#### **TECHNICAL PUBLICATION 84-5**

### RESISTIVITY INVESTIGATION OF THE COASTAL RIDGE AQUIFER HYDROSTRATIGRAPHY MARTIN COUNTY, FLORIDA

Allan M. Stodghill and Mark T. Stewart

#### Final Project Report USF-SFWMD Cooperative Program Martin County Project

**Project Directors:** 

Mark T. Stewart, Associate Professor Geology Department University of South Florida Tampa, Florida

Dr. Leslie Wedderburn Deputy Director, Resource Control Department South Florida Water Management District West Palm Beach, Florida



March, 1984

Groundwater Division Resource Planning Department South Florida Water Management District West Palm Beach, Florida

#### ACKNOWL EDGEMENTS

This project was supported by the South Florida Water Management District, West Palm Beach, Florida. Mr. Abe Kreitman, Dr. Leslie Wedderburn, and Jon Shaw provided literature and background data for Martin County. Steve Anderson, Pete Dauenhauer, Dennis Nealon, Raymond Rae, Steve Camp, and Dave Strout assisted in the collection of field data. Dr. Samuel Upchurch, Dr. Marc Defant, and Dr. Mark Swanson provided insight and counsel to the interpretation of data and the composition of the manuscript. Dr. Mark T. Stewart afforded an immeasureable amount of time, energy, and guidance to the author from the inception of this project to the completion of the manuscript. Ms. Mary Haney prepared the manuscript. The contributions of these individuals and the assistance of the District is deeply appreciated.

Special, heartfelt thanks go to Kurt Deihlman, without whose assistance this project would have never been completed. His untiring efforts and genuine interest in the success of this project has left me forever in his debt.

ii

## TABLE OF CONTENTS

|                                                                                                       | Page                 |
|-------------------------------------------------------------------------------------------------------|----------------------|
| _IST OF TABLES                                                                                        | v                    |
| LIST OF FIGURES                                                                                       | vi                   |
| ABSTRACT                                                                                              | viii                 |
| INTRODUCTION                                                                                          | 1                    |
| THEORY<br>Electrical Properties of Earth Materials                                                    | 3<br>3<br>8          |
|                                                                                                       | 9                    |
| DESCRIPTION OF STUDY AREA                                                                             | 12<br>14             |
| GEOLOGY                                                                                               | 16<br>16<br>18<br>19 |
| GENERAL HYDROLOGY                                                                                     | 24<br>24<br>25       |
| FIELD AND LABORATORY TECHNIQUES                                                                       | 30                   |
| RESULTS                                                                                               | 31                   |
| DISCUSSION<br>Correlation of Resistivity with Geology and Water Quality<br>Geoelectric Cross Sections | 43<br>43<br>48       |
| SUMMARY AND CONCLUSIONS                                                                               | 61                   |
| REFERENCES CITED                                                                                      | 67                   |

Page

| APPENDICES                                                                                                  | 73  |
|-------------------------------------------------------------------------------------------------------------|-----|
| electric soundings from Martin County, Florida                                                              | 74  |
| inversion program by Zohdy and Bisdorf (1975)                                                               | 101 |
| Appendix B: Fifty-two vertical electric sounding curves<br>plotted as resistivity (Ohm-meters) versus depth |     |
| (meters)                                                                                                    | 155 |
| Appendix C: Lithologic data from some water wells in                                                        |     |
| martin Lounty, Florida. Wells with M-0000 and ME 00                                                         |     |
| numbers are from South Florida Water Management District                                                    |     |
| (unpublished). Wells with GS-00 or 1-000 numbers are                                                        |     |
| from Lichtler (1960). Wells with G&J letters are from                                                       |     |
| Gee and Jenson (unpublished).                                                                               | 208 |
| Appendix D: A generalized vertical electric sounding curve                                                  |     |
| illustrating the mechanical methods used to determine the                                                   | 070 |
| limits of each geoelectric layer                                                                            | 2/2 |

•

# LIST OF TABLES

| Table |                                                                                             | 1 | Page |
|-------|---------------------------------------------------------------------------------------------|---|------|
| 1     | Analyses of well-water samples from the shallow aquifer in Martin County, Florida.          |   | 27   |
| 2     | Water quality data from well-water samples ranked according to $Cl^-$ and $SO_4^-$ content. |   | 46   |

## LIST OF FIGURES

| Figure |                                                                                                                                                                                                                                                                                                                                                                                                        | Page |  |  |  |  |  |  |  |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|--|--|--|--|--|--|
| 1      | Definition of resistivity.                                                                                                                                                                                                                                                                                                                                                                             | 4    |  |  |  |  |  |  |  |
| 2      | Relationship between pore fluid resistivity and<br>bulk resistivity (in ohm-meters). A near 1:1<br>relationship between pore water resistivity and<br>bulk resistivity exists at low fluid resistivities<br>up to approximately 5 ohm-meters. Beyond 5 ohm-<br>meters bulk resistivity increases rapidly becoming<br>primarily a function of porosity (modified from<br>Keller and Frischnecht, 1966). | 7    |  |  |  |  |  |  |  |
| 3      | Location of study area within Martin County, Florida.                                                                                                                                                                                                                                                                                                                                                  | 10   |  |  |  |  |  |  |  |
| 4      | Location and distribution of vertical electric sounding stations within the study area.                                                                                                                                                                                                                                                                                                                | 11   |  |  |  |  |  |  |  |
| 5      | Physiographic subdivisions of Martin County, Florida<br>(modified from Lichtler, 1960).                                                                                                                                                                                                                                                                                                                |      |  |  |  |  |  |  |  |
| 6      | Generalized section of geologic formations in Martin County, Florida.                                                                                                                                                                                                                                                                                                                                  | 17   |  |  |  |  |  |  |  |
| 7      | Location and distribution of lithologic data<br>within Martin County, Florida.                                                                                                                                                                                                                                                                                                                         | 21   |  |  |  |  |  |  |  |
| 8      | Location and distribution of nonartesian well-<br>water samples within Martin County, Florida.                                                                                                                                                                                                                                                                                                         | 28   |  |  |  |  |  |  |  |
| 9      | Distribution of resistivity values versus depth for all data.                                                                                                                                                                                                                                                                                                                                          | 34   |  |  |  |  |  |  |  |
| 10     | Location and extent of geoelectric cross section<br>within Martin County, Florida.                                                                                                                                                                                                                                                                                                                     | 35   |  |  |  |  |  |  |  |
| 11     | Cross section of geoelectric traverse A-A'.                                                                                                                                                                                                                                                                                                                                                            | 36   |  |  |  |  |  |  |  |
| 12     | Cross section of geoelectric traverse B-B'.                                                                                                                                                                                                                                                                                                                                                            | 37   |  |  |  |  |  |  |  |
| 13     | Cross section of geoelectric traverse C-C'.                                                                                                                                                                                                                                                                                                                                                            | 38   |  |  |  |  |  |  |  |
| 14     | Cross section of geoelectric traverse D-D'.                                                                                                                                                                                                                                                                                                                                                            | 39   |  |  |  |  |  |  |  |

| 2 |        |                                                                                                       |      |
|---|--------|-------------------------------------------------------------------------------------------------------|------|
|   | Figure |                                                                                                       | Page |
|   | 15     | Distribution of water quality groups in Martin County, ranked according to $C1^-$ and $S0^4$ content. | 47   |
|   | 16     | Location and extent of the Coastal Ridge Aquifer in Martin County, Florida.                           | 59   |
|   | 17     | Schematic diagram of hydrostratigraphic zones of a layered, near-coast environment.                   | 64   |

•

----

#### ABSTRACT

Surface DC resistivity surveys were used to delineate the hydrostratigraphic zones of the Coastal Ridge Aquifer in Martin County, Florida. Data from fifty-two vertical electric sounding (VES) profiles indicate three distinct geoelectric layers within the aquifer. The layers are: 1) a shallow, low resistivity zone, 1 to 3 meters thick and at or near the surface, 2) a shallow, low resistivity zone, 2 to 12 meters thick and below layer one, and 3) a deep, high resistivitytarget zone, approximately 20 meters thick and below layer two. The deep, low resistivity layer, which is the lower boundary beds of the aquifer, lies immediately below the target zone.

The siliceous and carbonate clastic sediments of the aquifer are Pliocene and Pleistocene in age. Integration of lithologic and geoelectric data show the deep, high resistivity zone to be composed of 1) a well-cemented, porous calcarenite and 2) coarse shell and sand beds. Of the sediments within the Coastal Ridge Aquifer, these lithologies have the greatest potential for water-well development, but are limited to an area east of Green Ridge. Green Ridge is a linear geomorphic feature approximately 21 km inland from the present coast line. This ridge delimits the western extent of the Coastal Ridge Aquifer.

This application of surface DC resistivity surveys is not limited to the Coastal Ridge Aquifer. Regions that have 1) layered, semi-

viii

horizontal strata, 2) lithologic contrast, and 3) constant water quality of low ionic strength should produce geoelectric results suitable for hydrostratigraphic investigations. This geoelectric survey of the Coastal Ridge Aquifer should prove to be an informative, predictable example for future investigations.

Ť

#### INTRODUCTION

The shallow aquifer of Martin County is a major source of potable water, particularly for the coastal, urban areas (Lichtler, 1960). According to the 1980 Census, the county's population has increased 128% since 1970; 600% along coastal margins. Coastal municipalities have met increased fresh water demands by augmenting pumping rates of nearby well fields. Increased pumpage has induced salt water intrusion in near-coast well fields (Lichtler, 1960; Scott and others, 1977). It is evident that future demands must be supplemented by additional fresh water sources developed further inland, where the threat of salt water intrusion is reduced.

Inland, fresh water sources have been located in neighboring counties. Fischer (1978) describes a shallow, cavernous "highpermeability zone" within eastern Palm Beach County. In addition to this unit, Scott (1977) indicates other, less permeable, units extending downward to the upper confining layers of the Floridan Aquifer. In St. Lucie County, Bearden (1972) describes eastwardthickening sediments with a fresh water potential that can supplement urban and agricultural demands. In all cases, potential aquifers occur in coarse carbonate and siliceous clastics of Pliocene to Pleistocene age. It is therefore reasonable to assume that inland, fresh water zones exist in Martin County and are contained within Pliocene-Pleistocene sediments. Development of new fresh water sources in Martin County necessitates a preliminary study, delineating the vertical and lateral extent of the Pliocene-Pleistocene sediments. Traditionally, core and borehole analyses are conducted for such a study. However, these sediments were deposited during numerous sea-level changes, resulting in lateral facies shifts. Exploration by conventional methods would produce limited results, while expending large amounts of time and money, due to these lateral changes and the large size of the area of investigation.

An alternative to the traditional survey is the use of surface electrical geophysical techniques. In recent years, geophysical surveys have been applied to the solution of shallow (100 meters in depth) geologic and hydrogeologic problems. These surveys are advantageous in that they are economical, requiring less time and manpower than conventional methods, and provide a justifiable quality of information due to refinements in field and data reduction within recent years. Direct current resistivity surveys are particularly advantageous in that the results are easier to handle quantitively than electromagnetic soundings, the equipment is less cumbersome than seismic equipment, and they have sounding resolution sufficient to resolve the shallow lithostratigraphy of the Pliocene-Pleistocene sediments.

This investigation includes a compilation of electrical soundings with available lithologic and water-quality data. These data are used to delineate the shallow lithostratigraphy of the Pliocene-Pleistocene section in central and eastern Martin County. The ultimate objective is to locate and map zones with good potential as sources of potable ground water.

#### THEORY

#### Electrical Properties of Earth Materials

The physical property measured by the direct current method is resistivity. The definition of resistivity is illustrated in Figure 1. It is apparent that resistivity and its inverse, conductivity, are inherent properties of a particular material, and are independent of geometry, as opposed to resistance and conductance (Stewart, 1981). The units of resistivity are ohm-meters in SI units, and conductivity is measured in mhos/meter. The instruments used (Scintrex IPC-7/2.5kW transmitter, RDC-8 receiver unit, and a Soiltest R-50 C.D. Resistivity Meter) measure current (I) in amperes or milliamperes and potential change ( $\Delta V$ ) in volts. Apparent resistivity values are derived from these measurements using a formula whose equation is dependent upon the electrode array configuration. The formulae for the Wenner and Schlumberger arrays are:

$$\rho_a = 2\pi a (\Delta V/I) \qquad (Wenner) \qquad (1)$$

$$\rho_{a} = \frac{\left(\overline{AB}\right)^{2} - \left(\overline{MN}\right)^{2}}{\overline{MN}} \frac{\Delta V}{T} \quad (Schlumberger) \quad (2)$$

where:

\$\rho\_a\$ = apparent resistivity,
a = the distance between any two adjacent electrodes,
AB = the distance between the current electrodes,



Figure 1. Definition of resistivity.

 $\overline{MN}$  = the distance between the potential electrodes,

I = current (amperes), and

 $\Delta V$  = change in potential (volts), (Zohdy and others, 1974).

The intensity of electrical current which will flow through the ground is dependent upon three properties of earth materials: 1) mineralogy, 2) pore surface and effective porosity, and 3) the amount and conductivity of interstitial fluids (Layton and Stewart, 1982). Common detrital minerals, i.e. - quartz, calcite, and feldspars, exhibit resistivities of  $10^3$  to  $10^9$  ohm-meters (Telford and others, 1976). Clays exhibit resistivity values of 1 to 100 ohm-meters (Telford and others, 1976) as they allow current flow across grains in the matrix (Keller and Frischknecht, 1966). Saturated clays will be surrounded by films of partially mobile ions which migrate under a potential gradient. This addition to the normal migration of ions causes a significant reduction in resistivity in clay-rich rocks and sediments (Davis and DeWiest, 1966). Most earth materials, however, behave as electrical resistors or at best as semi-conductors. Bulk resistivities of geologic units are lower than the minerals of which they are composed because most electrical current passes through pore spaces. Thus, resistivity becomes largely a function of effective porosity and chemistry of the saturation fluid (Davis and DeWiest, 1966). Effective porosity is the interconnected pore volume divided by the total volume (Stewart, 1981).

Current flow, thus bulk resistivity, is affected by three porosity related phenomena: 1) surface conditions, 2) pore fluid conduction, and 3) tortuousity. Water, a polar molecule, forms an electrically bonded layer on grain surfaces (Keller and Frischknecht,

1966), particularly in silicate clay minerals. This electrical double layer is more conductive than the mineral. Since current flow is across grain surfaces, it is greatly influenced by pore surface area in two ways: 1) by restricting the total cross-sectional area of pores filled with conducting fluids and 2) by reducing the pore surface area of interstices through which the current will flow in the electrical double layer (Layton and Stewart, 1982).

Pore fluid conduction is simply direct ionic conduction by the pore fluid (Stewart, 1981). Fluids low in ionic strength (i.e., fresh water) will not conduct an electric current as readily as fluids high in ionic strength (i.e., salt water). It is obvious that pore-fluid conductivity influences bulk conductivity or, conversely, bulk resistivity. Figure 2 illustrates the relationship between pore fluid resistivity and bulk resistivity. At low fluid resistivities there is nearly a 1:1 relationship between pore-fluid resistivity and bulk resistivity. As fluid resistivities increase the relationship deviates from the 1:1 ratio and bulk resistivity increases rapidly. From this graph it can be inferred that when pore-fluid resistivities are high, the values of bulk resistivity will be strongly influenced by porosity. When pore fluids have low resistivities, bulk resistivity will be dictated by the pore-fluid resistivity.

Tortuousity is the deviation of average current flow paths from a straight line due to flow around mineral grains (Stewart, 1981). Greater tortuousity results in higher resistivity values. This porosity related phenomena is not as significant as surface conditions or pore fluid conduction.



Figure 2. Relationship between pore fluid resistivity and bulk resistivity (in ohm-meters). A near 1:1 relationship between pore water resistivity and bulk resistivity exists at low fluid resistivities up to approximately 5 ohm-meters. Beyond 5 ohmmeters bulk resistivity increases rapidly becoming primarily a function of porosity (modified from Keller and Frischnecht, 1966).

#### Previous Applications of D.C. Resistivity to Ground Water Surveys

Swartz (1937, 1939) used direct current (DC) resistivity soundings to delineate fresh water bodies in salt water regions in the Hawaiian Islands. Since then DC surveys have been applied to the solution of many geologic and hydrogeologic problems. Investigations delineating fresh water bodies or the limits of salt water intrusion have been conducted by Zohdy and others (1969), Flathe (1970), Lazreg (1972), Zohdy and others (1974), Gorhan (1976), Fretwell and Stewart (1981), Reed and others (1981), Stewart and others (1981), and Layton and Stewart (1982). The location and extend of chemical plumes and contaminated waters, such as landfill leachates, mine drainage, and sewage effluent, have been determined by DC resistivity surveys by Cartwright and McComas (1968), Warner (1969), Hackbarth (1971), Merkel (1973), Fink and Aulenbach (1974), Stollar and Roux (1975), Kelly (1976), Klefstad and others (1976), and U.S. Environmental Protection Agency (1978). DC resistivity methods have also been used to locate specific geologic features, such as buried sand and gravel deposits (Davis and DeWiest, 1966; Zohdy and others, 1974; Heigold and others, 1979), fresh waterbearing sandstones (Fischer, 1978), and reef limestones (Layton and Stewart, 1982).

#### LOCATION OF STUDY AREA

Martin County, an area of approximately 1450 km<sup>2</sup>, lies in the southeastern part of peninsular Florida between Lake Okeechobee on the west and the Atlantic Ocean on the east. It is bounded by St. Lucie and Palm Beach Counties to the north and south, respectively (Figure 3). The area of investigation is located in the east and central portions of the county. This includes all or parts of Townships 38-40 South and Ranges 38-42 East (Figure 4). The investigation was conducted within the St. Lucie Inlet, Gomez, Rood, West Palm 2NE, Palm City, Indiantown SE, Indiantown NW, Indiantown, and Okeechobee 4SE  $7\frac{1}{2}$ ' topographic map quadrangles. Latitudes of the study area boundaries are  $26^{0}58'14''$  to  $27^{0}09'32''$  S. Longitudes are  $80^{0}09'09''$  to  $80^{0}32'45''$  W.





Figure 4. Location and distribution of vertical electric sounding stations within the study area.

#### DESCRIPTION OF STUDY AREA

Martin County lies within the Atlantic Coastal Province (Meinzer, 1923). The county is further divided into three smaller physiographic regions: 1) Atlantic Coastal Ridge, 2) Eastern Flatlands, and 3) Everglades (Davis, 1943). "East is a region in which a certain similarity of topography or relief prevails or a certain soil type or vegetation cover is common" (Lichtler, 1960, p.6). The area of investigation lies in the Atlantic Coastal Ridge and partly in the Eastern Flatlands (Figure 5).

Except for the sand hills, which reach a maximum elevation of approximately 22 meters near Hobe Sound, relief is low. Regionally, elevation increases from east to west, ranging from mean sea level to approximately 8 meters. A gentle rise in elevation (Green Ridge) in the central portion of the study area attains altitudes of 9 to 11 meters above sea level (Lichtler, 1960). West of Green Ridge the land surface is extremely flat, having a very slight slope to the south. MacNeil (1949) describes a ridge in western Martin County. He interprets this ridge to be an old shoreline of a lagoon extending from Brevard County southward through Indian River and St. Lucie Counties, ending at Indiantown as a sharp cape. MacNeil believes this ridge is the southernmost extent of the Orlando Ridge. White (1970) shows this ridge to be separate from the Orlando Ridge and assigns it to the southern 12 meters crest of the Osceola Plain. He agrees with MacNeil in that the ridge is a long spit/cape or offshore shoal feature.



Figure 5. Physiographic subdivisions of Martin County, Florida (modified from Lichtler, 1960).

The St. Lucie River and the Loxahatchee River form the major drainage basins within the study area. The St. Lucie Canal primarily conveys flood waters from Lake Okeechobee to the St. Lucie River. The north and south forks of the St. Lucie River drain much of the east and northeast section. The Loxahatchee River drains the southeastern section (Lichtler, 1960). Both basins are remnants of the Pamlico Intracoastal Waterway (MacNeil, 1949) and form a boundary between the Atlantic Coastal Ridge and the Eastern Flatlands. Much of the area west and south of Green Ridge has poorly defined drainageways and remains marshy most of the year. Standing water and ponding is common throughout the county, especially during the rainy season.

Vegetation over Martin County is varied. The sandhills supports growths of bunch grass, pines, and palmettos. Westward, the flatlands are characterized by cypress, pine, palmetto, and marsh vegetation. Over much of the county this natural vegetation has been replaced by pastureland and citrus groves. Soils in these provinces are sandy and probably of Pamlico terrace origins (MacNeil, 1949; White, 1970). These sandy soils continue westward where they grade into the mucky, organic soils of the Everglades. Here, vegetation is typically sawgrass and stunted cypress.

#### Climate

Martin County has a subtropical climate due to its flat terrain, low latitude, and proximity to coastal waters. It has an average temperature of approximately 24<sup>0</sup>C. A controlling factor of the climate is the presence of the nearby Gulf stream. Convective atmospheric systems generate nearly 60% of the annual precipitation (South Florida

Water Management District, 1980) during the rainy season from June through October (Lichtler, 1960). Average rainfall varies from about 1.27m to 1.42 m, with the coastal area receiving up to 2.03 m (South Florida Water Management District, 1980).

#### GEOLOGY

The igneous and metamorphic rocks forming the basement complex of peninsular Florida are covered in Martin County by approximately 4,000 meters of sedimentary rocks, most of which are of marine origins. In Martin County, dominant lithologies down to approximately 200 meters are sands and sandstones, limestones, silts, and clays. Below that depth dominant rock types are limestones and dolomites (Lichtler, 1960). Only about the top 460 meters of sediments that have been penetrated by water wells will be discussed (Figure 6).

#### Pre-Miocene Units

The deepest water wells in Martin County penetrate into the Avon Park limestone of Eocene age. These wells reach depths of approximately 460 meters. The total thickness of the Avon Park is not known. The late Eocene Ocala Group (Cooke, 1945) is generally less than 30 meters thick and overlies the Avon Park limestone. Although Puri (1953) subdivided this group, no core samples from Martin County are known to exist and no such distinction can be made. An unconformity marks the boundary between the Ocala Group and the overlying Suwannee Limestone. A thin unnamed calcilutite overlies the Ocala Group. This limestone may be upper Eocene or Oligocene, as its age is undetermined (Mooney, 1980).

The Suwannee was deposited in the Oligocene. After deposition the Suwannee was subjected to marine regression and post-Oligocene erosion (Vernon, 1951). The Suwannee's thickness varies from 6 to 18 meters

|                   |  | Western                        | Eostern                |                   |                   |                                                                                                                                                       |
|-------------------|--|--------------------------------|------------------------|-------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| ACE               |  | Mertin Co.                     | Mertin Co.             |                   |                   | PHYSICAL & WATER -                                                                                                                                    |
| AGE               |  | FORM                           | (meters)               |                   | BEARING CHARACTER |                                                                                                                                                       |
| PLEISTO -<br>CENE |  | FOR T<br>THOMPSON<br>FORMATION | ANASTASIA<br>FORMATION | <u>1-2</u><br>30+ | RIDGE AQUIFER     | Fine sand Little water vield<br>Sond, sandstone, limestone, clay,<br>and coquing mixtures. Yields<br>moderate to lorga quantities<br>of water.        |
| NE-IO-            |  | CALOOSAHATO                    | HEE MARL               | ?                 | ASTAL             | Shelly, sandy, limestone.<br>Poor water yields.                                                                                                       |
| C D D             |  | TAMIAMI<br>FORMATION           | TAMIAMI<br>FORMATION   | 5-<br>20+?        | CO<br>*           | Green to white, silty, sandy, clays.<br>Some shell beds & sandy limestone<br>lenses. Moderate weter yields.                                           |
| MIOCENE           |  | HAWTHORN<br>FORMATION          | HAWTHORN<br>FORMATION  | 105 -<br>168      | CONFINING BEDS    | Derk green to white phosphatic<br>clay with silt and quartz send.<br>Sendy limestone and chert.<br>Generelly impermeable<br>with poor water yields.   |
|                   |  | TAMPA FM.                      | TAMPA FM.              | 3-5               |                   | White - yellow, hard sondy limestone.                                                                                                                 |
| DIL IGO<br>CENE   |  | SUWANNEE<br>LIMESTONE          | SUWANNEE<br>LIMESTONE  | 6 - 52            |                   | Cream_colored, slightly parous, soft<br>limestone. Moderate water yields.                                                                             |
| NE                |  | O CALA<br>GROUP                | OCALA<br>Group         | < 30              | RIDAN AQUIFER     | White to slightly pink, medium<br>herd to soft limestone, with<br>some crystalline coldite.<br>Generally porous.<br>Yields large quantities of water. |
| EOCE              |  | AVON PARK<br>LIMESTONE         | AVON PARK<br>LIMESTONE | 95?               | FLOI              | Cream-colored to tan, hard to<br>soft, parous limestone.<br>Yields water from parous<br>zones in some places.                                         |

Figure 6. Generalized section of geologic formations in Martin County, Florida.

over much of the county to as much as 52 meters in the eastern portions. Lichtler (1960) attributes this variation in thickness to late-Oligocene or post-Oligocene activity along a fault that is roughly parallel to and approximately 8 kilometers inland from the coast line. The eastern, downthrown side of the fault was protected from erosion, therefore sediment thickness is much greater than on the unprotected, western, upthrown side. The faulting is probably associated with crustal movements that formed the Ocala Uplift (Cooke, 1945; Vernon, 1951; Winston, 1976).

The lithologies of these Pre-Miocene units vary from the recrystallized, porous limestones of the Avon Park to the granular, often chalky, limestones of the Suwannee. These Pre-Miocene limestones are cream to tan to pink, soft to hard, and are generally porous and permeable to slightly permeable. These limestones form the Floridan Aquifer. Additional, detailed information of these Pre-Miocene units in Martin County is given by Lichtler (1960) and Mooney (1979).

#### Miocene Units

The Miocene series in Martin County consists of the Tampa Formation of early Miocene age and the Hawthorn Formation of early and middle Miocene age. These units lie unconformably on the Suwannee Limestone. Traditionally, the Tamiami Formation has been included in the Miocene; however, based on nanofossil examinations (Akers, 1974) and recent stratigraphic revisions, some of the upper portions of the Tamiami Formation are now classified as Mid-Pliocene.

The Tampa sediments are perplexing stratigraphic units because of the lack of agreement of the lithologic character, geographic distri-

bution, and age as reported in the literature (Scott and MacGill, 1981). At its type locality the Tampa Formation is a white to yellowish, hard, dense, and very sandy limestone. A limestone located approximately 3.2 km south of Stuart, Florida in Martin County has been tentatively correlated with the Tampa. It is similar to the Tampa Formation of the type locality, lies just below the Hawthorn, and is three to five meters thick (Lichtler, 1960).

Like the Tampa sediments, the Hawthorn Formation varies greatly across the state. In Martin County the unit consists of beds of white to dark green, phosphatic, silty to sandy clays. Thin layers and lenses of sandy, phosphatic limestone, chert, sandstome, and shell occur within the Hawthorn. Dolomite cement is common as well (Scott, 1983). The Hawthorn Formation's thickness in Martin County varies from approximately 100 to 168 meters (Lichtler, 1960).

#### Post-Miocene Units

For nearly 90 years the late Tertiary and Quaternary sediments of southern Florida have presented problems of nomenclature and stratigraphy. Hunter (1978), addressing these problems, proposed several revisions of terminology in an attempt to clarify the controversy surrounding south Florida stratigraphy. The Tamiami Formation, originally assigned to the Pliocene (Mansfield, 1939), was redefined by Parker and others (1955) to include "all the Upper Miocene materials in southern Florida". Parker's Tamiami Formation has a major regional unconformity within it, however, separating the upper and lower units. The upper unit contains Pliocene sediments (Akers, 1974), while the lower unit, based on vertebrates, foraminifera, and molluscs, contains

Miocene sediments. Therefore, Hunter (1978) suggests a division of the formation into upper and lower units based upon the occurrence of two regional unconformities in the Neogene System. While Hunter has traced these unconformities in the Caloosahatchee River area and to the west side of Lake Okeechobee, they can only be inferred in Martin County as the necessary stratigraphic data needed to confirm them do not exist. Hunter assigns a Pliocene age to the Tamiami Formation in the Lake Okeechobee area.

Lichtler (1960) does not distinguish any lithologic break between the Hawthorn and Tamiami Formations. This implies that at least part of the Tamiami Formation is white to green, silty to sandy clays. North of Martin County, in Indian River County, the lower beds of the Tamiami are white to light gray, calcisiltites to calcirudites. Bed deposits vary from original shell material to recrystallized material and coquina. Basal beds grade into green to greenish gray, poorly consolidated, phosphatic calcisiltites to calcarenites. Some moldic porosity may occur locally. Upper beds are white to dark gray, hard, well-cemented calcisiltites to calcirudites. Moldic porosity is common to abundant (Frazee and Johnson, 1983). Similar lithologies have been described in the FPL core No. 1 in western Martin County (Figure 7 and Appendix C). Well cuttings from eastern Martin County contain deposits that may be from the Tamiami Formation, but core samples are needed for better identification. The Tamiami beds can provide quantities of water suitable for supplemental agricultural and domestic use (Parker and Cooke, 1944; Frazee and Johnson, 1983).

Since Matson and Clapp (1909) adopted Caloosahatchee Marl as a formation name, the classification of the Pliocene, shelly, sandy



Figure 7. Location and distribution of lithologic data within Martin County, Florida.

limestone unconformably overlying the Tamiami Formation has been a subject of debate and controversy. Parker and Cooke (1944) state that its thickness varies from 9-15 meters in the West Palm Beach area and that it thickens to the south and east, and interfingers with the Tamiami Formation. Lichtler (1960) places the Caloosahatchee Marl over the Tamiami units, based on Cooke's (1945) description of the marl in western Martin County. Hunter (1978) states that the Caloosahatchee is too thin from Lake Okeechobee to southern Palm Beach County to be mappable as a formation. These and many other discrepancies are commonplace, with no near-future mesolution. Thus, it is sufficient to say that the Caloosahatchee Marl demes orecur in western Martin County, possibly in eastern Martin County, but it is of unknown thickness and extent.

The Fort Thompson Formation was defined by Sellards (1919) in its type locality as alternating beds of fresh water and brackish water deposits with marine shelly marl of Pleistocene age. Similar deposits occur in Martin County (Lichtler, 1960). The Fort Thompson Formation, unconformably overlies the Caloosahatchee Marl. It may extend as far east at the Atlantic Coastal Ridge where it merges with the Anastasia Formation. Generally, it is a poor aquifer, but may provide water where sand and shell dominate the lithology (Parker and Cooke, 1944).

The Anastasia Formation in Martin County "consists mostly of sand, shell beds, and thin discontinuous layers of sandy limestone or sandstone" (Lichtler, 1960, p. 20). The consolidated coquina phase of the Anastasia Formation crops out at various points along coastal Martin County. It grades from a coarse coquinoid limestone to a micro-

coquina (Puri and Vernon, 1959). This formation forms the backbone of the Atlantic Coastal Ridge and is wedge-shaped, thinning landward where it merges with the Fort Thompson Formation (Parker and Cooke, 1944). The Anastasia Formation lies unconformably on the Caloosahatchee Marl or older formations. It is overlain unconformably by the Pamlico Sand (Lichtler, 1960).

Serving as a major source of fresh ground water, the Anastasia may be more than 30 meters thick in eastern portions of Martin County. Thin, permeable shell, limestone, and/or sandstone beds, 15 to 38 meters below land surface yield large quantities of potable water (Lichtler, 1960).

The Pamlico Sand extends over most of Martin County, except on the 12 meter crest of the Osceola Plain (White, 1970). This terrace sand is only about one meter thick. It is not a source of appreciable amounts of ground water in Martin County (Lichtler, 1960).

#### GENERAL HYDROLOGY

An aquifer may be defined "as a saturated permeable geologic unit that can transmit significant quantities of water under ordinary hydraulic gradients" (Freeze and Cherry, 1979, p. 47). Based on this criterion, two aquifers exist in Martin County: the deep, artesian, Floridan Aquifer, and the shallow, nonartesian aquifer. The thick, low permeability deposits of the Hawthorn and lower Tamiami Formations separate the aquifers. The Floridan Aquifer yields large quantities of ground water that is moderately to highly mineralized. Water from the shallow aquifer is generally fresh, except along coastal margins where salt water encroachment is common.

#### Artesian Aquifer

The Floridan Aquifer underlies all of Florida and parts of southern Georgia. Parker and others (1955, p. 89) define the Floridan to include

"parts or all of the middle Eocene (Avon Park and Lake City limestones), upper Eocene (Ocala limestone), Oligocene (Suwannee limestone) and Miocene (Tampa limestone, and the permeable parts of the Hawthorn that are in hydrologic contact with the rest of the aquifer)."

The artesian aquifer underlying Martin County is composed of the Avon Park Limestone, the Ocala Limestone, and an unnamed calcilutite of uncertain age (Mooney, 1979). The formations dip to the south or southeast. The top of the aquifer varies from about 198 meters below land surface in the northeastern portions of the county to greater than 330 meters below land surface in the vicinity of Jonathan Dickinson State Park in the southeastern portion of the county. Potentiometric surface elevations generally vary from 12 to 15 meters above mean sea level, but may range from 9 to 16 meters (Lichtler, 1960; Brown and Reece, 1979; South Florida Water Management District, 1980). Water quality is vertically and areally variable. Total dissolved solids are relatively high, rendering the water unsuitable for domestic use (Reece and others, 1980; South Florida Water Management District, 1980). Locally, mineralization may be low enough to allow use for livestock and citrus irrigation. Detailed information regarding the Floridan aquifer and its water quality in southeast Florida can be found in Bearden (1972), Sherwood (1973), Meyer (1974), Brown and Reece (1979), Mooney (1979) and South Florida Water Management District (1980).

#### Shallow Aquifer

The shallow aquifer is the principal source of fresh ground water in Martin County. The aquifer is usually unconfined, but leaky aquifer conditions exist locally, particularly where discontinuous clay lenses act as semi-confining layers, as in the Indiantown area (South Florida Water Management District, 1980). Aquifer limits extend from the water table to greater than 60 meters below land surface. Strata have been assigned to the Pleistocene (Pamlico Sand, Anastasia and Fort Thompson Formations) and Pliocene (Caloosahatchee Marl and/or the upper units of the Tamiami Formation) Epochs (Parker and Cooke, 1944; Lichtler, 1960). The lithology of the aquifer is predominantly sand with lenses of shell and thin beds of sandy limestone and sandstone. Large capacity wells are developed in limestone, sandstone, and/or shell beds. Highly

permeable, cavity-riddled, calcarenites occur within the shallow aquifer in northeastern Palm Beach County (Fischer, 1978). Similar zones probably exist in eastern Martin County. Lithology varies laterally and vertically due to the predominantly shallow marine depositional environment of the sediments.

Shallow aquifer transmissivity values are highest in eastern and southeastern Martin County. This is due to greater aquifer thickness and more permeable sediments. Calculated storage coefficient/specific yield of wells range from 0.002 to 0.16 (South Florida Water Management District, 1980).

Water quality is genemally good, with usually less than 1000 ppm total dissolved solids. Table I lists the composition of well-water samples typical of the shallow aquifer. Figure 8 shows the location and distribution of the sample sites. When the major anions, Cl,  $HCO_3^{-1}$ , and  $SO_4^{-2}$ , are converted to milliequivalents and plotted as total milliequivalents versus specific conductance, linear regression analysis shows a strong positive correlation coefficient of 0.9999. More importantly, Cl<sup>-</sup> alone accounts for 99% of the correlation and variance. Thus conductance and, conversely, resistance, is dependent upon the concentrations of these major anions, particularly chloride. Water samples are typically calcium-magnesium bicarbonate type, but due to encroachment become sodium chloride type in the Stuart and nearcoast areas (South Florida Water Management District, 1980). Within the county, water quality may be locally poor. This may be due to commercial irrigation with water from the Floridan Aquifer, contamination with canal water (Bearden, 1972), residual salts from ancient seas

| Sample No.    | Calcium<br>(Mg/L As Ca) | Hagnesium<br>(Hg/L as Hg) | Sodium<br>(Hg/L as Ka) | Potassium<br>(Hg/L as K) | Chloride<br>{Mg/L as CL} | Carbon Diexide<br>(Mg/L as (O <sub>2</sub> ) | ficarbonate<br>(Mg/L as HCO <sub>2</sub> ) | Bicarbonate<br>Altalinity<br>(Mg/L as CaCO <sub>1</sub> ) | Sulfate<br>Dissolved<br>(Mg/L as SO,) | Spec.<br>Cond. |
|---------------|-------------------------|---------------------------|------------------------|--------------------------|--------------------------|----------------------------------------------|--------------------------------------------|-----------------------------------------------------------|---------------------------------------|----------------|
| M-1030        | 93                      | 2.4                       | 17                     | 0.9                      | 20                       | 5.3                                          | 264                                        | 217                                                       | 27                                    | 530            |
| <b>N-1031</b> | 35                      | 1.4                       | 15                     | 1.4                      | 4.3                      | 3.9                                          | 96                                         | 79                                                        | 38                                    | 290            |
| H-1041        | 92                      | 9.2                       | 33                     | 1.4                      | 45                       | 30                                           | 389                                        | 312                                                       | 1-6                                   | 685            |
| H-1042        | *                       | 4.2                       | 8.6                    | 3.7                      | 6.6                      | 46                                           | 258                                        | 236                                                       | 11                                    | 470            |
| M-1045        | 60                      | 6.3                       | 45                     | 1.4                      | 82                       | 7.1                                          | 352                                        | 285                                                       | 1.4                                   | 572            |
| M-1046        | 82                      | 5.7                       | 130                    | 4.6                      | 220                      | 19                                           | 368                                        | 302                                                       | 8.9                                   | 680            |
| 15-1047       | 3,7                     | 1.1                       | 2.1                    | 0.5                      | 21                       | 45                                           | 28                                         | 23                                                        | 6.0                                   | 105            |
| 11-1019       | 110                     | 5.8                       | 29                     | 1.1                      | 36                       | 15                                           | 584                                        | 479                                                       | 1.8                                   | 680            |
| M-1050        | 110                     | 8.5                       | 55                     | 2.6                      | 75                       | 16                                           | 624                                        | 512                                                       | 3.4                                   | 670            |
| H-1051        | 97                      | 4.4                       | 30                     | 1.6                      | 43                       | 12                                           | 306                                        | 253                                                       | 4.8                                   | 530            |
| H-1052        | 130                     | 9.9                       | 55                     | 2.0                      | *1                       | .386                                         | 415                                        | 341                                                       | 11                                    | 920            |
| H-1053        | 170                     | 89                        | 810                    | 23                       | 1 600                    | 18                                           | 360                                        | 295                                                       | 85                                    |                |
| H-1054        | 330                     | 730                       | 6200                   | 230                      | 11000                    | 31                                           | 268                                        | 220                                                       | 1500                                  | 25500          |
| H-1055        | 82                      | 3.3                       | 54                     | 1.4                      | 29                       | 14                                           | 349                                        | 286                                                       | 17                                    | 670            |
| M-1058        | 6.5                     | 1.0                       | 13                     | 0.4                      | 15                       | 64                                           | 32                                         | 26                                                        | 3.3                                   | 115            |
| H-1071        | 58                      | 1.5                       | 17                     | 1.2                      | 28                       | 3.6                                          | 180                                        | 148                                                       | 11                                    | 420            |
| H-1073        | 78                      | 2.7                       | 17                     | 1.1                      | 24                       | 2.8                                          | 280                                        | 230                                                       | 0.3                                   | 480            |
| #-1084        | 160                     | 16                        | 130                    | 4.6                      | 220                      | ***                                          | 415                                        | 340                                                       | 130                                   |                |
| 8-1096        | 110                     | 9.0                       | 46                     | 1.0                      | 90                       | 29                                           | 360                                        | 295                                                       | 0.0                                   | 800            |
| #-1100        | 100                     | 7.2                       | 38                     | 2.3                      | 64                       | 6.4                                          | 320                                        | 262                                                       | 2.2                                   | 675            |
| WH3-51320     |                         | 48                        | 450                    | 24                       | 784                      | 32                                           | 181                                        | 149                                                       | 115                                   |                |
| W43-42923     | 27                      | 7.3                       | 15                     |                          | 16                       | 32                                           | 234                                        | 192                                                       | 10                                    | -              |
| 65-23         | 128                     | 26                        | 18                     | 2                        | 238                      |                                              | 418                                        |                                                           | 139                                   | 1560           |
| L-01          | 64                      | 7.4                       | ۱                      | 6                        | 13                       | ***                                          | 231                                        |                                                           | 17                                    | 428            |
| L-09          | 146                     | 19                        |                        | 6.7                      | 10                       | ***                                          | 485                                        |                                                           | 39                                    | 102            |
| L-13          | 39                      | 2.1                       |                        | 9.7                      | 16                       |                                              | 120                                        |                                                           | 5.1                                   | 233            |
| L-15          | 124                     | 10                        | 5                      | 1                        | 71                       |                                              | 396                                        | • • •                                                     | 24                                    | 867            |
| L-22          | 128                     | 30                        | 12                     | 4                        | 161                      |                                              | 548                                        | _                                                         | 34                                    | 1380           |
| L- 98         | 102                     | 4.6                       | 3                      | s                        | 106                      | _                                            | 224                                        | ****                                                      | 12                                    | 701            |
| L-214         |                         | ***                       |                        | -                        | 92                       |                                              |                                            | ***                                                       |                                       | 746            |
| L-655         | 70                      | 0.5                       | 7.8                    | 0.7                      | 16                       |                                              | 220                                        |                                                           | 0.5                                   | 386            |
| L-657         | 86                      | 2.3                       | 9.6                    | 0.4                      | 15                       |                                              | 272                                        |                                                           | 0.0                                   | 459            |
| L-936         | 134                     | 35                        | 459                    |                          | -626                     | ***                                          | 492                                        |                                                           | 128                                   | 2850           |
| L-939         | 109                     | 3.4                       | 7.4                    | 1.4                      | 16                       |                                              | 363                                        |                                                           | 1.6                                   | 588            |

Table 1. Analyses of well-water samples from the shallow aquifer in Martin County, Florida.\*

"Duta were collected from the following sources:

Well Kg. Source

H-0000 VI/00-00000 65-00 L-000 (Hiller, 1980) (South Florids Water Management, unpublished) (Lichtler, 1960) (Lichtler, 1960)


Figure 8. Location and distribution of nonartesian well-water samples within Martin County, Florida.

