TECHNICAL PUBLICATION 85-1

SHORT TERM EFFECTS OF A FRESHWATER DISCHARGE ON THE BIOTA OF ST. LUCIE ESTUARY, FLORIDA

March 1985

By
Daniel E. Haunert and
J. Robb Startzman

> This public document was promulgated at an annual cost of $\$ 268.50$. or $\$.53$ per copy to inform the public regarding water resource studies of the District. RPD $3855 C$

South Florida Water Management District

Resource Planning Department
Environmental Sciences Division

EXECUTIVE SUMMARY

The productivity of the St. Lucie Estuary is influenced by the salinity regime in the system and is frequently altered by the rapid introduction of fresh water runoff. The most dramatic alterations in salinity occur during regulatory discharges from Lake Okeechobee into the South Fork of the estuary. For the duration of these discharges, salinities are reduced far below normal.

Limited data concerning the environmental effects of regulatory discharges on the St. Lucie Estuary were available before 1977 and the District began investigations to document changes in the fish and benthic communities and water quality during controlled discharges. Results from these investigations will ultimately provide the basis for development of methods and procedures that will be sensitive to the ecology of the estuary. Results of a previous study indicated that a controlled three week 1000 cfs discharge had no significant effect on biota; however, this study demonstrated substantial changes in the composition and abundance of benthos and distribution of fish as the result of a three week 2500 cfs discharge.

Salinity and bettom substrate are important environmental factors that affect fish and benthic communities. Before the 2500 cfs discharge began, the inner estuary had a salinity of 5 to 18 ppt and the middle estuary had a salinity of 18 to 30 ppt . Within these two areas, organically rich mud bottoms were inhabited by a high density but low diversity of estuarine benthos. The fish community had little diversity and was dominated by lower trophic level fish, especially bay anchovies. In contrast, sand and shell substrates with seagrasses that occurred in more saline (30 to 36 ppt) waters of the outer estuary, provided habitat for diverse populations of estuarine and marine benthos and fish.

Salinity throughout the estuary was altered by the 2500 cfs discharge. Within the first two weeks of discharge, salinities in the inner and middle estuary were reduced to 0.5 to 5.0 ppt (oligohaline). At the outer limits of this low salinity zone, a salt wedge occurred that remained relatively stable for the duration of the discharge.

The initial reduction in salinities and increase in turbidity in the inner and middle estuary changed the benthic and fish communities. The most apparent changes to benthos occurred where salinity was reduced below 5 ppt during the first two weeks of discharge. The majority of a 44% reduction in the number of benthic organisms resulted from a severe decrease in numbers of the bivalve, Mulinia lateralis, which perished from low salinities, and the amphipod, Ampelisca abdita, which migrates when stressed by salinity and/or increased turbidity. However, a dramatic increase in abundance of the fresh water midge larvae, Chironomus crassicaudatus and a moderate
increase in numbers of the polychaete, Streblospio benedictioccurred. Six fresh water species were introduced to the inner estuary and four estuarine species were lost or severely reduced in numbers.

The composition and distribution of fish changed with the decline in salinity. Gizzard shad, white catfish, mosquito fish, and black crappie are fresh water species that moved into the inner estuary from upstream. The euryhaline larvae of ladyfish, tarpon, and bonefish, and adult snook moved into the South Fork of the inner estuary from downstream. Several species such as the striped anchovy, pinfish, and pigfish, which are less tolerant of low salinities, avoided the inner estuary. In addition to the above noted fish movements, one other prominent change occurred. The fish occupying the lower trophic level in the inner estuary became more uniformly distributed as the area of low salinity increased during the initial two weeks of discharge. A surge of inorganic nitrogen, which occurred at the onset of the discharge, resulted in an algae bloom that may have provided an additional food supply for planktivorous fish. The dispersion and availability of food organisms, including A. abdita and C. crassicaudatus, and organic materials may have been responsible for the increased distribution of these fish. The lower trophic level fish returned to their previous distribution in the estuary after the low salinity zone was established and most of the changes in the benthic communities had apparently taken place. In spite of the observed movements of some species, the fish communities (as represented by species presence throughout the estuary), remained stable throughout the five-week experimental discharge.

Under natural conditions the size of the low salinity zone in the St. Lucie Estuary fluctuates in response to seasonal freshwater runoff from the watershed. Many benthic organisms have adapted to transient, low salinity conditions that occur in the inner estuary but cannot tolerate exposure to fresh water for extended periods. The three week, 2500 cfs discharge rapidly increased the size of oligohaline zone to include a large portion of the middle estuary and induced changes in the fish and benthic communities that normally occur in a limited area of the inner estuary. Subsequent modeling studies indicated that if the discharge had continued for another 10 days the inner estuary would have become fresh water and threatened the survival of existing oyster reef communities. Previous regulatory discharges have been large enough and long enough to create fresh water conditions in the middle estuary for extended periods. The loss of oysters in the inner and middle estuary would decrease the carrying capacity of the system since these organisms provide an important food source and habitat for many other organisms.
PAGE
Executive Summary .. i
List of Tables ii
List of Figures iii
Acknowledgements iv
Introduction 1
Description of Study Area 1
Sampling Methods 6
Statistical Methods 6
Results 30
Summary of Results 36
Literature Cited 37
Appendix A Water Temperatures in the St. Lucie Estuary During the 2500 cfs Discharge Study A-1
Appendix B Quantitative Listing of Benthic Fauna
Before and After the 2500 cfs Discharge B-1
Appendix C Fish Captured During the 2500 efs Discharge Study C-1

LIST OF TABLES

TABLE

1 Salinity at Low Tide in the North Fork During the 2500 cfs Discharge Study
2 Salinity at Stations 8C and 9C During the 2500 cfs Discharge Study
3 Dissolved Oxygen in the North Fork and Outer Estuary During the 2500 cfs Discharge Study

4 Turbidity Throughout the St. Lucie Estuary During the 2500 cfs Study
5 Depths and Substrate Description at Ekman Stations in the St. Lucie Estuary
6 Density and Percent of Population for each Class of Benthos in the Inner and Mid-estuary Before and After theDischarge

7 Total Relative Abundance of the Benthic Species Culled at 1\% Before and After Discharge
8 Density and Percent of Population for each Class of Benthos in the Outer Estuary Before and After the Discharge

9 Fish Caught During the 2500 cfs Discharge Study in Decreasing Order
of Numerical Abundance, Scientific and Common Name
10 Fish Presence Throughout the St. Lucie Estuary During the 2500 cfs Discharge Study
11 Fish Response to the 2500 cfs Freshwater Discharge
12 Comparison of Percent Presence Lower Trophic Level Fish, with Chi Square
13 Number of Fish Species in the Inner and Mid-estuary During the 2500 Discharge Study
14 Comparison of the Number of Fish Species Populations with t Statistic

LIST OF FIGURES

FIGURE

PAGE

1 St. Lucie Estuary, Florida 2
2 St. Lucie Estuary Drainage Basins 3
3 Bathymetry of the St. Lucie Estuary 4
4 St. Lucie Estuary Sampling Transects 5
5 Rainfall in Tributary Basins of the St. Lucie Estuary, June-July, 1978 8
6 Discharge into the St. Lucie Estuary 6/15/78 thru 7/20/78 9
7 Salinities and Stratification Coefficients in the St. Lucie Estuary, 4 Days Before Discharge and 1 Day of Discharge 10
8 Salinities and Stratification Coefficients in the St. Lucie Estuary, 8 and 18 Days of Discharge 11
$9 \quad$ Salinities and Stratification Coefficients in the St. Lucie Estuary, 2 and 10 Days Post Discharge 12
10 Dissolved Oxygen in the St. Lucie Estuary, 4 Days Before Discharge and 1 Day of Discharge 13
11 Dissolved Oxygen in the St. Lucie Estuary, 8 and 18 Days of Discharge 14
12 Dissolved Oxygen in the St. Lucie Estuary, 2 and 10 Days Post Discharge 16
13 Turbidity in the St. Lucie Estuary During the 2500 cfs Discharge Study 17
14 Nutrients at S-80 During 2500 Discharge Study 18
15 Percent Presence of Benthic Species Before and After the 2500 cfs Discharge. Inner and Middle Estuary Stations 1SCX through 6SCX, Sampled on 6/13/78 and 7/10/78 20
16 Percent Presence of Benthic Species Before and After the 2500 cfs Discharge. Outer Estuary Stations 7SCX through 10SCX, Sampled on 6/13/78 and 7/10/78 22
17 Phenogram Showing the Similarity of Trawl Samples Collected During the 2500 cfs Discharge Study 27
18 Phenogram Showing the Similarity of Seine Samples Collected During the 2500 cfs Discharge Study 27
19 Percent Presence of Fish in the Inner and Middle Estuary During the 2500 cfs Discharge Study 29
$20 \quad$ Salinity Zones in the St. Lucie Estuary, 4 Days Before Discharge and 1 Day of Discharge 31
21 Salinity Zones in the St. Lucie Estuary, 8 and 18 Days of Discharge 32
22
Salinity Zones in the St. Lucie Estuary, 2 and 10 Days Post Discharge 33
23 Salinity Zones in the St. Lucie Estuary Before (6/17/77) and After (7/11/77) the 1000 cfs Discharge Study 35

ACKNOWLEDGEMENTS

The authors wish to commend the South Florida Water Management District for continually striving to maintain and enhance estuarine environments within the District. Ed Terczak, District entomologist, identified the macroinvertebrates and Grant Gilmore of the Harbor Branch Consortium supplied fish taxonomic information and use of their reference collection. Compilation of data were completed with the willing assistance of Al Harkabus. Special thanks to Jim Milleson, Joel VanArman, and other associates for their critical review of the report.

Introduction

The St. Lucie Estuary is an important ecological resource that many aquatic species utilize for part or all of their life history. Almost 65 percent of the commercial fish and most of the sport fish in the South Atlantic Estuarine area are dependent on systems similar to the St. Lucie Estuary for one or more phases of their development (Bollman, 1975).

Salinity is an important factor in estuaries because it influences the presence, distribution, abundance, rate of development, and ultimately the survival of many organisms. For these reasons, the rate and magnitude of change in the salinity gradient throughout the year affects the overall productivity of the estuary. The salinity gradient in the St. Lucie Estuary has been altered in several ways. Canals have been dredged in the basins that drain into the North Fork to provide flood protection and irrigation for agriculture and urban development. These canals discharge stormwater into the estuary much faster than would normally occur; therefore, salinity can be altered rapidly. The St. Lucie Canal, which provides a drainage outlet for Lake Okeechobee, flows into the southern reaches of the South Fork. Regulatory discharges are made periodically from Lake Okeechobee when water levels exceed the flood control schedule developed and implemented by the Army Corps of Engineers and the South Florida Water Management District (SFWMD). These large volume regulatory discharges lower the estuarine salinity gradient far below the normal range for the duration of the discharge. The environmental effects associated with the timing, duration, rate, and quality of water released during these discharges have concerned local citizens, interest groups, and the SFWMD. Major concerns are related to the effects of lowered salinity and increased sediment load on the biota and physical characteristics of the estuary.

The St. Lucie Estuary has received regulatory discharges from Lake Okeechobee since the completion of the St. Lucie Canal (C-44) in 1924. This canal was enlarged in 1949 and freshwater discharges of near 6000 cfs occurred many times. The lake regulation schedule was raised in 1974 and provided more water storage capacity which decreased the amount of water discharged to tide-water. However, in spite of this change, a large regulatory discharge of about 6700 cfs occurred for two weeks in August 1974.

A limited amount of past research was completed which documented some of the effects of discharges on the fish and benthic algae populations of the estuary (Gunter, 1959; Phillips and Ingle, 1960; Springer, 1960; Phillips, 1961; Heald, Iverson, and Berkeley, 1972). These studies, however, were not experimentally designed to document the environmental changes that occurred during a controlled discharge, lasting for a predetermined amount of time. To provide more detailed information, the SFWMD, in cooperation with the Army Corps of Engineers, began investigations which monitored the effects of controlled freshwater releases from Lake Okeechobee on the biota and water quality of the St. Lucie Estuary. A study of the effects of a three week, 1000 cfs discharge in June and July 1977 indicated there were no significant changes in the benthic and fish populations (Haunert and Startzman, 1980); therefore, the estuary had not been subjected to discharges in excess of 1000 cfs since August 1974.

Biological conditions within the estuary were probably representative of the "steady state" conditions before a study of a three-weeh, 2500 cfs controlled discharge began in June 1978. This study documents that significant changes occurred in the distribution of benthos and fishes in the estuary during this controlled discharge event.

Description of Study Area

The St. Lucie Estuary is located in Martin and St. Lucie Counties on the southeast coast of Florida (Figure 1). Annual rainfall averages about 50 in. with most of this rainfall occurring from May to October. Maximum rainfall events generally occur in Septernber. Citrus and improved pasture are the major land uses in the watershed, but recently urban development has increased. Canals C-23 and C-24 drain numerous smaller canals and have a combined drainage basin area of $333 \mathrm{mi}^{2}$. These two canals discharge surface water runoff into the North Fork of the St. Lucie Estuary at structures S-48 and S-49 (Figure 1). Since the completion of the Port Mayaca structure (S-308) on Lake Okeechobee in 1978, runoff from the C-44 basin ($189 \mathrm{mi}^{2}$) is discharged through the St. Lucie Lock and Dam (S-80) into the South Fork of the estuary when S-308 is closed. The St. Lucie Estuary watershed (Figure 2) also includes the Tidal St. Lucie and North St. Lucie Basins (68 and $189 \mathrm{mi}^{2}$) and several smaller basins (4,5 , and 6).

The estuary has been divided into four major areas for the purpose of this study: the North and South Forks (collectively termed the inner estuary); the midestuary; and the outer estuary. The main body of the North Fork is about four miles long, has a surface area of $4.5 \mathrm{mi}^{2}$, and a total volume of $998.5 \times 10^{6} \mathrm{ft}^{3}$ at mean sea level. The center of the North Fork is approximately 10.0 ft deep, and depth increases to 15.0 ft at the confluence with the South Fork (Figure 3). The South Fork has about half the surface area and volume of the North Fork ($1.9 \mathrm{mi}^{2}$ and $468.7 \times 106 \mathrm{ft}^{3}$). Depths within the South Fork exceed 9.0 ft in the navigation channel but are relatively shallow outside the channel, especially in the vicinity of the Palm City Bridge (Figure 4). The mid-estuary begins at the Roosevelt Bridge, extends east for three miles and "dog-legs" to the southeast for two miles until it is constricted at Hell Gate Point. The surface area and volume of the mid-estuary are similiar to the North Fork ($4.7 \mathrm{mi}^{2}$ and $972.7 \times 10^{6} \mathrm{ft}^{3}$). At Roosevelt Bridge, depths of 20.0 ft occur with a cross section of only 1000 ft . This sharp relief is contrasted by the gradual depth changes which occur east of the bridge to Hoggs Cove, where maximum depths are similar to the North Fork (10.0 ft) across an average distance of 6000 ft . From Hoggs Cove to Hell Gate Point, the maximum depths increase from 10.0 ft to a small area that has a depth of 26.0 ft . The cross-sectional area at Hell Gate Point ($16,750 \mathrm{ft}{ }^{2}$) is almost identical to the cross-section at Roosevelt Bridge ($16,650 \mathrm{ft}^{2}$). From Hell Gate Point, water flows into the outer estuary past the Manatee Pocket to the Crossroads, and meets with the Indian River and Intracoastal Waterway producing complex tidal currents near the St. Lucie Inlet.

FIGURE 1. ST. LUCIE ESTUARY, FLORIDA

FIGURE 3. BATHYMETRY (in Ft.) OF ST. LUCIE ESTUARY, FLORIDA IN 1981
FIGURE 4. ST. LUCIE ESTUARY SAMPLING TRANSECTS

Sampling Methods

A 2500 cfs controlled freshwater discharge from the St. Lucie Lock and Dam (S-80) into the South Fork of the St. Lucie Estuary was made from 19 June to 10 July 1978. Changes in the salinity gradient, water quality, fish, and benthic communities were monitored to ascertain the effects of the discharge. Samples were taken from one week before the discharge began to four days after it ended. Eleven transects were established throughout the estuary with three sample sites ($\mathrm{S}, \mathrm{C}, \mathrm{X}$) on each transect (Figure 4).

