult, based on a 70 kg body weight and the ingestion of 2 liters of water per day. This value is slightly greater than the concentrations measured on September 23 and January 14. However, if this calculation is performed for a small child of 10 kg body weight who consumes one liter of water per day, the maximum contaminant level is $0.004 \mathrm{mg} / \mathrm{L}$. This value is similar to some of the field results and may represent a possible adverse health effect if a small child ingested this water on a routine basis. No State of Florida surface water quality standards or EPA guidelines exist for zinc phosphide.

At this time, there is no known literature that documents the degradation rate of zinc phosphide in water. The assumed rapid degradation rate is based on chemical reaction principles. The SFWMD staff is continuing to monitor for the presence of zinc phosphide and is maintaining contact with other agencies that are investigating the fate of this compound in the environment.

Copies of the original result sheets containing all the pesticide data described in this section can be found in Appendix D.

REFERENCES

Federico, A. C. 1982. Water Quality Characteristics of the Lower Kissimmee River Basin, Florida. South Florida Water Management District, West Palm Beach, Tech. Pub. No. 82-3.

Federico, A. C., K. G. Dickson, C. R. Kratzer, and F. E. Davis. 1981. Lake Okeechobee Water Quality Studies and Eutrophication Assessment. South Florida Water Management District, Tech. Pub. No. 81-2.

Lake Okeechobee Technical Advisory Council (LOTAC II). 1988. Interim Report to the Florida Legislature. February 29, 1988.

South Florida Water Management District. 1982. Lake Okeechobee Water Quality Management Plan -- Alternatives Evaluation. Technical Report, August 1982.

South Florida Water Management District. 1988a. Lake Okeechobee Water Quality Monitoring Program: October 1985 - September 1986. Technical Memorandum, February 1988.

South Florida Water Management District. 1988b. Monthly Water Conditions Report: June 1988.

APPENDIX A

1986-87 WATER QUALITY DATA
FOR THE TAYLOR CREEK/ NUBBIN SLOUGH BASIN

Tetin	Whmeaindu	6.26	0.360	4.06	0.76	4.69	34	6.36	*, ${ }^{\text {\% }}$	0.006	6.11	8.845
Wem	Whemstor 0	0.24	0.355	6:10	f.6.	5.80	3	6, 97	1.52	4.94	8.01	4, 6e
104 ${ }^{\text {a }}$		0,65	8.6 ¢ ${ }^{8}$	0.30	4.84	5.60	138	3.04	4.85	4.0.	0.27	
Then	11/6Eblefo	0.444	0.504	0.0	1, 21	4.90	H1	6.95	4.55	b. 614	0.43	0.085
That 0	Whembin	0.175	(i.282	0.14	i.:	5.44	84	7.12	1.64	0.60	0.07	0.65
Ten*	am6e7tas	0, 39	b, be?	4.95	1.90	7.20	105	8.78	1.81	4.02	0.6	0.04
What	61/2671418	3.483	0.86	4.12	5.59	3.10	170	5.7e	1.20	406	0.82	t.080
T0:4	Whtampas	4, 176	0,200	0.0	1. $\mathrm{S}^{\text {a }}$	4.40	2te	E.	i. 58	v.ve	$0, \mathrm{~m}$	t.me
Wen 4	Wh7elat	0.195	0.282	4, W	\%	2.48	384	6.7\%	1.5	6, 065	6, $\mathrm{H}^{\text {a }}$	0.012
Then A	DS0/97 104	4, 20	0.8 Ca	0.6	1.80	4.20	254		1.67	0.004	3, S^{2}	0.604
एक 0	W01767 0, 28	0,312	0.20	8.04	1,11	1.60	22	7.21	1. 89	\%,0¢	4, 32	0.012
TCH	Wulab thas	4, 0.32	0,6.2	0.13	2. ${ }^{4}$	310	104	7.02	2,27	0.89	\%.7	0.04
TM 0	9414/87 1068	4, 399	0, 4.35	4.08	1.46	1. 50	267	1.72	1.44	0.099	a,b	0.082
TEM 21		b, \%	4,314	6.)	0.8	5.50	38	6, 67	4.68	¢604	A, 01	0.004
Thw 9 :	Wh/2/e7 wh	0.267	0.320	0.6	S.11	8.50	5 S	3.76	1.1.	Qwe	8.0	0.004
TCM 01		4.29	0.884	4.0	2.14	2.86	308	6.86	1.44	0.64	0.01	0.004
204 0	*609\%\% ima	4,178	0, 2 2	\%, ${ }^{\text {a }}$	1.84	2.70	3E0	6, E_{6}	1.64	3, 00,	0.61	0.004
Tre ${ }^{\text {a }}$	G6That lote	0.245	9, 3 年	8.65	$\therefore .23$	3.54	254	5.74	1.2.	0.004	8.02	5.004
TCH 4	0707\% 10:17	0.76	6, 6.9	0.04	5.47	6. 70	\%ib	7,0\%	3.41	0,06	4.03	0.62
76\%		0.729	4.889	0.6	13.3\%	16.79	114	7.14	15.4.4	6.020	4, 4 \%	6, m
TuFid	mehate misa	0.906	0.470	4.5	5.66	5.20	W	7.6	5.0	6,62	4.02	0.81
T04\%	कीतहEl 10.5	0,9,	b.65	4.2.	1.22	4.0	17	8.78	- 6	4.47	0.02	4.278
Th4 9	yuniah lent	0.354	0.445	8.07	5, 施	4, \% 0	317	7.2	0.50	0.065	4.65	6.156
TEHi 0		- 6.4	0.553	s.06	4.67	7.70	306	7.18	1.82	0.014	0.6	4,085
Tupad 0	प72967 10,	0.20,	8.585	0.44	2.6	3.80	246	6.71	2.08	0.018	0.02	3.605

Stimb	313 ${ }^{5}$	ThE	ber	59	$3 \mathrm{H}+4 \mathrm{H}$	TGT	TE	Etab	Sthr	Tid	H2	W－4	Me
mbtete	Grath	大तtm	WEPL	为	等		星哑				MG Mil	Cly	P6ibicie

itte dint at foter med

That ${ }^{\text {a }}$	16／76t10．35	1，524	\％，${ }^{\text {a }}$	E．17	4.87	－ 8.8	\＃离	8.74	1， 75		0．05	5，932
6tan	107／btitaze	U，bis	0.657	7， 2	5.21	－ 50	415	$\therefore .47$	2， 8 E	人，09\％	0.65	E．tEE
THx		2×56	2.70	U， b	5．${ }^{\text {a }} 7$	$\overline{3} 4$	340	5． B 6	5， 61	，190	0.71	6．73i
以里	UHE／Btisut	，\％\％	L． F c	4,75	5－7	5.6	$3{ }^{3}$	E．\square^{1}	2，\％	\％ 07%	0.14	1．ES
Mge		8， 674	O．6．4	3.14	4． 584	2 B	42	7.6 B	Z． H	－ 92	7． 2 d	C．04h
Fib		4． 5		1， 89	\bar{i}, \bar{i}	4.10	214	4.75	2.25	7． 085	0.13	6． 6.5
	－ibatelt： 0	0，5－5	部 6	E．jo	4.04	\％． 30	31	B．7	1.72	4，0b	7， 94	2.26
T\％\％	tifumblate	0．475	T，5id	2.38	Э． 7	5.46	37	ci．73		7．30	9.95	2.25
且景	＋द／7e team	6，474	－ 3 ¢ 0	1．70	5.40	\％，$\quad \mathrm{y}$	36	b．be	1．56	U．ib	9．62	1．85
Try	Divery mato	6.45	¢，$\frac{14}{7}$	2.4	5.57	5．${ }^{6}$	30.5	돈을	1． 45	9.07	4， 2	2.14
\％42		V． 36	4． ESG_{6}	1．75	3.23	5，7\％	3 B	7．14	－ 1.47	0． 0104	4， 0	1． i_{3}
－6，		5， 3 年	1．39	3．84	2． 60	$2+5$	¢75	3．76	2.05	0．65	H， S	9．545
7－\％		0.475	9525	＋1．72	2．80	1.50	362	6．60	1．13	0．012	9．	Esict
Gnim		6，7\％	． 430	0．78	2，00	2 z	35	b． 58	E＝咱	6．bet	0.03	
國			7， 42	4， 4	3.11	2，00	44.	3．7 7	56	0.114	2.62	1． 502
－ta	Ebich trab	4．540		W．$\%$	2.69	2.50	364		i． 4.4		7． 2	1． 2.40
	Dinge ment	，50		¢n 5	i， 40	440	TH	E． E_{6}	4．4E	Hiti	U，b	－Atet
$\because 4.4$		6，372	9.453	4．7	1．86	4， 80	7	4． 47		V． b 7	\＃，05	9.30
		\cdots	4.345	1．20	2.72	उ，\％	420	6．53	A．ei	E． 17 it	方如	1．234
－x		1．7\％	G．E． $\mathrm{F}^{\text {a }}$	1．47	3， 12	3.39	345	7.17	－bib	0.016	D． $\mathrm{V}^{\text {i }}$	1， 4 4 ${ }^{5}$
－为边	SEDAE： 12	－Tic	0.400	1．45	3．29	1．60	58		＋ 70	b，079	6． 01	4． 90
T－mit		6．44i	¢，	1． 4.3	3.47	2.80	$5{ }^{5}$	6． 32	2， 68	0.60%	0.04	9.76
Fity		T， 5 E	Q， 6 ， 0	\％15	1．2	3，m	－8	7×7		O，mif	4.18	9， 04
\％hbic		9，5e	， 472		4.85	51.	9 y	7.5	1．ES	4． 12	\％ib	
ד\％ 1		－\％${ }^{\text {a }}$	O，何	1.30	2.82	2.20	4%	6.57	1．	ण，प1	0.64	1．294

ditar Tred at 5－136

The 03	1067E60\％55		0.682	2.65	3.72	5.50	6 l	8.85	E．73	6． 0^{51}	2.64	0． 0.44
6nt 0	1021560ts 30	4，河2	0.457	5.32	8． 2 方	4.20	bit	3.62	${ }_{5}$ ，ib	0， 395	3， Q_{2}	1．141
The 0	11044664\％	1，53	$\therefore .347$	2×45	4.78	2.70	445	b．7b	5.35	U． 117	2.11	0.217
TCTE ए	Hidementrs	2．604	1．474	2.62	4.65	4.50	51.3	4.73	3.9	4， 518	1．73	0，36
एण पठ	Whabelme	6， 5	4.312	4.06	5.4	4.0	50	2.72	4.37	6， 146	2， 2	1．53
TM \％	WMEET10： 0	1．415	． 61.1	4， \％2	C．75	4， 96	266	6． 71	2.49	3.037	2， 23	8.85
TT？${ }^{\text {\％}}$	W1\％0Etbre	1．154	1．10？	2.56	4.57	B6il	47	b． B_{5}	2．75	4.15	4.85	1，46
Tn 05	URGY670te	0.565	0．4．6\％	2.75	5．00	4.20	545	4． 70	2.51	0.10	5.6	¢， 39
TCH ${ }^{\text {ch }}$	Wम76 10.00	1， 300	U．52	1．9	3.74	2.40	477	4.56	2.64	4.35	4．20	1．66
E解 03		0.65	6． 440	$2 \cdot 6$	3.74	4.40	47	5． 5.4	1.87	6.674	¢． 16	1．78
Th月 ${ }^{\text {O }}$	6317／9 1600	0.517	0.511	1.81	5.35	1．6）	45	6.71	2.10	4， 164	0.52	1.125
TH4 ${ }^{\text {a }}$	Q6¢167 9015	0．54	478	0.48	2.40	4.6	W6	7.17	2.13	4.058	6,21	9， 2.2
Trim ${ }^{\text {P }}$	4414i67 0； 59	4，醏	0.413	0.37	1．75	2.10	472	7.10	1．56	0.049	0.62	4.34
THid	012297 07：30	$\theta=34$	3.448	4.14	1．24	5.40	416	7.60	1.44	9） yc	3.6	S．00
Thim ${ }^{\text {che }}$	15／2／E क756	0.693	0.675	0.6	1．54	240	36	6．81	550	4．006		0.00
That on	05\％697 0420	0.542	4.71	4． 51	1，47	9.00	31	7.21	¢．46	0.011	7.60	
Tche		0.00	4,620	3，26	1．3．	14.50	278	7.21	1.12	0.664	0，\％	2.64
以政い	66／27／27 0\％ 31	9．601	0.71	$0 \cdot 6$	1．te	．$\times 70$	225	b． 37	E， 15	0．005	1， 06	0.004
TH年	Whate verb	5． 4.42	3．483	0.65	1．51	2.00	88	6.72	－Јi	5．064	0.68	b，W4
That 0	Whlta－2a	0.40	0．50\％	0.01	1.27	4.50	24	4.76	1．22	5，mb	， B^{5}	0.04
Thm	6ह64：57 93	11．390	6， 417	1， 82	1． 87	1.60	22	6.81	5.60	5.004	0， 0.	9，mit
Cht	5elletg of：47	0.248	0.452	0.64	4.04	5	3 l	7.12	1， 1.6	6，665	0.05	0，004
Thx	07／1／5 4950	4． 407	0.586	0.08	9.65	4.46	200	7.35	0.62	0.004	0.92	0.604
T6t 0	－7／5／6 100	0.303	\％ 514	i， i	4.63	E． 10	267	3.86	1.08	0．0．6	bib	0.664
母需	कौन76． 09.25	0.814	0.80	0.14	3.6	7.70	271	6．34	1． 34	0.012	6．95	

Cut ot		W56	$0.6 E 5$	2.41	5.73	4.80	$3{ }^{4} 9$	E．$\overline{\text { a }}$	2.92	Fi．5	0.70	1．54
THind	Whicemso	0．37	6，51\％	1.84	S．74	16．10	400	4． 49	5.97	0.043	0.77	1.725
76\％ 0	11／4464000	5，475	1．546	1.73	4． 5.5	4.40	350	6． 5^{5}	\＄．29	0.256	0.64	1.060
Th\％ut	1／tm／Ekenti	1．53E	1．45ib	2．04	4.44	10.00	426	4．47	2.00	0.111	4，15	1.767
The 0	129\％6056	11．472	3．600	1.96	3.76	8.10	EE5	7.05	1.74	0.845	4.12	1.792
पी4	Whtybitis	1．315	1．40	0， 51	$\overline{2} .48$	5.20	255	5.5	1.97	0.050	0.1%	0.349
Tep ot	HMUWhuse	1．Et．	3.56	\％．85		2.80	345	6． 57	6.77	0.605	0.02	1.746
TH\％0e	Vhumblus 0	9，480	4．5．5	¢． 51	2.8	4.70	376	6． 85	1．35	0.097	4．02	1.482
T6 6	Wh7／e9 1040	0.554	0.487	0.76	2.76	2.50	36	6，48	1.74	0，006	0.62	0.76
Thit it	050567 10：	1， 3 \％	4． 4.5	0.68	1.76	2.50	320	5.58	1.24	0.014	0．01	5，665
The 0	Q17¢ क7：0	0.45	$\therefore 6$	U． 32	2．4E	1.30	37	7.12	1.66	6.05	0.65	＊．74
THe 36	63：37 09：45	0.846	1．1施	0.53	2，45	3.60	$26 i$	6.93	1.97	0.020	0.06	0.475
TH\％		0.275	0.317	0． d $_{\text {d }}$	0.97	1.50	320	8．43	0.72	6.004	6， 31	0.60
TCoij 3 e		9， 6	4．27	0.6	0.63	1.40	275	4.85	0.82	0.004	5， 01	0.604
Tub ob		0． $\mathrm{E}_{5} \mathrm{~F}$	0.672	0， 02	1.45	2.50	25	6.95	1.4 .4	0.005	4.01	U．007
That 0	Majag 075	9.346	8.634	0.01	1.34	3.10	245	\％．日l	1，34	6．007	\％．01	0.004
Thi 6	Wh9\％1017	3， 3.72	9.420	G．7	1.05	3.30	245	6.85	1，\％	जि4	y，\％	0.004
Thi	Weप\％67 05：5	Q． $\mathrm{S}^{\text {E }}$	6， B	0.0	1．34	3.20	219	B． ib	0.34	\％， 0 ¢¢	0.05	0.004
Tht te	गhप187 05.45	4，201	0.644	0.6	1．50	9.30	250	d． 5.5	1.50	0，we	0．41	0.004
H\％\％De		0.307	0.42	9．6i	1．47	3.70	25	0． 5.6	1．07	6，004	0.01	0.004
Thin ob	Wetat 1123	0.283	0.32	0.68	1.65	4.69	23	8．7E	1．64	0.06	dis	V．09
Sen ode	chemb bas	0.54	0.375	0.02	1．13	4.60	264	4． 44	1.12	0.604	3.01	$\therefore 0004$
The 06	णमhbe dnde	4． 547	0．40．4	0.05		8.20	20.5	7.12	1．95	0.09 c	0.05	0.004
TH？	णुらघ सn	1．37\％	0.58	0.0.	2.86	2 m	2 m	7，00	2.86	a．be	6， 01	0.064
50740	9ुनुक－10：06	4，44	1．456	0.08	1．63	2， 0	24	5.43	1， 62	6． Vi^{5}	0.02	

