TECHNICAL MEMORANDUM

DATA ANALYSIS TO DETECT RAINFALL CHANGES IN SOUTH FLORIDA

by
George ShihSouth Florida Water Management DistrictResource Planning Department

May 1983
DRE 165
table of contents
Page
CONCLUSIONS 1
FURTHER STUDIES
I PURPOSE 1
II. DATA SOURCE 1
III. DETECTING THE TIME OF CHANGE IN THE MEAN OF MONTHLY, SEASONAL, AND YEARLY RAINFALL 1
IV. DETECTING THE AMOUNT OF CHANGE in the mean of MONTHLY, SEASONAL, AND YEARLY RAINFALL 4
V. MEAN OF DAILY RAINFALL PARAMETERS 8
vi. LOCATION OF CHANGE 14
LITERATURE CITED 35
APPENDIX: COMPUTER PROGRAMS TO DETECT TIME OF CHANGE 36

TABLE OF CONTENTS

Page
CONCLUSIONS 1
FURTHER STUDIES 1
I PURPOSE 1
II. DATA SOURCE 1
III. detecting the time of change in the mean of MONTHLY, SEASONAL, AND YEARLY RAINFALL 1
IV. DETECTING THE AMOUNT OF CHANGE IN THE MEAN OF MONTHLY, SEASONAL, AND YEARLY RAINFALL 4
V. MEAN OF DAILY RAINFALL PARAMETERS 8
VI. LOCATION OF CHANGE 14
LITERATURE CITED 35
APPENDIX: COMPUTER PROGRAMS TO DETECT TIME OF CHANGE 36

LIST OF FIGURES

Figure Page

1. Number of stations showing the most probable break year for change in mean annual rainfall 3
2a Difference between average annual rainfall for the periods before and after a given break year 5
2b. Difference between average wet season rainfall for the periods before and after a given break year 5
2. Difference in average monthly rainfall for the periods before and after 1970 6
3. Coefficient of variation of each month for the periods before and after 1970 7
4. Average total amount of heavy rainfall per year before and after a given break year 9
5. Average total events of heavy rainfall per year before and after a given break year 10
6. High fntensity rainfall before and after 1970 11
7. Coefficients of variation of total yearly rainfall, at given intensity and over, in annual series before and after 1970 13
8. Mean and variation coefficient in annual series 15
9. Map, annual rainfall decrease 17
10. Map, t values for annual rainfall decrease 18
11. Map, wet season rainfall decrease 19
12. Map, t values for wet season rainfall decrease 20
13. Map, April rainfall decrease 21
14. Map, t values for April rainfall change 22
15. Map, October rainfall decrease 23
16. Map, t values for October rainfall change 24
17. Map, yearly mean decrease of over 1 -inch/day rainfall 25
18. Map, t values for over 1 -inch/day rainfall change 26
19. Map, yearly mean decrease of over 2-inch/day rainfall 27
20. Map, t vaiues for over 2-inch/day rainfall change 28
21. Map, yearly mean decrease of over 3-inch/day rainfall 29
22. Map, t values for over 3 -inch/day rainfall change 30
23. Map, decrease of mean daily maximum rainfall 31
24. Map, t values for mean daily maximum difference 32
25. Map, increase of mean daily maximum rainfall variation in percent of variation coefficient 33
26. Map, F values for mean dafly maximum rainfall variation change 34

S U M M ARY

CONCLUSIONS
With the assumption of data independence and time series stationarity, changes in rainfall characteristics were quantified. The conclusions are:

1. The maximum difference in the records for pre- and post-change point occurred around 1970.
2. Annual rainfall was about 5 inches per year less in the period after 1970, compared to the period prior to 1970. This reduction came from drfer and shorter wet seasons, less heavy storms, and/or less tropical cyclone rainfall.
3. There was a significant change in the variation coefficient of daily maximum rainfall annual series that may affect the storm frequency analysis.
4. The Kissimmee River Valley and the southwest corner of the District showed the most significant changes.

FURTHER STUDIES

Treat the rainfall data as a non-stationary series to find out if:

1. any trend exists,
2. any change in trend has occurred, or
3. if forecast models for planning purposes can be developed.