Physical Parameters

Low and high tide measurements of conductivity (which is directly related to salinity), dissolved oxygen, and temperature were taken every week at each "C" (mid-channel) site at 0.5 m depth intervals with a Hydrolab Surveyor Model 6D. Studies lasted for about three hours, began at slack tide in the St. Lucie Inlet (station 10C), and proceeded upstream to the inner estuary. Since there was approximately a three hour time lag for slack tide between the outer and inner estuary, it was possible to obtain near slack tide measurements at most sample locations.

Water Quality

Surface turbidities were monitored twice a week at " $\mathrm{C}^{\prime \prime}$ sites during the latter part of the outgoing tide. Jackson Turbidity Units (JTU) were determined with a Hach Laboratory Turbidimeter Model 1960A. 'Triplicate water quality samples were taken directly upstream of S-80 twice a week. Samples were collected about 15 cm below the surface to avoid organic surface film. Analyses were completed for nutrients (ammonia N, nitrite N, nitrate N, and orthophosphorus) using methods outlined in APHA Standard Methods, 14 th Edition.

Benthic Macroinvertebrates

Benthic macroinvertebrates were sampled at three locations (S, C, and X) along transects 1 to 10 . Two benthic grabs with a standard Ekman dredge ($232 \mathrm{~cm}^{2}$) were combined at each station. Samples were taken on $13 \mathrm{~J} u n \mathrm{n}$, six days prior to the discharge, and on 10 July, the final day of discharge. The substrate was described before the sample was rinsed with water through a 841 micron pore size, A.S.T.M. standard sieve. Organisms retained in the sieve were rinsed into a glass container and preserved and stained with 10% formalin, 0.025% rose bengal solution. Dissolved oxygen, specific conductance, and temperature were measured near the bottom at the time of sampling.

Fish

Fish species composition in the estuary was sampled weekly for five weeks (before, during, and after the discharge) at eighteen locations during the study. A 7.6 m seine with 3.2 mm mesh was towed along two previously marked 15 m sections of shoreline at each of the eleven " S " locations. In addition, a 4.9 m flat otter trawl with a 12.7 mm bar mesh wing and a 6.4 mm bar mesh tail was towed behind a boat at about three knots for ten minutes along the seven " T " lines depicted in Figure 4. Large fish specimens were identified, measured and released while the remainder of the sample was preserved in a 10%
formalin solution. Temperature at the surface was measured at the time of sampling with a hand-held thermometer and read to the nearest $0.1 \circ \mathrm{C}$. Surface salinity was measured using a temperature compensated refractometer, read to the nearest 0.5 ppt . The refractometer was referenced to standard solutions for calibration.

Field Observations

In addition to sampling water and biota, field observations of unusual events were documented. The response of oysters to the discharge was observed. Several clusters of adult oysters (Crassostrea virginica) were collected in the inner estuary and placed in shallow water at station 4 S . Each week when seine samples were collected at station $4 S$ the condition of the oysters was noted.

Statistical Methods

Stratification coefficients were calculated for salinity by dividing the mean of the vertical profile by the reading taken at the 0.5 m depth (Van de Kreeke, J. and J.D. Wang, 1976).

Salinity distributions are illustrated by use of a Synagraphic Mapping System (SYMAP), a computer program that constructs concentration gradients to spatially illustrate parameter values (Dougenik and Sheehan, 1975).

Percent presence and total relative abundance of benthic macroinvertebrates were determined using a modification of the methods of Walker and Bambach (1974). Percent presence was calculated as the number of sites at which a species occurred divided by the total number of sites. Total relative abundance is the number of individuals of one species divided by the total number of individuals of all species, and is expressed as a percentage. Chi square analysis at 95% confidence level was used to test the difference between the two sets of benthic samples using the percent presence and the relative abundance.

Similarity and change in benthic species composition were examined by an index of similarity (Odum, 1971) and by a related index of percent difference (Sorenson, 1948). Species diversity was determined with Shannon-Weiner Species Diversity Index $\log _{2}$ (Shannon, 1963).

The percent presence of the 33 fish that were most often captured before the discharge were compared with the percent presence of these same fish species after the discharge began. Chi square analysis at 95% confidence level was used to find differences among the five sets of samples for fishes at the lower trophic level. The number of fish species captured at each station throughout the study were tested for homogeneity of variance using Bartletts' test and a F max-test at the 95% confidence level. Significant differences among the number of species captured were determined with a t- test at the 95% confidence level (Sokal and Rohlf, 1969).

A cluster analysis was performed on fish presenceabsence data for the seine and trawl samples (Pinkham and Pearson, 1976).

Results

Hydrology

Measured sources of freshwater inflow into the inner estuary were rainfall and discharges from three structures. A controlled discharge of 2500 cfs at $\mathrm{S}-80$
in the South Fork began on 19 June 1978 and continued for 22 days until 10 July 1978. Discharges of much lower volumes were periodically made from C 23 and $\mathrm{C}-24$ during the study period. A comparison of the average basin rainfall (Figure 5) with the discharge records (Figure 6) demonstrates the response of the structures to storm runoff. By comparison, discharges from S-80 provided the greatest amount of fresh water and therefore had the greatest impact on the physiochemical character of the estuary

Salinity

A salinity gradient of 11 to 33 ppt existed in the St . Lucie Estuary from S-80 to the inlet on 15 J une, four days before the discharge began. Fresh water tributary flow and insufficient mixing caused a slight stratification of salinity in the South Fork (Figure 7A).

After one day of discharge, salinities in the area from S-80 to the Palm City Bridge were reduced to almost fresh water. Downstream, near the Roosevelt Bridge (station 4), a freshwater lens over brackish water existed. This highly stratified area (stratification coefficient of 4.0) was between the well mixed fresh water in the South Fork and salt water in the outer estuary that had stratification coefficients near 1.0 (Figure 7B). After day one, salinities in the North Fork (Table 1) were only slightly reduced by about 5 ppt at Coconut Point (station 2).

TABLE 1. SALINITY (ppt) AT LOW TIDE IN THE NORTH FORK DURING THE 2500 CFS DISCHARGE STUDY					
Station	Date	Mean	Min.	Max.	S.C.*
15	$6 / 15$	10.9	10.2	12.7	1.05
	6/20	11.8	11.1	12.4	1.03
	6/27	3.0	2.0	4.8	1.35
	$7 / 7$	1.2	1.2	1.2	1.04
	7112	0.9	0.8	0.9	96
	7/20	2.0	1.8	3.1	1.14
2C	6/15	16.3	14.3	20.1	1.06
	6/20	11.7	8.3	14.5	1.30
	6/27	6.0	3.1	16.8	1.95
	777	1.8	1.5	2.0	1.12
	$7 / 12$	1.3	1.3	1.5	1.05
	$7 / 20$	4.3	4.2	4.3	1.05
*S.C. $=$ stratification coefficient					

After eight days of discharge, salinities in the North Fork were reduced by discharges from S-48 and $\mathrm{S}-80$ (Table 1) and salinities within the mid-estuary had dropped as a result of less dense water (about 6 ppt) moving out of the inner estuary (Figure 8A). Increased stratification and reduced salinities at the St. Lucie Inlet (station 10), station 8 in the Indian River, and station 9 in the Intracoastal Waterway showed that the outer estuary was just beginning to respond to the 2500 cfs discharge after eight days of flow (Figure 8A and Table 2).

Figure 8B represents the gradient after 18 days of discharge (7 July). The inner estuary was almost entirely fresh water and a well-defined salt wedge had formed in the mid-estuary. Salinity measurements at the St. Lucie Inlet were significantly lower than after

TABLE 2. SALINITY (ppt) AT STATIONS 8C AND 9C DURINGTHE 2500 CFS DISCHARGE STUDY

Sta.	Date.	Mean	Min.	Max.	S.C.*	Tide Study
8 C	6/15	33.7	32.1	39.1	1.05	Low
	6/16	34.9	34.5	34.8	1.00	High
	6/20	33.4	33.5	33.5	1.00	Low
	6/22	33.2	30.8	34.4	1.05	High
	6/27	37.9	35.3	39.3	1.02	Low
	6/29	26.8	24.1	30.2	1.10	High
	7/6	28.1	15.6	29.5	1.00	High
	$7 / 7$	24.9	23.9	25.5	1.03	Low
	7/10	32.2	29.5	32.8	1.00	High
	$7 / 12$	24.8	24.5	24.9	1.00	Low
	7/20	292	29.2	29.5	1.00	Low
9 C	6/15	31.6	31.4	31.8	1.00	Low
	6/16	32.4	32.2	32.4	1.00	High
	6/20	29.8	28.8	30.2	1.00	Low
	6/22	29.5	29.4	29.5	1.00	High
	6/27	34.3	30.5	38.1	1.10	Low
	6/29	20.0	18.6	21.4	1.10	High
	7/6	26.1	19.5	31.4	1.26	High
	$7 / 7$	19.8	12.3	25.5	1.16	Low
	7/10	21.6	15.3	29.1	1.34	High
	7/12	18.6	13.3	22.2	1.24	Low

*S.C. $=$ stratification coefficient
eight days, indicating that discharges were no longer being retained within the inner and mid-estuary.

Releases from S-80 ceased on 10 July 1978. Two days after discharges had ceased (Figure 9A), salinities and the amount of stratification were very similar throughout the system to those found on 7 July, three days before the discharge stopped. One additional salinity study was completed on 20 July, 10 days after the discharge stopped (Figure 9B), and showed that the system had returned to an almost linear salinity gradient with moderate stratification in the South Fork. This gradient, however, was lower than the gradient that existed before discharges began.

Dissolved Oxygen (D.O.)

Dissolved oxygen concentrations were highly stratified in the inner and middle estuary prior to the discharge (Figure 10A; Table 3), whereas the oxygen concentrations exhibited a more uniform distribution throughout the water column in the outer estuary. After one day of controlled releases and for the rest of the discharge period, the waters from S-80 to the Palm City Bridge were no longer stratified but were well mixed and highly oxygenated (Figures 10B to 11B). Following 18 days of $S-80$ releases, an obvious zone of oxygen depletion ("D.O. sag") had developed at station 6 showing comparatively low mean and bottom D.O's due to sustained salinity stratification (Figure 11B). However, outer estuary stations 8 and 9 had relatively high D. O's and were well mixed. The North Fork primarily had high oxygen concentrations and stratified conditions throughout the study (Table 3). In the South Fork, two days after the discharge stopped, the vertical D.O. concentrations remained high but were less uniform than during the discharge. Ten days after the discharge, however, the D.O. distribution in the water column returned to the

FIGURE 5. RAINFALL IN TRIBUTARY BASINS OF THE ST. LUCIE ESTUARY, JUNE-JULY, 1978

FIGURE 6. DISCHARGES INTO THE ST. LUCIE ESTUARY 6/15/78 THRU 7/20/78

FIGURE 7. SALINITIES AND STRATIFICATION COEFFICIENTS IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

June 27, 1978--8 Days of Discharge

July 7, 1978-18 Days of Discharge

DISTANCE FROM S-80 LOCK RND DAM. $M \times 10 G 0$

FIGURE 8. SALINITIES AND STRATIFICATION COEFFICIENTS IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

July 12, 1978-2 Days Post Discharge

July 20, 1978-10 Days Post Discharge

FIGURE 9. SALINITIES AND STRATIFICATION COEFFICIENTS IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

June 15, 1978--4 Days Before Discharge

June 20, 1978-1 Day of Discharge

FIGURE 10. DISSOLVED OXYGEN IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

June 27, 1978--8 Days of Discharge

July 7, 1978-18 Days of Discharge

FIGURE 11. DISSOLVED OXYGEN IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY
highly stratified conditions measured before the discharge began (Figure 12).

Temperature

The average water temperature ranged from $31.5^{\circ} \mathrm{C}$ in the inner estuary to $27.1^{\circ} \mathrm{C}$ at the St. Lucie Inlet prior to the discharge. After one day of discharge, the uniform temperatures from the surface to the bottom indicated the water was well mixed from $\mathrm{S}-80$ to the Palm City Bridge. This well mixed water remained for the duration of the discharge. A general trend of higher temperatures in the inner estuary and an overall increase in temperature for the whole estuary occurred as the summer progressed (Appendix A).

Turbidity

Antecedent conditions that are shown in Table 4 reveal turbidity maximums where the estuary widens in the South and North Forks (stations 1 and 3). After the discharge began the most pronounced changes in turbidity occurred in the South Fork to the Roosevelt Bridge area (station 5). Accumulated fine sediments from the St. Lucie Canal (C-44), downstream to about Cabana Point (station 3), were resuspended during the first several days of discharge resulting in rapid increases in turbidity in this area (Figure 13). Further downstream at stations 4 and 5 , turbidity slowly increased during the first week of discharge as suspended solids and low salinity water moved out of the system. Stations 6, 7, and 10 in the middle and outer estuary showed only a slight increase in turbidity over background levels. Turbidity measurements in the Indian River (stations 8 and 9) showed no noticeable increase or decrease throughout the study (Table 4).

Nutrients

Nutrient concentrations in the discharge water from S-80 changed rapidly during the first days of releases. Figure 14 shows that ammonia N, nitrite N, and nitrate N dramatically increased on the first day

TABLE 3. DISSOLVED OXYGEN (ppm) IN THE NORTH FORK AND OUTER ESTUARY DURING THE 2500 CFS DISCHARGE STUDY			
Date	Mean	Min.	Max.
NORTH FORK STATION $1 C$			
6/15	8.4	5.0	9.3
6/20	6.8	5.2	8.0
$6 / 27$	6.8	5.9	7.5
$7 / 7$	6.0	5.0	6.4
$7 / 12$	7.3	4.9	8.7
7/20	9.3	7.6	9.6
NORTH FORK STATION 2 C			
6/15	6.7	0.9	8.4
6/20	6.5	2.8	10.4
6/27	7.9	0.7	9.8
$7 / 7$	7.1	4.6	8.7
7712	6.8	5.3	7.8
$7 / 20$	6.2	1.3	9.6
OUTER ESTUARY STATION 8 C			
$6 / 15$	7.2	7.0	7.4
6/20	9.2	8.8	9.9
6/27	7.8	7.4	8.4
$7 / 7$	6.5	6.3	7.0
7/12	6.3	6.0	6.7
7/20	9.7	9.2	10.6
OUTER ESTUARY STATION 9C			
6/15	7.8	7.7	7.9
6/20	9.2	9.1	9.4
$6 / 27$	7.2	6.6	7.6
$7 / 7$	7.0	6.8	7.3
$7 / 12$	7.3	6.7	8.0
$7 / 20$	9.4	9.3	9.8

TABLE 4. TURBIDITY (JTU) THROUGHOUT THE ST. LUCIE ESTUARY DURING THE 2500 CFS STUDY

Sta. ${ }_{\text {Di }}$	Distance (KM) from S-80	Discharge ${ }_{6-19}$ Starts			${ }_{6}$ Sample Date		Discharge Stops		
		6-16	$\frac{6-19}{6-20}$	6-22			7-6	$\frac{7-10}{7-11}$	7-14
1		7.0	ND	6.0	7.8	5.5	9.5	7.3	10.0
2		4.8	ND	6.3	9.6	5.0	9.0	9.2	8.2
5-80*	0.0	1.1	ND	4.8	8.5	6.2	ND	ND	2.0
	5.2	4.0	3.8	15.0	14.0	9.5	12.5	6.0	11.0
3	7.8	8.4	13.6	19.3	16.7	22.5	10.0	13.0	13.0
4	10.8	5.4	7.5	10.6	16.0	10.0	9.9	9.0	10.0
5	12.9	5.8	6.7	8.5	12.1	9.9	11.0	7.8	6.3
6	16.7	2.8	6.9	5.6	7.7	5.4	8.0	7.0	6.3
7	21.9	3.9	5.3	5.9	6.6	5.0	6.9	5.7	4.4
8		5.5	3.5	3.6	8.5	4.1	6.8	5.4	5.2
9		3.8	9.5	5.3	5.8	5.5	7.4	4.0	4.8
10	25.4	3.2	5.2	5.4	5.3	5.5	7.0	4.5	5.4
ND = No Data *Samples taken upstream									

July 12, 1978--2 Days Post Discharge

July 20, 1978-10 Days Post Discharge

K BR Kellstadt Bridge P BR Palm City Bridge

KEY
R BR Roosnvelt Bridge HG Hellgate

FIGURE 13. TURBIDITY IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

FIGURE 14. NUTRIENTS AT S-80 DURING 2500 CFS DISCHARGE STUDY
of discharge and then returned to pre discharge levels within a week. Ortho-phosphorus levels upstream of S-80 showed a marked decrease after the third day of discharge. This correlates with the time required to exchange the volume of C-44 during a 2500 cfs release from S-308. Thereafter, ortho-phosphorus levels were similar to concentrations in Lake Okeechobee waters.