Taylor Greek at 5－2

TCH 18	10／07／6614：45	0.263	0.351	0.05	2.12	4.60	306	7.03	1.3	0.004	0.18	9．744
TCHE		0． 3.2	0.439	1.24	2.53	3.90	32	7.07	1.74	6．095	6， 08	1．2il
TCHM 18	1／704／6alliou	1．640	1．ine	0.03	6.06	5.26	170	7．12	6， 84	0.00	6.01	6， 614
TSW 18	11／8／861145	3． EP_{5}	0.554	4．31	2.97	5.00	243	6.95	1．88	0.005	0.15	0.870
trin is	\％／2／Es23， 0	0.74	0.44	1.34	2.53	4.26	345	1.14	1．${ }^{\text {b }}$	［， H	Q．17	1．146
That	01066712：0	0.6 .5	0.867	1．46	1．71	3．83	16	0.71	1．48	0.67	1， $\mathrm{E}^{\text {E }}$	4.105
Thin 18	01265711：55	0.426	0.304	0.51	1.87	2.70	20．	6.75	1．5．	0.013	习13	4.345
Thate	Whomatisis	t）．tes	0.236	0.27	2.85	3.50	30	6． 97	2.71	b．me	6.12	6.144
Thin ：	02／176t 11：40	0.61	4.22	0.02	1.25	0.04	87	7.05	1.7	0.10 .4	4.31	0.06
	030］67 145	0.064	6． 102	0.02	0.75	4.30	1694	7．12	0.75	0.004	0.61	0．005
YRhe 18	0313167 10：40	D，975	1.17	4． 22	2.75	3.76	157	0.71	2.52	0.03	0.07	0．120
	6414187 11：26	9． 288	0.346	0.70	1．79	2.50	69	6.51	1.69	4，et	0.01	4.684
THide	पद⿸厂万，1：00	v，25\％	0.297	V． 5	1.20	3.70	$3{ }^{3}$	7.71	1.06	4，605	0.01	9， OS
TCH 18	Wblatel 11404	0.458	0.45	0.5	1.94	2 30	94	6． 47	1.57	0.623	0.11	0，5\％
Tham 18	05／26／67 14：40	0． 3.54	0.351	0.13	\％．27	5.50	307	7.14	7.14	9，mi4	0.01	0.121
THi 8	W61095714．10	0.644	0．16	0.01	0.75	2.70	832	7.25	0.6	0.004	0.01	\％，60 ${ }^{\text {a }}$
TLHW 18	06／2307 1044	9． 23.4	0.271	0.02	1.35	1.40	260	7.00	1.12	0.005	0.11	6．0．4
7the le	0767／日7 10：53	0.610	0.698	0.18	2.50	4.10	21.	7.05	2.21	3.022	0.05	0.130
TEm 18		0，573	0.807	0.21	0.71	21.00	150	7.14	0.37	0.065	0.9	6，¢84
TH4 18	Q664／E7 10， 32	0.845	9， 4 宔	8.67	5.7	2.70	126	7.12	3.27	V．025	8.92	0.65
THE 18	0818／E7 1f5	0.518	5.607	0.22	1.65	12.70	18 ！	7 O	43	6，017	8.6	0．14E
THE is	9F01／a7 1605	0．1．86	［3．240	0.18	8.25	1.79	एप	7． 26	5.22	0.094	¢， $\mathrm{V}^{\text {b }}$	6，bit
Trim L	65／15／37 1458	0.35	0.370	4， 03	0.91	2.50	308	7.26	0.60	0.064	4.62	0，500
Thatio is	64／24／07 18：30	0.242	0.264	0.0	1.24	2.40	272	4.36	：． 23	0.011	0.7	0.004

	3㙱	TIE		Frus	Wex＋64	T0TH	Tis	45 Mid	148	Ma	12	Wh4	me
Mimer	चTEH／f	Hembither	楽 $\%$	NOPL	W6 \％／L	Me mit	Hill		UnTt	甚 ${ }_{\text {W }}$	荋 H L	W／L	4in

Enst Bher frade at Fotter foad

Ther 17	16mbebaje	0.034	7， 6 6 ．	1， 06	0.81	2.60	105	8.43	0.75	7．004	0.04	0.018
T0，	19／2．E6，${ }^{\text {ab }}$	S6t	4，197	b，es	1.83	2.80	16	6．54	1.81	0.664	0.75	0.015
763	1／1／4／E604．54	0.106	0.173	4.7	1，81	1．6）	Et	6.74	1.80	0.12	0.10	1． 0.004
Tes		4.102	0.162	0.65	1，56	2.40	147	8.31	1．55	0.000	9.04	5．50．4
TEAT	Lurense 5	0.06	0.066	0.10	1．37	2×50	140	7.46	1.85	0.004	0.07	0.610
Tht 17	WMEE711：05	0.312		0.06	2.50	3.50	7 F	6． 27	2，48	0.014	0.34	0.010
\％両14	6．206710：3	0.057	\％，11	3.6	1.07	2.10	101	5.57	1.6	0.64	0，0．	0.045
TET	Mmbeluas	8.64	6.09	0.02	1．40	5.70	10	¢．3b	1.39	b， $10{ }^{5}$	0.01	0.007
\％为 1 ¢		1．02b	0.072	0.65	1.29	1．30	110	3．84	5.23	5．004	0.05	0.06
T\％ 14		0.00	0，064	d．01	0.88	1.80	104	E． 55	0.88	， B ．04	प， vi^{1}	5，क， 4
Uht	63／776 4736	0.047	0.776	$0 \cdot 6$	8.85	0.60	104	7.18	4.32	0.004	0.01	1．96
Chis	0ुगयल 0740	0.50	9.355	9．15	1．50	2.06	15	7.02	1.46	0.015	0.01	b． 609
Tu：	34846710.24	1． 41	n．0eb	4.01	0.50	$\therefore .80$	105	5.65	1， 50	0.004	6．01	0.004
Went	14／26E7 1000	0．075	．0．7	0.02	1.03	1.90	114	b． 47	1.04	0． 0.04	0.61	5.004
	65／2ig7 12：3	1． 154	1.242	9．16	10．30	E．7\％	（5）	6.76	［1）， 37	0.010	0.05	0，604
Th ： 9	प5／2697 0950	0.65	5.114	6， 0.5	9，6E	1， 30	107	T．19	6．88	0.004	0.01	4．004
	W6\％67 lat	0.62	0.152	4，0］	1.65	＊． 50	17	E． 60	1.85	6，604	3.61	5．64
T－4		0.127	析析家	0.01	4.76	1.00	8 8）	4.71	0.96	0．0bi	0.61	T，004
Hhet	कुण0．6？19：4	8.648	nime	B，il	1． 5	1，23	159	3.50	1．35	0.604	0．91	0．004
The	67CLE 0ns	Q ise	4， 13	\％．8i	1．77	4.26	155	b．76	1，37	0.00 e	8，01	\％，604
Cot 14	WEOAGE It：	1．64 ${ }^{\text {a }}$	9．37	7．91	0.63	1.06	2	6.31	0.63	3．004	0.01	0.604
0 T	Wbisty luta	0．534	1． 464	8,4	4.71	16．76	165	8．33	4.65	B．04	0.01	
की ：		H．ve	4.32	Pat	1.68	3.15	132	7．45	1.56	0.000	0.18	5.00
¢aty		4．05	O．0．	\％．i．	0.73	2.76	U6	令枵	7， 4 ，	4， 104	4．01	0.004
met	कhरुat trum	4，en	0.418	0.65	2.75	1．89	11	6.57	2.65	4． 604	0.65	5， 0.1

15420	60177601930	0.06	0.288	0.38	1.74	7.40	10	6.66	1.33	0.016	0.27	0.084
154\％ 20	（16436075 50	0.157	0.717	0.63	1.83	2.00	14	6.97	1.81	0.015	0.01	0，0¢
T6nit 20	11／198609：35	0.106	4，167	0.01	1． 5.7	2.65	戒	6． 35	1.35	0.014	6． 0^{6}	6． 060
TH4 20	Wh\％mbidi 5	0.116	0.146	0.20	1． 1.4	5.70	102	4.72	$1.3{ }^{1}$	0.95	4.15	0.732
Thit 20		0.151	0.331	9.05	2.04	2.10	7	－$\overline{4} \times \frac{1}{4}$	2.6	0.014	\checkmark U	8.10 c
प4820	E1207710：45	0.684	0.146	0.64	1.60	3.10	68	6． 25	1.57	4， 10	4.81	0．018
Tad 20	Q／9396404	0.648	0.2 L	0.14	1．7	5.10	86	b．tie	1.73	（1，）12	4，\％	0.664
Th4 20	शीप7ด 20.25	9．074	Q． 190	0.018	1，56	3.5	91	6.47	1.55	0.06	4．${ }^{1}$	0．00t
Thim 20	D50367 10： 25	6． 0.5	6.164	0.04	¢．2H	4.40	109	6.57	1.46	0.098	0，\％2	0.022
Then 20	0才17／8 10： 5	0.057	0.005	0.04	1，11	1．20	81	7.25	1.04	U．42	0.12	6．00\％
Thtio	01J1／87 0fret	0.150	0.228	4.14	1． 68	1．50	134	7.24	1.65	D．0．	u，ib	0.00
Then 20	0414／87 10：24	0.165	b， e	0.08	1．${ }^{11}$	3.60	165	7.17	1．87	0.014	0.5	$0 . \mathrm{WE}$
Thi 20	1512／日7 12，35	0.135	4.15	0.03	3.6	3.40	10	6.41	5， 4 E	0.614	0.6	2，004
That 20	D72167 640	0.160	0.257	0.02	צ．75	9.5	7	2．ES	3.4	Q， 19	i． i_{1}	
This 20		0．02］	0.068	4.52	1，20	7.71	E 3	0.45	1.15	6．04	9， 5	8.004

STMED 	DFE THE THABE hem	$\begin{aligned} & \text { WU4 } \\ & \text { EBHL } \end{aligned}$	Tr94 H2 FL	 We bit	TOTA ME EM	$\begin{gathered} \text { Thy } \\ \sin \end{gathered}$	4．46 ctom MRTV／Cf	E HE HTTS	Th雷明	EV2䄳	4 雷 1 L	
Hiber fucte Rugit to pter Greek												
TF ${ }^{\text {a }}$		包	1.108	5.79	7.23	2.50	361	6.97	6.72	9． 158	5.45	$\overline{4} \cdot 17 \mathrm{i}$
Fun 2		6， 29	4.789	S．8	5.97	8.20	54	6.76	5.8	\％2if	2.67	4， 77
Thin 25	1104860tso	2，460	2， 76	3.95	0，7］	2.50	51	7.04	6.44	b，ita	2.92	6， 0.1
The		1，吅乐	1－414	2.26	4.50	2.60	38	8.77	8.57	\％．180	1.45	4.030
Ten 23	Thebluts	4.0 .5	0.676	2.27	4.00	3.75	54	6.74	$\cdots 20$	4．10］	0.8	1.302
164\％ 23	TM66810t40	2.265	4.110	2.12	4，97	2.0	271	S． 8.	3.76	6.117	4.75	1.67
T14 2	binmeturse	O． 825	0.764	0.84	2.85	1.60	264	5.75	2.11	0.764	1.10	0.725
That 23	uhty ${ }^{\text {atare }}$	6，486	7， 34	1.23	4.35	3.15	31	G． 4 e	5.22	0.014	0.6	1．15
Thin 2 S	प2n7／E 10．5	0，495	4， 96	3.3	4， 3	1．20	35	4.7	2.35	0.012	0,09	4.265
THA 25	Whatar bramo	0.427	0.506	5.15	2.35	E．30	26	5.78	4.85	6．0．5	0.0	0.07 C
Th 23	Whag？mbay	1．597	1，75	1.55	4.55	3.50	221	7.73	4.26	0.0 EE	1.07	0.265
The 2	64i4iby 10：14	6.34	7，bit	0.10	\therefore ¢ 5	－${ }^{\text {b }}$	29	7.25	1．91	0， 15	$0 \cdot 6$	0.040
This 2	3426：87 82：40	4.40	0， 0.56	0.12	5．6	15．40	28	7.72	3.75	0.014	0.07	0.054
TH2	Wh\％be 10¢	1.100	1.17%	0.54	3.41	3.76	264	5.77	उ． 59	b．6E	0． 9 ¢	U．Whe
Th 23		0.324	1．00	0.15	3.22	3.20	28.	7.33	5.74	3.031	3.11	0.046
Thth 3	णनीあ！पร \％2	0.45	0.68	0.12	2.27	1．60	29	7.18	2.22	0．0．5	0.07	0.040
－420		a．E90	$0.96)$	4.27	4.42	3.90	33.	4.71	4.25	0.6 ES	1．5	0.075
T－4 25	EETES 1006	i，6et ${ }^{4}$	0．73	1． 5.	2．73	4.49	2 C	7.29	2.46	B， 4 40	0.2 E	5.249
¢\％ 2	Chfere 10：4	0.615	0.760	४． 5	2.46	2.40	401	7.60	2.21	0.026	0.77	0.165

TLTM 25	[1/2E8604:00	7.230	7.270	3.5	8.85	2.70	946	7.19	5.8	0.090	3.71	0. 0.06
THitic	1016/betas	5.840	5.570	4, 30	5.71	3.36	70 B	6.95	5.86	6, 39	4.45	0.624
THi 25	1262/6604:2m	2.30	2. 45.4	b. 5.8	8.64	2.10	98	7.35	9.82	4.28	6, e	0.24
104 2		5.149	3.671	1.11	4.50	5.60	49	7.61	4.1	4.685	0.92	0.76
104 25	01\%06710 \%	2, 34	2.798	-. 45	5.35	2.50	7e	4.65	\%,6	6.89	6.15	5. 0.01
T为 25		2.20	2,306	0.75	3.45	2, 20	1080	6.97	3.5	4, 450	4.09	0.646
TEHi4 25	0217/67 05: ${ }^{5}$	515	2.630	2.66	4.5	2.20	102	7.34	5. 54	6. 10	1.25	4, 2t7
THen 25	0305E 04:00	2.464	2.760	0.35	2.50	5.50	1060	6.26	2.66	4.be	0.21	0.107
Tmiti 2	UTI7/E7 04:00	5.755	6.510	0.41	5.08	0.70	1107	7.9	4.87	1, $0^{2} 4$	b. 2.2	\%.te
TE42 25		6. 2.40	b. 360	3, 3	7.24	1.10	887	7.25	7.15	4, 05?	3,12	b, 0e
T6, 25	05/12157 $04: 27$	8.72 E	10.145	0.24	14, 71	8.14	651	\% 31	14.66	9.050	$\therefore 19$	$0,0 \mathrm{i}$
TH: 23		0.025	0.15	0.11	1.41	23.80	122	7, 5	1.46	0.001	4, 10	6.0\%

ETHM速	Hite	Otir	UF54	That	W6\％+3.34	Thet	TWE	Len Conia	14F	T，${ }_{\text {\％}}$	$3{ }^{2}$	3717	103
Wters	Hidmer	H\％M	有保	Y\％ F	H14		Hib	bthesicil	Gibt	蕆 H / L	揓	动 t W	昭 H / L

UTter werk ent mathir fate

T64 ${ }^{2}$	10／676617 5	0.81	0.415	2.12	10.83	3.00	764	7 F	16．75	0.048	1． 74	－6，
The 25	1021E609	4.20	0.614	7.73	4.09	470	674	5． 96	3．85	0.607	7.01	0.97
Tht 26	TMAE607：05	1．301	1.249	8.6	5.60	3.0	485	0.71	5,57	0.017	2.97	0.015
5 CH 为	HREmutit	1.072	1．50	4， 05	5.54	2.70	\＃4e	6.45	5.41	0.645	5.8	0.67
Tht 6	Mremetymu	． 0	¢． 2 \％	6.6	8.45	5 Bt	79	7.70	B． 11	9．02	6.3	1．77
Ota	H1．6）	1， 818	2． 2.40	0.48	2.5	2.40	315	7.19	2.33	0.630	4.22	0.167
The 36	miduchlote	1．26	1.32	5.64	5.65	2.56	53	a． 74	5.46	0．08	4.85	0.15
Tmin 26	RUSE705se	6.452	6.714	5.4	6.72	3.60	0.2	2． 50	6.15	8．075	4.25	9， 648
\％为 26	Whae？ 0 ato	7．45	6． 37	4.72	5.75	2.60	52	7.14	5.45	0.095	4.22	0． 19.7
Tht	गबहm 0\％\％	人， 698	4.467	7．97	8．6］	3.00	56	5.77	7.84	9，0il	8.85	0． 2.2 F
成者 2	अगनल गुण	5．496	0.980	4.17	6.60	1.30	53^{7}	7.75	5.81	bit	4.100	5，15\％
Thin 26	W以107 प\％\％	5．074	－ 0	6，15	2.41	2.15	245	7.40	2．${ }^{4}$	0.164	1.67	4，M 4
Tun 26	chitg 04，${ }^{\text {a }}$	8.885	4.35	3.85	5.3	1．7t	610	7.14	4.7 b	6， 05	5.27	4.505
That 20	4fate？05：10	0.24	1， 30	2.32	3.77	2.40	674	7.68	3.65	0.016	2.16	0.126
Ten 26		5．856	3.865	0.63	3，75	14.70	27	7.34	3．73	6，int	0.61	0.015
T－H\％ 26		＋，2m	U．475	i， 1.44	8.57	7.16	264	7.9	6．68	0.007	0.45	9.004
Thn 2	6bobe phail	8.74	＋．54	0.3	2.17	5.25	30	7， $\mathrm{b}^{\text {a }}$	2，19	0．005	0.01	0，60
Cht 24	6707\％56：44	3， 37	5.503	0.25	1，73	10.50	216	6.30	1.72	F．008	0.24	0.604
True 26		3.85	9 9， 25	0.02	1．84	2.10	23	6.52	1．${ }^{4} 4$	6， 0174	U， 42	3，604
5	bbiblea 07：it	0.175	， 200	b．15	1．23	3.60	181	b． 5	1.22	0.004	0.10	7．6e
TH26	6918／67 47：21	Q． 13	0.245	5， 1	1.50	3.00	24	7.55	1.29	0.004	0.10	0.004
एhe		0.294	1．401	0，ib	1.74	18．50	15.4	7.49	1.53	0.012	6.15	0.004
Thi CE	कनाएक 34，	1．24	3.76	1．12	1.43	E．00	167	7.50	1． 41	0.017	0.10	0.04

T6ti 27	1010/8609740	0.028	0.203	0.16	1.69	14.00	106	E.6t	1. 68	0.065	6.15	0.065
TH1\%	10/21E0\%t15	0.1t	0.035	9.0)	1,97	2.90	107	E. 4.4	1.07	0.604	0.01	6. 6.4
Trimit	11056504ab	0.100	0.284	0.06	1.71	4.30	166	6. 51	1.70	0.012	4, in	
Therin		0.046	0.186	0.02	1.16	4.60	122	0.70	1.15	5.604	4, \% 2	0.004
Thit 27	12mbebys	0.013	0.060	0.08	0.95	1.90	106	E.54	0.72	0.65	8.7	0.60
THE 27	Ghtoritido	6.132	0.415	0.15	2.4	2.60	104	7.6	2.26	0.60 E	0.97	2,65
TChe 27	म1/48710 22	0.022	0.075	0.02	1.05	4.40	3	6.74	1.64	0.604	0.61	0.006
TH星 27	2/030710:00	0.020	0.44	0.05	1.83	3.0	10 E	5.76	1.54	0.674	0.92	0,604
	Wh1/日7 6754	0.030	0.07	8.04	1.15	2, 20	10.3	t.50	1.16	0.604	16	10,07
TCHin 27	65/0367 69:18	0.124	0,13	0.01	0.90	5.00	107	$\overline{5}$, E 9	0.90	0.604	0.6	0.004
TChat 27	03/17/67 94:10	0.020	0.041	0.02	0.71	1.20	114	7,32	0.71	0.904	0.82	0.64
Wht 27	0ुThat br, es	4, itit	1.16	4.70	1.76	1.30	144	7,35	1.67	Q. H	0.59	D. 976
	51/2, 51445	0.080	9. 25.5	0.34	2.02	28.00	113	7 \%	2.00	0.012	Q, V^{2}	6.60
The 27	טTh7tit deate	0.085	0.294	D, is	E, 5	$4 \% .06$	15.	B.27	5.49	Q.017	0.1%	b, me
Thn 27	6/E/E ग9, F	0.00	9, 0.4	0.05	3.58	6.89	192	7.20	0.97	0.69	0.01	6.00
W4 7		4.075	0.634	0.8	8.54	\%, 9	131	- $4_{4} 9$	E. 34	9.924	0.45	