. .

(Lichtler, 1960), or upward leakance from the Floridan Aquifer (South Florida Water Management District, 1980).

Recharge is primarily from percolation of rainfall in and immediately adjacent to the county. Drainage canals may provide some recharge during the rainy season. Recharge may be poor in areas where clay lenses act as semi-confining layers. Ponding results in these regions, especially during the rainy season.

Ground water is discharged through runoff and flow into streams, springs, lakes, canals, and through pumpage from wells. Many small streams and sloughs discharge directly into Lake Okeechobee or the Atlantic Ocean. Where ponding occurs, evapotranspiration is the major means of water loss.

## FIELD AND LABORATORY TECHNIQUES

Two resistivity units were used for data acquisition: a Soiltest Model R-50 Stratameter direct current resistivity unit and a Scintrex IPC-7/2.5kW transmitter, RDC-8 direct current resistivity unit. All field data were collected between March 8 to 11, May 3 to June 16, and on November 10, 1982. A total of 51 survey stations over an approximately 587 km<sup>2</sup> area were established during the field season. The location and distribution of the DC resistivity soundings are shown in Figure 4.

The resistivity data were obtained using both the Wenner and Schlumberger electrode arrays (Zohdy and others, 1974; Telford and others, 1976). A maximum "a" spacing of 160 meters ( $\overline{AB}$ =480 meters) was used in the Wenner array. The ratio of current electrode spacing to potential electrode spacing from Schlumberger soundings was maintained between 5:1 and 10:1.

All DC resistivity data were reduced using an automatic inversion computer program derived by Zohdy and Bisdorf (1975). Reduced data provide depth, thickness, and bulk resistivity values for layers in the geoelectric section. Values of reduced data from each VES station are listed in Appendix A.

### RESULTS

Fifty-two geoelectric profiles were compiled from the reduced data. Each profile was constructed on a Cartesian graph with apparent resistivity,  $\boldsymbol{\rho}_a,$  given to the abscissa axis and depth,  $\boldsymbol{Z}_m,$  given to the ordinate axis. All of the geoelectric sections exhibit the same general profile. As illustrated in Appendix B, this profile is composed of two principal peaks separated by a trough, representing three major geoelectric layers within the Coastal Ridge Aquifer. The uppermost geoelectric layer correlates with the first peak. This layer has moderate to high resistivity values, is thin (1-3 meters thick), and is at or near the surface. It represents the resistive, medium- to very fine-grained, white to gray, siliceous surficial sands. At some locations this peak reflects, in part, roadfill. These surficial sands grade downward into shelly, medium- to very fine-grained, siliceous sands with variable percentages of silt, clay, and organic matter. These sediments comprise the second geoelectric layer and are reflected in the profile by a trough of moderate to low resistivity. The corresponding geoelectric layer is thin to moderately thick, varying from 2-12 meters in most cases.

The third geoelectric layer (i.e., the target zone) correlates with the second peak of the profile. This peak, lying immediately below the trough, is of major importance as it represents those sediments having the greatest potential for water resource development. This peak varies widely in resistivity and thickness. Generally, its relative resistivity values are moderate to high. Thicknesses range from approximately 6 meters to as much as 54 meters, but are commonly about 20 meters. This geoelectric layer is composed of sediments of variable lithologies. Examination of well cuttings and a core show these lithologies become finer-grained in a landward direction. Well cuttings indicate that in the easternmost portions of the study area the dominant lithology is a well-cemented, shelly calcarenite. Lithologic data and well completion reports (Appendix C) indicate lenses of sand and cavernous zones occur within the calcarenite, which correlates well with Fischer's (1978) high-permeability zone or "Turnpike Aquifer" in Palm Beach County. In the east-central and central portions the dominant lithologies are interbedded sandstones and shell beds. Mediumto fine-grained, gray, siliceous sand is also prevalent. Locally, clay and marl may be present in minor quantities. South of Green Ridge (Figure 5) these finer sediments may be present in larger quantities. In the west-central and western portions (i.e., west of Green Ridge), silt, clay, and marl are present in large percentages, are intermixed with fine, gray to brown, siliceous sand and shell, and may locally be the dominant lithologies.

A fourth geoelectric layer is reflected in the profile by a rapid decrease in resistivity values with increasing depth, beginning just below the second peak. Generally, these values decline to 10 ohm-meters or less. These lower resistivities represent the confining units below the Coastal Ridge Aquifer. The dominant sediments are olive-green to greenish-gray, carbonate and siliceous silts, fine sands, and clays. Shell material, dolomite, and phosphate are present throughout. These

sediments may or may not be consolidated. The confining units lie 40 to 50 meters below land surface.

Of the 52 geoelectric profiles, 68.7% fall within a well-defined envelope (Figure 9). Only 13.7% of the profiles are to the left of the envelope, indicating shallow, low resistivity geoelectric layers. These latter profiles were derived from vertical electric sounding (VES) stations either west or south and southeast of Green Ridge. These lower resistivities result from high percentages of fine sediments, poor water quality, or both. More resistive, deeper geoelectric layers fall to the right of the envelope and comprise 17.6% of the data. These profiles represent shell beds and calcarenites located in the easternmost and northernmost portions of the county.

Four geoelectric cross sections were compiled from the 52 profiles. Two cross sections are west-to-east traverses, one is a south-to-north traverse, and the fourth is oriented southwest-to-northeast. All cross sections nearly parallel major roads in the study area. The location and extent of the cross sections are shown in Figure 10. Cross section A-A' extends from 6.4 km west of SR 710 at Indiantown, eastward along highways 76 and 708 to Hobe Sound. Cross section B-B' extends northward along SR 711 and SR 76A, from 2.4 km north of the Martin-Palm Beach county line to SR 714. The third cross section, C-C', extends from the Hale Dairy Road (SR 609)-SR 714 intersection, eastward along SR 714 to the Palm City-Stuart area. The southwest-to-northeast cross section, D-D', extends from 5.6 km west of the SR 76-SR 708 intersection to 0.3 km south of the SR76-Salerno Road intersection. Total length of the cross sectional coverage is approximately 105 km. The geoelectric cross sections are shown in Figures 11, 12, 13, 14 at a vertical



Figure 9. Distribution of resistivity values versus depth for all data.



Figure 10. Location and extent of geoelectric cross sections within Martin County, Florida.

.1



Figure 11. Cross section of geoelectric traverse A-A'.



Figure 12. Cross section of geoelectric traverse B-B'.



Figure 13. Cross section of geoelectric traverse C-C'.



Figure 14. Cross section of geoelectric traverse D-D'.

exaggeration of 124X. Above each cross section is a graph indicating the maximum resistivity value of the target zone at each VES station.

Three distinctive geoelectric layers are illustrated in all four cross sections. A surficial low resistivity layer is also shown in the eastern portions of cross section C-C'. The depth of effective penetration for the electrode spacings used extends well below the depths shown in all cross sections. The bottom of each profile represents the top of the low resistivity confining units below the target zone.

Lithologic data indicate that changes in the lithologic character of the strata are transitional, exhibiting no distinctive boundaries. Also, a geoelectric layer meed not correspond to any specific lithology or stratum. Therefore, boundaries between layers were determined strictly by a mechanical procedure referred to here as the midpoint method. The boundary separating the shallow, high resistivity zone from the shallow, low resistivity zone was determined by finding the midpoint between the maximum value of the first peak and the minimum value of the trough. Except for the lower limit of the deep, high resistivity-target zone, all other boundaries were determined similarly. The lower boundary of the target zone was assigned to the depth at which the resistivity decreased to half the maximum value (Appendix D).

The midpoint method works well for the VES profiles. Intuitive correlation may provide more precise boundary locations when nearby lithologic data can be integrated with geophysical data. Consequently, graphically-picked boundaries may shift vertically, based upon correlation with lithologic data. Horizon depths determined graphically

are very similar to horizon depths based on available lithologic data. This increases the confidence in graphically-picked horizons where lithologic control is not available.

All four geoelectric cross sections exhibit at least three similar, distinctive features. First, the upper boundary of the low resistivity confining units is variable and undulatory. This uneven nature is reflected in the overlying geoelectric layers, but is less pronounced with each successive overlying unit. High resistivity values in the target zone nearly always occur over points of higher elevation in the confining units. Similarly, lower resistivity values occur over troughs in the underlying units.

Second, a general eastward dip and thickening occurs in the geoelectric layers. Cross section C-C' (Figure 13) shows the greatest amount of easterly dip, with each layer becoming deeper and thicker as the section approaches the St. Lucie River. Cross section D-D' (Figure 14) shows a similar trend, but to a lesser degree and extent. Geoelectric layers dip and thicken eastward from VES 76.N5. Dipping layers occur in the easternmost portions of cross section A-A' (Figure 11). This trend is not as obvious or as great as in the previous two cross sections. Cross section B-B' (Figure 12) does not reflect this trend well as it is a south-to-north traverse, essentially along strike. The geoelectric layers show some dip and thickening in the northernmost portions of the cross section. A review of the cross sections indicates that the greatest dips and thickest units occur in the northeast, near the St. Lucie River. The geoelectric units become thinner and have lower dips in the south eastern section, near Hobe Sound. In the central and western portions of the study area,

geoelectric layers are thinner and show only a slight easterly dip. In the Indiantown area the geoelectric layers, especially in the target zone, thicken (Figure 11). This interpretation is based primarily on lithologic data. Additional geophsyical data are needed to substantiate this correlation.

Third, in nearly all of the VES profiles the maximum resistivity in the section occurs at or above the midpoint of the target zone. Like the geoelectric layers, the trend of the depth to maximum resistivity roughly parallels the undulatory nature of the underlying units.

ŧ

. . .

# DISCUSSION

## Correlation of Resistivity with Geology and Water Quality

As previously described, matrix mineralogy, porosity, and the amount and conductivity of the interstitial fluids determine the amount of resistance an electrical current experiences while flowing through the ground. The dominant lithologies of surficial deposits in Martin County, carbonates (limestones and shell beds), siliceous, terrigenous clastics (sands and sandstones), and marls (carbonate silts) do not readily conduct current electronically. Where appreciable amounts of clay minerals exist in a measured section, as in western Martin County, electrical conduction can occur along clay surfaces, reducing the bulk resistivity. Such a reduction will be reflected in a vertical electric profile. Lithologic data (Appendix C) indicate that over much of the study area, clay minerals are not present in significant quantities in the shallow strata, particularly within the deeper, high resistivity-target zone. Therefore, resistivities of earth materials in central and eastern Martin County may be expressed in terms of their porosities and the quality of interstitial fluids.

Previous resistivity studies have correlated water quality to resistivity response. Worthington (1976), in determining the effectiveness of surficial electrical surveys as applied to arenaceous aquifers, assumes a resistivity response of 29 ohm-meters for water quality of 250 ppm NaCl. Jakob (1980), working in Collier County, Florida, found that the potable water limit of 250 ppm Cl<sup>-</sup> corresponds approximately to a resistivity of 30 ohm-meters. A comparison of well-water conductivities, chemical data, and electrical soundings (Stewart and others, 1982) of similar areas in Collier County suggests a resistivity value of 20 ohm-meters for the potable water limit. Vertical sounding and lateral resistivity well-log data from Collier County indicate a wide range of resistivity values for potable water. Therefore, Layton and Stewart (1982, p. 42) suggest the 30 ohm-meter value as a "safe, conservative estimate of the potable water limit in southern Florida".

A comparison of water quality to resistivity values cannot be made in Martin County as proper well-data (lateral resistivity logs) do not exist for strata of the Coastal Ridge Aquifer. As indicated by Table 1, chloride content is generally well below the 250 ppm potable water limit. Additional water sample data from 771 wells in Martin County indicate that chloride content is less than the 250 ppm limit over most of the county (Lichtler, 1960).

In determining hydraulic conductivity and water quality for the shallow aquifer in Palm Beach County, Scott (1977) ranked water into four groups, based on ion concentrations in solution and total dissolved solids. Scott (p. 16) states "that the quality of water contained in the shallow aquifer varies with physiographic regions and depth below land surface". This is due to the character and composition, distribution, and structure of the earth material through which the water moves. Consequently, good quality water occurs within the Atlantic Coastal Ridge and the eastern portions of the Flatlands. Poorer quality water occurs in the western part of Palm Beach County, and is attributed to changes in lithologic character and increases in dissolved solid concentrations due to poor circulation within the strata. By ranking the data from Table 1 into water quality groups (Table 2), trends similar to those in Palm Beach County are shown to occur in Martin County (Figure 15). It should be noted that ranges set for each ion listed in groups A and B are very conservative and well within potable water limits.

Of the 34 samples listed in Table 1, 24 fall within the limits established for group A or group B, indicating good or moderately good quality water. The remaining 10 samples, group C, which have greater than 100 mg/l chloride, occur in regions: 1) subject to salt water encroachment, 2) that are flat lying and have poor water circulation, or 3) have been contaminated in some manner. Those samples from group A occur predominantly within the Atlantic Coastal Ridge province or in the eastern portions of the Flatlands. Those samples from group A that occur in the western part of the county are located within the "Orlando Ridge" (Lichtler, 1960) or where shell beds are the dominant lithology. Samples from group B are distributed county wide and exhibit no certain trend. These samples may indicate locations with moderate to good water circulation and lithologies dominated by shell beds, sands, and/or limestones.

Analyses of the well-water samples (Table 2) indicate low electrolyte concentrations over much of the county. Low electrolyte concentrations do not readily conduct an electric current and the principal conduction is along grain surfaces. If water quality is good, porosity and other lithologic factors dominate the observed bulk resistivity response. Within the areas characterized by water quality groups A and B, variations in resistivity are principally due to lithologic variations. Therefore,

# Table 2. Water quality data from well-water samples ranked according to Cl^ and $SO_4^-$ content.

| Group A: God |              |              |               |                           |                                           |
|--------------|--------------|--------------|---------------|---------------------------|-------------------------------------------|
| Sample No.   | C1<br>(mg/1) | MG<br>(mg/l) | S04<br>(mg/1) | Ca <sup>+</sup><br>(mg/1) | Na <sup>+</sup> &K <sup>+</sup><br>(mg/1) |
| M-1041       | 46           | 9.2          | 1.6           | 92                        | 34.4                                      |
| H-1047       | 21           | 1.1          | 6.0           | 3.7                       | 2.6                                       |
| H-1049       | 36           | 3.4          | 3.4           | 110                       | 30.1                                      |
| H-1051       | 43           | 4.4          | 4.8           | 97                        | 31.6                                      |
| M-1058       | 15           | 1.0          | 3.3           | 6.9                       | 13.4                                      |
| M-1073       | 24           | 2.7          | 0.3           | 78                        | 18.1                                      |
| H-1042       | 8.6          | 4.2          | 11            | 92                        | 12.3                                      |
| M-1071       | 28           | 1.5          | 11            | 58                        | 18.2                                      |
| WN43-42983   | 18           | 7.3          | 10            | 77                        | 15                                        |
| L-01         | 13           | 7.4          | 17            | 64                        | 16                                        |
| L-13         | 16           | 2.1          | 5.1           | 39                        | 9.7                                       |
| L-655        | 16           | 0.9          | 0.5           | 70                        | 9.5                                       |
| L-657        | 15           | 2.3          | 0.0           | 86                        | 10.2                                      |
| L-939        | 16           | 3.4          | 1.8           | 109                       | 8.8                                       |

### Group 8: Moderately good quality water

| H-1030 | 20  |    | 2.4 | 27  | 93  | 1 <b>7.9</b> |
|--------|-----|----|-----|-----|-----|--------------|
| H-1031 | 8.3 |    | 1.4 | 38  | 35  | 16.4         |
| N-1045 | 82  |    | 6.3 | 1.4 | 60  | 46.4         |
| N-1050 | 75  |    | 8.5 | 3.4 | 110 | 52.6         |
| N-1052 | 91  |    | 9.9 | 11  | 130 | 57           |
| M-1055 | 29  |    | 3.3 | 17  | 82  | 56.4         |
| N-1096 | 90  | ł. | 9.0 | 0.0 | 110 | 47           |
| H-1100 | 64  |    | 7.2 | 2.2 | 100 | 40.3         |
| L-15   | 79  |    | 10  | 24  | 124 | 51           |
| L-09   | 10  |    | 19  | 39  | 148 | 6.7          |

| Group C: Poo | rer quality | water      |      |     |       |
|--------------|-------------|------------|------|-----|-------|
| M-1046       | 220         | 5.7        | 8.9  | 82  | 134.6 |
| M-1053       | 1600        | 8 <b>9</b> | 85   | 170 | 8330  |
| M-1054       | 11,000      | 730        | 1500 | 330 | 6430  |
| WW43-51320   | 784         | 48         | 115  | 88  | 474   |
| GS-23        | 238         | 26         | 139  | 128 | 182   |
| M-1084       | 220         | 16         | 130  | 160 | 134.6 |
| L-22         | 161         | 30         | 34   | 128 | 124   |
| L-98         | 108         | 4.6        | 12   | 102 | 35    |
| L-936        | 626         | 35         | 128  | 134 | -     |



Figure 15. Distribution of water quality groups in Martin County, ranked according to C1 and S0 $_4^-$  content.

it can be inferred that resistivity response of earth materials in Martin County is primarily a function of porosity.

A comparison between VES Indiantown-O1 (Appendix B) and Florida Power and Light Core No. 1 (Appendix C) shows that the second, principal high resistivity geoelectric layer correlates to that part of the core with obvious porosity. The maximum resistivity of 69 ohm-meters at a depth of 14 meters below land surface corresponds to a poorly indurated, shelly sand with moldic porosity. Immediately above and below this sand, 10 to 13 meters and 16 to 20 meters below land surface, are poorly- to well-indurated limestones. These limestones consist of shell hash and quartz sand cemmented with sparry calcite. Moldic porosity and pinpoint vugs are common.

Application of the midpoint method to the profile places the upper and lower limits of the target zone at 8 and 60 meters, respectively. Comparison of the VES profile to the core shows the predominant lithology in this zone consists of calcite-cemented, medium- to very fine-grained sands with thin limestones and shell beds throughout. While moldic porosity occurs in the deeper limestones and shell beds, silts and clays fill the voids, probably increasing porosity but reducing permeability. Consequently, the increased porosity of the finer-grained material is reflected in the lower observed bulk resistivities of the geoelectric section.

## Geoelectric Cross Sections

While the four geoelectric cross sections exhibit common features, each bears individual characteristics that merit further discussion. In the central portion of cross section A-A' (Figure 11) the geo-

electric layers are generally flat-lying with only a moderately undulating surface in the confining beds. Maximum resistivity values within the target zone increase from VES Indiantown-03 to VES 708.01 while depth to maximum resistivity varies only slightly. This indicates a decrease in porosity in an easterly direction. Correlation of VES 76.06 (Appendix B) with lithologic log M-1019 (Appendix C) shows the dominant lithology of the target zone within this area is shell material with coarse sand. Lithologic data from log M-1020, west of the section in question, show significant quantities of clay intermixed with sand and some shell material at similar depths. It is apparent that the reduction in porosity within the target zone is related to the decrease of fine-grained material in an easterly direction.

Between VES 708.01 and VES 708.07R, the confining units exhibit two troughs separated by a small crest. This pattern is reflected in the depth of the target zone, depth to maximum resistivity, and in the maximum resistivities. Resistivity response indicates a lithologic and porosity contrast between the trough margins and the trough centers. The westernmost, shallow trough is characterized in the target zone by relatively high resistivity values at the trough margins, VES stations 708.01 and 708.05. Resistivities are low within the trough, generally decreasing in value with depth. Such a response is indicative of a silt- and clay-rich depression bordered by coarser-grained deposits. Correlation of VES 708.05 to lithologic log M-1016 indicates that the target zone at this locale is predominantly shell and sand with some coarse sandstones and limestones. Lying southeast of Green Ridge, this trough may represent a shallow channel

associated with the end of the ridge and that has been filled with fine sediments.

The second, larger depression exhibits lower resistivities within the trough. Sediments in the section are primarily shell material and sand intermixed with clays. However, the maximum resistivity of the target zone corresponds to shells, sandstones, and limestones. Lower resistivities of the target zone may be attributed to poor quality water due to: 1) poor ground water circulation caused by overlying semi- to impermeable clay layers, 2) contamination by fertilizers, nutrients, and water from the Floridan Aquifer, from nearby citrus groves, or 3) a combination of these factors.

The fact that these depressions lie in close proximity to each other and contain significant percentages of clay might suggest karstic development and in-filling. Solution features landward of the present day dunes are common in Martin County, as is illustrated in the Gomez  $7\frac{1}{2}^{n}$  topographic map. However, the configuration of the target zone and depths to maximum resistivity strongly reflect the topographic nature of the underlying confining beds. Thus these depressions may have been topographic lows during the deposition of the Coastal Ridge Aquifer sediments, trapping finer-grained materials within them while coarser-grained materials formed shoals and shallow ridges.

In the eastern portions of cross section A-A' (Figure 11) the surface of the confining beds is variable and undulatory, but expresses some periodicity. This periodicity is reflected by alternating moderate and high values in the maximum resistivity values of the target zone. The highest values occur over the topographic highs of the confining beds. This implies that the confining beds have

influenced the depositional history of the overlying units or compaction has altered the fabric of the target zone overlying these highs. The eastern portion of the cross section lies within the Atlantic Coastal Ridge province. Parker and Cooke (1944) state that this ridge exists, in part, due to an underlying, pre-existing beach ridge system. Such periodicity of resistivity may be expected in a beach ridge system as ridges are more susceptible to sorting, loss of fine-grained material, and possibly earlier cementation than are the sheltered swales. Higher resistivities, then, would be expected to occur at ridges, while lower resistivities would occur in troughs.

Again resistivity values express a general increase (west to east) from VES 708.07R to 708.17. This increase is a function of increased cementation in an easterly direction. Lithologic data (Appendix C) indicate that the dominant lithology of the target zone along coastal Martin County is a well-cemented, shelly calcarenite. However, loosely-cemented shell beds and poorly cemented and/or cavernous sands occur within this calcarenite. These zones may account for the occurrence of moderate resistivities and are often "waterbearing" as indicated by drillers' completion reports (Appendix C).

An interesting feature is that the upper boundary of the target zone from VES 708.12 to VES 708.16 forms a dome-like shape typical of a bioherm or some biological "reef" build-up. Coral materials have been reported in drillers' completion reports from the Stuart area, the Hobe Sound area, and in Tequesta, Florida, which lies immediately south of the Martin County line in northeast Palm Beach County. The locations of reported coral material form a trend parallel to the present day coast line. However, it is not known whether the coral materials

are from actual bioherms or are allogenic. Additionally, no lithologic data are known to exist for this portion of cross section A-A'. Therefore, the true nature of this dome-like feature is at best speculative. If a true bioherm does exist at this location, its stratigraphic relationship with the beach ridge system must be defined, or the interpretation of a beach ridge system to explain these periodic geoelectric responses may have to be reevaluated.

VES stations of cross section B-B' (Figure 12) can be divided into two groups. The first group is composed of stations located south and southeast of Green Ridge. VES profiles from these stations exhibit lower resistivities throughout the section. These stations lie within the Eastern Flatlands province where relief and the water table gradient are very low. As indicated by lithologic data (well M-1096, Appendix C), "hardpans" and clay lenses occur in these areas. These clay lenses (which act as semi-permeable or impermeable barriers) cause fresh water to pond at the surface and result in poor ground-water circulation. Hence, residual sea water may still remain in the subsurface, especially at greater depths (Lichtler, 1960).

A high resistivity response occurs at VES S711.08. Moderate resistivity responses occur on either side of this VES station. In this area the target zone thins considerably, reaching a minimum thickness at VES S711.08. The target zone overlies a topographic high of the confining beds. It is possible that these moderate and high resistivity responses reflect sediments of coarser grain size, greater cementation, or both, being influenced by this high during the time of deposition. Data indicate the occurrence of these topographic highs

to be local and discontinuous. Therefore, the location and extent of these highs are not readily predictable.

The second group of VES stations in cross section B-B' extends from VES N711.03 to VES 714.15. These stations have consistently higher resistivity values within the target zone than do the southern stations. Maximum resistivity values generally range from 70 to 130 ohm-meters and are usually located 9 to 10 meters below land surface. Such continuity would indicate rather uniform lithologic character at these depths. No nearby lithologic data are available. Surrounding lithologic data, however, would indicate a rather constant lithology at 9 to 12 meters below surface. Lithologic log M-1018 (Appendix C) 5.0 km east of the cross section, is composed mostly of Donax, Tellina, and Chione fragments intermixed with coarse sand at an interval ranging from 6 to 12 meters below surface. North of the cross section, the M-1012 log and the Gee and Jenson wells indicate large percentages of unconsolidated, coarse- to fine-grained fragments of Donax, Chione, Venus, and Trachycardium shells mixed with light gray to brown quartz sands at similar intervals. Equally important is the fact that VES profiles in this area are the same or very nearly similar to the VES 726.IIS and VES 76.06 profiles. Maximum resistivities peaks of these two profiles have been correlated to shells, shell fragments, and sand. Thus, it can be inferred that the maximum resistivities of the northern half of cross section B-B' are a response to a shell and sand lithology.

It is important to note that this geoelectric continuity extends only as far as the southern limit of Green Ridge. Lying between the Atlantic Coastal Ridge province and Green Ridge, the depositional environment of the sediments represented in this portion of cross section B-B' was probably controlled by the same regional topographic and geologic settings that determined the character of the Atlantic Coastal Ridge and possibly Green Ridge. This implies that there is a correlation between present day geomorphological features and the location, extent, and character of the sediments of the Coastal Ridge Aquifer.

Lithologic data suggest an increase in sediment grain size from west to east in the sediments depicted in cross section C-C' (Figure 13). This trend is reflected in the values of maximum resistivity, which increase in an eastward direction. Significant quantities of clay and silt occur throughout most of lithologic section M-1021 (Appendix C). As a result, a nearby geoelectric profile VES 714.I3 (Appendices A and B) shows reduced resistivities.

Lithologic log M-1022 and VES 714.I4 are located on the western side of Green Ridge. The sand and shell lithology contains silt throughout the measured section. Consequently, the geoelectric profile of VES 714.I4 displays very low values.

Lithologic logs east of Green Ridge have little or no silt-sized sediments, especially in the upper portions of the target zone. The low silt content results in a marked increase in resistivity values throughout the measured section. This implies that Green Ridge may delimit a facies change, separating finer-grained sediments in central and western Martin County from the shell beds, calcirudites (coquina), and calcarenites in eastern Martin County. Miller (1980) illustrates a poorly defined carbonate feature beneath Green Ridge that may be

genetically related to the deposition of these eastern sediments. Further research is needed to substantiate such a relationship.

Lithologic data indicate that the dominant sediments in the Palm City area are thick shell beds, calcirudites, and calcarenites. Cementation varies from unconsolidated to well-lithified. Lithification tends to be better developed and more extensive with increasing depth. This trend is illustrated in the eastern geoelectric profiles of cross section C-C'. Maximum resistivity values from the target zone in VES profiles 714.15 through 714.24 (Appendices A and B) range from 90 to 200 ohm-meters. The Gee and Jenson wells (Appendix C) indicate the corresponding lithology is a sandy, well-lithified, fossiliferous, limestone. Overlying this limestone are unconsolidated or friable shell beds intermixed with fine sand, and some marl and clay. Resultantly, resistivity values are generally between 30 and 60 ohm-meters.

The eastward dipping trend of the geoelectric layers is greatest in the area represented by the eastern portions of cross section C-C'. Well cuttings show that the well-cemented calcarenite of the target zone is generally deeper in this region than are the corresponding sediments of the central and western portions of the study area. These sediments were deposited during a time in which the forks of the St. Lucie River were embayments, extending farther inland, and subjecting the area to shallow marine influence.

The thickness of the target zone is also greatest in the eastern portions of the area represented by cross section C-C'. Maximum thickness is nearly 60 meters in the measured section of VES 714.24. Lithologic data show the calcarenite grades downward into silty sands and calcilutites with clay.

The lower half of the target zone in the eastern portion of cross section C-C' may contain some fine-grained materials. Thus, the lower half of the target zone in the Palm City area may not always be suitable for water-well development. Such development may be restricted to the upper half of the target zone or to a depth no greater than the depth of maximum resistivity as a precaution to avoid these fine-grained sediments.

Maximum resistivity zones (cross section D-D', Figure 14) occur within the upper half of the target zone, often near the zone's upper limit. These resistivities correspond to shell beds with medium- to fine-grained quartz sands as indicated by lithologic logs M-1018 and M-1019 (Appendix C). Log M-1018 also shows the presence of some silt and clay within the measured section. The presence of these fine sediments is reflected in the values of maximum resistivities, which show a slight regional decline from west to east.

VES profile 76.N5 has an abnormally high resistivity response in the target zone. The thin target zone in this measured section appears to drape over a large, high area of the confining units and dip easterly. Maximum resistivity occurs at or near the upper boundary of the target zone. Such a response is indicative of a thoroughly indurated calcarenite.

Maximum resistivities of the target zone illustrated in the four geoelectric cross sections indicate the presence of 1) a wellcemented calcarenite, or 2) shell beds, or 3) both. These lithologies exhibit high resistivity values as electrical current passes only through pore space, and then only along grain surfaces. The calcarenite lies principally in the eastern portions of the study area. Drillers'

completion reports and well cuttings (Appendix C) show that the calcarenite extends northward into St. Lucie County, eastward into the Stuart and Port Salerno areas, where well fields already exist, and southward along the Atlantic Coastal Ridge. Cavernous zones, commonly filled with sand, may occur within this unit. These sediments exhibit water-bearing potential in that they are usually coarsegrained and may be porous, are of suitable thickness for water-well development, and rather continuous in eastern Martin County.

The shell bed lithology often occurs with the calcarenite, but has a greater regional extent than the calcarenite. Gee and Jenson wells (Appendix C) in the Palm City area indicate unconsolidated, coarse-grained, shell units, 10 to 20 meters thick. Consolidated and unconsolidated sediments occur over much of eastern Martin County. Shell beds extend along state road 76 as far west as the location of VES 726.11S (Site F, Figure 4). Farther west, at the VES 726.13S location, the geoelectric profile is indicative of a shell bed lithology. Note that this does not necessarily indicate that the shell beds are continuous across the study area. To the contrary, lithologic data indicate rapid lithologic changes over short distances in western and central Martin County. Furthermore, White (1970, p. 110) states that the area between Green Ridge and "Orlando Ridge", known as Allapatah Flats, is probably composed of "a group of progradational beach ridges". Relief is this area is so low that the subparallel pattern of the ridges is outlined only by sloughs and shallow, marshy lakes. If this area is truely a beach-ridge system, then the loss of nearly all topographic expression of the system probably results from the "solution of sands which were dominantly shell" (White, 1970, p. 110).

Collapse of these sands greatly reduces the possibility of continuous shell beds across the central portions of Martin County. Still, where shell beds occur with suitable shell size, bed thickness, and extent, water-well development potential may exist.

Resistivity response west and south of Green Ridge can be variable and may be low throughout the measured section. Sediments may contain significant amounts of silts and clays. The presence of these fine-grained sediments in the third geoelectric layer is of primary importance as it decreases the potential of water-well development within this zone. A division of the geoelectric layer, separating those regions with significant fine-grained fractions from those with little or no fine sediments, can be made. Figure 16 illustrates a boundary, approximately 21 km inland from the present coast line, which denotes the approximate western limit of the eastern calcarenite and shell beds. These strata compose the major portions of the Coastal Ridge Aquifer. Strata with potential for water-well development may exist west of this limit. However, the location and extent of such strata, other than "Orlando Ridge", are not known.

The actual western extent of the Coastal Ridge Aquifer may vary locally from this boundary. Regionally, however, the boundary conforms to similar limits established in adjacent or nearby areas. The best quality water from water-bearing zones of Palm Beach County are found only in eastern portions. A line drawn through the western limit of these zones show that they vary between 19 and 22.5 km in width from the coast. Scott (1977, p. 7) states that these zones are composed of "beds of large shells and low sand content", coquina, calcareous sandstones, and cavernous limestones. These sediments are Pleistocene



Figure 16. Location and extent of the Coastal Ridge Aquifer in Martin County, Florida.

(Anastasia Formation) and possibly Pliocene (Caloosahatchee Marl and/ or Tamiami Formation) in age. Similarly, Frazee and Johnson (1983) show the western limit of the recrystallized limestone of the shallow rock zone in Indian River and Brevard Counties to be generally 21 to 22 km inland. These sediments are predominantly Pliocene (Tamiami Formation) in age overlain by Pleistocene strata (Anastasia Formation). Moreover, this 21 km limit in Martin County coincides approximately with the Anastasia-Caloosahatchee formation boundary established by Vernon and Puri (1964).

### SUMMARY AND CONCLUSIONS

Geoelectric profiles reveal the occurrence of three distinct geoelectric layers within the surficial aquifer. High resistivity response, usually exceeding 100 ohm-meters at or near the surface, is due to the presence of medium- to fine-grained siliceous sands. This geoelectric layer is thin, being only a few meters in thickness at most.

Low resistivity response characterizes the second geoelectric layer. Within this zone, sediments are quartz sands intermixed with shell material, silts, and clays. Generally, fine-grained materials are present in significant quantities. Where clays beds or lenses exist, downward flow may be impeded, resulting in the ponding of water at the surface.

Lying immediately beneath the low resistivity layer is the third geoelectric unit, which commonly has a resistivity response greater than 50 ohm-meters. This layer is primarily composed of a wellcemented calcarenite and/or shell beds intermixed with quartz sands. Lithologic data indicate that the calcarenite occurs only in eastern portions of Martin County. Furthermore, the western portion of this zone may contain significant amounts of fine-grained sediments, rendering much of the area unsuitable for high-yield water-well development.

Ground water quality is relatively good and constant over much of the county. Variation in resistivity response can be attributed to changes in lithologic character and effective porosity.

Resistivity response becomes variable and may be low throughout the measured section in areas west and south of Green Ridge. Higher and most consistent resistivity values occur in regions east of Green Ridge. Geoelectric profiles east of Green Ridge reflect those sediments with the greatest potential for water-well development. These sediments are the calcarenite and shell beds of the deep, high resistivity zone.

Integration of these surficial electrical resistivity surveys with lithologic and water-quality data allows for the delineation of those strata with water-bearing potential. A boundary has been identified 21km inland from the present day coast line. The boundary separates those sediments with good water-producing potential from those with little or no potential. This boundary essentially delimits the western extent of the Coastal Ridge Aquifer.

The Coastal Ridge Aquifer can be developed to supply supplemental quantities of water to the municipalities of coastal Martin County. The aquifer consists of three geoelectric layers of which the deep, high resistivity zone is of primary importance. This zone is dominantly a calcarenite, but may have shell beds and cavernous zones associated with it. The aquifer extends from the surface to the confining layers separating this aquifer from the Floridan Aquifer. The aquifer's thickness varies from as little as 5 meters at its western limit to as great as 60 meters in eastern portions of the county. Generally, the aquifer thickness ranges from 20 to 30 meters. The aquifer seems to have some geological relationship with local geomorphic features, but this relationship has not been adequately defined. Southern and northern limits of the Coastal Ridge Aquifer are not known. Lithologic and water-quality data from nearby regions would suggest that this aquifer extends southward at least into Palm Beach County and northward as far as Brevard County. Sediments of the aquifer are Pleistocene and Pliocene in age.

The fact that similar water quality and lithologic data exist in nearby regions suggests that surface DC resistivity surveys are applicable to these areas. In other words, the application of DC resistivity surveys to delineate the hydrostratigraphy in the shallow, clastic sediments in Martin County is not unique. More importantly, this technique is not unique to the Coastal Ridge Aquifer. To the countrary, DC surveys can be used to delineate hydrostratigraphic zones in regions that meet certain basic requirements. First, lithologic strata should be layered and at least semi-horizontal. Complex stratigraphic and/or structural relationships, as well as steeply dipping strata, tend to render resistivity curves difficult to interpret and often useless. Second, lithologic variation of the strata must be great enough to reflect a resistivity contrast in the data curves. Such variation may be the result of the degree of cementation, porosity development, contrast in grain size, or mineralogy. Any combination of these factors may be sufficient to create enough lithologic variation to cause a resistivity contrast. Third, water quality must be constant and of low ionic strength. Rapid changes in water quality over short distances make hydrostratigraphic correlation difficult or impossible.

To better illustrate some of these requirements a generalized hydrostratigraphic diagram is shown in Figure 17. This diagram depicts a "typical" coastal ridge aquifer and its associated geoelectric layers. With each geoelectric layer a lithologic example is given to illustrate




what type of strata might give such a resistivity response. It is greatly simplified by assuming that the limits of each geoelectric layer correspond to the limits of a particular lithology.

The model shows several important features. First, the deep, low resistivity layer is overlain by roughly parallel, seaward-dipping layers. Each successive, overlying layer extends farther landward. Also, each layer becomes thinner in landward direction. Thus, these layers may represent a transgressive or onlapping sequence. Second, grain size is generally coarser in the area of the coastal ridge (large stippled pattern, Fig. 17) and becomes finer in a landward direction. Consequently, resistivity values are lower in a landward direction. Third, resistivity values increase in a seaward direction. This trend is due to several factors. As mentioned, coarser grain size in a seaward direction is partly responsible. Additionally, lower bulk porosity of unit A (small stippled area, Fig. 17) of the deep, high resistivity layer and lower bulk porosity and a greater degree of cementation in unit B (large stippled area) contribute to the increased resistivity. Due to coarser grain size and secondary porosity and the lack of fine-grained sediments these units are best suited for water-well development from the aquifer. Finally, a shallow, low resistivity layer lies landward of the coastal ridge aquifer. Its lithology is similar to that of unit A, but the presence of clay makes this layer a poor prospect for water-well development.

The surface DC resistivity survey method is applicable to regions that meet these basic requirements. Strata need not belong to a transgressive sequence nor do the sediments have to be clastics. Still,

65

in regions that may contain coastal ridge features this example should be an informative and predictive model.

#### **REFERENCES CITED**

- Akers, W.H., 1974, Age of Pinecrest Beds, South Florida: Tulane Studies in Geol. and Paleo., vol. 11, p. 119-120.
- Bearden, H.W., 1972, Water Available in Canals and Shallow Sediments in St. Lucie County, Florida: Florida Geol. Survey Rept. of Invest. No. 62, 50 p.
- Brown, M.P., and Reece, D.E., 1979, Hydrologic Reconnaissance of the Floridan Aquifer System, Upper East Coast Planning Area: South Florida Water Management District, Techn. Map Series 79-1, Plates 1-10B.
- Cartwright, K., and McComas, M.R., 1968, Geophysical Surveys in the Vicinity of Sanitary Landfills in Northeastern Illinois: Ground Water, vol. 6, no. 5, p. 23-30.
- Cooke, C.W., 1945, Geology of Florida: Florida Geol. Survey Bull. No. 29, 339 p.
- Davis, J.H., Jr., 1943, The Natural Features of Southern Florida, Especially the Vegetation, and the Everglades: Florida Geol. Survey Bull. No. 25, 311 p.
- Davis, S.N., and DeWist, R., 1966, Hydrogeology: John Wiley, New York, 463 p.
- Fink, W.B., Jr., and Aulenbach, D.B., 1974, Protracted Recharge of Treated Sewage Into Sand: Part II - Tracing the Flow of Contaminated Ground Water with a Resistivity Survey: Ground Water, vol. 12, no. 4, p. 219-223.
- Fischer, J.N., 1978, Evaluation of the High Permeability Zone of the Shallow Aquifer, Palm Beach County, Florida, in Brown, M.P., ed., Hydrogeology of South-Central Florida, 1978 Field Trip Guidebook: Southeastern Geol. Soc., West Palm Beach, Florida, Publ. 20, p. 1-14.
- Flathe, H., 1970, Interpretation of Geoelectrical Resistivity Measurements for Solving Hydrogeological Problems, in Morley, L.P., ed., Mining and Ground Water Geophysics, 1967: Geol. Survey of Canada, Econ. Geol. Rept. 26, p. 580-597.