Benthic Macroinvertebrates

Substrates sampled for benthic macroinvertebrates in the St. Lucie Estuary were categorized into two groups. The inner and middle estuary (transects 1 to 6) had dark, mud substrates with a considerable amount of organic material. The bottom composition of the outer estuary (transects 7 to 10) was sand and shell ('Table 5). Six classes of invertebrates, as

TABLE 5. DEPTHS AND SUBSTRATE DESCRIPTION AT EKMAN STATIONS IN ST. LUCIE ESTUARY

Station	Depth (M)	Substrate Description
	Inner Estuary	
15	1.7	mud, sand, shell, detritus
1 C	2.0	mud, shell, detritus, sapropel
1X	1.0	mud, sand
25	2.5	mud, shell, detritus
2 C	3.0	mud, shell, sapropel
2X	2.5	mud, sapropel, silt
35	0.7	mud, sand, shell
3C	3.5	mud, sapropel
3 X	1.8	mud, silt, sapropel
4 S	2.5	mud, sapropel, shell
4 C	3.0	mud, shell, sapropel
4 X	1.5	mud, shell, sapropel
Mid-Estuary		
5S	1.5	mud, shell
5 C	3.5	mud, shell, sapropel
5X	2.0	mud, sapropel
65	2.0	mud, shell
6C	3.0	mud, sapropel
$6 \times$	1.0	mud, sand
75	1.0	sand, mud, shell
7 C	3.0	sand, mud
$7 \times$	2.0	sand, shell, mud
Outer Estuary		
85	2.0	sand
8 C	3.0	sand, shell
8 8	2.0	sand
95	1.0	sand, mud
9 C	3.5	sand, shell, mud
9 9	1.5	sand, mud, silt, detritus
105	1.5	sand, small shell, silt
10c	3.5	sand, small shell
10x	2.5	sand, sheil

Sapropel $=$ Bottom deposits rich in decomposing organic matter
represented by 69 species, were collected from these two types of substrates before and after the controlled discharge (Appendix B).

Prior to the discharge a considerable difference in species composition and density of organisms was apparent in samples from mud and sand substrates. From the mud habitats, about 80% of the average
density (12,500 benthos $/ \mathrm{m}^{2}$) consisted of the bivalve, Mulinia lateralis, and the amphipods, Ampelisca abdita, and Cerapus sp. (Tables 6 and 7). Although not

TABLE 6. DENSITY (\#/m²) 10^{2} AND PERCENT OF POPULATION (PP) FOR EACH CLASS OF BENTHOS IN THE INNER AND MID-ESTUARY BEFORE AND AFTER DISCHARGE

$\frac{\text { Trans- }}{\text { ect }}$	Class	Before Discharge		Discharge	
15Cx	Bivalvia	110.1	75.9	26.6	42.2
	Crustacea	29.2	20.1	22.6	35.8
	Gastropoda	3.7	2.5	-	
	Polychaeta	2.1	1.4	1.5	2.4
	Insecta	5.		$\frac{12.3}{63.0}$	19.6
		145.1		-	
$250 x$	Crustacea	75.4	59.5	22.9	45.8
	Bivalvia	45.1	35.6	0.9	1.8
	Polychaeta	6.0	4.7	1.3	2.6
	Gastropoda	0.2	0.2	-	-
	Insecta	$\frac{-}{26.7}$		25.0	49.9
		$1 \overline{26.7}$		50.1	
Crustacea		72.8	61.5	23.5	55.6
3SCX	Bivalvia	30.9	26.1	0.4	1.0
	Polychaeta	11.9	10.1	7.5	17.6
	Gastropoda	2.7	2.2	1.7	3.9
	Insecta	0.1	0.1	9.3	21.9
		118		$\overline{42.4}$	
4SCX	Crustacea	60.6	66.5	6.0	15.3
	Bivalvia	29.2	32.1	0.1	0.4
	Polychaeta	1.3	1.4	20.7	52.5
	Gastropoda	-	-	12.6	32.0
	Insecta	97.1	-	394	
5SCX	Bivalvia	86.6	56.1	88.5	45.3
	Crustacea	63.5	41.1	33.2	17.0
	Polychaeta	4.1	2.7	73.4	37.6
	Gastropoda	0.1	0.1	0.1	0.1
	Insecta		-	0.2	0.1
		154.3		195.4	
6SCX	Bivalvia	94.9	82.7	22.8	84.8
	Crustacea	15.0	13.1	0.7	2.7
	Polychaeta	. 2	2.8	3.3	12.3
	Gastropoda	1.7	1.4	0.1	0.3
	Insecta	$1 \overline{148}$			-
		$1 \overline{14.8}$		$\overline{26.9}$	
Mean Density =		125.1		69.5	

represented in large numbers, several other species were present in at least 60% of the samples and included the polychaetes, Paraprionospio pinnata, Nereis sp., and Glycinde solitaria and the isopod, Leptochelia savignyi (Figure 15). All of these opportunistic benthic species can tolerate dramatic

changes in the environment and take advantage of a wide variety of habitats.

The average density of organisms in the sand substrate of the outer estuary was appreciably lower (1,120 benthos $/ \mathrm{m}^{2}$) than in the mud substrate (Table 8). Approximately 37% of the number of organisms captured were represented by M. lateralis. The amphipod, Haustorius sp., and the polychaete, G. solitaria, each accounted for about 10% of the number of benthos collected (Table 7). Several other species were less

TABLE 7. TOTAL RELATIVE ABUNDANCE (TRA\%) OF THE BENTHIC SPECIES CULLED AT 1% BEFORE AND AFTER DISCHARGE

Inner and Mid-estuary		
TAXA	Transe	ts 1
	$\text { TRA } \%$ $6-13-78$	TRA \%
Mulinia lateralis	444	6.4
Ampelisca abdita	25.7	0.8
Cerapus sp.	9.0	16.5
Brachidontes domingensis	6.8	25.8
Leptochelia savignyi	6.3	5.1
Streblospio benedicti	1.6	24.5
Corophium acherusicum	0.4	1.1
Chironomus crassicaudatus	0.01	13.9
Outer Estuary		
	Trans TRA \%	$\begin{gathered} \text { cts } 7.10 \\ \text { TRA } \% \end{gathered}$
TAXA	6-13-78	7-10-78
Mulinia lateralis	37.4	51.7
Haustorius sp.	9.6	5.4
Glycinde solitaria	9.5	8.1
Diastylis sp.	6.3	0.4
Macoma tenta	5.6	2.1
Ampelisca abdita	3.1	2.6
Bathyporeia sp	2.7	0.5
Mysidopsis bigelowi	2.4	1.6
Diopatra cuprea	2.3	0.4
Chione cacellata	2.1	0.2
Chione grus	1.9	1.9
Nereis sp .	1.9	0.7
Tellina sp.	1.6	0.0
Mysis stenolepis	1.6	0.2
Cerapus sp.	1.1	0.5
Lyonsia hyalina	1.1	1.1
Chione intapurpurea	1.1	0.4
Acteocina canaliculata	0.5	2.3
Haploscoloplos sp.	0.3	1.1
Armandia sp.	0.8	1.4
Platyischnopeus sp.	0.0	6.3
Sphaeroma destructor	0.0	1.2
Donax variabilis	0.0	3.9

abundant, but were regularly present in at least 50% of the samples (Figure 16). With the inclusion of the bivalve, Macoma tenta; the two shrimp, Mysidopsis bigelowi and Diastylis sp., and the polychaete, Nereis sp., these seven species accounted for more than 72% of the benthos captured before the discharge began. The remaining 26 species collected in the outer estuary were not as frequently represented.

The distribution of benthic species before the discharge was influenced by the type of substrate and level of salinity. The isopods, L. savignyi and

Cyathura polita, and the gastropod Pyrgophorus platyrachis exhibited a distinct preference for the inner and middle estuary habitat. The high salinity, sand substrate in the outer estuary provided the only environment for the amphipods, Bathyporeia sp., and Haustorius sp., and the bivalve, Chione grus. Several species, however, were found at higher densities in the mud substrates but were present throughout the estuary. These ubiquitous species included M. lateralis, A. abdita, Cerapus sp, and G. solitaria.

After the discharge the similarity index indicated that the benthic invertebrate species composition changed 23% for the entire estuary. This change is attributed to (a) the loss and recruitment of many rare marine and estuarine species which represented less than 1% of the total relative abundance, and (b) to the introduction of seven freshwater species of which six were aquatic insect larvae (Figures 15 and 16). Six of the freshwater invertebrates were present after the discharge in the inner estuary and just downstream of the Roosevelt Bridge (transects 1 to 5). At these same transects the polychaete G. solitaria and the cumacean shrimp Diastylis sp . were absent after the discharge. The overall species composition change probably occurred during the transition from mesohaline (salinities 5 to 18 ppt) to oligohaline (0.5 to 5 ppt) conditions in the inner estuary. One of the fresh water insect larvae, the mayfly nymph (Callibaetis floridanus), was present in the outer estuary at transects 7 and 8 after the discharge where salinities were above 15 ppt .

The highest densities of benthic invertebrates were present in the inner and middle estuary (transects 1 to 6) both before and after the discharge event. However, an overall reduction in densities of 44% occurred in this area and only a slight decrease in densities (1%) occurred in the outer estuary. The reduction in densities at transects 1 to 6 appeared in almost every class of benthic invertebrate. Exceptions included the dramatic increase in density of insects throughout the inner estuary and the increase in polychaetes at transects 4 and 5 (Tables 6 and 8). The introduction of the freshwater midge larvae, (Chironomus crassicaudatus) was mainly responsible for the increase in insects. Increased densities of polychaetes resulted primarily from the increase in populations of Streblospio benedicti.

The total relative abundance (TRA) of the major species inhabiting the outer estuary did not change substantially after the discharge (Table 7). However, four species in the inner and mid-estuary (Cerapus sp., Streblospio benedicti, Brachidontes domingensis, and Chironomus crassicaudatus) showed substantial increases in TRA while Mulinia lateralis and Ampelisca abdita declined dramatically.

An overall decrease in the species diversity of benthic invertebrates occurred in the inner and midestuary. The introduction of numerous freshwater midge larvae and severe reductions of the predominant species, M. lateralis and A. abdita, in the inner estuary contributed to the overall decrease in species diversity index from 1.7 to 1.4 . Contrary to this, the species diversity index in the outer estuary remained 2.2 although the salinity at transects 8 and 9 decreased from about 30 ppt to 20 and 26 ppt respectively, at low tide.

In summary, during the 2500 cfs discharge study there were no significant changes in the macroinvertebrate communities in the outer estuary. Changes in benthos did occur in the inner and middle estuary:

1. Six freshwater species were introduced and at least four estuarine species were reduced in numbers within the newly created oligohaline zone.
2. A population explosion of the freshwater midge larvae, Chironomus crassicaudatus, and an increased density of the polychaete, Streblospio benedictioccurred.
3. The overall density of benthos decreased by 44%.

TABLE 8. DENSITY (\#/m²)×102 AND PERCENT OF POPULATION (PP) FOR EACH CLASS OF BENTHOS IN THE OUTER ESTUARY BEFORE AND AFTER DISCHARGE

$\frac{\text { Trans- }}{\text { ect }}$	Class	Before Discharge		After Discharqe	
		Density	PP	Density	$P \mathrm{P}$
$75 C x$	Bivalvia	9.8	55.7	4.8	43.5
	Crustacea	3.9	22.5	2.9	26.6
	Polychaeta	- 3.4	19.7	2.4	22.1
	Gastropoda	a 0.4	2.1	0.7	6.5
	Insecta	$\overline{175}$		$\underline{0.1}$	1.3
		17.5		10.9	
$85 C x$	Crustacea	4.4	50.8	1.5	35.6
	Bivalvia	2.8	32.5	1.3	30.5
	Polychaeta	1.3	15.0	1.4	32.2
	Gastropoda	a 0.1	1.7	\bigcirc	-
	Insecta	$\underline{-}$	-	0.1	1.7
		8.6		4.3	
$95 C X$	Bivalvia	10.7	66.5	17.2	81.1
	Crustacea	3.6	22.3	2.3	10.8
	Polychaeta	- 1.5	9.4	1.7	8.1
	Gastropoda	a 0.2	1.3	-	8.
	Insecta			,	-
		16.-		$2 \overline{1.2}$	
105cx	Bivalvia	1.0	40.0	2.5	56.4
	Crustacea	0.8	31.4	1.4	30.7
	Polychaeta	0.7	29.6	0.4	8.1
	Gastropoda	a	-	0.2	4.8
	Insecta		-		-
		2.5		4.5	
Mean Density =		11.2		10.2	

Fish

The trawl and beach seines employed in this study were designed to collect small fish and therefore samples do not adequately represent the larger size classes of important sport and commercial fish. Only five species of fish captured during the study were consistently greater than 100 mm (Appendix C). These species included Arius felis (sea catfish), Bagre marinus (gafftopsail catfish), Centropomus undecimalis (snook), C. pectinatus (tarpon snook, known locally as cuban snook), and Archosargus probatocephatus (sheepshead).

During this study, a total of 42,178 fish, representing 84 species, were captured. Most of this catch (96%) consisted of 10 species. Anchoa mitchilli (bay anchovy), Menidia beryllina (tidewater
silverside), Eucinostomus sp. (mojarras) and Clupeid juveniles (herrings) comprised 92% of the catch (Table9).

Species presence data were pooled (Table 10) for the South Fork (stations 11, 3, 4), North Fork (stations 1,2), middle estuary (stations 5,6), and outer estuary (stations 7, 8, 9, 10). These data showed the following general trends:
i. Within the four estuarine areas, those fish that were dominant prior to the discharge remained throughout the entire 2500 cfs monitoring effort.
2. Throughout the study, shallow grassbed communities located in the outer estuary had the greatest diversity of fish.
In Table 11, individual species response to the 2500 cfs discharge was divided into tive categories. Four freshwater species were introduced from upstream during the discharge: Dorosoma cepedianum (gizzard shad), Gambusia affinis (mosquito fish), Ictalurus catus (white catfish), and Pomoxis nigromaculatus (black crappie). These freshwater species were primarily caught in the South Fork, but I. catus was present on the last sample date (12 July) in the North Fork and at Hoggs Cove (station 6T) where the salinity was 4.0 ppt.

Fish that entered the South Fork during the discharge included the larval stages (leptocephalus) of the three primitive marine fishes: Albula vulpes (bonefish), Elops saurus (ladyfish), and Megalops atlantica (tarpon). In addition, Centropomus undecimalis (snook) also entered the inner estuary.

Three species left the inner and middle estuary. These species were Anchoa hepsetus (striped anchovy), Lagodon rhomboides (pinfish), and Orthpristis chrysoptera (pigfish).

The last 34 species listed in Table 11 (categories IV and V) either remained within the inner estuary or were present throughout the system during the monitoring efforts.