EnTm	YAE	Fitc	Org	9 Pa	W9y+64	Thim	The	Lat ARO	LAB	Thi	WL	4	\%
Ofber	Mi/hele	Hehther		ti Pil	4 H \% C	W Wh	HT]	HETE/W	WiITS	M6 W/2	MEME	\% Pr	46 HL

485 0	100486 7840	\% 16t	8.228	0.14	1.26	3.15	127	7.10	1.20	0.604	5. 68	+ 0^{3}
He 7	167186 1296	2. 105	$0.16 y$	0.07	1.12	$2 \cdot 6$	1320	7.19	1.05	0.004	0.01	0.056
WE	1104681225		9.15	0,05	1.77	2.50	459	b. 74	1.75	0.015	0.01	0.45
Ats 07	1\%/ED6 12:45	6. 608	4.12	4, 15	0.54	4.50	67	5.55	1.36	9, 015	5.05	3, 0.5
¢6	206\% Ins	0.125	4.185	6, 15	1, 23	6. 60	95	7.00	1.17	0.009	$0.0{ }^{2}$	4,606
46 B \%	nब7g [u20	v, 10°	0,164	5.97	1.79	4.70	372	e. 57	1.75	0.015	0.65	0.071
He 7		6, 527	\%, 17	0.77	1.97	1.50	74.	7.37	F. 2.8	0.067	0.25	9.08
AES	Q16/y Ma	0.052	1, 6E	6, 25	1. 63	2.30	107	7.5	1.60		0.22	0.023
ES 7	Whimbibut	8.95	9,75	0.0	4.95	1.20	1055	7.12	4.77	0.004	3.01	0, bit
APs u	कण6\% 12ab	\%. 301	0.154	U. 0.4	1. 28	4.04	1254	7.57	1.27	0.014	0.01	V. 004
FFS 6	पड7\% 10:50	3. 36	0.13	0.10	1.73	2.20	017	6.95	1.20	\%.007	0.65	9, \%ed
St ${ }^{\text {P }}$		6, 153	0, 225	9.10	1.60	2.30	67\%	7.15	1.43	6.617	0.65	0.65
At	कौ14/g 13\%23	8, 162	0.215	0.12	1. ${ }^{\text {c }}$	2.60	100	7.10	1.45	0.61	0.69	0.918
CRS	4\%the 9 c	0.10	0.162	0.02	1, 4.9	4.50	1390	7.5	1.48	, W0,	0.01	0.005
Sc 0		Q085	0.155	0.02	1.97	2.40	1340	7.51	1.76	0.004	0.01	0,004
FAE of	05/23/876426	U, U5	1, 102	0.18	1.20	6.70	1216	6. 6^{5}	1.20	b, ¢07	0.65	
	ghatg betes	0.028	4.600	0,02	1.15	1.16	140	7.8	1.17	\%,04	6, 01	0.004
HEE 0	6,23E 06:30	6, 0 \%	$43^{4} 4$	0, ij	1.24	1.50	1620	7.10	. 2.24	5.014	4.61	0.004
H9\%		0.05	0.65	4, ij	1, 3	2.70	OR	7.78	1.3	0, 6	0.11	
AS	07\%M	0.144	0.37	0.67	1. 0	3. F_{4}	50	7.31	1.3	4. 51.1	0.06	
WE	Qevary dixis	9.106	4.54	0.02	1,24	2.20	71	7.12	1.23	U. 410	3.61	
FEE U	Wherem 0153	0.054	0.084	9, 14	1. 25	1.50	1197	\% 3.40	1.24	6. 0104	4. ${ }^{\text {d }}$	
A6		0.055	0.144	0.24	3.10	4, 10	2870	7.57	1.68	6.il0	4.22	
ARE 7	9715167 4415	b, 047	b.7i	0.32	1.17	1.50	1ebu	6.95	1,15	0.007	0.01	

Wifianson East Laterat

HEs 06		0.176	0.746	0.32	1.47	2.60	266	7.12	5． 46	4． 0.67	0.91	B，60
H5 U	U0LEB6 2 L ¢5	1，¢4	6．96	0.61	1．65	L． 36	4000	7， 14	4.65	5.015	9， 01	6． 0.04
HRE de	11／04／86 12：50	0.375	0.476	4.46	1.71	1.10	524	5.70	1，6e	0.019	9， 68	0.013
Ats me	11／16．at 12.55	0． 365	0． 3.45	0， 35	7.78	5， 6	1065	5．71	2.2	0.42	9.20	，瑗
HEXE	120766 1040	0.228	0.242	0.16	1.34	2.70	2006	7．12	1．25	0.021	4， 07	7，46e
ARS m	$01 / 07678030$	4， 4.37	0.35	0.21	2.23	4． 4	d5！	2． 59	2.12		9， 10	0.065
ATS H_{6}	W／20i87 1285	0.267	8． 10	0.64	1.85	1.00	Stu	7×27	5	0.614	0.01	0.65
455 6	026mat is：30	0．374	i． 131	i． 0.0		2.00	610	7.38	1．87	0.0 .2	\％．01	．64
Whe is	22／7／97 15：20	0.860	3.885	4， T^{2}	0.82	1.40	2670	7.35	1）．81	0.004		0.6 e
mes de		11．162	0.211	0.02	i． 4.5	5.80		7.21	6．44	5．004	घ，19	8． b ¢ 4
HRE 06	$0317 / 9 \mathrm{c}$ 1670	0.248	0.298	0.06	1.57	1， 20	8.5	6.91	4．5b	0.014	0.62	0． 0.15
ABS US	03／1167 60：2t	0.374	0.434	4.34	2.25	5.50	714	7．09	2.10	0.022	3.15	0.27
4808	44／4／4 13t	4．31	4．49	1，bi	1.5	1.60	1277	4.75	1．50	0.012	\％in	
HEE DE		0.119	6．176	4， 4	い ${ }^{\text {d }}$	4.70	4500	7.15	1．2］	\％．004	0.92	0.64
HRS 98	95／12／日7 1255	0.034	0.671	0.07	5.23	2．\％	430	7． 39	1.22	0.007	9.67	
Mee 08	95／2e97 050 ${ }^{5}$	0.65	0.06	$0 \cdot 6$	1.35	1．E0	4 Em	7.02	1.35	0.014	0，0	0.004
HE UE	6fothy meli	4.9 DE	0．053	4.0	1.45	1.30	6370	7×7	1．45	0．004		0.604
$4{ }^{4} \mathrm{CO} 08$	652367 6435	10， 517	0， 0.45	4.91	1．36	2.20	54.0	3.12	1.36	0.014	0.05	¢， B^{4}
HES D8		0， 000	（1）．542	0.56	2.42	4.70	T460	i， 3	2.42	0.019	0，53	
Heme	072，${ }^{\text {a }}$ 1010	0．515	0．6． 62	4.15	2.03	5.50	160	\％， 26	2.67	0.015	0.12	
HED	We／b4\％7 06：20	0.082	0.15%	4， 0.6	1.31	5.10	3640	7.56	1.45	0．0．1	0.67	
4F5 6		0.0 .89	3，68，	0.01	1.24	1．30	310	7.28	1.24	0.064	\％ 1	
ASS O		0， 2,25	3，000	4.10	6．59	1.16	3546	7.42	4.51	0.065	d．0．	
Abs d8	9P／15／97 10t	3.040	6， 6.5	4.02	1.73	6． 60	$3{ }^{5}$	7.21	1，72	0.006	0.01	
能等	34／27／5 0645	0.047	3．9E1	0.05	6.55	5.26		7.09	1，32	Totic	0.02	

45	Whate mas	4.20	0.6	7.29	1.26	2.58	1098	7.10	1.17	6.014	0.18	0.075
We 0		0.107	8.64	4.16	1.75	3.6	1070	7.22	1, 站	4,005	0.07	9.04t
BE	W6486 15459	4.15	4.257	bil	2.41	5.10	314	5.1s	2.85	0.014	0.14	0.051
me 0		0.78	ates	0.25	2.06	8.70	764	7.42	1.88	0.020	8.68	0.130
We ${ }^{\text {a }}$	R/We ${ }^{\text {a }}$	0.172	8.192	0.22	1.:	5.50	150	7.17	1.64	0.00	0.67	0.145
We 0	When tis 5	0.176	0.250	0.2	1.77	4.20	424	6.76	1.70	0.68	0.65	0.058
dat	0.20.6 13020	0.160	0.216	0.21	2.45	2.20	7%	7.34	2.32	0.612	0.10	0.007
H560	W203197 1548	0.105	4.63	0.15	1.40	2.50	1154	7.45	1.33	0.094	0.06	0.054
466	$0217 / 671340$	0.06e	0.122	0.05	1.41	2,00	1649	1.40	0.7	0.007	0.01	4.85
We 4		14,149	4. 516	0.06	1.14	2.50	Hed	7.26	1.10	0.004	0.6	0.69
Ws	W/7e 1185	0.204	4.200	0.15	1, 460	2.00	742	6.97	1.38	0, W0	0.60	0.664
4509	6a5ie7 98:00	4.20	0.256	3.12	2.16	2.30	371	7.11	2.03	0.019	8.94	0.065
H56 6	641419713:69	0,154	0.236	0.20	1, 05	1.70	887	7.67	0.99	0.614	0.14	0.042
Wert	$04 / 23 / 5710694$	0.123	0.647	0.06	1.16	1.76	1970	7.85	1.14	4.695	0.94	0.155
Ans 8		0.222	0.158	1).10	1.56	2.10	1720	7.48	1.57	0.094	0.05	0.004
AS5 0	05RE47 कust	6. 11.4	4.145	0, 0	0.76	1.50	150	7.87	0.73	6,004	6.05	0.004
46		0.154	0.176	6.08	1.60	1.60	1780	7.67	1.67	0.605	0.68	0.004
Hing	Weabemem	0.146	0.261	0.04	8.06	1.20	5	5,is	1.0)	0.004	0.64	0.004
We 0	UhWigh mas	0.65	0.673	0.7	1.82	4.30	2370	7.30	1.82	0.09	0.56	
ESt	0721970450	4, 34	0.18	0.77	1.79	3.20	1720	7.31	1.77	0.055	0.15	
At 0	Wemete 0ens	0.235	0.25	0.6	1.40	2.50	2000	7.42	1.40	0.004	0.19	
LSt 0	Wherst 1 nil	0.099	0.107	e.vi	1.40	1.bo	210	7.7	1.40	0.0194	4.01	
GES		4, \%EE	4.145	6. 64	9, $\mathrm{E}^{\text {a }}$	2.00	285	7.48	0.64	3.004	0.03	
4569	04E607 10, 30	0.64	0.154	4.02	1.28	4.20	185	7.37	4.25	0.015	0.41	
4, 09	Wh\%m9 465	4,073	0.185	4.6\%	1.36	50	160	6.74	3.31	0.014	0.64	

Hit 11	Whatab 11：00	Q 4.415	6．510	9．63	1.73	1.60	72	7.15	1.24	4，0．5	0.18	3．430
H2S 11	10／2156 14，05	0.475	0.545	0.45	2.65	2.40	612	7.22	4.54	4.62	viot	3， 38.8
4 RE 11	119470 175 50	1.245	4.201	4，37	2.37	3.20	306	6.46	2.84	0.059	0.62	Q．$\overline{0}$
友它 11	1／18／E6 1355	0.774	4，3\％	0.47	2.54	5.30	3	7.94	2．14	2， 20	0.64	0.45
ARS 11	2／07／日6 11：46	0.313	－i． 38 E	0.36	1．45	3.20	713	7.55	4.15	0，015	0， 02	b， ac
4 4	0167E 1430	0.622	0.763	4.7	2.64	0.70	23	6．50	2．42	4，Me	0．03	B．172
AEL 11	$0120 / 51460$	0.450	0.480	4， 67	2．33	1.60	412	4．06	1.79	0.144	0.04	4．615
Ars 1	WQa／b）13：5	0.217	1． 0.2	0.64	2,0	2.60	709	7.46	5.47	4．0．te	3.06	0.575
ARS 11	02／767 14：20	0.215	0.376	0.40	1．68	1，it	60	7.46	1.29	4，077	0.01	3．585
HES 1	9ymek ivibu	0.30	0.374	4.23	1.44	2.30	765	7.34	1.22	0.00	Qat	P． 2 ta
An星 11	dih／E7 11：45	0.423	0.605	0.34	1， 83	3.90	405	7.10	1．56	V．015	0，\％ 7	0.255
4PS 11		0.65	0.76	8． 24	2,20	2.80	2ter	7.11	4.10	0.626	0.84	9.12
AES 11	04114ich 14：20	0．35 5	4.453	0.06	1．54	1.50	$\stackrel{3}{4} 1$	7.28	1.47	4.015	U．91	3.65
HES 11	64／2818710：4	0.35	4． 3 B7	0.01	0.85	3.68	688	7.48	0.85	4.098	0.9	
45811	D5／TEE 14：03	6.347	4.35	0.08	1.23	1．90	bit	7． 60	1.22	4， 60	bib	0.604
6\％ 11	05／2EE O4：43	0.469	5.577	4， 02	1.40	1.50	484	7.37	1.37	4． 0104	U．el	3 mis
AFS 11	$06709 / 8710.46$	6． 3.5	0.427	0．65	1.90	5.26	739	7． 37	1.50	0.044	U． 01	6．604
A ${ }^{\text {a }}$ S	66／2787 65 30	0，405	0.460	0.62	4×4	2．00	5 F	7.37	1．46	0.604	0.62	6．694
AT5 11	$07 / 71574780$	0.341	4， 437	0.11	2.75	1.60	953	7．75	2.73	0.606	0.10	
$4{ }^{3} 511$	$0721 / 67$－75	0.482	0.533	9.15	1．79	5.70	895	7.30	1.73	9．021	4.10	
AFS 11	0804670725	0.724	0.855	0.63	1.72	3.60	443	7.15	1.91	0.015	3.02	
ARE I：	0418／g7 2200	0.467	0.511	0.02	1．67	2.80	1080	7.35	1．tb	0.610	0.01	
B65 11	0901／8 16：05	0． 658	$0.72 t$	0．6）	1.26	3.10	348	7.44	1.27	Q． 415	0， 2	
ARS 11	प4／5iब 11：14	0.485	1．1．8	0.26	S．03	26.60	1is	7.05	S．${ }^{\text {W }}$	0．vis	0.24	
A 6 I：	07／67／67 07：55	4，176	0.240	$0{ }^{0}$	1．49	1．60	1180	7.02	1．65	0.60 l	0， O	

Peybr brax ex Mell hane：

A5	10606 10a	0.56	0.65	1.11	3.05	4.15	37	7.7	2.02	0．0ic	4.04	1.042
A6 12	Wh2186 15440	0.45	0.325	4．4	2.64	2.26	345	7． 4.4	1.51	0.004	4.01	1．06\％
As F	11／9436 13514	1.505	1．35	6.46	2． 6.9	4.68	23	6.62	2.24	6．0．${ }^{\text {d }}$	0.01	0.341
ARE I	1／2畐它	0.948	0.946	6.72	2.76	5，50	45	7.15	2.68	0.08	0.04	0.651
ARS 12	12035 E ：120	3．40	0.567	Lis	2.67	2.00	384	7.26	1.73	4.615	5.91	1.124
We 12	Wh76 11，05	0.907	－． 037	0.35	2.45	7，60	178	6．95	2.15	0.057	0.05	0.260
458	Whom Sis	0.65	0.661	1．03	3.43	4.70	267	3， 54	2.48	0.149	9.44	0.971
4RE	Whabl 14.15	0.344	4，45	1．07	2.88	5.10	378	7．66	1．84	0.60	0.65	1．0．1
We in	पह17／E7 400	0.268	0.35	0.50	1.5	3.70	39	7.57	1．34	0． 0109	5.6	0.867
的	Whorer dero	3， 5 S ${ }^{5}$	0.587	0.58	2.28	3.40		7.48	1.76	0.016	0.67	0.499
AES	कु／i767 11：30	0．4．76	0． 5 E	0.64	2.29	3.70	30	7.15	1.70	8.018		2． 581
468 12	6313187 64：25	0．75	1．65	0.75	2.68	5.30	57	7.25	1.96	0.054	0.11	0.147
H5 2	04／149714：05	0.56	0.453	0.32	1.47	1.70	362	7． 3	1．19	3，013	0.64	0.856
46	Whemg wide	0.3 St	0.423	0.05	1.69	5.20	447	7.5	1.80		8.01	0.004
46：	9512\％ 135	6， W $^{6} 5$	0．56］	0.03	1.5	3.0	305	7， 8.4	1.15	4，014	f．01	0.005
mes 12		0，500	0.582	0.02	1．5．5	3.50	399	7.37	1.37	6．We	S．th	
anc in	bother 0 at	（1．40	0.421	d， 0	1.47	3.68	44	7.86	1.47	4， 0 en	i． 01	0，044
Astiz	Wh20 67710	0.312	0.359	0.01	1.24	2.30	372	7.57	1.24	4，009	0.01	0.004
W8：	Tha767 0405	0.45%	0．5is	0.07	2.54	2.70	347	7.28	2.50	4．074	0.05	
AFE：	कhatal 1035	4.677	0.597	0.15	2.32	11.36	150	7.85	2.20	0.625	0.14	
Ef 12	6R／bing betm	0.724	0.64	0.15	1．61	8.60	15	7.2	1.77	0.925	9.05	
AFE	W61687 11，${ }^{\text {a }}$	4， 6 el	4．078	0.02	2.5	7.76	1 195	Tide	2.32	0，62	0.0	
WE 2	कhater maty	－1．358	0．491	¢，U1	1.06	4.40	285	7.66	1.06	Q，006	Q， 0	
40： 2	67h67 10．53	0.247	0.512	1.14	2.51	11.29	270	7.4%	2.56	0.005	i．13	
4E：	W／EA日 \％935	0.27 b	0.38	0.05	1.39	2．96	486	7.62	1.36	0.007	0.02	