The recent climatological stresses on the District system have forceably brought attention to the importance of climate to the well being of society. It has long been suspected that climate was subject to systematic variation, but in the absence of a well developed body of theory, it has been more expedient to treat climatological quantities as random variables. Perhaps it is now time to attempt to build such systematic characteristics as can be defined, however roughly, into our hydroiogic system considerations. The purpose of this work is to detect if there were any significant rainfall pattern changes in this century. Based on historical rainfall record analysis, statistical significance of change, if any, is qualified.
II. DATA SOURCE

Daity and monthly rainfall data available in the South Florida Water Management District Rainfall Data Base are the data used in this analysis.
III. Detecting the time of change in the mean of annual rainfall

A. Data Treatment

1. Monthly rainfall data from stations with over 50 years of record are used for this study.
2. The monthly rainfall is summed up to yearly total for analysis.
3. When missing data occur:
(a) The year with missing data was deleted, but the position of the missing data-year was kept in the time series.
(b) The missing data were filled in with mean rainfall of the month.

Both of these methods were done to compare the results.

B. Method of Analysis

The method of analysis is based on lecture notes from the computer workshop in "Statistical Hydrology," Colorado State University (1).

1. Assumptions:
(a) The input data, annual rainfall in this case, is independent.
(b) Rainfall from each station is independent; hence, data from each station is treated as a single series.
2. Question to be answered:

Given annual rainfall of $\mathrm{Xj}, \mathrm{j}=1, \ldots \mathrm{n}$. what is the most likely time (T) that a change in the mean of X_{j} occurs bet ween the two series, $X j, j=1, \ldots T$ and $X j . j=T+1, \ldots \ldots n$? The time of change
is detected by using Bayesian analysis of posterior
distribution of time of change. A computer program for the analysis is attached in Appendix A.

C. Results

Thirty-eight (38) rainfall stations have monthly rainfall records of more than 50 years. Most of them have missing monthly reinfall. When missing data years were deleted, but the positions were kept in the analysis, 31 stations showed detectable changes of mean at some point of time; and 7 stations did not show a significantly detectable time at which change of mean might occur. The time distribution of probable year of change is shown in figure 1. The analysis is done at 90% confidence level for the Bayesian interval estimate.

When the missing data was filled with the mean value, the time of change was much less detectable.

FIGURE 1. NUMBER OF STATIONS SHOWING THE MOST PROBABLE BREAK YEAR FOR CHANGE IN MEAN ANNUAL RAINFALL.

D. Discussion

The purpose of this analysis is to detect the time of change of mean annual rainfall due to large scale, natural systems shift, or to man-made impacts. In this sense, the change sought shall be regional, not local, around the individual gaging stations. The method used, however, is not able to differentiate the source of changes whether due to the regional processes; due to the change of instrumentation; or due to change of the local environment close to the gaging stations. It is argued that if the change occurred only at the gaging stations, it would not show in the regional scale, i.e. the change would not have a regional trend. Figure 1 shows that the majority of possible changes occurred between 1960 and 1970; this is believed to indicate that a change in the regional scale might have occurred around these years. The ne'xt analysis is to see if the amount of change at these points is statistically significant.
IV. DETECTING THE AMOUNT OF CHANGE IN THE MEAN OF MONTHLY, SEASONAL, AND YEARLY RAINFALL
A. Data Treatment

The same set of data used in Section III is used here. The missing data position was kept in the analysis. Only 33 long term stations have records after 1975.
B. Method of Analysis

Computer programs for "t" and "F" tests are available from the same Lecture Notes. Given a time series of data, mean and variance tests are done at several break points of the series. For example, given total annual rainfall of a station from 1914 to 1981, with break point at 1970, two samples are formed: Sample 1 from 1914 to 1969, and Sample 2 from 1970 to 1981. " t " and " F " tests are done on these two samples to see if they are significantly different. Confidence level is set at 90%.
C. Results

In general, rainfall has decreased in recent years. The amount of decrease, however, may not be statistically significant at all the stations. Figures 2, 3, and 4 are plots from an average of all the stations to show the District-wide trend. On an annual basis, average annual rainfall decreased about 9\% (5 inches) for the perfod after 1970, as compared to the prior period. Most of the decrease comes from drier wet seasons. Wet season rainfall decreased about 4.3 inches (10.7\%) after 1970. Wet season is defined as May through October inclusive. Undulations in Figures 2 and 3 indicate that a cyclic trend of some sort may be existing. Figure 4 shows that recently wet seasons were drier and shorter; white dry seasons were wetter. The inversion between October and

November is very interesting. The causes and implications of this inversion require further studies.