The reactions of fish communities to the changes in salinity were evaluated with a cluster analysis using pooled presence-absence data in Table 10 for seine and trawl samples. The phenogram (Figure 17) represents a clustering of the four major estuarine trawl sampling areas for five sample dates based on the biotic similarity of the fish communities sampled. The clustering of data suggest that species composition remained similar within the sampling areas throughout the five-week study in spite of dramatic changes in salinity. The middle estuary was unique in this cluster primarily due to the presence of Anchoa lyolepis, Lagodon rhomboides, Synodus foeteus, Chloroscombus chrysura, and Menticirrhus americanus which were seldom collected in the other areas. Table 10 indicates that Centropomus pectinatus was captured only in the North Fork (station 1T) while Bagre marinus was unique to the South Fork where Cynoscion spp. and Citharichthys spilopterus were most often found. Furthermore, the addition of freshwater species to the South Fork after the discharge began accounted for most of the differences in species composition between these two areas.

The similarity in species composition of seine samples during the study was less than for the trawl samples (Figure 18). Before the discharge began the species composition in the North Fork and South Fork were similar (S 1 and N1). However, after the discharge began, freshwater species and three species of leptocephalus were added to the South Fork so that the North and South Fork communities became

TABLE 9. FISH CAUGHT DURING THE 2500 CFS DISCHARGE STUDY IN DECREASING ORDER OF NUMERICAL ABUNDANCE, SCIENTIFIC, AND COMMON NAME

	TAXON	COMMON NAME	NUMBER CAUGHT	$\begin{array}{r} \text { \% OF } \\ \text { CATCH } \\ \hline \end{array}$
1	Anchoa mitchilli	Bay anchovy	25292	60.0
2	Menidia beryllina	Tidewater silverside	4699	11.1
3	Clupeidae, juveniles*	Herring, juvenile	4496	10.7
4	Eucinostomus, juveniles*	Mojarra, juvenile	2395	5.7
5	Eucinostomusgula	Silver jenny	1031	2.4
6	Eucinostomus argenteus	Spotfin mojarra	981	2.3
7	Dorosoma pentenense	Threadfin shad	570	1.4
8	Diapterus olisthostomus	Irish pompano	295	0.7
9	Arius felis	Sea catfish	276	0.7
10	Micropogon undulatus	Atlantic croaker	222	0.5
11	Bairdiella chrysura	Silver perch	218	0.5
12	Anchoa lyolepis	Dusky anchovy	162	0.5
13	Anchoa hepsetus	Striped anchovy	147	
14	Harengula pensacolae	Scaled sardine	127	
15	Lagodon rhomboides	Pinfish	120	
16	Syngnathus scovelli	Gulf pipefish	120	
17	Orthpristis chrysoptera	Pigfish	108	
18	Diapterus plumeri	Striped mojarra	64	
19	Syngnathus louisianae	Chain pipefish	61	
20	Lutjanus griseus	Gray snapper	54	
21	Cynoscion nothus	Silver seatrout	48	
22	Diplodus holbrooki	Spotted pinfish	44	
23	Trachinotus falcatus	Permit	40	
24	Sphyraena barracuda	Great barracuda	39	
25	Haemulon parrai	Sailors choice	37	
26	Ictalurus catus	White catfish	33	
27	Archosargus probatocephalus	Sheepshead	32	
28	Oligoplites saurus	Leatherjacket	32	
29	Cynoscion regalis	Weakfish	28	
30	Centropornus undecimalis	Snook	26	
31	Bagre marinus	Gafftopsail catfish	24	
32	Citharichthys spilopterus	Bay whiff	23	
33	Bathygobius saporator	Frillfin goby	24	
34	Brevoortia smithi	Yellowfin menhaden	21	
35	Caranx hippos	Crevalle jack	20	
36	Lutjanus synagris	Lane snapper	20	
37	Cynoscion nebulosus	Spotted seatrout	19	
38	Strongylura marina	Atlantic needlefish	16	
39	Sphoeroides testudineus	Checkered puffer	15	
40	Trinectes maculatus	Hogchoker	15	
41	Sparasoma sp.	Parrotfish	15	
42	Achirus lineatus	Lined sole	15	
43	Microgobius gulosus	Clown goby	11	
44	Gobiosoma bosci	Naked goby	10	
45	Centropomus pectinatus	Tarpon snook	10	
46	Gobionellus boleosoma	Darter gaby	8	
47	Monacanthus hispidus	Planehead filefish	8	
48	Pomoxis nigromaculatus	Black crappie	7	
49	Mugil curema	White mullet	7	
50	Lactophrys triqueter	Smooth trunkfish	7	
51	Synodus foetens	Inshore lizardfish	7	
52	Dasyatis sabina	Atlantic stingray	6	
53	Megalops atlantica, leptocephalus	Tarpon, larval stage	6	
54	Dorosoma cepedianum	Gizzard shad	6	
55	Mugil cephalus	Striped mullet	6	
56	Fundulus grandis	Gulf killifish	5	
57	Chitomycterus schoepfi	Striped burrfish	5	
58	Chloroscombrus chrysurus	Atlantic bumper	4	
59	Elops saurus, leptocephalus	Lady fish, larval stage	3	
60	Albula vulpes, leptocephalus	Bonefish, larval stage	3	

TABLE 9 (con't). FISH CAUGHT DURING THE 2500 CFS DISCHARGE STUDY IN DECREASING ORDER OF NUMERICAL ABUNDANCE, SCIENTIFIC, AND COMMON NAME

61	Chaetodipterus faber
62	Histrio histrio
63	Gambusia affinis
64	Opisthonema oglinum
65	Leiostomus xanthurus
66	Lucania parva
67	Sphoeroides nephelus
68	Scianenops ocellata
70	Caranx latus
71	Lutjanus mahogoni
69	Labrisomus nuchipinnis
72	Chilomycterus antillarum
73	Menticirrhus americanus
74	Serranidae
75	Selen vomer
76	Strongylura sp.
77	Syngnathus sp.
78	Scorpaena grandicornis
79	Etropus crossotus
80	Monacnathus sp.
81	Gobionellus smaragdus
82	Pogonias cromis
83	Pseudupeneus maculatus
84	Dactyloscopus crossotus
85	Gobidae

Spadefish	3
Sargassumfish	3
Mosquito fish	3
Atlantic thread herring	3
Spot	2
Rainwater killfish	2
Southern puffer	2
Red drum	2
Horse-eye jack	2
Mahogany snapper	2
Hairy blenny	2
Web burrfish	1
Southern kingfish	1
Seabass	1
Lookdown	1
Needlefish	1
Pipefish	1
Plumed scorpinfish	1
Fringed flounder	
Filefish	1
Emerald goby	
Black drum	1
Spotted goatfish	1
Bigeye stargazer	
Goby	

*Less than 30 mm , difficult to identify to specie

TABLE 10. FISH PRESENCE THROUGHOUT THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

Species*	SOUTH FORK				NORTH FORK					MIDDLE ESTUARY					OUTER ESTUARY					Species
Number	1	2	3	$4{ }^{5}+$	1	2	3	4	5	1	2	3	4	$\underline{5}$	1	$\underline{2}$	$\underline{3}$	4		Number
1	B	B	B	B. B	T	8	B	T	B	B	T	B	B	T	B	$\overline{5}$	$\overline{5}$	\bar{B}	8	1
2	S	S	S	5 S	S	5	5	S	S	S	5	5	5	5	5	5	5	5	5	2
3			5	5	S	S	5		S	S	S	5	5	5	S	S	S	5	S	3
4	B	B	B	B T	B	B	T	B	B	B	B	B	T	5	B	B	5	B	5	4
5	5	B	B	5 B	5	B	B	B	S	B	B	B	B	B	B	B	B	B	B	5
6	B	B	B	5 S	B	B	B	B	B	B	B	B	B	S	B	B	B	B	B	6
7	T	B	B	B	S	T	T			T	T	T	T	T						7
8	B	B	5	B T	B	B	B	B	T			5	T	T			5	5		8
9	T	T	T		T	T	T	T		T	T	T	B	T	T		T			9
10	T	T	T	$T \mathrm{~T}$	T	T	T	T	T	T	T	T	T	T						10
11	T	T	T	T T			T	T	T				T		5	5	S	S	S	11
12								T		T	T	B			5	5	S	5		12
13		B	S			5				5		S	T		5	B	5	5	S	13
14				5						S		S	T		S	-	5	5	S	14
15			5									T	T		5	5	5	S	S	15
16					S	S	S			S	5		5	S	5	5	5	5	5	16
17					T						5				5	S	5	5	5	17
18		T	T	B T	T	T	T	B	T											18
19											5			S	5	S	5	5	S	19
20	B		T	S	B	T		T					S		S	5	S	5	5	20
21	T	T		T T		T				T		T								21
22															S	5	5			22
23					S	S				\$	5		5	S		5	5			23
24	5				S			T		5		S	5		S	5	5	5	S	24
25										5		S	5		5	5	5	S	S	25
26		T	B	T					T				T							26
27.	T	T	T		T	T	T	T	T						S	T	T			27
28	S	5		S S	5	5			5		S	S		S	S	S				28
29	T.	T	T	T	T						T									29

TABLE 10. (Continued) FISH PRESENCE THROUGHOUT THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

FIGURE 17. PHENOGRAM SHOWING THE SIMILARITY OF TRAWL SAMPLES COLLECTED DURING THE 2500 CFS DISCHARGE STUDY

SIMIIARITY COEFFICIENT
$1.00 \quad 0.90 \quad 0.80 \quad 0.70 \quad 0.60$

FIGURE 18. PHENOGRAM SHOWING THE SIMILARITY OF SEINE SAMPLES COLLECTED DURING THE 2500 CFS DISCHARGE STUDY

TABLE 11. FISH RESPONSE TO THE 2500 CFS FRESH WATER DISCHARGE

	Salinity* Range (ppt)	
Introduced from Upstream		
Oorosoma cepedianum	0.2-2.2	<0.5\%
Gambusia atinis Ictalurus catus	2.5-4.2	<0.5\%
Pomoxis nigromaculatus	0.2-2.0	
me into Inner Estu		
Albula vulpes, eptocephalus		
Centropomus undecimalis	0.2-8.2	<0.5\%
Elops saurus, leptocephalus Megalops atiantica, lepto	0.2-1.5	
cephalus	1.8-2	

3. Moved out of Inner and Mid-estuary

Anchoa hepsetus	$0.2-35.0$
Lagodon rhomboides	$2.2-36.0$
Orthpristis chrysoptera	$\mathbf{7 . 6 - 3 6 . 0}$

4. Remained in Inner and Mid-estuary

Achirustiñeatus	0.2-15.0	<0.5\%
Arius felis	0.2-31.8	0.7\%
Bagre marimus	0.2-24.5	<0.5\%
Brevoortia smithi	0.2-4.2	<0.5\%
Caranx hippos	0.2-36.0	<0.5\%
Citharichthys spilopterus	0.2-35.0	<0.5\%
Cymoscion nothus	0.2-12.0	
Cynoscion regalis	0.2-12.0	<0.5\%
Diapterus plumeri	0.2-8.2	
Diapterus olisthostomus	0.2-25.0	<0.5\%
Dorosoma pentenense	0.2-24.5	1.4\%
Gobiosoma bosci	1.5-15.0	
Leiostomus xanthurus	1.5-12.0	<0.5\%
Microgobius gulosus	2.5-8.0	
Micropogon undulatus	0.2-24.5	<0.5\%
Mugil curema	2.2-22.2	
Trachinotus falcatus	2.8-34.0	<0.5\%
Trinectes maculatus	0.2-12.0	<0.5\%

5. Remained throughout Estuary

Anchoa mitchilli cephalus
$0.2-35.0 \quad 60.0 \%$

Bairdiella chrysura Clupeid juveniles Dasyatis sabina Eucinostomus argenteus Eucinostomus gula Eucinostomus sp. Lutjanus griseus Menidia beryllina Mugil cephalus Oligoplites saurus Sphaeroides testudineus Sphyraena barracuda Strongylura marina Syngnathus scovelli. Total
2.0-33.0
ge of salinities in which these species were collected during the discharge study.
$\mathrm{G}=$ Fish that Gunter (1959) found in the inner and mid-estuary after the region was fresh water for 3 months. The percentage shown reveals the portion of catch for the 2500 cfs discharge invertigation.
Note: Fish collected during the study but not listed above include those species that remained in the outer estuary or were rare species not captured frequently enough to detect their movement.
distinctively different. Overall, the cluster analyses (Figures 17 and 18) indicate that the communities, represented by species presence, remained very similar throughout the entire controlled discharge experiment.

The percent presence and numbers of species captured at each station for the 33 most abundant species found throughout the estuary were analyzed. Results of the percent presence analysis for the inner and middle estuary indicate that fish feeding on the lower torphic level became more widely distributed throughout this area during the first two weeks of discharge and then returned to the distributions that existed before the discharge (Table 12). Examination

TABLE 12. COMPARISON OF PERCENT PRESENCE LOWER TROPHIC LEVEL FISH, WITH CHI SQUARE

of Figure 19 also reveals that the dispersion occurred mostly among the lower trophic level fish such as Anchoa mitchilli, A. lyolepis, A. hepsetus, Dorosoma pentenense, and Clupeid juveniles. Maximum dispersion occurred by 28 June, nine days after the discharge began. The numbers of species captured at individual stations throughout the inner and middle estuary for each sample date were compared (Table 13). The results of this analysis reinforced the fact

TABLE 13. NUMBER OF FISH SPECIES IN THE INNER AND MID ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

Population Sta. Date	$\frac{1}{6-14}$	$6^{\frac{2}{2}}$	$\frac{3}{6-28}$	$7-\frac{4}{5}$	$7-\frac{5}{12}$
15	8	10	4	7	3
17	9	8	14	10	9
2 S	6	8	7	3	6
2 T	4	9	10	9	5
35	5	7	11	8	8
3 T	10	15	7	5	11
4 S	2	6	8	9	8
4 T	9	15	17	11	10
55	7	7	9	12	7
$5 T$	6	9	12	13	6
65	7	5	10	9	4
67	9	10	9	10	5
115	6	8	13	11	6
MEAN	6.8	9.0	10.1	9.0	6.8
C.V. (\%)	33.7	33.6	33.8	30.8	34.7

that the distribution of fish had changed (Tables 13 and 14). The increase in number of species found can be attributed to the introduction of four freshwater species and three species of Elopiformes to the South Fork plus increased distribution of species that were present before the discharge began. The decrease in

the number of species captured at various stations can primarily be attributed to the return of the lower trophic level fish to a distribution similar to that found before the discharge occurred.

TABLE 14. COMPARISON OF THE NUMBER OF FISH SPECIES POPULATIONS WITH t STATISTIC Population (t value)				
Sets	12	3	4	5
1	2.160*	2.912*	2.243*	I.M.
2		0.853	I.M.	-2.180*
3			-0.885	-2.883*
4				-2.215*
5				
I. M. $=$ Identical Means *Significant Difference (95\% Confidence Level)				

Field Observations

Within the first week of 2500 cfs discharge, blooms of blue-green algae (primarily Anabaena and Schizothrix) occurred in the surface waters of the inner and mid-estuary. The greatest concentrations of these blue-green algae appeared where opposing currents met near Roosevelt Bridge and in windrows in the east-west section of the middle estuary. Surface water algae blooms were no longer apparent during the last week of discharge.

Weekly observations at station 4 S of several adult clusters of oysters revealed that individual oysters remained alive throughout the study. By the end of the discharge event, salinity at station 4 S was down to 2 ppt, and the oysters were no longer actively feeding.

Discussion

Benthic Macroinvertebrates

The composition of benthic communities in an estuary is influenced by salinity. Estuarine salinities are grouped into four zones that range from nearly fresh water to sea water.

Salinity Zone	Salinity (ppt)
Oligohaline	0.5 to 5.0
Mesohaline	5.0 to 18.0
Polyhaline	18.0 to 30.0
Euhaline	30.0 to 40.0

Prior to the 2500 cfs discharge, the St. Lucie Estuary was characterized by mesohaline conditions in the inner estuary, polyhaline in the middle estuary, and euhaline in the outer estuary (Figure 20A). Although the upper reaches of the North and South Forks were not monitored, oligohaline waters probably existed in these areas where groundwater seepage and fresh water runoff maintain low salinities.