RTE 15	1008i66 67：20	1.239	1.236	3 B	5.17	4.70	515	6.76	2.57	1．154	1.25	2.491
ASS 15	W位E 13：50	0.482	4． 985	4.84	6.27	2,70	60.	6． 8.5	3．27	0.14.	1.74	2.67
45515	1／64\％60 07：04	3． 85.	0.851	2.81	4.15	5.10	63	6.35	1.84	9．64	4， 30	2.665
AtS 13	ש17］06 14：30	1.671	1.184	2.06	4．36	5	364	b．ta	2.55	4.69	0.25	1．75
ARE IJ		1.568	1.658	3.96	5.81	5.70	790	日． 66	5.27	0.10	5.42	2.330
A6 is	Wimme imite	1.174	4． 41	4．02	3.7	2． 80	546	6.75	2.76	0.030	6.11	0.475
ARG 13	प124g7 1085	1．356	1.220	2.71	4.27	3.80	551	8.78	1．7E	0.60	6.22	2.46
$8{ }^{4} 515$	Qutat mibo	1.007	1.07	3.14	5.12	4， 3	560	2． 28	2.12	0.020	0.05	5.078
AFS 13	$02 / 8671530$	1.137	1.264	2.60	4.17	2.70	1020	6.76	1．64	6，45it	0.67	2， 4 等
ARE IS	070457 प760	1． 4.72	1． 590	5.34	7.59	5.2	481	7.00	3.3	3．263	1.15	
47513	0／7／8 14ilu	1.627	1.334	2.30	4.17	2.20	67%	3.18	1.71	1． Bt	9.64	2.255
ARS 13	03J187 10：04	0.974	1．056	0.72	2， 38	2.60	375	7.60	1.84	0.60	4．18	0.515
AFE is	04／54／87 1150	0.471	0.548	0.74	1.75	2.50	885	8.51	1.27	0.067	6， 6	0． 4.45
4.513		0.368	0.417	0.30	1．44	3.80	1620	6.72	1.00	$0 . \mathrm{mb}$	0.62	7． 354
Amb 15	grate 1060	O． 589	0.611	0.36	1.35	2.20		1.72	1.20	6.604	4，\％${ }^{\text {a }}$	1.284
Ane is	Hehthe7 10．42	7．64\％	0.65	9.75	1．60	1.80	1010	7.28	1.56	6．be	6，4	0.97
＊${ }^{\text {a }}$［ 13	कौ／4F7 12il	0.576	0．591	6.28	1.96	2.80	（ 60	7.36	1.73	v．007	E． 05	4．24i
Afg IS	6／23／87 11：00	4.845	0．E5\％	4．3i	1.80	5． 80	3ek	5.77	1．4！	0.067	0.11	0．385
Aft 13	070767 14．0	1.045	1．113	9.71	2.58	2.70	1645	7.01	1．64	4． 59	0.94	
ARS 13	6721576760	9．710	\％， 5 cit	0.64	1．73	3.60	768	7.17	1.52	9．0．6	0.85	
AnS 13	06／14／E7 05：45	0.885	4.720	0.65	2.23	1.10	1118	7.41	1．${ }^{4}$	0.609	0.01	
AFS 13	06／18187 04：20	4．720	0.75	0.23	1.37	4，70	1590	7.19	1.23	4.646	0.86	
Ans 13	जपmiet lote	0．600	0.63.	0.24	1．14	1．60	17%	7.42	8.49	0.16	6， 7	
4．5 15	64／15／67 67：4t	8.607	0.675	0.23	1.37	6.60	1300	b．t	1.35	0.604	0.22	
4FS 15	07／2767 11：70	0.474	0.506	0.26	1.53	1．90	107	7.00	1.35	0.69	0.68	

Wabin medeth at bly 70

6to 1	$10 / 69860950$	2.976	2.186	2.63	8.47	8.30	403	6． 57	7.9	0.05	2.67	0.007
Pra	d0296E 13：4i	1．417	S．4．5	2.37	E． 11	12.40	2E	0.85	4.85	4， 1.94	2.05	0.245
SP5 14	1104ige 0ese	4.282	1．511	1.12	E．61	14.70	32.3	4．07	5.42	0.342	0.75	V．14
We	M位兂 15：20	5.28	0.72	9．80	7．7\％	12， 20	［9\％	5，26	8.46	4，451	0.62	0，27
AGS	D0986 6as5	2.265	550	5.05	12．03	51.00	459	4， 3	$1+.60$	0.200	4.12	0.727
Hec ${ }^{4}$		1．6El	1．122	1．35	4.14	b．to	223	6.74	$3{ }^{4} 7$	1，600	1.07	0.212
4n $\frac{1}{4}$	क121／E 10：25	1．6E6	2．46\％	3．95	3.57	34.00	29	6.78	3.50	0.207	2.79	4．95\％
ms ${ }^{3}$	Whtay brat	1.168	－29e	3.66	3.18	8， 00	3 bs	6．65	2×14	0.170	1.26	2.234
461		1．56	1.476	5.35	5.	32.00	56	6.86	4.20	0.120	2.06	1.127
Are 8		1.236	4.515	\％76	5．40	15， 10		7.02	4.6	0．142	2.85	1．57e
Ahe it	Wुप767 1545	1．68e	4.57	2.40	4.78	7.00	340	6.61	2.90	0.116	1． 2.2	1，50．
की 14	gXeme late	1.605	2.224	3.08	唇： 6 年	\％．60	288	7.36	5.65	0.104	2.47	0.502
AES 14		0.545	0.971	1，76	5， 5	51.60	42	6.48	2.15	0.055	0.67	4.055
FES ： 4		4.672	0.852	i． 18	2.61	13.20	824	7．3\％	2.24	0．0．26	4，71	0.340
AKE is		5， 5.30	0.750	1．23	2.79	11．10	24	7.12	2.74	4．015	1．35	0．0．0
Pht	052637064	0.644	0.71	1．15	2.85	4.60	27	7.15	2.76	0.02	1．06	＋，be
4 HE	W6\％197 1：30		4.413	0.34	1.94	3.10	245	9.35	1．86	0.011	0.76	3．006
Qt 14	6eher mide	\％，306	1，469	5． 3	2.55	2.50	51	6． 5.5	2.80	0.018	4.68	0.64
4t 14	\％历75 10035	3.458	0.586	0.50	6.71	15.60	316	3.65	6.15	0.015	0.42	4．6．4
ARG 14		W．5t5	i，645	0， 0.3	1．4．4	6.10	364	7.95	1.27	0.02	4.28	0.115
40	6854\％7 19：0	$\sqrt{42}$	0.465	6.27	1．010	5.10	36	6.45	1.46	0.604	0.25	0.00
fry		0.360	6．485	5．14	1.75	5.70	403	7.25	1.76	0.065	i，il	0.023
mat		0.05	7.248	0.16	1.39	4 ta	115	7.54	1．8t	0.006	0.12	0．0．9
坏 14	6719\％ 4714	0.645	4.75	0.27	4， 6	1．50	Et	7.9	1．E5	0.015	0.27	0.009
P5 4	U¢29／6） 095	V．70	5.851	0.77	2.41	2.26	345	7.23	2， 77	0.840	4.25	

Chmomy	गtit	He	1854	TP震		T07he	The	AE EME	AP P	16	WL	$6{ }^{6}$	[14.3
MUEET	Wi/hamer	HR/W		\% Frem	Heme	\% 14/2	Will	Whaten	Hitis	$9 \mathrm{~m} / \mathrm{L}$			Hi H_{1}

Mectita brgex ed otit it

4 FS		1, 175	:. 304	2.61	5.76	2.46	56	B. 41	6.22	0.0.9	2.31	3.47
769	whame lbilo	6.8.7	1.154	S. 45	7.2	2.6		7.06	E. 74	V. ${ }^{4} 5$	3.77	3, 74
4 AB	1104/6 06.00	4,73		0 O	2. 3.5	5.79	69	4.50	8. 24	9.63	0.22	0.67
4 CH 15	197/6e 15:	1.164	1.273	4.75	6.20	75	713	A. 98	5.34	8.085	3.39	0.762
4 FS 5	20036e 04.05	1.65	1.67	0.74	5.74	7.00	102	7.14	3. $\mathrm{B}^{\text {a }}$	0.672	6, V_{1}	0.688
P6S 15	QMTG7 1BE	1.082	4.265	2.35	4.20	5.0	518	b. 74	3.45	Q. 15	1.8	0.674
4 ES 15	-121/67 4725	1.617	1. E 4	6.51	5.48	4.10	650	6. 37	$4{ }^{5}$	0.76	3.85	U.E8
MR5 5		1. 10 Cl	A.ter	4.84	5.55	5.5	770	6.77	4.t5	0.152	2.65	1.22
48515	Whiste7 Le:40	1.850	1. 528	3.15	5.14	3.70	978	7.69	3.76	4.148	2.6	b. 8 BL
H2935	030497 06:25	45	i.bild	b.00	7.74	5, mo		7.07	b, 51	4. 18	4.87	1,975
4 CL 5	$03 / 176713514$	1.287	2.647	3.85	4.37	4.50	557	6.9	5. 26	4.126	2.54	1.101
48515	$03131 / 871185$	0.753	0.717	0.93	2.56	3.30	512	6.42	2.68	it. lic_{6}	0.45	6, 416
4 45 15	04/1467 10: 15	0.401	0.48t	0.65	1.47	2.50	360	7,10	\%.72	6.00	6.17	4.459
456 15	04/28/67 6601	0.250	0.345	0.44	1.64	9.50	1610	7.48	1.25	0.010	0.65	i. 5
49515	05/2/67 06:30	0.472	0.475	0.48	1.63	1.30	1450	7.26	1.54	9, mi	0.41	b, ied
AFS 15	ए5:2bint lime	6. 4.47	0.553	0.34	1.73	1.40	$6{ }^{6}$	7.24	1.54	0.028	0.20	biet
OfE 15	0h/uge7 14:20	0.415	0.449	9.45	1. $\mathrm{E}^{\text {c }}$	2.00	1760	7.512	1. 2 5	Q.vid	0.32	-1. 12
4 F 518	070767 6 ¢5	0.806	0.642	1.17	4.36	3.40	979	6.46	4.32	0.057	1,51	
PRE 5	07/21/67 07:55	0.65	0.717	1.97	2.44	3.80	596	7.65	2.24		6.87	
AfS 15	Q818/67 022	0.492	0.450	0.94	1.73	1.30	1450	b.as	4.34	4. 67	Hes	
$4{ }^{\text {F }} 3$	0501/87 11:30	1.305	1.320	1.76	2.85	1.50	1806	7.14	2.00	0.6T	1.06	
3 HE 5	0415/57 W6:43	4, 4.24	0,500	0.74	1.37	0.00	1440	7.10	1.45	4, 04.46	10.7	
ARE 15	07/29/67 10:20	9, 36	5, 42	8.47	1.84	2.6	105	7.15	1.22	9.68	\%,6t	

 Whein Slough at Berman Read

AR 17		0.75	0.302	0.34	1.60	1.70	56	2.14	1.58	0.614	0.2	0.006
4FS I 1	10／20／66 15：20	6，55\％	0.655	6． 19	2.51	12．50	14	6.52	2.48	0.604	0.68	0.025
At		0.465	4.417	0.12	8.07	3.10	76	b． 0.	6．06	0.015	0.01	
स5	M17136 13，45	0.89	1． 845	0.62	64.15	49.04	122	b．64	14.05	0.025	0． 52	0．074
455	LQ6me te： 0	0.335	4.46	0.38	0.76	37.09	Ej	8.45	0.74	0.610	4.81	0.011
献	Un7／87 1350	Q，ext	6.770	0．00	二小	F．60	7	6．7t	2.34	6.62	0.75	0，005
ME		4．21］	－，268	6， 3	2．26	9.86	\％	6.75	2.24	0．608	5．6i	0．614
M6	पब4\％बn	0.000	0，153	0.08	4.78	4.5	6	W． $\mathrm{E}_{\text {E }}$	1.77	0.616	10．42	1，006
At	amimb leso	6.354	0.30	0.11	1.72	4.60	7	t． 60	1.50	6.615	0.17	0.031
4 HE	प504\％7 स50	0.15	4 4 ［37］	0.02	1.15	4.00	61	S． 85	1.12	0.004	0.01	7，\％0 ${ }^{\text {¢ }}$
He	Whaty 6e：10	4.32	4， 82	0.02	0.78	4.70	$3{ }^{2}$	5.79	0.77	0.007	0.01	
mes	Ethstay 1055	0.347	0.52	1．10	2.15	1．50	72 E	7.14	1.87	0.052	0.84	

STTMES	DHE	THE	EFP	7504	Hetenit	Tomb	Whe	L5 Eitu	Left	That	W2	4 H	4
mates	He／De／re	Wh／th	WEFE	HEFL		ME W／	WU		Wh15	管等L	Prith	W6 N／	Hent

Hary Grek at biby 7

Ge 3	Wobece ofow	5.52	1.366	1.32	2.76	1．40	344	3.79	2.74	0.07	1，26	8.0 .1
4 HS 39	10／6／85 16，	1．940	1.754	2.26	3.86	$\therefore 10$	74.	6．68	5.6	0.068	2.95	9．146
45	1164／86 6，45	1．340	1． 4.4	8	3.67	310	597	b，C1	3.6	¢，17	9， 01	6．0］
ARE 5	11／7E 14：10	1.488	1.462	9，${ }^{1}$	3.19	2.64	528	7.07	\％．19	1． 0004	0.01	0.604
AHE 97	W036e 05：45	1.785	1．675	1．5\％	2.92	2.45	417	6.94	2.50	3． 048	1.12	9．3E
kn 29	0107／37 $3: 50$	1.174	1.275	1．75	3.51	3.0	946	0.57	5.21	4.02	1.15	B．ETi
He 34	क12167 1015	1．75i	1.896	2.05	3.75	2.00	44	b．th	3.15	0.65	3.37	5． 510
$4{ }^{4} 5$	Whatel df：10	1．606	1.664	1.81	3． 5.5	\％．60	340	E．E8	2.31	0.064	1． 6.6	$\therefore .1068$
Fre 34	क／18／87 $13: 10$	2．26	2：0\％	1，75	3.29	5.24	5	6.45	2.14	0.075	9.71	1．Ti
A5 3	bibuch bexas	2.835	3.60	1.75	4.01	3.00	57	7.24	5.23	0.050	0.76	0.72
46－39	63／797 1540	1.254	1.54	9．56	2.45	1，60	547	B， 5 ¢ ${ }^{4}$	2.67	0.620	0.2	0.50
AFS 34		2.790	3.130	3.96	4.85	2×5	945	7.35	4.32	0.15	2.74	0． 23.3
4ne 3	新1437 10：50	0.776	4， 675	4．34	2.3	2.10	486	5.84	2.85	0.0 .18	0.32	
Hes 39	04／20／E7 06：20	0.727	L． 12	V．vi	1.46	2.14	476	7.40	1． 1.4	0.615	0．04	\％，$\quad 1$
4837	कौयद7 0\％15	0．68t	ar2t	0.05	1.75	1．49	405	7.17	1.76	b． 61	1．02	人，فुt
Fe 34	562／E7 il：09	4.745	4， 565	2.34	4.17	\therefore ，${ }^{\text {d }}$	7 Cl	1.26	4.15	5．015	2.05	
4 ta 3	0609／87 1240	2．27\％	2.265	6.42	2.70	14，50	665	7，洓	2.65	9.945	0.41	
Ang 39	6RJ／ET Mon	5.010	5.100	3.71	4.79	2.60	789	7.17	4.76	0.015	3.76	0.014
4595	0707／87 0109	5.100	5.560	0.6	\％．17	3.60	5.4	3.3	7．tg	9．67	0.01	
46635	\％2川d undo	2.775	3.560	2．46	4．40	1．2．	505	7．4s	4.3	9，me	2．${ }^{3}$	
48935	08／04／57 10， 50	3.518	3.060	1.37	3.31	3.80		7.54	3.2	0．614	1．7	
ARS 37	0／18／8 69：5	2.150	2.400	0.30	2.4	2.54	510	7.26	2.54	0．60	0.37	
Ant ${ }^{\text {a }}$	67／24／37 10445	3.540	3．7\％	3.76	8.56	7．09	697	7．15	5.87	0.020	3.75	

 Letture oreak at why 710

-at 4	610060 06:5	0.296	0.404	0.20	©.73	3.64	276	6. 31	1.56	0.649	0.11	0.129
ang 40	WROLE 15:50	0.315	0.397	0.06	6.71	5.76	121	8.80	1.65	6.0.E	0.62	0, 0.68
We to	Hophe was	0.36	1,368	(6.60	3.89	3.69	215	6.54	5.87	0.012	b,06	0.004
A5C 40	W/17et 14:05	0.326	0, 301	0.32	2.17	4.00	205	b. 64	1.90	0.626	0.05	0.240
的稱40		0.210	0.365	4.6	\%,6\%	12. ${ }^{\text {d }}$	210	6.45	1.57	0.055	0.68	4.207
Wfe 40	bhomey 13: 5	0.245	0.31	8.44	2.41	2.20	24	6.22	2.2	0.648	0.15	4,285
ARE 40	Whatal lusa	4,76	4.325	8.14	1.83	2.48	194	6.61	1.69	4.015	0.05	0.097
and 4	Whathl brou	8.15	6.25	0.5	2.2	6.70	29	6.71	2.ts	0.614	0.07	0.666
We 4	0h/abe 13x	(.12)	6.27	6.6	1.45	4.30	249	6.2E	1.35	0.015	0.04	0.645
Hes 40	Dwater bess	4. 144	0.200	0.08	1,36	5.01	611	7.15	1.34	0.008	0.04	0.02 e
4ne ty	6/17/E7 1503	0.172	4,223	0.12	1.89	1.60	30	6.66	1.65	0.614	0.09	0.012
						2.513	513	7.47	1.87	0.019	6, 11	0.035
HES 40	Whater mas	4.05\%	0.124	0.84	1.36	5.4	519	7.53	1.27	0.00%	0.41	0.016
4 Ac 4		0.053	0.121	0.07	1.34	3.30	50^{6}	7.4.	1.31	0.005	9.64	W, we
Ans 4	6520/67 11:15	4, ¢RE	6.103	0.65	\%. 57	3.35	419	7.2 E	1.57	0.04	0.08	0.012
	whater 1is ${ }^{\text {d }}$	0.052	0.65	9.4 4	5	1.400	487	7.61	1.34	0.60	0.02	0.012
$4{ }^{45} 4$	06/2187 162\%	0.63	0.059	6.65	1.85	1.30	424	7.08	3.70	0.606	4.012	0.023

APPENDIX B INTERIM ACTION PLAN POINTS SUMMARY AND FLOOD CONTROL BACKPUMPING SUMMARY

POINT FACTOR CATEGORIES			S-2 (HILLSBORO/NNRC)	
			STATUS	POINTS
Curre	nal level		$>13^{\prime}$	6
Chan	level		$<.25 \% \mathrm{hr}$.	1
Pump	fication		$>100 \mathrm{KGPM}$	4
Rainf	ast 2 hours		<1"	1
Rainf	ast 2-48 hours		$<4^{\prime \prime}$	1
Raini			no	0
Rainf	redicted, next		1-2"	2
Time			1500	2
Day of			Saturday	1
	Total Poin			18
	FLOOD	OL BACKP	UMPING SUMM	
DATE	S-2 (HILLSBORO/NNRC)		S-3 (MIAMI CANAL)	
	VOLUME (ACRE/FT.)	POINTS	$\begin{aligned} & \text { VOLL } \\ & \text { (ACRE } \end{aligned}$	POINTS
3/7/87	868	18		
Total	868			