It is not too difficult to understand the impact of a decrease in rainfa: 1 on resource management. Of similar importance is the rainfall distribution. As shown in Figure 4, wetter dry seasons

and drier wet seasons after 1970 mean that rainfall occurred more uniformly throughout those years. In other words, the difference between wet season and dry season rainfall is decreasing. Specifically, before 1970, wet season minus dry season rainfall was about 24.9 inches; after 1970, it was 21.9 inches, a reduction of about 3 inches, or 12%. Extending the "reservoir" replenish period, it can be viewed that a wet season is sandwiched by two dry seasons, or two wet seasons sandwich a dry season. It is found that there was almost a 20% (2.2 inches) reduction

in the difference of the middle wet season to replenish the flanking two dry seasons after 1970.

For frequency analysis, change of the variance may be more important than change of the mean. From a statistical viewpoint, however, there was little change in the variance. In general, the variances after 1970 were even less than those before 1970. Figure 4 shows the change of variance in terms of variation coefficients. Note the drastic changes in the variation for months bordering wet seasons.
V. DETECTING THE AMOUNT OF CHANGE IN THE MEAN OF DAILY RAINFALL PARAMETERS
A. Data Treatment

All the daily rainfall data available in the data base (with record length over 50 years) were used for the analysis. Since most applications of short duration rainfall analyses are in flood control, high intensity rainfall parameters are sought after. These parameters are accumulated on a yearly basis, herice the position of missing daily data is not important. For simplicity, missing daily data were ignored. There are 21 stations with 50 or more years of dafly record that lasted beyond 1975.
B. Method of Analysis

The same methods used in monthly and yearly rainfall analysis are used here. Break points are 1955, 1960, 1965, and 1970.
C. Results

1. Contribution of heavy storms to the total rainfall.
.- It was observed that fewer hurricanes visited south Florida since the establishment of the Central and Southern Florida Flood Control District. Hurricanes and tropical depressions are usually accompanied by heavy rainfall. This analysis is intended to quantify the amount of heavy rainfall contribution to the total rainfall and the change of the contribution, if any. Figure 5 shows that storms with rafnfall over 1 in/day contributed about 27 in/year, or close to one-half of the total rainfall in a year. Figure 5 also shows that heavy storms have decreased steadily since 1955. Figure 6 shows that the average total events of heavy rainfall per year also decrease correspondingly. Note that these figures are obtained by averaging all the stations together, so there are fractions in

the number of events. Figure 7 (curve a) shows that the contribution of heavy rainfall decreases fairly uniformly as

rainfall intensities increase; while curve b indicates that high intensity rainfall contribution decreases after 1970 much more than low intensity rainfall. Also, from Figures 2, 5, and 7c, one can see that most of the annual rainfall decrease was accounted for by decreases in heavy rainfall.

It is difficult to differentiate tropical storm rainfall and local thunderstorm rainfall on the basis of rain gage data. Brandes (2) indicated that hurricanes and tropical storms contributed an average of $3.79 \mathrm{in} /$ year (p .50) ; and each hurricane or tropical storm contributed an average rainfall of
2.68 inches (p.102). The data (Table 4, p.51) also showeo that prior to 1969 there were 4.24 inches/year of rainfall caused by tropical cyclones, while there were only 1.56 inches/year of tropical cyclone rainfall after 1969. This reduction of 2.68 inches/year (4.24 inches-1.56 inches $=2.68$ inches) from tropical cyclone rainfall accounted for 54% of the 5 inch annual rainfall reduction after 1970 . It is also interesting to point out the reduction of high intensity rainfall as shown in Figure 7, curve c. For rates over 2.0 inches/day the decrease was 2.48 inch/year. This indicates that most of the high intensity rainfall reduction is due to decreasing tropical cyclone rainfall. Figure 8, however, shows that variance of year to year heavy rainfall increases, which implies that heavy rainfall recurrence intervals may not increase at all.
2. Change of parameters in annual series of daily rainfall. Annual series of daily rainfall has been used for rainfall frequency analysis. Usually the following equation is used:

