

TABLE 8-8. OPERATIONAL STATUS OF INFLOW CONVEYANCES TO LAKE OKEECHOBEE

Volume and Date of Discharge $\frac{1}{2}$

Inflow	4th	5th	6th*	7th*	8th*	To t al	Comments
S-65E	2261	2261	2975	2/		7497	A
S-84	555	167	204			926	
S - 154	_2/	· -	-				Ê
S-133	0	476	464			940	
S-191	770	916	474			2160	
S-135	0	377	361			738	
Culvert 11	-	-	-				В
Culvert 10		-	-	-			В
Culvert 12A		-	-	_			В
Culvert 12		-	-	-			В
S-2		1805	1123	0		2928	n
Culvert 4A		-	-	-			В
S-3		1075	240	843		2158	
S-236		_	-	-			D
Industrial C			-	-	-		С
S-4			460	0	0	460	·
Fisheating Ck			514	401	409	1324	
S-131			0	0	129	129	
S-71			1129	14 18	329	2876	
S-129			0	228	0	228	
S-72			169	0	· 0	169	
S-127	0	357	0			357	

September 1978

Total Inflow = 22890 acre-feet

NOTE: $\frac{1}{}$

Average Lake Stage on 9/4/78 = 16.40 ft (MSL)

Volumes are expressed in acre-feet. The time frame under consideration includes the date sampling occurred in the vicinity of the inflow conveyance plus 2 days prior to that date.

2/Blank means flows not applicable

- means no data available

COMMENTS: (A) Fairly continuous discharge prior to these dates.

- (B) Operated by private drainage districts. No discharge data available.
- (C) This waterway not gauged at this time.
- (D) Pump station under construction at this time.
- (E) Volume not calculated.

* indicates actual sample dates.

TABLE 8-9. OPERATIONAL STATUS OF INFLOW CONVEYANCES TO LAKE OKEECHOBEE

		Volume a	and Date	of Discha	rge <u>1</u> /		
		Ja	nuary 197	79			-
Inflow	7 t h	8th	9th*	<u>10th*</u>	11th*	Total	Comments
S-65E		356	586	697	<u>2/</u>	1639	A
S-8 4		351	577	375	-	1303	А
S-154		_ 2/	-	-	•		С
S -133		563	0	0		5 63	
S -19 1		799	934	432		2165	А
S-135		369	373	0	-	742	
Culvert 11	· ·	-	-	-			D
Culvert 10			-	-		•	D
Culvert 12A	-	-	· –				D
Culvert 12	. –	-	-				D
S-2	0	0	0				A
Culvert 4A	-	-	-				D
S - 3	0	0	0				
S -236	-	-					D
Industrial C.	-	-	-				E
S-4	387	0	• 0		•	387	A
Fisheating Ck			335	301	252	888	A
S -1 31			0	0	143	143	В
S-71			1422	1315	480	3217	A
S-129			264	0	244	508	В
S-72			246	0	188	434	
S-127	0	468	0			468	
· · ·				Total Inf	low = 12	2457 acre	e-feet

Average Lake Stage on 1/7/79 = 16.87 ft. (MSL)

NOTE:

1/

Volumes are expressed in acre-feet. The time frame under consideration includes the date sampling occurred in the vicinity of the inflow conveyance plus 2 days prior to that day.

<u>2/</u> Blank means flows not applicable - means flows not available

- COMMENTS: (A) Fairly continuous discharge prior to these dates.
 - (B) Small releases are made every 3 or 4 days.
 - (C) Structure on automatic. Discharge occurred daily. Volume not calculated.
 - (D) Operated by Private Drainage Districts. No discharge data available.
 - (E) This waterway was not gauged at this time.

*indicates actual sample dates

considerable discharge into the lake during both sampling periods; however, the total discharge during September 1978 was substantially greater than the January 1979 total. The major differences between the two periods was the much greater discharges from S-65E during September and the complete lack of discharge at S-2 and S-3 pumping stations during January 1979 compared to over 5,000 acre-feet of pumping at these two stations during the previous September.

Comparison of the four contour maps for inorganic nitrogen and total nitrogen clearly demonstrates the effect that backpumping the runoff from the Everglades Agricultural Area has on the nitrogen distribution in Lake Okeechobee.

For total nitrogen, the ambient concentration in the lake during September 1978 is represented by the Level 3 contours (2.00 to 3.00 mg/L) as indicated by Table 8-10. This contour represents approximately 57% of the total lake area.

Backpumping at S-3 resulted in Level 8 contours (7.00 to 8.00 mg/L) in the immediate vicinity of that pump station. These Level 8 contours represent a 2.0 square mile area. Level 7 contours (6.00 - 7.00 mg/L) in the same vicinity cover a 1.9 square mile area. Level 6 contours (5.00 to 6.00 mg/L) extend from S-3 to S-2 (3.7 square miles). Level 5 contours (4.00 to 5.00 mg/L) represent an 8.2 square mile area. Level 4 contours (3.00 to 4.00 mg/L) extended from the east to west sides of the South Bay area (11.4 square miles). The total area in the south end of the lake which had total nitrogen concentrations above the ambient level was equal to approximately 27 square miles or 4.4% of the lake's surface area.