APPENDIX C PESTICIDES ANALYZED IN 1986-87 AND THEIR DETECTION LIMITS

TABLE C-1. PESTICIDES ANALYZED IN SURFACE WATER AND SEDIMENT SAMPLES COLLECTED ON JANUARY 27, 1987

Compound	Sediment	Surface Water	Compound	Sediment	Surface Water
2,4-D	5.71-1,140 ${ }^{1}$	$2.0{ }^{2}$	Kelthane/ Dicofol	6.5-4,200	0.012
Dichlorprop	5.65-1,130	0.8	BHC, Gamma/ Lindane	6.51-253	0.001
2,4,5-T'	5.76-1,150	0.6	Malathion	64.8-429	0.06
2,4,5-TP/Silvex	5.65-225	0.4	Methamidophos	130-860	0.20
Alachlor	25-27	0.02	Methomyl	260-2,000	20.0
Aldicarb	0.27-2.0	2.0	Methoxychlor	6.51-4,220	0.02
Aldrin	1.30-84.4	0.002	Methyl Bromide	1.7-11	NA
Ametryne	64.8-429	10.0	Methyl Parathion	65-430	0.06
Atrazine	130-858	0.10	Metolachlor	14-15	0.02
Benomyl	NA^{3}	20.0	Metribuzin	65-430	0.004
BHC, Alpha	1.30-253	0.002	Mevinphos	64.8-429	0.10
BHC, Beta	1.30-84.4	0.004	Azodrin/ Monocrotophos	259-1,720	1.0
BHC, Delta	1.30-169	0.003	Oxamyl	270-2,000	2.0
Bromacil	65-430	0.02	Paraquat	3,200-39,000	3.0
Carbaryl/Sevin	280-2,100	NA	Parathion	64.8-429	0.06
Carbofuran	250-1,900	10.0	PCB 1016	70.6 - 4,570	0.065
Chlordane	7.73-501	0.01	PCB 1221	71-4,600	0.065
Chloropicrin	0.016-0.109	NA	PCB 1232	71-4,600	0.065
Chlorpyrifos	64.8-429	0.06	PCB 1242	71-4,600	0.065
Chlorothalonil	4.6 - 5.0	0.004	PCB 1248	61-4,000	0.065
Diazinon	64.8-422	0.06	PCB 1254	61-4,000	0.065
Dieldrin	1.30-84.4	0.003	PCB 1260	61-4,000	0.065
Endosulfan, Alpha	1.30-84.4	0.007	Perthane	51-56	0.02
Endosulfan, Beta	1.30-84.4	0.008	Phorate	64.8-429	0.03
Endosulfan Sulfate	1.30-84.4	0.017	DDD, PP'	1.30-84.4	0.008
Endrin	2.86-84.4	0.007	DDE, PP'	1.30-84.4	0.004
Endrin Aldehyde	1.30-84.4	0.018	DDT, PP'	2.86-84.4	0.01
Ethion	65-430	0.10	Prometryne	65-430	10.0
Fonofos/Dyfonate	65-430	0.10	Simazine	65-430	0.10
Ethoprop	64.8-429	0.10	Toxaphene	153-9,910	0.05
Glyphosate	NA	100.0	Trifluralin	5.5-6.0	0.01
Guthion	65-430	1.0	Trithion/Carbophenothion	25-27	0.10
Heptachlor Epoxide	1.30-84.4	0.003	Zinc Phosphide	NA	1.0
Heptachlor	1.30-84.4	0.002			

[^2]TABLE C-2. PESTICIDE ANALYZED IN SURFACE WATER SAMPLES COLLECTED ON APRIL 14, 1987

Compound	Detection Limit (ppb)	Compound	Detection Limit (ppb)
2,4-D	2.0	Kelthane/ Dicofol	0.012
Dichlorprop	0.8	BHC, Gamma/Lindane	0.001
2,4,5-T	0.6	Malathion	0.06
2,4,5-TP/Silvex	0.4	Methamidophos	0.20
Alachlor	0.02	Methomyl	20.0
Aldicarb	2.0	Methoxychlor	0.02
Aldrin	0.002	Methyl Bromide	1.0
Ametryne	10.0	Methyl Parathion	0.06
Atrazine	0.10	Metolachlor	0.02
Benomyl	20.0	Metribuzin	0.004
BHC, Alpha	0.002	Mevinphos	0.10
BHC, Beta	0.004	Azodrin/ Monocrotophos	1.0
BHC, Delta	0.003	Oxamyl	2.0
Bromacil	0.02	Paraquat	3.0
Carbofuran	10.0	Parathion	0.06
Chlordane	0.01	PCB 1016	0.065
Chloropicrin	1.0	PCB 1221	0.065
Chlorpyrifos	0.06	PCB 1232	0.065
Chlorothalonil	0.004	PCB 1242	0.065
Diazinon	0.06	PCB 1248	0.065
Dieldrin	0.003	PCB 1254	0.065
Endosulfan, Alpha	0.007	PCB 1260	0.065
Endosulfan, Beta	0.008	Perthane	0.02
Endosulfan Sulfate	0.017	Phorate	0.03
Endrin	0.007	DDD, PP'	0.008
Endrin Aldehyde	0.018	DDE, PP'	0.004
Ethion	0.10	DDT, PP'	0.01
Fonofos/Dyfonate	0.10	Prometryne	10.0
Ethoprop	0.10	Simazine	0.10
Glyphosate	100.0	Toxaphene	0.05
Guthion	1.0	Trifluralin	0.01
Heptachlor Epoxide	0.003	Trithion/Carbophenothion	0.10
Heptachlor	0.002		

TABLE C-3. PESTICIDES ANALYZED IN SURFACE WATER AND SEDIMENT SAMPLES COLLECTED ON JULY 21, 1987

Compound	Sediment	Surface Water	Compound	Sediment	Surface Water
2,4-D	79.1-384 ${ }^{1}$	$2.0{ }^{2}$	Kelthane/ Dicofol	34-330	0.012
Dichlorprop/ 2,4-DP	68-361	0.8	BHC, Gamma/Lindane	6.85-66.0	0.001
2,4,5-T	66.7-354	0.6	Malathion	13.7-132	0.06
2,4,5-TP/ Silvex	68.0-361	0.4	Methamidophos	270-1,400	0.20
Alachlor	88-850	0.02	Methomyl	200-1,000	20.0
Aldicarb	0.06-0.30	2.0	Methoxychlor	6.85-66.0	0.02
Aldrin	6.85-66.0	0.002	Methyl Bromide	50-300	1.0
Ametryne	13.7-132	10.0	Methyl Parathion	14-130	0.06
Atrazine	13.7-132	0.10	Metolachlor	68-660	0.02
Benomyl	NA^{3}	20.0	Metribuzin	14-130	0.004
BHC, Alpha	6.85-66.0	0.002	Mevinphos	29.2-290	0.10
BHC, Beta	6.85-66.0	0.004	Azodrin/ Monocrotophos	274-2,640	1.0
BHC, Delta	6.85-66.0	0.003	Oxamyl	110-560	2.0
Bromacil	14-530	0.02	Paraquat	2,200-16,000	3.0
Carbaryl/Sevin	60-320	NA	Parathion	13.7-132	0.06
Carbofuran	100-530	10.0	PCB 1016	171-1,650	0.065
Chlordane	6.85-66.0	0.01	PCB 1221	170-1,700	0.065
Chloropicrin	0.332-2.03	1.0	PCB 1232	170-1,700	0.065
Chlorpyrifos	13.7-132	0.06	PCB 1242	170-1,700	0.065
Chlorothalonil	65-630	0.004	PCB 1248	170-1,700	0.065
Diazinon	13.7-132	0.06	PCB 1254	170-1,700	0.065
Dieldrin	6.85-66.0	0.003	PCB 1260	170-1,700	0.065
Endosulfan, Alpha	6.85-66.0	0.007	Perthane	68-660	0.02
Endosulfan, Beta	6.85-66.0	0.008	Phorate	13.7-132	0.03
Endosulfan Sulfate	6.85-66.0	0.017	DDD, PP'	6.85-66.0	0.008
Endrin	6.85-66.0	0.007	DDE, PP'	6.85-66.0	0.004
Endrin Aldehyde	6.85-66.0	0.018	DD'T, PP'	6.85-66.0	0.01
Ethion	14-130	0.10	Prometryne	14-130	10.0
Fonofos/ Dyfonate	14-130	0.06	Simazine	14-130	0.10
Ethoprop	13.7-132	0.06	Toxaphene	698-6,730	0.05
Glyphosate	NA	100.0	Trifluralin	79-760	0.01
Guthion	17.5-264	1.0	Trithion/ Carbophenothion	68-660	0.10
Heptachlor Epoxide	6.85-66.0	0.003	Zinc Phosphide	NA	1.0
Heptachlor	6.85-66.0	0.002			

[^3]
APPENDIX D PESTICIDE DATA

ZINC PHOSPHIDE DATA
 JANUARY 14, 1987

REPORT TO: SOUTH FLORIDA WATER MANAGEMENT DISTRICT Water \&umity bivisien P O BOX V
WEST PALM BEACH, FL 33402
SUBJECT:
ANALYSIS OF WATER SAMPLES FOR ZINC PHOSPHIDE
THE FOLLOWING SAMPLES WERE PROVIDED BY SFWMD. ANALYSIS FOR ZINC PHOSPHIDE WAS DONE BY HYDROLYSIS AND INJECTION OF HEAD SPACE INTO A GAS CHROMATOGRAPH EQUIPPED WITH A FLAME PHOTOMETRIC DETECTOR. RESULTS ARE REPORTED AS mg/L PHOSPHINE, SINCE QUANTITATION IS BASED ON PHOSPHINE STANDARDS.

\#	\#	DATE TIME RECD		PHOSPHINE mg/L
25318	1 くw	1-15-87	1000	<0.001
25319	256	1-14-87	1550	0.005
25320	357	1-14-87	1550	0.006
25321	457 \%ive	1-14-87	1550	0.003
25322	538	1-14-87	15.50	0.002
25323	658 dmp	1-14-82	1550	0.003
25324	754	1-14-87	1550	0.002
25325	853	1-14-87	1550	0.002
25326	95320	1-14-87	1550	0.002
25327	1050%	1-14-87	1550	<0.001
25328	11 setw	1-14-87	1550	<0.001
25329	1252	1-14-87	1550	0.004
25330	13 DI	1-14-87	1550	<0.001

[^4]
APPENDIX D PESTICIDE DATA

FIRST QUARTER DATA
 JANUARY 27, 1987

GUDRYLADN IA:ORAIORIX, INC 1602 CLARE AVENUE. WEST PALM BEACH, FL 33401•305/833-4200 02-20-87

$$
R=3 / 87
$$

REPORT TO:
SOUTH FLORIDA WATER MANAGEMENT DISTRICT Po box V WEST PALM BEACH, FL 33402

SUBJECT:
ANALYSIS OF WATER SAMPLES FOR ZINC PHOSPHIDE DATE TIME COLLECTED: 01-27-87 0900-14.20 DATE RECEIVED: 01-29-87 1130

THE FOLLOWING SAMPLES WERE PROVIDED BY SFWMD. ANALYSIS FOR ZING PHOSPHIDE WAS DONE BY HYDROLYSIS AND INJECTION OF HEAD SPACE INTO A GAS CHROMATOGRAPH EQUIPPED WITH A FLAME PHOTOMETRIC DETECTOR. RESULTS ARE REPORTED AS mg/L PHOSPHINE, SINCE QUANTITATION IS BASED ON PHOSPHINE STANDARDS.

SAMPLE\#	LOCATION	PHOSPHINE mg /L
25753	SQ	<0.001
25754	SB	<0.001
25755	St	<0.001
25756	S235	<0.001
25757	FECSR78	<0.001
25758	S65E	<0.001
25759	S191	<0.001
25760	SG	<0.001
25761	ST	<0.001
25762	SB	<0.001
25763	L25I	SQ

Sample Number	152	233		873	5	6	7	8
Diate Sampled	1/26	1/26	1/26	1/26	1/26	1/26	1/26	1/27
Date Extractec	1/29	1/29	1/29	1/29	1/29	1/29	2/2	2/2
Date Completed	2/20	2/20	2/22	2/22	2/23	2/24	2/23	2/24
Alachlor	N.D.	N.D.	N.D.	N, D.	N, D.	N.D.	N.D.	N.D.
Aldrin	N, D.	N.D.	N.D.	N.D.	N.D.	N. D.	N. ${ }^{\text {a }}$	N.D.
Atrazine	N.D.	N.D.	N. ${ }^{\text {+ }}$	N. D.	N.D.	N. D.	N.D.	N. D.
BHC, alpha	N.D.	N, D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
BHC, beta	N.D.	N.D.	N.D.	N, D.	N, D.	N. D.	N.D.	N.D.
BHC, delta	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Bromacil	N.D.	N.D.	N. D.	N. D.	N.D.	N ¢ D .	N.D,	N.D.
Hept. Epox.	N.D.	N.D.	N.D.	N* ${ }^{\text {D }}$.	N.D.	N.D.	N, D.	N.D.
Heptachlor	N.D.	N.D.	N.D,	N.D.	M, D.	N.D.	N.D.	N, D.
Kelthane	N.D.	N.D.	$\mathrm{N}_{8} \mathrm{D}$ 。	N.D,	N.D.	N, D.	N.D.	N. ${ }^{\text {a }}$
Lindane	N, D .	N. D,	N.D.	$\mathrm{N}_{\mathrm{r}} \mathrm{D}$.	N.D.	N.D.	- N. D.	N.D.
MetolachIor	N.D.	N.D,	N.D.	N, D.	N. D.	N. D.	N. D.	N.D.
Methoxychlor	N.D.	N. C .	N.D.	N.D.	N. D.	N.D.	N.D.	N, D.
Metribuzin	N.D.	N.D.	N. ${ }_{\text {, }}$	N. ${ }^{\text {d, }}$	N.D.	H.D.	N.D.	N.D.
Chlordane	N.D.	N. D.	N.D.	N. D .	N.D.	N.D.	N.D.	N.D.
Chlorothaloni:	N.D.	N.D.	N.D.	N. D.	N, D.	N.D.	N.D.	N. D.
Dieldrin	N.D.	N.D.	N.D.	N. D. ${ }^{\text {a }}$	N. ${ }_{\text {- }}$	N.D.	N.D.	N.D.
Endosulfan I	N.D.	N.D.	N.D.	N. D.	N, ${ }^{\text {D }}$	N. ${ }^{\text {D }}$	N.D.	N, D.
Endosulfan II	N. D.	N.D.	N.D.	N.D,	N.D.	N. D.	N.D,	N.D.
Sulfate	N, D.	N. D .	N.D.	N, D.	N. D,	N.D.	N, D.	N.D.
Endrin	N.D.	N.D.	N. D.	N. D.	N, D.	N. ${ }^{\text {a }}$ 。	N.D.	N, D.
Endrin Aldehyde	N.D.	N.D.	N, D.	N.D.	N.D.	$\mathrm{N}_{4} \mathrm{D}$.	N. D.	N.D.
PCB 1016	N, D.	N. D_{+}	N.D.	N, D.	N.D,	N.D.	N, D.	N.D.
PCB 1221	N. 0.	N, D.	N.D.	N. ${ }^{\text {P }}$	N, D.	N.D.	N.D.	N, D.
PCD 1232	N. D.	N.D.	N, D.	N.D.	N.D.	N, D,	N.D.	N.D.
PCB 1242	N.D.	N.D.	N.D.	N. D,	N.D.	N, D.	N.D,	N.D.
PCB 1248	N.D.							
PCB 1254	N. ${ }^{\text {a }}$	N.D.	$\mathrm{N}_{1} \mathrm{D}$:	N. D_{1}	N.D.	N, ${ }^{\text {D }}$	N. D.	N.D.
PCB 1260	N.D.	N.D.	N. ${ }^{\text {a }}$	N. D .	N. D.	N. D .	N.D.	N.D.
Perthane	N.D.	N.D.	N.D.	N. ${ }^{\text {d, }}$	N.D.	N.D.	N.D.	N.D.
P.P'-DDD	N. D.	N. D .	N. D.	N, D.	N. D,	N.D.	N, D.	N.D.
P. $\mathrm{P}^{\prime}-\mathrm{DDE}$	N.D.	N, D.	N. D.	N, D.	N, D.	N. D,	N. D.	N, D.
P, P'-DDT	N.D.	N.D.	N. D.	N.D.	N.D.	N, D.	N. D.	N.D.
Simazine	N, D.	N. D.	N. D.	N.D.	N. D.	N.D.	N, D.	N. D .
Toxaphene	N. D.	N.D.	N. D.	N.D.	N. D,	N+D.	N. D.	N.D.
Trifluralin	N.D.							
	-							

Date Sampled	$1 / 41$	$1 / 27$	$1 / 27$	1/27	$1 / 21$	$1 / 27$	$1 / 28$	1/28
Date Extracted	2/2	2/2	2/2	2/3	2/3	2/3	2/3	2/3
Date Completed	$2 / 24$	2/24	2/24	2/24	2/24	$2 / 24$	2/24	2/25
Alachlor	N. D.	N.D.	N, D.	N. D.	F.D.	N, D.	N, D,	NnD.
Mddrin	N, D.	N, D.	N.D.	N, D.	N.D.	N.D.	$\mathrm{N}_{\text {¢ }} \mathrm{D}$.	N. ${ }_{\text {\% }}$
Atrazine	N. 0.	N, D.	N.D.	N.D.	N, D.	$\mathrm{N} . \mathrm{D}$.	N.D.	$\mathrm{N}+\mathrm{D}$.
BHC, alpha	N. D.	N. D.	N, D.	N. ${ }^{\text {a }}$,	N. ${ }^{\text {a }}$	$\mathrm{N}_{\mathbf{1}} \mathrm{D}$,	N. ${ }^{\text {. }}$	N.D.
BHC, beta	N. D.	N.D.						
BHC, delta	N.D.	N, D.	N.D.	N.D.	N, D:	N.D.	N.D.	N.D.
Bromacil	N. D.	N. D,	N.D.	N. D .	N.D.	N.D.	N, D.	N.D:
Gept. Epox.	N.D.	N.D.	N.D,	N.D.	N, D.	N.D.	N.D.	N, D.
Heptachlor	N. D.	N.D.	N.D.	N.D.	N. D.	N, D.	N.D.	N.D.
Kelthane	N. D.	N. D.	N. D.	N, D.	N.D.	N.O.	N, D.	N. D.
Lindane	N. D.	N, D .	N. D.	N. D.	N, D.	N. ${ }_{\text {\% }}$	N.D.	$\mathrm{N}_{5} \mathrm{D}$.
Metolachlor	N. D.	N. D.	N, D.	N. D.	N.D.	N, D.	N.D:	N.D,
Methoxychior	N.D.	N, D.	N.D.	N.D.	N, D.	N. ${ }^{\text {d }}$	N.D.	$\mathrm{N}_{+} \mathrm{D}$.
Metribuzin	N. D.	N, D.	N. D.	N. ${ }^{\text {d }}$	N.D.	N, D .	N.D:	N. D.
Chlordane	N. D.	N.D.	N.D.	N + D .	N. D,	N.D.	N.D.	N. ${ }^{\text {d }}$
Chlorothalonil	N.D.	N.O.	N.D.	N.D.	N, D.	N. D,	N. D.	$\mathrm{N}, \mathrm{D}_{\text {, }}$
Dieldxin	N. D,	N.D.	N, D.	N.D:	N.D.	N, D.	N. ${ }^{\text {, }}$	N.D.
Endosulfan I	N, D.	N.D.	N, D.	N.D.	N.D.	N.D.	N,D.	N.D.
Endosulfan II	N.D.	N. D.	N.D.	N.D.	N,D.	N, D.	N.D.	N, D.
Endosulfan Sulfate	N.D. .	N.D.	N.D.	N, D.	N, D.	N.ए.	N.D.	N.D.
Endrin	N.D.	N, D.	N.D.	N. D .	N.D.	N.D.	N.D.	N.D.
Endrin Aldehyde	N.D.							
PCB 1016	N.D.	N.D.	N.D.	N.D.	N, D.	N, D,	N.D.	N, D.
PCB 1221	N. D.	N, D.	N. D,	N.D.	N,D.	N.D.	N.D.	N.D.
PCB 1232	N.D.	N.D.	N, D.	N.D.	N.D.	N:D.	N.D.	N.D.
PCB 1242	N, D.	N. D_{*}	N.D.	N, D.	N.D.	N.D.	N, D.	N, D.
PCE 1248	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.
PCB 1254	N.D.	$\mathrm{N} . \mathrm{D}_{+}$	${ }^{\mathrm{N}} \mathrm{D}$ D.	N, D.	N. ${ }_{+}^{+}$	N: D .	$\mathrm{N}_{\mathbf{-}} \mathrm{D}$.	N. D_{4}
PCB 1260	N.D.	N, D.						
Perthane	N.D.	N. D.	N.D.	N.D.	N.D.	N, D.	N.D.	N.D.
P,P'-DDD	N.D.	N, D.	N.D.	N.D.	N. ${ }^{\text {d }}$	N.D.	N.D.	N.D.
$P, P^{1}-\mathrm{DDE}$	N.D.	N.D.	N.D.	N.D.	N, D.	N.D.	N.D.	N.D.
PsP'-DDT	N. D.	N.D.	N.D.	N.D.	N, D.	N.D.	N, D.	N.D.
Simazine	N.D.	N.D.	N.D.	N. D.	N, D .	N, D.	N.D.	N.D.
Toxaphene	N. D.	N.D.	N, D.	N. D .	N.D.	N, D.	N, D.	N. D.
Trifluralin	N, D.	N.D.	N. ${ }^{\text {, }}$	N.D.	N.D.	N.D.	N. D.	N.D.
	8							