Since many freshwater invertebrates can tolerate oligohaline conditions (Boesh, 1971), the St. Lucie Estuary supported benthic communities that could inhabit the entire range of salinities prior to the experimental discharge.

The benthic community in the mesohaline and polyhaline waters consisted of many species that can tolerate stressful environmental conditions and take advantage of habitat that is not favorable to other
benthic organisms. The high organic content in the mud substrates and frequent physical disturbances in the inner and middle estuary are two stressful conditions these species endure. Important adaptive characteristics that allow these species to survive in these areas include: (1) small size; (2) high proportion of resources devoted to reproduction; (3) nearly continuous, prolific reproduction throughout the year; (4) high dispersal ability; (5) primary densityindependent mortality; and (6) lack of an equilibrium population size (Rhoads and Young, 1970; McNulty, 1970; Grassle and Grassle, 1974; Tiffany, 1974; Webb. 1976; Diaz and Boesch, 1977; Young and Young, 1977; Deis, 1978; Pearson and Rosenberg, 1978; Hart and Fuller, 1979). Wohsehlag and Copeland (1970) demonstrated a gradual reduction in species diversity in benthic communities that are exposed to stress for long periods of time. Only the most adaptable benthic species will survive the stress; the loss of less adapt. able species reduces the community diversity. The low species diversity and large number of opportunistic species collected from the mud substrates in the St. Lucie Estuary suggest that this is a stressed system.

Reduction in salinities during the discharge changed the species composition of the benthic communities. As the fresh water penetrated the inner estuary, mesohaline and polyhaline waters were changed to oligohaline. After the first 10 to 14 days of discharge, a salinity equilibrium was established and the oligohaline zone was maintained until 12 July, two days after the discharge stopped (Figures 20B to 22B). The most apparent changes in benthic species composition occurred within the area that became oligohaline (transect 1 to 5). Opportunistic freshwater midge larvae, mostly Chironomus crasscaudatus, invaded all of the oligohaline habitat and reached densities as high as $6000 / \mathrm{m}^{2}$. Other midge larvae (Cryptochironomus fulvus, Polypedilum halterale, and Procladius sp.) were found in far fewer numbers only in the South Fork where freshwater conditions were present for the longest period. The estuarine polychaete, Streblospio benedicti, dramatically increased in density, and the previously dominant clam, Mulinia lateralis, and the amphipod, Ampelisca abdita, were virtually absent from the newly created oligohaline zone. This new zone, however, was formed during the first few weeks of discharge and it is during this time that most of the benthic community changes probably occurred. M. Lateralis (coot clam) probably perished from low salinity. The dominant amphipod A. abdita has been shown to migrate to more suitable environments when subjected to stress from increased turbidity and/or reduced salinities (Farrow, 1984).

Fish

The fish community in the inner and middle estuary was characterized by a small number of species prior to the discharge. Of these species, the fish that feed at the lower trophic levels were dominant. This type of community structure is often encountered in the South Atlantic Estuarine Region (Livingston, 1976). Anchoa mitchilli (bay anchovy) was the most abundant species in this study and is generally the most common fish found within the South Atlantic Region when seines and trawls are used for sampling (Swingle, 1971). The bay anchovy is well adapted to conditions within the St. Lucie Estuary because it can tolerate wide salinity and temperature variations and periods of low food availability. It also has a long spawning season so

FIGURE 20. SALINITY ZONES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

FIGURE 21. SALINITY ZONES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

FIGURE 22. SALINITY ZONES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY
that juvenile recruitment occurs throughout the year (Bechtel and Copeland, 1970). Fishes that feed at the lower trophic levels such as Anchoa spp., Dorosoma pentenense (threadfin shad), Harengula pentenense (scaled sardine), and Brevoortia smithi (yellowfin menhaden) in the St. Lucie Estuary, generally make up the greater portion of the fish biomass of most estuarine areas. These fish utilize a diverse food supply and can be classified as herbivores, detritivores, omnivores or primary carnivores (mostly zooplankton feeders like Anchoa spp.). Day, et. al., (1973a) showed that this group of fishes accounted for more than 75% of the total biomass in Baratoria Bay, Louisiana.

Mid-trophic level carnivores encompass a relatively large number of fishes that feed mainly on macrobenthic and microbenthic organisms and small fishes. The most abundant, mid-trophic species were Menidia beryllina (tidewater silverside), Eucinostomus spp. (mojarras), Micropogon undulatus (croaker), Arius felis (sea catfish), and Diapterus olisthostomus (irish pompano).

The higher trophic level of fishes, which feed mainly on lower trophic level fishes and macrobenthic organisms like crabs and shrimp (Day, et. al., 1973a), were represented primarily by Cynoscion spp. (trout), Lutjanus griseus (gray snapper), Sphyraena barracuda (barracuda), and Centropomus undecimalis (snook).

During the discharge, four species of freshwater fish were introduced from upstream. Further, the fresh water coming into the South Fork appeared to attract the larvae of tarpon, bonefish, and ladyfish. Otherwise the fish species that were found throughout the estuary before the discharge were very similar to the species that were collected during and after the releases. Springer (1960) found no significant differences in species composition in the inner estuary during periods of zero, 4000 cfs , and 7000 cfs discharges from S-80. Murdock (1954), however, concluded from interviews with local, commercial, and recreational fishermen that adult predatory fish such as sea trout, bluefish, pompano and mackerel "...avoid the fresh water outflow from the canal and during periods of water release commercial fishing is driven temporarily out of the estuary."

Results of the 2500 cfs discharge study showed that the lower trophic level fish were more widely distributed in the inner and middle estuary during the first two weeks of discharge and then returned to about the distribution that existed before the discharge. This change in distribution may be related to the changes that occurred in the benthic communities and in water quality.

During the first two weeks of discharge the oligohaline zone increased in area. The amphipod, A. abdita entered the water column in large numbers seeking a more suitable environment. In addition, a "population explosion" of midge larvae occurred. These invertebrates were widely distributed in the inner and middle estuary and became highly susceptible to fish predation. The resuspended sediments, resulting from increased water velocities in the narrows of the South Fork, undoubtedly contained other benthic species and organic material which were distributed throughout the inner estuary. From the results presented in Figure 14, it appears that the initial increase in nitrogen was due to the liberation of interstitial water from the physical action of the discharge. This nitrogen increase was associated with a
bloom of blue-green algae (primarily Anabaena and Schizo-thrix) in the inner and middle estuary. These factors provided the lower trophic level fish with a rapid increase in food supply that was well distributed throughout the oligohaline zone. A recent study of the bay anchovy documented the opportunistic feeding behavior of this fish in the St. Lucie Estuary (unpublished study by the South Florida Water Management District). Before a large regulatory discharge began, the diet of the bay anchovy consisted primarily of ostracods and copepods. All of these specimens were collected from a mesohaline habitat. After about a month of discharge, gut analyses revealed that freshwater midge larvae and unidentifiable organic material were the primary food for the bay anchovy within oligohaline waters.

The increased distribution of opportunistic feeding fish during the formation of an oligohaline environment was probably a response to the dispersion and availability of food organisms and organic materials. The return of these fish to the previous distribution occurred after the oligohaline character of the estuary had been established and most of the changes in the benthic community had probably taken place.

Importance of Antecedent Conditions

The reduction in salinities to an oligohaline habitat causes changes in the distribution and composition of benthic and fish communities. Therefore, from a salinity perspective, the effects of discharges from S-80 cannot be adequately assessed unless the antecedent conditions are known. For example, antecedent salinity conditions were documented prior to a 1000 cfs discharge from $\mathrm{S}-80$ that began on 20 June 1977 (Figure 23A). The inner estuary and about half of the middle estuary were polyhaline (18 to 30 ppt). After 21 days of discharge, only a small portion of the South Fork was oligohaline (Figure 23B). The most significant biological changes in that study occurred only within the South Fork benthic communities (Haunert and Startzman, 1980). If the inner estuary had been mesohaline before the 1000 cfs study, as it was when the 2500 cfs study began, 21 days of 1000 cfs discharge may have transformed the whole inner estuary into an oligohaline environment and the benthos and fish would have responded accordingly.

Seasonal Variation in Freshwater Flow

Two of the most important factors in determining productivity of an estuary are the presence of a long growing season together with distinct seasonal pulses of freshwater input (Day et. al., 1973a). Under natural conditions, the St. Lucie Estuary meets these conditions by having relatively warm waters for most of the year, and seasonal rainfall events that cause transient variations of water and nutrient flow into the system. As with the 1000 cfs and 2500 cfs experimental discharges from $\mathrm{S}-80$, these natural pulses of fresh water initially provide nutrients for primary production and reduce salinities to create oligohaline environments. Conversely, prolonged regulatory releases from S-80 can create an extended area of fresh water and oligohaline habitat for the duration of the discharge, which is detrimental to the estuary. The natural pulses provide transient fresh water and oligohaline conditions in a limited area of the inner estuary. Many sessile species of benthic invertebrates are able to tolerate transient fresh water

FIGURE 23. SALINITY ZONES IN THE ST. LUCIE ESTUARY BEFORE (6/17/77) AND AFTER (7/11/77) THE 1000 CFS DISCHARGE STUDY
conditions but will not survive sustained fresh water exposure. The oyster, for example, usually thrives in low salinity conditions (5 to 15 ppt), where disease and predators are normally absent. However, if oysters are subjected to more than several days of fresh water they can no longer osmoregulate and will perish. Oysters were not collected as part of the benthic samples in this study but field observations of several small clusters in the South Fork (near station 4 S) revealed that these oysters were alive after the 2500 cfs discharge. The salinity in this area did not become low enough to be considered fresh water (less than 0.5 ppt), even though it was oligohaline. However, if the discharge had continued for about 10 more days, this area would have become fresh water according to a
simulation produced by the hydrodynamic-salinity model (DYNTRAN version II) which was verified by the District. Previous regulatory discharges have been large enough and have lasted long enough to make the inner, and part of the middle estuary, fresh water. The loss of oyster reefs induces major biological changes since these reefs provide food for fish (such as the once abundant black drum) in the St. Lucie Estuary and vital habitat for numerous organisms (Huner, 1978; Day et. al., 1973b). Oyster populations in the estuary have been severely reduced due to the continual exposure to fresh water and the lack of suitable substrate (clean, hard objects) for settling of oyster larvae when reef regeneration is possible.

SUMMARY OF RESULTS

7 urbidity

Before the discharge began maximum turbidity occurred where the estuary widens in the North Fork and South Fork. After the discharge began turbidity increased substantially in the South Fork and just downstream of the Roosevelt Bridge. Turbidity in the Indian River was not affected by the discharge.

Salinity

A linear salinity gradient existed from the inner estuary to the St. Lucie Inlet prior to the controlled freshwater releases. Salinities began to decline in the outer estuary by the eighth day of discharge. After about 10 days of discharge, a well-defined salt wedge was formed in the middle estuary which showed little movement for the remainder of the study. Salinities inland of the salt wedge were below 5 ppt .

Temperature

Before the discharge an average temperature gradient of about $4.0^{\circ} \mathrm{C}$ existed from the inner estuary eastward to the St. Lucie Inlet. As the discharge proceeded, temperatures became more uniform throughout the estuary while steadily increasing as summer progressed.

Dissolved Oxygen

Dissolved oxygen was highly stratified in the inner and middle estuary before the discharge. This stratification was lost in the South Fork at the onset of the discharge and these waters became highly oxygenated during the discharge. However, D.O. near the bottom was substantially reduced where the salt wedge persisted in the middle estuary.

Nutrients

A dramatic increase in nitrogen levels occurred at S-80 at the beginning of the discharge. Nitrogen concentrations decreased to levels found before the discharge within one week. Ortho-phosphorus levels showed a marked decrease to levels that were the same as those in Lake Okeechobee after the third day of discharge.

Benthic Macroinvertebrates

The highest densities of benthic invertebrates were present in the inner and middle estuary both before and after the discharge. However, an overall reduction in densities of 44% occurred during the discharge. The greatest change in benthic species composition occurred in the newly-created oligohaline zone (0.5 to 5 ppt) of the estuary within the first few weeks of discharge. Freshwater midge larvae, Chironomus crassicaudatus, increased dramatically and the estuarine polychaete, streblospio benedicti also increased in number. Additionally, six freshwater species were introduced and at least four estuarine species were lost from the oligohaline zone.

Fishes

The fish community in the inner and middie estuary was represented by a few species, dominated by fishes that feed at the lower trophic level. Shallow, grassbed communities in the outer estuary had the greatest diversity of fish. During the discharge, four species of freshwater fish were introduced from upstream into the oligohaline waters. The larval stages of three primitive species (bonefish, ladyfish, tarpon) were captured in the inner estuary after the discharge began. Three species of fish including striped anchovy, pigfish, and pinfish avoided the lower salinity water. In spite of the apparent movements, fish communities throughout the estuary remained very similar during the entire controlled discharge experiment.

LITERATURE CITED

Bechtel, T.J. and Copeland, B.J. 1970. Fish species diversity indices as indicators of pollution in Galveston Bay, Texas. Cont. Mar. Sci. 15:103-132.

Boesch, D.F. 1971. Distribution and structure of benthic communities in a gradient estuary. Ph.D. Diss. The College of Williarn and Mary, p. 120.
Bollman, F.H. 1975. The value of estuarine fisheries habitats: some basic considerations in their preservation, p. 95-120. Environmental Protection Agency, Estuarine Pollution Control and Assessment: Proceedings of a conference. Office of Water Planning and Standards; Washington, D.C.

Day, J.W. Jr., Smith, W.G., Hopkinson, C.S., Jr. 1973a. Some trophic relationships of marsh and estuarine areas. Chabreck, R.H., ed. Proceedings of the coastal marsh and estuary management Symposium; 1972 July 17-18; Louisiana State University, Baton Rouge, Louisiana, p. 115-135.

Day, J.W. Jr., Smith, W.G., Wagner, P.R., and Stowe, W.C. 1973b. Community structure and carbon budget of a salt marsh and shallow bay estuarine system in Louisiana. Louisiana State University, Center for Wetland Resources, Baton Rouge, La., Sea Grant Publ. No. $72-04,40 \mathrm{p}$.

Deis, D.R. 1978. The effects of a wastewater outfall on benthic macroinvertebrates in Lake Worth (Palm Beach County), Florida. M.S. Thesis, Florida Atlantic University, p. 70.

Diaz, R.J. and Boesch, D.F. 1977. Impact of fluid mud dredged material on benthic communities of the tidal James River. Tech. Rept. D-77-45. U.S. Army Corps of Eng., Vicksburg, Miss., p. 38.

Dougenik, J.A. and Sheehan, D.E. 1975. Symap User's Reference Manual. Laboratory for Computer Graphics and Spatial Analysis. Harvard University. Cambridge, Mass.

Farrow, D. 1984. Personal Communications. Dept. of Environmental Regulation, Tampa, Florida.

Cosner, K.L. 1971. Guide to Identification of Marine and Estuarine Invertebrates. Wiley-Interscience, New York, p. 620.

Grassle, J.F. and Grassle, J.P. 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. J. of Marine Research 32:253-284.
Gunter, G. 1959. Biological investigations of the St. Lucie Estuary in Connection with Lake Okeechobee Discharges through St. Lucie Canal. U.S. Corps of Engineers Report. Part IV, supp. 10. 73 p.
Hart, C.W. Jr. and Fuller, S.L.H. 1974. Pollution ecology of freshwater invertebrates. Academic Press. New York, New York, p. 314-371.

Hart, C.W. Jr. and Fuller, S.L.H. 1979. Pollution ecology of estuarine invertebrates. Academic Press, New York, New York, p. 390.

Haunert, D.E., Startzman, J.R. 1980. Some seasonal fisheries trends and effects of a 1000 cfs freshwater discharge on the fishes and macroinvertebrates in the St. Lucie Estuary, Florida. South Florida Water Management District Technical Publication \#80-3, p 62.

Heald, E.J., Iverson, E.S., and Berkeley, S.A. 1972. A survey of aquatic and shoreline communities in the vicinity of the southwestern portion of Hutchinson Island, Martin County, Florida. Memo Report appended to Developmental Regional Impact Statement Report for Sailfish Point, Hutchinson Island, Martin County, Florida, p. 16.