-190-

TABLE 8-10 LAKE AREA WITHIN NITROGEN CONTOUR INTERVALS

Total Nitrogen

Inorganic Nitrogen

Contour Intervals	tour Sept.1978 Jan		Jan.1979	lan.1979 Contour		978	Ja n.1 979		
(mg/1)	sq.mi.	%	sq.mi %	(mg/1)	<u>sq.mi.</u>	%	<u>sq.mi.</u>	6/ /0	
<1.00	24.4	3.9		<0.50	5 94. 5	96.6	583.8	95,2	
1.00-2.00	211.6	34.3	515.0 84.0	0.50-1.00	8.5	1.4	29.2	4.8	
2.00-3.00	354.3	57.4	99.0 16.1	1.00-1.50	4.8	0.8			
3.00-4.00	11.4	1.8		1.50-2.00	2.7	0.4			
4.00-5.00	8.2	1.3		2.00-2.50	1.6	0.2	•		
5.00-6.00	3.7	0.6		2.50-3.00	1.1	0.2		at a	
6.00-7.00	1.9	0.3		3.00-3.50	2.3	0.4			
7.00-8.00	2.0	0.3					· ·		
8.00	•							•	
Mean (mg/L)	2.13		1.80		0.16		0.3	33	
Std. Dev.	1.31		0.42		0.61	• • •	0.2	20	

NOTE: Total lake area for Nitrogen maps = 615 sq. miles

-191-

A dilution effect is apparent in the north end of the lake during September. Level 1 contours (0.00 to 1.00 mg/L) in this area cover 24.4 square miles. Level 2 contours (1.00 to 2.00 mg/L) cover a more extensive area (210 square miles). From Tables 8-4 and 8-8, it is apparent that this dilution effect was primarily due to releases of water from S-65E (Kissimmee River). The total area diluted below ambient levels was equal to approximately 234 square miles or 38% of the total lake area.

Contour interval widths for inorganic nitrogen were set at 0.50 mg/L. During the September 1978 time frame (Figure 8-6) inorganic nitrogen concentrations above the ambient lake concentration (Level 1; 0.00 to 1.00 mg/L) were evidenced in the south end of the lake. The pattern of the contour intervals in this area was similar to that evidenced by the total nitrogen intervals for the same area and is most likely attributable to the pumping activity during this time.

In contrast, the January 1979 map for total nitrogen (Figure 8-7) indicates a very homogeneous nitrogen distribution. Only the Level 2 (1.0 - 2.0 mg/L N) and Level 3 (2.0 - 3.0 mg/L N) contours are required for this map. The major portion of the lake (84%) had total nitrogen values of less than 2.0 mg/L N. There was a tendency for somewhat higher nitrogen values to occur along the east shore of the lake although there is no apparent reason for this pattern.

The inorganic nitrogen distribution indicated an even more homogeneous lake with all but 5% of the lake having less than 0.5 mg/L N. As with the total nitrogen, the area of higher values was along the eastern edge of the lake. Agricultural runoff discharged into the lake via private facilities could be responsible for this slight increase in the nitrogen levels in this area, but no discharge data is available for these structures to confirm this.

-192-

Phosphorus

The total phosphorus data collected during September 1979 had a high degree of variability and thus was selected as one of the phosphorus distribution cases. The data collected during August 1979 had very little variability for phosphorus and was thus chosen as comparative sampling data.

Review of the hydrologic summaries in Tables 8-6 and 8-11 for these two periods indicate that over 10 times as much discharge was occurring during the September 1979 sampling as during the previous month. Of particular significance to the phosphorus picture was the fact that both S-191 and Fisheating Creek were discharging at a high rate during September and had high concentrations of phosphorus (Table 8-4).

As can be seen from Figure 8-8, the entire lake had a total phosphorus concentration of less than 0.1 mg/L P during August 1979. In contrast, almost 25% of the lake had total phosphorus concentrations above 0.1 mg/L P the next month as shown by Figure 8-9 and Table 8-12. Total phosphorus concentrations above level 10 (>0.90 mg/L) were recorded in the vicinity of S-191; however, only 58 square miles (9.5%) of the lake were affected in this quadrant compared to 86.4 square miles (14.0%) in the western quadrant (S-4 clockwise to S-129). Since the intensive littoral zone in the western quadrant was not sampled as intensively as other areas of the lake, the phosphorus contour levels in this area could be somewhat different than described by SYMAP.

-193-

TABLE 8-11. OPERATIONAL STATUS OF INFLOW CONVEYANCES TO LAKE OKEECHOBEE

17

Volume and Date of Discharge								
			Se	ptember	1979			
Inflow	8th	9th	10th*	<u>11th*</u>	<u>12th*</u>	<u>13th*</u>	Total	Comments
S-65E		753 9	9303	7061	<u>2/</u>		23723	A
S-84		2142	3709	3749			9600	
S-154		<u>- 2/</u>	-	-				E
S -1 33		0	978	274			1252	•
S -1 91		2844	3475	3310		• .	9629	А
\$-135		0	787	1188			1975	
Culvert 11		-	-	-				В
Culvert 10	-	-	-					В
Culvert 12A		-	-					B
Culvert 12	-	-	-			•		В
S-2	0	0	0		•			
Culvert 4A	-	-	. –					В
S-3	0	0	833				833	
S-236	-	-	0		•			D
Industrial C.	_	-	-					C
S-4				0	0	391	391	
Fisheating Ck				5078	4840	4939	14857	A
S-131				0	0	220	220	
S-71				3352	3590	4661	11603	А
S-129				0	0	432	432	
S-72				662	1033	126 5	2960	
S-127		0	373	0			373	
				Total	Inflow	= 778	48 acre-	feet
NOTE: $\frac{1}{1}$		Averag	e Lake	Stage o	on 9/8/7	9 = 14.	98 ft. (MSL)

Volumes are expressed in acre-feet. The time frame under consideration includes the date sampling occurred in the vicinity of inflow conveyance plus 2 days prior to that date.