$$
Y t=m(1+C V . K t)
$$

where

```
Yt = magnitude (of rainfall) at a recurrence interval of t
year,
m = mean,
Cv = variation coefficient (Note that standard deviation
equals the product of mean and Cv}\mathrm{ ), and
Kt = coefficient for t recurrence year. Kt depends on type
of distribution used. Kt can be found in tables for
different distributions.
```


Changes of mean and variation coefficient in the annual series may have an important implication in flood control operations. Figure 9 sums up the findings in the average sense. Note that a sharp increase in coefficient of variation occurred after 1970. Eleven (11) out of 21 stations showed a significant change in the variance before and after 1970. From the a oove equation, it is obvious to see that Yt will increase proportionally as Cv increases.
VI. LOCATION OF CHANGE

A. Data Treatment

Those data obtained in the previous analyses were plotted on maps in the hope of gaining some insight into the spatial distribution of the changes.
B. Method of Analysis

Contour maps are made from data points by a computer generated, hand smoothed method. It should be cautioned that this is not a regional analysis method, hence the values interpreted from these maps should not be taken quantitatively without qualification. Suppose a value f is read from one of these maps, it means that for recording station(s), if any, in this area, the f value has been derived from the records of the individual station(s).
C. Results

Basically there are two sets of maps. One set shows the quantity of changes, and the other set shows the statistical significance of the changes. The quantities of change are self-explanatory in the maps. The statistical significance is tested at 90% confidence leve1. Approximate value of the stations at this level for the sample size (degrees of freedom) is specified in the overall sense.

For example, in t test, t greater than 1.64 indicates a significance at 90% confidence with infinite degrees of freedom. Most stations, however, have about 50 degrees of freedom and require t greater than 1.68 to be significant at the 90% level. Note that contours are not plotted at equal intervals to reduce lines on the maps.

These two sets of maps are organized into three groups. The first group, Figures 10 through 17, deals with monthly and yearly rainfall. It shows that rainfall records in the Kissim nee River and Hillsboro Canal have a significant decrease in rainfall ifter 1970. The second group of maps, figures 18 through 23 , shows the change of yearly heavy rainfall. The change occurred nostly in stations around the Kissimmee River and the southwest corner of the District. The third group, Figures 24 through 27, showing changes in means and variation coefficients in the annual series of taily rainfall, is less consistent between the magnitude of change and the significance of change. This is expected because the previous two groups of maps are constructed from data accumulated through a period of time which has a smoothing effect, while this group of maps is constructed from extreme data of short-time step which is opposite to smoothing. Furthermore, because of the contouring technique used and the wide range of computed F values from 1.24 to 10.16, the mapped F values tend to be high. This is why Figure 27 Shows that most of the District areas have F greater than 2.5. Even discounting the reliability of Figure 27 , the change of variation coefficients in many areas, as shown in Figure 26 , still can not be ignored.

FIGURE 10. iNNUAL RAINFALL DECREASE, INCHES. BREAK AT 1970.

FIGURE 11. t VALUES FOR ANNUAL RAINFALL CHANGE. BREAK AT 1970. $t>1.6$ INDICATES A SIGNIFICANT CHANGE OF MEAN AT 90% CONFIDENCE LEVEL.

FIGURE 12. WET SEASON RAINFALL DECREASE, INCHES, BREAK AT 1970.

FIGURE 13. t VALUES FOR WET SEASON RAINFALL CHANGE, BREAK AT 1970. $t>1.6$ INDICATES A SIGNIFICANT CHANGE IF MEAN AT 90% CONFIDENCE LEYEL.