Hoese, H.D. 1960. Biotic changes in a bay associated with the end of a drought. Limnology and Oceanography 5:326-336.

Huner, J.V. 1978. Aquaculture in Louisiana's coastal zone. Day, J.W. Jr., Culley, D.D. Jr., Turner, E.R., Mumphrey, A.J. Jr., eds. Proceedings of the coastal marsh and estuary management symposium; 1978 March 6-7; Louisiana State University, Baton Rouge, Louisiana, p. 347-362.

Livingston, R.J., Kobylinski, G.J., Lewis, F.G., and Sheridan, P.F. 1976. Long-term fluctuations of epibenthic fish and invertebrate populations in Aplalachicola Bay, Florida. Fishery Bulletin, Vol. 74, No. 2.

Murdock, J.F. 1954. Survey of the effect of releases of water from Lake Okeechobee through the St. Lucie Canal. U:S. Army Corps of Engineers, Interim Report 54-4. Contract No. DA-08-123-ENG-1376.

Odum, E.P. 1971. Fundamentals of Ecology. 3rd Edition. W.B. Saunders Co., Philadelphia. Pg. 144.
Pearson, T.H. and Rosenberg, R. 1978. Macrobenthic suceession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Ann. Rev. Aberdeen. University Press Vol. 16:229-311.

Phillips, R.C. and Ingle, R.M. 1960. Report on the marine plants, bottom types and hydrography of the St. Lucie Estuary and adjacent Indian River, Florida. Florida State Board of Conservation. Marine Laboratory, Spec. Sci. Report No. 60-4, 77 p.
Phillips, R.C. 1961. Seasonal aspects of the marine algal flora of St. Lucie Inlet and adjacent Indian River, Florida. Quart. J. Fla. Acad. Sci. 24(2):135-147.

Pinkham, C.F.A., and Pearson, J.G. 1976. Applications of a new coefficient of similarity to ${ }_{1976 \text { polion surveys. Jour., WPCF, Vol. 48, No. 4, April }}$ 1976. Pg. 717-723.

Rhoads, D.C. and Young, D.K. 1970. The influence of deposit-feeding organisms on sediment stability and community trophic structure. Journal of Marine Research 28:150-178.

Shannon, C.E. and Weaver, W. 1963. The mathematical theory of communication. Univ. Illinois Press, Urbana. 125 p.

Sokal, R.R. and Rohlf, J. 1969. BIOMETRY: The principles and practice of statistics in biological research. W.H. Freeman and Co. San Francisco. Chapter 7.

Sorensen, T. 1948. A method of establishing groups of equal amplitude in plant sociology based on similarity of species content and its application to analyses of the vegetation on Danish commons. Biol. Ski., 5(4):1-34.

Springer, V.G. 1960. Ichthyologial surveys of the lower St. Lucie and Indian Rivers, Florida East Coast. Fla. State Board of Conservation Marine Laboratory, Report No. 60-19, 20 p .

Swingle, H.A. 1971. Biology of Alabama estuarine areas - cooperative Gulf of Mexico estuarine inventory. Ala. Mar. Res. Bull. 5, 123 p.

Tiffany, W.J. 1974. Checklist of benthic invertebrate communities in Sarasota Bay with special reference to water quality indicator species. Marine Biomedical Institute, Univ. Texas, p. 123.

Van de Kreeke, J. and Wang, J.D. 1976. Tidal hydraulics and salt balance of Lake Worth; Rosenstiel School of Marine and Atmospheric Sciences, University of Miami; Technical Report Sept. 1976. Office of Water Research and Technology, Dept. of Int. Grant No. 14-31-0001-9038.

Walker, K.R. and Bambach, R.K. 1974. Principles of benthic community analysis. University of Miami, Division of Marine Geology and Geophysics, Rosenstiel School of Marine and Atmospheric Sciences. P. 2.1-2.20, 3.1-3.11, 5.5-5.11.

Webb, A.D. 1976. The benthic ecology of the intracoastal waterway and adjacent canal systems at Boca Raton, FL. M.S. Thesis, Florida Atlantic University, p. 110.

Wohlschlag, D.E. and Copeland, B.J. 1970. Fragile estuarine systems - ecological considerations. Water Resources Bulletin, Vol. 6:94-105.

Young, D.K. and Young, M.W. 1977. Community structure of the macrobenthos associated with seagrass of the Indian River Estuary, Florida (In Ecology of Marine Benthos, Coull, B.C., ed.). Univ. of S. Carolina, p. 359-382.

APPENDIX A

TEMPERATURES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS EXPERIMENTAL DISCHARGE

June 15, 1978--4 Days Before Discharge
A.

June 20, 1978--1 Day of Discharge

FIGURE A-1. TEMPERATURES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

June 27, 1978--8 Days of Discharge

July 7, 1978--18 Days of Discharge

FIGURE A-2. TEMPERATURES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

July 12, 1978-2 Days Post Discharge

July 20, 1978--10 Days Post Discharge
B.

FIGURE A-3. TEMPERATURES IN THE ST. LUCIE ESTUARY DURING THE 2500 CFS DISCHARGE STUDY

TEMPERATURE IN THE NORTH FORK AND AT STATIONS 8C AND 9C DURING THE 2500 cfs DISCHARGE STUDY.

APPENDIX B
 QUANTITATIVE LISTING OF BENTHIC
 FAUNA
 BEFORE AND AFTER 2500 CFS DISCHARGE

Class Polychaeta
Cirratulus sp.
Cirriformia sp.
Glycinde soiltaria
Nereis sp.
Nereis succinea
Diopatra cuprea
Onuphis sp.
Armandis sp .
Haploscoloplus sp.
Haploscoloplus foliosus
Pectinaria gouldit
Paraprionospio pinnata
Streblosplo benedicti
5yllis 59.
Tubifex tubifex
Class Gastropoda
Actencina cansliculata
Haminoea succinea
Anachis obesa
Mitreila lunata
Pyrgophorus platyrachis
Neritina virginea
Melanoides tuberculata

Muna reynoldst
Sphaercma destructor Amphaelisca aboita
Capreila sp.
Cerapus sp.
Corophium acherusiculi
Gambarus fasciatus Bathyporeia sp. Haustorius sp. Platy:schnopus sp. Leptochelia savignyi Alpheus 5p. Call inectes sapidus Eurypanopeus sp. Balanus Sp. Ciass Insecta Callibaetis floridanus Chacborus punctipennis Chir ronerus crassicaucatus cryptochironcmus fulvus Polypedtium halterale Procladius sp. Class ostelchtinyes Cobbionel lus sp. Number of $\mathrm{sp} / \mathrm{station}$

APPENDIX C

FISH CAPTURED DURING THE 2500 CFS DISCHARGE STUDY

5			hyionif nf．		5114		Cra 51	1 \％	matane t	tamon，St	dion．	mait．			04／14	
$\mathrm{CH} \mathrm{~N}$ TAMON MUMAE B	TOTAL	$\begin{gathered} \text { SUF } \\ \text { C.Lent } \end{gathered}$		$\begin{gathered} 51 \\ \text { ct } 54 \end{gathered}$		$\begin{aligned} & \text { vn. I wit } \\ & \text { Ctass } 1+ \end{aligned}$	$\begin{array}{r} 5918 \\ \text { ci } 4551 \end{array}$		$\begin{aligned} & m, 1 m n \\ & m i x \leqslant 111 \end{aligned}$	siallon numbir	D4tF monar pa	IFMP		SA4．${ }_{\text {coito }}$	NTH \quad of sbfegra	tif whic inital ant
	P4	3719	s 4	n	）	0	0	\square	$?$	『	ロヵハア1／A	29.4	11．7		н	H．afarlitine
	15	13 n	1	\cdots	3 H	14	0	\％	\square	25	Dafieren	34.0	0.5		7	
दilfitmanione	＞	29 14	，	n	0	0	0	0	n	P5	03／09， 8	12.0	05．4		3	4．haspli．ind
	14	$\checkmark 1$	1	1.4	40	75	0	1	n	P	пr／tera	12.4	nPap		5	w，mfevit 1Na
	－ 4	3	44	$1)$	11	0	0	n	n	19	Dh／last	12.0	10.5		5	magarlifa
	C^{*}	\cdots	1		$4{ }^{3}$	4	0	n	$*$	3	anrel／t	84	00.7		A	matraylitina
¢0MyMalisant	147	11 w	197	n	1	0	0	n	${ }^{\circ}$	35	Osprats	10．4	01.9		10	M．fficlitina
senllatorobot	174	1， 3^{12}	3 ＋${ }^{\text {d }}$	π	\bigcirc	0	0	n	\％	35	07rosen	13.7	01.4		10	m．aforli．fina
Sthl！ROSORD？	47	$14{ }^{14}$	17	1	0	0	0	n	＊	$3 \times$	（1／174	3P．${ }^{\text {a }}$	02， 5		н	matarelitina
S0A1tantiomes	＞1	14.50	291	0	1	0	0	0	\dagger	45	DSAPA\％A	30.2	$02 . ?$		7	matarylatam
	7 H	1：37	7	0	4	0	－	0	0	45	ot／arim	3 3．0	03.0		4	4．afayli 19a
Foationtiomer	49	2047	49	0	0	0	0	0	3	45	0\％／178	31.4	02.2		\cdots	4．afavilima
SnAlthednat	10	14.4	10	0	0	0	0	0	0	58	06／14／4	32.5	15.0		10	H．gistulima
50Alinemmat	1	350	1	＂	0	0	0	π	n	5.5	06121／4	30.7	11.0		10	M．gFaytilina
finmithandats	17	14.80	17	0	0	0	0	1	0	5	O6／Pu／n	$32+0$	02.0		9	＊，afrtilima
	$3)$	2535	14	0	0	0	0	π	0	55	0ヶ\％O¢／4	32.4	a，er		17	4．afrytitina
50A1180RO日G？	5	2149	5	0	\％	n	0	n	0	5.5	07／13／4	33.5	O．A		＊	M，afortitina
Somlimandoz	29	$3{ }^{1} \mathrm{ch}^{4}$	P9	0	0	0	－	0	0	0.5		$31+n$	04，${ }^{7}$		10	4，bFPrlitina
Somitamabor	$1 ?$	2087	17	0	0	0	n	\cdots	0	As	01／05／8	32.5	04．？		9	m．qfarll ina
50911806040？	7	2527	2	0	0	0	0	n	\cdots	15	O6／ra／m	32.5	12.0		15	4．AFRTELINA
EDAIIROMDAO	1	130	1	0	0	0	n	\cdots	\cdots	$\cdots 5$	On／zosh	13．7	74．0		9	W．Mferclina
S0911antoso？	295	2444	295	9	\％	0	0	0	A	as	0n／P9，4	34.5	75.5		15	4．af 4rili 1na
509418OAOAO？	51	34.44	51	0	0	0	0	\cdots	0	Hs	07／04，44	37.5	25.0		11	
5041190ntran	¢ 4	3080	45	0	0	0	0	\cdots	n	8S	a）	31.4	2H．？		14	
Soutlonacoor	65\％	19 IT		0	0	0	0	4	0	115	Dosclera	3 P	OH．O		6	4．bFarlicina
	39	2440	13	0	\cdots	0	0	0	\cdots	115	06／21／8	29.0	00.2		－	h．aforleina
SORIPADAFPOE	25.3	114.1	P4．3	＂	1	0	0	1	n	114	06fopara	30.5	0.2		11	maftyblina
G0alisamobia	450	1241	540	0	0	0	0	\cdots	\cdots	115	07／05／0	13．6	04．？		10	n．arevitima
S0911ababigoz	41 n	1543	41\％	1	0	0	0	\％	${ }^{\circ}$	115	07／13／8	12．A	02.2		6	mafaylitma
50¢1Panconoo	1	55	a． 1	1	\bigcirc	n	0	0	n	4.5	07／v4	13.5	03.8		＊	stminathus sp．
5091P2150610	1	750	：	0	0	0	0	\cdots	＂	45	Ongelita	30.7	11．0		10	S．lontsianar
$5081>P 1150410$	1		11	$\stackrel{\square}{8}$	0	n	0	\cdots	n	r	08／15／4	30.0	33.2		11	s．inuistinar
50R1＞2050610	7	11290	？	0	0	0	0	n	π	75	07／14／4	10.5	32． 2		14	c．boutsianar
	4	य10	1	110 n	0	t	$11 \geqslant 1$		\rangle	－19	0appora	34.5	25．5		15	s．loutstanay
5041＞2050619	\cdots	a） 0	\％			z	0	0	＂	45	0t／nath	32.4	25＊0		11	S．lous 5 ianar
smalpensamin	31	$4_{7} 70$	） 14			1	1111		＊	¢9	$07 / 14.4$	31．R	2ヵ．ア		16	s．lautsianar
	2	$7{ }^{7}$	1		0	1	0	\bigcirc	0	4 s	05／14，4	30．A	37.0		14	s．louisimata
	7	180	1			6	0	0	0	45	06\％ 0 \％4	30.0	35.0		20	s．houtstanaf
5nalフrilicha	1	74	，	\bigcirc	0	（	0	0	0	45	06－29／9	12.5	14.5		13	s．loulsianaf
5041P2050810	1	1040	0.1	$1>$	1	1	＂	\uparrow	4	45	otronata	33.0	15.0		17	5．lomisianaf
509132050660	\wedge	97 94	4	1971		2	1491		；	95		31.0	15．5		14	S．LOUP57amay
$50819>050540$	4	HEll1	1 A		0	0	\cdots	0	n	1 ns	Doveters	70.0	18.2		b ${ }^{\text {a }}$	S．LOUIStanaf
509172450610	4	7040	4			？	1191		$?$	104	07／14／4	31.4	26.0		14	S．Lnuisiamaf
509 transutip	1	59	11	n	1	9	\cdots	n	n	p	06／14／8	31.0	6． 0		－	S．scevelli
5091720506］？	，	5	11	0	9	0	0	1	＂	\cdots	04／P1， 0	24.9	11．？	－	＊	s．stovetlit
$509130050 \mathrm{ct}{ }^{3}$	1	5310	，	π	0	0	0	\cdots	\square	35	Da／28，4	34.9	07.5		7	S．scovelt
	1	$4{ }^{4}$	11	π	0	0	\bigcirc	0	n	55	06／14／4	32.5	15.0		10	a．senvelti
5.041 Prnsem！	－	$4{ }_{4} 1$	1	$4]$	0	1	4.4	n	1	55	On／P1／4	30．？	11.0		10	s．arovetit
504：72ncmat？	5	40 an	5	0	0	＂	0	\％	0	54	（1）	3ッ＊＊	07.4		12	s．spourilit
50na＞en5ant？	4		7 ？			？	0	n	a	45	07／1174	75.5	0.48		\cdots	c．5rovelit
	1	4%	1	＂	0	0	${ }^{1}$	n	\square	0.5	07，05／9	$32+9$	04.2		9	S．senuflits
$5091>2115061 ?$	4	3047	1 ？	44		？	0	n	0	75	$07 / 0 \mathrm{AR}$	$32+0$	11.0		11	S．scovelli
Fnarsensimal？	$\bar{\square}$	in 47	73	4.	ก	！	4.4	\dagger	1	75	07，14／8	30.5	27.2		1 A	S．argvelli
c，0413095081？	4	7539	9 ？			，	\bigcirc	\wedge	0	A5	08／15／9	72.4	73．4		40	S．sravflil

\begin{tabular}{|c|}
\hline \& \begin{tabular}{l}
narir \% \\
 taximed Nomat \(A\)
\end{tabular} \& \& 81
ris

a \& \& \& Fitit \& \& \[
$$
\begin{aligned}
& \text { T OF Nhant } \\
& \text { NínIMI } \\
& \text { CI ACSI! }
\end{aligned}
$$

\] \& \& \& | |
| :--- |
| Mr). 1 N |
| Claştl | \& \& \[

$$
\begin{aligned}
& \text { TATIIN. ANM } \\
& \text { ПATF } \\
& \text { MO. RIAR VO }
\end{aligned}
$$