- Frazee, J., and Johnson, R., 1983, Unpublished Lithologic and Hydrologic Data from Indian River and Brevard Counties, Florida: St. John's Water Management District, Palatka, Florida.
- Freeze, R.A., and Cherry, J.A., 1979, Groundwater: Prentice-Hall, Englewood Cliffs, New Jersey, 604 p.
- Fretwell, J., and Stewart, M.T., 1981, Resistivity Study of a Coastal Karst Terrain, Florida: Ground Water, vol. 18a, no. 2, p. 156-162.
- Gee and Jenson, unpublished report: Addendum #4, Martin Downs Hydrologic Study, Martin County, Florida: Gee and Jenson Engineers-Architects-Planners, Inc., West Palm Beach.
- Gorhan, H.L., 1976, The Determination of the Saline/Fresh Water Interface by Resistivity Soundings: Bull. of the Assoc. of Engineering Geologists, vol. XIII, p. 163-175.
- Hackbarth, D., 1971, Field Study of Subsurface Spent Sulfite Liquor Movement Using Earth Resistivity Measurements: Ground Water, vol. 9, no. 3, p. 11-16.
- Heigold, P.C., Gilkeson, R.H., Cartwright, K., and Reed, P.C., 1979, Aquifer Transmissivity from Surficial Electrical Methods: Ground Water, vol. 17, no. 4, p. 338-345.
- Hunter, M.E., 1978, What is the Caloosahatchee Marl?, in Brown, M.P., ed., Hydrogeology of South-Central Florida, 1978 Field Trip Guidebook: Southeastern Geol. Soc., West Palm Beach, Florida, Publ. 20, p. 61-88.
- Jakob, P., 1980, Some Aspects of the Hydrogeology of Coastal Collier County, Florida, in Gleason, P., ed., Water, Oil, and the Geology of Collier, Lee, and Hendry Counties: Miami Geol. Soc., Miami, Florida, p. 21-26.
- Keller, G., and Frischknecht, F.C., 1966, Electrical Methods in Geophysical Prospecting: Pergamon Press, New York, 519 p.
- Kelly, W.E., 1976, Geoelectric Sounding for Delineating Ground Water Contamination: Ground Water, vol. 14, p. 6-10.
- Klefstad, G., Sendlein, L.V., and Palmquist, R.C., 1976, Limitation of the Electrical Resistivity Method in Landfill Investigations: Ground Water, vol. 13, no. 5, p. 418-427.
- Layton, M.C., and Stewart, M.T., 1982, Geophysical Signature of Pliocene Reef Limestones Using Direct Current and Electromagnetic Resistivity Survey Methods, Collier County, Florida: South Florida Water Management District, Techn. Publ. 82-5, 83 p.

- Lazreg, H., 1972, Application of Surface Resistivity Methods to the Detection of Salt-Water Intrusion in Shippegan, New Brunswick: CIM Transaction, vol. 75, p. 32-41.
- Land, L.F., 1977, Ground Water Resources of the Riviera Beach Area, Palm Beach County, Florida: U.S. Geol. Survey Water-Resources Invest. 77-47, 38 p.
- Lichtler, W.F., 1960, Geology and Ground-Water Resources of Martin County, Florida: Florida Geol. Survey Rept. of Invest. No. 23, 95 p.
- Lohman, S.W., 1972, Ground Water Hydraulics: U.S. Geol. Survey Prof. Paper 708, 70 p.
- MacNeil, F.S., 1949, Pleistocene Shore Lines in Florida and Georgia: U.S. Geol. Prof. Paper 221-F, 95-107 p.
- Mansfield, W.C., 1939, Notes on the Upper Tertiary and Pleistocene Mollusks of Peninsular Florida: Florida Geol. Survey Bull. No. 18, 75 p.
- Matson, G.G., and Clapp, F.Z., 1909, A Preliminary Report on the Geology of Florida with Special Reference to the Stratigraphy: Florida Geol. Survey 2nd Ann. Rept., 1908-1909, p. 25-173.
- Meinzer, E.O., 1923, The Occurrence of Ground Water in the United States, with a Discussion of Principles: U.S. Geol. Survey Water-Supply Paper 489.
- Merkel, R.H., 1973, Acid Mine Drainage in Ground Water: Ground Water, vol. 10, no. 5, p. 38-42.
- Meyer, F.W., 1974, Evaluation of Hydraulic Characteristics of a Deep Artesian Aquifer from Natural Water-Level Fluctuations, Miami, Florida: Florida Geol. Survey Rept. of Invest. No. 75, 32 p.
- Miller, W.L., 1979, Hydrologic and Geologic Data for the Upper East Coast Planning Area in Southeast Florida: U.S. Geol. Survey Open-File Rept. 79-1543, 99 p.
- Miller, W.L., 1980, Geologic Aspects of the Surficial Aquifer in the Upper East Coast Planning Area, Southeast Florida: U.S. Geol. Survey Water-Resources Invest. Open-File Rept. 80-586, 2 sheets.
- Mooney, R.T., III, 1979, The Stratigraphy of the Floridan Aquifer System East and Northeast of Lake Okeechobee, Florida: Master's Thesis, Florida State Univ., 61 p.
- Parker, C.G., and Cooke, W.C., 1944, Late Cenozoic Geology of Southern Florida with a Discussion of the Ground Water: Florida Geol. Survey Bull. No. 27, 119 p.

Appendix A: Part 1-Field data of fifty-two vertical electric soundings from Martin County, Florida.

5

- 41

| VES INDIANTOWN 01 (: | Site A | ) |
|----------------------|--------|---|
|----------------------|--------|---|

#### VES 726.I3S (Site B)

| A-Spacing<br>(meters)                                                                                                                                 | Resistivity<br>(Ohm-meters)                                                                                                                                                                         | A-Spacing<br>(meters)                                                                                                                                                                 | Resistivity<br>(Ohm-meters)                                                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)<br>1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0<br>100.0<br>120.0<br>140.0<br>160.0 | (Ohm-meters)<br>221.715<br>164.410<br>111.197<br>68.874<br>82.846<br>67.858<br>60.695<br>61.732<br>62.270<br>59.276<br>54.292<br>56.322<br>44.711<br>41.871<br>32.484<br>25.108<br>21.991<br>18.699 | (meters)<br>2.03<br>2.84<br>4.05<br>6.08<br>6.08<br>8.12<br>8.12<br>12.16<br>16.20<br>20.26<br>20.26<br>20.26<br>20.26<br>28.37<br>28.37<br>40.50<br>60.80<br>60.80<br>81.10<br>81.10 | (Ohm-meters)<br>26.036<br>30.563<br>37.158<br>51.907<br>55.152<br>59.218<br>63.024<br>78.776<br>81.757<br>81.097<br>78.595<br>77.742<br>76.387<br>69.011<br>49.332<br>55.016<br>35.493<br>38.563 |
|                                                                                                                                                       |                                                                                                                                                                                                     | 121.60<br>162.10<br>202.70<br>202.70                                                                                                                                                  | 14.504<br>14.523<br>4.929<br>5.056                                                                                                                                                               |

-

75

.

#### VES 726.I4S (Site C)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 2.03<br>2.84          | 40.100                      |
| 4.05                  | 49.196                      |
| 6.08                  | 38.823                      |
| 8.12                  | 35.760                      |
| 8.12                  | 33.546                      |
| 12.16                 | 30.344                      |
| 16.20                 | 31.840                      |
| 20.26                 | 29.393                      |
| 28.37                 | 27.787                      |
| 28.37                 | 27.301                      |
| 40.50                 | 20.950                      |
| 60.80                 | 13.306                      |
| 81.10                 | 7.259                       |
| 81.10                 | 7.987                       |
| 162.10                | 3.52/                       |
| 202.70                | 3.975                       |
| 202.70                | 2.068                       |

1

## VES INDIANTOWN 03 (Site E)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 1.0                   | 751.101                     |
| 1.5                   | 495.359                     |
| 2.0                   | 368.598                     |
| 3.0                   | 278.038                     |
| 4.0                   | 157.509                     |
| 6.0                   | 64.164                      |
| 8.0                   | 42.615                      |
| 10.0                  | 34.935                      |
| 15.0                  | 32.044                      |
| 20.0                  | 33.552                      |
| 30.0                  | 32.319                      |
| 40.0                  | 31.919                      |
| 60.0                  | 23.185                      |
| 80.0                  | 15.783                      |
| 100.0                 | 12.315                      |

## VES 726.IIS (Site F)

| A-Spacing | Resistivity  |
|-----------|--------------|
| (meters)  | (Ohm-meters) |
| (meters)  | (Unm-meters) |
| 2.03      | 39.243       |
| 2.84      | 39.342       |
| 4.05      | 38.062       |
| 6.08      | 38.113       |
| 8.12      | 45.023       |
| 8.12      | 42.720       |
| 12.16     | 50.374       |
| 16.20     | 55.930       |
| 20.26     | 67.031       |
| 20.26     | 62.546       |
| 20.26     | 59.752       |
| 28.37     | 60.031       |
| 28.37     | 57.152       |
| 40.50     | 53.717       |
| 60.80     | 36.163       |
| 60.80     | 39.021       |
| 81.10     | 20.877       |
| 80.10     | 21.840       |
| 121.70    | 9.071        |
| 162.10    | 4.638        |
| 202.70    | 4.234        |
| 202.70    | 4.376        |
|           | 4.570        |

1

### VES 76.06 (Site G)

| A-Spacing<br>(meters)                                                                 | Resistivity<br>(Ohm-meters)                                                                                                       |
|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0 | 151.502<br>118.538<br>108.068<br>71.083<br>52.025<br>38.227<br>37.347<br>40.401<br>47.784<br>48.469<br>48.432<br>39.458<br>37.600 |
| 00.0                                                                                  | 07.033                                                                                                                            |

### VES 76.Nl (Site H)

| VES 76.N5 | (Site I) |
|-----------|----------|
|-----------|----------|

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 105.322                     | 1.0                   | 89.998                      |
| 1.5                   | 108.142                     | 1.5                   | 176.719                     |
| 2.0                   | 103.343                     | 2.0                   | 163.358                     |
| 3.0                   | 81.357                      | 3.0                   | 143.373                     |
| 4.0                   | 68.136                      | 4.0                   | 141.599                     |
| 6.0                   | 58.547                      | 6.0                   | 140.014                     |
| 8.0                   | 58.961                      | 8.0                   | 152.956                     |
| 10.0                  | 60.319                      | 10.0                  | 160.661                     |
| 15.0                  | 60.790                      | 15.0                  | 163.520                     |
| 20.0                  | 62.832                      | 20.0                  | 112.595                     |
| 30.0                  | 57.100                      | 30.0                  | 77.640                      |
| 40.0                  | 49.511                      | 40.0                  | 60.928                      |
| 60.0                  | 30.159                      | 60.0                  | 32.308                      |
| 80.0                  | 20.106                      | 80.0                  | 22.167                      |
| 100.0                 | 11.750                      | 100.0                 | 22.996                      |
| 120.0                 | 8.068                       | 120.0                 | 33.778                      |
| 140.0                 | 5.806                       | 140.0                 | 12.579                      |
|                       |                             | 160.0                 | 29.556                      |

i

~

.

## VES 76.N5S (Site J)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 2.03                  | 212.565                     |
| 2.84                  | 229,800                     |
| 4.05                  | 167.778                     |
| 6.08                  | 157.650                     |
| 6.08                  | 153.736                     |
| 8.12                  | 193,699                     |
| 8.12                  | 187.200                     |
| 12.16                 | 196.798                     |
| 16.20                 | 201.093                     |
| 20.26                 | 134.367                     |
| 20.26                 | 108.241                     |
| 28.37                 | 81.957                      |
| 28.37                 | 86.774                      |
| 40.50                 | 53.749                      |
| 60.80                 | 26.811                      |
| 60.80                 | 23.096                      |
| 81.10                 | 10.698                      |
| 81.10                 | 10.982                      |
| 121.60                | 5.176                       |
| 162.10                | 8.480                       |
| 202.70                | 5.168                       |
| 202.70                | 3,907                       |

1.000

#### VES 76.N10 (Site K)

| A-Spacing | Resistivity        |
|-----------|--------------------|
| (meters)  | (Ohm-meters)       |
| 1.0       | 159,733            |
| 1.5       | 154.862            |
| 2.0       | 139.432            |
| 3.0       | 140.866            |
| 4.0       | 135.794            |
| 6.0       | 113.091            |
| 8.0       | 92.287             |
| 10.0      | 81.744             |
| 15.0      | 70.30 <del>9</del> |
| 20.0      | 62.832             |
| 30.0      | 55.970             |
| 40.0      | 48.255             |
| 60.0      | 30.913             |
| 80.0      | 20.358             |
| 100.0     | 8.482              |

.5

#### VES 708.01 (Site L)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 2.03                  | 124.253                     |
| 2.84                  | 102.030                     |
| 4.05                  | 72.609                      |
| 6.08                  | 67.564                      |
| 6.08                  | 67.837                      |
| 8.12                  | 74.500                      |
| 8.12                  | 70.387                      |
| 12.16                 | 84.464                      |
| 16.12                 | 94.453                      |
| 20.26                 | <b>93.</b> 818              |
| 20.26                 | 124.787                     |
| 28.37                 | 89.762                      |
| 28.37                 | 93.301                      |
| 40.50                 | 77.258                      |
| 60.80                 | 46.329                      |
| 60.80                 | 46.950                      |
| 81.10                 | 25.598                      |
| 81.10                 | 26.832                      |
| 121.70                | 8.247                       |
| 162.10                | 4.697                       |

.

1

VES 708.02 (Site N)

| A-Spacing                                                                                             | Resistivity                                                                                                                          |
|-------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                              | (Ohm-meters)                                                                                                                         |
| (meters)<br>2.03<br>2.84<br>4.05<br>6.08<br>8.12<br>8.12<br>12.16<br>16.20<br>20.26<br>20.26<br>28.37 | (Ohm-meters)<br>103.41<br>67.828<br>47.585<br>43.970<br>43.970<br>33.888<br>45.678<br>52.612<br>54.336<br>57.722<br>55.844<br>52.765 |
| 28.27                                                                                                 | 53.545                                                                                                                               |
| 40.50                                                                                                 | 46.924                                                                                                                               |
| 60.80                                                                                                 | 32.475                                                                                                                               |
| 60.80                                                                                                 | 34.264                                                                                                                               |
| 81.10                                                                                                 | 17.574                                                                                                                               |

### VES 708.03 (Site 0)

15

#### VES 708.05 (Site P)

1

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 2.03                  | 34.566                      | 1.0                   | 461.380                     |
| 2.84                  | 22.064                      | 1.5                   | 407,923                     |
| 4.05                  | 16.093                      | 2.0                   | 322.004                     |
| 6.08                  | 15.363                      | 3.0                   | 152.270                     |
| 6.08                  | 14.772                      | 4.0                   | 77.359                      |
| 8.12                  | 15.072                      | 6.0                   | 45.616                      |
| 8.12                  | 15.884                      | 8.0                   | 38.855                      |
| 12.16                 | 15.610                      | 10.0                  | 42.142                      |
| 16.20                 | 17.490                      | 15.0                  | 42.977                      |
| 20.26                 | 17.932                      | 20.0                  | 51.773                      |
| 20.26                 | 18.492                      | 30.0                  | 49.939                      |
| 28.37                 | 17.129                      | 40.0                  | 47.249                      |
| 28.37                 | 17.118                      | 60.0                  | 32.798                      |
| 40.50                 | 14.996                      | 80.0                  | 23.323                      |
| 60.80                 | 9.414                       | 100.0                 | 14.765                      |
| 60.80                 | 10.107                      | 120.0                 | 11.234                      |
|                       |                             | 140.0                 | 9.148                       |
|                       |                             | 160.0                 | 4.725                       |

i

## VES 708.12R (Site Q)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 1.0                   | 47.832                      |
| 1.5                   | 44.184                      |
| 2.0                   | 42.021                      |
| 3.0                   | 39.472                      |
| 4.0                   | <b>39.7</b> 35              |
| 6.0                   | 43.090                      |
| 8.0                   | 38.101                      |
| 10.0                  | 38.516                      |
| 15.0                  | 44.014                      |
| 20.0                  | 45.365                      |
| 30.0                  | 43.344                      |
| 40.0                  | 41.218                      |
| 60.0                  | 37.699                      |
| 80.0                  | 19.101                      |
| 100.0                 | 20.609                      |

i.

VES 708.07R (Site R)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 2.03                  | 16.951                      |
| 4.05                  | 12 799                      |
| 6.08                  | 13.794                      |
| 6.08                  | 14.625                      |
| 8.12                  | 14.789                      |
| 8.12                  | 15.862                      |
| 12.16                 | 15.516                      |
| 16.20                 | 16.252                      |
| 20.26                 | 14.952                      |
| 20.26                 | 15.060                      |
| 28.37                 | 12.181                      |
| 20.37                 | 12.004                      |
| 60.80                 | 6 734                       |
| 60.80                 | 6.892                       |
| 81.10                 | 3.843                       |
| 81.10                 | 4.260                       |
| 121.60                | 1.560                       |
| 162.10                | 0.920                       |
| 202.70                | 0.727                       |
| 202.70                | 0.792                       |

### VES 708.10 (Site S)

4

#### VES 708.11 (Site T)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 148.279                     | 1.0                   | 144.119                     |
| 1.5                   | 166.087                     | 1.5                   | 111.941                     |
| 2.0                   | 154.574                     | 2.0                   | 97.500                      |
| 3.0                   | 101.817                     | 3.0                   | 73,421                      |
| 4.0                   | 79.144                      | 4.0                   | 51,673                      |
| 6.0                   | 59.301                      | 6.0                   | 39.622                      |
| 8.0                   | 53.030                      | 8.0                   | 17.040                      |
| 10.0                  | 51.082                      | 10.0                  | 39.082                      |
| 15.0                  | 49.292                      | 15.0                  | 36.757                      |
| 20.0                  | 43,605                      | 20.0                  | 40.212                      |
| 30.0                  | 33.172                      | 30.0                  | 43,166                      |
| 40.0                  | 26.389                      | 40.0                  | 25,133                      |
| 60.0                  | 15.080                      | 60.0                  | 31.290                      |
| 80.0                  | 13.069                      | 80.0                  | 22.619                      |
| 100.0                 | 8.168                       | 100.0                 | 15.708                      |
| 120.0                 | 10.028                      | 120.0                 | 8,972                       |
|                       |                             | 140.0                 | 7.037                       |
|                       |                             | 160 0                 | 4 021                       |

----

| VES 708.12 (Site U)   |                             | VES               |
|-----------------------|-----------------------------|-------------------|
| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spaci<br>(meter |
| 1.0                   | 58.413                      | 1.0               |
| 1.5                   | 57.445                      | 1.5               |
| 2.0                   | 62.019                      | 2.0               |
| 3.0                   | 58,718                      | 3.0               |
| 4.0                   | 84.723                      | 4.0               |
| 6.0                   | 39,546                      | 6.0               |
| 8.0                   | 36.492                      | 8.0               |
| 10.0                  | 37.511                      | 10.0              |
| 15.0                  | 40.435                      | 15.0              |

44.359

43.731

41.971 29**.0**28

21.079

14.451 12.064

7.037 6.032

20.0

30.0

40.0

60.0 80.0

100.0

160.0

- -

120.0 140.0 VES 708.13 (Site V)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 1.0                   | 100.013                     |
| 1.5                   | 106.031                     |
| 2.0                   | 106.497                     |
| 3.0                   | 70.461                      |
| 4.0                   | 54.715                      |
| 6.0                   | 55.418                      |
| 8.0                   | 58.207                      |
| 10.0                  | 62.518                      |
| 15.0                  | 65.502                      |
| 20.0                  | 60.319                      |
| 30.0                  | 51.648                      |
| 40.0                  | 39,710                      |
| 60.0                  | 32.798                      |
| 80.0                  | 30.159                      |
| 100.0                 | 14.451                      |
| 120.0                 | 10.556                      |
| 140.0                 | 6.158                       |
| 160.0                 | 7.037                       |

140

#### VES 708.14 (Site W)

### VES 708.15 (Site X)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 86.140                      | 1.0                   | 49.366                      |
| 1.5                   | 67.917                      | 1.5                   | 55.136                      |
| 2.0                   | 68.610                      | 2.0                   | 59.324                      |
| 3.0                   | 53.609                      | 3.0                   | 58.718                      |
| 4.0                   | 48.682                      | 4.0                   | 56.122                      |
| 6.0                   | 42.977                      | 6.0                   | 52.779                      |
| 8.0                   | 44.786                      | 8.0                   | 48.606                      |
| 10.0                  | 44.883                      | 10.0                  | 48.632                      |
| 15.0                  | 54.475                      | 15.0                  | 51.836                      |
| 20.0                  | 49.135                      | 20.0                  | 56.549                      |
| 30.0                  | 55,983                      | 30.0                  | 53.344                      |
| 40.0                  | 51.019                      | 40.0                  | 54.538                      |
| 60.0                  | 41.846                      | 60.0                  | 35.814                      |
| 80.0                  | 32.673                      | 80.0                  | 28.651                      |
| 100.0                 | 18.221                      | 100.0                 | 22.619                      |
| 120.0                 | 11.310                      | 120.0                 | 11.310                      |
| 140.0                 | 13.195                      | 140.0                 | 13.195                      |
| 160.0                 | 4.021                       | 160.0                 | 7.037                       |
|                       |                             |                       |                             |

85

#### VES 708.16 (Site Y)

\*

#### VES 708.17 (Site Z)

,

•

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 304.053                     | 1.0                   | 250.271                     |
| 1.5                   | 288.235                     | 1.5                   | 195.814                     |
| 2.0                   | 295.301                     | 2.0                   | 185.889                     |
| 3.0                   | 245.729                     | 3.0                   | 298.999                     |
| 4.0                   | 231.676                     | 4.0                   | 146.017                     |
| 6.0                   | 177.713                     | 6.0                   | 131.947                     |
| 8.0                   | 143.356                     | 8.0                   | 116.112                     |
| 10.0                  | 178.380                     | 10.0                  | 105.809                     |
| 15.0                  | 88.970                      | 15.0                  | 195.188                     |
| 20.0                  | 80.676                      | 20.0                  | 83.817                      |
| 30.0                  | 73.325                      | 30.0                  | 78.603                      |
| 40.0                  | 65.094                      | 40.0                  | 82.435                      |
| 60.0                  | 56.925                      | 60.0                  | 73.890                      |
| 80.0                  | 44.735                      | 80.0                  | 65.345                      |
| 100.0                 | 33.929                      | 100.0                 | 33.301                      |
| 120.0                 | 25.635                      | 120.0                 | 69.366                      |
| 140.0                 | 31.667                      | 140.0                 | 41.343                      |
| 160.0                 | 14.074                      | 160.0                 | 27.143                      |
|                       |                             |                       |                             |

#### VES 714.I3 (Site ZZ)

\*

A-Spacing (meters)

2.03

2.84

4.05

6.08

6.08

8.12

8.12

12.16

16.20

20.26

20.26

28.37

28.37

40.50

60.80 60.80 81.10 81.10 121.60

162.10

202.70

202.70

2.209

2.324

1.359

| ZZ) | VES | 714.01 | (Site | ΥY |
|-----|-----|--------|-------|----|
| [[] | VES | 714.01 | (Site | TT |

| Resistivity<br>(Ohm-meters) | ł. | A-Spacing<br>(meters) |
|-----------------------------|----|-----------------------|
| 32.745                      |    | 1.0                   |
| 22.672                      |    | 1.5                   |
| 14.750                      |    | 2.0                   |
| 12.912                      |    | 3.0                   |
| 12.818                      |    | 4.0                   |
| 13.563                      |    | 6.0                   |
| 13.314                      |    | 8.0                   |
| 14,455                      |    | 10.0                  |
| 13.248                      |    | 15.0                  |
| 12.882                      |    | 20.0                  |
| 13.080                      |    | 30.0                  |
| 10.814                      |    | 40.0                  |
| 11.366                      |    | 60.0                  |
| 9.631                       |    | 80.0                  |
| 6.775                       |    | 100.0                 |
| 6.734                       |    |                       |
| 4.932                       |    |                       |
| 5.236                       |    |                       |
| 3.402                       |    |                       |

87

Resistivity (Ohm-meters)

144.684

133.543

100.352

60.000

42.123

34.457

24.580

37.197

39.867

48.004

38.821

42.977

26.540

20.961 17.467

•

#### VES 714.I4 (Site XX)

. . .

| VES 714.15 (Site VV |
|---------------------|
|---------------------|

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 2.03                  | 36.440                      | 1.0                   | 253,042                     |
| 2.84                  | 31.519                      | 1.5                   | 277.972                     |
| 4.05                  | 25.474                      | 2.0                   | 280.184                     |
| 6.08                  | 20.936                      | 3.0                   | 285.841                     |
| 6.08                  | 21.013                      | 4.0                   | 280.585                     |
| 8.12                  | 20.072                      | 6.0                   | 248.399                     |
| 8.12                  | 20.020                      | 8.0                   | 220.362                     |
| 12.16                 | 19.648                      | 10.0                  | 202.256                     |
| 16.20                 | 19.253                      | 15.0                  | 154.944                     |
| 20.26                 | 18.788                      | 20.0                  | 119.381                     |
| 20.26                 | 18.653                      | 30.0                  | 90,833                      |
| 28.37                 | 18.005                      | 40.0                  | 81.179                      |
| 28.37                 | 18.148                      | 60.0                  | 61.827                      |
| 40.50                 | 16.439                      | 80.0                  | 53.784                      |
| 60.80                 | 11.067                      | 100.0                 | 43.291                      |
| 60.80                 | 35.050                      | 120.0                 | 34.080                      |
| 81.10                 | 42.226                      | 140.0                 | 24.454                      |
| 81.10                 | 21.996                      | 160.0                 | 23.022                      |
| 121.60                | 3.352                       |                       |                             |
| 162.10                | 2.167                       |                       |                             |
| 202.70                | 1.858                       |                       |                             |
| 284.47                | 1.401                       |                       |                             |

| VES /14.15 (Site | 22) | ł |
|------------------|-----|---|
|------------------|-----|---|

| A-Spacing<br>(meters)                                                                                                                     | Resistivity<br>(Ohm-meters)                                                                                                                                                                              | A-Spacing<br>(meters)                                                                                                                                           | Resistivity<br>(Ohm-meters)                                                                                                                                                                                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0<br>100.0<br>120.0<br>140.0<br>160.0 | (Unm-meters)<br>158.332<br>158.858<br>163.358<br>160.847<br>159.846<br>142.125<br>125.311<br>110.773<br>89.253<br>79.780<br>77.641<br>74.644<br>75.775<br>86.457<br>67.858<br>61.148<br>52.339<br>39.710 | (meters)<br>2.03<br>2.84<br>4.05<br>6.08<br>8.12<br>12.16<br>16.20<br>20.26<br>20.26<br>28.37<br>40.50<br>60.80<br>81.10<br>81.10<br>121.60<br>162.10<br>202.70 | (Ohm-meters)<br>120.645<br>133.514<br>131.758<br>124.833<br>127.539<br>114.615<br>112.694<br>94.417<br>85.312<br>85.868<br>88.936<br>78.679<br>79.513<br>76.026<br>73.569<br>73.768<br>60.365<br>61.775<br>40.100<br>28.437<br>20.990 |
|                                                                                                                                           |                                                                                                                                                                                                          | 202.70                                                                                                                                                          | 21.602                                                                                                                                                                                                                                |

| VES 714.20                                   | (Site QQ)                                                                    | VES 714.21                                           | (Site <del>P</del> P)                                                 |
|----------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------|
| A-Spacing                                    | Resistivity                                                                  | A-Spacing                                            | Resistivity                                                           |
| (meters)                                     | (Ohm-meters)                                                                 | (meters)                                             | (Ohm-meters)                                                          |
| 1.0                                          | 97.185                                                                       | 1.0                                                  | 108.878                                                               |
| 1.5                                          | 119.669                                                                      | 1.5                                                  | 110.122                                                               |
| 2.0                                          | 105.152                                                                      | 2.0                                                  | 113.094                                                               |
| 3.0                                          | 117.813                                                                      | 3.0                                                  | 114.834                                                               |
| 4.0                                          | 104.830                                                                      | 4.0                                                  | 124.660                                                               |
| 6.0                                          | 75.511                                                                       | 6.0                                                  | 132.700                                                               |
| 8.0                                          | 64.038                                                                       | 8.0                                                  | 132.670                                                               |
| 15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0 | 57.554<br>55.795<br>58.685<br>54.450<br>53.746<br>69.366<br>60.919<br>40.574 | 10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0 | 121.454<br>114.606<br>100.531<br>99.125<br>88.216<br>78.414<br>59.313 |
| 100.0                                        | 49.574                                                                       | 100.0                                                | 40.841                                                                |
| 120.0                                        | 50.291                                                                       | 120.0                                                | 39.132                                                                |
| 140.0                                        | 46.269                                                                       | 140.0                                                | 23.145                                                                |
| 160.0                                        | 26.440                                                                       | 160.0                                                | 26.138                                                                |

- -

#### VES 714.24 (Site JJ)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 10.0                  | 60.382                      |
| 15.0                  | 69.084                      |
| 20.0                  | 76.027                      |
| 30.0                  | 80.845                      |
| 40.0                  | 88.216                      |
| 60.0                  | 99.149                      |
| 80.0                  | 83.943                      |
| 100.0                 | 98.018                      |
| 120.0                 | 78.414                      |
| 140.0                 | 90.604                      |
| 160.0                 | 76.303                      |
|                       |                             |

i

VES 76A.10S (Site N9)

| A-Spacing                                                                                                                                                                         | Resistivity                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                                                                          | (Ohm-meters)                                                                                                                                                                                           |
| A-Spacing<br>(meters)<br>2.03<br>2.84<br>4.05<br>6.08<br>6.08<br>8.12<br>12.16<br>16.20<br>20.26<br>20.26<br>20.26<br>20.26<br>28.37<br>28.37<br>40.50<br>60.80<br>60.80<br>81.10 | Resistivity<br>(Ohm-meters)<br>110.396<br>84.337<br>68.059<br>64.776<br>61.632<br>71.061<br>67.891<br>72.804<br>69.570<br>66.309<br>65.266<br>60.102<br>62.507<br>49.957<br>33.460<br>36.816<br>21.777 |
| 81.10                                                                                                                                                                             | 21.777                                                                                                                                                                                                 |
| 81.10                                                                                                                                                                             | 24.336                                                                                                                                                                                                 |
| 20.26                                                                                                                                                                             | 66.309                                                                                                                                                                                                 |
| 20.26                                                                                                                                                                             | 65.266                                                                                                                                                                                                 |
| 28.37                                                                                                                                                                             | 60.102                                                                                                                                                                                                 |
| 60.80                                                                                                                                                                             | 33.460                                                                                                                                                                                                 |
| 60.80                                                                                                                                                                             | 36.816                                                                                                                                                                                                 |
| 81.10                                                                                                                                                                             | 21.777                                                                                                                                                                                                 |
| 81.10                                                                                                                                                                             | 24.336                                                                                                                                                                                                 |
| 162.10                                                                                                                                                                            | 6.145                                                                                                                                                                                                  |
| 202.70                                                                                                                                                                            | 5.963                                                                                                                                                                                                  |
| 202.70                                                                                                                                                                            | 10.571                                                                                                                                                                                                 |
|                                                                                                                                                                                   |                                                                                                                                                                                                        |

91

•

## VES 76A.09 (Site N8)

| VES /0A.U8 (SITE N/) | te N7) | Sit | 8 ( | . 0 | БA | - 70 | ES | Y |
|----------------------|--------|-----|-----|-----|----|------|----|---|
|----------------------|--------|-----|-----|-----|----|------|----|---|

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 150.189                     | 2.03                  | 58,898                      |
| 1.5                   | 124.335                     | 2.84                  | 54.003                      |
| 2.0                   | 96.746                      | 4.05                  | 59.528                      |
| 3.0                   | 68,689                      | 6.08                  | 61 773                      |
| 4.0                   | 55.846                      | 6.08                  | 64 252                      |
| 6.0                   | 53, 193                     | 8 12                  | 66 478                      |
| 8.0                   | 54.286                      | 8 12                  | 65 520                      |
| 10.0                  | 56.737                      | 12 16                 | 76 567                      |
| 15.0                  | 59.376                      | 16 20                 | 76 172                      |
| 20.0                  | 61 073                      | 20 26                 | 70.172                      |
| 30.0                  | 53 897                      | 20.20                 | 60 402                      |
| 40 0                  | 48 003                      | 20.20                 | 62 602                      |
| 60.0                  | 43.078                      | 20.37                 | 03.092                      |
| 80.0                  | 43.070                      | 20.37                 | 02.04/                      |
| 100.0                 | 0 926                       | 40.50                 | 47.398                      |
| 100.0                 | 9.230                       | 60.80                 | 25.095                      |
| 120.0                 | 7.841                       | 60.80                 | 28.887                      |
|                       |                             | 81.10                 | 13 <b>.94</b> 5             |
|                       |                             | 81.10                 | 14.976                      |
|                       |                             | 121.60                | 5.119                       |
|                       |                             | 162.70                | 2.895                       |
|                       |                             | 202.70                | 3.021                       |
|                       |                             | 202.70                | 3.539                       |

÷

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |  |
|-----------------------|-----------------------------|-----------------------|-----------------------------|--|
| 2.03                  | 127.056                     | 2.03                  | 70.767                      |  |
| 2.84                  | 94.218                      | 2.84                  | 40.445                      |  |
| 4.05                  | 71.377                      | 4.05                  | 38.106                      |  |
| 6.08                  | 57.912                      | 6.08                  | 54.909                      |  |
| 6.08                  | 61.012                      | 6.08                  | 57.220                      |  |
| 8.12                  | 61.510                      | 8.12                  | 57.690                      |  |
| 8.12                  | 57.782                      | 8.12                  | 60.278                      |  |
| 12.16                 | 65.694                      | 12.16                 | 67.685                      |  |
| 16.20                 | 63.603                      | 16.20                 | 70.078                      |  |
| 20.26                 | 63.606                      | 20.26                 | 77.122                      |  |
| 20.26                 | 64.806                      | 20.26                 | 73.539                      |  |
| 28.37                 | 63.380                      | 28.37                 | 70.717                      |  |
| 28.37                 | 63.426                      | 28.37                 | 68.482                      |  |
| 40.50                 | 51.189                      | 40.50                 | 64.745                      |  |
| 60.80                 | 34.747                      | 60.80                 | 49 <b>. 1</b> 18            |  |
| 60.80                 | 37.056                      | 60.80                 | 52.568                      |  |
| 81.10                 | 24.069                      | 81.10                 | 33.621                      |  |
| 81.10                 | 21.840                      | 81.10                 | 35.567                      |  |
| 121.60                | 9.300                       | 121.60                | 14.931                      |  |
| 162.10                | 5.383                       | 162.70                | 8.430                       |  |
| 202.70                | 5.367                       | 202.70                | 5.724                       |  |
| 202.70                | 5.515                       | 202.70                | 6.572                       |  |

VES 76A.05 (Site N6)

#### VES 76A.04 (Site N5)

#### VES N711.10 (Site N4)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 1.0                   | 97.562                      |
| 1.5                   | 91.668                      |
| 2.0                   | 73.850                      |
| 3.0                   | 57.568                      |
| 4.0                   | 53,508                      |
| 6.0                   | 50.931                      |
| 8.0                   | 45.515                      |
| 10.0                  | 51.711                      |
| 15.0                  | 58.905                      |
| 20.0                  | 61.073                      |
| 30.0                  | 60.587                      |
| 40.0                  | 53.784                      |
| 60.0                  | 41,846                      |
| 80.0                  | 33,125                      |
| 100.0                 | 16,650                      |
| 120.0                 | 5.922                       |
| 140 0                 | 8 687                       |
| 160 0                 | 4 132                       |
| 100.0                 | T. 136                      |

1

VES N711.10S (Site N4)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 2.03                  | 118.025                     |
| 2.84                  | 86.497                      |
| 4.05                  | 57.348                      |
| 6.08                  | 42.686                      |
| 6.08                  | 51,222                      |
| 8.12                  | 51,156                      |
| 8.12                  | 50.294                      |
| 12.16                 | 56.878                      |
| 16.20                 | 53,828                      |
| 20.26                 | 57.404                      |
| 20.26                 | 56 303                      |
| 28.37                 | 53 858                      |
| 28 37                 | 56 992                      |
| 40 50                 | 52 000                      |
| 60 80                 | 39 922                      |
| 60.80                 | 20.425                      |
| 91 10                 | 33.433                      |
| 01.10                 | 22.923                      |
| 121 60                | 25.833                      |
| 121.00                | 9.954                       |
| 102.10                | 5.0/8                       |
| 202.70                | 5.565                       |
| 202.70                | 4.826                       |

#### VES N711.03 (Site N3)

#### VES N711.02 (Site N2)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 51.615                      | 2.03                  | 13.308                      |
| 1.5                   | 58,482                      | 2.84                  | 16.937                      |
| 2.0                   | 64.300                      | 4.05                  | 20.571                      |
| 3.0                   | 68,784                      | 6.08                  | 23.339                      |
| 4.0                   | 74.444                      | 6.08                  | 23.871                      |
| 6.0                   | 81.279                      | 8.12                  | 23.756                      |
| 8.0                   | 86.154                      | 8.12                  | 25.676                      |
| 10.0                  | 94.625                      | 12.16                 | 28,172                      |
| 15.0                  | 95.473                      | 16,20                 | 23.372                      |
| 20.0                  | 90,227                      | 20.26                 | 21,229                      |
| 30.0                  | 82,164                      | 20.26                 | 22.344                      |
| 40.0                  | 73.890                      | 28.37                 | 19.271                      |
| 60.0                  | 51.271                      | 28.37                 | 19.472                      |
| 80.0                  | 31.315                      | 40.50                 | 14.909                      |
| 100.0                 | 19.855                      | 60.80                 | 10.003                      |
| 120.0                 | 12.591                      | 60.80                 | 11.221                      |
| 140.0                 | 11.611                      | 81.10                 | 6.288                       |
| 160.00                | 7,932                       | 81.10                 | 6.657                       |
|                       |                             | 121.60                | 2.687                       |
|                       |                             | 162.10                | 1.393                       |
|                       |                             | 202.70                | 1.430                       |
|                       |                             | 202.70                | 1.023                       |

i

95

### VES N711.QI (Site N1)

-----

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 1.0                   | 83.426                      |
| 1.5                   | 82.572                      |
| 2.0                   | 72.393                      |
| 3.0                   | 57.078                      |
| 4.0                   | 50.995                      |
| 6.0                   | 50.969                      |
| 8.0                   | 55.241                      |
| 10.0                  | 58.434                      |
| 15.0                  | 63.240                      |
| 20.0                  | 69.241                      |
| 30.0                  | 72.742                      |
| 40.0                  | 62.581                      |
| 60.0                  | 47.501                      |
| 80.0                  | 38.076                      |
| 100.0                 | 20.358                      |
| 120.0                 | 12,742                      |
| 140.0                 | 7.539                       |
| 160.0                 | 5.660                       |

VES S711.01 (Site S9)

| A-Spacing<br>(meters)                                                    | Resistivity<br>(Ohm-meters)                                                        |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| (meters)<br>2.03<br>2.84<br>4.05<br>6.08<br>6.08<br>8.12<br>8.12         | (Ohm-meters)<br>17.511<br>16.866<br>14.042<br>13.598<br>12.986<br>15.022<br>13.998 |
| 12.16<br>16.20<br>20.26<br>20.26<br>28.37<br>28.37                       | 16.036<br>17.026<br>17.254<br>15.620<br>16.559<br>21.014                           |
| 40.50<br>60.80<br>81.10<br>81.10<br>121.70<br>162.10<br>202.70<br>202.70 | 12.020<br>10.264<br>9.456<br>5.788<br>5.516<br>2.340<br>1.238<br>1.212<br>1.751    |

#### VES S711.02 (Site S8)

| A-Spacing<br>(meters)                                                                                                                                                   | Resistivity<br>(Ohm-meters)                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A-Spacing<br>(meters)<br>2.03<br>2.84<br>4.05<br>6.08<br>6.08<br>8.12<br>8.12<br>12.16<br>16.20<br>20.26<br>20.26<br>20.26<br>28.27<br>28.37<br>40.50<br>60.80<br>60.80 | Resistivity<br>(Ohm-meters)<br>21.573<br>19.948<br>16.671<br>13.598<br>13.376<br>12.576<br>9.167<br>12.961<br>12.970<br>13.159<br>13.239<br>12.704<br>12.425<br>10.402<br>6.603<br>6.640 |
| 81.10                                                                                                                                                                   | 3.843                                                                                                                                                                                    |
| 121.60                                                                                                                                                                  | 1.734                                                                                                                                                                                    |
| 202.70                                                                                                                                                                  | 2.181                                                                                                                                                                                    |
| 202.70                                                                                                                                                                  | 1.051                                                                                                                                                                                    |

1

\*

### VES S711.05 (Site S7)

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 2.03<br>2.84          | 17.700<br>17.315            |
| 4.05                  | 15.370                      |
| 6.08                  | 13.664                      |
| 0.08                  | 14.793                      |
| 0.12<br>8 12          | 13.741                      |
| 12.16                 | 10,922                      |
| 16.20                 | 13.930                      |
| 20.26                 | 14.056                      |
| 20.26                 | 12.748                      |
| 28.37                 | 14.276                      |
| 28.37                 | 13.561                      |
| 40.50                 | 11.499                      |
| 60.80                 | 8 763                       |
| 81.10                 | 3.610                       |
| 81.10                 | 3,960                       |
| 121.60                | 1.560                       |
| 162.10                | 0.774                       |
| 202.70                | 0.485                       |
| 202.70                | 0.771                       |

| VES \$711.0                                                                                                             | 07 (Site S6)                                                                                                                                                  |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| A-Spacing<br>(meters)                                                                                                   | <b>Resistiv</b> ity<br>(Ohm-meters)                                                                                                                           |  |
| 1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0<br>100.0<br>120.0 | 139.432<br>134.702<br>113.798<br>74.872<br>52.050<br>41.846<br>41.770<br>42.474<br>44.485<br>54.161<br>50.882<br>37.950<br>28.915<br>20.961<br>8.985<br>8.520 |  |
|                                                                                                                         |                                                                                                                                                               |  |

ł.