FIGURE 14. APRIL RAINFALL DECREASE. INCHES. BREAK AT 1970

FIGURE 15. t VALUES FOR APRIL RAINFALL CHANGE, BREAK AT 1970 t>1.6 INDICATES A SIGNIFICANT CHANGE AT 90\% CONPIDENCE LEVEL.

FIGURE 17. t values for october rainfall change. break at 1970. $\mathrm{t}>1.6$ INDICATES A SIGNIFICANT CHANGE AT 90% CONFIDENCE LEVEL

figure 18. YEfRLY MEAN DECREASE OF OVER 1 IN/DAY RAINFALL, INCHES. BREAK AT 1970.

FIGURE 19. t VALUES FOR OVER I IN/DAY RAINFALL CHANGE. BREAK AT 1970. $t>1.6$ INDICATES A SIGNIFICANT CHANGE OF MEAN AT 90% CONFIDENCE LEVEL.

FIGuRe 20. YEARLY MEAN DECREASE OF OVER 2 IN/DAY RAINFALL, INCHES. BREAK AT 1970.

FIGURE 21. t VALUES FOR OVER 2 IN/DAY RAINFALL CHANGE. BREAK AT 1970. $t>1.6$ INDICATES A SIGNIFICANT CHANGE OF MEAN AT 90% CONFIDENCE LEVEL.

IGURE 2%. YE/RLY MEAN DECREASE OF OVER 3 IN/DAY RAINFALL, INCHES. BREAK AT 1970.

FIGURE 23. t VALUES FOR OVER 3 IN/DAY RAINFALL CHANGE. BREAK AT 1970. $\mathrm{t}>1.6$ INDICATES A SIGNIFICANT CHANGE OF MEAN AT 90% CONFIDENCE LEVEL.

FIGURE 24. DECREASE OF MEAN DAILY MAXIMUM RAINFALL, INCH. BREAK AT 1970.

FIGURE 25. t VALUES FOR MEAN DAILY MAXIMMM DIFFERENCE, BREAK AT 1970. T:1.6 INDICATES THERE WAS A SIGNIFICANT CHANGE OF THE MEAN

FIGURE 26. INCREASE OF MEAN DAILY MAXIMUM RAANFALL VARIATION IN PERCENT OF VARIATION COEFFICIENT. BREAK AT 1970.

FIGURE 27. F VALUES, MEAN DAILY MAXIMUM RAINFALL VARIATION CHANGE, BREAX AT 1970. F>2.5 INDICATES THERE WAS A SIGNIFICANT CHANGE IN VARIANCE.

LITERATURE CITED

1. Lecture notes for the computer workshop in "Statistical Hydrology", 1978, July 17-21, by Jose D. Salas, Vujica Yevjevich, Duane C. Bees, Jacques W. Delleur, John C. Schaake, Thomas E. Coley, Ertugrul Benzeden, and Richardo A. Smith from the Department of Civil Engineering, Colorado State University.
2. Donald Brandes, 1981, "The Significance of Tropical Cyclone Rainfall in the Water Supply of South Florida". Ph.D. Dissertation, University of Florida.

APPENDIX

COMPUTER PROGRAMS TO DETECT TIME OF CHANGE

```
        PRLGRAM CHANGE2(F1,F2,FG,TAPE1=F1,TAPE2=F2,TAPEGEF6)
C TG DETECT YEAR OF JUMP IN THE MEAM BY CSU PROGRAMS
        DIMENSION X(1000),F(1000),D(10C0),T(1000),D2(1000)
    s,H(1000),01(1000)
        CHARACTER&4 XLABI,XLABZ,YLAB,IO,JD
        DATA XLABL,XLABZ,YLAB,ID/'TIME','UNIT','PRCBI,' 1/
    10 I= 1
    READ(1,20,ENU=200) ID,IY,X(I)
    20 FOKMAT(1X,A4,I3,78X,F5,2)
    30 I=I+1
        READ(1,20,END=100) JD,JY,X(I)
        IF(ID .EQ. JD) GG TO 30
        BAGK SPACE 1
        N=I-1
        CALL CHANG2(G,N,X,&9,F,AMEAN,AMODE,TLHR,TUPR,D,APEND,
    *TLw,TUP,D2:L,OL,H)
        CHF=O.
        ICH=0
    OC 40 I=I,N
    IF(F(I) .GI.CHF) ICH*I
    1F(F(1) .GT. CHF) CHF=F(I)
    40 CONTINUE
    ICH=IY+ICH=1
    WRITE(2,50) ID,ICH,CHF
    50 FCRMAT(A4,I6,F10.4)
    GC TO 10
    100 STCP
    ENO
```