Sample Number	1	2	3	4	5	6	7	8
Date Sampled	1/26	1/26	1/26	1/26	1/26	1/26	1/26	1/27
Date Extracted	1/29	1/29	1/29	1/29	1/29	1/29	2/2	$2 / 2$
Date completed	2/9	2/9	2/9	2/9	2/9	2/9	2/9	2/9
Compounds								
Chlorpyrifos	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
Diazinon	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
Ethion	N.D.	N. D.	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.
Ethoprop	N.D.							
Fonofos	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Guthion	N.D.	N. D.						
Malathion	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Methamidophos	N.D.							
Parathion	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.
Mevinphos	N.D.	N, D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
Monocrotophos	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Parathion	N.D.							
Phorate	N.D.	N. D.	N.D.	N.D.	N.D.	N * .	N.D.	N.D.
Trithion	N.D.	N.D.	N.D.	N,D.	N.D.	N.D.	N.D.	N.D.

Sample Number	1	2	3	4	5	6	7	8
Date Sampled	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 27$
Date Extracted	$1 / 29$	$1 / 29$	$1 / 29$	$1 / 29$	$1 / 29$	$1 / 29$	$2 / 2$	$2 / 2$
Date Completed	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$
Compounds								
Oxamyl	(2,0)	N.D.						
Methomyl (20)	N.D.							
Benomyl (20)	N.D.							
Carbofuran (10)	N.D.							

Sample Nuraber	9	10	11	12	13	14	15	16
Date Sampled	1/27	1/27	1/27	1/27	1/27	1/27	1/28	1/28
Date Extracted	2/2	$2 / 2$	$2 / 2$	$2 / 3$	2/3	2/3	2/3	2/3
Date completed	2/9	2/9	2/9	2/9	2/9	2/11	2/11	2/11
Compounds								
Chlorpyrifos	N. D.	N.D.	N.D.	N.D.	N, D.	N.D.	N.D.	N. D.
Diazinon	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
Ethion	N. D.	N.D.						
Ethoprop	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
Fonofos	N.D.	N.D.	N.D.	N. ${ }^{\text {D }}$	N.D.	N.D.	N.D.	N.D.
Guthion	N.D.							
Malathion	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
Methamidophos	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.
Parathion	N.D.							
Mevinphos	N.D.							
Monocrotophos	N.D.							
Parathion	N.D.							
Phorate	N.D.							
Trithion	N.D.							

Sample Number	9	10	11	12	13	14	15	16
Date Sampled	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 28$	$1 / 28$
Date Extracted	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 3$	$2 / 3$	$2 / 3$	$2 / 3$	$2 / 3$
Date Completed	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$
Compounds								
Oxamyl (2.0)	N.D.							
Methomyl (20)	N.D.							
Benomyl (20)	N.D.							
Carbofuran (10)	N.D.							

Sample Number	1	2	3	4	5	6	7	8
Date Sampled	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 27$
Date Extracted	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$
Date Completed	$2 / 27$	$2 / 27$	$2 / 26$	$2 / 26$	$2 / 26$	$2 / 26$	$2 / 26$	$2 / 26$
Compound								
Aldicarb (2.0)	N.D.							

Sample Number	1	2	3	4	5	6	7	8
Date Sampled	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 27$
Date Extracted	$1 / 30$	$1 / 30$	$1 / 30$	$1 / 30$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 9$
Date Completed	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$	$3 / 4$
Compound								
Paraquat (3.0)	N.D.	N.D.	N.D. N.	N.D.	N.D.	N.D.	N.D.	N.D.

Sample Number	1	2	3	4	5	6	7	8
Date Sampled	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$1 / 26$	$.1 / 26$	$1 / 27$
Date Completed	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$
Glyphosate (100	N.D.	N.D.	N.D.	N.D.	N.D.	N,D,	N.D.	N.D.

Sample Number	1	2	3	4	5	6	7	8
Date Sampled	1/26	1/26	1/26	1/26	1/26	1/26	1/26	1/27
Date Extracted	1/29	1/29	1/29	1/29	1/29	1/29	2/2	2/2
Date Completed	3/4	3/4	3/4	3/4	3/4	3/4	$3 / 4$	3/4
Compounds								
2,4-D (2,0)	N.D	N, D	N, D.	N.D.	N.D.	N, D.	N.D.	N, D.
2,4-DP (0.8)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D,	N.D.	N, D.
2,4,5-T (0.6)	N.D.							
2,4,5-TP (0,4)	N.D.	N.D.	N.D,	N.D.	N, D.	N.D.	N.D.	N, D.

Sample Number	9	10	11	12	13	14	15	16
Date Sampled	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 28$	$1 / 28$
Date Extracted	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$	$2 / 25$
Date Completed	$2 / 27$	$2 / 27$	$2 / 27$	$2 / 27$	$2 / 27$	$2 / 27$	$2 / 26$	$2 / 26$
Compound								
Aldicarb (2.0)	N.D.							

Sample Number	9	10	11	12	13	14	15	16
Date Sampled	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 28$	$1 / 28$
Date Extracted	$2 / 2$	$2 / 3$	$2 / 3$	$2 / 3$	$2 / 5$	$2 / 5$	$2 / 4$	$2 / 6$
Date Completed	$3 / 12$	$3 / 12$	$3 / 12$	$3 / 12$	$3 / 12$	$3 / 12$	$3 / 12$	$3 / 12$
Compound								
Paraquat (3.0)	N.D.							

Sample Number	9	10	11	12	13	14	15	16
Date Sampled	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 27$	$1 / 28$	$1 / 28$
Date Completed	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$	$2 / 2$
Glyphosate (100)	N.D	N.D	N.D	N.D.	N.D.	N.D.	N.D.	N.D.

Sample Number	9	10	11	12	13	14	15	16
Date Sampled	1/27	1/27	1/27	1/27	1/27	1/27	1/28	1/28
Date Extracted	$2 / 2$	2/2	2/2	2/3	2/3	2/3	2/3	2/3
Date Completed	3/5	3/5	3/5	3/5	3/5	3/5	3/5	3/5
Compounds								
2.4-D (2.0)	N.D	N.D	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
2,4-DP (0.8)	N.D.							
2,4,5-T (0.6)	N.D.	N. ${ }^{\text {D }}$	N.D.	N, D.	N.D.	N.D.	N.D.	N.D.
2,4,5-TP (0.4)	N.D.							

$$
\begin{aligned}
& \text { 出 }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 要 }
\end{aligned}
$$

000 $27>$	$00011>$	0055）	001 ${ }^{\text {b }}$	000t＞	002L）	000117	00061）	0006）	00\＆S＞	009\％＞	002¢）	0006Z＞	0095＞	0006E）	27 $51+28$ 37	$\begin{aligned} & \text { 9x/9n } \\ & \text { gx/on } \end{aligned} \text { Ivnowyy }$	
$0061)$	015）	06E）	0＜Z＞	00E）	0てb）	W	0051＞	OZE）	0LS＞	08Z＞	0LE）	0081）	08t＞	0002）	8988を 37	9x／9n 1．hyy	
0061 ）	015）	06E）	092＞	062）	01b）	VM	0051）	O1E）	095）	082）	0LE）	0081）	08け）	0002＞	$\begin{aligned} & 2 \angle 528 \\ & 27 \end{aligned}$	9x/on	
0081＞	06ヶ）	OLE）	052＞	082）	00\％）	4	0061）	00E）	0ヶ5＞	092＞	OSE＞	0021）	091）	0061）	$\begin{aligned} & 90+18 \\ & 07 \end{aligned}$	$9 \times / \text { my }$	
000Z＞	0tS＞	02t＞	082）	01E）	0bt＞	Ww	0091）	0tE＞	009＞	062）	06E）	0061）	015）	0012）	$\begin{aligned} & 81818 \\ & 97 \end{aligned}$		
W	VW	VH	W	VH	VN	W	W	WN	VN	＊	W	W	m	W	$\begin{aligned} & 80 \angle 8 E \\ & 37 \end{aligned}$	ג80－9／gп רגнокз	
6．1）	15．03	6E ${ }^{\circ}$ O	（2）0）	OE．0）	25－0）	w	5 1）	てE＊${ }^{\circ}$	（50）	82．03	LE＇0）	8＊1）	6r＇03	0＇2）	E60c6	84Y0107	
$\begin{aligned} & 00: 01 \\ & L 8 / 8 z / 10 \end{aligned}$	$\begin{aligned} & 02: \nmid 1 \\ & L B / L Z / 10 \end{aligned}$	$\begin{aligned} & 05: \varepsilon 1 \\ & \angle 8 / \angle Z / 10 \end{aligned}$	$\begin{aligned} & 02: 21 \\ & L 8 / \angle 2 / 10 \end{aligned}$	$\begin{aligned} & 02: 21 \\ & \angle B / \angle 2 / 10 \end{aligned}$	$\begin{aligned} & 02: 11 \\ & \angle 8 / \angle Z / 10 \end{aligned}$	$\begin{aligned} & 50: 01 \\ & \angle 8 / L Z / 10 \end{aligned}$	$\begin{aligned} & 00: 60 \\ & \angle B / L Z / 10 \end{aligned}$	$\begin{aligned} & \mathrm{SI}: 11 \\ & L 8 / 92 / 10 \end{aligned}$	$\begin{aligned} & 02: E 1 \\ & \angle B / 9 Z / 10 \end{aligned}$	$\begin{aligned} & 5 E: 11 \\ & \text { L8/9Z/10 } \end{aligned}$	$\begin{aligned} & 00: 11 \\ & \angle 8 / 9 Z / 10 \end{aligned}$	$\begin{aligned} & 02: 01 \\ & 28 / 9 z / 10 \end{aligned}$	$\begin{aligned} & 0 \varepsilon: 60 \\ & L 8 / 92 / 10 \end{aligned}$	$\begin{aligned} & 50: 60 \\ & 68 / 9 z / 10 \end{aligned}$		314 314	
SI izvis 3215	$\begin{aligned} & \\| 1 . \\ & \text { IZYJS } \\ & \text { IES } \end{aligned}$	εI IZVIS $6 \$$	$\begin{aligned} & 21 \\ & 12 \mathrm{v} 1 \mathrm{~s} \\ & 1827 \end{aligned}$	$\begin{aligned} & 11 \\ & 12 \forall 15 \\ & 1827 \end{aligned}$	$\begin{aligned} & 01 \\ & 12 Y \mathrm{ys} \\ & 8 \mathrm{~S} \end{aligned}$	$\begin{aligned} & 6 \\ & \text { lizys } \\ & \text { LS } \end{aligned}$	8 IZY ds $9 \$$ ＊／0I		$\begin{aligned} & 9 \\ & \text { 1ZYys } \\ & 359 \mathrm{~S} \end{aligned}$	$\begin{aligned} & \mathbf{5} \\ & \text { lzy } \\ & \text { sLys } \end{aligned}$	$\begin{aligned} & t \\ & \text { l } 2 y+s \\ & s \varepsilon 2 s \end{aligned}$	$\begin{aligned} & \varepsilon \\ & \text { izvas } \\ & t s \end{aligned}$	$\begin{aligned} & z \\ & \text { izvs } \\ & \varepsilon \$ \end{aligned}$	$\begin{aligned} & 1 \\ & 1 z v \mathrm{ss} \\ & z s \end{aligned}$	00HI 34 －134015	SLImplay	
					－ 1510		On 30 y yol ＊ 7 －OS	VNIOYOOS Ywhe 103 fo 3и甘 1930	$\begin{aligned} & \text { yy } \\ & \text { jud } \\ & \text { ydd } \end{aligned}$	$\begin{array}{r} 97 \text { IS }, \\ 12 Y 15 \\ 0000 \quad 92 t<8 \end{array}$	dกOys $438 \mathrm{mN} / \mathrm{N}_{1}$						
					1 E39\％d	7	NIJ ：Snivis	S L8／60／h	9M143	3 MIONJ 83	N3IJS						

APPENDIX D PESTICIDE DATA

SECOND QUARTER DATA
 APRIL 14, 1987

Date Sanpled	$\begin{aligned} & 5 \% \\ & 4 / 13 \end{aligned}$	$4 / 13$	$4 / 13$	$\begin{gathered} 23=13 \\ 4,13 \end{gathered}$	$4 / 13$	$\begin{aligned} & 655 \\ & 4 / 13 \end{aligned}$	$4 / 13$	$4 / 13$
Date Extracted	4/16	4/16	4/16	4/16	4/16	4/16	4/16	4/17
Date Completed	4/23	4/23	4/23	4/23	4/23	4/23	4/27	4/27
Alactilor	N.D.	N.D.	$\mathrm{N}, \mathrm{D} .$	N. N	$\mathrm{N} . \mathrm{D}$.	N, D.	N. D,	H.D.
Aldrin	4.0.	$\mathrm{N}, \mathrm{D}+$	N. 0.	N, D.	N. D,	N.D.	N, D.	N. ${ }^{\text {b }}$.
Atrazine	H.D.	N. ${ }^{\text {a }}$	3.5	H.D.	- +5:0.:	N. D .	N.b.	N, O .
DIIC, alpha	N.D.	N.D.	N. D.	N. D.	N. D.	N, D.	N. ${ }^{\text {a }}$	N.U.
BifC, beta	N.O.	N.1.	N.D.	N, ${ }_{\text {U }}$	N.D:	N. D.	N. D .	N.13.
BILC, delta	N. ${ }^{\text {d. }}$	N.0.	N, ${ }_{\text {, }}$	N.D.	N, 0^{\prime}.	N.D.	$\mathrm{N} . \mathrm{O}$.	W. ${ }^{\text {d }}$
Bromacil	N.D.	N. D,	N.D.	N, D.	N. ${ }^{\text {d, }}$	N. D .	N, D.	N. D .
Hept. Epox.	N. D.	N.D. ${ }^{\text {\% }}$	N.D.	N. D.	N, D.	N.D.	N.D.	N. ${ }^{\text {d }}$
Heptachlor	N.D.	N.D.	N. D.	N.D.	N. D.	N, D.	N. ${ }^{\text {, }}$	N. D .
Kelthane	N. D .	N.J.	N.D.	N, D.	N. ${ }^{\text {d, }}$	N.L.	N. 1.	N. U ,
Lindane	N. ${ }_{\text {r }}$.	N, D.	N. ${ }^{\text {, }}$	N.D.	N, D.	N. D:	N, O.	N, D.
Metolachlor	N. D,	N. D.	N, D.	N. ${ }^{\text {d, }}$	N.D.	N, D .	N. $\mathrm{O}=$	$\mathrm{N}, \mathrm{V}_{1}$
Methoxychlor	N. ${ }^{\text {d }}$	N, D.	N, D,	N. D.	$\mathrm{N}_{4} \mathrm{~B}$.	N. ${ }_{\text {t }}$	N. D.	N, i.
Metribuzin	N.D.	N.D.	N. D.	N.D.	N. D.	N, D.	N. D,	N. N.
Clilordane	N.D.	N, D.	N.D.	N, D.	N.D.	N. D.	N\& D .	N. ${ }^{\text {P. }}$
Chlorothalonid	N.D.	N. D.	N. D,	N.D.	N, D.	N. ${ }_{\text {+ }}$	N. D .	N.D.
Dieldrin	N. D.	N.D.	N, D.	N. ${ }^{\text {a }}$	N.U.	$\mathrm{N}_{\mathbf{t}} \mathrm{D}$.	$\mathrm{N} . \mathrm{D}$.	N.t.
Endosulfan 1	N, D.	N.D.	N.D.	N.D.	N.D.	N. D.	N. ${ }_{\text {+ }}$.	N. ${ }^{\text {. }}$
Endosulfan II	N.D.	N.D.	N.D.	N. D.	H.D.	$\mathrm{N}_{4} \mathrm{D}$,	N, D.	N, ${ }_{\text {, }}$
Erdosulfan Sulfate	N.D. .	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N. D.
Endrin	N.D.	N, D.	N.D.	N.D.	N.D.	N.D.	N.D.	N, b.
Endrin Nldehyde	H.D.	N.D.	N. D.	N.D,	N. ${ }^{\text {a }}$	N, D.	N, D.	N.D.
PCB 1016	N.D.	N. ${ }^{\text {U }}$	N.D.	N.D.	N. ${ }^{\text {d }}$	N.U.	N. B .	N. D .
PCB 1221	N.U.	$\mathrm{N} ; \mathrm{D}$.	N.O.	N.D.	N, D.	N.1).	N. ${ }^{\text {d, }}$	$\mathrm{N} . \mathrm{O}$.
PCB 1232	N. D.	N.D.	N.D.	N.D.	N. D.	N.D.	N. ${ }^{\text {a }}$	N.1).
PCB 1242	N, ${ }^{\text {ar }}$	N. ${ }^{\text {, }}$	N. D .	N.D.	N.b.	N.b.	N. L .	N.t.
PCD 1248	N.U.	N.D.	N.D.	N. D.	N.D.	N.U.	N .1.	N, B .
PCD 1254	N.P.	$\mathrm{N}+\mathrm{D}:$	$\mathrm{N}_{4} \mathrm{O}$.	N.D.	N.D:	N: D .	N,D.	N. ${ }^{1}$
PCU 1260	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.	N. D .
Perthane	N.D.	N. D.	N, D.	N. D.	N.D.	N.D.	N.D.	N. ${ }^{\text {D }}$
P, P'-DDD	N.D.	N, D.	N. D.	N.D.	N. D.	N.D.	N.D.	N.13.
P, ${ }^{\prime}$-DDE	N.D.	N.D.	N.D.	N.D.	N.D.	N. ${ }^{\text {. }}$	N.D.	N.D.
R,P'-DD'	H.D.	N.D.	N.D.	. N, D.	N.D.	N. ${ }^{\text {d }}$	N.D.	N.D.
Simazine	N.D.	N, D.	N. ${ }^{\text {d, }}$	N. D .	N.D.	N.D.	$\mathrm{N} . \mathrm{B}$.	N. D.
Toxaphene	N.D.	N. ${ }^{\text {a }}$	N.D.	N. D.	N.D.	N.D.	A.D.	H.D.