VES S711.08 (Site S5)

| A-Spacing<br>(meters)                                                                                          | Resistivity<br>(Ohm-meters)                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0<br>100.0 | (Onm-meters)<br>82.741<br>79.170<br>71.086<br>57.361<br>46.548<br>43.015<br>46.797<br>53.784<br>59.753<br>64.591<br>75.945<br>52.276<br>37.171<br>20.609<br>17.467 |
| 120.0<br>140.0                                                                                                 | 10.631<br>7.301                                                                                                                                                    |
|                                                                                                                |                                                                                                                                                                    |

-

VES 711.10 (Site S3)

| <b>VES S71</b> | 1.09 | (Site | -S4) |
|----------------|------|-------|------|
|----------------|------|-------|------|

2.21

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |  |
|-----------------------|-----------------------------|--|
| 1.0                   | 94.842                      |  |
| 1.5                   | 89.283                      |  |
| 2.0                   | 78.324                      |  |
| 3.0                   | 56.041                      |  |
| 4.0                   | 38.730                      |  |
| 6.0                   | 45.955                      |  |
| 8.0                   | 48.204                      |  |
| 10.0                  | <b>50.76</b> 8              |  |
| 15.0                  | 55.512                      |  |
| 20.0                  | 53.407                      |  |
| 30.0                  | 50.693                      |  |
| 40.0                  | 34.934                      |  |
| 60.0                  | 21.111                      |  |
| 80.0                  | 14.376                      |  |
| 100.0                 | 8.734                       |  |
| 120.0                 | 6.258                       |  |
| 140.0                 | 4.926                       |  |
|                       |                             |  |

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|
| 1.0                   | 106.038                     |
| 1.5                   | 110.480                     |
| 2.0                   | 98.932                      |
| 3.0                   | 74.344                      |
| 4.0                   | 52.779                      |
| 6.0                   | 41.959                      |
| 8.0                   | 41.067                      |
| 10.0                  | 43.103                      |
| 15.0                  | 51.177                      |
| 20.0                  | 53.156                      |
| 30.0                  | 56.535                      |
| 40.0                  | 53.030                      |
| 60.0                  | 37.171                      |
| 80.0                  | 20.961                      |
| 100.0                 | 15.017                      |
| 120.0                 | 9.425                       |
| 140.0                 | 6.070                       |
| 160.0                 | 4.122                       |

# VES S711.I1 (Site S2)

.

÷

| VES | S711 | .12 | (Site | S1) |  |
|-----|------|-----|-------|-----|--|
|     |      |     |       |     |  |

| A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) | A-Spacing<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----------------------------|-----------------------|-----------------------------|
| 1.0                   | 97.437                      | 1.0                   | 59.041                      |
| 1.5                   | 109.038                     | 1.5                   | 63.647                      |
| 2.0                   | 100.880                     | 2.0                   | 49,749                      |
| 3.0                   | 79.849                      | 3.0                   | 43.713                      |
| 4.0                   | 64.416                      | 4.0                   | 39.584                      |
| 6.0                   | 41.884                      | 6.0                   | 40.263                      |
| 8.0                   | 33.979                      | 8.0                   | 47.450                      |
| 10.0                  | 30.536                      | 10.0                  | 46.244                      |
| 15.0                  | 27.520                      | 15.0                  | 45.805                      |
| 20.0                  | 22.695                      | 20.0                  | 43.605                      |
| 30.0                  | 18.581                      | 30.0                  | 39.198                      |
| 40.0                  | 16.064                      | 40.0                  | 34,934                      |
| 60.0                  | 9.953                       | 60.0                  | 15.834                      |
| 80.0                  | 6.283                       | 80.0                  | 14.175                      |
| 100.0                 | 4.461                       | 100.0                 | 7.477                       |
| 120.0                 | 3,167                       | 120.0                 | 4.222                       |
| 140.0                 | 3.695                       |                       |                             |

Appendix A: Part 2-Reduced field data from an automatic inversion program by Zohdy and Bisdorf (1975).

-

#### VES Indiantown-01 (Site A)

| A-Spacing<br>(meters)                                                                                                                                                                                                                                                         | Observed<br>(Ohm-                                                                                                                                                                                                                                                   | Response<br>meters)                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} 1.0\\ 2.0\\ 3.0\\ 4.0\\ 5.0\\ 6.0\\ 8.0\\ 10.0\\ 15.0\\ 20.0\\ 30.0\\ 40.0\\ 60.0\\ 70.0\\ 80.0\\ 90.0\\ 100.0\\ 120.0\\ 140.0\\ \end{array} $                                                                                                             | 222<br>116<br>81<br>62<br>62<br>61<br>62<br>61<br>62<br>61<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62<br>62                                                                                                                            | 2.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5.0<br>5                                                                                                                                                                                                                             |
| 160.0<br>Thickness<br>(meters)                                                                                                                                                                                                                                                | Depth<br>(meters)                                                                                                                                                                                                                                                   | Resistivity (Ohm-meters)                                                                                                                                                                                                                                                              |
| 0.1000<br>0.0468<br>0.0687<br>0.1008<br>0.1479<br>0.2168<br>0.3093<br>0.8074<br>0.7980<br>0.9275<br>0.9681<br>0.9802<br>1.9798<br>1.9935<br>4.9999<br>4.9999<br>4.9999<br>4.9990<br>9.9567<br>9.9087<br>19.5235<br>9.3927<br>9.0052<br>8.6003<br>8.1284<br>14.9198<br>13.6489 | 0.1000<br>0.1468<br>0.2154<br>0.3162<br>0.4641<br>0.6808<br>0.9902<br>1.7976<br>2.5956<br>3.5231<br>4.4912<br>5.4714<br>7.4511<br>9.4447<br>14.4445<br>19.4436<br>29.4002<br>39.3089<br>58.8324<br>68.2251<br>77.2303<br>85.8306<br>93.9590<br>108.8788<br>122.5277 | 299.5659<br>299.3386<br>302.9939<br>309.0525<br>309.5227<br>282.2690<br>204.0774<br>79.3379<br>48.7707<br>55.3153<br>59.0249<br>59.4975<br>60.7579<br>64.4078<br>69.0001<br>67.7732<br>60.9044<br>54.1819<br>44.6037<br>34.2698<br>27.7137<br>22.3377<br>17.9272<br>13.1309<br>9.3259 |

-

| A-Spacing                                                                                                                             | Observed                                                                                                          | Response                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                              | (Ohm-m                                                                                                            | eters)                                                                                           |
| 2.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>70.0<br>90.0<br>100.0<br>120.0<br>140.0<br>160.0<br>200.0 | 26.<br>37.<br>53.<br>65.<br>74.<br>81.<br>81.<br>75.<br>68.<br>60.<br>46.<br>32.<br>26.<br>16.<br>10.<br>7.<br>5. | 0<br>5<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |
| Thickness                                                                                                                             | Depth                                                                                                             | Resistivity                                                                                      |
| (meters)                                                                                                                              | (meters)                                                                                                          | (Ohm-meters)                                                                                     |
| 0.2000                                                                                                                                | 0.2000                                                                                                            | 20.5354                                                                                          |
| 0.0936                                                                                                                                | 0.2936                                                                                                            | 20.5846                                                                                          |
| 0.1373                                                                                                                                | 0.4309                                                                                                            | 20.3640                                                                                          |
| 0.2015                                                                                                                                | 0.6324                                                                                                            | 19.7718                                                                                          |
| 0.2956                                                                                                                                | 0.9279                                                                                                            | 19.0940                                                                                          |
| 0.4342                                                                                                                                | 1.3622                                                                                                            | 19.8760                                                                                          |
| 0.6239                                                                                                                                | 1.9860                                                                                                            | 25.5623                                                                                          |
| 1.5240                                                                                                                                | 3.5101                                                                                                            | 60.6854                                                                                          |
| 1.0331                                                                                                                                | 4.5432                                                                                                            | 147.4320                                                                                         |
| 1.3349                                                                                                                                | 5.8780                                                                                                            | 140.6800                                                                                         |
| 1.6142                                                                                                                                | 7.4933                                                                                                            | 125.6035                                                                                         |
| 4.6630                                                                                                                                | 12.1553                                                                                                           | 107.3450                                                                                         |
| 4.9752                                                                                                                                | 17.1304                                                                                                           | 88.1908                                                                                          |
| 9.9434                                                                                                                                | 27.0738                                                                                                           | 68.4206                                                                                          |
| 9.6923                                                                                                                                | 36.7661                                                                                                           | 52.8598                                                                                          |
| 9.4054                                                                                                                                | 46.1715                                                                                                           | 42.1154                                                                                          |
| 17.5590                                                                                                                               | 63.7305                                                                                                           | 28.5274                                                                                          |
| 14.6720                                                                                                                               | 78.4026                                                                                                           | 15.1988                                                                                          |
| 6.0275                                                                                                                                | 84.4301                                                                                                           | 8.9957                                                                                           |
| 9.4041                                                                                                                                | 93.8342                                                                                                           | 5.1152                                                                                           |
| 6.8398                                                                                                                                | 100.6739                                                                                                          | 2.5848                                                                                           |
| 5.9891                                                                                                                                | 106.6631                                                                                                          | 1.6968                                                                                           |
## VES 726.I4S (Site C)

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 40.0                              |
| 4.0                   | 48.0                              |
| 6.0                   | 38.0                              |
| 8.0                   | 33.9                              |
| 10.0                  | 32.0                              |
| 12.0                  | 31.0                              |
| 15.0                  | 32.0                              |
| 20.0                  | 30.0                              |
| 30.0                  | 26.0                              |
| 50.0                  | 17.0                              |
| 70.0                  | 10.0                              |
| 90.0                  | 6.0                               |
| 100.0                 | 5.0                               |
| 150.0                 | 3.5                               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 33.2186                     |
| 0.0936                | 0.2936            | 33.4132                     |
| 0.1373                | 0.4309            | 32.5791                     |
| 0.2014                | 0.6323            | 31.5063                     |
| 0.2958                | 0.9281            | 32.5154                     |
| 0.4235                | 1.3516            | 42.7095                     |
| 0.5410                | 1.8926            | 71.3797                     |
| 1.9323                | 3.3249            | 62.9524                     |
| 1.8005                | 5.6255            | 25.1707                     |
| 1.7052                | 7.3306            | 17.2852                     |
| 1.9156                | 9.2462            | 21.3067                     |
| 1.9971                | 11.2433           | 31,4961                     |
| 2.7980                | 14.0414           | 45.6461                     |
| 4.6693                | 18.7106           | 49.9391                     |
| 9.9474                | 28.6580           | 30.6691                     |
| 15.1759               | 43.8339           | 9.7010                      |
| 7.7282                | 51.5622           | 2.1186                      |
| 6.3793                | 57.9415           | 1.0072                      |
| 4.9729                | 62.9144           | 1.2993                      |

\*

## VES INDIANTOWN-03 (Site E)

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 369.0                             |
| 3.0                   | 270.0                             |
| 4.0                   | 161.0                             |
| 5.0                   | 90.0                              |
| 6.0                   | 62.0                              |
| 8.0                   | 43.0                              |
| 10.0                  | 36.0                              |
| 15.0                  | 32.0                              |
| 20.0                  | 33.0                              |
| 30.0                  | 33.5                              |
| 40.0                  | 31.0                              |
| 50.0                  | 28.0                              |
| 60.0                  | 23.5                              |
| 80.0                  | 15.8                              |
| 90-0                  | 13.8                              |
| 100.0                 | 12.5                              |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 554.0457                    |
| 0 1373                | 0.2330            | 553 8179                    |
| 0.2015                | 0.6324            | 565.0381                    |
| 0.2958                | 0.9282            | 574.3467                    |
| 0.4342                | 0.3623            | 545.7036                    |
| 0.6255                | 1.9878            | 412.1711                    |
| 0.8356                | 2.8234            | 193.8232                    |
| 0.5019                | 3,3254            | 56.8464                     |
| 0.1668                | 3.4921            | 9.8768                      |
| 0.4917                | 3.9838            | 16.9156                     |
| 0.2125                | 4.1963            | 2.2662                      |
| 1.5344                | 5.730/            | 17.4480                     |
| 4.9803                | 10./110           | 45.5531                     |
| 4.8938                | 15.6048           | 53.838/                     |
| 9.9999                | 25.6047           | 45.1841                     |
| 9.6977                | 35.3023           | 31.24/8                     |
| 8.8108                | 44.1132           | 19.6849                     |
| 7.7340                | 51.8472           | 12.4662                     |
| 13.7195               | 65.566/           | 7.7202                      |
| 7.2180                | /2.7847           | 6.7050                      |

## VES 726.I1S (Site F)

| A-Spacing                                                                                                            | Observed R                                                                                                        | esponse      |
|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------|
| (meters)                                                                                                             | (Ohm-me                                                                                                           | ters)        |
| 2.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>40.0<br>50.0<br>60.0<br>80.0<br>100.0<br>120.0<br>160.0<br>200.0 | 39.0<br>39.0<br>41.0<br>48.0<br>52.5<br>60.0<br>63.0<br>60.0<br>46.0<br>38.0<br>28.0<br>14.9<br>9.3<br>5.9<br>4.2 |              |
| Thickness                                                                                                            | Depth                                                                                                             | Resistivity  |
| (meters)                                                                                                             | (meters)                                                                                                          | (Ohm-meters) |
| 0.2000                                                                                                               | 0.2000                                                                                                            | 39.5767      |
| 0.0935                                                                                                               | 0.2935                                                                                                            | 39.4804      |
| 0.1372                                                                                                               | 0.4307                                                                                                            | 39.4171      |
| 0.2016                                                                                                               | 0.6323                                                                                                            | 39.6175      |
| 0.2958                                                                                                               | 0.9281                                                                                                            | 40.1392      |
| 0.4343                                                                                                               | 1.3624                                                                                                            | 39.8746      |
| 0.6359                                                                                                               | 1.9983                                                                                                            | 36.3190      |
| 1.9833                                                                                                               | 3.9816                                                                                                            | 30.5653      |
| 1.9499                                                                                                               | 5.9315                                                                                                            | 45.1976      |
| 1.6308                                                                                                               | 7.5623                                                                                                            | 79.5159      |
| 1.5421                                                                                                               | 9.1044                                                                                                            | 101.5311     |
| 4.2989                                                                                                               | 13.4033                                                                                                           | 100.7900     |
| 4.6890                                                                                                               | 18.0922                                                                                                           | 95.4773      |
| 19.9854                                                                                                              | 38.0777                                                                                                           | 65.6270      |
| 8.7783                                                                                                               | 46.8560                                                                                                           | 32.1359      |
| 7.5552                                                                                                               | 54.4111                                                                                                           | 19.5558      |
| 12.2099                                                                                                              | 66.6210                                                                                                           | 10.2510      |
| 10.2379                                                                                                              | 76.8589                                                                                                           | 5.5692       |
| 10.1510                                                                                                              | 87.0099                                                                                                           | 4.0634       |
| 24.2047                                                                                                              | 111.2146                                                                                                          | 3.7286       |

| A-Spacing<br>(meters)                                                                                                                                                                                                                                      | Obser<br>(0                                                                                                                                                                                                                                                            | ved Re                                                                                                                                         | esponse<br>ters)                                                                                                                                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>100.0<br>120.0                                                                                                                     |                                                                                                                                                                                                                                                                        | 151.0<br>101.0<br>71.0<br>52.0<br>38.5<br>37.0<br>36.8<br>38.0<br>40.0<br>47.7<br>50.0<br>48.0<br>43.0<br>37.5<br>32.5<br>24.0<br>18.0<br>13.0 |                                                                                                                                                                                                                                                                                       |
| 200.0<br>Thickness<br>(meters)                                                                                                                                                                                                                             | Depth<br>(meters)                                                                                                                                                                                                                                                      | 3.6                                                                                                                                            | Resistivity                                                                                                                                                                                                                                                                           |
| 0.1000<br>0.0467<br>0.0687<br>0.1008<br>0.1479<br>0.2169<br>0.3148<br>0.9560<br>0.8596<br>0.6376<br>1.2605<br>0.9466<br>0.9931<br>0.8760<br>0.7467<br>3.8550<br>4.8250<br>9.9193<br>9.3319<br>8.9805<br>8.9422<br>18.0102<br>17.5473<br>15.4385<br>10.4683 | <br>0.1000<br>0.1467<br>0.2154<br>0.3162<br>0.4641<br>0.6810<br>0.9958<br>1.9518<br>2.8114<br>3.4490<br>4.7095<br>5.6561<br>6.6491<br>7.5251<br>8.2718<br>12.1268<br>16.9518<br>26.8711<br>36.2030<br>45.1835<br>54.1257<br>72.1359<br>89.6832<br>105.1216<br>115.5899 |                                                                                                                                                | 184.0648<br>183.4938<br>184.5310<br>185.9438<br>185.5083<br>173.3428<br>142.0542<br>96.7906<br>52.5075<br>21.4470<br>13.4318<br>24.3784<br>40.8100<br>63.6608<br>89.4072<br>101.5735<br>73.2298<br>47.4924<br>31.0552<br>23.8607<br>20.7056<br>18.1612<br>14.3082<br>9.1139<br>4.0011 |

•

| A-Spacing | Obser              | ved Re | sponse                   |
|-----------|--------------------|--------|--------------------------|
| (meters)  | (0                 | hm-met | ers)                     |
| 1.0       |                    | 103.0  |                          |
| 1.5       |                    | 108.0  |                          |
| 3.0       |                    | 81.0   |                          |
| 4.0       |                    | 68.0   |                          |
| 6.0       |                    | 59.0   |                          |
| 8.0       |                    | 59.0   |                          |
| 10.0      |                    | 62.0   |                          |
| 20.0      |                    | 63.0   |                          |
| 25.0      |                    | 60.0   |                          |
| 30.0      |                    | 57.0   |                          |
| 40.0      |                    | 32.0   |                          |
| 70.0      |                    | 25.0   |                          |
| 80.0      |                    | 19.5   |                          |
| 90.0      |                    | 15.0   |                          |
| 120.0     |                    | 8.0    |                          |
| 140.0     | Denth              | 5.8    | Desistivity              |
| (meters)  | (meters)           |        | (Ohm-meters)             |
| 0.1000    | 0.1000             |        | 92.1645                  |
| 0.0468    | 0.1468             |        | 92.6896                  |
| 0.0687    | 0.2154             |        | 91.3086                  |
| 0.1008    | 0.3162             |        | 89.1557                  |
| 0.2159    | 0.6800             |        | 103.4386                 |
| 0.3011    | 0.9811             |        | 142.4183                 |
| 0.4748    | 1.4558             |        | 159.2888                 |
| 0.4968    | 1.9526             |        | 105.626/                 |
| 0.7358    | 3.5364             |        | 25.9389                  |
| 1.8962    | 5.4326             |        | 37.6235                  |
| 1.8799    | 7.3124             |        | 79.3292                  |
| 1./94/    | 9.10/2             |        | 98.4512                  |
| 4.9999    | 19.0102            |        | 69.0447                  |
| 4.9915    | 24.0016            |        | 64.6677                  |
| 4.9634    | 28.9650            |        | 59.1308                  |
| 9.0/4/    | 38.6397<br>51 1111 |        | 45./1/5                  |
| 4.8867    | 59.3011            |        | 6.9842                   |
| 3.0303    | 62.3314            |        | 3.0200                   |
| 1.6818    | 64.0132            |        | 1.2192                   |
| 3.8654    | 68.8970            |        | 0.5558<br>0.82 <b>49</b> |
| UIUUUT    | 00.00/0            |        | 0.0275                   |

- 21 -

| A-Spacing<br>(meters)<br>1.5<br>2.5<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>13.0<br>15.0<br>20.0<br>23.5<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>100.0<br>120.0<br>140.0 | Obser<br>(C | ved Re<br>hm-met<br>177.0<br>150.0<br>144.0<br>140.0<br>141.0<br>152.0<br>165.0<br>165.0<br>165.0<br>159.0<br>18.0<br>95.0<br>80.0<br>61.0<br>44.0<br>33.0<br>22.1<br>17.D<br>14.5<br>12.6 | esponse<br>cers) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Thickness                                                                                                                                                                  | Depth       |                                                                                                                                                                                            | Resistivity      |
| (meters)                                                                                                                                                                   | (meters)    |                                                                                                                                                                                            | (Ohm-meters)     |
| 0.1500                                                                                                                                                                     | 0.1500      |                                                                                                                                                                                            | 204.5078         |
| 0.0702                                                                                                                                                                     | 0.2202      |                                                                                                                                                                                            | 203.3610         |
| 0.1029                                                                                                                                                                     | 0.3230      |                                                                                                                                                                                            | 203.2762         |
| 0.1512                                                                                                                                                                     | 0.4742      |                                                                                                                                                                                            | 205.7021         |
| 0.2218                                                                                                                                                                     | 0.6961      |                                                                                                                                                                                            | 210.0218         |
| 0.3257                                                                                                                                                                     | 1.0218      |                                                                                                                                                                                            | 204.4462         |
| 0.4727                                                                                                                                                                     | 1.4944      |                                                                                                                                                                                            | 162.8625         |
| 0.9338                                                                                                                                                                     | 2.4282      |                                                                                                                                                                                            | 102.7019         |
| 0.4660                                                                                                                                                                     | 2.8942      |                                                                                                                                                                                            | 87.1424          |
| 0.9837                                                                                                                                                                     | 3.8779      |                                                                                                                                                                                            | 102.8857         |
| 1.9056                                                                                                                                                                     | 5.7835      |                                                                                                                                                                                            | 183.8289         |
| 1.5755                                                                                                                                                                     | 7.3590      |                                                                                                                                                                                            | 320.5049         |
| 1.7304                                                                                                                                                                     | 9.0894      |                                                                                                                                                                                            | 312.3403         |
| 2.9751                                                                                                                                                                     | 12.0645     |                                                                                                                                                                                            | 219.8739         |
| 1.9513                                                                                                                                                                     | 14.0159     |                                                                                                                                                                                            | 144.7439         |
| 4.3084                                                                                                                                                                     | 18.3242     |                                                                                                                                                                                            | 82.7755          |
| 2.5302                                                                                                                                                                     | 20.8544     |                                                                                                                                                                                            | 47.6201          |
| 4.3656                                                                                                                                                                     | 25.2199     |                                                                                                                                                                                            | 33.1484          |
| 7.4738                                                                                                                                                                     | 32.6937     |                                                                                                                                                                                            | 29.6402          |
| 8.6641                                                                                                                                                                     | 41.3578     |                                                                                                                                                                                            | 32.2124          |
| 9.0306                                                                                                                                                                     | 50.3884     |                                                                                                                                                                                            | 31.3717          |
| 16.5515                                                                                                                                                                    | 66.9399     |                                                                                                                                                                                            | 21.0534          |
| 12.0927                                                                                                                                                                    | 79.0326     |                                                                                                                                                                                            | 9.2087           |
| 10.3664                                                                                                                                                                    | 89.3990     |                                                                                                                                                                                            | 5.5609           |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 212.5                             |
| 3.0                   | 220.0                             |
| 4.0                   | 170.0                             |
| 5.0                   | 157.0                             |
| 7.0                   | 170.0                             |
| 10.0                  | 195.0                             |
| 15.0                  | 185.0                             |
| 20.0                  | 147.0                             |
| 30.0                  | 80.0                              |
| 40.0                  | 46.0                              |
| 60.0                  | 26.0                              |
| 80.0                  | 11.0                              |
| 100.0                 | 7.0                               |
| 150.0                 | -4.5                              |
| 200.0                 | -44.0                             |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 221,2561                    |
| 0.0936                | 0.2936            | 218,4572                    |
| 0.1373                | 0.4309            | 218,9497                    |
| 0.2015                | 0.6324            | 224,9539                    |
| 0.2952                | 0.9276            | 240.7671                    |
| 0.4328                | 1.3604            | 251.1355                    |
| 0.6304                | 1.9908            | 186.4158                    |
| 0.8819                | 2.8727            | 98.0679                     |
| 0.9072                | 3.7799            | 85.1608                     |
| 0.9997                | 4.7797            | 134.8236                    |
| 1.6598                | 6.4395            | 286.7549                    |
| 2.5651                | 9.0046            | 327.2283                    |
| 4.9231                | 13.9277           | 152,1971                    |
| 4.0327                | 17.9603           | 67.6318                     |
| 7.3084                | 25.2688           | 39.2079                     |
| 8.2269                | 33,4957           | 35.5626                     |
| 17.0712               | 50.5669           | 29.1459                     |
| 11.7470               | 62.3138           | 10.5011                     |
| 8.9428                | 71.2566           | 3.3051                      |
| 22.8050               | 94.0616           | 1.5179                      |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 1.0                   | 158.0                             |
| 2.0                   | 151.0                             |
| 3.0                   | 145.0                             |
| 4.0                   | 134.0                             |
| 6.0                   | 113.0                             |
| 8.0                   | 92.0                              |
| 10.0                  | 82.0                              |
| 15.0                  | 69.0                              |
| 20.0                  | 64.0                              |
| 30.0                  | 56.0                              |
| 40.0                  | 47.0                              |
| 60.0                  | 31.0                              |
| 70.0                  | 25.0                              |
| 80.0                  | 20.0                              |
| 90.0                  | 15.0                              |
| 100.0                 | 8.5                               |

| Thickness<br>(meters) | Depth<br>(meters)  | Resistivity<br>(Ohm-meters)   |
|-----------------------|--------------------|-------------------------------|
| 0.1000<br>0.0468      | 0.1000<br>0.1468   | 159.6667<br>159.7138          |
| 0.0687<br>0.1008      | 0.2154<br>0.3162   | 159.7787<br>159. <b>7</b> 936 |
| 0.1479<br>0.2171      | 0.4641<br>0.6812   | 159.4157<br>158.7895          |
| 0.3187                | 0.9999             | 157.5429                      |
| 0.9993                | 2.9992             | 150.3080                      |
| 0.9903<br>1.8877      | 3.9895<br>5.8772   | 126.3379<br>85.9592           |
| 1.7520<br>1.7601      | 7.6292             | 56.3602<br>47.7775            |
| 4.7964                | 14.1857            | 54.4445                       |
| 9.9855                | 29.1694            | 67.4831                       |
| 9.6009<br>16.3431     | 38.7702<br>55.1133 | 46.4818<br>22.9713            |
| 5.7668                | 60.8801<br>64 4237 | 9.6085                        |
| 0.6942                | 65.1179            | 0.5329                        |

### VES 708.01 (Site L)

A-Spacing Observed Response (meters) (Ohm-meters) 2.00 124.00 2.84 102.00 4.05 72.60 6.10 67.60 74.50 8.10 12.20 84.50 16.20 94.50 20.30 93.80 28.40 89.70 77.30 46.90 40.50 60.80 81.10 26.80 8.25 4.70 121.60 162.10

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 149.2325                    |
| 0.0936                | 0.2936            | 148.3018                    |
| 0.1373                | 0.4309            | 149.2740                    |
| 0.2015                | 0.6324            | 152.7563                    |
| 0.2957                | 0.9281            | 156.2553                    |
| 0.4342                | 1.3624            | 150.3840                    |
| 0.6279                | 1.9902            | 115.7802                    |
| 0.7431                | 2.7334            | 64.4658                     |
| 0.9244                | 3.6577            | 34.6136                     |
| 1.9165                | 5,5742            | 42.9422                     |
| 1.8544                | 7.4286            | 98.4180                     |
| 3.1147                | 10.5434           | 175.5860                    |
| 3.5713                | 14.1147           | 158.5638                    |
| 4.0053                | 18.1200           | 132.0273                    |
| 8.0893                | 26.2093           | 101.7737                    |
| 11.4181               | - 37.6294         | 63.0215                     |
| 14.3635               | 51.9910           | 23.5149                     |
| 5.6549                | 57.6459           | 4.1065                      |
| 17.9699               | 75.6158           | 2.3920                      |

. . .

÷

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.00<br>2.84          | 103.4<br>67.8                     |
| 4.05                  | 47.6                              |
| 6.10<br>8 10          | 43.9                              |
| 12.20                 | 52.6                              |
| 16.20                 | 54.3                              |
| 20.30                 | 52.7                              |
| 40.50                 | 46.9                              |
| 60.80<br>81 10        | 32.5                              |
| 01.10                 | 17.49                             |

| Thickness |   | Depth    | Resistivity  |   |
|-----------|---|----------|--------------|---|
| (meters)  |   | (meters) | (Ohm-meters) | ) |
| 0.2000    |   | 0.2000   | 135.4045     |   |
| 0.0936    |   | 0.2936   | 135.6832     |   |
| 0.1373    |   | 0.4309   | 137.9023     |   |
| 0.2015    |   | 0.6324   | 141.1194     |   |
| 0.2958    |   | 0.9282   | 140.7883     |   |
| 0.4329    |   | 1.3610   | 124.7059     |   |
| 0.6071    |   | 1.9682   | 82.7697      |   |
| 0.6779    | ŧ | 2.6460   | 41.1669      |   |
| 0.8302    | 1 | 3.4762   | 21.0984      |   |
| 1.7257    |   | 5.2019   | 21.6149      |   |
| 1.9967    |   | 7.1986   | 37.0765      |   |
| 3.7502    |   | 10.9489  | 65.8395      |   |
| 3.4589    |   | 14.4077  | 86.6738      |   |
| 3,7481    |   | 18.1558  | 86.0174      |   |
| 7.9380    |   | 26.0938  | 74.1307      |   |
| 12.0037   |   | 38.0975  | 51.5002      |   |
| 16.8153   |   | 54.9128  | 22.0880      |   |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 34.6                              |
| 2.8                   | 21.0                              |
| 4.1                   | 16.1                              |
| 6.1                   | 15.0                              |
| 8.1                   | 15.2                              |
| 12.2                  | 16.0                              |
| 16.3                  | 17.4                              |
| 20.3                  | 17.5                              |
| 28.5                  | 17.1                              |
| 40.6                  | 14.9                              |
| 50.8                  | 12.5                              |
| 61.0                  | 9.8                               |

| Thickness<br>(meters) | Depth<br>(meters) | R <b>esi</b> stivity<br>(Ohm-meters) |
|-----------------------|-------------------|--------------------------------------|
| 0.2000                | 0.2000            | 72.1270                              |
| 0.0936                | 0.2936            | 73.2137                              |
| 0.1373                | 0.4308            | 74.9561                              |
| 0.2015                | 0.6324            | 75.0559                              |
| 0.2947                | 0.9270            | 65.5168                              |
| 0.4062                | 1.3333            | 40.0617                              |
| 0.4634                | 1.7966            | 16.3551                              |
| 0.5179                | 2.3145            | 8.8899                               |
| 1.1662                | 3.4807            | 12.2644                              |
| 1.9801                | 5.4608            | 16.0479                              |
| 1.9559                | 7.4167            | 13.6186                              |
| 4.0840                | 11.5008           | 15.2457                              |
| 3.9061                | 15.4068           | 23.6661                              |
| 3.5768                | 18.9836           | 30.7189                              |
| 7.8700                | 6.8536            | 27.9406                              |
| 11.7145               | 38.5681           | 14.8451                              |
| 6.9715                | 45.5396           | 5.2903                               |

| ) |
|---|
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |
|   |

÷

| A-Spacing                                                                                                                         | Observed                                                                                                                   | d Response                                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                          | (Ohm-                                                                                                                      | -meters)                                                                                                                          |
| 1.0<br>2.0<br>3.0<br>7.0<br>9.0<br>11.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>120.0 | 41<br>41<br>31<br>31<br>41<br>41<br>41<br>41<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | B.0<br>1.0<br>0.0<br>9.0<br>8.2<br>0.0<br>3.0<br>4.0<br>3.0<br>9.8<br>6.0<br>3.9<br>0.0<br>8.0<br>3.0<br>0.0<br>8.0<br>3.0<br>4.0 |
| Thickness                                                                                                                         | Depth                                                                                                                      | Resistivity                                                                                                                       |
| (meters)                                                                                                                          | (meters)                                                                                                                   | (Ohm-meters)                                                                                                                      |
| 0.1000                                                                                                                            | 0.1000                                                                                                                     | 55.8455                                                                                                                           |
| 0.0468                                                                                                                            | 0.1468                                                                                                                     | 55.9480                                                                                                                           |
| 0.0687                                                                                                                            | 0.2154                                                                                                                     | 56.3496                                                                                                                           |
| 0.1008                                                                                                                            | 0.3162                                                                                                                     | 56.6165                                                                                                                           |
| 0.1479                                                                                                                            | 0.4641                                                                                                                     | 55.5002                                                                                                                           |
| 0.2165                                                                                                                            | 0.6806                                                                                                                     | 50.4388                                                                                                                           |
| 0.3150                                                                                                                            | 0.9956                                                                                                                     | 42.6698                                                                                                                           |
| 0.9900                                                                                                                            | 1.9856                                                                                                                     | 38.7494                                                                                                                           |
| 0.9964                                                                                                                            | 2.9820                                                                                                                     | 39.2119                                                                                                                           |
| 3.9827                                                                                                                            | 6.9647                                                                                                                     | 35.2435                                                                                                                           |
| 1.9831                                                                                                                            | 8.9478                                                                                                                     | 44.1120                                                                                                                           |
| 1.9393                                                                                                                            | 10.8871                                                                                                                    | 51.7857                                                                                                                           |
| 3.8773                                                                                                                            | 14.7644                                                                                                                    | 55.3139                                                                                                                           |
| 4.9633                                                                                                                            | 19.7277                                                                                                                    | 51.3024                                                                                                                           |
| 9.9946                                                                                                                            | 29.7223                                                                                                                    | 44.2056                                                                                                                           |
| 9.9632                                                                                                                            | 39.6855                                                                                                                    | 40.8305                                                                                                                           |
| 9.9231                                                                                                                            | 49.6087                                                                                                                    | 37.9963                                                                                                                           |
| 9.8002                                                                                                                            | 59.4088                                                                                                                    | 32.4115                                                                                                                           |
| 9.3826                                                                                                                            | 68.7915                                                                                                                    | 24.9831                                                                                                                           |
| 8.6247                                                                                                                            | 77.4162                                                                                                                    | 17.7752                                                                                                                           |
| 7.4350                                                                                                                            | 84.8512                                                                                                                    | 11.6440                                                                                                                           |
| 5.8604                                                                                                                            | 90.7115                                                                                                                    | 6.9118                                                                                                                            |

| A-Spacing | Observed Response |
|-----------|-------------------|
| (meters)  | (Ohm-meters)      |
| 2.0       | 16.5              |
| 2.8       | 14.0              |
| 4.1       | 12.9              |
| 5.1       | 13.0              |
| 6.1       | 13.7              |
| 8.1       | 15.5              |
| 16.3      | 15.5              |
| 20.3      | 14.8              |
| 40.6      | 10.0              |
| 50.8      | 8.0               |
| 61.0      | 6.5               |
| 81.3      | 4.2               |
| 121 9     | 1.6               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 24.2156                     |
| 0.0935                | 0.2935            | 24.1447                     |
| 0.1373                | 0.4308            | 24.6671                     |
| 0.2015                | 0.6323            | 25.3076                     |
| 0.2955                | 0.9277            | 24.5230                     |
| 0.4280                | 1.3557            | 18.9002                     |
| 0.5610                | 1.9167            | 10.1870                     |
| 0.6411                | 2.5578            | 6.1793                      |
| 1.2713                | 3.8291            | 9.2177                      |
| 0.8863                | 4.7154            | 19.9924                     |
| 0.7484                | 5.4638            | 30.0450                     |
| 1.6671                | 7.1309            | 28.9841                     |
| 4.0541                | 11.1850           | 20.1293                     |
| 4.0528                | 15.2377           | 14.2154                     |
| 3.8561                | 19.0939           | 11.4229                     |
| 7.7649                | 26.8587           | 9,4197                      |
| 11,4835               | 38.3422           | 8.1676                      |
| 9.6428                | 47,9850           | 7,1085                      |
| 9 2426                | 57 2276           | 5.5144                      |
| 14.3844               | 71.6120           | 2.5998                      |

| A-Spacing                                                                                                                                         | Observed Re                                                                                                                            | espons <b>e</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| (meters)                                                                                                                                          | (Ohm-me                                                                                                                                | ters)           |
| $ \begin{array}{c} 1.0\\ 1.5\\ 2.0\\ 3.0\\ 5.0\\ 7.0\\ 9.0\\ 10.0\\ 13.0\\ 15.0\\ 20.0\\ 30.0\\ 40.0\\ 60.0\\ 80.0\\ 90.0\\ 100.0\\ \end{array} $ | 148.0<br>163.0<br>152.0<br>102.0<br>67.0<br>57.0<br>52.5<br>52.0<br>50.0<br>48.0<br>44.0<br>34.0<br>26.4<br>16.5<br>11.2<br>9.5<br>8.2 |                 |
| Thickness                                                                                                                                         | Depth                                                                                                                                  | Resistivity     |
| (meters)                                                                                                                                          | (meters)                                                                                                                               | (Ohm-meters)    |
| 0.1000                                                                                                                                            | 0.1000                                                                                                                                 | 118.4260        |
| 0.0468                                                                                                                                            | 0.1468                                                                                                                                 | 119.8059        |
| 0.0687                                                                                                                                            | 0.2154                                                                                                                                 | 117.0884        |
| 0.1007                                                                                                                                            | 0.3161                                                                                                                                 | 112.5115        |
| 0.1479                                                                                                                                            | 0.4641                                                                                                                                 | 113.8499        |
| 0.2127                                                                                                                                            | 0.6768                                                                                                                                 | 147.7561        |
| 0.2694                                                                                                                                            | 0.9462                                                                                                                                 | 253.7193        |
| 0.4340                                                                                                                                            | 1.3802                                                                                                                                 | 295.7383        |
| 0.4996                                                                                                                                            | 1.8798                                                                                                                                 | 178.2966        |
| 0.8028                                                                                                                                            | 2.6826                                                                                                                                 | 64.1639         |
| 0.9771                                                                                                                                            | 3.6596                                                                                                                                 | 16.0072         |
| 1.8466                                                                                                                                            | 5.5062                                                                                                                                 | 32.1257         |
| 1.8018                                                                                                                                            | 7.3081                                                                                                                                 | 83.2621         |
| 0.8345                                                                                                                                            | 8.1426                                                                                                                                 | 105.4356        |
| 2.8848                                                                                                                                            | 11.0273                                                                                                                                | 80.3745         |
| 1.9864                                                                                                                                            | 13.0137                                                                                                                                | 54.6304         |
| 4.6993                                                                                                                                            | 17.7130                                                                                                                                | 36.6246         |
| 8.6919                                                                                                                                            | 26.4049                                                                                                                                | 23.1420         |
| 8.6604                                                                                                                                            | 35.0653                                                                                                                                | 17.9084         |
| 17.2221                                                                                                                                           | 52.2874                                                                                                                                | 13.5943         |
| 15.2763                                                                                                                                           | 67.5637                                                                                                                                | 7.8697          |
| 6.3608                                                                                                                                            | 73.9244                                                                                                                                | 4.6348          |

| A-Spacing                                                                                                                                                      | Observ   | ed Response                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                                                       | (Oh      | m-meters)                                                                                                                                            |
| $\begin{array}{c} 1.0\\ 2.0\\ 3.0\\ 4.0\\ 6.0\\ 9.0\\ 10.0\\ 15.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 80.0\\ 90.0\\ 100.0\\ 120.0\\ 140.0\\ 160.0\end{array}$ |          | 145.0<br>101.0<br>72.0<br>52.0<br>40.0<br>36.1<br>36.0<br>37.0<br>39.9<br>42.2<br>40.0<br>36.0<br>31.0<br>21.0<br>17.5<br>15.0<br>10.5<br>7.0<br>4.0 |
| Thickness                                                                                                                                                      | Depth    | Resistivity                                                                                                                                          |
| (meters)                                                                                                                                                       | (meters) | (Ohm-meters)                                                                                                                                         |
| 0.1000                                                                                                                                                         | 0.1000   | 169.5038                                                                                                                                             |
| 0.0467                                                                                                                                                         | 0.1467   | 168.8527                                                                                                                                             |
| 0.0687                                                                                                                                                         | 0.2154   | 169.5062                                                                                                                                             |
| 0.1008                                                                                                                                                         | 0.3162   | 171.0100                                                                                                                                             |
| 0.1479                                                                                                                                                         | 0.4641   | 172.5458                                                                                                                                             |
| 0.2171                                                                                                                                                         | 0.6812   | 168.8372                                                                                                                                             |
| 0.3174                                                                                                                                                         | 0.9986   | 150.5737                                                                                                                                             |
| 0.9581                                                                                                                                                         | 1.9566   | 95.9082                                                                                                                                              |
| 0.8305                                                                                                                                                         | 2.7871   | 46.9169                                                                                                                                              |
| 0.7536                                                                                                                                                         | 3.5407   | 28.2498                                                                                                                                              |
| 1.6007                                                                                                                                                         | 5.1414   | 22.7142                                                                                                                                              |
| 2.8527                                                                                                                                                         | 7.9941   | 27.7189                                                                                                                                              |
| 0.9958                                                                                                                                                         | 8.9899   | 34.6172                                                                                                                                              |
| 4.9537                                                                                                                                                         | 13.9436  | 45.0045                                                                                                                                              |
| 4.7676                                                                                                                                                         | 18.7111  | 57.5495                                                                                                                                              |
| 9.7518                                                                                                                                                         | 28.4629  | 57.7950                                                                                                                                              |
| 9.9825                                                                                                                                                         | 38.4454  | 44.6148                                                                                                                                              |
| 9.5823                                                                                                                                                         | 48.0277  | 31.0840                                                                                                                                              |
| 8.7899                                                                                                                                                         | 56.8176  | 20.9409                                                                                                                                              |
| 14.2878                                                                                                                                                        | 71.1053  | 10.8302                                                                                                                                              |
| 5.1249                                                                                                                                                         | 76.2303  | 5.1207                                                                                                                                               |
| 3.6644                                                                                                                                                         | 79.8947  | 2.7723                                                                                                                                               |
| 2.5706                                                                                                                                                         | 82.4652  | 0.6380                                                                                                                                               |

| VE            | s 708.12 (Site U)  |               |
|---------------|--------------------|---------------|
| A-Spacing     | Observed           | Response      |
| (meters)      | (Ohm-n             | eters)        |
| 1.0           | 58.                | 0             |
| 2.0           | 02.<br>59          | 0             |
| 4.0           | 47.                | 0             |
| 5.0           | 34.                | 0             |
| 6.0           | 29.                | .5            |
| 8.0           | 28.                | .0            |
| 15.0          | 38.                | .0            |
| 20.0          | 45.                | .0            |
| 30.0          | 46.                | .0            |
| 40.0          | 41.                | .0            |
| 60.0          | 29.                | .5            |
| 70.0          | 25.                | .0            |
| 90.0          | 17.                | .5            |
| 100.0         | 14.                | .3            |
| 110.0         | 11.                | .0            |
| 140.0         | 7.                 | .4            |
| Thickno.160.0 | Denth 6.           | 1 Poststivity |
| (meters)      | (meters)           | (Ohm-meters)  |
| 0.1000        | 0 1000             | 52 9278       |
| 0.0468        | 0.1468             | 53.3055       |
| 0.0687        | 0.2154             | 52.8187       |
| 0.1008        | 0.3162             | 51.5827       |
| 0.2166        | 0.4041             | 56 5854       |
| 0.3063        | 0.9871             | 75.2109       |
| 0.9450        | 1.9320             | 95.5898       |
| 0.9678        | 2.8998             | 60.1958       |
| 0.7192        | 3.0190             | 18.8686       |
| 0.6084        | 4.7686             | 7.8711        |
| 1.8459        | 6.6136             | 14.7466       |
| 1.7084        | 8.3220             | 43.4807       |
| 0.7984        | 9.1204             | 400.4382      |
| 9.8620        | 22.6437            | 57.5034       |
| 9.6645        | 32.3082            | 34.1259       |
| 8.6417        | 40.9499            | 20.6386       |
| /.41/0        | 48.3009<br>54 6477 | 7 8062        |
| 10.1271       | 64.7748            | 4.2477        |
| 4.6044        | 69.3791            | 2.8584        |
| 4.7479        | 74.1270            | 2.5341        |
| 11.0544       | 85.1814<br>01 0763 | 2.5035        |
| 0./949        | 31.3703            | 2.3701        |