2/Blank means flows not applicable - means flow not available

COMMENTS: (A) Fairly continuous discharge prior to these dates

- (B) Operated by private drainage districts. No discharge data available.
- (C) This waterway not gauged at this time.
- (D) Pumped for 19 hours on the 8th and 9th. Volume not calculated.
- (E) Structure on automatic. Discharge occurred daily. Volume not calculated.

*indicates actual sample dates.

-194-

	Total Phosphorus							
Contour Intervals (mg/l)	August sq. mi	1979 %	,	Sept. 1979 sq. mi. %				
<0.10	611. 3	99.7	1	467.7	76.3			
0.10-0.20	1.7	0.3		77.5	12.6			
0.20-0.30			,	61.5	10.0			
0.30-0.40				2.5	0.4			
0.40-0.50				1.2	0.2			
0.50-0.60				0.7	0.1			
0.60-0.70				0.4	0.1			
0.70-0.80				0.5	0.1			
0.80-0.90	· .			0.3	<0.1			
>0.90				0.2	<0.1			
Mean (mg/L)	0.055			0.123				
Std. Dev.	0.019			0.160				

TABLE 8-12 LAKE AREA WITHIN PHOSPHORUS CONTOUR INTERVALS

NOTE: Total lake area for phosphorus maps = 613 sq. miles

.

-197-

SUMMARY

During periods of heavy rainfall (August 1978), low conductivity water entering the lake from the north end had a dilution effect on the ambient water in the lake. The area of impact was approximately 116 square miles (or 19%) of the lake's surface area. Backpumped agricultural runoff from south of the lake tended to elevate the conductivity values in that portion of the lake. These elevated conductivity values encompassed a 68 square mile area (11% of the total lake area).

Nitrogen concentrations in Lake Okeechobee during September 1978 were elevated in the southern region due to the pumping of runoff from the Everglades Agricultural Area (EAA) at S-2 and S-3. Approximately 27 square miles (or 4.4%) of the lake had nitrogen concentrations which were elevated above ambient levels. The inorganic nitrogen was the fraction primarily responsible for these elevated values. Water discharged to the lake from conveyances in the northern half generally had lower nitrogen concentrations than the resident water in the lake. Due to this trend, discharges to the northern half of the lake tended to dilute the ambient nitrogen concentrations in the lake.

Water entering the northern and western regions of the lake during September 1979 tended to increase the phosphorus levels in this portion of the lake. A larger area was affected in the western region (86 square miles or 14% of total lake area) than in the northern region (58 square miles or 9% of total lake area). Phosphorus entering other areas of the lake seemed to have no effect on the ambient phosphorus concentrations in those areas. Ortho phosphorus was the fraction primarily responsible for increasing the phosphorus concentration in the lake.

-198-

CHAPTER IX TROPHIC STATE ASSESSMENT

INTRODUCTION

The process of increasing the nutrient content and productivity of a lake is commonly called eutrophication. A leading entity in eutrophication research, the Organization for Economic Cooperation and Development, defined lake eutrophication as "...the nutrient enrichment of waters which results in an array of symptomatic changes among which are the production of algae and other aquatic plants, the deterioration of fisheries, the deterioration of water quality, and other changes which are found objectionable and interfere with water use." The trophic state of a lake can impact the biological integrity, the water quality, and the alternative water uses of the resource (Table 9-1). The major quantitative determinant of trophic state in a lake is the nutrient concentrations in the water. In turn, these concentrations depend on external nutrient loadings to the lake, internal loadings (retention in the biomass and sediments), and the rate of lake flushing. Though many nutrients are required for algal growth, phosphorus and nitrogen are the most common limiting nutrients for net primary production, and thus the standing crop biomass of algae and nuisance aquatic weeds in the lake. Although the majority of research efforts have been aimed at phosphorus management, both nutrients will be considered here.

Several researchers have applied current eutrophication modeling and trophic state assessment techniques to Lake Okeechobee (Brezonik and Federico 1975; Miller 1978; Dickson et al. 1978; Brezonik et al 1979; Kratzer and Brezonik 1980). These researchers relied, however, upon data bases that were either individually incomplete or, taken as a group,

-199-

TABLE 9-1. TROPHIC STATE CHARACTERISTICS

Nutrient	OLIGOTROPHIC MESOTRO	PHIC EUTROPHIC HYPERTROPHIC				
Supply	Under Fed	Well Fed Overfed				
· .						
Biological	Low Productivity	High Productivity				
	High Diversity	Low Diversity				
	Low Biomass	Blue-Green Trash Fish				
· · · · · · · · · · · · · · · · · · ·		High Biomass				
Water Quality	Clear	Turbid				
	Well Oxygenated	Occasional Anoxic Oxygen Conditions Deficiencies				
	Low Nutrients	High Nutrients				
Water Use	Good Drinking Water	Fair Drinking Poor Drinking Water Water Irrigation Supplies				
	Good Aesthetics/ Recreation	Fair Aesthetics/ Poor Aesthetics/ Good Recreation Recreation				
• • •	Limited Fish & Wildlife	Good Fish & Poor Fish & Wildlife Wildlife				

were inconsistent in data collection methodologies and time frames. Sampling sites, collection frequency, parametric coverage, and period of record varied considerably among the data base. Previous studies were usually just one year in duration, which necessitated the combination and extrapolation of 3 or 4 different studies in order to get an adequate data base by which to evaluate the trophic state of the lake.

1.1

This report represents the first long term comprehensive study which includes both a long period of record (seven years) and a comprehensive and consistent data collection methodology. The previous chapters have evaluated seven year trends and spacial variations in the lake's water quality and have documented the quality and volumes of water entering the lake. In this chapter the quantitative relationships between nutrient loading rates to Lake Okeechobee and the trophic state response of the lake are examined using a consistent, long term data base.