THIS RUUTINE HAS DEVELDPED AND PRESENTED SN THE LECTURE NCTES FCR THE CCMPUTEK WORKSHOP IN STATISTICAL HYDRCLQGY HELD JULY 17-21, 1978 at CULORAUD STATE UNIVERSITY. ROUTINE WAS KEY PUNCHED FRGM THE LISTINGS IN THIS MANUAL AND MOOIFIED IJ BE COMPATIBLE WITH FCRTKAN LA IHE HP3000 CDMPUTER DURING 1978 AND 1979. THIS FORM WAS CHANGED TU COC COMPATABLE FCRTRAN 5 IN 1G81. CCNVERSIGN AND TESTIMG HAS DONE BY RON MIERAU, SOUTH FLORIDA WATER MANAGEMENT DISTRIGT. SDME ROUTINES WERE SUPERGEEDED BY A LATER MAGNETIG TAPE VERSION FROM A SIMILAR WORKSHCP HELD IN 19GO. SIGNIFICANT LMPRUYEMENTS IN ARIMA MODELING EERE MADE IN THE SECCNO VERSICN AS WELL AS INCLUDING DISAGGREGATICN MOOELING. THE SECCNO VERSICN OID NGT INCLUDE THE SET OF ROUTINES DEALING WITH FILLING MISSIAG DATA,FREQUENCY ANALYSIS AND MANY GDODNESS DF FIT IESTS