#### A-Spacing **Observed** Response (meters) (Ohm-meters) 1.0 100.0 2.0 3.0 4.0 105.0 70.0 55.5 5.0 52.2 7.0 55.0 9.0 60.0 10.0 62.0 15.0 65.0 20.0 61.0 30.0 50.5 40.0 39.0 50.0 35.0 60.0 33.0 70.0 30.0 80.0 26.8 90.0 21.5 100.0 14.1 110.0 11.0 12 120.0 9.0 8.0 130.0 140.0 7.0 150.0 6.5 Thickness Depth Resistivity (meters) (meters) (Ohm-meters) 0.1000 0.1000 99.9784 0.0468 0.1468 100.2941 0.0687 0.2154 100.1397 0.1008 0.3162 99.3877 0.1479 98.8452 0.4642 0.2171 0.6813 100.6244 0.3179 0.9992 108.6848 0.9996 1.9988 98.4155 0.8839 2.8827 45.5895 0.8060 3.6888 28.2652 0.9197 4.6084 32.5774 1.9929 57.5323 6.6013 1.7835 8.3848 92.7014 0.9107 9.2955 95.2551 4.9505 14.2460 74.5409 4.9099 19.1558 50.1152 9.2832 28.4391 33.4990 9.0400 37.4791 25.4482 46.6510 55.8226 22.8789 20.5604 9.1719 9.1716 8.9800 64.8025 17.3367 73.2930 8.4904 13.5496 7.8009 81.0938 10.1233 88.1174 7.0236 7.4266 94.4598 5.5661 6.3424 100.3341 5.8743 4.3874 5.6642 5.7754 3.6995 3.4113 105.9983

111.7737

### VES 708.13 (Site V)

| ¥LJ       | /00.14 (310 | C #/   |              |
|-----------|-------------|--------|--------------|
| A-Spacing | Obser       | ved Re | sponse       |
| (meters)  | (0          | hm-met | ers)         |
| 1.0       |             | 87.0   |              |
| 2.0       |             | 6/.0   |              |
| 3.0       |             | 15 0   |              |
| 7.0       |             | 44.0   |              |
| 9.0       |             | 45.5   |              |
| 10.0      |             | 46.0   |              |
| 15.0      |             | 52.0   |              |
| 20.0      |             | 54.0   |              |
| 40.0      |             | 51.0   |              |
| 50.0      |             | 47.5   |              |
| 60.0      |             | 43.0   |              |
| 70.0      |             | 38.0   |              |
| 80.0      | Ť           | 33.0   |              |
| 100.0     |             | 18 0   |              |
| 110.0     |             | 13.7   |              |
| 120.0     |             | 10.1   |              |
| 130.0     |             | 8.0    |              |
| 140.0     |             | 6.5    |              |
| 150.0     |             | 5.4    |              |
| Thickness | Denth       | 4.0    | Resistivity  |
| (meters)  | (meters)    |        | (Ohm-meters) |
| 0.1000    | 0.1000      |        | 86.8346      |
| 0.0468    | 0.1468      |        | 86.6376      |
| 0.0687    | 0.2154      |        | 87.0016      |
| 0.1008    | 0.3162      |        | 87.9159      |
| 0.1479    | 0.4641      |        | 88.9763      |
| 0.2171    | 0.6812      |        | 87.9022      |
| 0.3179    | 0.9991      |        | 79.8263      |
| 0.9687    | 1.9678      |        | 54.0306      |
| 0.9220    | 2.8899      |        | 35.5695      |
| 1.9211    | 4.8110      |        | 33.8209      |
| 1.998/    | 6.809/      | · ·    | 42.4801      |
| 0.0770    | 0.7666      |        | 56 9346      |
| 0.9779    | 14 6351     |        | 61.7756      |
| 4.0000    | 19 5610     |        | 62.3842      |
| 9 9975    | 29.5584     |        | 55,1757      |
| 9.8928    | 39,4512     |        | 43.6074      |
| 9.5352    | 48.9864     |        | 32.9829      |
| 8,9620    | 57.9483     |        | 23.9823      |
| 8.1291    | 66.0774     |        | 16.6839      |
| 7.0793    | 73.1514     |        | 11.0933      |
| 5.8390    | 78.9903     |        | 6.9963       |
| 4.4628    | 83.4531     |        | 4.0920       |
| 2.9858    | 86,4389     |        | 2.1008       |
| 1.3685    | 87.8074     |        | 0./410       |
| 5.0703    | 92.8777     |        | 2.1209       |
| 4.4065    | 97.2841     |        | 1.4290       |
| 3.7588    | 101.0429    |        | 0.9499       |

VES 708.14 (Site W)

| VES                                                                                                                                                                                                                                                                                                                                                                        | 708.15 (Site                                                                                                                                                                                                                                                                                                   | e X)                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VES<br>A-Spacing<br>(meters)<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>12.0<br>15.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0                                                                                                                                                                                                                              | 708.15 (Site<br>Obser<br>(O                                                                                                                                                                                                                                                                                    | x)<br>ved Res<br>hm-mete<br>49.0<br>58.3<br>59.0<br>57.5<br>55.0<br>52.0<br>49.5<br>49.0<br>52.0<br>57.0<br>52.0<br>57.0<br>57.0<br>57.0<br>51.5<br>44.0 | ponse<br>rs)                                                                                                                                                                                                                                                                                                                       |
| 50.0<br>60.0<br>70.0<br>80.0<br>100.0<br>120.0<br>140.0<br>150.0<br>Chickness<br>(meters)<br>0.1000<br>0.0468<br>0.0687<br>0.1007<br>0.1479<br>0.2171<br>0.3162<br>0.9316<br>0.9926<br>0.9829<br>0.9446<br>0.9340<br>1.9320<br>1.9996<br>1.8963<br>2.5380<br>4.1510<br>4.7080<br>4.9987<br>9.4849<br>8.0006<br>6.9571<br>6.8512<br>7.4265<br>17.0663<br>18.3162<br>15.9125 | Depth<br>(meters)<br>0.1000<br>0.1468<br>0.2154<br>0.3161<br>0.4640<br>0.6811<br>0.9973<br>1.9289<br>2.9215<br>3.9044<br>4.8491<br>5.7830<br>7.7151<br>9.7147<br>11.6110<br>14.1489<br>18.3000<br>23.0080<br>28.0067<br>37.4917<br>45.4923<br>52.4494<br>59.3005<br>66.7270<br>83.7933<br>102.1095<br>118.0220 | 44.0<br>35.0<br>28.0<br>24.5<br>19.1<br>14.9<br>11.0<br>8.5<br>R                                                                                         | esistivity<br>Ohm-meters)<br>44.8447<br>45.0095<br>45.1445<br>44.7836<br>43.8232<br>43.7465<br>51.6324<br>79.0914<br>69.7729<br>48.0036<br>36.3366<br>31.7026<br>32.9901<br>43.9235<br>62.9677<br>89.8911<br>107.2883<br>91.0222<br>68.0995<br>41.3027<br>22.0840<br>13.8553<br>11.0938<br>10.8595<br>12.3553<br>13.1384<br>8.1670 |

# VES 708.16 (Site Y)

.

| A-Spacing                                                                                                                                                    | Observed                                                                                 | d R <b>es</b> ponse                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                                                     | (Ohm-                                                                                    | -meters)                                                                                                                   |
| $ \begin{array}{c} 1.0\\ 2.0\\ 3.0\\ 4.0\\ 6.0\\ 8.0\\ 10.0\\ 15.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 80.0\\ 100.0\\ 120.0\\ 140.0\\ 160.0\\ \end{array} $ | 31<br>28<br>25<br>22<br>17<br>14<br>11<br>8<br>7<br>7<br>6<br>6<br>5<br>4<br>3<br>2<br>1 | 0.0<br>7.0<br>1.0<br>0.0<br>0.0<br>8.0<br>9.0<br>9.0<br>9.0<br>1.0<br>7.0<br>2.0<br>6.0<br>4.0<br>4.0<br>6.0<br>9.0<br>3.8 |
| Thickness                                                                                                                                                    | Depth                                                                                    | Resistivity                                                                                                                |
| (meters)                                                                                                                                                     | (meters)                                                                                 | (Ohm-meters)                                                                                                               |
| 0.1000                                                                                                                                                       | 0.1000                                                                                   | 317.0178                                                                                                                   |
| 0.0468                                                                                                                                                       | 0.1468                                                                                   | 317.2637                                                                                                                   |
| 0.0687                                                                                                                                                       | 0.2154                                                                                   | 317.1558                                                                                                                   |
| 0.1007                                                                                                                                                       | 0.3162                                                                                   | 316.5125                                                                                                                   |
| 0.1478                                                                                                                                                       | 0.4640                                                                                   | 316.2424                                                                                                                   |
| 0.2171                                                                                                                                                       | 0.6811                                                                                   | 317.8320                                                                                                                   |
| 0.3187                                                                                                                                                       | 0.9998                                                                                   | 321.7988                                                                                                                   |
| 0.9993                                                                                                                                                       | 1.9992                                                                                   | 301.1497                                                                                                                   |
| 0.9810                                                                                                                                                       | 2.9801                                                                                   | 227.8925                                                                                                                   |
| 0.9468                                                                                                                                                       | 3.9269                                                                                   | 171.1691                                                                                                                   |
| 1.8380                                                                                                                                                       | 5.7649                                                                                   | 127.8906                                                                                                                   |
| 1.7953                                                                                                                                                       | 7.5602                                                                                   | 97.4316                                                                                                                    |
| 1.7596                                                                                                                                                       | 9.3198                                                                                   | 77.9884                                                                                                                    |
| 4.3810                                                                                                                                                       | 13.7008                                                                                  | 61.5763                                                                                                                    |
| 4.6793                                                                                                                                                       | 18.3801                                                                                  | 60.9256                                                                                                                    |
| 9.9208                                                                                                                                                       | 28.3009                                                                                  | 74.7297                                                                                                                    |
| 9.9896                                                                                                                                                       | 38.2905                                                                                  | 80.4196                                                                                                                    |
| 9.9112                                                                                                                                                       | 48.2017                                                                                  | 69.3262                                                                                                                    |
| 9.6278                                                                                                                                                       | 57.8294                                                                                  | 54.8958                                                                                                                    |
| 17.8215                                                                                                                                                      | 75.6509                                                                                  | 36.7029                                                                                                                    |
| 14.9487                                                                                                                                                      | 90.5996                                                                                  | 20.2393                                                                                                                    |
| 11.4320                                                                                                                                                      | 102.0316                                                                                 | 10.2905                                                                                                                    |
| 7.5122                                                                                                                                                       | 109.5438                                                                                 | 4.5432                                                                                                                     |

### VES 708.17 (Site Z)

| A-Spacing<br>(meters)                                                                 |   | Obse<br>(                             | rved Re<br>Ohm-met                                                                                   | sponse<br>ers)                                      |   |
|---------------------------------------------------------------------------------------|---|---------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---|
| 1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>25.0<br>32.0 |   |                                       | 228.0<br>185.0<br>168.0<br>151.0<br>140.0<br>130.0<br>115.0<br>103.0<br>88.0<br>81.0<br>79.0<br>80.0 | ers)                                                |   |
| 40.0<br>50.0<br>60.0<br>90.0<br>100.0<br>110.0<br>120.0<br>130.0                      | ~ |                                       | 81.0<br>80.0<br>77.0<br>73.0<br>62.0<br>56.0<br>48.3<br>41.0<br>34.0<br>24 0                         |                                                     |   |
| Thickness<br>(meters)<br>0.1000<br>0.0468                                             |   | Depth<br>(meters)<br>0.1000<br>0.1468 |                                                                                                      | Resistivity<br>(Ohm-meters)<br>257.6411<br>258.1982 | ) |
| 0.0687<br>0.1008<br>0.1479                                                            | Ģ | 0.2154<br>0.3162<br>0.4642            |                                                                                                      | 259.9119<br>261.4077<br>258.2043                    |   |
| 0.2168<br>0.3158<br>0.9812                                                            |   | 0.6809<br>0.9967<br>1.9779            |                                                                                                      | 240.3933<br>204.6687<br>166.0285                    |   |
| 0.9910<br>0.9900<br>0.9795                                                            | - | 2.9690<br>3.9590<br>4.9384            |                                                                                                      | 159.7268<br>148.7900<br>129.9833                    |   |
| 0.9627<br>1.8727<br>1.8123                                                            |   | 5.9011<br>7.7738<br>9.5861            |                                                                                                      | 88.9935<br>69.6891<br>57.6505                       |   |
| 4.5387<br>4.8540<br>4.9884<br>6.8442                                                  |   | 14.1248<br>18.9789<br>23.9673         |                                                                                                      | 63.5136<br>82.1794                                  |   |
| 7.6993<br>9.8382                                                                      |   | 38.5108<br>48.3490<br>58.3480         |                                                                                                      | 118.9226<br>113.3883<br>94.8019                     |   |
| 9.8188<br>17.9556<br>7.4742                                                           |   | 68.1668<br>86.1224<br>93.5966         |                                                                                                      | 73.8295<br>46.6316<br>27 1404                       |   |
| 6.1879<br>4.6972<br>3.0310                                                            |   | 99.7845<br>104.4816<br>107.5126       |                                                                                                      | 17.6041<br>10.4566<br>5.2737                        |   |

.

,

| 33.00<br>22.50<br>15.00<br>13.00<br>13.50<br>13.90<br>13.60<br>12.90<br>11.50                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9.30<br>6.80<br>5.20<br>3.40<br>2.15<br>1.30                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| th       Resistivity         ers)       (0hm-meters)         2000       60.1928         2936       59.7101         4309       60.8433         6323       62.7192         9282       61.8864         3553       46.2137         8719       20.0209         2639       5.7897         0412       4.5805         0400       13.6092         8658       23.0457         9337       18.3916         0104       14.1717         9216       11.7859         6513       8.8471         3662       5.9538 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| A-Spacing                                                                                                                      | Observed                                                                                             | d Response                                                                                                   |
|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                       | (Ohm-                                                                                                | -meters)                                                                                                     |
| 1.0<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>8.0<br>10.0<br>15.0<br>20.0<br>25.0<br>40.0<br>50.0<br>60.0<br>70.0<br>90.0<br>100.0 | 149<br>100<br>60<br>43<br>34<br>34<br>34<br>34<br>44<br>44<br>33<br>35<br>24<br>31<br>31<br>31<br>31 | 5.0<br>0.0<br>0.0<br>3.0<br>5.0<br>4.0<br>5.0<br>2.0<br>8.0<br>9.0<br>8.0<br>2.0<br>6.5<br>3.0<br>8.9<br>7.5 |
| Thickness                                                                                                                      | Depth                                                                                                | Resistivity                                                                                                  |
| (meters)                                                                                                                       | (meters)                                                                                             | (Ohm-meters)                                                                                                 |
| 0.1000                                                                                                                         | 0.1000                                                                                               | 171.2144                                                                                                     |
| 0.0468                                                                                                                         | 0.1468                                                                                               | 170.4076                                                                                                     |
| 0.0687                                                                                                                         | 0.2154                                                                                               | 170.1337                                                                                                     |
| 0.1008                                                                                                                         | 0.3162                                                                                               | 171.0846                                                                                                     |
| 0.1479                                                                                                                         | 0.4641                                                                                               | 174.0718                                                                                                     |
| 0.2171                                                                                                                         | 0.6812                                                                                               | 175.2971                                                                                                     |
| 0.3185                                                                                                                         | 0.9998                                                                                               | 165.3489                                                                                                     |
| 0.9527                                                                                                                         | 1.9525                                                                                               | 96.6124                                                                                                      |
| 0.6657                                                                                                                         | 2.6182                                                                                               | 29.2956                                                                                                      |
| 0.5189                                                                                                                         | 3.1371                                                                                               | 12.8620                                                                                                      |
| 1.5568                                                                                                                         | 4.6939                                                                                               | 16.3045                                                                                                      |
| 0.9917                                                                                                                         | 5.6856                                                                                               | 29.5046                                                                                                      |
| 0.9781                                                                                                                         | 6.6637                                                                                               | 42.1890                                                                                                      |
| 1.7624                                                                                                                         | 8.4261                                                                                               | 61.1767                                                                                                      |
| 4.0908                                                                                                                         | 12.5169                                                                                              | 84.2668                                                                                                      |
| 4.6318                                                                                                                         | 17.1487                                                                                              | 76.6081                                                                                                      |
| 4.9876                                                                                                                         | 22.1363                                                                                              | 58.6642                                                                                                      |
| 14.0868                                                                                                                        | 36.2231                                                                                              | 30.8421                                                                                                      |
| 7.6579                                                                                                                         | 43.8809                                                                                              | 14.9643                                                                                                      |
| 7.0212                                                                                                                         | 50.9021                                                                                              | 10.3190                                                                                                      |
| 7.2377                                                                                                                         | 58.1397                                                                                              | 9.0068                                                                                                       |
| 16.8869                                                                                                                        | 75.0267                                                                                              | 10.1748                                                                                                      |

| A-Spacing | Observed Response |
|-----------|-------------------|
| (meters)  | (Ohm-meters)      |
| 2.0       | 37.00             |
| 2.8       | 33.00             |
| 4.1       | 25.50             |
| 6.1       | 20.80             |
| 8.1       | 20.00             |
| 12.2      | 19.10             |
| 16.3      | 19.00             |
| 20.3      | 18.50             |
| 28.5      | 18.00             |
| 40.6      | 16.30             |
| 61.0      | 11.00             |
| 81.3      | 7.20              |
| 121.9     | 3.30              |
| 103.0     | 2.17              |
| 203.2     | 1.85              |

| Thickness (meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|--------------------|-------------------|-----------------------------|
| 0.2000             | 0.2000            | 43.1517                     |
| 0.0936             | 0.2936            | 42.9478                     |
| 0.1373             | 0.4309            | 43.0667                     |
| 0.2016             | 0.6324            | 43.7025                     |
| 0.2958             | 0.9282            | 44.4718                     |
| 0.4343             | 1.3625            | 43.6591                     |
| 0.6342             | 1.9967            | 37.3312                     |
| 0.7615             | 2.7582            | 25.8208                     |
| 1.1389             | 3.8970            | 16.0459                     |
| 1.8166             | 5.7136            | 13.7821                     |
| 1.9792             | 7.6928            | 17.5732                     |
| 4.0975             | 11.7903           | 21.5099                     |
| 4.0980             | 15.8883           | 21.6765                     |
| 3.9988             | 19.8871           | 21.6927                     |
| 8.1981             | 28.0852           | 21.7519                     |
| 11.9985            | 40.083/           | 17.5222                     |
| 17.3362            | 57.4198           | 8.0921                      |
| 9.99/3             | 6/.41/1           | 2.2355                      |
| 7.4240             | /4.841/           | U.3559                      |
| 22.4/92            | 97.3209           | 0.7190                      |

.

| A-Spacing                                                                                                                                | Observed F                                                                                                                                                   | Response     |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (meters)                                                                                                                                 | (Ohm-me                                                                                                                                                      | eters)       |
| 1.0<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>9.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>70.0<br>80.0<br>100.0<br>120.0<br>140.0 | 158.0<br>160.0<br>162.0<br>159.0<br>140.0<br>131.0<br>128.0<br>110.0<br>89.0<br>80.0<br>75.0<br>75.0<br>75.0<br>79.0<br>80.5<br>80.5<br>74.0<br>63.0<br>51.0 |              |
| Thickness                                                                                                                                | Depth                                                                                                                                                        | Resistivity  |
| (meters)                                                                                                                                 | (meters)                                                                                                                                                     | (Ohm-meters) |
| 0.1000                                                                                                                                   | 0.1000                                                                                                                                                       | 156.8146     |
| 0.0468                                                                                                                                   | 0.1468                                                                                                                                                       | 157.1314     |
| 0.0687                                                                                                                                   | 0.2154                                                                                                                                                       | 157.4284     |
| 0.1008                                                                                                                                   | 0.3162                                                                                                                                                       | 157.0789     |
| 0.1479                                                                                                                                   | 0.4642                                                                                                                                                       | 155.2054     |
| 0.2171                                                                                                                                   | 0.6812                                                                                                                                                       | 151.4927     |
| 0.3186                                                                                                                                   | 0.9998                                                                                                                                                       | 149.2466     |
| 0.9981                                                                                                                                   | 1.9979                                                                                                                                                       | 167.0934     |
| 0.9971                                                                                                                                   | 2.9950                                                                                                                                                       | 175.5855     |
| 0.9993                                                                                                                                   | 3.9943                                                                                                                                                       | 157.4497     |
| 1.9896                                                                                                                                   | 5.9839                                                                                                                                                       | 138.9013     |
| 0.9873                                                                                                                                   | 6.9712                                                                                                                                                       | 123.8559     |
| 1.9433                                                                                                                                   | 8.9145                                                                                                                                                       | 105.6194     |
| 0.9448                                                                                                                                   | 9.8593                                                                                                                                                       | 87.6094      |
| 4.4496                                                                                                                                   | 14.3089                                                                                                                                                      | 61.0471      |
| 4.3255                                                                                                                                   | 18.6344                                                                                                                                                      | 44.8119      |
| 9.7901                                                                                                                                   | 28.4245                                                                                                                                                      | 59.0443      |
| 9.2879                                                                                                                                   | 37.7124                                                                                                                                                      | 114.0033     |
| 17.1848                                                                                                                                  | 54.8972                                                                                                                                                      | 160.1855     |
| 9.7089                                                                                                                                   | 64.6061                                                                                                                                                      | 130.1436     |
| 9.9974                                                                                                                                   | 74.6036                                                                                                                                                      | 101.0788     |
| 18.9685                                                                                                                                  | 93.6721                                                                                                                                                      | 64.9823      |
| 15.3075                                                                                                                                  | 108.8795                                                                                                                                                     | 32.6090      |
| 9.7331                                                                                                                                   | 118.6126                                                                                                                                                     | 13.0933      |

| A-Spacing<br>(meters)                                                                                                                                                                                                                                               | Obser<br>(C                                                                                                                                                                                                                                 | rved Response<br>Dhm-meters)                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>9.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0<br>90.0<br>100.0<br>120.0<br>120.0<br>140.0<br>160.0<br>Thickness<br>(meters)                                                                                 | Depth<br>(meters)                                                                                                                                                                                                                           | 252.0<br>281.0<br>290.0<br>285.0<br>261.0<br>250.0<br>205.0<br>152.0<br>118.0<br>91.0<br>79.0<br>65.0<br>54.0<br>48.0<br>44.0<br>34.0<br>24.5<br>23.0<br>Resistivity<br>(Ohm-meters)                                                                                    |
| 0.1000<br>0.0468<br>0.0687<br>0.1008<br>0.1479<br>0.2167<br>0.3145<br>0.9754<br>0.9754<br>0.9937<br>1.0000<br>1.9909<br>0.9794<br>1.9029<br>0.9794<br>1.9029<br>0.9144<br>4.2810<br>4.1310<br>9.1600<br>9.9209<br>19.9080<br>18.2181<br>7.5684<br>6.4552<br>10.3332 | 0.1000<br>0.1468<br>0.2154<br>0.3162<br>0.4642<br>0.6809<br>0.9954<br>1.9708<br>2.9645<br>3.9645<br>5.9555<br>6.9349<br>8.8378<br>9.7522<br>14.0332<br>18.1642<br>27.3242<br>37.2450<br>57.1531<br>75.3712<br>82.9396<br>89.3948<br>99.7281 | 225.0731<br>225.1023<br>223.6505<br>221.6756<br>223.7455<br>240.6951<br>279.0378<br>334.0156<br>326.9031<br>298.1396<br>256.6968<br>213.8634<br>172.1282<br>138.0547<br>94.7279<br>66.5680<br>68.2704<br>87.4064<br>86.3557<br>49.9316<br>28.2383<br>18.9372<br>11.1369 |

.

÷ 11

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 120.0                             |
| 3.0                   | 135.0                             |
| 4.0                   | 133.0                             |
| 6.0                   | 125.0                             |
| 7.0                   | 118.0                             |
| 9.0                   | 108.0                             |
| 10.0                  | 103.0                             |
| 15.0                  | 88.0                              |
| 20.0                  | 83.0                              |
| 30.0                  | 79.0                              |
| 40.0                  | 76.0                              |
| 60.0                  | 73.0                              |
| 80.0                  | 61.D                              |
| 100.0                 | 60.D                              |
| 120.0                 | 41.0                              |
| 150.0                 | 32.0                              |
| 200 0                 | 23.1                              |

| Thickness<br>(meters) | Depth<br>(meters) |     | Resistivity<br>(Ohm-meters) |  |
|-----------------------|-------------------|-----|-----------------------------|--|
| 0.2000                | 0.2000            |     | 93.5957                     |  |
| 0.0936                | 0.2936            |     | 92.0135                     |  |
| -0.1373               | 0.4308            |     | 90.4491                     |  |
| 0 2016                | 0 6324            |     | 91 0920                     |  |
| 0.2010                | 0.0024            |     | 100 1298                    |  |
| 0.4205                | 1 3/80            |     | 128 5317                    |  |
| 0.4205                | 1 0220            |     | 171 /207                    |  |
| 0.000                 | 2 0021            |     | 170 0220                    |  |
| 0.9492                | 2.0031            |     | 1/9.9330                    |  |
| 0.9909                | 3.0000            |     | 150.7029                    |  |
| 1.9744                | 5.8543            |     | 109.4002                    |  |
| 0.9529                | 6.80/2            | 131 | 84.1424                     |  |
| 1.8657                | 8.6729            |     | 70.5777                     |  |
| 0.9280                | 9.6009            |     | 63.4201                     |  |
| 4.7548                | 14.3556           |     | 61.2224                     |  |
| 4.9567                | 19.3123           |     | 69.9210                     |  |
| 9.9463                | 29.2586           |     | 91.7974                     |  |
| 9.8269                | 39.0855           |     | 104.6717                    |  |
| 19.9560               | 59.0415           |     | 81.4126                     |  |
| 18.4257               | 77.4672           |     | 47.0936                     |  |
| 15.8763               | 93.3435           |     | 27.1416                     |  |
| 13.9602               | 107.3037          |     | 17.3788                     |  |
| 19.9243               | 127,2280          |     | 12.5624                     |  |

| A-Spacing                                                                                                                                                 | Observe<br>(Obr | ed Response                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>9.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.9<br>100.0<br>120.0<br>140.0<br>140.0 |                 | 97.0         22.0         19.0         55.0         6.0         58.0         53.0         55.0         56.0         55.0         56.0         55.0         56.0         55.0         56.0         55.0         56.0         55.0         56.0         57.0         56.0         57.0         56.0         57.0         56.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0         57.0 <tr< td=""></tr<> |
| Thickness                                                                                                                                                 | Depth           | Resistivity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (meters)                                                                                                                                                  | (meters)        | (Ohm-meters)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.1000                                                                                                                                                    | 0.1000          | 79.5017                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.0468                                                                                                                                                    | 0.1468          | 78.6298                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.0686                                                                                                                                                    | 0.2154          | 76.9344                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.1007                                                                                                                                                    | 0.3162          | 75.6935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.1479                                                                                                                                                    | 0.4641          | 79.3015                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.2134                                                                                                                                                    | 0.6775          | 97.9902                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.2884                                                                                                                                                    | 0.9658          | 144.7034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.9038                                                                                                                                                    | 1.8696          | 186.4087                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.9988                                                                                                                                                    | 2.8684          | 125.2642                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.9315                                                                                                                                                    | 3.7999          | 74.4390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.6416                                                                                                                                                    | 5.4416          | 41.3250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.6337                                                                                                                                                    | 7.0753          | 30.5140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.8785                                                                                                                                                    | 7.9537          | 31.0243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0.9218                                                                                                                                                    | 8.8755          | 33.2366                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.9377                                                                                                                                                    | 13.8132         | 42.2352                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4.9355                                                                                                                                                    | 18.7487         | 59.9059                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.1983                                                                                                                                                    | 27.9470         | 86.0834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8.9945                                                                                                                                                    | 36.9414         | 104.4603                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9.5100                                                                                                                                                    | 46.4514         | 98.9801                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.9267                                                                                                                                                    | 56.3781         | 84.8448                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.9693                                                                                                                                                    | 66.3474         | 69.2182                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9.7528                                                                                                                                                    | 76.1002         | 55.2036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 18.1702                                                                                                                                                   | 94.2704         | 38.1184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 15.4427                                                                                                                                                   | 109.7131        | 22.2911                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 12.2611                                                                                                                                                   | 121.9742        | 12.4515                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

| A-Spacing<br>(meters                                                                                                                                                                                                                                                             | g Obser<br>) ((                                                                                                                                                                                                                                                   | rved Re<br>)hm-met                                                                                                                                    | esponse<br>ters)                                                                                                                                                                                                                                                                                                |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $ \begin{array}{c} 1.0\\ 2.0\\ 3.0\\ 4.0\\ 6.0\\ 8.0\\ 10.0\\ 15.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 70.0\\ 90.0\\ 110.0\\ 130.0\\ 150.0\\ \end{array} $                                                                                                                      |                                                                                                                                                                                                                                                                   | 109.0<br>110.0<br>115.0<br>122.0<br>138.0<br>136.0<br>128.0<br>112.0<br>101.0<br>95.0<br>91.0<br>85.0<br>78.0<br>69.0<br>52.0<br>40.0<br>30.0<br>24.0 |                                                                                                                                                                                                                                                                                                                 |
| Thickness<br>(meters)<br>0.1000<br>0.0468<br>0.0687<br>0.1008<br>0.1479<br>0.2170<br>0.3167<br>0.9912<br>0.9573<br>0.8301<br>1.8600<br>1.9895<br>1.8762<br>4.4802<br>4.8553<br>9.7656<br>9.5633<br>9.7656<br>9.5633<br>9.9813<br>9.3394<br>8.1774<br>12.7164<br>9.6459<br>9.7672 | Depth<br>(meters)<br>0.1000<br>0.1468<br>0.2154<br>0.3162<br>0.4641<br>0.6811<br>0.9978<br>1.9890<br>2.9463<br>3.7763<br>5.6363<br>7.6258<br>9.5020<br>13.9822<br>18.8375<br>28.6030<br>38.1664<br>48.1477<br>57.4871<br>65.6644<br>78.3808<br>88.0267<br>97.7939 |                                                                                                                                                       | Resistivity<br>(Ohm-meters)<br>117.9992<br>117.7416<br>118.4409<br>119.7650<br>119.7650<br>119.7501<br>113.0533<br>98.1728<br>86.8899<br>140.4963<br>225.0497<br>206.3596<br>131.8082<br>87.1711<br>62.0105<br>70.5053<br>119.9916<br>141.8083<br>101.2989<br>64.0534<br>39.9641<br>20.1641<br>9.8836<br>7.5657 |

| A-Spacing                                                                                                                                                                                                                                                                            | Observed Ro                                                                                                                                                                                                                                             | esponse                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                                                                                                                                                                             | (Ohm-me                                                                                                                                                                                                                                                 | ters)                                                                                                                                                                                                                                                            |
| 10.0<br>15.0<br>20.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0<br>120.0<br>130.0<br>140.0<br>150.0<br>160.0                                                                                                                                  | 60.0<br>70.0<br>76.0<br>78.0<br>80.0<br>99.0<br>99.0<br>102.0<br>102.5<br>102.0<br>101.0<br>99.0<br>95.0<br>91.0<br>86.0<br>83.0<br>76.0                                                                                                                |                                                                                                                                                                                                                                                                  |
| Thickness                                                                                                                                                                                                                                                                            | Depth                                                                                                                                                                                                                                                   | Resistivity                                                                                                                                                                                                                                                      |
| (meters)                                                                                                                                                                                                                                                                             | (meters)                                                                                                                                                                                                                                                | (Ohm-meters)                                                                                                                                                                                                                                                     |
| 1.0000<br>0.4678<br>0.6865<br>1.0076<br>1.4773<br>2.0835<br>2.8037<br>4.6992<br>4.9801<br>4.9964<br>4.9482<br>9.2913<br>8.1577<br>7.9013<br>8.1577<br>7.9013<br>8.5109<br>9.3079<br>9.3079<br>9.8623<br>9.9852<br>9.7463<br>9.9852<br>9.7463<br>9.1862<br>8.3299<br>7.3045<br>5.9666 | 1.0000<br>1.4678<br>2.1543<br>3.1618<br>4.6391<br>6.7226<br>9.5263<br>14.2255<br>19.2056<br>24.2020<br>29.1502<br>38.4415<br>46.5992<br>54.5004<br>63.0114<br>72.3193<br>82.1816<br>92.1668<br>101.9131<br>111.0993<br>119.4292<br>126.7337<br>132.7002 | 44.9447<br>44.7153<br>43.6622<br>43.1390<br>46.9374<br>63.7109<br>92.9245<br>92.7740<br>76.7129<br>74.0588<br>83.8776<br>114.7313<br>169.3890<br>201.4009<br>194.4830<br>169.7879<br>141.4303<br>113.5040<br>88.6063<br>67.2031<br>49.1999<br>34.8818<br>23.0278 |

4 -

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 113.0                             |
| 3.0                   | 80.0                              |
| 4.0                   | 68.0                              |
| 6.0                   | 64.0                              |
| 8.0                   | 70.0                              |
| 10.0                  | 74.0                              |
| 15.0                  | 73.0                              |
| 20.0                  | 68.0                              |
| 30.0                  | 59.0                              |
| 40.0                  | 50.0                              |
| 60.0                  | 35.0                              |
| 80.0                  | 24.0                              |
| 100.0                 | 16.0                              |
| 120.0                 | 11.0                              |
| 150.0                 | 7.1                               |
| 200 0                 | 5 9                               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.1800                | 0.1800            | 170.0957                    |
| 0.0842                | 0.2642            | 168.0353                    |
| 0.1236                | 0.3878            | 171.3010                    |
| 0.1813                | 0.5690            | 178.6608                    |
| 0.2659                | 0.8350            | 183.7491                    |
| 0.3898                | 1.2248            | 159.8389                    |
| 0.5335                | 1.7583            | 93.9184                     |
| 0.6473                | 2.4056            | 37.6215                     |
| 0.6763                | 3.0819            | 28.4107                     |
| 1.7920                | 4.8739            | 58.8756                     |
| 1.5628                | 6.4366            | 119.1788                    |
| 1.6473                | 8.0840            | 118.8228                    |
| 4.4953                | 12.5792           | 85.5512                     |
| 4.4154                | 16.9946           | 61.8143                     |
| 8.7456                | 25.7401           | 52.6149                     |
| 8.8104                | 34.5505           | 49.6039                     |
| 17.1217               | 51.6722           | 37.6676                     |
| 13.7326               | 65.4048           | 17.0725                     |
| 6.9724                | 72.3772           | 4.5250                      |
| 9.1179                | 81.4951           | 3.2184                      |
| 12 8296               | 94 3248           | 1.7958                      |

| A-Spacing                                                                                                        | Observed                                                                                           | Response                                                                                                 |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                         | (Ohm-                                                                                              | meters)                                                                                                  |
| 1.0 $2.0$ $4.0$ $5.0$ $6.0$ $8.0$ $10.0$ $15.0$ $20.0$ $30.0$ $40.0$ $50.0$ $70.0$ $80.0$ $90.0$ $100.0$ $120.0$ | 150<br>97<br>59<br>53<br>53<br>55<br>58<br>61<br>60<br>55<br>49<br>44<br>30<br>25<br>18<br>11<br>7 | .0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.5<br>.5<br>.5<br>.0<br>.0<br>.5<br>.5<br>.8 |
| Thickness                                                                                                        | Depth                                                                                              | Resistivity                                                                                              |
| (meters)                                                                                                         | (meters)                                                                                           | (Ohm-meters)                                                                                             |
| 1.1000                                                                                                           | 0.1000                                                                                             | 185.4692                                                                                                 |
| 0.0467                                                                                                           | 0.1467                                                                                             | 184.8750                                                                                                 |
| 0.0687                                                                                                           | 0.2154                                                                                             | 186.2272                                                                                                 |
| 0.1008                                                                                                           | 0.3162                                                                                             | 189.1707                                                                                                 |
| 0.1479                                                                                                           | 0.4641                                                                                             | 191.7084                                                                                                 |
| 0.2171                                                                                                           | 0.6812                                                                                             | 184.5141                                                                                                 |
| 0.3163                                                                                                           | 0.9974                                                                                             | 154.2718                                                                                                 |
| 0.8998                                                                                                           | 1.8972                                                                                             | 75.9313                                                                                                  |
| 1.5891                                                                                                           | 3.4864                                                                                             | 32.8205                                                                                                  |
| 0.9748                                                                                                           | 4.4612                                                                                             | 43.9273                                                                                                  |
| 1.0000                                                                                                           | 5.4612                                                                                             | 56.9363                                                                                                  |
| 1.9727                                                                                                           | 7.4339                                                                                             | 68.7557                                                                                                  |
| 1.9665                                                                                                           | 9.4003                                                                                             | 73.1301                                                                                                  |
| 4.9752                                                                                                           | 14.3755                                                                                            | 70.0553                                                                                                  |
| 4.9996                                                                                                           | 19.3751                                                                                            | 63.5341                                                                                                  |
| 9.9503                                                                                                           | 29.3254                                                                                            | 54.9773                                                                                                  |
| 9.7724                                                                                                           | 39.0978                                                                                            | 44.4342                                                                                                  |
| 9.3587                                                                                                           | 48.4565                                                                                            | 33.3945                                                                                                  |
| 16.1617                                                                                                          | 64.6181                                                                                            | 18.3367                                                                                                  |
| 5.8342                                                                                                           | 70.4523                                                                                            | 8.2913                                                                                                   |
| 3.8429                                                                                                           | 74.2952                                                                                            | 3.9122                                                                                                   |
| 1.4377                                                                                                           | 75.7329                                                                                            | 1.0409                                                                                                   |