The applicability of several simple empirical and semi-theoretical predictive models to the lake is assessed by comparing observed values for total phosphorus and total nitrogen to the values predicted using nutrient loadings, and morphometric and hydrologic data. The present trophic state of the lake is examined by comparison of average values for several trophic state indicators with critical values for these indicators in the literature. In addition, the lake's trophic state is quantified, using a trophic state index based on four trophic indicators. Finally, several recent input-output models will be assessed to determine the appropriate model to be applied to Lake Okeechobee. An analysis of trophic state probability will then be applied to this model.

=201-

REVIEW OF TROPHIC STATE ASSESSMENT TECHNIQUES

1. Trophic State Indicators

Several attempts have been made to establish trophic state criteria against which to judge the trophic state of a lake. These include commonly measured water quality parameters, primarily total phosphorus, ortho phosphorus, total nitrogen, inorganic nitrogen, Secchi disk transparency, and chlorophyll <u>a</u>. The available critical values (above or below which eutrophic conditions can be expected in a lake) for these parameters are presented in Table 9-2. With the exception of the Kratzer (1979) values, these critical values were determined from northern temperate lake data bases. The Kratzer (1979) data base, however, consisted of 40 Florida lakes (including Lake Okeechobee) from the EPA National Eutrophication Survey. Thus, the corresponding critical values from the Kratzer study are probably more appropriate to Lake Okeechobee.

2. Trophic State Indices

Trophic state indices (TSI) are useful in quantifying trophic conditions in a lake. The recent demand for quantitative indices or semi-quantitative trophic state rankings by water managers and regulatory agencies has resulted in the development of several trophic state indices. Several investigators have developed ranking schemes for a closed data set based on the average rankings of several trophic indicators (Lueschow et al., 1970; Michalski and Conroy, 1972; EPA, 1974). For example, the EPA developed a water quality index to rank the lakes of the NES based on six parameters; however, since such an index simply provides a relative trophic ranking, its interpretation is totally dependent upon the nature of the data base. These indices would probably not provide a useful assessment of Lake Okeechobee's trophic state.

-202-

Parameter <mark>2/</mark>	Kratzer 1979	NES 1975	Sawyer <u>3/</u> 1947	Vollenweider 1968	Chapra & Tarapchak 1976	NAS + NAE <mark>4/</mark> 1973	Bennedorf 1979	Carlson 1977
Secchi Disk	-	<2.0	• • - •	-	_		. –	_
Chlorophyll <u>a</u>	>10.0	>10.0	· _ ·		>8.8	>10.0	-	>6.0
Total Phosphate	>0.040	>0.020	-	>0.020	-	-	-	-
Ortho phosphate	-	-	>0.010	>0.010	-	-	>0.010	-
Total Nitrogen	>0.90	-	-	-	-	-	-	
Inorganic Nitrogen	-	-	>0.30	>0.30	-	- -	-	-

TABLE 9-2. CRITICAL VALUES $\frac{1}{2}$ FOR TROPHIC STATE PARAMETERS

 $\frac{1}{2}$ Critical value = value above (or below) which eutrophic conditions can be expected in a lake.

 $\frac{2}{2}$ Secchi disk in m; chlorophyll <u>a</u> in $\mu g/L$; nutrient concentrations in mg N or P/L

 $\frac{3}{1}$ In Vollenweider (1968); p. 66.

-203-

4/ National Academy of Sciences and National Academy of Engineering, in Chapra and Tarapchak (1976), p. 1261. Several absolute, quantitative or semi-quantitative trophic state indices have been proposed recently (Bortleson et al. 1974; Wisconsin Dept. of Natural Resources 1975; Uttormark and Wall 1975; Carlson 1977; Shannon and Brezonik 1972). Bortleson et al.(1974), Uttormark and Wall (1975), and the Wisconsin DNR (1975), based their indices on semi-quantitative ratings of several trophic state indicators. For example, Uttormark and Wall (1975) developed a lake condition index based on somewhat subjective numerical ratings in four categories (1) dissolved oxygen; (2) transparency; (3) fish kills; and (4) use impairment. Despite its simplicity and readily attainable data requirements, the index relies on subjective and nonquantitative parameters which limit its applicability for water quality management.

In their study of 55 lakes in north central Florida, Shannon and Brezonik (1972) used principal component analysis to develop a multivariate TSI. The resulting equation requires the following variables: Secchi disk transparency, specific conductivity, total organic nitrogen, total phosphorus, primary productivity, chlorophyll <u>a</u>, and Pearsall's cation ratio ((Na+K)/(Ca+Mg)). The advantage of this multivariate approach is that an erroneous measurement of a single variable may not lead to misclassification as with a univariate approach. However, although the Shannon and Brezonik data base was entirely Florida lakes, Lake Okeechobee was not included. Also, the specific conductivity for Lake Okeechobee is outside the range of values found in the Shannon and Brezonik data base; therefore, the Shannon and Brezonik TSI should not be applied to Lake Okeechobee.