Date Sampled	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$\begin{array}{r} 310 \\ 4 / 14 \\ \hline \end{array}$	$4 / 15$	$4 / 15$
Date Extracted	4/17	4/17	4/20	4/20	4/20	4/20	4/20	4/20
Date Completed	4/27	4/27	4/27	4/27	4/27	4/27	4/27	4/27
Alachlor	N. v .	N. D.	N, D.	$\mathrm{N} . \mathrm{H}_{+}$	N. L.	N, D.	$\mathrm{N} . \mathrm{D}_{4}$	$\mathrm{N} . \mathrm{D}$.
Mldrin	N. O.	N. D.	N.D.	N, D.	N. D*	N.D.	N: ${ }^{\text {d }}$	N.O.
Atrazine	10.8	4.0	8.9	N. D.	N, D.	N. O.	N.D.	N, D.
BnC, alpha	N. O.	N. D.	N, D .	N. ${ }^{\text {a }}$.	H.D.	N, D.	N. ${ }^{\text {. }}$	N. D .
BIC, beta	N.D.	N.D.	N.O.	N.D.	W. D.	N. D.	V.1).	N.1).
B1IC, delta	N.D.	N.D.	N. ${ }_{\text {\% }}$	N.D.	N, U.	N.D.	N.U.	N .5
Bromacil	N. O	N.D,	N.D.	N, D.	N.t.	N.D.	N, D.	N.O.
lhept. Epox.	N. B .	N.D.	N.D.	N. D.	N, D .	N.D.	N.D.	N.O.
Ileptacillor	N.D.	N.D.	N.D.	N, D,	N.D.	N. D.	N. D,	N.D.
Kalthane	N, D.	N.D.	N.0.	N, b.	N, D,	N. ${ }^{\text {a }}$.	N, ${ }^{\text {a }}$	N, O,
Lindane	N.B.	N, D.	N.O.	N.D.	N, D.	N. D:	N. \quad.	N, 1 .
Metolachior	N. D.	N. D .	N, D.	N. ${ }^{\text {N, }}$	N.T.	N. D.	*.U.	N. P ,
Methoxychior	N. 0.	N, D.	N.D.	N. D.	N, D .	N. ${ }_{\text {t }}$	N.D.	$\mathrm{N}_{\mathrm{t}} \mathrm{D}$.
Metribuzin	N. D.	N.D.	N, D.	N.D.	N. ${ }^{\text {d }}$	N, D.	N. O,	N.O.
Chlordane	N.D.	N. D.	N.D.	N, D.	N.D.	N-D.	N, D.	N.13.
Chlorothalonit	N.D.	N. D.	N.D.	N.D.	N. D.	N. ${ }^{\text {a }}$	N. ${ }^{\text {d }}$	N.D.
Dieldrin	N.D.	N.D.	N, D.	N.D.	N.L.	N*D.	N.D.	N.D.
Endosulfan I	N, D.	N.D.	N. ${ }^{\text {. }}$	N.D.	N.D.	N.D.	N, U.	N.D.
Endosulfan II	N. D.	N. D.	N.D.	N. D.	N.t.	N, D.	N. ${ }^{\text {d }}$.	N.U.
Endosulfan Sulfate	N.D. .	N.D.	N.D.	N, D.	N. ${ }^{\text {d, }}$	N. D.	N.U.	N.D.
Endrin	N.D.	N, D.	N.D.	N.D.	N. ${ }^{\text {D }}$.	N.D.	N.L.	N.D.
Eildrin Aldehyde	N. O .	N.D.	N.D.	N.D.	N. D,	N.D.	N+ ${ }^{\text {d }}$.	N.t.
PCE 1016	N.D.	$\mathrm{N}+\mathrm{D}$.	N,D.	N.D:	N, ${ }_{\text {, }}$	N.O.	N.D.	N.O.
pCB 1221	N.U.	N, D.	N.O.	N. D.	N, U.	N.U.	N.11.	N.1J.
PCD 1232	N. D.	N.D.	N.D.	N.D,	N. D.	N.D.	N. ${ }^{\text {r }}$	N.J.
PCB 1242	N.D.	N. D,	N. D.	N.U.	N. ${ }^{\text {d, }}$	N. D.	$\mathrm{N}+\mathrm{U}_{+}$	N.U.
PCB 1248	N. D.	H.D.	N.D.	N.D.	N.U.	N. ${ }^{\text {. }}$	N.U.	W. W .
PCB 1254	N.D:	N. ${ }_{+}$	N.D.	N. D.	N.D.	N, D.	N. ${ }^{\text {b }}$.	N.I),
PCH 1.260	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.1.	N, D,
Perthane	N.D.	N.D.	N, D.	N.D.	N.D.	N.D.	N.O.	N.L.
P,P'-DDD	N. D.	N. ${ }^{\text {d, }}$	N.D.	N.D.	N. D.	N.D.	N. ${ }^{\text {U }}$	N.L).
P, ${ }^{\prime}$-DDE	N.D.	N. ${ }^{\text {b. }}$	N.J.	N, D.	H.D.	N. ${ }^{\text {d }}$	N.D.	N.D.
P, P'-bDT	N. D .	N.O.	N, D.	N.D.	N. D,	N.D.	N. D.	N.D.
Simazine	N.D.	N, D.	N.D.	N.L.	N. D.	N.D.	N.D.	N. D .
'loxapliene	N.D.	N.D.	N.D.	N. ${ }^{\text {N. }}$	N. D.	N.O.	N.13.	N. ${ }^{\text {a }}$
Priclimit	N.D.	N, D.	O,	D	U	D	N in,	N, D

Sanple Number	23	24	25	26	27	28	29	30
Date Sampled	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$
Date Extracted	$4 / 22$	$4 / 22$	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 23$
Date Completed	$5 / 28$	$5 / 18$	$5 / 18$	$5 / 18$	$5 / 18$	$5 / 18$	$5 / 18$	$5 / 18$
Compound								
Aldicarb (2.0)	N.D.							

Sanple Number	23	24	25	26	27	28	29	30
Date Sampled	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$
Date Extracted	$4 / 20$	$4 / 20$	$4 / 20$	$4 / 20$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$
Date Completed	$4 / 24$	$4 / 24$	$4 / 24$	$4 / 24$	$4 / 24$	$4 / 24$	$4 / 24$	$4 / 24$
Compound								
Paraquat (3.0)	N.D.	N.D.	N.D.	.N.D.	N.D.	N.D.	N.D.	N.D.

Sample Number	23	24	25	26	27	28	29	30
Date Sampled	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$
Date Completed	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$
Glyphosate (100	N.D.							

Sample Number	23	24	25	26	27	28	29	30
Date Sampled	4/13	4/13	4/13	4/13	4/13	4/13	4/13	4/13
Date Extracted	4/16	4/16	4/16	4/16	4/16	4/16	4/16	4/17
Date Completed	4/24	4/24	4/24	4/24	4/24	4/24	4/24	4/24
Compouncs								
2,4-D. (2.0)	N.D.	N, D .						
2,4-DP (0.8)	N.D.	N.D.	N.D.	N.D.	N.D.	N, D.	N.D.	N.D.
2,4,5-T (0.6)	N.D.	N.D.	N.D.	N.D.	N. ${ }^{\text {d }}$	N.D.	N.D.	N.D.
2,4,5-TP (0.4)	N.D.	N.D.	N.D.	N.D.	N. ${ }^{\text {. }}$	N.D.	N.D.	N.D.

Sample Numjer	31	32	33	34	35	36	37	38
Date Sampled	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 15$	$4 / 15$
Date Extracted	$4 / 24$	$4 / 24$	$4 / 24$	$4 / 27$	$4 / 27$	$4 / 27$	$4 / 27$	$4 / 27$
Date Completed	$5 / 19$	$5 / 19$	$5 / 19$	$5 / 20$	$5 / 20$	$5 / 19$	$5 / 19$	$5 / 19$
Compound								
Aldicarb (2.0)	N.D.							

Sample Number	31	32	33	34	35	36	37	38
Date Sampled	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 15$	$4 / 15$
Date Extracted	$4 / 21$	$4 / 22$	$4 / 22$	$4 / 22$	$4 / 22$	$4 / 22$	$4 / 23$	$4 / 23$
Date Completed	$5 / 4$	$5 / 4$	$5 / 4$	$5 / 4$	$5 / 4$	$5 / 4$	$5 / 4$	$5 / 4$
Compound								
Paraquat (3.0)	N.D.							

Sample Number	31	32	33	34	35	36	37	38
Date Sampled	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$4 / 14$	$.4 / 15$	$4 / 15$
Date Completed	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$	$4 / 21$
Giyphosate (100	N.D.							

Sample Number	31	32	33	34	35	36	37	38
Date Sampled	4/14	4/14	4/14	4/14	4/14	4/14	4/15	4/15
Date Extracted	4/17	4/17	4/20	4/20	4/20	4/20	4/20	4/20
Date Completed	4/24	4/24	4/24	4/24	4/24	4/27	4/27	4/27
Compounds								
2,4-D (2.0)	N.D.							
2,4-2? (0.8)	N.D.							
2,4,5-7 (0.8)	N.D.							
2,4,5-TP (0.4)	N.D.							

Sample Numier	23	24	25	26	27	28	29	30
Date Eenpled	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$	$4 / 13$
Date Extracted	$4 / 16$	$4 / 16$	$4 / 16$	$4 / 16$	$4 / 16$	$4 / 16$	$4 / 16$	$4 / 17$
Date Ccmeleted	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 23$	$4 / 27$	$4 / 27$
Ccingouncs								
Ametryn（10．0）	N．D．							
Prometryn（10．0）	N．D．							

Sample Number	31	32	33	34	35	36	37	38
Date sampled	4／14	4／14	4／14	4／14	4／14	4／14	4／15	4／15
Datき Ertractad	4／17	4／17	4／20	－ $4 / 20$	4／20	4／20	4／20	4／20
Date Completee	4／27	4／27	4／27	4／27	4／27	4／27	4／27	4／27
Conjounes								
Ametryn（10．0）	N．${ }^{\text {d，}}$	N．D．	N．D．	N．D．	N．D．	N．D．	N．D．	N． 2.
Prometryn（10．0）	N．D．							

	39	40	41	42	43	44	45	BLK
Date Saņlec	4／15	4／15	4／15	4／15	4／15	4／15	4／15	N／A
Daさe シxtuncさeで	4／21	4／21	4／21	4／21	4／21	4／21	4／21	4／16
	4／27	4／28	4／28	4／28	4／28	4／28	4／28	4／23
Conミouncs	N.D.	N.D.	N．D．	N．D．	N．D．	N．D．	N．D．	N．D．
Prometryn (10.0)	N．D．							

Samule Number	23	24	25	26	27	28	29	30
Date Sampled	4/13	4/13	4/13	4/13	4/13	4/13	4/13	4/13
Date Extracted	4/16	4/16	4/16	4/16	4/16	4/16	4/16	4/17
Date completed	4/22	4/22	4/22	4/22	4/22	4/22	4/22	4/23
Compounds								
Chlorpyrifos(.06) N.D.		N.D.						
Diazinon (.06)	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
Ethion (.10)	N.D. N.D.		N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Ethoprop (.06)	N.D.							
Eonofos (.06)	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
Guthion (1.0)	N.D.							
```Malathion (.06) (.20) Methamidophos Methyy- Parathion (.06)```	N.D.							
	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.
$\begin{gathered} \text { Mevinphos }(.10) \\ (1.0) \end{gathered}$	N. D:	N.D.						
Monocxotophos	N.D:	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.
Parathion (.06)	N. D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
Phorate (.03)	N.D.							
Trithion (.10)	N. D.	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N. D.
Sample Number	23	24	25	26	27	28	29	30
Date Sampled	4/13	4/13	4/13	4/13	4/13	4/13	4/13	4/13
Date Extracted	4/16	4/16	4/16	4/16	4/16	4/16	4/16	4/17
Date Completed	5/1	5/13	5/13	5/13	5/13	5/13	5/13	5/13
Compounds								
Oxamyl (2.0)	$\begin{array}{c\|c}  & \\ \text { N.D. } & \text { N.D. } \\ \hline \end{array}$		N.D.	N, D.	N.D.	N. D	$\mathrm{N} . \mathrm{D}$	N. O
Hethomyl (20.0)	N.D.	N.D.	N.D.	N.D.	N, ${ }^{\text {d }}$.	N.D.	N	N0.
Eenomyl (20.0)	N.D.							
Carbofuran (10.0)	N.D.							


Samule Number	31	32	33	34	35	36	37	38
Date Sampled	4/14	4/14	4/14	4/14	4/14	4/14	4/15	4/15
Date Extracted	4/17	4/17	4/20	4/20	4/20	4/20	4/20	4/20
Date completed	4/23	4/23	4/23	4/23	4/23	4/23	4/24	$4 / 24$
Compounds								
Chlorpyrifost.o	N.D.	N.D.	N. D.	N.D.	N. D.	N.D.	N.D.	N.D.
Diazinon (.06)	N.D.	N. D.	N.D.	N, D.	N.D.	N.D.	N.D.	N.D.
Ethion (.10)	N.D.							
Ethoprop (.06)	N.D.							
Fonofos (.06)	N. D.	N. D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.
Guthion (1.0)	N. D.	N.D.	N. D.	N. D.	N. D.	N.D.	N.D.	N. ${ }^{\text {. }}$
Malathion (.06)	N.D.	N.D.	N.D.	N. ${ }^{\text {. }}$	N. D.	N.D.	N.D.	N.D.
Methamidophos	N.D.							
Parathion (.06)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N. D.
Mevinphos (.10)	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N. D.
Monocrotophos	N.D.	N.D.	N.D.	N.D.	N. D.	N. D.	N. D.	N.D.
Parathion (.06)	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N. D.
Phorate (.03)	N.D.	N:D.	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.
Trithion (.10)	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.


Sample Number	31	32	33	34	35	36	37	38
Date Sampled	4/14	4/14	4/14	4/14	4/14	4/14	4/15	4/15
Date Extracted	4/17	4/17	4/20	4/20	4/20	4/20	4/20	4/20
Date Completec	5/1	5/13	5/1	5/13	5\%13	5/1	5/1	5/13
Compouncs								
Oxeny1 (2.0)	N.D.	N. D.	N. D.	N. D.	N. D.	$\mathrm{N} . \mathrm{D}$.	N. ${ }^{\text {dre }}$	$\mathrm{N}+\mathrm{N}$
Methomyl (20.0)	N.D.	N.D.	N.D.	N. D.	N, D.	N. D.	N, D.	N+
Eenomyl (20.0)	N. ${ }^{\text {d }}$	N.D.						
Carbofuran (10.0)	N.D.							

# Received <br> MAY 261987 

## Water Quality Division

:505-M97-0421
UH Account fecj 72

	bisyersitit of miani schod qu hedicine division of chentcal epidemioldey		
Date Sapled	Data   fnalyesd	Hethylene   Branida	Chlarspierin

5Fid: In

5Fide In			$m 0<$			MOL
023	4/13/37	4/17/97	ND		H	$1 p, 0$
024	4/:3/87	4/17/a7	- ND	Po	ND	
025	4/13/87	4/17/67	ND		HI	
026	4/17/87	4/20/87	NT		N	
027	4/13/87	4/22/97	W1		ND	
029	4/13/97	4/22/87	ND		HO	
029	4/13/87	1/22/87	HD		M	
030	4/13/97	4/22/87	M		HD	
031	4/54/97	4/22/87	NJ		HD	
032	4/14/67	4/22/87	N0		ND	
033	4/14/97	4/23/87	ND		ND	
054	4/1/4/87	4/23/57	N		H0	
035	4/14/87	4/23/87	HD		ND	
036	4/4/87	4/24/87	ND		Na	
037	4/15/97	4/24/87	- Nid		NI	
0 020	4/15/87	4/27/97	$N 0$		ND	
039	4/15/87	4/27/67	W		ND	
040	4/15/87	4/27/8?	m		ND	
$04:$	4/15/87	4/27/87	H		MD	
042	4/15/87	4/27/97	MD		ND	
043	4/15/87	4/27/97	ND		ND	
044	4/15/97	4/28/97	N0		ND	
045	4/:5/87	4/29/37	H0.		N0	
Elark		4/28/67	48		N2	

Notes:

no wot detecthele

## Miami

506-M87-0421
UM Account \#563742
UNIVERSITY OF MIAMI SCHOOL OF MEDICINE DIVISION OF CHEMICAL EPIDEMIOLOGY

Water euatity Division

Sample No.	46		47	48	49	50	51	52	53	Blank
Date Received	$5 / 29$	$5 / 29$	$5 / 29$	$5 / 29$	$5 / 29$	$5 / 29$	$5 / 29$	$5 / 29$	$\mathrm{~N} / \mathrm{A}$	
Date Extacted	$5 / 29$	$5 / 29$	$5 / 29$	$5 / 29$	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	
Date Completed	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 1$	$6 / 2$	$6 / 2$	
	$0.4 *$	1.8	$0.2 *$	$0.3 *$	$0.2 *$	$0.3 *$	$0.2 *$	$0.4 *$	N.D.	

*At or near the limit of detection of the method (equivalent to a peak height of $10 \%$ full scale deflection). The results were determined using the nitrogen-phosphorus detector which is selective for nitrogen and phosphorus containing compounds, but not as sensitive as electron capture (ECD).

# APPENDIX D PESTICIDE DATA 

## THIRD QUARTER DATA <br> JULY 21, 1987

DATE: 09-30-87

REPORT TO:
SOUTH FLORIDA WATER MANAGEMENT DISTRICT P O BOX V
WEST PALM BEACH, FL 33402
SUBJECT: ANALYSIS OF WATER SAMPLES FOR ZINC PHOSPHIDE DATE TIME COLLECTED: 07-20-87 0905-1032 DATE RECEIVED: 07-20-87 1620

THE FOLLOWING SAMPLES WERE PROVIDED BY SFWMD. ANALYSIS FOR ZINC PHOSPHIDE WAS DONE BY HYDROLYSIS AND INJECTION OF HEAD SPACE INTO A GAS CHROMATOGRAPH EQUIPPED WITH A FLAME PHOTOMETRIC DETECTOR. RESULTS ARE REPORTED AS mg/L PHOSPHINE, SINCE QUANTITATION IS BASED ON PHOSPHINE STANDARDS.

SAMPLE\#	LOCATION	PHOSPHINE mg/L
28466	$\# 4652$	$<0.001$
28467	$\# 4753$	$<0.001$
28468	$\# 489!$	$<0.001$
28469	$\# 495+2$,	$<0.001$