•

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 59.0                              |
| 3.0                   | 57.0                              |
| 5.0                   | 59.0                              |
| 7.0                   | 65.0                              |
| 10.0                  | 74.0                              |
| 15.0                  | 76.0                              |
| 20.0                  | 72.0                              |
| 30.0                  | 59.5                              |
| 40.0                  | 48.0                              |
| 60.0                  | 38.0                              |
| 80.0                  | 15.0                              |
| 100.0                 | 8.0                               |
| 120.0                 | 4.6                               |
| 150.0                 | 3.1                               |
| 200.0 *               | 2.9                               |

| Thickness<br>(meters) |     | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-----|-------------------|-----------------------------|
| 0.2000                |     | 0.2000            | 58,9929                     |
| 0.0935                |     | 0.2935            | 58.9117                     |
| 0.1373                |     | 0.4309            | 59.0150                     |
| 0.2016                |     | 0.6324            | 59.2337                     |
| 0.2959                |     | 0.9283            | 59.3579                     |
| 0.4343                |     | 1.3625            | 58.7240                     |
| 0.6371                |     | 1.9997            | 56.6873                     |
| 0.9993                | 1   | 2,9990            | 55.4364                     |
| 1.9936                | 2   | 4.9926            | 63.5207                     |
| 1.9323                |     | 6,9249            | 81.5155                     |
| 2.8728                |     | 9,7976            | 92.7092                     |
| 4,9639                |     | 14.7615           | 83.7156                     |
| 4.9635                |     | 19.7251           | 63.4330                     |
| 9.4575                |     | 29,1826           | 42.6922                     |
| 8.8461                |     | 38.0287           | 28.6615                     |
| 16.0339               | - 1 | 54.0625           | 17.1122                     |
| 12.3151               |     | 66.3776           | 7.4665                      |
| 6.2319                |     | 72.6095           | 2.0694                      |
| 9.9834                |     | 82.5929           | 1.8413                      |
| 13.4149               |     | 96.0079           | 0.9496                      |

| A-Spacing                                                                                                                   | Observed Re                                                                                                                | sponse       |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------|
| (meters)                                                                                                                    | (Ohm-met                                                                                                                   | ers)         |
| 2.0<br>3.0<br>4.0<br>6.0<br>8.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>60.0<br>80.0<br>100.0<br>120.0<br>150.0<br>200.0 | 128.0<br>87.0<br>73.0<br>61.0<br>60.0<br>71.0<br>64.5<br>65.5<br>62.0<br>53.0<br>37.0<br>28.0<br>15.0<br>9.5<br>6.0<br>5.3 |              |
| Thickness                                                                                                                   | Depth                                                                                                                      | Resistivity  |
| (meters)                                                                                                                    | (meters)                                                                                                                   | (Ohm-meters) |
| 0.2000                                                                                                                      | 0.2000                                                                                                                     | 175.9088     |
| 0.0936                                                                                                                      | 0.2936                                                                                                                     | 174.6126     |
| 0.3171                                                                                                                      | 0.4307                                                                                                                     | 174.6369     |
| 0.2016                                                                                                                      | 0.6323                                                                                                                     | 177.2325     |
| 0.2957                                                                                                                      | 0.9280                                                                                                                     | 183.4288     |
| 0.4342                                                                                                                      | 1.3621                                                                                                                     | 173.5641     |
| 0.6080                                                                                                                      | 1.9701                                                                                                                     | 109.8585     |
| 0.7541                                                                                                                      | 2.7242                                                                                                                     | 44.9679      |
| 0.6967                                                                                                                      | 3.4208                                                                                                                     | 27.0802      |
| 1.9006                                                                                                                      | 5.3215                                                                                                                     | 43.2753      |
| 1.8691                                                                                                                      | 7.1905                                                                                                                     | 92.2875      |
| 1.8013                                                                                                                      | 8.9918                                                                                                                     | 111.8624     |
| 4.9597                                                                                                                      | 13.9515                                                                                                                    | 85.9159      |
| 4.9702                                                                                                                      | 18.9218                                                                                                                    | 65.8622      |
| 9.8983                                                                                                                      | 28.8200                                                                                                                    | 59.3745      |
| 9.7746                                                                                                                      | 38.5946                                                                                                                    | 50.2280      |
| 18.6037                                                                                                                     | 57.1983                                                                                                                    | 34.7022      |
| 16.8181                                                                                                                     | 74.0164                                                                                                                    | 21.1678      |
| 13.9764                                                                                                                     | 87.9928                                                                                                                    | 11.5914      |
| 9.6865                                                                                                                      | 97.6792<br>105.1090                                                                                                        | 5.1361       |

# VES 76A.04 (Site N5)

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 71.0                              |
| 3.0                   | 40.0                              |
| 4.0                   | 41.0                              |
| 6.0                   | 53.0                              |
| 8.0                   | 61.0                              |
| 10.0                  | 65.0                              |
| 15.0                  | 70.0                              |
| 20.0                  | 72.0                              |
| 30.0                  | 70.0                              |
| 40.0                  | 65.0                              |
| 60.0                  | 52.0                              |
| 80.0                  | 38.0                              |
| 100.0                 | 26.0                              |
| 120.0                 | 15.5                              |
| 150.0                 | 9.5                               |
| 200.0                 | 6.0                               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 149.7298                    |
| 0.0936                | 0.2936            | 150,6960                    |
| 0.1373                | 0.4308            | 155.0175                    |
| 0.2014                | 0.6323            | 158.0977                    |
| 0.2952                | 0.9275            | 140.4302                    |
| 0.4032                | 1.3306            | 81.5313                     |
| 0.4034                | 1.7340            | 25.9776                     |
| 0.5519                | 2,2859            | 12.3958                     |
| 0.9791                | 3,2649            | 31.1004                     |
| 1.5296                | 4.7946            | 96.7436                     |
| 1.6464                | 6.4410            | 105.2628                    |
| 1.8950                | 8.3360            | 86.2630                     |
| 4.9519                | 13.2879           | 75.9542                     |
| 4.9821                | 18.2700           | 74.7393                     |
| 9,9491                | 28.2191           | 78.6057                     |
| 9,9996                | 38.2187           | 73.1262                     |
| 19.0160               | 57.2346           | 44.1649                     |
| 13.7156               | 70.9503           | 16.0679                     |
| 6.6546                | 77.6048           | 4.1512                      |
| 1.6559                | 79.2607           | 0.6072                      |
| 2.7636                | 82.0243           | 0.4316                      |
| A-Spacing                                                                                                                                         | Obser    | ved Re                                                                                                                              | esponse      |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------------|--------------|
| (meters)                                                                                                                                          | (0       | hm-met                                                                                                                              | cers)        |
| 1.0<br>2.0<br>4.0<br>6.0<br>8.0<br>9.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>120.0<br>140.0 |          | 97.5<br>74.0<br>52.0<br>48.0<br>50.0<br>51.7<br>58.0<br>61.0<br>60.0<br>56.0<br>49.0<br>43.0<br>30.0<br>25.0<br>20.5<br>13.0<br>6.0 |              |
| Thickness                                                                                                                                         | Depth    |                                                                                                                                     | Resistivity  |
| (meters)                                                                                                                                          | (meters) |                                                                                                                                     | (Ohm-meters) |
| 0.1000                                                                                                                                            | 0.1000   |                                                                                                                                     | 96.2913      |
| 0.0467                                                                                                                                            | 0.1467   |                                                                                                                                     | 95.7792      |
| 0.0686                                                                                                                                            | 0.2153   |                                                                                                                                     | 95.7540      |
| 0.1008                                                                                                                                            | 0.3161   |                                                                                                                                     | 96.6070      |
| 0.1479                                                                                                                                            | 0.4640   |                                                                                                                                     | 98.6958      |
| 0.2170                                                                                                                                            | 0.6810   |                                                                                                                                     | 101.6465     |
| 0.3187                                                                                                                                            | 0.9996   |                                                                                                                                     | 100.3488     |
| 0.9874                                                                                                                                            | 1.9870   |                                                                                                                                     | 74.2519      |
| 1.7761                                                                                                                                            | 3.7631   |                                                                                                                                     | 35.1134      |
| 1.9298                                                                                                                                            | 5.6929   |                                                                                                                                     | 35.6071      |
| 1.9670                                                                                                                                            | 7.6599   |                                                                                                                                     | 57.8126      |
| 0.9323                                                                                                                                            | 8.6922   |                                                                                                                                     | 73.6264      |
| 0.9206                                                                                                                                            | 9.5129   |                                                                                                                                     | 79.3968      |
| 4.7150                                                                                                                                            | 14.2278  |                                                                                                                                     | 81.6859      |
| 4.9077                                                                                                                                            | 19.1355  |                                                                                                                                     | 76.7950      |
| 9.9837                                                                                                                                            | 29.1192  |                                                                                                                                     | 69.6284      |
| 9.9462                                                                                                                                            | 39.0654  |                                                                                                                                     | 58.2537      |
| 9.6661                                                                                                                                            | 48.7315  |                                                                                                                                     | 44.3150      |
| 8.9864                                                                                                                                            | 57.7178  |                                                                                                                                     | 30.7899      |
| 7.8530                                                                                                                                            | 65.5709  |                                                                                                                                     | 19.7056      |
| 6.3132                                                                                                                                            | 71.8841  |                                                                                                                                     | 11.5012      |
| 4.4258                                                                                                                                            | 76.3099  |                                                                                                                                     | 5.8265       |
| 2.2364                                                                                                                                            | 78.5463  |                                                                                                                                     | 2.1192       |
| 8.9006                                                                                                                                            | 87.4469  |                                                                                                                                     | 2.5165       |

-

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 119.0                             |
| 3.0                   | 83.0                              |
| 4.0                   | 59.0                              |
| 6.0                   | 51.0                              |
| 7.0                   | 50.5                              |
| 9.0                   | 51.0                              |
| 15.0                  | 56.0                              |
| 20.0                  | 58.0                              |
| 25.0                  | 58.5                              |
| 30.0                  | 58.0                              |
| 40.0                  | 53.0                              |
| 60.0                  | 39.0                              |
| 80.0                  | 25.5                              |
| 100.0                 | 16.0                              |
| 120.0                 | 10.3                              |
| 150.0                 | 6.0                               |
| 200.0                 | 4.8                               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 185.4665                    |
| 0.0936                | 0.2936            | 183.6452                    |
| 0.1373                | 0.4309            | 184.9036                    |
| 0.2015                | 0.6324            | 189.0233                    |
| 0.2957                | 0,9281            | 193.3239                    |
| 0.4321                | 1.3602            | 164.8946                    |
| 0.5712                | 1,9315            | 86,4610                     |
| 0.6484                | 2.6798            | 30.9702                     |
| 0.7388                | 3,3187            | 26,1124                     |
| 1,9711                | 5,2897            | 48.3090                     |
| 0.9978                | 6.2875            | 61.8716                     |
| 1,9991                | 8,2866            | 56.0757                     |
| 5,9986                | 14,2853           | 55.9992                     |
| 4.8045                | 19.0898           | 79.0817                     |
| 4.6327                | 23.7224           | 95.8979                     |
| 4.7847                | 28,5071           | 93.1245                     |
| 9,9957                | 38,5027           | 68.2762                     |
| 16,1307               | 54,6334           | 24.5714                     |
| 2.8963                | 57.5317           | 1.6370                      |
| 5.0618                | 62,5935           | 1,1040                      |
| 1.0848                | 63.6782           | 0.1019                      |
| 5.8620                | 69.5402           | 0.1964                      |

| A-Spacing                                                                                                                                                    | Observ   | ed Response                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                                                     | (Oh      | m-meters)                                                                                                                                   |
| $ \begin{array}{c} 1.0\\ 2.0\\ 3.0\\ 4.0\\ 6.0\\ 8.0\\ 10.0\\ 20.0\\ 30.0\\ 40.0\\ 50.0\\ 60.0\\ 70.0\\ 90.0\\ 110.0\\ 130.0\\ 150.0\\ 160.0\\ \end{array} $ | ÷        | 50.0<br>65.0<br>69.0<br>74.0<br>84.0<br>90.0<br>93.0<br>95.0<br>82.0<br>71.0<br>60.0<br>50.0<br>37.8<br>28.0<br>21.0<br>15.0<br>10.0<br>7.9 |
| Thickness                                                                                                                                                    | Depth    | Resistivity                                                                                                                                 |
| (meters)                                                                                                                                                     | (meters) | (Ohm-meters)                                                                                                                                |
| 0.1000                                                                                                                                                       | 0.1000   | 44.1335                                                                                                                                     |
| 0.0468                                                                                                                                                       | 0.1468   | 44.3904                                                                                                                                     |
| 0.0687                                                                                                                                                       | 0.2154   | 44.3908                                                                                                                                     |
| 0.1008                                                                                                                                                       | 0.3162   | 43.8205                                                                                                                                     |
| 0.1479                                                                                                                                                       | 0.4641   | 42.8650                                                                                                                                     |
| 0.2171                                                                                                                                                       | 0.6813   | 43.8023                                                                                                                                     |
| 0.3139                                                                                                                                                       | 0.9951   | 54.0574                                                                                                                                     |
| 0.9174                                                                                                                                                       | 1.9126   | 83.9849                                                                                                                                     |
| 0.9739                                                                                                                                                       | 2.8865   | 82.0638                                                                                                                                     |
| 0.9884                                                                                                                                                       | 3.8749   | 81.0409                                                                                                                                     |
| 1.9277                                                                                                                                                       | 5.8026   | 98.9866                                                                                                                                     |
| 1.8613                                                                                                                                                       | 7.6639   | 122.8671                                                                                                                                    |
| 1.8850                                                                                                                                                       | 9.5489   | 129.4746                                                                                                                                    |
| 9.9695                                                                                                                                                       | 19.5184  | 105.8091                                                                                                                                    |
| 9.7225                                                                                                                                                       | 29.2409  | 69.0883                                                                                                                                     |
| 9.2041                                                                                                                                                       | 38.4450  | 47.8739                                                                                                                                     |
| 8.7479                                                                                                                                                       | 47.1929  | 35.3395                                                                                                                                     |
| 8.4717                                                                                                                                                       | 55.6646  | 28.0841                                                                                                                                     |
| 8.3723                                                                                                                                                       | 64.0369  | 23.8664                                                                                                                                     |
| 16.7031                                                                                                                                                      | 80.7400  | 20.0646                                                                                                                                     |
| 16.5195                                                                                                                                                      | 97.2595  | 16.2249                                                                                                                                     |
| 15.1945                                                                                                                                                      | 112.4540 | 11.5522                                                                                                                                     |
| 11.2266                                                                                                                                                      | 123.6806 | 5.8755                                                                                                                                      |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 13.20                             |
| 2.8                   | 16.90                             |
| 4.1                   | 20.10                             |
| 5.1                   | 23.50                             |
| 8.1                   | 25.80                             |
| 12.2                  | 27.00                             |
| 16.3                  | 25.00                             |
| 20.3                  | 23.00                             |
| 28.5                  | 19.50                             |
| 40.6                  | 15.20                             |
| 61.0                  | 11.00                             |
| 81.3                  | 6.40                              |
| 121.9                 | 2.25                              |
| 162.6                 | 1.38                              |
| 203.2                 | 1.03                              |

| Thickness<br>(meters) |   | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|---|-------------------|-----------------------------|
| 0.2000                |   | 0.2000            | 8.9049                      |
| 0.0936                |   | 0.2936            | 9.0212                      |
| 0.1373                |   | 0.4309            | 8.8681                      |
| 0.2015                |   | 0.6323            | 8.5265                      |
| 0.2958                |   | 0.9282            | 8.6604                      |
| 0.4229                |   | 1.3511            | 11.5719                     |
| 0.5192                |   | 1.8703            | 20.9404                     |
| 0.5346                |   | 2.4049            | 35.7143                     |
| 0.9076                | 1 | 3.3124            | 43.8316                     |
| 1.6491                |   | 4.9615            | 43.3953                     |
| 1.8901                |   | 6.8516            | 37.3325                     |
| 4.0985                |   | 10.9502           | 26.7984                     |
| 3.9354                |   | 14.8856           | 17.9830                     |
| 3.7422                |   | 18.6277           | 14.5951                     |
| 7.9270                |   | 26.5547           | 14.8880                     |
| 12.0634               |   | 38.6181           | 17.7303                     |
| 19.2913               |   | 57.9094           | 11.2041                     |
| 10.0824               |   | 67.9917           | 2.4438                      |
| 14.4643               |   | 82.4560           | 0.5053                      |
| 15.2926               |   | 97.7486           | 0.2158                      |

| A-Spacing                                                                                                                                                                                                                                                                                 | Observed                                                                                                                                                                                                                                                                             | d Response                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)<br>1.0<br>2.0<br>3.0<br>4.0<br>5.0<br>6.0<br>7.0<br>8.0<br>9.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>70.0<br>80.0<br>90.0<br>100.0<br>110.0<br>120.0<br>130.0<br>140.0<br>150.0<br>160.0                                                                    | (Ohm-                                                                                                                                                                                                                                                                                | -meters)<br>B3.0<br>72.0<br>57.0<br>51.0<br>49.0<br>50.0<br>53.0<br>55.0<br>57.0<br>59.0<br>65.0<br>70.0<br>71.0<br>63.0<br>71.0<br>63.0<br>73.0<br>47.5<br>43.0<br>38.0<br>26.5<br>19.8<br>14.5<br>11.5<br>9.5<br>8.0<br>7.8<br>6.0                                                                          |
| Thickness<br>(meters)<br>0.1000<br>0.0468<br>0.0687<br>0.1008<br>0.1479<br>0.2171<br>0.3185<br>0.9849<br>0.9454<br>0.9572<br>0.9906<br>0.9994<br>0.9994<br>0.9994<br>0.9597<br>0.9450<br>0.9394<br>4.7605<br>4.9139<br>9.9990<br>9.7581<br>9.2196<br>8.4832<br>7.6177<br>6.6545<br>5.6278 | Depth<br>(meters)<br>0.1000<br>0.1468<br>0.2154<br>0.3162<br>0.4641<br>0.6812<br>0.9998<br>1.9846<br>2.9300<br>3.8873<br>4.8779<br>5.8773<br>6.8594<br>7.8191<br>8.7641<br>9.7035<br>14.4640<br>19.3779<br>29.3769<br>39.1350<br>48.3545<br>56.8377<br>64.4554<br>71.1099<br>76.7377 | Resistivity<br>(Ohm-meters)<br>82.8932<br>82.7180<br>82.9253<br>83.5392<br>84.5209<br>84.5164<br>80.0761<br>60.2561<br>41.3433<br>37.8129<br>42.8702<br>52.0014<br>61.9572<br>70.6621<br>77.2311<br>81.5983<br>85.3364<br>81.6348<br>68.1208<br>49.7728<br>35.3238<br>24.6536<br>16.9398<br>11.4046<br>7.4886 |

2.10

### VES N711.01 (Site N1)

### VES N711.01 (Site N1) (continued)

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 4.5473                | 81.2850           | 4.7269                      |
| 3.4326                | 84.7176           | 2.8044                      |
| 2.2862                | 87.0038           | 1.4757                      |
| 1.0590                | 88.0629           | 0.5426                      |
| 5.1017                | 93.1646           | 2.0818                      |
| 4.5805                | 97.7451           | 1.4925                      |

ł

-

| A-Spacing | Observed Response |
|-----------|-------------------|
| (meters)  | (Ohm-meters)      |
| 2.0       | 17.50             |
| 2.8       | 16.90             |
| 4.1       | 14.00             |
| 6.1       | 13.60             |
| 8.1       | 13.90             |
| 12.2      | 15.50             |
| 16.3      | 16.90             |
| 20.3      | 17.30             |
| 28.5      | 16.20             |
| 40.6      | 13.20             |
| 61.0      | 9.20              |
| 81.3      | 5.70              |
| 121.9     | 2.30              |
| 162.6     | 1 25              |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.0936                | 0.2936            | 17.8831                     |
| 0.1373                | 0.4309            | 17.8231                     |
| 0.2016                | 0.6324            | 18.0621                     |
| 0.2957                | 0.9281            | 18.7879                     |
| 0.4328                | 1.3609            | 20.1325                     |
| 0.6370                | 1.9979            | 19.6485                     |
| 0.7883                | 2.7862            | 14.7155                     |
| 1.2052                | 3.9915            | 9.6043                      |
| 1.9169                | 5.9084            | 9.1771                      |
| 1.9710                | 7.8794            | 15.0763                     |
| 3.4298                | 11.3091           | 27.2181                     |
| 3.6386                | 14.9477           | 28.7877                     |
| 3.9282                | 18.8759           | 23.0223                     |
| 8.1468                | 27.0227           | 16.3119                     |
| 11.2918               | 38.3145           | 10.3759                     |
| 16.7676               | 55.0820           | 5.6604                      |
| 13.2701               | 68.3521           | 2.6254                      |
| 17.0942               | 85.4463           | 0.8352                      |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 21.60                             |
| 2.8                   | 19.90                             |
| 4.1                   | 16.60                             |
| 6.1                   | 13.50                             |
| 8.1                   | 12.80                             |
| 12.2                  | 12.60                             |
| 16.3                  | 13.00                             |
| 20.3                  | 13.10                             |
| 28.5                  | 12.50                             |
| 40.6                  | 10.30                             |
| 61.0                  | 6.60                              |
| 81.3                  | 3.80                              |
| 121.9                 | 1.70                              |
| 162.6                 | 1.22                              |
| 203-2                 | 1.05                              |

| Thickness<br>(meters) | Bepth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 23.4363                     |
| 0.0934                | 0.2934            | 23.3209                     |
| 0.1373                | 0.4308            | 23.2713                     |
| 0.2016                | 0.6323            | 23.3687                     |
| 0.2958                | 0.9282            | 23.8217                     |
| 0.4341                | 1.3622            | 24.3280                     |
| 0.6374                | 1.9996            | 23.4888                     |
| 0.7901                | 2.7897            | 18.6388                     |
| 1.1863                | 3.9760            | 11.2812                     |
| 1.7251                | 5.7011            | 7.4563                      |
| 1.9395                | 7.6406            | 9,1436                      |
| 4.0011                | 11.6417           | 15.7318                     |
| 3.8102                | 15.4519           | 20.4780                     |
| 3.8765                | 19.3284           | 19.3337                     |
| 8.1916                | 27.5200           | 15.3632                     |
| 11.4418               | 38.9618           | 9.1922                      |
| 14.1057               | 53.0675           | 3.2518                      |
| 6.5892                | 59.6567           | 0./094                      |
| 10.60/6               | /0.2643           | 0.2821                      |
| 32.4225               | 102.6868          | 0.8084                      |

. .

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 2.0                   | 17.7                              |
| 2.8                   | 17.6                              |
| 4.1                   | 15.5                              |
| 6.1                   | 13.8                              |
| 8.1                   | 13.5                              |
| 12.2                  | 13.1                              |
| 16.3                  | 13.4                              |
| 20.3                  | 14.0                              |
| 28.5                  | 13.8                              |
| 40.6                  | 12.0                              |
| 61.0                  | 8.0                               |
| 81.3                  | 4.0                               |
| 121.9                 | 1.6                               |
| 162.6                 | 1.0                               |
| 203.2                 | 1.0                               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.2000                | 0.2000            | 15.3508                     |
| 0.0936                | 0.2936            | 15.2440                     |
| 0.1373                | 0.4309            | 15.0426                     |
| 0.2016                | 0.6324            | 15.0748                     |
| 0.2949                | 0.9273            | 16.7292                     |
| 0.4212                | 1.3486            | 21.1241                     |
| 0.6239                | 1.9725            | 22,1103                     |
| 0.7984                | 2.7708            | 17.1359                     |
| 1.2675                | 4.0383            | 12.8414                     |
| 1.9135                | 5,9518            | 10.2117                     |
| 1.9222                | 7.8740            | 9.1589                      |
| 4.0965                | 11.9705           | 11.7907                     |
| 3.7048                | 15.6753           | 20.6685                     |
| 3.2956                | 18.9709           | 28.1306                     |
| 7.6644                | 26.6353           | 24.2976                     |
| 11.7830               | 38.4183           | 12.4662                     |
| 11.5071               | 49.9253           | 2.7232                      |
| 8.4763                | 58.4016           | 0.6902                      |
| 25.4281               | 83.8297           | 0.2479                      |
| 22.8215               | 106.6512          | 0.1284                      |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |  |
|-----------------------|-----------------------------------|--|
| 1.0                   | 139.00                            |  |
| 2.0                   | 114.0                             |  |
| 4.0                   | 51.0                              |  |
| 6.0                   | 42.0                              |  |
| 7.0                   | 41.8                              |  |
| 9.0                   | 42.0                              |  |
| 10.0                  | 43.0                              |  |
| 15.0                  | 49.0                              |  |
| 20.0                  | 54.0                              |  |
| 30.0                  | 51.0                              |  |
| 40.0                  | 38.0                              |  |
| 60.0                  | 28.9                              |  |
| 80.0                  | 21.0                              |  |
| 90.0                  | 17.0                              |  |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.1000                | 0.1000            | 150.1252                    |
| 0.0468                | 0.1468            | 149.9708                    |
| 0.0687                | 0.2154            | 149.2615                    |
| 0.1008                | 0.3162            | 148.4310                    |
| 0.1479                | 0.4641            | 149.6005                    |
| 0.2170                | 0.6812            | 154.5998                    |
| 0.3182                | 0.9994            | 162.0919                    |
| 0.9947                | 1.9940            | 128.0556                    |
| 1.3944                | 3.3885            | 29.2798                     |
| 1.5032                | 4.8917            | 19.1106                     |
| 0.9891                | 5.8808            | 34.8074                     |
| 1.9263                | 7.8071            | 56.5955                     |
| 0.8850                | 8.6921            | 75.2945                     |
| 4.4419                | 13.1340           | 84.7875                     |
| 4.7898                | 17.9238           | 78.8617                     |
| 9.9829                | 27.9067           | 56.4257                     |
| 9.3229                | 37.2296           | 33.9372                     |
| 16.5796               | 53.8092           | 19.2910                     |
| 14.9518               | 68.7609           | 11.4581                     |
| 6.4512                | 75.2121           | 7.1528                      |

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters)<br>83 O |
|-----------------------|-------------------------------------------|
| 2.0                   | 71.0                                      |
| 4.0                   | 47.0                                      |
| 5.0                   | 43.5                                      |
| 6.0                   | 43.0                                      |
| 8.0                   | 46.0                                      |
| 13.0                  | 60.0                                      |
| 20.0                  | 70.0                                      |
| 25.0                  | 74.0                                      |
| 30.0                  | 73.0                                      |
| 40.0                  | 52.0                                      |
| 50.0                  | 44.0                                      |
| 60.0                  | 38.0                                      |
| 80.0                  | 25.5                                      |
| 110.0                 | 14.0                                      |
| 130.0                 | 8.0                                       |
|                       |                                           |
| <b>T</b> 1. 1 1       | D 11 D 1 1                                |

| Thickness | Depth    | Resistivity  |
|-----------|----------|--------------|
| (meters)  | (meters) | (Ohm-meters) |
| 0.1000    | 0.1000   | 91.7255      |
| 0.0467    | 0.1467   | 91.3939      |
| 0.0687    | 0.2154   | 90.8561      |
| 0.1008    | 0.3162   | 90.5293      |
| 0.1479    | 0.4641   | 92.0273      |
| 0.2169    | 0.6810   | 96.8437      |
| 0.3176    | 0.9986   | 103.1136     |
| 0.9871    | 1.9856   | 71.8308      |
| 1.4867    | 3.4724   | 20.0693      |
| 0.9110    | 4.3834   | 21.7559      |
| 0.9983    | 5.3817   | 38.0493      |
| 1.5311    | 6.9128   | 85.5239      |
| 2.7207    | 9.6335   | 184.4950     |
| 6.2051    | 15.8385  | 120.4799     |
| 4.9960    | 20.8345  | 83.5123      |
| 4.9055    | 25.7400  | 61.2894      |
| 9.1117    | 34.8517  | 40.2636      |
| 8.1405    | 42.9922  | 25.3302      |
| 7.5037    | 50.4959  | 17.7842      |
| 13.8850   | 64.3809  | 11.8737      |
| 6.5342    | 70.9150  | 8.5037       |
| 11.7327   | 82.6478  | 5.8301       |

## VES S711.09 (Site S4)

| A-Spacing<br>(meters)                                                                                                                                                                                                                      | Observed Re<br>(Ohm-met                                                                                                                                                                                                           | sponse<br>ers)                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.0<br>2.0<br>3.0<br>5.0<br>7.0<br>10.0<br>15.0<br>20.0<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>100.0<br>120.0                                                                                                                          | 95.0<br>78.0<br>56.0<br>46.0<br>47.0<br>51.8<br>56.0<br>56.0<br>51.0<br>35.0<br>29.5<br>21.0<br>14.5<br>8.7<br>6.3<br>4.9                                                                                                         |                                                                                                                                                                                                                                                                         |
| Thickness<br>(meters)<br>0.1000<br>0.0468<br>0.0687<br>0.1008<br>0.1479<br>0.2171<br>0.3186<br>0.9777<br>0.7832<br>1.7710<br>1.9382<br>2.6039<br>4.7324<br>4.9851<br>9.7918<br>8.8192<br>7.9584<br>7.5698<br>15.1005<br>15.8511<br>16 1754 | Depth<br>(meters)<br>0.1000<br>0.1468<br>0.2154<br>0.3162<br>0.4641<br>0.6812<br>0.9998<br>1.9775<br>2.7607<br>4.5318<br>6.4699<br>9.0738<br>13.8062<br>18.7913<br>28.5831<br>37.4023<br>45.3607<br>52.9305<br>68.0309<br>83.8821 | Resistivity<br>(Ohm-meters)<br>105.2839<br>105.1786<br>104.7413<br>104.4778<br>105.7462<br>108.5037<br>109.7893<br>73.1437<br>28.7343<br>26.3197<br>57.4084<br>88.0639<br>83.2231<br>69.0727<br>46.8671<br>27.2431<br>17.5996<br>13.1189<br>10.2464<br>8.7805<br>7 6067 |

.

| A-Spacing                                                                                                                                        | 0bser    | ved Response                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| (meters)                                                                                                                                         | (0       | hm-meters)                                                                                                                                          |
| 1.0<br>1.5<br>2.0<br>3.0<br>4.0<br>6.0<br>7.0<br>9.0<br>15.0<br>25.0<br>30.0<br>40.0<br>50.0<br>60.0<br>80.0<br>100.0<br>120.0<br>140.0<br>160.0 |          | 106.0<br>110.0<br>99.0<br>74.0<br>53.0<br>42.0<br>41.0<br>42.0<br>49.0<br>55.9<br>56.0<br>53.0<br>46.0<br>37.0<br>21.0<br>15.0<br>9.5<br>6.0<br>4.0 |
| Thickness                                                                                                                                        | Depth    | Resistivity                                                                                                                                         |
| (meters)                                                                                                                                         | (meters) | (Ohm-meters)                                                                                                                                        |
| 0.1000                                                                                                                                           | 0.1000   | 103.5679                                                                                                                                            |
| 0.0468                                                                                                                                           | 0.1468   | 102.8813                                                                                                                                            |
| 0.0687                                                                                                                                           | 0.2154   | 101.3808                                                                                                                                            |
| 0.1008                                                                                                                                           | 0.3162   | 100.7567                                                                                                                                            |
| 0.1479                                                                                                                                           | 0.4641   | 105.0362                                                                                                                                            |
| 0.2150                                                                                                                                           | 0.6791   | 121.9136                                                                                                                                            |
| 0.3080                                                                                                                                           | 0.9872   | 149.1803                                                                                                                                            |
| 0.4956                                                                                                                                           | 1.4828   | 141.1103                                                                                                                                            |
| 0.4875                                                                                                                                           | 1.9703   | 90.8111                                                                                                                                             |
| 0.7953                                                                                                                                           | 2.7655   | 39.2804                                                                                                                                             |
| 0.6071                                                                                                                                           | 3.3727   | 16.9605                                                                                                                                             |
| 1.5819                                                                                                                                           | 4.9546   | 18.2189                                                                                                                                             |
| 0.9928                                                                                                                                           | 5.9474   | 32.4849                                                                                                                                             |
| 1.8943                                                                                                                                           | 7.8417   | 53.4490                                                                                                                                             |
| 5.0963                                                                                                                                           | 12.9380  | 83.4451                                                                                                                                             |
| 9.3398                                                                                                                                           | 22.2778  | 84.2156                                                                                                                                             |
| 4.9776                                                                                                                                           | 27.2554  | 69.6781                                                                                                                                             |
| 9.8778                                                                                                                                           | 37.1333  | 50.6893                                                                                                                                             |
| 9.0643                                                                                                                                           | 46.1976  | 31.6226                                                                                                                                             |
| 7.8564                                                                                                                                           | 54.0540  | 19.3069                                                                                                                                             |
| 11.8296                                                                                                                                          | 65.8835  | 8.9596                                                                                                                                              |
| 6.9328                                                                                                                                           | 72.8163  | 2.9891                                                                                                                                              |
| 2.6756                                                                                                                                           | 75.4919  | 0.6956                                                                                                                                              |
| 9.8046                                                                                                                                           | 85.2966  | 1.6072                                                                                                                                              |

....

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 1.0                   | 97.0                              |
| 1.5                   | 109.0                             |
| 3.0                   | 80.0                              |
| 6.0                   | 42.0                              |
| 8.0                   | 34.0                              |
| 10.0                  | 30.0                              |
| 15.0                  | 25.1                              |
| 20.0                  | 23.0                              |
| 30.0                  | 19.5                              |
| 40.0                  | 16.0                              |
| 60.0                  | 9.9                               |
| 80.0                  | 6.1                               |
| 100.0                 | 4.5                               |
| 140.0                 | 3.7                               |

| Thickness | Depth    | Resistivitv  |
|-----------|----------|--------------|
| (meters)  | (meters) | (Ohm-meters) |
|           |          | 74.0000      |
| 0.1000    | 0.1000   | 74.8808      |
| 0.0468    | 0.1468   | 73.7493      |
| 0.0686    | 0.2154   | 71.7271      |
| 0.1008    | 0.3162   | 71.2697      |
| 0 1475    | 0 4637   | 79.5349      |
| 0 2057    | 0 6694   | 111 6637     |
| 0.2037    | 0.0034   | 160 2326     |
| 0.2723    | 0.9417   | 106.2320     |
| 0.4642    | 1.4059   | 166.3046     |
| 1.4337    | 2.8397   | 69.6273      |
| 2.2807    | 5.1204   | 23.2614      |
| 1.8536    | 6.9740   | 25.5303      |
| 1,9259    | 8,8998   | 26.5297      |
| 4 8329    | 13 7328  | 24.0806      |
| 4 9332    | 18 6659  | 24 6821      |
| 0.0124    | 29 5702  | 24 0274      |
| 9.9134    | 20.0793  |              |
| 9.1889    | 37.7682  | 14.8/1/      |
| 12.1883   | 49.9565  | 4.5895       |
| 6.2358    | 56.1924  | 1.1290       |
| 10.3692   | 66.5616  | 1.4022       |

### VES S711.12 (Site S1)

| A-Spacing<br>(meters) | Observed Response<br>(Ohm-meters) |
|-----------------------|-----------------------------------|
| 1.0                   | 59.0                              |
| 2.0                   | 54.0                              |
| 3.0                   | 44.0                              |
| 5.0                   | 40.0                              |
| 7.0                   | 43.0                              |
| 9.0                   | 45.8                              |
| 12.0                  | 46.1                              |
| 20.0                  | 43.9                              |
| 30.0                  | 39.0                              |
| 40.0                  | 35.0                              |
| 50.0                  | 27.0                              |
| 60.0                  | 18.1                              |
| 80.0                  | 12.3                              |
| 100.0                 | 7.4                               |
| 120.0                 | 4.2                               |

| Thickness<br>(meters) | Depth<br>(meters) | Resistivity<br>(Ohm-meters) |
|-----------------------|-------------------|-----------------------------|
| 0.1000                | 0.1000            | 62.1236                     |
| 0.0467                | 0.1467            | 61.8882                     |
| 0.0687                | 0.2154            | 61.7725                     |
| 0.1007                | 0.3161            | 61.8419                     |
| 0.1479                | 0.4640            | 62.8630                     |
| 0.2170                | 0.6811            | 64.6584                     |
| 0.3185                | 0.9996            | 65.5105                     |
| 0.9907                | 1.9903            | 49.7710                     |
| 0.9173                | 2.9075            | 29.0658                     |
| 1.9564                | 4.8639            | 31.6059                     |
| 1.9190                | 6.7829            | 54.5002                     |
| 1.8732                | 8.6561            | 64.4010                     |
| 2.9505                | 11.6066           | 57.4817                     |
| 7.9812                | 19.5878           | 44.5172                     |
| 9.8838                | 29.4716           | 37.1257                     |
| 9.6591                | 39.1306           | 29.4821                     |
| 9.0831                | 48.2137           | 20.7853                     |
| 8.0662                | 56.2799           | 13.3829                     |
| 11.5522               | 67.8321           | 5.6880                      |
| 2.2648                | 70.0970           | 0.5411                      |

Appendix B: Fifty-two vertical electric sounding curves plotted as resistivity (ohm-meters) versus depth (meters).





# ves: Indiantown 01 SITE A



.....



# ves: 726.13S SITE B





# ves: 726.14S SITE C



| P  |     |     |                                        |     |     |
|----|-----|-----|----------------------------------------|-----|-----|
| 90 | 110 | 130 | 150                                    | 170 | 190 |
| +  | ĩ   |     | ······································ | -   |     |
| +  |     |     |                                        |     |     |

## ves: Indiantown 03 SITE E





# ves: 726.11S SITE F



| 110 | 130 | 150 | 170 | 190 |
|-----|-----|-----|-----|-----|
|     |     |     |     | 1   |

# ves: 76.06 SITE G





# ves: 76.N1 SITE H

162





# ves: 76.N5 SITE I







-



# ves: 76.N10 SITE K



Ť


## ves: 708.01 SITE L

166



C



### ves: 708.02 SITE N

















ves: 708.10 SITE S



| 90       | 110 | 130 | 150 | 170 |
|----------|-----|-----|-----|-----|
| <b>a</b> |     |     |     |     |
| ρ        |     |     |     |     |
| •        |     |     |     |     |

.

### ves: 708.11 SITE T





# ves: 708.12 SITE U





### ves: 708.13 SITE V





# Ves: 708.14 SITE W





### Ves: 708.15 SITE X





### Ves: 708.16 SITE Y

178



....





### ves: 708.17 SITE Z









#### ves: 714.01 SITE YY



ŧ





÷ .

.









ves: 714.18 SITE TT


110 130 150 170

# ves: 714.15 SITE SS









ves: 714.21 SITE PP





ves: 714.24 SITE JJ



Ť



. .



### ves: 76A.09 SITE N8





# ves: 76A.08 SITE N7



÷

t

.



# ves: 76A.05 SITE N6





ł



#### ves: N711.10 SITE N4

¥...





#### ves: N711.10S SITE N4







.









# ves: N711.01 SITE N1

198







| 90 | 110                                                                                                            | 130                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 150 | 170 |
|----|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|
|    | the second s | Statement of the local division in the local |     |     |

# ves: S711.I1 SITE S2





#### es: 5711.10 SITE S3

1

201



4.1



### ves: S711.09 SITE S4





### ves: S711.08 SITE S5

i



÷

ŝ






.



# ves: S711.05 SITE S7











# ves: S711.01 SITE S9

207

Appendix C: Lithologic data from some water wells in Martin County, Florida. Wells with M-0000 numbers are from Miller (1980). Wells with WW00-00000 and MF-00 numbers are from South Florida Water Management District (unpublished). Wells with GS-00 or L-000 numbers are from Lichtler (1960). Wells with G&J letters are from Gee and Jenson (unpublished).