Carlson (1977) based his TSI on a simple transformation of the Secchi disk transparency such that a transparency of 64 m has a TSI value of 0

-204-

and a transparency of 6.2 cm has a TSI value of 100. The index was developed so that a doubling, or halving, of the transparency results in a 10 unit change in the TSI value. Carlson then used regression analysis to relate transparency to total phosphorus concentration, and to chlorophyll a concentration. A similar TSI based on total nitrogen concentration was developed by Kratzer (1979) from the primarily nitrogen limited Florida NES data base. The lesser of TSI (TP) and TSI (TN) should represent the limiting nutrient for any given lake and was averaged with the corresponding TSI (SD) and TSI (CHA) values to compute a TSI (AVG). This allows one to combine the physical response (SD), the biological response (CHA), and the limiting nutrient (either TP or TN). TSI (AVG) has several advantages for use on Lake Okeechobee, including its simplicity, small data requirements, objectivity, reliance on common and well understood trophic indicators, and its proven classification ability with the Florida NES lakes (Kratzer, 1979). Therefore, TSI (AVG) will be the trophic state index used to classify Lake Okeechobee along with the trophic state indicators and input-output models.

3. Nutrient Prediction Equations

The development of quantitative guidelines (management criteria) with regard to the eutrophication of lakes is dependent upon being able to adequately predict the nutrient concentrations in the lake from the nutrient loading rates and the lake's mean depth and water residence time. The nutrient concentrations in the lake are then related to the algal biomass in the lake (as measured by chlorophyll <u>a</u>), which is further related to water clarity (as measured by Secchi disk transparency). The equations used to predict nutrient concentrations are derived from the nutrient mass balance equations.

-205-

a. Phosphorus Equations

J

In its most general form the phosphorus mass balance can be expressed as (Reckhow 1978):

$$dP/dt = J - L_{out} - \sigma_p (J, L_{out}, (\overline{P})_1, Ca, Fe, A1, pH, 0_2,$$

(1)

 $^{\tau}\omega$, \overline{z} , V, biological uptake,....)

where, dP/dt = change in P storage in lake, g P/yr

Р	=	mass	of	phosphorus,	g	

= Pflux into lake, g P/yr

Lout	2	rate of P export from lake, g P/yr $(=_{P_{\omega}}P)$
^σ p	₩.	P sedimentation rate coefficient, yr ⁻¹
τ ω	Ξ	water residence time, yr (=V/Q _{surface out})
٥	 ≖	water renewal rate, yr^{-1} (=1/ τ_{μ})

Thus, the removal of phosphorus from a lake occurs through two pathways: (1) the outflow (L_{out}) ; and (2) sedimentation $(\sigma_p (J, L_{out}, (\overline{P})_1, ...))$. The phosphorus sedimentation rate coefficient is actually a "catch-all" that accounts for all phosphorus losses other than those through the lake outlet, and changes in the total phosphorus content of the water. It is dependent on the influx and efflux of phosphorus, lake geomorphology and hydrology, the dissolved oxygen concentration and pH at the sediment-water interface, major cations that combine with phosphorus and transport it to or hold it in the sediments, and net macrophyte and fish uptake of phosphorus.

Vollenweider (1969) expressed the phosphorus mass balance in the following simplified form:

$$dP/dt = J + L_{out} - S$$

where, S = rate of P sedimentation, g P/yr (= σ_p P) Thus, the rate of phosphorus deposition to the sediments is assumed to be proportional to the total mass of phosphorus in the lake. The mass balance model is thus a highly simplified and aggregated representation of the phosphorus balance for a lake. It treats the lake as a completely mixed reactor, and the basic time unit of the model is a year, thus eliminating complications arising from seasonal variations. The model lumps all external sources of phosphorus in one term, J (g P/yr), and it accounts for all phosphorus losses in two terms representing sedimentation and hydraulic loss via the outflow. Thus, the model describes the change in total phosphorus concentration in a lake (expressed as an annual average) as the difference between the source term and the two loss (sink) terms. It should be noted that the Vollenweider model considers only net sedimentation (i.e., the release of P from the sediments is not considered as an independent process).

Under steady-state conditions (time-invarying rates for all source and sink terms) the solution to Vollenweider's (1969) mass balance is:

 $dP/dt = 0 = J - L_{out} - S = J - \rho_{\omega} P - \sigma_{p} P$

 $J = P(\rho_{\omega} + \sigma_{p}), \text{ so } P = J/(\rho_{\omega} + \sigma_{p}), \text{ or}$ $(\overline{P})_{1} = J/V(\rho_{\omega} + \sigma_{p}) = L_{p}/\overline{z}(\rho_{\omega} + \sigma_{p}) \qquad (3)$

where $(\overline{P})_{1}$ = average total phosphorus concentration in lake, mg P/L L_p = areal total phosphorus loading rate, g P/m²-yr V = lake volume, m³ \overline{z} = lake mean depth, m

(2)

Several equations have been proposed recently for predicting total phosphorus concentrations based on (3) using different estimates for σ_p (Vollenweider 1975, 1976; Dillon and Kirchner 1975; Chapra 1975; Jones and Bachmann 1976). Using equation (3) to define σ_p , Vollenweider (1975) found that σ_p could be estimated by,

 $\sigma_p = \ln 5.5 = 0.85 \ln \overline{z}$ (r = 0.79), or $\sigma_p \cong 10/\overline{z}$ Substituting the above value for σ_p into (3) produces Vollenweider's (1975) total phosphorus predictive equation:

TP =
$$L_p / \overline{z} (\rho_{\omega} + 10/\overline{z}) = L_p / (10 + q_s)$$
 (4).

In more recent work, Vollenweider (1976) proposed a new estimate for $\sigma_{\rm p}$, $\sigma_{\rm p} = \sqrt{\tau_{\omega}} / \tau_{\omega}$, which, upon substitution into (3) produced the following predictive equation:

$$TP = L_{p}/q_{s} (1 + \sqrt{\tau}_{\omega})$$
 (5).