\] \& \& ${ }_{\text {cha }}^{\text {and }}$ \& \[

$$
\begin{gathered}
54 \\
\text { BTtIGM }
\end{gathered}
$$

\] \& \[

$$
\begin{array}{r}
04 / 14 \\
\text { NO. } \quad \text { nf } \\
\text { \&PEC:F5 }
\end{array}
$$

\] \& | $4 / 40$ STFNGE: INTPA! |
| :--- |
| spfrifes va | \&

\hline \& cmateatenma \& 19 \& r^{\prime} \& $44^{\text {r }}$ \& 1: \& \because \& 0 \& 11 \& \dagger \& \bigcirc \& 0 \& $4 T$ \& D6/14/8 \& 3 Con \& 14.0 \& \& + \& Firimentomic. \&

\hline \& \& 7 \& 14 \& -4 \& 1 \& " \& 1 \& * \& 0 \& \bigcirc \& 0 \& ${ }_{4} \mathrm{~T}$ \& orcplat \& P9. 5 \& 07.2 \& \& 14 \& \& ¢0

\hline \& churpaiviruo \& 17 \& 14 \& \& 17 \& 0 \& 1. \& 1 \& 7 \& ' \& 11 \& 4 T \& D6/pera \& 30.01 \& 02.0 \& \& 1* \& Fifiermefnuls \&

\hline \& \& \checkmark \& \because \& \cdots \& , \& \because \& 0 \& 0 \& 0 \& n \& n \& $4 T$ \& 07/05/a \& 32.0 \& 03.8 \& \& 11 \& Firimastruils \& 52

\hline \& -nal>atmetn \& 1. \& P 4 \& 3 n \& ! \& ${ }^{1}$ \& i \& 0 \& n \& 0 \& n \& $4 T$ \& 07/13/6 \& 31.8 \& 80.5 \& \& - \& Furivinstauts \& 0

\hline \& 50813 714nem \& 4 \& $\geqslant!$ \& 17 \& ${ }^{\prime}$ \& \square \& \because \& 1 \& 0 \& 7 \& f. \& 5.5 \& 0.7/17, \& 37.5 \& 01.8 \& \& \cdots \& \& $=$

\hline \& $5881>9140700$ \& 35 \& pr \& 7 \& 15. \& ${ }^{\circ}$ \& \% \& 0 \& 0 \& ก \& 0 \& 4π \& 06/14/4 \& $32+5$ \& 15.0 \& \& 5 \& curl wnatgouls \& 52

\hline \& \& On \& 5 \& 3.) \& 71 \& 0 \& 11 \& 0 \& 0 \& \square \& n \& 41 \& notilich \& $3 \mathrm{n}+0$ \& OH.O \& \& 9 \& Firinostouls \& 5

\hline \& \& 17 \& \& 28 \& 13 \& 0 \& 0 \& 11 \& 0 \& 0 \& $\stackrel{ }{ }$ \& 4,1 \& 06/38/8 \& 31.0 \& 05.5 \& \& 11 \& -itivostnaus 5 \& 53

\hline \& 4041×3140200 \& $3{ }^{\circ}$ \& Po \& 15 \& 74 \& ${ }^{1}$ \& 0 \& 0 \& 0 \& 0 \& n \& as \& On/16/4 \& 37.5 \& c5.t) \& \& 4 \& flictenctimas \&

\hline \& \& 37 \& 10 \& - \& 233 \& 11 \& 7 \& 0 \& 0 \& 11 \& 1 \& Hs \& 0n/pa, 4 \& 31.0 \& 74.2 \& \& 10 \& Fiulmastomis \& 5

\hline \& \& * \& 80 \& v \& 4 \& 0 \& 1 \& 0 \& n \& n \& n \& 45 \& 06,14/4 \& 11.5 \& 24.5 \& \& \square \& Fuiflunstomic \& $=$

\hline \& \& 9 \& 12. \& $7{ }^{1}$ \& 91 \& 0 \& n \& 0 \& 0 \& 0 \& n \& 79 \& \& 11.5 \& 34.7 \& \& 11 \& chatunstomus \& \bigcirc

\hline \& 5 50, $13710 n$ an \& 14 \& 10 \& $\geqslant 1$ \& 14 \& 0 \& 0 \& 0 \& 0 \& n \& 0 \& 79 \& 08/P9\%s \& 12.5 \& $1>00$ \& \& 15 \& Firthnctomice \& \square^{\square}

\hline \& \& 7 \& 11 \& >m \& 7 \& 0 \& n \& 0 \& ¢ \& \cdots \& 0 \& TS \& ntyomen \& 3.0 \& 11.0 \& \& 11 \& Fitimastomis \& 57

\hline \& \& 311 \& A \& 3.0 \& 17 \& 0 \& 0 \& 0 \& 0 \& 0 \& 0 \& 75 \& 07/14/H \& 30.4 \& ?2.? \& \& 1a \& Fhet mostomus \& 50

\hline \& 59R1p3900200 \& 3 Sa, \& $1^{\text {a }}$ \& 30 \& tar \& 0 \& 0 \& 0 \& 0 \& 1 \& 0 \& 7 \& OASPIAB \& 29.6 \& 12.2 \& \& \wedge \& Fitrimosimule \& 50

\hline \& SAP1P3140290 \& \% ${ }^{\text {P }}$ \& 18 \& 1 \& P10 \& \cdots \& 0 \& 0 \& 0 \& n \& 0 \& ${ }^{1}$ \& DSTPRAM \& 31. ${ }^{\text {A }}$ \& 16.? \& \& 5 \& Furt vospomus \& 59

\hline \& 50 ¢1P7190?0.0 \& 14 \& 24 \& 11 \& 14 \& 1 \& n \& 0 \& * \& π \& n \& $7{ }^{7}$ \& 07/7cosh \& 70,? \& 0f. ${ }^{\text {a }}$ \& \& 4 \& Fictanctomis \& ¢

\hline \& \& 10 \& 23 \& 30 \& 10 \& \wedge \& \bigcirc \& 0 \& 0 \& 0 \& 9 \& as, \& ons15/a \& 12.5 \& 33.9 \& \& 10 \& Fratractorut \& <o

\hline \& \& 47 \& 17 \& 30 \& $4)$ \& n \& 0 \& 0 \& 0 \& 0 \& 0 \& as \& Qufphst \& 34.3 \& 3 A .1 \& \& 9 \& Frectunstowas \&

\hline \& 4 neromenenal \& 3. \& P \& 10 \& i \& * \& \because \& 1 \& 0 \& n \& \square \& ma \& 6spra/a \& 34.5 \& 25.5 \& \& 15 \& Filficmeromas \& <

\hline \& 5.921231402009 \& 1 \& 10 \& 0 \& 1 \& \square \& 0 \& 0 \& 0 \& 1 \& * \& As \& 07/0488 \& 17.5 \& P5.0 \& \& 11 \& cucturctombe \& <3

\hline \& \& 17 \& 10 \& D \& 1 \& 14 \& 13 \& 75 \& 0 \& * \& 0 \& 9 \& 04/1~ア/4 \& 30. H \& 37.10 \& \& 1 A \& Eatrasctowic \&

\hline \& 40×173190200 \& 17 \& 4 \& 34 \& \% \& \uparrow \& 0 \& \% \& n \& n \& n \& 45 \& 04/70\% \& 30.0 \& 35.1 \& \& >n \& chetmosinuma \& 50

\hline \& $5091 \times 79 \%$ ¢00 \& $?$ \& 7 \& 0 \& 2 \& 7 \& 7 \& 0 \& 0 \& 3 \& 0 \& $9{ }^{\text {c }}$ \& On/ $24 / 4$ \& 12.5 \& 14.5 \& \& 17 \& \& 50

\hline \& 50.137140200 \& 19 \& \& 17 \& 3 \& 14 \& ${ }^{24}$ \& 34 \& 0 \& " \& 0 \& 95 \& 07064 \& 37.0 \& 18.0 \& \& 17 \& Fititabstomus \& 57

\hline \& S041P3190200 \& 2 \& 9 \& 11 \& $?$ \& " \& 0 \& 0 \& n \& 0 \& \cdots \& 04 \& OTAPA \& 31.0 \& 15.5 \& \& 18 \& Eurinestomus \& 50

\hline \& 50481731062000 \& 31 \& 4 \& 30 \& 11 \& n \& 0 \& 1 \& I \& 9 \& 9 \& 105 \& Ob/1s,a \& 31.7 \& 3?.A \& \& 3 \& Furimestrums \& s

\hline \& 4041×3190710 \& 791 \& 7 \& 15 \& \% \& \square \& 0 \& 0 \& D \& \dagger \& * \& 105 \& 06,pore. \& 31.2 \& $3 \mathrm{~A}=0 \mathrm{n}$ \& \& 14 \& Fitermistonts \& 50

\hline \& S.041>3190200 \& 4 \& 9 \& $1{ }^{\prime \prime}$ \& 7 \& 17 \& 3 \& 2 \& 0 \& n \& 0 \& ios \& $06 / 27 / 9$ \& 30.0 \& 16.3 \& \& 20 \& Fitermostomus \& 50

\hline \& \& 20.0 \& 11 \& 24 \& 20.4 \& 1 \& 1 \& 0 \& 0 \& 0 \& 0 \& 10 c \& DT/Ta, \& $\mathrm{Cl}^{+}+0$ \& $3{ }^{5}+{ }_{+}$ \& \& A \& Fuetinoctorus \& c ${ }^{3}$

\hline \& 5001331461200 \& 33 \& \& 14 \& is \& \square \& 1 \& 0 \& 0 \& 0 \& - \& 115 \& 06/19\%8 \& 32.5 \& 0A.0 \& \& 6 \& Frefmostomus \& 58

\hline \& \& 1 \& 14 \& n \& 1 \& 凹 \& 0 \& 0 \& 0 \& \cdots \& 0 \& 115 \& OnP1, \& 19.0 \& no.? \& \& 4 \& Flifindibume \& 53

\hline \& 40412310n200 \& \checkmark \& \& 14 \& 4 \& 0 \& 0 \& 0 \& 1 \& π \& " \& 11^{9} \& 00624/4 \& 30.5 \& 02.7 \& \& 11 \& Fictunstmulue \&

\hline \& 404×3108008 \& 1 \& 12 \& 0 \& 1 \& 0 \& 4 \& 0 \& n \& \% \& Γ \& 115 \& 07105/4 \& 33.9 \& D4.e \& \& 10 \& Fuminostomis \&

\hline \& SOH1)910n201 \& 47. \& \& 4 H \& 47 \& \bigcirc \& 0 \& 0 \& 0 \& " \& 0 \& 15 \& On/21/a \& 29.9 \& 10.0 \& \& 9 \& F.argentebs \&

\hline \& 504193190.0! \& н \& 24 \& .9 \& H \& 0 \& n \& 0 \& 0 \& a \& 0 \& 15 \& 06/Patm \& 33.5 \& tr.? \& \& 4 \& F.atifnteus \&

\hline \& 504197100×81 \& 19 \& 15 \& M 5 \& 74 \& 0 \& n \& \square \& 0 \& n \& 0 \& 15 \& 97/05/4 \& 32.0 \& 05.7 \& \& 4 \& F.aptentets \&

\hline \& Sutpuraneal \& \cdots \& 75 \& PH \& 7 \& ${ }^{1}$ \& n \& 0 \& 0 \& 0 \& n \& 1 T \& 06/14/4 \& 31.7 \& 06.0 \& \& A \& F.apgantats \&

\hline \& 574173 ¢07201 \& 4 \& \& 55 \& 7 \& 17 m \& 0 \& 1 \& 210 \& 0 \& 1 \& $1{ }^{1}$ \& 05/7a/a \& 31.0 \& 03. 7 \& \& 14 \& f.agentegus \&

\hline \& \& 1 \& \& 40 \& $1>$ \& \& 40 \& 2 \& as \& 1s \& 7 \& 35 \& On/14, \& 31.0 \& 0 Ba \& \& 6 \& F.APGFATFIS \&

\hline \& \& 15 \& \& 44 \& 17 \& \& Sr \& ? \& 0 \& n \& 0 \& 25 \& OF/21/B \& 29.9 \& 11.2 \& \& ${ }^{\mu}$ \& F.Apgrateus \&

\hline \& 5021>3!90, \& ? 1 \& \& 55 \& 11 \& 1 \& 0 \& 0 \& 0 \& n \& n \& 7 \& Of/rera \& 34.0 \& 07.5 \& \& 7 \& F. APGF VIFILS \&

\hline \& 9091>3190301 \& 14 \& \& A ${ }^{\text {a }}$ \& 14 \& π \& 0 \& D \& 0 \& 0 \& n \& 25 \& 01/05/a \& $32 . n$ \& 05.5 \& \& 3 \& F.AREFATFGK \&

\hline \& $5091 \times 100 \times 81$ \& 14 \& 5. \& + 7 \& 14 \& 0 \& 0 \& 0 \& 0 \& n \& 0 \& 34 \& 07ct7e4 \& 32.4 \& \#2. 2 \& \& 5 \& E.apgedtrus \&

\hline \& 508123196201 \& 4 \& \& 45 \& x \& 0 \& 0 \& 0 \& 0 \& 0 \& n \& 31 \& Of/P1/4 \& 29.5 \& 11.? \& \& - \& f.apgenteut \&

\hline \& 5n412314n2n1 \& ? \& \& \& $?$ \& 0 \& a \& 0 \& 0 \& 0 \& \bigcirc \& 2T \& 07/7c/a \& 32.0 \& 02.3 \& \& A \& E. antifutaus \&

\hline \& \& ${ }^{+}$ \& \& 40 \& 4 \& \& 55 \& 4 \& 0 \& \cdots \& \bigcirc \& श \& O7\%1ว/a \& 91.5 \& 02.0 \& \& \checkmark \& F. hegantaliv \&

\hline \& 4081731902m: \& 2 \& \& \& \% \& 0 \& 7 \& 0 \& \dagger \& \dagger \& 0 \& 35 \& 06/16/9 \& $3{ }^{2}+0$ \& 10.5 \& \& 5 \& F.amantelic \&

\hline \& \& 7 \& 31 \& 5 \& 7 \& 0 \& 0 \& 0 \& 0 \& π \& 0 \& 35 \& uncela \& 29.0 \& 00.7 \& \& \cdots \& F. aqgintfus \&

\hline \& \& * \& \& 3 \& ? \& 0 \& 0 \& 0 \& 0 \& n \& 1 \& 35 \& OfrPa/a \& 30.4 \& 01.2 \& \& 13 \& F.abtentris \&

\hline $C-10$ \& \& 1 \& \& 0 \& 1 \& \bigcirc \& 0 \& ${ }^{3}$ \& 0 \& 0 \& 0 \& 31 \& Ob/ta/a \& 3P.5 \& 17.0 \& \& 11 \& F.ARGFATE, \&

\hline \& \& - \& 745 \& 51 \& a \& \bigcirc \& n \& 0 \& 0 \& 0 \& n \& 45 \& noticia \& 37-4 \& 13.0 \& \& $?$ \& F.artantaus \&