+

Lithologic Log of Well FPL - Core No. 1

| Depth Below | Land Surface | Geologic Description                                                                                                                                                            |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                                                 |
| 0-7         | 0-2.1        | <pre>Sand, fine- to medium-grained, gray,   plant material</pre>                                                                                                                |
| 7-10        | 2.1-3.0      | Poorly sorted quartz sand, coarse to<br>fine, gray to brown, clay and<br>organic material                                                                                       |
| 10-14.5     | 3.0-4.4      | Sand, brown to gray-brown, very fine-<br>to fine-grained, clay and organic<br>material                                                                                          |
| 14.5-15.5   | 4.4-4.7      | No sample                                                                                                                                                                       |
| 15.5-32.0   | 4.7-9.8      | <pre>Samd, light orange to yellowish-<br/>brown, very fine- to medium-grained,<br/>occasional clay stringer and<br/>organics, some pin point vugs at<br/>base of interval</pre> |
| 32-40       | 9.8-12.2     | Limestone, light brown to medium gray,<br>moldic porosity, shell ( <u>Chione</u> ),<br>sparry calcite cement, high<br>recrystallization                                         |
| 40-42       | 12.2-12.8    | Limestone, grayish brown, moldic<br>porosity and pin point vugs, 35%<br>quartz sand, sparry calcite cement                                                                      |
| 42-52       | 12.8-15.8    | Sand, light gray, fine-to medium-<br>grained, poorly indurated, some<br>fossil molds, some clay and silt                                                                        |
| 52-58       | 15.8-17.7    | Shell bed, olive gray, some porosity, silt and gray, poorly indurated                                                                                                           |
| 58-60       | 17.7-18.3    | <pre>Sand, light gray, very fine- to  medium-grained, mollusk fragments,  clay and silt</pre>                                                                                   |
| 60-66       | 18.3-20.1    | Shell bed, light gray, poorly indurated,<br>fine-grained quartz sand. Shell con-<br>tent increases near bottom of inter-<br>val, shell very broken                              |
| 66-73       | 20.1-22.3    | No sample                                                                                                                                                                       |

----

Lithologic Log of Well FPL - Core No. 1 continued

| Depth Below Land Surface |                    | Geologic Description                                                                                                                                                                                                                    |
|--------------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>               | <u>M</u> .         |                                                                                                                                                                                                                                         |
| 73-79                    | 22.3-24.1          | <pre>Sand, light gray, fine- to medium-<br/>grained, unconsolidated, slightly<br/>phophatic, fossil fragments and<br/>mollusk shells</pre>                                                                                              |
| 79-83                    | 24.1-25.3          | No sample                                                                                                                                                                                                                               |
| 83-120                   | 25.3 <b>-36</b> .6 | Shell bed (shell hash), light olive<br>gray, unconsolidated, slightly<br>phosphatic, 30% quartz sand, fossil<br>fragments, mollusks, clay increases<br>with depth                                                                       |
| 120-123                  | 36.6-37.5          | No samples                                                                                                                                                                                                                              |
| 123-132                  | 37.5-40.2          | Clay, light olive, poorly indurated,<br>some shell and shell fragments,<br>calcareous sand, lenses of lime-<br>stone, soft                                                                                                              |
| 132-134                  | 40.2-40.8          | White to yellowish gray marl, some<br>large fragments, poorly indurated,<br>quartz sand, clay, coarse-grained                                                                                                                           |
| 134-135                  | 40.8-41.1          | Shell bed, light olive gray, poorly indurated, quartz sand, clay                                                                                                                                                                        |
| 135-139                  | 41.1-42.4          | Limestone and marl, yellowish gray,<br>poorly indurated, sparry calcite<br>cement, 20% quartz sand, mollusk<br>fragments. Some thin limestone<br>lenses may be well indurated                                                           |
| 139-162                  | 42.4-49.4          | Limestone and marl, yellowish gray,<br>some moldic porosity, pin point<br>vugs, moderate induration, sparry<br>calcite cement, clay, quartz sand,<br>shell fragments. Degree of indura-<br>tion highly variable over short<br>distances |
| 162-167                  | 49.4-50.9          | No sample                                                                                                                                                                                                                               |
| 167+                     | 50.9+              | Sand, silt, and clay, olive-green to<br>olive-gray, scattered shell, some<br>dolomite and phosphate                                                                                                                                     |

| Depth Below | Land Surface | Geologic Description                               |
|-------------|--------------|----------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                    |
| 0-5         | 0-1.5        | Sand, white-gray                                   |
| 10          | 3.0          | Sand, coarse-grained, white                        |
| 20          | 6.1          | As above and 10% gray clay                         |
| 30          | 9.1          | Sand, gray-white and 20% hard shell                |
| 50          | 15.2         | Shell, fine and 30% brown-gray sand                |
| 80          | 24.4         | Shell, 20% sandstone and some gray sand            |
| 90          | 27.4         | As above and 40% sandstone                         |
| 100         | 30.5         | Shell, fine sandstone and gray sand                |
| 110         | 33.5         | Sand, gray, 40% shell, and 10% gray-<br>white clay |
| 140         | 42.7         | Sand, fine, gray and fine shell                    |
| 180         | 54.9         | Clay, sandy, light-green                           |
| 240         | 72.2         | Sand, clayey, light-green                          |

211

| Depth Below | Land Surface | Geologic Description                                   |
|-------------|--------------|--------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                        |
| 0-5         | 0-1.5        | Sand, gray, fine-to-medium grained                     |
| 10          | 3.0          | Sand, gray-white                                       |
| 20          | 6.1          | Sand, coarse-grained, gray                             |
| 30          | 9.1          | Sand, gray-brown, and some fine shell                  |
| 40          | 12.2         | Shell and some sandstone and gray sand                 |
| 60          | 18.3         | Shell, sandstone and gray-white sand                   |
| 70          | 21.3         | Sandstone, 20% shell, and some coarse gray sand        |
| 100         | 30.5         | Shell, sandstone, limestone, and 20% gray sand         |
| 120         | 36.6         | Shell, fine-grained sandstone and 30% coarse gray sand |
| 130         | 39.6         | Shell and gray sand                                    |
| 140         | 42.7         | Shell, fine and fine-grained, brown-<br>gray sand      |
| 160         | 48.8         | Sand, gray-green, and some shell                       |
| 170         | 51.8         | Clay, sandy, green and some sand                       |
| 200         | 61.0         | Clay, green                                            |

| Depth Below I   | Land Surface | Geologic Description                           |
|-----------------|--------------|------------------------------------------------|
| <u>Ft.</u>      | <u>M</u> -   |                                                |
| 0-5             | 0-1.5        | Sand, fine-grained, white                      |
| 10              | 3.0          | Sand, fine-medium grained, white-<br>gray sand |
| 20              | 6.1          | Sand, yellow-tan                               |
| 30              | 9.1          | Sand, light tan                                |
| 40              | 12.2         | Sandstone, cemented, beige and some shell      |
| 50              | 15.2         | Sandstone, cemented, beige                     |
| 60              | 18.3         | Samdstane, smaller                             |
| 70              | 21.3         | Limestone, soft, dark gray                     |
| 80              | 24.4         | Sand, tan and shell                            |
| 90              | 27.4         | Sandstone, fine-coarse, white and 20% shell    |
| 100             | 30.5         | As above but darker                            |
| 110             | 33.5         | Shell and 20% sand                             |
| 120             | 36.6         | Shell, 30% limestone, and some sand            |
| 160             | 48.8         | Shell, sand, sandstone and limestone           |
| 170             | 51.8         | Shell, hard, marl, 40% sand, gray              |
| 180             | 54.9         | Sandstone, 40% gray clay                       |
| 190             | 57.9         | Sand, gray and 30% gray shell                  |
| 200             | 61.0         | Shell, some sandstone and gray clay            |
| 220             | 67.1         | Shell, sand, fine, and gray clay               |
| 230             | 70.1         | Sand, gray, some shell and gray clay           |
| <b>230-</b> 240 | 70.1-72.2    | Clay, sandy, gray                              |
| 270             | 82.3         | Sand, coarse, gray and gray clay -             |
| 340             | 103.7        | Sand, clayey, light green                      |

| Depth Below | Land Surface | Geologic Description                            |
|-------------|--------------|-------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                 |
| 0-5         | 0-1.5        | Sand, fine-medium grained, gray                 |
| .10         | 3.0          | Sand, gray, shell, and some marl                |
| 20          | 6.1          | Sand, gray, shell, and some sandstone           |
| 30          | 9.1          | Sandstone, hard, gray-white                     |
| 40          | 12.2         | Shell and some gray sandstone                   |
| 60          | 18.3         | Limestone, dark gray, sandstone, and some shell |
| 70          | 21.3         | Limestone, dark gray, sandstone, and sand       |
| 80          | 24.4         | As above with shell                             |
| 90          | 27.4         | Shell, fine-to medium-grained                   |
| 100         | 30.5         | Shell, sand, limestone and sandstone            |
| 110         | 33.5         | Limestone, coarse and white-gray sand           |
| 120         | 36.6         | Sand, white-gray and limestone                  |
| _130        | 39.6         | Limestone, coarse, and white-gray sand          |
| 140         | 42.7         | As above with more sand                         |
| 150         | 45.7         | Sand, gray, and some sandstone                  |
| 160         | 48.8         | Sandstone and 20% shell                         |
| 170         | 51.8         | Sand, gray, shell, and some light-<br>gray clay |
| 190         | 57.9         | Clay, sandy, gray                               |
| 210         | 63.5         | Clay, gray-green                                |

| Depth Below | Land Surface | Geologic Description                           |
|-------------|--------------|------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                |
| 0-5         | 0-1.5        | Sand, fine- to medium-grained, gray            |
| 10          | 3.0          | Marl, dark brown and sand                      |
| 20          | 6.1          | Sand, dark brown                               |
| 30          | 9.1          | Shell, 50% fine, and brown sand                |
| 40          | 12.2         | Shell 80%, and brown sand                      |
| 50          | 15.2         | Mostly shell and some white sand               |
| 70          | 21.3         | Sandstome, hard, gray and some shell           |
| 90          | 27.4         | Limestome, coarse, gray and sandstone          |
| 110         | 33.5         | Limestone, gray, sandstone, and 40% gray clay  |
| 120         | 36.6         | Limestone, gray-white, sandstone and some sand |
| 130         | 39.6         | As above with some light green clay            |
| 140         | 42.7         | Sand, light green, and some clay               |
| 150         | 45.7         | As above with sandstone                        |
| 180         | 54.9         | Clay, green and little sand                    |

| Depth Below | Land Surface | Geologic Description                                                          |
|-------------|--------------|-------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   | ~                                                                             |
| 0-5         | 0-1.5        | Sand, fine-medium, gray                                                       |
| 10          | 3.0          | Marl, dark drown and gray, and some sand                                      |
| 20          | 6.1          | Sand, coarse, gray, and some sandstone                                        |
| 30          | 9.1          | Sand, dark brown-black                                                        |
| 50          | 15.2         | Shell 70%, and medium-grained sand, gray                                      |
| 60          | 18.3         | As above with smaller shell                                                   |
| 70          | . 21.3       | She <b>ll 50%, an</b> d medium-grained sand,<br>gray                          |
| 90          | 27.4         | Sand, gray, shell and some limestone                                          |
| 100         | 30.5         | Limestone, hard, gray-white, compress-<br>ed shell and 20% gray-brown sand    |
| 110         | 33.5         | Limestone, sandstone and 30% medium-<br>fine grained brown sand               |
| 120         | 36.6         | Limestone, gray, and 20% brown sand                                           |
| 130         | 39.6         | Shell, small, sandstone, and 30% brown sand                                   |
| 150         | 45.7         | As above with some limestone                                                  |
| 160         | 48.8         | As above with 50% brown sand                                                  |
| 170         | 51.8         | Limestone, sandstone, 40% fine-<br>grained brown sand, 10% gray-green<br>clay |
| 180         | 54.9         | Sandstone and some light green clay                                           |
| 190         | 57.9         | Sandstone, some light green clay and some shell                               |
| 220         | 67.1         | Clay, dark green                                                              |

| Depth Below | Land Surface | Geologic Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0-5         | 0-1.5        | Very fine-grained, quartz, sand,<br>white to gray, plant and root<br>material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5-20        | 1.5-6.1      | Very fine-grained sand, brown, high amounts of clay, plant materials                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20-30       | 6.1-9.1      | Shell fragments, 60-70%, fine-<br>grained, quartz sand, some clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 30-50       | 9.1-15.2     | Shell and shell fragments ( <u>Domax</u> ,<br><u>Tellina</u> , and <u>Chione</u> ), fine-grained<br>sand, quartz and carbonate silt,<br>some clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50-70       | 15.2-21.3    | <pre>Description: Description: Description:</pre> |
| 70-80       | 21.3-24.4    | Marl and shell fragments, 10-15% fine-<br>grained sand, high % of fine-<br>grained material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 80-90       | 24.4-27.4    | Quartz and carbonate silt with medium-<br>grained shell fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 90-100      | 27.4-30.5    | Marl and coarse shell fragments, quartz and carbonate silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 100-130     | 30.5-39.6    | Shell fragments, some large, with silt<br>and clay (marl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 130-150     | 39.6-45.7    | Shell and shell fragments, medium-<br>grained carbonate sand, fine-<br>grained quartz sand, clay, increase<br>in fines near bottom of interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 150-170     | 45.7-51.8    | Shell fragments and silt and clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 170-200     | 51.8-61.0    | Olive green to gray silt and clay<br>with shell fragments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| Depth Below | Land Surface | Geologic Description                                                    |
|-------------|--------------|-------------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                                         |
| 0-5         | 0-1.5        | White-tan quartz sand                                                   |
| 5-10        | 1.5-3.0      | White-orange fine sand, white clay                                      |
| 10-20       | 3.0-6.1      | Sand, brown-white, small shells (Donax, Tellina, and Chione)            |
| 20-60       | 6.1-18.3     | Shell, large-small with coarse-fine sand                                |
| 60-90       | 18.3-27.4    | Large-small shell, sandstone, 20-30% gray sand, some silt               |
| 90-110      | 27.4-33.5    | Fine sand, sandstone, shell, 10% silt and clay                          |
| 110-120     | 33.5-36.6    | Coarse sand and shell, some silt                                        |
| 120-130     | 36.6-39.6    | Fine sand and silt, 50% shell, coarse to small                          |
| 130-150     | 39.6-45.7    | Marl and fine sand with shell, white-<br>gray                           |
| 150-180     | 45.7-54.9    | Very fine sand and gray-green to<br>dark green silt and clay with shell |

| Depth Below | Land Surface | Geologic Description                                 |
|-------------|--------------|------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                      |
| 0-5         | 0-1.5        | Sand, gray-brown                                     |
| 10          | 3.0          | Sand, fine-medium, brown, and dark<br>brown marl     |
| 20          | 6.1          | Sand, rust brown, and 20% dark brown clay            |
| 30          | 9.1          | Sand, dark brown, and 20% dark brown<br>clay         |
| 40          | 12.2         | Clay, dark brown, and 50% fine,<br>light brown sand  |
| 50±         | 15.2±        | Sand, light brown, and 10% dark brown<br>clay        |
| 60          | 18.3         | Sand, light brown, and 50% light brown clay          |
| 70          | 21.3         | Shell, fine, brown clay, and 30%<br>light brown sand |
| 80          | 24.4         | Sand, light brown, shell, 20% gray<br>clay           |
| 120         | 36.8         | Shell and 30% fine-grained, brown sand               |
| 130         | 39.6         | Sand, gray, shell and 10% white clay                 |
| 140         | 42.7         | Shell, and 20% brown sand                            |
| 150         | 45.7         | Shell, and 30% brown sand                            |
| 170         | 51.8         | Sand, gray and light green clay                      |
| 200         | 61.0         | Clay, dark green                                     |

| Depth Below | Land Surface | Geologic Description                                                    |
|-------------|--------------|-------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                         |
| 0-5         | 0-1.5        | Sand, fine- to medium-grained, gray,<br>1 to 2 feet, gray-green clay    |
| 10          | 3.0          | Shell, small, fine-grained, brown and 10% gray-green clay               |
| 20          | 6.1          | Coquina, and small shell                                                |
| 30          | 9.1          | Sand, 40% fine-grained, gray, smooth and sandstone and shell            |
| 40          | 12.2         | Sand, 50% fine-grained, gray-white,<br>wery smooth, sandstone and shell |
| 50          | 15.2         | Clagy, 502% grany, 10% shell                                            |
| 60          | 18.3         | Clay, 5% gray, 50% shell                                                |
| 70          | 21.3         | Sand, 60% clayey, gray, and shell                                       |
| 80          | 24.4         | Sand, 30% clayey, gray, and shell                                       |
| 100         | 30.0         | Sand, 30% clayey, gray, and shell                                       |
| 110         | 33.5         | Sand, fine, shell and 30% clayey sand                                   |
| 120         | 36.8         | As above and some sandstone                                             |
| 130         | 39.6         | Sand, 40% clayey, gray, and small shell                                 |
| 140         | 42.7         | Sand, 30% fine, gray, 20% clay and gray-green small shell               |
| 150         | 45.7         | Sand, gray, shell, and 20% green clay                                   |
| 180         | 54.9         | Clay, dark green and 5% shell                                           |

| Depth Below Land Surface |            | Land Surface | Geologic Description                                                                           |
|--------------------------|------------|--------------|------------------------------------------------------------------------------------------------|
|                          | <u>Ft.</u> | <u>M</u> .   |                                                                                                |
|                          | 0-5        | 0-1.5        | Fine-grained, gray quartz sand, plant<br>matter                                                |
|                          | 5-10       | 1.5-3.0      | Sand, 80% fine-grained, 20% brown clay                                                         |
|                          | 10-20      | 3.0-6.1      | Clay, 60%, dark brown, medium- to<br>fine-grained brown sand                                   |
|                          | 20-30      | 6.1-9.1      | Fine-grained sand with small shell and shell fragments ( <u>Chione</u> ), some clay            |
|                          | 30-50      | 9.1-15.2     | Sand, coarse- to fine-grained with small shell and shell hash, silt and clary                  |
|                          | 50-70      | 15.2-21.3    | Fine, quartz sand with shell and clay                                                          |
|                          | 70-90      | 21.3-27.4    | Fine-grained sand with gray-g <b>ree</b> n silt<br>and clay. Some shell and s <b>hell</b> hash |
|                          | 90-100     | 27.4-30.5    | Silt and clay, gray to greenish-gray,<br>limestone bits, ( <u>Chione</u> )                     |
|                          | 100-110    | 30.5-33.5    | Shell with fine quartz and silt and clay                                                       |
|                          | 110-140    | 33.5-42.7    | Fine quartz sand and silt, gray to olive gray, small shell and some carbonate silt             |
|                          | 140-170    | 42.7-51.8    | Silt, gray-green, fine quartz sand,<br>some shell, increase in carbonate<br>silt and clay      |
|                          | 170-200    | 51.8-61.0    | Dark olive green silt and clay with                                                            |

| Depth Below | Land Surface | Geologic Description                                              |
|-------------|--------------|-------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                   |
| 0-5         | 0-1.5        | Sand, fine- to medium-grained, white-<br>gray                     |
| 10          | 3.0          | Sand, medium- to coarse-grained, dark brown                       |
| 20          | 6.1          | Sand, light tan                                                   |
| 30          | 9.1          | Sand, dark tan                                                    |
| 40          | 12.2         | Sand, fine-grained, gray-brown                                    |
| 50          | 15.2         | Limestone, gray                                                   |
| 60          | 18.3         | As above, finer                                                   |
| 70          | 21.3         | As above and 10% coarse, gray sand                                |
| 80          | 24.4         | Sand, 40% brown-gray, and shells                                  |
| 90          | 27.4         | Sand, 40% clayey, brown-gray and shells                           |
| 100         | 30.5         | Sand, 30% clayey, brown-gray and shell                            |
| 110         | 33.5         | Sand, 40% gray-brown, some shell,<br>gray limestone and sandstone |
| 120         | 36.8         | Sand, 30% gray-brown, shell, lime-<br>stone and sandstone         |
| 140         | 42.7         | Sand, 40% gray-brown, shell, lime-<br>stone and sandstone         |
| 160         | 48.8         | Sand, 60% gray-brown, shell, lime-<br>stone and sandstone         |
| 180         | 54.9         | Sand, 50%, gray-brown, and shell                                  |
| 220         | 67.1         | Clay, 90% dark green and fine-grained sand                        |

| Depth Below | Land Surface | Geologic Description                                                    |
|-------------|--------------|-------------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                                         |
| 0-8         | 0-2.4        | Sand, fine-grained, white                                               |
| 12          | 3.7          | Sand, fine- to coarse-grained                                           |
| 52          | 15.8         | Sand, fine- to coarse-grained, tan-<br>yellow                           |
| 61          | 18.6         | Sand, shell, and clay                                                   |
| 66          | 20.1         | Sandstone, fine-grained, tan                                            |
| 68          | 20.7         | Sand, fine-grained, white-tan                                           |
| 76          | 23.2         | Sandstone or Trimestone and shells                                      |
| 85          | 25.9         | Limestone and shells, dark gray                                         |
| 100         | 30.5         | Rock, large, dark gray limerock and large shell fragments               |
| 110         | 33.5         | Limerock, calcite cement, gray, shell fragments and hard dark gray rock |
| 120         | 36.6         | Limestone, fine-grained, cemented together, and shell fragments         |
| 138         | 42.1         | Limestone, fine-grained, gray and shell fragments                       |
| 170         | 51.8         | Limestone, fine-grained, gray and shell fragments                       |
| 210         | 64.0         | Limestone, fine-grained, gray                                           |
| 220         | 67.1         | Clay, sandy, green and shell fragments                                  |

| Depth Below | Land Surface | Geologic Description                                                                  |
|-------------|--------------|---------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                       |
| 0-4         | 0-1.2        | Sand, fine- to medium-grained, white                                                  |
| 25          | 7.6          | Sand, fine- to medium-grained, yellow-<br>tan                                         |
| 30          | 13.6         | Sand, very coarse-grained, tan, some calcite cement                                   |
| 50          | 15.2         | Sandstone, medium- to very coarse-<br>grained, tan, calcite cement                    |
| 60          | 18.3         | Sandstone with calcite cement, medium-<br>to wery coarse-grained, tan                 |
| 65          | : 1938       | Sandstone with calcite cement, fine- to medium-grained, tanish orange                 |
| 84          | 25 <b>.5</b> | Sandstone with calcite cement, medium-<br>to coarse-grained, orange-tan               |
| 95          | 29.0         | Sand, fine-grained, gray and shell                                                    |
| 100         | 30.5         | Shells and fine-grained sand, tan-dark gray, with calcite cement                      |
| 110         | 33.5         | Shell fragments, coquina, and rock bits, dark gray                                    |
| 117         | 35.7         | Rock, coarse to large, dark gray and shell fragments                                  |
| 120         | 36.8         | Rock, coarse to large, dark gray and shell fragments                                  |
| 125         | 38.1         | Rock, very coarse to large, dark gray,<br>shell fragments, and light tan<br>sandstone |
| 130         | 39.6         | Sandstone with calcite cement, fine-<br>grained, tan rock and shell                   |
| 140         | 42.7         | Sandstone with calcite cement, fine-<br>grained, dark gray, rock bits and shell       |

Lithologic Log of Well M-1044 continued.

+ 11

4

| Depth Below | Land Surface | Geologic Description                       |
|-------------|--------------|--------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                            |
| 150         | 45.7         | Limestone and tan to grayish-tan sandstone |
| 160         | 48.8         | Limestone, tan to dark green and shell     |
| 170         | 51.8         | Limestone, gray and shell                  |
| 185         | 56.4         | Clay, light gray, shell and sandstone      |
| 200         | 61.0         | Clay, dark green, sandstone and shell      |

| Depth Below | Land Surface | Geologic Description                                                                                                                                       |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                            |
| 0-10        | 0-3.0        | Fine-grained sand, white to tan, silt, gray and plant matter                                                                                               |
| 10-20       | 3.0-6.1      | Fine-grained sand, tan, with silt.<br>Few shells and some plant matter                                                                                     |
| 20-30       | 6.1-9.1      | Silt and fine-grained sand with marl,<br>some coarse-grained sand and some<br>shell                                                                        |
| 30-50       | 9.1-15.2     | Silt and fine-grained sand, tan to<br>dark gray, coarse shell fragments,<br>clay and marl throughout the<br>interval                                       |
| 50-80       | 15.2-24.4    | <pre>Shell and sand, calcite cement, some sandstone stringers, generally low % of silt, some shells are whole and loose (Donax, Tellina, and Chione)</pre> |
| 80-90       | 24.4-27.4    | Shell hash with silt, some carbonate silt                                                                                                                  |
| 90-130      | 27.4-39.6    | Shell and sand with calcite cement, pelecypods, gastropods, echinoid                                                                                       |
| 11          |              | spines, and foraminifers. Lementa-<br>tion varies from well-cemented to<br>loosely cemented                                                                |
| 130-150     | 39.6-45.7    | Shell and sand, calcite cement, sand-<br>stone and limestone. Shell<br>generally small                                                                     |
| 150-180     | 45.7-54.9    | Shell, some carbonate cement, quartz<br>and carbonate silt and marl                                                                                        |

| Depth Below | Land Surface | Geologic Description                                                                                                                   |
|-------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                        |
| 0-5         | 0-1.5        | Fine-grained, white sand, some brown clay and shells                                                                                   |
| 5-20        | 1.5-6.1      | Fine-grained, tan sand, some clay<br>and shell                                                                                         |
| 20-40       | 6.1-12.2     | Poorly sorted sand with clay, chalky shell, tan to white                                                                               |
| 40-50       | 12.2-15.2    | Fine- to very-fine grained sand with<br>brown clay, increase in shell<br>content                                                       |
| 50-70       | 15.2-21.3    | Shell and sand, calcite cem <b>ent</b> ,<br>carbonate and quartz silt, some<br>clay. Silt and clay increase near<br>bottom of interval |
| 70-80       | 21.3-24.4    | Shell hash and poorly sorted sand,<br>30% silt and clay                                                                                |
| 80-100      | 24.4-30.5    | Shell and sand, calcite cement,<br>( <u>Donax</u> , <u>Téllina</u> , ostracod <b>es</b> )                                              |
| 100-120     | 30.5-36.8    | Very fine-grained sand and s <b>hell,</b> some marl                                                                                    |
| -120-140    | 36.8-42.7    | Shell and sand, calcite cement, sandstone                                                                                              |
| 140-160     | 42.7-48.8    | Shell and sand, calcite cement,<br>foraminifera, gray to olive green<br>silt present near bottom of<br>interval                        |
| 160+        |              | Sand and silt, clavey, olive-oreen                                                                                                     |

| Depth Below | Land Surface | Geologic Description                                                 |
|-------------|--------------|----------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                                      |
| 0-10        | 0-3.0        | Sand, tan to yellow                                                  |
| 12          | 3.7          | Hardpan, black                                                       |
| 16          | 4.9          | Sand, fine- to medium-grained, tan                                   |
| 17          | 5.2          | Clay, sandy, gray                                                    |
| 24          | 7.3          | Shells, loose and fine white sand                                    |
| <b>6</b> 8  | 20.7         | Shells, sand, fine-grained                                           |
| 70          | 21.3         | Clay, dark gray                                                      |
| 85          | 25.9         | Shells, broken and whole, and fine-<br>grained sand                  |
| 105         | 32.0         | Shells, broken and whole, gray and tan, dark gray clay and siltstone |
| 117         | 35.7         | Sandstone and shells                                                 |
| 137         | 41.8         | Clay, green, and shells grading into sandstone and limestone         |
| 160         | 48.8         | Clay, sandy, soft, green                                             |
|             |              |                                                                      |
|             | 1            |                                                                      |

| Depth Below | Land Surface | Geologic Description                                              |
|-------------|--------------|-------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                                   |
| 0-1         | 0-0.3        | Sand, fine-grained, dark brown                                    |
| 3           | 0.9          | Sand, white                                                       |
| 6           | 1.8          | Sand, fine-grained, brown to reddish brown                        |
| 13          | 4.0          | Sand, fine-grained, tan                                           |
| 19          | 5.8          | Sand, fine-grained, reddish brown                                 |
| 27          | 8.2          | Clay, sandy, tan                                                  |
| 40          | 12.2         | Sand, coarse-grained, tan                                         |
| 60          | 18.3         | Sand, coarse-grained, tan and bits of sandstone                   |
| 80          | 24.4         | Sandstone, coarse-grained, tan hard                               |
| 102         | 31.1         | Sandstone, fine-grained, tan, very hard                           |
| 110         | 33.5         | Shell fragments, crushed, cream to reddish brown and sandstone    |
| 120         | 36.8         | Sandstone, shell fragments and some dark gray phosphorite         |
| 140         | 42.7         | Shell fragments, tan to dark gray                                 |
| 150         | 45.7         | Limestone, sandy, cream                                           |
| 176         | 53.6         | Limestone, sandy, cream tan, and shell                            |
| 180         | 54.9         | Limestone fragments, shell fragments and marl                     |
| 200         | 61.0         | Shell fragments and some limestone fragments                      |
| 235         | 71.6         | Shell fragments and sandstone frag-<br>ments                      |
| 310         | 94.5         | Sandstone, gray, some shell frag-<br>ments, some light green clay |

| Depth Below Land Surface |            | Geologic Description                       |
|--------------------------|------------|--------------------------------------------|
| Ft.                      | <u>M</u> . |                                            |
| 0-5                      | 0-1.5      | Sand, clayey, yellow-brown                 |
| 10                       | 3.0        | Sand, clayey, gray and shell               |
| 35                       | 10.7       | Shells and some clay                       |
| 54                       | 16.5       | Shells, sandstone, and dark lime-<br>stone |
| 96                       | 26.2       | Sandstone and shells, hard                 |
| 100                      | 30.5       | Shells, fine-grained sand and clay         |

| Depth Below | Land Surface | Geologic Description                                                   |
|-------------|--------------|------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                        |
| 0-5         | 0-1.5        | Sand, tan to brown and some shell                                      |
| 9           | 2.7          | Sand, clayey, black, organic                                           |
| 16          | 4.9          | Sand, fine- to medium-grained and large amount of shell                |
| 18          | 5.5          | Sand, clayey, fine-grained, <b>bl</b> ue<br>green                      |
| 24          | 7.3          | Limestone, sandy, tan-gray, hard                                       |
| 29          | 8.8          | Limestone, sandy, tan to buff                                          |
| 35          | 10.7         | Shells, loose, tan to dark b <del>row</del> n                          |
| 38          | 11.6         | Sand, clayey, fine- to coarse-grained,<br>dark brown to black, organic |
| 55          | 16.8         | Shells, broken brown to gray                                           |
| 78          | 23.8         | Shells, and fine-grained gray to tan sand                              |
| 79          | 24.1         | Hard sandstone streak                                                  |
| 90          | 27.4         | Shells, tan to gray, some sand and hard limestone                      |

| Depth Below Land S | urface | Geologic Description                                      |
|--------------------|--------|-----------------------------------------------------------|
| <u>Ft.</u>         | 1.     |                                                           |
| 0-7 0-2            | .1     | Sand, fine-grained, white                                 |
| 11 3               | 3.4    | Shell and sand, brown, soft                               |
| 15 4               | .6     | Clay, sandy, gray                                         |
| 22 6               | 5.7    | Shell, broken and sand                                    |
| 25.5 7             | .8     | Shell, cemented and sand                                  |
| 45.5 13            | 3.9    | Shell, broken, tan to brown and some clay and sand        |
| 70 21              | .3     | Shells, large broken pieces and some whole,brown to black |
| 87 26              | .5     | Shells and limestone, gray to black                       |
| 88 26              | .8     | Clay, sandy, gray-green, and broken<br>dark shells        |
| 96 29              | .3     | Shells, broken, black and fine-<br>grained sand           |
| 106 32             | 2.3    | Shells, broken and fine-grained sand,<br>tan to white     |
| - 118 36           | .0     | Clay, sandy, light green and some broken shell            |
| 122 37             | .2     | Clay, sandy green                                         |
| 135 41             | .1     | Marl, gray-green and broken shells                        |
| 145 44             | .2     | Limestone, sandy, gray green, friable                     |
| 155 47             | .2     | Clay, sandy, dark green, fairly soft                      |
| 180 54             | .9     | Clay, sandy                                               |

| Depth Below | Land Surface | Geologic Description                                       |
|-------------|--------------|------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                            |
| 0-4         | 0-1.2        | White, fine-grained sand                                   |
| 5           | 1.5          | Hardpan, black to dark brown                               |
| 7           | 2.1          | Limestone, broken, and sand                                |
| 12          | 3.7          | Sand, clayey, fine, white                                  |
| 18          | 5.5          | Sand, fine- to coarse-grained, clear                       |
| 28          | 8.5          | Shells, broken, tan                                        |
| 30          | 9.1          | Shells, and sandy clay                                     |
| 46          | 14.0         | Sand, silty, fine-grained and light gray                   |
| 48          | 14.6         | Sand and shell, tan to buff                                |
| 69          | 21.0         | Sand, silty, fine-grained and light gray                   |
| 76          | 23.2         | Shells, and fine-grained, white to light gray              |
| 94          | 28.7         | Clay, sandy, gray and shells                               |
| 98          | 29.9         | Limestone, sandy, friable, and shells                      |
| 126         | 38.4         | Sandstone, soft, light gray to light green and some shells |
| 143         | 43.6         | Limestone, sandy, soft, and a few shells                   |
| 149         | 45.4         | Shell, cemented, with cavernous zones                      |

| Depth | Below | Land Surface  |    | Geologic Description                               |
|-------|-------|---------------|----|----------------------------------------------------|
| Ē     | t.    | <u>M</u> .    |    |                                                    |
| 0-    | -5    | 0-1.5         |    | Sand, fine-grained, white                          |
|       | 7     | 2.1           |    | Hardpan                                            |
|       | 33    | 10.1          |    | Sand, fine- to medium-grained, tan<br>to very dark |
|       | 37    | 11.3          |    | Clay, light brown                                  |
| :     | 39    | 11.9          |    | Sand, black clay                                   |
| 4     | 41    | 12.5          |    | Sand, brown, fine- to medium-grained               |
|       | 43    | 13.1          |    | Clay, sandy, very soft, black                      |
| Q     | 65    | 1 <b>9</b> .8 |    | Shells, brown to dark gray, and some sand          |
| 1     | 85    | 25.9          |    | Limestone, sandy, dark gray, and shells            |
| 10    | 05    | 32.0          |    | Limestone and shell, sandy, light gray to tan      |
| 1     | 55    | 47.2          |    | Shell, broken, cemented, tan to<br>light gray      |
| 1     | 82    | 55.5          | ł. | Shell, broken, and green clay streaks              |
| 2     | 00    | 61.0          |    | Clay, sandy, dark green and shell                  |

| Depth Below | Land Surface | Geologic Description                                                                 |
|-------------|--------------|--------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                      |
| 0-11        | 0-3.4        | Road fill                                                                            |
| 20          | 6.1          | Sand, fine-grained, brown                                                            |
| 45          | 13.7         | Sand, fine- to coarse-grained, yellow-<br>brown                                      |
| 52          | 15.8         | Sandstone, shelly, cemented, tan to<br>light brown, hard                             |
| 60          | 18.3         | Shells, broken, tan and bits of light brown sandstone                                |
| 107         | 32.6         | Sandstone, calcite cement, tan to grayish tan, and shell fragments                   |
| 120         | 36.8         | Sandstone, calcite cement, gray,<br>shell fragments, some brown organic<br>materials |
| 130         | 39.6         | Shell fragments, tan to gray, and some sandstone                                     |
| 160         | 48.8         | Shell fragments, dark gray, some<br>sandstone and bits of phosphatic<br>material     |
| 180         | 54.9         | Limestone, sandy, creamy tan and gray shell                                          |
| 200         | 61.0         | Limestone, sandy, creamy tan, hard,<br>large amount of gray shell fragments          |
| 240         | 73.2         | Limestone, sandy, gray, shell frag-<br>ments                                         |

- - - -

i

.

| Depth Below | Land Surface | Geologic Description                                   |
|-------------|--------------|--------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                        |
| 0-7         | 0-2.1        | Sand, fine- to medium-grained, white                   |
| 24          | 7.3          | Clay, brown (organic hardpan) to blue, shell and shell |
| 28          | 8.5          | Shells, broken, and gray limestone                     |
| 64          | 19.5         | Limestone, dark gray, soft                             |
| 106         | 32.3         | Shell, and gray-tan sand                               |
| 146         | 44.5         | Shell, white to tan, and slightly cemented sand        |
| 172         | 52.4         | Clay, sandy, green                                     |
| 224         | 68.3         | Clay, silty, dark green                                |
| 240         | 73.2         | Clay, dark green, tough                                |
| Depth Below | Land Surface | Geologic Description                                                               |
|-------------|--------------|------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                    |
| 0-25        | 0-7.6        | No lithologic data                                                                 |
| 25-45       | 7.6-13.7     | Limestone, gray, shell, well-<br>cemented, hard                                    |
| 45-60       | 13.7-18.3    | Limestone, light gray, shelly,<br>poorly cemented to well cemented,<br>quartz sand |
| 60-65       | 18.3-22.9    | Limestone, white to tan, quartz sand, white                                        |
| 75-80       | 22.9-24.4    | Limestone, white to tan, quartz sand, trace of clay                                |
| 80-95       | 24.4-29.0    | Limestone, shell, increase in sand content at bottom of interval                   |
| 95-115      | 29.0-35.0    | Limestone and shell with light green to gray plastic clay, quartz sand             |
| 115-125     | 35.0-38.3    | Sample missing                                                                     |
| 125-135     | 38.3-41.1    | Limestone, light green to gr <b>ay, hard,</b><br>sand with a trace of clay         |
| 135-160     | 41.1-48.8    | Clay, light gray to olive green, calcareous, sand and shell                        |
| 160-180     | 48.8-54.9    | Clay, olive-green, sandy, quartz and carbonate silt, phosphatic, shell             |
| 180-190     | 54.9-57.9    | Clay, olive-green, plastic, sand and shell, phosphatic                             |

Lithologic Log of Well G&J 1-D

| Depth Below Land Surface |            | Geologic Description                                                                                                                                                                        |
|--------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ft.                      | <u>M</u> . |                                                                                                                                                                                             |
| 0-5                      | 0-1.5      | Sand: silica, light graying brown,<br>very fine to medium-grained,<br>minor medium brown clay and<br>organic matter (roots, bark),<br>unconsolicated                                        |
| 5-20                     | 1.5-6.1    | Clayey sand: silica, light to medium<br>brown, very fine to medium grained,<br>hardpan (cemented sand), increasing<br>clay content with depth, consoli-<br>dated to poorly lithified        |
| 20-40                    | 6.1-12.2   | Marl: medium grayish brown, carbonate,<br>silty clay, very fine to medium-<br>grained, silica sand, consolidated                                                                            |
|                          |            | Limestone: biomicrite, gray,<br>fossiliferous                                                                                                                                               |
| 40-50                    | 12.2-15.2  | Sand: silica, light brownish gray,<br>very fine to fine-grained, some<br>light gray clay, consolidated with<br>minor lithification, minor shell<br>fragments, very fine to fine-<br>grained |
| 50-60                    | 15.2-18.3  | Shell: light brown, medium to very<br>coarse-grained, juvenile and adult<br>pelecypods ( <u>Chione sp</u> ., <u>Tellina sp</u> .)                                                           |
|                          |            | Sand: silica, light to medium gray,<br>very fine to medium-grained, some<br>calcareous cement, light brown clay,<br>unconsolidated, minor phosphatic<br>sand                                |
| 60-115                   | 18.3-35.1  | <pre>Shell: light brown to gray, fine- to very coarse-grained, mostly pelecy- pods (Chione sp., Tellina sp., Venus sp.), some gastropods (Olivilla sp.), worm tubes, uncon- solidated</pre> |
|                          |            | Limestone: light to medium gray, well<br>lithified to friable, calcarenite<br>to biomicrite                                                                                                 |
|                          |            | Sand: light to medium gray, very<br>fine- to medium-grained, some clay,<br>phosphatic sand                                                                                                  |

#### Lithologic Log of Well G&J 1-D continued

. .

| Depth Below Land Surface |            | Geologic Description                                                                                                                                                                                    |
|--------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>               | <u>M</u> . |                                                                                                                                                                                                         |
| 115-135                  | 35.1-41.1  | Limestone: gray, well-lithified, fossiliferous, calcarenite                                                                                                                                             |
|                          |            | Sand: carbonate, light gray, very<br>fine to fine-grained, abundant<br>silty clay, with consolidated shell<br>fragments, medium to very coarse-<br>grained, mostly pelecypods, minor<br>phosphatic sand |
| 135-140                  | 41.1-42.7  | Silty sand: silica sand, carbonate<br>silt, medium grayish green, very<br>fine to fine-grained, consolidated                                                                                            |

239

Lithologic Log of Well G&J 2-D

| Depth Below Land Surface |            | Geologic Description                                                                                                                                                                                                                                               |
|--------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ft.                      | <u>M</u> . |                                                                                                                                                                                                                                                                    |
| 0-5                      | 0-1.5      | Sand: silica, light grayish brown,<br>fine to coarse-grained, abundant<br>silt, unconsolidated                                                                                                                                                                     |
| 5-25                     | 1.5-7.6    | Sand: silica, light brown, very fine<br>to coarse-grained, friable,<br>abundant silt and clay, minor<br>phosphate, light to medium grayish<br>brown hardpan (cemented sand) at<br>20-25 feet, fine to coarse-grained,<br>friable, abundant clay, some<br>phosphate |
| 25-30                    | 7.6-15.2   | Marl: light brownish gray, some silica<br>sand, fine to coarse-grained,<br>abundant carbonate silt and clay,<br>unconsolidated, phosphate sand,<br>minor shell fragments at 45 feet.                                                                               |
| 50-75                    | 15.2-22.9  | <pre>Shell: light brownish gray, uncon-<br/>solidated, very fine to medium-<br/>grained, abundant pelecypods<br/>(Tellina sp.), some gastropods<br/>(Olivella sp.)</pre>                                                                                           |
| ÷                        |            | Sand: silica, very fine to medium-<br>grained, some light brown clay,<br>some phosphatic sand                                                                                                                                                                      |
| 75–90                    | 22.9-27.4  | Sand: carbonate with minor silica,<br>light grayish brown, very fine to<br>medium-grained, abundant silt,<br>unconsolidated, shell fragments,<br>fine-grained, phosphate sand                                                                                      |
| 90-120                   | 27.4-36.6  | Limestone: light brown, very fine<br>to medium-grained, well lithified,<br>fossiliferous with abundant<br>pelecypods                                                                                                                                               |
|                          |            | Sand: light gray, very fine to fine-<br>grained, with some silty clay and phosphatic sand                                                                                                                                                                          |

.

## Lithologic Log of Well G&J 2-D continued

| Depth Below Land Surface |            | Geologic Description                                                                                                                                                                                          |  |
|--------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>Ft.</u>               | <u>M</u> . |                                                                                                                                                                                                               |  |
| 120-135                  | 36.6-41.1  | Limestone: light to medium gray,<br>calcarenite, poorly-cemented,<br>friable, abundant shell fragments,<br>pelecypods ( <u>Chione sp</u> .), gastro-<br>pods ( <u>Turitella sp</u> .), minor clay<br>and sand |  |
| 135-140                  | 41.2-42.7  | Silty sand: carbonate, greenish gray,<br>consolidated, minor limestone,<br>as in 120-135 feet, minor shell<br>fragments                                                                                       |  |

Lithologic Log of Well G&J 3-D

| Depth Below | Land Surface | Geologic Description                                                                                                                                                   |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                                        |
| 0-20        | 0-6.1        | Sand: silica, light yellowish to<br>brownish gray, very fine to fine-<br>grained, unconsolidated                                                                       |
| 20-45       | 6.1-13.7     | <pre>Sandy shell: fine to very coarse-<br/>grained, abundant pelecypods<br/>(<u>Chione sp., Donax sp.</u>), gastropods<br/>(<u>Olivella sp</u>.), unconsolidated</pre> |
|             |              | Limestone: medium to dark gray,<br>calcarenite, 30-40 percent, well-<br>cemented, fossiliferous, some fine-<br>grained silica and phosphatic sand                      |
| 45-65       | 13.7-19.8    | Shell: as in 20-45 feet; limestone decreasing to less than 10 percent                                                                                                  |
| 65-95       | 19.8-29.0    | Shell: as in 20-45 feet                                                                                                                                                |
|             |              | Limestone: light grayish green to<br>medium brown, calcarenite, 30-40<br>percent of sample                                                                             |
| 95-145      | 29.0-44.2    | Limestone: greenish gray, calcarenite,<br>60 percent, well cemented, silica<br>sand, phosphate, shell fragments                                                        |
| 145-150     | 44.2-45.7    | Silty sand: olive green, carbonaceous,<br>abundant fine-grained silica sand                                                                                            |
|             |              | with phosphate                                                                                                                                                         |

#### Lithologic Log of Well G&J 4-D

| Depth Below | Land Surface | Geologic Description                                                                                                                                               |
|-------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                                    |
| 0-5         | 0-1.5        | Sand: silica, medium brown, very fine<br>to fine-grained, minor organic<br>debris                                                                                  |
| 5-15        | 1.5-4.6      | Sand: silica, light brownish gray,<br>abundant silt, very fine to fine-<br>grained                                                                                 |
| 15-30       | 4.6-9.1      | <pre>Shell: shell fragments, fine to  coarse-grained, abundant pelecypods  (Donax sp., Trachycardium sp.),  juvenile to adult, gastropods, un-  consolidated</pre> |
| 30-95       | 9.1-29.0     | <pre>Shell: shell fragments, fine to   coarse-grained, abundant pelecypods   (Donax sp., Venus sp.)</pre>                                                          |
|             |              | Limestone: light greenish to dark<br>gray, calcarenite, well-cemented,<br>some silica and phosphate sand                                                           |
| 95-135      | 29.0-41.1    | Limestone: light greenish gr <b>ay,</b><br>calcarenite, well-cemented, silica<br>and phosphatic sand, shell fragments                                              |
| 135-140     | 41.1-42.7    | Limestone: as in 95-135 feet                                                                                                                                       |
|             |              | Clay: greenish gray, abundant                                                                                                                                      |
|             |              |                                                                                                                                                                    |

## Lithologic Log of Well G&J 5-D

.

| Depth Below | Land Surface | Geologic Description                                                                                                                                             |
|-------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                                                                                                                                  |
| 0-5         | 0-1.5        | Sand: silica, dark brown, very fine<br>to fine-grained, consolidated, some<br>clay, some organic debris                                                          |
| 5-30        | 1.5-9.1      | Silty clay: light brownish gray,<br>abundant clay, consolidated                                                                                                  |
| 30-40       | 9.1-12.2     | <pre>Shell: light brown to gray, unconsoli-<br/>dated, fine to coarse-grained,<br/>abundant pelecypods (Tellina sp.,<br/>Chione sp., Trachycardium sp.)</pre>    |
|             | 4            | <pre>Sand: silica, light brownish gray,<br/>very dine to fine-grained, minor<br/>clay</pre>                                                                      |
| 40-90       | 12.2-27.4    | Shell: unconsolidated mollusc frag-<br>ments as in 30-40 feet                                                                                                    |
|             |              | Limestone: light to dark gray<br>calcarenite, lithified, some sand<br>and shell fragments                                                                        |
| 90-120      | 27.4-36.6    | Limestone: light to medium greenish<br>gray, calcarenite, well-cemented,<br>silica and phosphate sand, shell<br>fragments, fine-grained, some shell<br>fragments |
|             | ÷.           |                                                                                                                                                                  |
| 120-145     | 36.6-44.2    | Silty sand: light greenish gray,<br>plastic consolidated, silica and<br>phosphate sand, very fine to fine-<br>grained                                            |

.