(6)

Because of the difficulties in directly measuring σ_p (and the fact that it really represents a composite sink coefficient), Dillon and Rigler (1975) proposed a model using a new variable, R_{exp} , the phosphorus retention coefficient. R_{exp} is the fraction of influent phosphorus retained in the lake on an annual basis and can be expressed as:

$$R_{exp} = (P_{in} - P_{out} 0 / P_{in})$$

where, $P_{out} = Q_{out} (\bar{P})_{o}$

 $(\overline{P})_{o}$ = average outflow phosphorus concentration, mg P/L

 Q_{out} = surface outflow rate, m³/sec

Since $P_{in} = L_p A$ and $Q_{out}/A \sim q_s$ (assuming $Q_{out} = Q_{in}$),

-208-

 $R_{exp} = (L_pA - Q_{out}(\overline{P})_0) / L_pA$, and

$$R_{exp} = (L_p - q_s (\overline{P})_o) / L_p = ((L_p/q_s) - (\overline{P})_o) / L_p/q_s).$$

It was assumed that $(\overline{P})_0 = (\overline{P})_1$. Reckhow (1979) has shown this assumption to be strongly supported by available data. Thus, the Dillon and Rigler (1975) total phosphorus predictive equation becomes:

(7)

$$R_{exp} L_p/q_s = L_p / q_s - (\overline{P})_1, \text{ or}$$

 $TP = (\overline{P})_{1} = L_{p} (1 - R_{exp}) / q_{s}$

In its original form this equation was proposed to be used with a predictive equation for R_{exp} based on a double regression of R_{exp} versus q_s derived by Kirchner and Dillon (1975). However, predictive equations for R_{exp} were found to be unsuccessful for Florida lakes (Hand 1975, Kratzer 1979).

The Vollenweider (1975, 1976) and the Dillon and Rigler (1975) predictive equations were modified to better fit the Florida NES data base by Kratzer (1979). The Florida NES data base represents the best available nutrient budgets for a large group of Florida lakes. All of the predictive equations were normalized by log transformations of both $(\overline{P})_1$ and the original prediction parameters (i.e., L_p , q_s , The original equations were then modified by R_{avn}). least squares regression of the original model and the Florida NES $(\overline{P})_1$ data in order to improve the predictive ability of the equations as measured by the r^2 value and the coefficient of variation (C.V.). The degree to which these models can be modified to better fit Florida lakes is partially a function of the accuracy of the nutrient budgets. Figure 9-1 presents a prediction of the acceptability of the NES phosphorus budgets. Twenty-two of the 29 Florida NES lakes fell

within the acceptable limits as described by Rast and Lee (1971), indicating that as a group, the NES phosphorus loading estimates appear to be of a reasonable nature. Table 9-3 presents the modified predictive equations along with the corresponding r^2 value and the coefficient of variation. The r^2 value for the three modified phosphorus predictive equations were all high, ranging from 0.79 to 0.91. The resulting modified equations for the Vollenweider (1975, 1976) and the Dillon and Rigler (1975) equations respectively are:

$$TP - 0.843 (L_{p} / (10 + q_{s}))^{0.795}$$
(8)

$$P = 0.682 \left(L_p / \left(q_s \left(1 + \sqrt{\tau}_{\omega} \right) \right)^{0.934}, \text{ and}$$
(9)

$$TP = 0.748 \left(L_{p} \left(1 - R_{exp} \right) / q_{s} \right)^{0.862}$$
(10)

b. Nitrogen Equations

The nitrogen mass balance in a lake can be expressed by the following equation:

$$dN/dt = N_{in} - N_{out} + N_{fix} - N_{sed} - N_{den}$$
(11)

where, dN/dt = change in N storage in lake, g N/yr

N = mass of nitrogen, g

N_{in} = N flux into lake, g N/yr

 $N_{out} = N$ efflux through outflow, g N/yr (= ρ_{ω} N)

N_{fix} = rate of N fixation, g N/yr

 N_{sed} = rate of sedimentation, g N/yr

N_{den} = rate of denitrification, g N/yr

In general, N_{fix} and N_{den} are not determined, and thus they are considered as part of a composite net loss coefficient, σ_N . The

TABLE 9-3. TOTAL PHOSPHORUS AND TOTAL NITROGEN PREDICTIVE EQUATIONS

	Original Equation	Modified Equation			
Predictive Equation	Investigator	Eqn. No. in text.	<u>n^{3/}</u>	<u>r</u> 2	<u>c.v.</u>
Phosphorus: $\frac{1}{}$ TP = 0.843 [L _p /(10 + q _s)] 0.795	Vollenweider (1975)	4	28	0.84	24.0
TP = 0.748 $[L_p(1 - R_{exp})/q_s]^{0.862}$	Dillon and Rigler (1975)) 7	25	0.91	14.8
TP = 0.682 [L _p /(q _s (1 + $\sqrt{\tau}_{\omega}$))] ^{0.934}	Vollenweider (1976)	5	29	0.79	31.3
Nitrogen: ^{2/}	Original Basis for Equat	tion	<u>n</u>	<u>r²</u>	<u>c.v</u> .
TN = 2.85 $[L_N/(10 + q_s)]^{0.216}$	Vollenweider (1975)		27	0.30	
TN = 0.899 [L _N (1 - R_{exn})/q _s) ^{0.976}	Dillon and Rigler (1975))	24	0.77	47.6
TN = 1.29 $[L_N/q_s (1 + \sqrt{\tau}_{\omega}))]^{0.858}$	Vollenweider (1976)		27	0.55	67.9