\hline
\end{tabular}

4．41，$=$				$1 / 4.10$	vir	，	T af ${ }^{\text {r }}$	r		ar	TAnna．st	tatinn．	\％4te．				
	morn	41		N19．14：		17	（413．1N17	$41 ?$		Min． F M）	51ation	Da＇F	1 Fmo	sal	［ 41	Nfi．${ }^{\text {ar }}$	fir wir $1+$
T4xims Plimata	1 min	CLAC	ci	cussal	CLay	4st	C．A4511	Class		rlassil	numera	mo．nar yo	top	TnO	40 Tп4	s．enctas	sofeits name
	？	\％18	${ }^{\text {ch }}$	p	\％	0	0	n	n	？	75	ol／masa	32.0	11.0		11	－cbor
	P	P 19	1 A	，	0	0	－	0	0	\cdots	35	67／14／日	30.5	37.2		18	matyama
	，	4	＂	1	9	0	0	n	0	0	15	Dest14／8	31.2	07．4		7	
5．94173360102	1	109	\uparrow	1	0	n	0	1	n	0	Of	$0.108 / 4$	13.0	$0 \cdot .8$		4	5．．asomaruma
	＊	121	0	1		$4{ }^{4}$	2	0	1	n	45	Onficirn	32.5	15.0		10	5．gapraciuna
S0417340109	1	104	\uparrow	1	0	0	0	0	0	0	5.	OH／PR， CH	32.0	10．a		9	5.9 AbDACuma
	1	43	0	1	0	0	0	0	0	0	55	$07 / 05 / 4$	32．a	02．${ }^{\text {a }}$		13	5．miouarmad
	1	H_{0}	0	1	9	\cdots	0	0	＂	n	ns	areasca	32.5	$0 \cdot 4.7$		9	¢．gajearlina
	－ 1	4 t	1	1	0	1	0	0	n	n	75	$0 \mathrm{O}, 19 \mathrm{~A}$	30.0	32.7		11	S．mapparima
sfepestallor	． 1	190	0	1	0	0	0	0	\bigcirc	0	15		30.5	34.0		11	5．4abomeriom
504193 midiop	－	74	0	？		P	$?$	＊ 7	n	1	Is	Obrearm	32.5	12．0		15	S．paboar．ita
Conlownold	，	0	24	；	0	n	0	0	n	0	\cdots	cifumis	32.0	11.0		11	c．pasemituca
	7	19	35	＊	14	0	1	48	$4{ }^{4}$	，	15	OT／14， P	30,5	P2．？		19	S．maduaruma
$5 \cdot 0 \times 1>3 x+0,0 \%$	1	3 N	π	1	0	0	－	0	0	0	AS	06．15／P	32．5	73．8		10	E．gapoarima
STAEPJTM010？	4	19	0	？	1	3）	2	0	0	0	Rs	DT／14．${ }^{\text {d }}$	11．4	3A．2		14	S．pagmacuma
S04l？175019？	P	is	0	\％	0	0	0	0	0	0	9 S	06／1x／4	30．A	33.0		$1{ }^{1 /}$	S．batracilia
S041P7tanlo	1	74	\bigcirc	1	0	0	0	0	n	0	95	OT／OM，	13．0	16.0		17	－abagarcuma
509129780102	1	19	P	，	0	0	0	0	9	0	105	06．／P7／9	30.0	lf．${ }^{\text {r }}$		2%	9．9mpeartma
	1	16	4	1		19	z	0	0	a	105	07／14／A	31．9	？ 6.0		14	4．rajparima
58812374010%	1	41	0	1	0	ก	0	0	n	0	115	06／15／日	32.5	0．9．0		＊	5．Ampracuma
4041＞3420191	1	9	0	1	0	n	0	0	0	0	105	D1／0n／4	27.0	35．A		R	b．ranssitic
S201234410n！	1	5.7	4	1	0	0	0	0	b	0	as		32.7	35.0		－	1．muchiojnats
an81P34400\％	1	50	0	1	＂	0	0	0	n	0	95	Osistis	30．R	33.0		1a	
$5091>3560400$	1	70	0	1	0	0	0	0	0	0	н9	07／14／H	31.8	29．？		14	tinay unimonm
5.0419358 .0409	1	${ }^{4.4}$	0	1	0	0	0	0	π	0	5.5	07／05／A	3P．R	02．日		12	A．Snotocafing
＇．n41P350．4a\％	1	13	0	1	1	п	0	0	n	1	6.5	07／13／4	32．A	07．4		5	F．sneotatile
S．OH1 356.0407	1	32	\wedge	1	0	－	0	0	0	0	75	D6／1a／b	30.0	33.2		11	a．snothatie
9981 3 3560403	1	13	$1)$	1	0	0	0	0	0	n	As	06mora	34.5	35.5		15	a．Snporation
509.123 .3548403	\checkmark	17	0	1	10	0	2	23	34	，	As	07／14／日	11，${ }^{8}$	2H．？		14	a．5000eatim．
S0H1P34004n3	2	40	55	＞	0	0	0	0	n	0	os	06／14／4	30．8	33.0		18	4．SOPneatink
COR123540401	5	45	$4{ }_{6}$	3		54	2	0	0	0	DS	06／29，8	32.5	14.5		13	6． 9000 RatTR
590］ 33680403	7	10	0	1		24	3	45	55	3	Ps	0．71719	31.0	15.5		18	a．soporatine
9081P35＊il407	1	41	0	1	0	0	0	0	7	0	105	06／21／4	32.5	14.5		20	h．Sopmentior
508123501401	1	19	0	1	0	0	0	0	7	0	45	07／17／8	31.5	02．${ }^{\text {c }}$		－	
$50 \mathrm{O}, \overrightarrow{3541401}$	，	33	0	1	0	0	0	0	0	0	AS	06， 1518	32.5	33.9		10	f．90lfacioma
504133561401	1	16	0	1	0	0	0	0	0	0	A5	Dh／r9／4	34.5	25.5		15	5．9006080ma
504173561401	1	35	0	1	\dagger	0	0	－	0	0	05	06／16／6	30.0	33.0		$1{ }^{18}$	G．ancmioum
504173551601	？	P2	31	？	0	0	0	0	0	0	95	08\％70／4	30.0	35.0		？ 0	6．90LFOSOMs
50917356．401	1	38	0	1	0	0	0	0	0	n	95	006／28／4	32.5	14.5		13	5．902FOSoma
504173561401	1	31	0	1	0	0	0	0	0	n	95	07／17／A	31.0	15.5		18	b．90lfisoma
	1	55	0	1	0	0	0	0	0	0	45	Dochera	30．A	31.0		10	tr，smaragdus
5.09133545971	t	14	0	！	0	0	0	0	＂	0	25	06／P1：M	29．6	11.2		ค	6．9n5cI
＝0al＞3ER4501	1	11	0	1	0	0	0	0	0	0	35	DB／IL／A	32.0	10.5		5	C．ansci
4081＞7561591	7	12	14	$?$	0	0	0	0	－	0	35	07．05／4	39.2	01.5		10	itansel
509173541501	1	23	0	t	0	\bigcirc	0	0	0	\square	45	07／05／a	32.0	03.0		9	c．8．85ct
50月123541501	1	14	0	1	\because	0	0	0	n	－	45	07／13／R	31.5	02．？		9	craticel
504173541503	1	24	0	1	0	0	0	0	0	＂	4 T	0， 0 cifa	24.5	02.2		14	r．ancel
40017356150］	3	：0	11	？	is	0	1	0	0	0	5.9	Des／14／9	32.5	15，0		10	6．a05es
50 Cl 1735 K 230 ？	7	3	F4	2	n	0	0	0	0	0	25	06／14／8	31．0	08．0		6	m．inumsus
	7	10	11	4			2	35	0	1	7	Drynish	33.7	01.5		10	4．fulasus
5091＞35mp3n？	1	79	0	1	n	0	0	0	0	0	35	07／178	32．A	02.5		＊	Masmensus
50中1＞3670409	1	02	0	1	0	0	－	0	0	0	179		31.7	34．0		14	S．gandicosmis
509134010406	7	dis	0	1	101	n	1	－	D	0	$1{ }^{19}$	Docench	31.0	03.2		14	
509194010436	3	on	0	1	$?$	73	2	0	0	0	$3 T$	O6／P！$/ \mathrm{A}$	29.0	00.7		16	c．sptionetarus

$\begin{array}{ll} \text { and } \\ r+4, ~ f o r c i r \end{array}$ TA5:4 NUMBED	$\begin{aligned} & \text { Tr ral } \\ & r * \pi_{1} \end{aligned}$	S！			$\mathrm{Cl}_{\mathrm{Tl}}^{\mathrm{Cl}}$		$\begin{aligned} & \text { OF } 25 n 0 . \\ & \text { Qh. } 140 \\ & \text { CL } 551, \end{aligned}$	$\begin{array}{r} \text { CCFS } \\ \text { SER } \\ \text { CtBS } \end{array}$		nata ar $\mathrm{NO}, 1 \mathrm{mo}$ C．4．4511：	$\begin{aligned} & \text { TAxON: } 51 \\ & 5 \mathrm{FAFFA} \\ & \text { Numfo } \end{aligned}$			${ }_{\text {＋}}^{\substack{\text { c，} \\ \text { Tol } \\ 0}}$			$14,1 / 0$ gFtuls INPTA！avg 5 SPECLFS NAMF
¢04tP4019406．	，	44	0	1	45	＊	1	0	0	0	$1 T$	obreafa	30.5	0， 0		7	r．betionptapls
56atphounusk	1	4,	＂	1	の	0	0	\square	0	0	$4 T$	07／1a／a	31.2	00.5		11	「．splinatapus
4n＊1＞6ntitat	$!$	$4{ }^{4}$	ก	1	0	0	0	0	n	0	41	Qne：14／a	3 m	14.0		н	
Sm41＞40104ins	？	3.3	0	1	4.3	0	1	25	0	1	41		29.5	02.2		14	r．SPIEOPTFAIS
564194015404	1	5.	0	1	\cdots	0	0	1	0	0	45	06／ $7 \mathrm{c} / \mathrm{m}$	30．${ }^{\text {a }}$	02.3		16	t．Splin netrrus
594120610406	1	5.4	$!$	1	An	0	1	75	9	1	55	07／05／4	32．4	02．8		12	t．Spllitetapils
	，	36	－9	，	0	0	0	0	0	${ }^{1}$	51	0breara	310	05.5		11	c．SPIIfPTFRUS
$40912+10409$	†	42	0	1	0	＊	d	0	0	0	51	17／05／4	32.7	nnol		13	r．spil meterus
50×134010404	1	43	i	1	\bigcirc	0	0	0	${ }^{1}$	0	$0 \times$	07／05／9	32.5	$04 .{ }^{3}$		9	r．sprigataris
	1	8.3	ก	1	4	0	п	0	\dagger	＊	4.	06／P1／A	00.0	6．0．0		11	
	1	\because	0	1	\square	n	0	日	i	0	＊\dagger	On／era／a	12.5	04.5		R	r．g．jemprinas
	1	rs	＂	1	n	0	0	0	4	n	45	morened	30.0	35.0		30	「．SPtiontaris
2，014174010406	\％	7.	，	1	\cdots	0	0	5	n	0	105	07114／4	11.8	24.0		14	－spatamapeys
	1	53	0	1	0	0	0	\square	f	0	$\stackrel{*}{*}$	06sP1／4	29．＾	12.2		f．	z．ronssotus
	3	ग	0	：	\％	is	$?$	\square	0	\cdots	19	lin／pa／s	31.0	23．？		14	R．tinfatus
$4.8 \times 3 \times 4030101$	1	P1	π	1	30	5	？	0	1	n	11	0751304	30.5	02.0		9	A．irtarajes
	1	P＞	a	1	\square	n	0	0	1	0	，T	07，13／4	31.2	00.5		11	A．lithatios
	1	14	a	1	\because	0	a	0	9	${ }^{\prime \prime}$	5	06，14／4	3 c －5	15.0		10	A．LIvFatijs
	1	70	0	1	0	9	0	0	0	0	58	07／06／4	3.9	$0 \cdots \mathrm{P}$		12	A．ligatus
	？	r？	1	；	0	\cdots	9	0	0	0	5	07／05／4	3.7	00.0		13	4．1 19Fatus
$5 \cdot 1.19 \times 470: 87$	7	40	0	1	＋ 5	H：	z	0	n	0	＂	Cbrenem	11.0	03．？		14	1．Wacula file
$50 \times 1340 \times 308$ ？	1	41	n	1	\dagger	0	n	0	0	？	： 1	91／06，${ }^{\text {a }}$	11.2	04.5		10	¢．whcularus
6041＞6）	3	34	1	4	45	4	j	0	0	\wedge	19	07／19\％4	10.5	08.0		9	P．maculatus
201134303ri？	1	＋${ }_{\text {ct }}$	0	1	9	7	0	0	0	0	37	Ob／icia	72．5	$12+0$		11	t．aticimatus
	1	4	0	1	\square	u	0	0	9	n	7	On／Ples	29.0	n0．2		16	T．macul \＆Tus
599130060？	1	75	1	1	\＃	1	0	0	1	0	7	Ob／ip／a	30.5	02，0		7	
	1	114	＂	1	${ }^{\circ}$	1	0	0	0	＊	31	07／12／4	11.2	00.5		11	r．watmafus
	1	7	0	1	0	0	0	0	\square	0	9	07／14．a	34.5	23.2		16	uTNATANTMIIS 5P．
	1	$1!$	$1!$	？	$\therefore 4$	0	1	0	0	n	55	Obiplea	30.8	11．n		10	＊．hisprivic
	${ }^{4}$	4	$1!$	p	\because	4	1	0	\dagger	n	15	O¢femea	30.5	14.7		11	4．Htisprime
	1	4	，	1	0	0	0	0	0	0	$4 ¢$	$07 / 0 \mathrm{cr}$	12.5	P5．17		$1:$	m．alspinius
	1	15	0	1	0	n	0	0	0	n	95	as\％m	10.0	35．0		20	
5.04185110105	1	19	7	1	0	${ }^{1}$	0	n	ก	0	As	106／89／4	36．5	25.5		15	L．trinufifg
	1	15	a	1	9	0	9	0	θ	0	Rs	07／4／4	31．A	？${ }^{\text {a }}$ ？		14	6．tProufter
conslasolalar	1	19	0	1	n	n	0	n	\cdots	0	95	0712\％	91.0	15．5		18.	1．，tPrgupter
	1	9	0	1	0	1	0	0	n	0	105	06／20／a	31.2	34．0		14	，trinuatife
	1	4	0	1	0	${ }^{6}$	0	0	n	0	115	67\％06／4	27.0	35．A		9	L．Totdifetar
409125090！35	，	2.	${ }^{1}$	1	29	0	i	0	0	0	105	07／14／4	31.4	26.9		1.	L．Priguftar
71091＞0．046794	1	7	0	1	0	0	0	0	n	0	75	06／20／4	37.5	17.0		19	
－	i．	14	0	1	0	0	0	0	n	0	95	OT／Am／a	13.3	16.0		17	S．MFPMEIUS
－nat 25046 nam	$\stackrel{ }{ }$	150	0	；	0	0	0	0	\％	0	P1	06／7R／A	31.2	05.5		10	S．tacturinelis
	1	A0	1	1	\％	0	0	0	！	0	35	00／14／8	32.0	10.5		5	
	，	7	n	1	нrim	a	1	0	0	n	55	Dbselfa	30.2	11，0		10	$5 . t 5$ stupinels
	1	H：	i	1	0	1	0	：	${ }^{1}$	0	6s	07／05，9	32.5	0.42		9	sitastunjufis
	？	13	9	1	a	0	\checkmark	0	0	0	75	06／20／4	12.5	12.0		15	Stresturivelis
	\uparrow	＊${ }^{\text {a }}$	0	1	0	0	0	0	0	0	rs	07／tura	30.5	$38 . ?$		1 A	¢．tFstuntufis
，\％amantan		1405		，	\％	\square^{1}	0	c	\％	0	95	Ob／LA／M	30．4	31．		\％	
		14\％an		？	＊	0	0	9	\uparrow	0	os	0sfon／a	30.0	3 m .0		20	S．tFstuntmeis．
	1	140	0	1	4	0	0	0	f	a	105	05／20／8	31.7	36．01		14	S．tFstuntypus
$50.813511+0304$	\bigcirc	134		，	0	0	0	0	9	n	109	Derrita	37.5	16.5		20	5．Tfistuninflis
514．7575日107	1	39	a	1	0	1	9	0	0	0	75	Dhtanct	37.5	34．0		11	c．antill arum
cnataramich	1	$4]$	0	1	0	\％	0	0	n	0	？	06， $2 \mathrm{R} / \mathrm{A}$	$31 . ?$	05.5		10	C．schnferi
	，	4.	\square	1	45	ก	t	0	0	9	is	07／14\％	30．5	22.3		18 r	r．sphoferi
	1	65	0	1	0	1	0	0	0	9	45	06，1R，2	30．A	33.0		1ヵ	c．sphnfpas：