### Lithologic Log of Well G&J OW-2D

| Depth Below Land Surface |            | Geologic Description                                                                                                                                 |
|--------------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>               | <u>M</u> . |                                                                                                                                                      |
| 0-5                      | 0-1.5      | Sand: silica, dark brown, very fine<br>to fine-grained, abundant organic<br>debris, unconsolidated                                                   |
| 5-20                     | 1.5-6.1    | Clayey sand: silica, light to medium<br>grayish brown, abundant clay, very<br>fine to fine-grained, unconsolidated                                   |
| 29-60                    | 6.1-18.3   | Shell: light brown to gray, fine to<br>coarse-grained, abundant pelecypods<br>( <u>Venus sp., Chione sp.</u> ), juvenile<br>to adult, few gastropods |
|                          |            | Sand: silica, light grayish brown,<br>fine to medium-grained, some<br>calcareous cement, minor phosphate<br>gravel                                   |
| 60-95                    | 18.3-29.0  | Shell: light brown to gray, fine to coarse-grained, abundant pelecypods                                                                              |
|                          |            | Limestone: medium gray, calcarenite,<br>coquina (cemented shell), well-<br>lithified                                                                 |
|                          | -          | Sand: silica, light grayish brown,<br>phosphatic, very fine to fine-<br>grained, some clay                                                           |
| 95-135                   | 29.0-41.1  | Limestone: light to medium gray,<br>calcarenite, well lithified, some<br>partially cemented shell fragments,<br>medium to coarse-grained             |
|                          | -          | Sandy clay: silica, yellowish gray,<br>very fine to fine-grained, with<br>minor phosphatic sand                                                      |
| 135-145                  | 41.1-44.2  | Silty sand: olive green, silica sand,<br>carbonate silt, stiff, phosphatic,<br>consolidated                                                          |

Lithologic Log of Well G&J OW-3D

| Depth Below     | Land Surface | Geologic Description                                                                                                                         |
|-----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>      | <u>M</u> .   |                                                                                                                                              |
| 0-5             | 0-1.5        | Sand: silica, dark brown, very fine<br>to fine-grained, abundant organic<br>debris, unconsolidated                                           |
| 5-15            | 1.5-4.6      | Clayey sand: silica, yellowish gray,<br>abundant clay, very fine to fine-<br>grained, consolidated                                           |
| 15-30           | 4.6-9.1      | <pre>Shell: light brown to gray, fine to   very coarse-grained, unconsolidated,   abundant pelecypods (Venus sp.),   juvenile to adult</pre> |
|                 |              | Sandy clay: light grayish brown<br>silica, fine-grained, phosphatic<br>sand, unconsolidated                                                  |
| 30-85           | 9.1-25.1     | Shell: as in 15-30 feet                                                                                                                      |
|                 |              | Limestone: light grayish brown,<br>calcarenite, well-lithified,<br>with silica and phosphatic fine-<br>grained sand                          |
| 85-135          | 25.9-41.1    | Limestone: light olive gray,<br>calcarenite, well-lithified, minor<br>silica and phosphatic sand and<br>shell fragments                      |
| 100             | 1.<br>1.     | Sharr It again proc                                                                                                                          |
| <b>135-</b> 150 | 41.1-45.7    | Silty sand: olive green, silica sand,<br>carbonate silt, phosphatic, con-<br>solidated                                                       |

1.

| Depth Below | Land Surface |   | Geologic Description                                                                                     |
|-------------|--------------|---|----------------------------------------------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |   |                                                                                                          |
| 0-10        | 0-3.0        | ŕ | Sand, quartz, medium- to fine-grained, tan                                                               |
| 10-20       | 3.0-6.1      |   | As above with shell fragments                                                                            |
| 20-30       | 6.1-9.1      |   | As above                                                                                                 |
| 30-40       | 9.1-12.2     |   | No data                                                                                                  |
| 40-50       | 12.2-15.2    |   | Sand, quartz, medium- to fine-grained,<br>some broken shell, some clay, forma-<br>tion soupy, light gray |
| 50-65       | 15.2-19.8    |   | Small, broken shell with sand                                                                            |
| 65-72       | 19.8-21.8    |   | Broken shell, a few limestone chips,<br>quartz sand, fine-grained, water-<br>bearing                     |
| 72-103      | 21.8-31.8    |   | Very fine-grained sand with <b>opn</b> sider-<br>able clay, formation soupy                              |
| 103-118     | 31.8-37.9    |   | Sand, shell, and clay                                                                                    |
| 118-125     | 37.9-38.1    |   | No data                                                                                                  |
| 125-130     | 38.1-39.6    | ł | Limestone ledge at 118, limestone<br>chips and broken shell, water-<br>bearing                           |

| Depth Below | Land Surface | Geologic Description                                                                                                                        |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Ft.         | <u>M</u> .   |                                                                                                                                             |
| 0-9         | 0-2.7        | Sand, quartz, medium- to fine-grained,<br>clear to frosted, white, well-<br>sorted. Trace of organic material                               |
| 9-14        | 2.7-4.3      | Hardpan, tan to dark brown, quartz<br>sand, medium- to fine-grained,<br>clay                                                                |
| 14-30       | 4.3-9.1      | Sand, quartz, medium- to fine-grained,<br>tan, trace of organics and clay                                                                   |
| 30-43       | 9.1-13.1     | As above                                                                                                                                    |
| 43-56       | 13.1-17.1    | Thin sandstone ledge at 46 ft. (14 m),<br>sand, quartz, underlying, medium-<br>to coarse-grained, tan, water-<br>bearing                    |
| 56-64       | 17.1-19.5    | Same as above                                                                                                                               |
| 64-74       | 19.5-22.6    | Sandstone ledge at 64 ft. (19.5 m),<br>sand, shell, with very coarse sand<br>and limestone chips underlying,<br>cream to tan, water-bearing |

i

| Depth Below | Land Surface | Geologic Description         |
|-------------|--------------|------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                              |
| 0-20        | 0-6.1        | Sand, hardpan                |
| 20-40       | 6.1-12.2     | Sand and shell               |
| 40-60       | 12.2-18.3    | Coarse sand and shell        |
| 60-80       | 18.3-24.4    | Coquina rock, sand and shell |
| 80-100      | 24.4-30.5    | Rock, sand, shell            |
| 100-105     | 30.5-32.0    | Rock and large shell         |
| 105-109     | 32.0-32.2    | Shell and limestone          |

÷

| Depth Below    | Land Surface | • | Geologic Description                                               |
|----------------|--------------|---|--------------------------------------------------------------------|
| <u>Ft.</u>     | <u>м</u> .   |   |                                                                    |
| 0-10           | 0-3.0        |   | Sand, quartz, medium- to fine-<br>grained, small broken shell, tan |
| 10-20          | 3.0-6.1      |   | Same as above                                                      |
| 20-30          | 6.1-9.1      |   | Same as above                                                      |
| 30-40          | 9.1-12.2     |   | Top of ledge at 40 ft. (12.2m),<br>cemented sandstone, color tan   |
| 40-45          | 12-2-13.7    |   | No sample                                                          |
| 45-50          | 13.7-15.2    |   | Broken shell, coarse sand, tan                                     |
| 50-60          | 15.2-18.3    |   | As above, light tan to gray                                        |
| 60-90          | 18.3-27.4    |   | As above                                                           |
| <b>90-1</b> 00 | 27.4-30.5    |   | Large broken shell, gray                                           |
| 100-130        | 30.5-39.6    |   | As above                                                           |
| 130-140        | 39.6-42.7    |   | Large shell, broken, with limestone,<br>white to gray              |
| 140-150        | 42.7-45.7    |   | Small broken shell, fine-grained sand                              |
| 150-160        | 45.7-48.8    | ł | Medium-sized, broken shell, fine-<br>grained sand                  |
| 160-180        | 48.8-54.9    |   | Large, broken shell, fine-grained sand                             |
| 180-190        | 54.9-57.9    |   | Top of Hawthorn, clay, fine-grained sand, green                    |

Lithologic Log of Well Hobe Sound-Ol

| Depth Below | Land Surface | Geologic Description    |
|-------------|--------------|-------------------------|
| Ft.         | <u>M</u> .   |                         |
| 0-18        | 0.5.5        | White sand              |
| 18-35       | 5.5-10.7     | Yellow sand             |
| 35-40       | 10.7-12.2    | Light brown sand        |
| 40-57       | 12.2-17.4    | White sand              |
| 57-59       | 17.4-20.0    | Yellow sand             |
| 59-82       | 20.0-25.0    | Gray sandstone          |
| 82-105      | 25.0-32.0    | Sandstone               |
| 105-110     | 32.0-33.5    | Sand with a little clay |
| 110-116     | 33.5-35.4    | Sand and shell          |
| 116-126     | 35.4-38.4    | Sand and shell          |
| 126-144     | 38.4-43.9    | Sand and shell          |

Lithologic Log of Well Hobe Sound-05

| Depth Below L | and Surface | Geologic Description          |
|---------------|-------------|-------------------------------|
| Ft.           | <u>M</u> .  |                               |
| 0-5           | 01.5        | Top soil                      |
| 5-20          | 1.5-6.1     | White sand                    |
| 20-25         | 6.1-7.6     | Water-bearing sand            |
| 25-55         | 7.6-16.8    | White sand                    |
| 55-60         | 16.8-18.3   | Gravel                        |
| 60-65         | 18.3-19.8   | Heavy gravel, water-bearing   |
| 65-96         | 19.8-29.3   | Water-bearing gravel and sand |

Lithologic Log of Well Hobe Sound-10

| Depth Below    | Land Surface | Geologic Description         |
|----------------|--------------|------------------------------|
| <u>Ft.</u>     | <u>M</u> .   |                              |
| 0-24           | 0-7.3        | Brown and white sand         |
| 24-58          | 7.3-17.7     | Brown sand with clay streaks |
| 58-62          | 17.7-18.9    | Brown and white rock         |
| 62-70          | 18.9-21.3    | Medium brown rock            |
| 70-86          | 21.3-26.2    | Medium hard rock             |
| 86-98          | 26.2-29.9    | Rock and shell               |
| <b>98-</b> 105 | 29.9-32.0    | Medium brown, hard rock      |

Lithologic Log of Well Hobe Sound-11

| Depth Below Land Surface |            | Geologic Description |
|--------------------------|------------|----------------------|
| <u>Ft</u> .              | <u>M</u> . |                      |
| 0-45                     | 0-13.7     | Sand, light brown    |
| 45-63                    | 13.7-19.2  | Sand                 |
| 63-70                    | 19.2-21.3  | Sand and shell       |
| 70-75                    | 21.3-22.9  | Sandstone firm       |
| 75-84                    | 22.9-25.6  | Sandstone soft       |
| 84-85                    | 25.6-25.9  | Sandstone hard       |
| 85-93                    | 25.9-28.3  | Sandstone firm       |
| 93-100                   | 28.3-30.5  | Sand and shell       |

Lithologic Log of Well Camp Murphy-01

| Depth Below | Land Surface | Geologic Description           |
|-------------|--------------|--------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                |
| 0-5         | 0-1.5        | White sand                     |
| 5-30        | 1.5-9.1      | Yellow sand                    |
| 30-35       | 9.1-10.7     | Yellow sand and sandstone      |
| 35-55       | 10.7-16.8    | White sandstone and shell rock |
| 55-90       | 16.8-27.4    | White sandstone and shell rock |

Lithologic Log of Well Camp Murphy-03

| Depth Below Land Surface      | e | Geologic Description                |   |
|-------------------------------|---|-------------------------------------|---|
| <u>Ft.</u> <u>M</u> .         |   |                                     |   |
| 0-3 0-0.9                     |   | White sand                          |   |
| <b>3-</b> 15 0.9 <b>-</b> 4.6 |   | Yellow sand                         |   |
| 15-20 4.6 <b>-6.</b> 1        |   | Yellow sand                         |   |
| 20-25 6.1-7.6                 |   | Fine-grained sand                   |   |
| 25-35 7.6-10.7                |   | White sand, coarse                  |   |
| 35-40 10.7-12.2               | ţ | White sand and shell, porous        |   |
| 40-55 12.2-16.8               | - | White sand and shell                |   |
| 55-90 16.8-27.4               |   | White sand and shell, gray to white | 2 |

253

#### Lithologic Log of Well Camp Murphy-06

| Depth Below Land Surface |                     | Geologic Description                                               |
|--------------------------|---------------------|--------------------------------------------------------------------|
| <u>Ft.</u><br>0-5        | <u>M</u> .<br>0-1.5 | White sand                                                         |
| 5-40                     | 1.5-12.2            | Yellow sand                                                        |
| 40-70                    | 12.2-21.3           | White sand, fine- to medium-grained,<br>"quicksand" and some stone |
| 70-105                   | 21.3-32.0           | Light, fine sand with shell and rock                               |

Lithologic Log of Well FPL-9265

| <u>Depth Below</u> | Land Surface | Geologic Description                      |
|--------------------|--------------|-------------------------------------------|
| <u>Ft</u> .        | <u>M</u> .   |                                           |
| 0-8                | 0-2.4        | Brown clay-type sand                      |
| 8-19               | 2.4-5.8      | Gray, fine-grained sand                   |
| 19-23              | 5.8-7.0      | Firm shelves of lime rock, sand and shell |
| 23-40              | 7.0-12.2     | Soft sand and some lime rock              |
| 40-58              | 12.2-17.7    | Gray, fine-grained sand                   |
| 58-70              | 17.7-21.3    | Shell, gray sand                          |

÷

Lithologic Log of Well FPL-10243-02

| Depth Below | Land Surface | Geologic Description       |
|-------------|--------------|----------------------------|
| Ft.         | <u>M</u> .   |                            |
| 0-10        | 0-3.0        | Brown clay                 |
| 10-25       | 3.0-7.6      | Fine shell                 |
| 25-30       | 7.6-9.1      | Rock, sand, and fine shell |
| 30-45       | 9.1-13.7     | Large shell                |
| 45-55       | 13.7-16.8    | Shell and coarse sand      |
| 55-60       | 16.8-18.3    | Large shell                |
| 60-75       | 18.3-22.9    | Green marl                 |
| 75-80       | 22.9-24.4    | Marl and fine-grained sand |

Lithologic Log of Well FPL-10243-03

| Depth Below   | Land Surface | Geologic Description           |
|---------------|--------------|--------------------------------|
| <u>Ft.</u>    | <u>M</u> .   |                                |
| 0-10          | 0-3.0        | Coral sand                     |
| 10-20         | 3.0-6.1      | Brown clay and shell fragments |
| 20-35         | 6.1-10.7     | Brown clay and shell fragments |
| 35-40         | 10.7-12.2    | Gray sand and shell fragments  |
| <b>4</b> 0-47 | 12.2-14.3    | Marl, rock and shell           |
| 47-50         | 14.3-15.2    | Marl, rock and shell           |
| 50-68         | 15.2-20.7    | Marl and fragments of shell    |
| 68-75         | 20.7-22.9    | Marl                           |
| 75-83         | 22.0-25.3    | Marl                           |

## Lithologic Log of Well FPL-10243-04

| Depth Below | Land Surface | Geologic Description              |
|-------------|--------------|-----------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                   |
| 0-20        | 0.6.1        | Red clay                          |
| 20-30       | 6.1-9.1      | Fine-grained, gray sand and shell |
| 30-40       | 9.1-12.2     | Fine-grained, gray sand and shell |
| 40-50       | 12.2-15.2    | Gray marl                         |
| 50-60       | 15.2-18.3    | Gray marl and shell fragments     |
| 60-70       | 18.3-21.3    | Gray sand and shell               |
| 70-80       | 21.3-24.4    | Gray sand and shell               |
| 80-83       | 24.4-25.3    | Gray sand and shell               |

#### Lithologic Log of Well FPL-10243-05

| Depth Below | Land Surface | Geologic Description                             |
|-------------|--------------|--------------------------------------------------|
| <u>Ft</u> . | <u>M</u> .   |                                                  |
| 0-10        | 0-3.0        | Gray sand                                        |
| 10-20       | 3.0-6.1      | Gray sand                                        |
| 20-30       | 6.1-9.1      | Gray sand and shell fragments                    |
| 30-40       | 9.1-12.2     | Gray sand and shell fragments                    |
| 40-50       | 12.2-15.2    | Gray sand and shell fragments and rock and shell |
| 50-60       | 15.2-18.3    | Light gray sand, rock, and shell                 |
| 60-70       | 18.3-21.3    | Light gray sand, rock, and shell                 |
| 70-81       | 21.3-24.7    | Gray sand and shell                              |

Lithologic Log of Well FPL-10243-06

| Depth Below | Land Surface |   | Geologic Description          |
|-------------|--------------|---|-------------------------------|
| Ft.         | <u>M</u> .   |   |                               |
| 0-10        | 0-3.0        |   | Brown clay                    |
| 10-20       | 3.0-4.6      |   | Brown clay                    |
| 20-30       | 4.6-9.1      |   | Gray sand and shell fragments |
| 30-40       | 9.1-12.2     |   | Gray sand and shell fragments |
| 40-50       | 12.2-15.2    |   | Gray sand and shell           |
| 50-60       | 15.2-18.3    |   | Gray sand and shell           |
| 60-70       | 18.3-21.3    | + | Gray sand and fine shell      |
| 70-80       | 21.3-24.4    |   | Gray sand and fine shell      |

Lithologic Log of Well FPL-74096-01

| Depth Below    | Land Surface | Geologic Description                   |
|----------------|--------------|----------------------------------------|
| <u>Ft</u> .    | <u>M</u> .   |                                        |
| 0-10           | 0-3.0        | Black mud                              |
| 10-20          | 3.0-6.1      | Gray marl and shell                    |
| 20-25          | 6.1-7.6      | Gray marl and shell                    |
| 25 <b>-3</b> 0 | 7.6-9.1      | Gray marl and shell                    |
| 30-35          | 9.1-10.7     | Gray marl and shell and traces of rock |
| 35-40          | 10.7-12.2    | Gray marl and shell and traces of rock |
| 40-50          | 12.2-15.2    | Gray marl and shell and traces of rock |
| 50-70          | 15.2-21.3    | Gray marl and shell                    |
| 70-75          | 21.3-22.9    | Gray marl and traces of shell          |
| <b>75-</b> 80  | 22.9-24.4    | Green marl                             |

Lithologic Log of Well FPL 74097-02

| Depth Below Land Surface |            | Geologic Description                           |
|--------------------------|------------|------------------------------------------------|
| <u>Ft.</u>               | <u>M</u> . |                                                |
| 0-5                      | 0-1.5      | Top soil                                       |
| 5-10                     | 1.5-3.0    | Mixed sand and top soil                        |
| 10-15                    | 3.0-4.6    | Sand and shell                                 |
| 15-20                    | 4.6-6.1    | Sand and shell                                 |
| 20-25                    | 6.1-7.6    | Coarse sand                                    |
| 25-30                    | 7.6-9.1    | Sand, shell, and marl                          |
| 30-35                    | 9.1-10.7   | Coarse sand and shell                          |
| 35-40                    | 10.7-12.2  | Marl, sand, and shell                          |
| 40-45                    | 12.2-13.7  | Marl, sand, and shell                          |
| 45-50                    | 13.7-15.2  | Marl, coarse sand, and large shell             |
| 50-55                    | 15.2-16.8  | Marl and fine sand                             |
| 55-60                    | 16.8-18.3  | Marl, coarse sand and shell                    |
| 60-65                    | 18.3-19.8  | Green marl                                     |
| 65-70                    | 19.8-21.3  | Green marl and sand and shell                  |
| 70-75                    | 21.3-22.9  | Marl, sand, and shell                          |
| 75-80                    | 22.9-24.4  | Green marl                                     |
| 80-140                   | 24.4-42.7  | Fine-grained, gray sand and marl               |
| 140-150                  | 42.7-45.7  | Green marl                                     |
| 150-170                  | 45.7-51.8  | Green marl and shell fragments, traces of rock |
| 170-190                  | 51.8-57.9  | Green marl                                     |

| Depth Below | Land Surface | Geologic Description       |
|-------------|--------------|----------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                            |
| 0-10        | 0-3.0        | White sugar sand           |
| 10-30       | 3.0-9.1      | Gray sand                  |
| 30-50       | 9.1-15.2     | Coarse sand and fine shell |
| 50-63       | 15.2-19.2    | Coarse sand and shell      |

Lithologic Log of Well 34797

| Depth Below | Land Surface | Geologic Description       |
|-------------|--------------|----------------------------|
| <u>Ft</u> . | <u>M</u> .   |                            |
| 0-10        | 0-1.5        | White sugar sand           |
| 10-30       | 1.5-9.1      | Gray sand                  |
| 30-50       | 9.1-15.2     | Coarse sand and fine shell |
| 50-75       | 15.2-22.9    | Gray sand                  |
| 75-85       | 22.9-25.9    | Coarse sand and shell      |
|             |              |                            |

.

| Depth Below     | Land Surface | Geologic Description  |
|-----------------|--------------|-----------------------|
| <u>Ft.</u>      | <u>M</u> .   |                       |
| 0-42            | 0-12.8       | Sand and shell        |
| 42-65           | 12.8-19.8    | Sand, shell, and marl |
| 65-76           | 19.8-23.2    | Shell and marl        |
| 76-96           | 23.2-29.3    | Green marl            |
| <b>96-</b> 98   | 29.3-29.9    | Marl and water sand   |
| 98-118          | 29.9-36.0    | Green marl            |
| 118-138         | 36.0-42.1    | Green marl            |
| 138-144         | 42.1-43.9    | Green marl            |
| 144-147         | 43.9-44.8    | Marl and water sand   |
| 147-167         | 44.8-50.9    | Marl and water sand   |
| <b>167-</b> 187 | 50.9-57.0    | Green marl            |
| 187-207         | 57.0-63.1    | Marl and silty marl   |
| 207-227         | 63.1-69.2    | Marl and silty marl   |
| 227-238         | 69.2-72.5    | Marl and silty marl   |
| 238-246         | 72.5-75.0    | Marl and water sand   |
| 246-260         | 72.5-79.2    | Green marl            |

1.4

| Depth Below    | Land Surface |    | Geologic Description       |
|----------------|--------------|----|----------------------------|
| <u>Ft.</u>     | <u>M</u> .   |    |                            |
| 0-16           | 0-4.9        |    | White sand                 |
| 16-25          | 4.9-7.6      |    | Tan white                  |
| 25-35          | 7.6-10.7     |    | Light brown sand           |
| 35-49          | 10.7-14.9    |    | Brown sand                 |
| 49-58          | 14.9-17.7    |    | Gray and brown sand        |
| 58-64          | 17.7-19.5    |    | Gray sand                  |
| 64-79          | 19.5-24.1    | 84 | Gray sand with light shell |
| 79-90          | 24.1-27.4    |    | Clay, sand, shell and rock |
| <b>9</b> 0–110 | 27.4-33.5    |    | Rock, sand, and shell      |
|                |              |    |                            |

-

261

Lithologic Log of Well Hobe Sound-50681

| Depth Below Land Surface |            | Geologic Description    |
|--------------------------|------------|-------------------------|
| Ft.                      | <u>M</u> . |                         |
| 0-15                     | 0-4.6      | White sand              |
| 15-25                    | 4.6-7.6    | Brown sand              |
| 25-40                    | 7.6-12.2   | Fine-grained, gray sand |
| 40-73                    | 12.2-22.3  | Coral and shell         |

Lithologic Log of Well 50685 at Tequesta, Florida

| Depth Below Land Surface |            | Geologic Description |
|--------------------------|------------|----------------------|
| <u>Ft</u> .              | <u>M</u> . |                      |
| 0-15                     | 0-6.1      | White sugar sand     |
| 20-30                    | 6.1-9.1    | Coarse brown sand    |
| 30-55                    | 9.1-16.8   | Fine-grained sand    |
| 55-64                    | 16.8-19.5  | Shell and coral      |

i.

Lithologic Log of Well 55986

| Depth Below    | Land Surface | Geologic Description                                                                      |
|----------------|--------------|-------------------------------------------------------------------------------------------|
| <u>Ft.</u>     | М.           |                                                                                           |
| 0-21           | 0-6.4        | Gray sand to white sand to tan hard-<br>pan and black muck                                |
| 21-42          | 6.4-12.8     | Tan hardpan and dark gray sand and shell                                                  |
| 42-63          | 12.8-19.2    | Dark gray sand, shell and rock to<br>medium gray sand, fine-grained,<br>and wet sandstone |
| 63-9 <b>4</b>  | 19.2-28.7    | As above, but gravel is dry                                                               |
| <b>94-1</b> 05 | 28.7-32.0    | Medium gray sand and rock going to<br>light gray, broken shell & sandstone                |

| Depth Below | Land Surface | Geologic Description                                                                |
|-------------|--------------|-------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                     |
| 0-4         | 0-1.2        | Brown, fine-grained sand                                                            |
| 4-18        | 1.2-5.5      | Brown, slightly silty, fine-grained sand                                            |
| 18-35       | 5.5-10.7     | Brown to tan, fine-grained sand with<br>a seam of silty fine-grained,<br>brown sand |
| 35-50       | 10.7-15.2    | Gray, fine-grained sand                                                             |
| 50-61       | 15.2-18.6    | Gray, fine-grained sand with traces of shell fragments                              |
| 61-63       | 18.6-19.2    | Weathered shell and limestone frag-<br>ments, lightly cemented                      |
| 63-69       | 19.2-21.0    | Loose shells and limestone fragments with traces of fine-grained sand               |

| Depth Below La | nd Surface | Geologic Description                                            |
|----------------|------------|-----------------------------------------------------------------|
| <u>Ft.</u>     | <u>M</u> . |                                                                 |
| 0-10           | 0-3.0      | Sand, quartz, fine- to medium-<br>grained, gray to brown        |
| 10             | 3.0        | Hardpan, sand, and clay                                         |
| 20             | 6.1        | Sand, quartz, fine-grained, clay,<br>broken shell, gray         |
| 30             | 9.1        | Sand, fine- to medium-grained, clay,<br>organic, brown          |
| 40             | 12.2       | Sand, fine-grained, small, broken shell, gray                   |
| 50             | 15.2       | Sand, fine-grained, clay and silt                               |
| 60             | 18.3       | Sand, quartz, fine-grained, clay,<br>broken shell, gray         |
| 70             | 21.3       | As above                                                        |
| 80-110         | 24.4-33.5  | As above                                                        |
| 120            | 36.8       | Sand, quartz, medium-grained, clay, shell, formation soupy      |
| 126            | 38.4       | Large shell, broken limestone, con-<br>glomerate, water-bearing |
| 147            | 44.8       | Sandstone                                                       |

I

| Depth Below | Land Surface | Geologic Description                                 |
|-------------|--------------|------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                      |
| 0-9         | 0-2.7        | Light sand                                           |
| 9-13        | 2.7-4.0      | Tan sand                                             |
| 13-20       | 4.0-6.1      | Light gray sand                                      |
| 20-23       | 6.1-7.0      | Gray sand                                            |
| 23-29       | 7.0-8.8      | Brown sand                                           |
| 29-32       | 8.8-9.8      | Yellow sand                                          |
| 32-38       | 9.8-11.6     | Clay and brown sand                                  |
| 38-41       | 11.6-12.5    | Light brown sand                                     |
| 41-49       | 12.5-14.9    | Tan sand                                             |
| 49-52       | 14.9-15.8    | Clear sand                                           |
| 52-60       | 15.8-18.3    | Gray sand                                            |
| 60-78       | 18.3-23.8    | Brown silt and sand, shell fragments, rock and shell |

265

| Depth Below Land Sur  | rface                          | Geologic Description                                                                                                       |
|-----------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u> <u>M</u> . |                                |                                                                                                                            |
| 0-30 0-               | 9.1 No sa                      | mple                                                                                                                       |
| 30-42 9.1-1           | 2.8 Sand,                      | brown, coarse-grained, few shells                                                                                          |
| 42-63 12.8-1          | 9.2 Shell<br>cen               | fragments and sand with calcite<br>ment ( <u>Donax</u> )                                                                   |
| 63-105 19.2-3         | 2.0 As at<br>sar<br>for        | pove with some gray-brown micaceous,<br>ady clay. <u>Elphidium</u> and <u>Nonion</u><br>rams                               |
| 105-147 32.0-4        | 4.8 As at bro                  | oove, plus some white to gray-<br>own very sandy, hard limestone                                                           |
| 147-186 44.8-5        | 6.7 No sa                      | umple                                                                                                                      |
| 186-188 56.7-5        | 7.3 Sand,<br>coa<br>fro<br>anc | , light green, medium- to very<br>arse-grained, rounded, clear to<br>osted; mollusk fragments, coral,<br>l echinoid spines |
| 188-209 57.3-6        | 3.7 Limes<br>cla<br>cer        | stone, gray-brown, hard to soft,<br>ayey and very sandy, calcite<br>ment, some shells                                      |
| 209-230 63.7-7        | 0.1 Asat<br>for                | pove plus <u>Amphisteqina</u> lessonii<br>rams                                                                             |
| 230-252 70.1-7        | 6.8 Sand<br>mar                | , quartz, gray, some clay and<br>ny shell fragments and coral                                                              |
| 252-273 76.8-8        | 3.2 Shell<br>dra               | l fragments with sand and olive-<br>ab clay                                                                                |
| 273-294 83.2-8        | 9.6 No sa                      | ample                                                                                                                      |
| 294+ 8                | 9.6+ Pre-l                     | pliocene sediments                                                                                                         |

| Depth Below Land Surface |            | Geologic Description                                                                                                                                                                                                 |  |
|--------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <u>Ft.</u>               | <u>M</u> . | -                                                                                                                                                                                                                    |  |
| 0-5                      | 0-1.5      | Sand, gray, quartz, fine- to medium-<br>grained, average fine-grained,<br>subrounded to angular, clear to<br>frosted                                                                                                 |  |
| 5-10                     | 1.5-3.0    | <pre>Sand, tan-gray, fine- to medium-<br/>grained, clear to frosted;<br/>noncalcareous</pre>                                                                                                                         |  |
| 10-21                    | 3.0-6.4    | As above, but light tan-gray                                                                                                                                                                                         |  |
| 21-26                    | 6.4-7.9    | <pre>Sand, light to dark tan-gray, fine-<br/>to coarse-grained, clayey, slightly<br/>calcareous</pre>                                                                                                                |  |
| 26-31                    | 7.9-9.4    | Sand, dark olive-drab, very micaceous, clayey, slightly calcareous                                                                                                                                                   |  |
| 31-36                    | 9.4-11.0   | Sand, dark gray to yellow-gr <b>een,</b><br>slightly clayey, slightly calcareous                                                                                                                                     |  |
| 36-42                    | 11.0-12.8  | Sand, gray, slightly calcare <b>ou</b> s, very<br>fine- to medium-grained, frosted to<br>clear                                                                                                                       |  |
| 42-47                    | 12.8-14.6  | As above to 44 feet (13.4m); from 44 to<br>47 feet - sand, gray, slightly<br>micaceous, very fine- to coarse-<br>grained; contains some soft, gray,<br>sandy limestone, phosphorite, and<br>poorly preserved fossils |  |
| 47-52                    | 14.6-15.8  | Limestone, tan to dark gray, hard to soft, sandy with calcite, small shell fragments                                                                                                                                 |  |
| 52-57                    | 15.8-17.4  | As above and numerous shell and shell fragments                                                                                                                                                                      |  |
| 57-59                    | 17.4-18.0  | Shell marl, gray to tan                                                                                                                                                                                              |  |
| 59-60                    | 18.0-18.3  | Limestone, tan to dark gray, hard,<br>dense to porous, sandy, calcite<br>cement, small shell fragments,<br>phosphatic; fine- to very coarse-<br>grained quartz sand                                                  |  |
| 60-61                    | 18.3-18.6  | As above, but more porous                                                                                                                                                                                            |  |

.

| Depth Below | Land Surface    | Geologic Description                                                                                                                                                             |
|-------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .      |                                                                                                                                                                                  |
| 0-10        | 0-3.0           | Sand, cream, quartz, medium- to<br>coarse-grained, some orange-red clay,<br>noncalcareous                                                                                        |
| 10-15       | 3.0-4.6         | <pre>Sand, dark red-brown, quartz, medium-<br/>to coarse-grained, carbonaceous,<br/>noncalcareous, some clay</pre>                                                               |
| 15-20       | 4.6-6.1         | Sand, dark orange-red, medium- to very<br>coarse-grained, a few small shell<br>fragments, clusters of calcite, some<br>clay                                                      |
| 20-25       | 6.1-7.6         | Sand, red-orange, quartz, medium- to coarse-grained, noncalcareous                                                                                                               |
| 25-30       | <b>7.6</b> -9.1 | Sand, red-orange to cream, quartz,<br>medium- to coarse-grained, frosted<br>to clear, a few small red shell<br>fragments                                                         |
| 30-35       | 9.1-10.7        | Sand, cream, quartz, slightly micaceous,<br>fine- to very coarse-grained, large<br>grains frosted, few mollusk fragments,<br>well preserved foraminifers with<br>orange-red clay |
| 35-40       | 10.7-12.2       | Sand, light tan-gray, a few scattered<br>mollusk fragments, foraminifers,<br>clear calcite particles and mica<br>flakes                                                          |
| 40-45       | 12.2-13.7       | Sand, tan-gray, medium- to coarse-<br>grained, few mica flakes, slightly<br>calcareous                                                                                           |
| 45-60       | 13.7-18.3       | As above, noncalcareous                                                                                                                                                          |
| 60-65       | 18.3-19.8       | Sand, dark orange-red, quartz, some clay and mica flakes, noncalcareous                                                                                                          |

.

| Depth Below | Land Surface | Geologic Description                                                                                                                                                                                            |
|-------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                                                                                 |
| 0-5         | 0-1.5        | Sand, cream, quartz, fine- to<br>medium-grained, noncalcareous                                                                                                                                                  |
| 5-10        | 1.5-3.0      | <pre>Sand, red-brown, quartz, medium- to   coarse-grained, noncalcareous,   carbonaceous</pre>                                                                                                                  |
| 10-25       | 3.0-7.6      | <pre>Sand, tan-gray, quartz, slightly   clayey, slightly micaceous, non-   calcareous</pre>                                                                                                                     |
| 25-30       | 7.6-9.1      | <pre>Sand, dark gray, quartz, micaceous,</pre>                                                                                                                                                                  |
| 30-50       | 9.1-15.2     | <pre>Sand, dark gray, quartz, micaceous,<br/>very phosphatic, some clear calcite,<br/>shell fragments, foraminifers</pre>                                                                                       |
| 50-63       | 15.2-19.2    | <pre>Sand, dark gray, quartz, very fine-<br/>to fine-grained, micaceous, cal-<br/>careous, very phosphatic, clayey,<br/>mollusks fragments, coral, some<br/>fresh water gastropods at 63 feet<br/>(19.2m)</pre> |
| 63-73       | 19.2-22.3    | Sand, dark gray, quartz, fine- to<br>medium-grained, micaceous, cal-<br>careous, very phosphatic, clayey,<br>small clusters of calcite, mollusk<br>shells, abundant microfossils                                |
| 73-75       | 22.3-22.9    | As above, medium- to coarse-grained                                                                                                                                                                             |
| 75-80       | 22.9-24.4    | Sand, tan-gray, fine- to medium-<br>grained, micaceous, phosphatic,<br>shell fragments, calcite, fossili-<br>ferous, limestone, some white clay                                                                 |
| 80-87       | 24.4-26.5    | Sand, tan, quartz, fine- to medium-<br>grained, clayey, shell fragments                                                                                                                                         |

| Depth Below | Land Surface | Geologic Description                                                                                                                              |
|-------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | <u>M</u> .   |                                                                                                                                                   |
| 0-5         | 0-1.5        | <pre>Sand, light gray, quartz, medium- to   coarse-grained, clear to frosted</pre>                                                                |
| 5-10        | 1.5-3.0      | Sand, cream, quartz, medium- to<br>coarse-grained, slightly carbona-<br>ceous                                                                     |
| 10-20       | 3.0-6.1      | <pre>Sand, cream, quartz, medium- to   coarse-grained, some red-brown clay,   slightly carbonaceous</pre>                                         |
| 20-25       | 6.1-7.6      | Sand, cream, quartz, medium- to-<br>coarse-grained, red-brown clay                                                                                |
| 25-35       | 7.6-10.7     | As above, but coarse-grained                                                                                                                      |
| 35-40       | 10.7-12.2    | Sand, tan, quartz, very fine- to fine-<br>grained, a few particles of dark<br>gray sandy clay and mica                                            |
| 40-45       | 12.2-13.7    | Sand, white, quartz, fine- to medium-<br>grained, a few particles of clay<br>and mica                                                             |
| 45-50       | 13.7-15.2    | Sand, white, quartz, very fin <b>e-</b> grained,<br>micaceous, iron oxide and calcite<br>cement                                                   |
| 50-52       | 15.2-15.8    | Sand, white, quartz, fine- to coarse-<br>grained, some brown sandy clay,<br>crystalline calcite, shell fragments,<br>micaceous                    |
| 52-55       | 15.8-16.8    | Limestone, tan-gray, hard, porous,<br>vuggy, fossiliferous, some phos-<br>phorite                                                                 |
| 55-100      | 16.8-30.5    | Sand, fine- to medium-grained, layers<br>of soft, cream limestone, and hard,<br>gray, nodular sandstone, shell frag-<br>ments with calcite cement |
| 100-110     | 30.5-33.5    | Sand, tan, quartz, shell fragments and forams                                                                                                     |

•

| Depth Below | Land Surface |     | Geologic Description                                                                                                                                                    |
|-------------|--------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <u>Ft.</u>  | М.           |     |                                                                                                                                                                         |
| 0-21        | 0-6.4        |     | Sand, quartz, medium-grained, brown                                                                                                                                     |
| 21-42       | 6.4-12.8     |     | Sand, quartz, medium-grained, brown                                                                                                                                     |
| 42-55       | 12.8-16.8    |     | Sand, quartz, fine- to medium-grained, brown                                                                                                                            |
| 55-63       | 16.8-19.2    |     | Sand, light tan, quartz, medium-<br>grained, a few shell fragments                                                                                                      |
| 63-84       | 19.2-25.6    | (a) | Sand, tan, quartz, fine- to medium-<br>grained, some shell material, a few<br>forams, thin limestone and sandstone<br>layers                                            |
| 84-105      | 25.6-32.0    |     | Sand, tan, quartz, very fine- to<br>medium-grained, shell material,<br>"quicksand" at 88 feet (26.8m)                                                                   |
| 105-116     | 32.0-35.4    |     | <pre>Sand, tan, quartz, very fine-grained,<br/>shells</pre>                                                                                                             |
| 116-126     | 35.4-38.4    |     | Sand, tan-gray, quartz, very fine- to fine-grained, shell and phosphate nodules                                                                                         |
| 126-147     | 38.4-44.8    |     | Sand, light gray, quartz, fine- to<br>medium-grained, shell fragments,<br>thin layers and lenses of limestone<br>and sandstone, sand coarser near<br>bottom of interval |
| 147-168     | 44.8-51.2    |     | Sand, light tan-gray, quartz, fine-<br>grained, shell fragments, some<br>phosphorite, limestone layer at<br>150-152 feet (45.7-46.3m)                                   |
| 168-189     | 51.2-57.6    |     | Sand, light gray, quartz, fine-<br>grained, slightly shelly, some<br>phosphorite and shell                                                                              |
| 189-210     | 57.6-64.0    |     | Sand, quartz, fine-grained, gray-<br>green clay, shell and limestone<br>lenses, micaceous                                                                               |
| 210-231     | 64.0-70.4    |     | Sand, gray-green, fine-grained, green clay, silt, phosphorite                                                                                                           |

Appendix D: A generalized vertical electric sounding curve illustrating the mechanical methods used to determine the limits of each geoelectric layer.

÷

272