- $\frac{1}{2}$ For each predictive phosphorus equation, TP = a [original equation]⁶ where a and b are constants determined by the regression.
- $\frac{2}{}$ For each nitrogen predictive equation the original equation was a total phosphorus predictive equation with L_p and R_{exp} replaced by L_N and R_{exn}. Thus, TN = a [transformed original equation]⁶ where a and b are constants determined by regression.
- $\frac{37}{10}$ N is the number of NES Florida lakes included in the regression. (From Kratzer 1979)

loss term also includes sedimentation and will be considered as a function of the total mass of nitrogen in the lake, _NN. Thus, analogous to the mass balance for phosphorus, the mass balance for nitrogen can be simplified to:

 $dN/dt = N_{in} - \rho_{\omega} N - \sigma_{N} N$ (12) which, at steady-state is:

$$dN/dt = 0 = N_{in} - N(\rho_{\omega} + \sigma_{N})$$

or, $N_{in} = N(\rho_{\omega} + \sigma_{N})$, $N = N_{in}/(\rho_{\omega} + \sigma_{N})$
or, $(\overline{N})_{1} = N_{in}/V(\rho_{\omega} + \sigma_{N}) = L_{N}/\overline{z}(\rho_{\omega} + \sigma_{N})$ (13)

where, $(\overline{N})_1$ = average total nitrogen concentration in lake, mg N/L

 L_N = areal total nitrogen loading rate, g N/m²-yr Similar to σ_p , σ_N represents the portions of the nitrogen budget which are not measured. However, no suitable estimates of σ_N were found by Kratzer (1979).

The equations used to predict the total nitrogen concentration in this chapter were based on the Vollenweider (1975, 1976) and the Dillon and Rigler (1975) phosphorus equations (Kratzer 1979). The equations take the form of the original phosphorus equations with L_N and R_{exn} substituted for L_p and R_{exp} , and were modified to better fit the Florida NES data, based in the same way as the phosphorus equations were. The acceptability of the NES nitrogen budgets is displayed in Figure 9-2. As was the case of the NES phosphorus loading, the nitrogen loadings also appear to be reasonable (23 out of 27 lakes fell within the acceptable limits). The resulting modified Vollenweider (1975, 1976) and Dillon and Rigler (1975) nitrogen equations are, respectively:

-213-

$$TN = 2.85 \left(L_{N} / (10 + q_{e}) \right)^{0.216}$$
(14)

TN = 1.29
$$(L_N / (q_s (L + \sqrt{\tau}_{\omega})))^{0.858}$$
 (15)

TN = 0.899 (
$$L_N$$
 (1 - R_{exn}) / q_s) 0.976 (16)

The r^2 values for the nitrogen predictive equations were lower than for the phosphorus predictive equations, ranging between 0.30 and 0.77 (Table 9-3).

4. Nutrient Loading Models

Since the first nutrient loading model was published by Vollenweider (1968) more than a decade ago, numerous workers have modified the basic model or developed new models in order to derive nutrient loading rate criteria for water quality management purposes (Vollenweider 1975, 1976; Shannon and Brezonik 1972; Dillon 1975). Also, many statistical and empirical models have been developed from limited data bases (geographically and lake types). For the purposes of this report, only the theoretical and semi-theoretical models mentioned above will be considered, along with the corresponding modifications for Florida lakes (Kratzer 1979).

There are two critical levels (excessive and permissible) associated with nutrient loading models. The excessive level represents the loading rate above which a lake has a high probability of proceeding to a eutrophic/hypereutrophic (high nutrient-high productivity) state. The permissible level represents the loading rate below which a lake has a high probability of maintaining an oligotrophic (low nutrientlow productivity) state.

a. Phosphorus Models

The initial Vollenweider (1968) model was derived from welldocumented inverse relationships between mean depth and various

-215-

measures of water quality. Based on available data and his subjective judgment on lake quality, Vollenweider estimated critical phosphorus loading levels as a function of mean depth using the following equation:

0.6

(17)

The graphical representation of the Vollenweider (1968) model is shown in Figure 9-3.

 L_c (P) excessive = 0.05 \overline{z}

Shannon and Brezonik (1972) developed a model identical in form to the Vollenweider (1968) model, except with different phosphorus critical loading levels (Figure 9-4). Regression analysis between nutrient loading levels and the Shannon and Brezonik (1972) TSI was used to determine the critical phosphorus loads. The excessive volumetric phosphorus loading rate for the model is:

 $L_{c} (P)_{excessive} = 0.22 \text{ g/m}^{3} - \text{yr}$ (18)

Although these early models provided useful information and insight into the relationship between nutrient loading rates and trophic state, it was later discovered that a lake's response to loadings also depended on the water residence time and hydraulic loading rate of a lake (Vollenweider 1975, 1976; Dillon 1975). Vollenweider (1975) hypothesized there is to be two basic hydraulic zones of response to phosphorus loading: (1) for low hydraulic loading rates (q_s) the critical volumetric phosphorus loading rate is proportional to the phosphorus sedimentation rate coefficient (σ_p) only ($L_c(P) \sim constant$), and (2) for high

-216-

hydraulic loading rates the critical volumetric phosphorus loading rate is proportional to the hydraulic flushing rate (ρ_{ω}) only ($L_c(P) \sim constant \cdot q_s$). This reasoning produced Vollenweider's (1975) phosphorus predictive equation (4), which is the basis of his critical phosphorus loading rates (Figure 9-5) using a critical total phosphorus concentration of 0.020 mg P/L (Table 9-2). Thus, the equation for Vollenweider's (1975) model is:

$$L_{o}(P)$$
 excessive = $\frac{0.20 + 0.020 \, q}{s}$ (19)