SUBROLTINE CHANG2 (LU,N,X,ALPHA,F,AMEAN,AMODE,TLWR,TUPF,D,AMENO, 1 TLW,TUP,D<,IWR,DI,H I
 C DETECTING CHANGES. CASE OF INDEPENDENCE. POINT DF CHANGE LNKNDWN

```
C X SAMPLE SERIES UF SILE N
    ALPHA m CONFIDENCE LEVEL FOR THE BAYESIAN INTERVAL ESIIMATE
    F - PCSTERIOR DISTRIOUTION GF POINT OF CHANGE
    AMEAN . MEAN OF THE DISTRIBUTICN F
    AMCDE = MCLE GF THE DISTRIBUTICN F
    TUPR G UPPER LIMIT FUR BAYESIAN ESTIMATE OF POINT OF CHANGE
    TLWR E LGWER LIMIT FOR BAYESIAN ESTIMATE OF POINT GF CHANGE
    D FCSTERIDR DISTRIBUTION OF AMOUNT OF CHANGE
    AMENU = MEAN OF THE CISTRIGUTIEN D
    TUP = UPPER LIMIT FGR BAYESIAN ESTIMATE DF AMUUNT DF CHANGE
    TLH = UPPEK LIHIT FOR BAYESIAN ESTIMATE DF AMQUNI QF GHANGE
    IWK = O, DO NGT WRITE RESULTS IWR = I, WRITE RESULTS
    CEVELEPEC GY DLANE C. BOES, RICARDUG A. SMITH, ANC JGSE D. SALAS
    HYCRCLGGY ANO WATER RESOLRCES PROGRAM, CCLQRADC STATE UNIVERSITY
    ADAPIEO FUR HP3OOO BY MIERAL
```



```
    OIMENSION X(N), F(O:N), D(0:900), H(N), DI(N), D2(0:900)
    DOLBLE PRECISIUN SUMA,SST
    REal MuLT
    SLML = 0.0
    SLH2 =0.0
    EX=FLCAT(N-2)/2.
    EXl=FLUAT(N-1)/2.
    OC LC J=1,N
tu SUML = SUML+X(J)
    AMLA = SLMI/FLCAT(N)
    DE 20 d=1,N
20 SUM2 = SUM2+(X(J)-AMEA) ## 2
    N1 = N-1
    OL 70 J=1,N1
    $UM = 0.0
    SUMA = 0.0
    DC 30 I=1,N
30 SUM : SUM+X(1)
    AMENT= SUM/FLGAT(d)
    N1=J+1
    DG4J I=JLoN
40 SUMA = SUMA+X(I)
    AMEMNT = SUMA/FLOAT(N-J)
    DL(J) = AMENNT-AMENT
    SUP=0.0
    SLMA = 0.0
    CC jo I=1.J
50 SUMA = SUMA+(X(I)-AMENT) ##己
    OC EC I=JlgN
t0 SUA = SUA+(X{I)-AMENNT)**2
    H(J) = SUM+SUHA
    Adl=\
    AJ2=N - J
    AN = FLOAT(N)/(AJI*AJ2)
    AN=SQRT(AN)
7U F(J)=AN&((SUMZ/(SUM+SUMA))##EX)
    SUM=0.C
    AMEAN=0.O
```

```
    0074 J=1,N1
    74 SUM= SUM+F(J)
    OC 7% J=1,N1
    78 F(J) = F(J)/SUM
    AMEAN=0.0
    DL EC J=1,N1
    80 AMEAN - AMEAN+J*F(J)
    AMCDE = 1.0
    AMC=F(1)
    DC 10C J#1,N1
    IF (AMO-F(\alpha)) 90,100,100
    90 AMC=F(N)
    AMCDE = J
100 CCNTINUE
    ALPHAl=(1.-ALPHA)/2.
    K=0
    F(K)=0.0
    SLM = 0.
    SUM1=0.
    OC 11C J=1,N1
    SUM=SUM+F(d)
    SUMl=SUML+F(d-1)
    1F \SUM.LT.ALPHA1\ GD TO 110
    TL#R=FLOAT(J)-(SUM-ALPHA1)/(SUM-SUN1)
    GL TO 120
110 CGNTIMUE
120 SUMA = 0.0
    SLMAL = 0.0
    F(N)=C.
    DC 130 J=1,N1
    JJ=NL-J+1
    SUMA=SUMA+F(dJ)
    SUMAl=SUMAl+F(Jj+1)
    IF (SUMA.LT.ALPHALI GO TO 130
    TUPR=FLGAT(JJ) +(SUMA-ALPHA1)/(SUMA-SUMA1)
    GO TO 14J
130 CONTIMUE
140 XHAX = X(1)
    00 150 J=2,N
150 XMAX G AMAXI (XMAXOX(J))
    XMIN = X(1)
    OC 16C J=2,N
160 XHIN= AMINI(XMIN=X(J))
        MULT = 1.
        MULTN=L
        HULTX=1
        DO 180 KK=1,2
    SUM= = {XMAX-XMIN}
    DELTAX=0.0
    DG 10C K=1%100
    SUMA=0.0
```

```
    SUM=SLM*DELTAX