```
DATE: 09-30-87
```

REPORT TO:	SOUTH FLORIDA WATER MANAGEMENT DISTRICT
	P O BOX V
	WEST FALM BEACH, FL 33402
SUBJECT:	ANALYSIS OF WATER SAMPLES FOR ZINC PHOSPHIDE
	DATE TIME COLLECTED: O7-21-87 O820-1410
	DATE RECEIVED: O7-23-87 0815

THE FOLIOWING SAMPLES WERE PROVIDED BY SFWMD. ANALYSIS FOR ZINC PHOSPHIDE WAS DONE BY HYDROLYSIS AND INJECTION OF HEAD SPACE INTO A GAS CHROMATOGRAPH EQUIPPED WITH A FLAME PHOTOMETRIC DETECTOR. RESULTS ARE REPORTED AS mg/L PHOSPHINE, SINCE QUANTITATION IS BASED ON PHOSPHINE STANDARDS.

SAMPLE\#
28511
28512
28513
28514
28515
28516

LOCATION
$\# 54$ 55A
\#55 Si
\#56 3 ?
\#57 2i
\#58 L3 Wmak
\#59 5.
$<0.001$
$<0.001$
PHOSPMINE mg/L
$<0.001$
$<0.001$
$<0.001$
$<0.001$


SFIM ID

046	7／20／87	7128／87	N0	N0
047	1／20／87	7／29／87	No	ND
048	7／20187	7／28／87	N0	N8
049	7／20／87	7／28／87	ND	ND
050	7／20／87	1／29／87	ND	N0
051	7120187	7／29／37	ND	N0
052	7／20187	7／29：87	No	ND
053	7／20187	7／29／87	ND	ND
054	7／21／87	7／29／87	ND	ND
055	7／21／87	1／20／87	ND	MD
056	7／21／87	7／30／67	NI	ND
057	7／21／日7	7／30／87	N2	ND
053	7／21／87	7／31／67	ND	ND
059	7／21／87	7／31／87	ND	ND
060	7／21／87	8／3／87	ND	ND
064	7／22／87	8／3／97	HD	ND
062	7／22／87	8／3／87	N0	ND
0.3	7／22／67	8／4／87	ND	Na
064	7／22／87	8／4／87	ND	ND
065	7／22／日7	8／4／87	N0	ND
066	7／22／日7	8／4／87	NT	N1
067	1／22／87	8／5／87	ND	ND
058	7／22／67	8／5／97	NI	WD
069	7／22／87	8／5／97	W5	ND

Notes：
90L beloy detectables limits all resilts in ppo（parts per billion）
nd Not detectagle

## Received <br> SEP 181987 <br> Water Quality Division



Date Sampled	7/21	7/21	7/21	7/21	7/21	7/21	7/22	7/22
Date Extracted	7/24	7/24	7/28	7/28	7/29	7/29	7/29	7/29
Date Completed	8/6	B/6	8/6	8/6	8/6	8/6	8/6	9/6
Alachlor (.02)	N. D.	N.D.	N. 0.	N.D.	N.D.	$\mathrm{H}_{4} \mathrm{D}$.	$\mathrm{N} . \mathrm{D}$,	N.D.
Aldrin (.002)	$\mathrm{N}, \mathrm{D}$.	N. D.	N. D.	N, D.	N. ${ }^{\text {d, }}$	N. D.	$\mathrm{N}, \mathrm{D}$.	N. D.
Atrazine (.10)	N.D.	N, D.	2.91	0.77	N, D. ${ }^{\text {. }}$	N. D ,	N. D.	N. ${ }^{\text {d }}$
BHC, alpha 1.00	)N.D.	N. D.	N. D.	N. D.	N.D.	$\mathrm{N}, \mathrm{D}$.	N.O.	N. ${ }^{\text {- }}$
BHC, beta (.00	N.D.	N.D.	N. 0.	N, D.	N.D.	N.D.	N. O .	N. O .
, delta ${ }^{\text {(2)03) }}$	N. ${ }^{\text {d }}$	N, D.	N.D.	N.D.	N, D:	N. ${ }^{\text {. }}$	N. 0.	N.D.
Bromacil (.02)	N.D.	N. ${ }^{\text {, }}$	N.D.	N, D.	N.D.	N.D.	N,D.	N.D.
Hept. Ероя.	N.D.	N, D.	N.D.	N.D.	N, D.	N.D.	N. ${ }^{\text {. }}$	N. D.
Heptachlor   (002)	N.D.	N. D.	N,D.	N. 0.	N. D.	N, D.	N. D,	N. D.
Kelthane	N.D.	N, D.	N.D.	N, D.	N.D,	N. D.	N. 0.	N.O.
Lindane (.001)	N. D.	N, D.	N. ${ }^{\text {\% }}$	N.D.	N, D.	N. D	N.D.	N, D.
Metolachlox (.02)	N. D,	N.D.	N, D.	N. ${ }^{\text {, }}$,	N. D .	N, D.	U.D:	N. N ,
Methoxychlor $(.02)$	N.D.	N, D.	N. D,	N.D.	$\mathrm{N}_{\mathrm{F}} \mathrm{D}$.	N. $\mathrm{D}_{\text {* }}$	N.D.	N, D.
$\text { Metribuzin } 10.004$	N. D.	N. D.	N, D.	H.D.	N.D.	N, D.	$\mathrm{N}, \mathrm{D}_{+}$	N.D.
Chlordane (.01)	N, D.	N.D.	N.D.	N, ${ }^{\text {L }}$.	N.D.	N. D.	N, D.	N.D.
Chlorothalonil $(.004)$	N. D.	N.D.	N.D.	N.D.	N, D.	N.D.	N.D.	N.D.
$\text { Dieldrin } .003)$	N. O.	N.D.	N, D.	N.D.	N. D.	N, D.	N.D.	N.D.
$\text { Endosulfan } \frac{I}{(.007)}$	N, D.	N.D.	N.D.	N.D.	N.D.	N.D.	N,D.	N.D.
Endosulfan II	N.D.	N, D.	N.D.	N. D.	N.D.	N,D.	N.D.	N. D.
$\text { Sulfate }(.017)$	N.D. .	N.D.	N. D.	N. D.	N.D.	N.D.	N.D.	N.D.
Endrin (.007)	N. ${ }^{\text {D }}$	N,D.	N.D.	N, D.	N.D.	N, D.	N.D.	N.D.
Aldehyde (.018)	N, D.	N.D.	N.D.	N. ${ }^{\text {, }}$	N. ${ }_{\text {- }}$	N.D.	N.D.	N.D.
PCB 1016 ${ }^{(.065}$ )	N. D.	N.D.	N.D.	N. D.	N.D.	N. ${ }^{\text {, }}$	N.D.	N. D.
PCB 1221(.065	N.D.	N, D.	N. D .	N.D.	N, D.	N.D.	N.D.	N.D.
PCB 1232 1.065	N. D.	N.D.	N, D.	N.D.	N.D.	N.D.	N.D.	N. D.
PCB 1242 (.065)	N, D,	N.D.	N. D.	N, D.	N. D*	N.D.	N.D.	N. D.
PCB 1248 (.065	N.D.	N.D.	N. D.	N.D.	N. ${ }^{\text {. }}$	N.D.	N.D.	N.D.
PCB 1254 (.065	N. D.	N.D.	N:D.	N.D.	N.D,	N:D.	N: D .	N.D,
PCB 1260 (.065	N.D.							
Perthane (.02)	N.D.	N.D.	N.D.	N.D.	N. ${ }^{\text {D. }}$	N.D.	$\mathrm{N}+\mathrm{D}$.	N.D.
P, $\mathrm{P}^{\prime}-\mathrm{DDD} \mathrm{(.008)}$	N.D.	N.D.	N.D.	N.D.	N. ${ }^{\text {d. }}$	N, D.	N.D.	N.D.
P, $\mathrm{P}^{\prime}-\mathrm{DDE}(.004)$	N, D.	N.D.	N.D.	N.D.	N. D.	N.D.	N. D.	N.D.
Pr $\mathrm{P}^{\prime}$-DDT (.01)	N.D.	N.D.	N. D.	N. D.	N, D.	N.D.	W. D.	N.D.
Simazine (.10)	N. D.	N. D.	N. D,	H.D.	N,D.	N.D.	N.D.	N, D.
Toxaphene( 05 )	N.D.	N. D.	N.D.	N.D.	N.D.	N, D.	N.D.	N. D.


Sample Number	46	47	48	49	50	51	52	53
Date Sampled	7/20	$7 / 20$	7/20	7/20	7/20	7/20	$7 / 20$	7/20
Date Extracted	$7 / 24$	7/24	7/24	$7 / 23$	7/23	7/23	$7 / 23$	7/23
Date completed	8/6	8/6	$8 / 6$	8/6	8/6	8/6	8/6	8/6
Compounds								
orpyrifosl.	N.D.							
2 (.06)	N.D.							
Ethion (.10)	N.D.							
Ethoprop (.06)	N.D.							
Fonofos (.06)	N.D.	N. D.						
Guthion (1.0)	N.D.							
Malathion (.06)	N. D.	N.D.						
Methamidophos	N.D.	N.D.	N.D.	N. D.	N. D.	N.D.	N.D.	N.D.
Parathion (.06)	N.D.							
Mevinphos (.10)	N.D.							
Monocrotophos	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Parathion (.06)	N.D.							
Phorate (.03)	N.D.							
Trithion (.10)	N.D.	N. D.	N.D.	N.D.	N.D.	N. D.	N. D.	N.D.


Sample Number	46	47	48	49	50	51		53
Date Sampled	7/20	$7 / 20$	7/20	7/20	7/20	7/20	7/20	7/20
Date Extracted	7/24	$7 / 24$	7/24	7/23	7/23	7/23	7/23	7/23
Date Completed	8/6	8/6	876	8/6	8/6	8/6	8/6	8/6
Compounds								
Oxamy (2.0)		N.D.	N. D.	N. ${ }^{\text {d }}$	N.D.	N, D.	N,	N
Methomyl (20.0)	N.D.	N.D.	N. D.	N. D.	N. ${ }_{\text {d }}$	N	N. N .	N.
Benomyl (20.0)	N.D.							
Carbofuran (10.0	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.


Sample Number	54	55	56	57	58	59	60	61
Date Sampled	$7 / 21$	7/21	7/21	7/21	$7 / 21$	7/21	$7 / 22$	7122.
Date Extracted	7/24	7/24	7/28	7/28	7/28	7/28	7/29	$7 / 29$
Date completed	8/6	8/6	8/6	8/6	8/6	8/6	8/6	8/6
Compounds								
Chlorpyrifos(.0	N,D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Diazinon (.06)	N.D.							
Ethion (.10)	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Ethoprop (.06)	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Fonofos ${ }^{\text {(.06) }}$	N.D.							
Gutinion (1.0)	N.D.							
Malathion (.06)	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
Methamidophos	N.D.	N. D.	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.
Parathion (.06)	N.D.							
Mevinphos (.10)	N.D:	N.D.						
Monocrotophos	N.D:	N.D.						
Parathion (.06)	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.	N.D.
Phorate (.03)	N.D.							
Trithion (.10)	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.	N.D.


Sample Number	54	55	56	57	58	59	60	61
Date Sampled	7/21	7/21	7/21	$7 / 21$	7/21	7/21	7/22	7/22
Date Extracted	7/24	7/24	7/28	7/28	7/29	7/29	7/29	$7 / 29$
Date Completed	8/6	8/6	8/6	8/6	8/6	8/6	8/6	8/6
Compounds						N. D .	N. O .	N
Oxamyl (2.0)	$\mathrm{N}, \mathrm{O}_{+}$	N.D.						
sethomyl (20.0)	N.D.	N.D.	N.D.	N.D.	N, D.	$\mathrm{N}, \mathrm{D}$,	$\mathrm{N} \cdot \mathrm{D}$	N
Eenomyl (20.0)	N.D.							


Sample Number	46	47	48	49	50	51	52	53
Date Sampled	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$
Date Extracted	$8 / 7$	$8 / 7$	$8 / 7$	$8 / 7$	$8 / 7$	$8 / 7$	$8 / 10$	$8 / 6$
Date Completed	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 18$
Compound								
Aldicarb (2.0)	N.D.							


Sample Number	46	47	48	49	50	51	52	53
Date sampled	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$
Date Extracted	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$
Date Completed	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$
Compound								.
Paraquat (3.0)	N.D.							


Sample Number	46	47	48	49	50	51	52	53
Date Sampled	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$	$7 / 20$
Date Completed	$7 / 27$	$7 / 27$	$7 / 27$	$7 / 27$	$7 / 27$	$7 / 27$	$7 / 27$	$7 / 27$
Glyphosate (100	N.D.							


Sample Number	46	47	48	49	50	51	52	53
Date Sampled	7/20	7/20	7/20	7/20	7/20	7/20	7/20	7/20
Date Extracted	7/24	7/24	7/24	7/23	7/23	7/23	7/23	7/23
Date Completed	8/12	8/12	8/12	8/12	8/12	8/12	8/12	8/12
Compounds								
2.4-5 (2.0)	N.D.							
2,4-DP (0.8)	N.D.							
2,4,5-T (0.6)	N.D.	N.D.	N.D.	N.D.	N.D.	N.D.	N. D.	N.D.
2,4,5-TP (0.4)	N,D.	N.D.						


Sample Number	54	55	56	57	58	59	60	61
Date Sampled	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 22$
Date Extracted	$8 / 6$	$8 / 6$	$8 / 6$	$8 / 6$	$8 / 6$	$8 / 6$	$8 / 10$	$8 / 10$
Date Completed	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 18$	$8 / 27$	$8 / 27$	$8 / 27$	$8 / 27$
Compound								
Aldicarb (2.0)	N.D.							


Sample Number	54	55	56	57	58	59	60	61
Date Sampled	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 22$
Date Extracted	$7 / 29$	$7 / 29$	$7 / 29$	$7 / 29$	$7 / 29$	$7 / 30$	$7 / 30$	$7 / 30$
Date Completed	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 3$	$8 / 4$	$8 / 4$
Compound								
Paraquat (3.0)	N.D.							


Sample Number	54	55	56	57	58	59	60	61
Date Sampled	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 22$
Date Completed	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 28$	$7 / 29$
Glyphosate (100	N.D.							


Sample Number	54	55	56	57	58	59	60	61
Date Sampled	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 21$	$7 / 22$
Date Extracted	$7 / 24$	$7 / 24$	$7 / 28$	$7 / 28$	$7 / 29$	$7 / 29$	$7 / 29$	$7 / 29$
Date Completed	$8 / 13$	$8 / 13$	$8 / 13$	$8 / 13$	$8 / 13$	$8 / 13$	$8 / 13$	$8 / 13$
Compouncs								
$2,4-$ D (2.0)	N.D.							
$2,4-$ DP (0.8)	N.D.							
$2,4,5-T(0.8)$	N.D.							
$2,4,5-T P(0.4)$	N.D.							


SEnole Munime	46	47	48	49	50	51	52	53
Date serolec	7／20	7／20	7／20	7／20	7／20	7／20	7／20	7／20
	$7 / 24$	7／24	7／24	$7 / 23$	7／23	7／23	7／23	7／23
Dニこe CcmミIeted	8／6	8／6	8／6	8／6	8／6	8／6	8／6	8／6
Ccnscungs								
Ametryn（10．0）	N．D．							
Prometryn（10．0）	N．D．							


Samgie Numbez	54	55	56	57	58	59	60	61
	7／21	7／21	7／21	7／21	7／21	7／21	7／22	$7 / 22$
Dȧョ Eホもエacさきも	7／24	7／24	7／28	2／28	7／29	7／29	7／29	7／29
Deta Ccmiletez	8／6	$8 / 5$	8／6	8／6	8／6	8／6	8／6	8／6
Com＝cuses								
Ametryn（10．0）	N．D．	$\mathrm{N}, \mathrm{D}$						
Frometryn（10．0）	N．D．							


	62	63	64	65	66	67	68	69
	7／22	7／22	7／22	7／22	7／22	$7 / 22$	$7 / 22$	$7 / 22$
Dさちき ミ゙くここさくさきる	7／31	7／31	7／31	$2 / 31$	8／3	8／3	8／3	8／3
	8／6	8／6	8／6	8／6	8／6	8／7	8／7	8／7
	N．D．							
Pronetryn (10.0)	N．D．							




























$$
\begin{aligned}
& \begin{array}{llllll}
\text { 另 } \\
=1 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { PROJECT NUMBER } 874260000 \\
\text { FIELD GROUP StA }
\end{array} \\
& \text { ENVIRONMENTAL SCIENCE \& ENGINEERING } \\
& \text { 09/29/B7 STATUS: FINAL } \\
& \text { PAGE\# } 4
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\pi}{\infty} \text { 合 合 合 }
\end{aligned}
$$


[^0]:    WCA Inflows

[^1]:    * TARGET CONCENTRATIONS FOR S-191 ARE 0.67 MG P/L AND 1.72 MG N/L BY THE THIRD YEAR OF THE OPERATING PERMIT

[^2]:    ${ }^{1}$ RANGE OF MINIMUM DETECTION LIMIT IN UG/KG - DRY WEIGHT OR PPB
    ${ }^{2}$ MINIMUM DETECTION LIMIT IN UG/L OR PPB
    ${ }^{3}$ PARAMETER NOT ANALYZED DUE TO LACK OF SUITABLE ANALYTICAL METHOD

[^3]:    ${ }^{1}$ RANGE OF MINIMUM DETECTION LIMIT IN UG/KG - DRY WEIGHT OR PPB
    ${ }^{2}$ MINIMUM DETECTION LIMIT IN UG/L OR PPB
    ${ }^{3}$ PARAMETER NOT ANALYZED DUE TO LACK OF SUITABLE ANALYTICAL METHOD

[^4]:    SEW187