    O2(K)=SUM
    OC 17C J=L,N1
    EJ - J
    EN = N
    ENJ=EJ#{EN-EJ)
    SS=H(J)+ENJ*({O2(K)-01(d))**2)/FLOAT(N)
        SST= (1./SS) # MULT
    IN THE DRIGINAL VERSION AN LNDERFLOW PROBLEM OCCLRED
    WHEN BUTH SS AND EXI WERE LARGE. D(K) LOST ALL SIGNIFICANT
    FIGUKES IN THIS SITUATIDA ANO THE RATID OF D(K) TG THE
    SUM LF ALL U(K) BECAME INUETERMINATE. THIS SITUATIUN WAS
    CLKREGTED BY FINDING A CCMMON MULIIPLIER TC KEEP
    SST*#EXl IN GOMPUTABLE RANGE. STATEMENTS ADOEL TC AGCOMPLISH
    THLS are INOENTED
    IF(KK.EQ.2) GO TO 170
    MULIT=1
    SSTT=SST
    OU 105 i = 1.100
    IF(SSTT .LT. 0.1) MULTT = MULTT + 1
    IFISSTT .LT. C.1) SSTT# SSTT*10.
    IF (SSTT.GE. O.1) GO TO 16t
        SSTmSSTT
    CONTINUE
    IF (MULTT .GT. MULTX) MLLTX = MULTT
    IF (MULIT -LT. MULTN) MULTN = MULTT
    IF IMULIN .EG. 1) MULTM = MULJX
    IF (K .EG. ICO) MULT*10.**((MULTX+NULTN)/2 - I)
    IF (K .EG. 100 .AND. MULTX .EG. 1) MULT=1.
i70 SLMA=SLMA+SST*&EXI
    O(K) = SUMA
180 DELTAX= 2*(XMAX-XMIN)/100.
    SUM=0.0
    OO 140 J=1,100
&G SUM = SUM+0(J)
    UC 1%5 J=1:100
195 U(J) - D(J)/SUM
    AMEND - 0.0
    DC 2CC K=1,100
200 AMEMO = AMEND+D2(K)*D(K)
    K=C
    D(K)=0.0
    CZ(K)= i.0
    SUF=0.0
    SUM2 = 0.U
    OU 21C J=1,100
    SUM = SUM+D(J)
    SUM1=SUML+D(J-1)
    IF (SUM.LT.ALPHAL) GO TO 210
    JJ= = - 1
    TLm=D2(J)-(D2(J)-D2(JJ))*(SUM-ALPHA1)/(SUH-SUM1)
    GC TO 22J
```

```
210 GENTINUE
220 D(101)=0.0
    SUMAL=0.0
    SU#A: O.
    02(101) = 0.
    DC 230 J=1:100
    JJ=1CC-J+1
    SUMAL=SUMAl+D(JJ+1)
    SUMA= SUMA*D(JJ)
    IF (SUMA.LT.ALPHA1) 60 TO 230
    J2= = J +1
    TUP*U2(dJ)+(D2(J2)=D2(d J))*(SUMA-ALPHA1)/(SUMA-SUMA1)
    GG 10 240
230 CCNIINUE
240 IF (IWR.EO.O) RETURN
    WRITE (* , 250)
250 FORHAT (LHI///5X,"DETEGTING CHANGES IN A GIVEN SERIES USING BAYESI
    IAN ANALYSIS",//5X,"POSTERIOR OISTRIBLTICN OF TIME OF CHANGEm,//5X,
    2*CHANGE*,1OX,MDISTRIBUTICN*,/)
        OO 260 j=2,N1
260 WRITE (% ,270) J, F(J)
270 FCRHAT (6x,13,12x,F8.3)
    WRITE (% ,280) AMEAN, AMODE
280 FORMAT(/5X,"MEAN DF THE OISTRIBUTION =*,FB.3/5X,MMODE GF THE UISTR
    1RIEUTIUN=%,F8.3/)
    WRITE (% ,290) TUPR, TLWR, ALFHA
290 FGRMA\ (/5X,MUPPER BAYESIAN LIMIT m@,FB.3/5X,*LOWER GAYESIAN LIMIT
    1=m,F8.3/5X,mCONFIDENCE LEVEL Em,F8.3)
    UR1TE (LU,3CO)
300 FCRMATI//Sx,"POSTERICR DISTRIBUTIEN GF AMOUNT OF CHANGE",//5x,"AMO
    LUNT *,LOX,"OISTRIBUTION*,/t
    OO 310 J=1,100
310 WRITE (LU,320) D2(J): D(J)
320 FOKMAT ( }4\textrm{X,F8,3y20X,F8.3)
    WRITE (LU,330) AMEND
330 FCRMAT (/5x,*MEAN GF THE DISTRIBUTION a*,FB.3/)
    WRITE (LU,340) TUP; TLW, ALPHA
340 FGRMAT (/5x, UPPER BAYESIAN LIMIT =%,F8.3/5X, "LCWER BAYESIAN LIPIT
    1.0,F8.3/5x,*CCNFICENCE LEVEL Em,F8.3/)
    RETURN
    END
```