Dillon (1975) also recognized the importance of the hydraulic loading rate by proposing a phosphorus loading model based on Dillon and Rigler's (1975) phosphorus predictive equation (7). Although Dillon proposed the use of Kirchner and Dillon's (1975) R_p predictive equation in his model, the measured R_{exp} will be used in this study due to poor predictions for R_p from Florida data bases. Dillon's model of L_p (1- R_p) versus \overline{z} delineates trophic state according to a line representing a critical predicted total phosphorus concentration of 0.020 mg P/L (Figure 9-6) according to the following equation:

 $L_{c}(P)_{excessive} \approx 0.020 q_{s} / (1-R_{exp})$ (20)

In Vollenweider's (1976) most recent model (Figure 9-7) he considers the effects of both water residence time and the hydraulic loading rate on trophic state determination. His resulting critical phosphorus loading criteria consider a critical total phosphorus value of 0.020 mg P/L in his predictive equation (5). This produces the following equation describing the excessive loading rate:

$L_{c}(P)_{excessive} = 0.020 q_{s} (1 + \sqrt{\tau}_{\omega})$ (21)

The Vollenweider (1975) and Dillon (1975) models were modified to better fit the Florida NES data base (Kratzer 1979) because Florida lakes appear to be able to withstand higher total phosphorus concentrations (and correspondingly higher P loading rates) before reaching the same level of algal biomass as would be found in north temperate lakes. This phenomena is illustrated in Figure 9-8. The increased allowable loadings for the Vollenweider (1975) and Dillon (1975) models are based on regressions of $(\overline{P})_1$ and Chl-<u>a</u> predictive equati ns versus critical values 0.040 mg P/L and 10 g/L, respectively. This procedure was also followed in this study to produce a modified loading criteria for the Vollenweider (1976) model. The resulting modified loading criteria for the Vollenweider (1975), Dillon (1975), and Vollenweider (1976) models (see Figures 9-5, 9-6, and 9-7, respectively) are:

 L_{c} (P) excessive = 0.20 + 0.050 q_s (22)

$$L_{c} (P)_{excessive} = 0.034 q_{s} / (1-R_{exp})$$
(23)

$$L_{c} (P)_{excessive} = 0.048 q_{s} (1 + \sqrt{\tau}_{\omega})$$
(24)

For all the models discussed above, except the Shannon and Brezonik (1972) model, the permissible loading rate (delineating oligotrophic/mesotrophic states) is half of the excessive criteria. For Shannon and Brezonik the permissible and excessive loads were based on TSI values. The critical phosphorus loading

-223-

equations are summarized in Table 9-4.

b. Nitrogen Models

The nitrogen version of the Vollenweider (1968) model is derived from the phosphorus criteria using an assumed total N/ total P ratio of 15 by weight. Thus, the critical nitrogen loading equation for the model represented in Figure 9-3 is:

 $L_{c} (N)_{excessive} = 0.750 \overline{z}$ Similarly, Shannon and Brezonik (1972) assumed a 15:1 molar ratio (\sim 7.2:1 by weight) for total N/total P to devise their critical nitrogen loading criteria (Figure 9-5):

 $L_{c} (N)_{excessive} = 1.5 \text{ g/m}^{3} \text{-yr}$ (26)

Nitrogen predictive equations were developed from the Vollenweider (1975), Dillon (1975), and Vollenweider (1976) phosphorus models by substituting L_N and R_{exn} for L_p and R_{exp} in the phosphorus predictive equations, and regressing these equations versus the total nitrogen concentrations for the Florida NES data base (equations 14 - 16). The critical loading rates for the modified Dillon (1975) and Vollenweider (1976) nitrogen models are based directly on these predictive equations with a critical nitrogen concentration of 0.90 mg N/L. For the modified Vollenweider (1975) nitrogen model, the critical loading rate is based on a regression of L_N/q_s versus Chl-<u>a</u> for the Florida NES lakes, considering a critical Chl-<u>a</u> value of 10 µg/L. The resulting loading criteria for the modified Vollenweider (1975), Dillon (1975), and Vollenweider (1976) nitrogen models (Figures 9-9, 9-10 and 9-11, respectively) are:

-225-

· ·	Model	Phosphorus Equations	Nitrogen Equations
٦.	Vollenweider (1968)	$L_{c}(P)_{exc.} = 0.050 \overline{z}^{0.6}$	$L_{c}(N)_{exc.} = 0.750 \overline{z}^{0.6}$
		$L_{c}(P)_{perm.} = 0.025 \ \overline{z}$	$L_{c}(N)_{perm.} = 0.375 \overline{z}$
2.	Shannon & Brezonik	$Lc(P)_{exc} = 0.22 \text{ g/m}^3 - \text{yr}$	$L_{c}(N)_{exc} = 1.5 \text{ g/m}^3 \text{-yr}$
	(1972)	L _c (P) _{perm.} = 0.12 g/m ³ -yr	L _c (N) _{perm.} = 0.86 g/m ³ -yr
3.	Vollenweider (1975)	$L_{c}(P)_{exc} = 0.20 + 0.020 q_{s}$	
	• • • · ·	$L_{c}(P)_{perm.} = 0.10 + 0.010 q_{s}$	
4.	Modified Vollenweider	$L_{c}(P)_{exc} = 0.20 + 0.050 q_{s}$	$L_{c}(N)_{exc} = 3.0 + 1.10 q_{s}$
	(1975) (Kratzer 1 9 79)	L _c (P) _{perm.} = 0.10 + 0.025 q _s	$L_{c}(N)_{perm.} = 1.5 + 0.55 q_{s}$
5.	Dillon (1975)	$L_{c}(P)_{exc.} = 0.020 q_{s}/(1-R_{p})$	
		$L_c(P)_{perm} = 0.010 q_s/(L-R_p)$	
6.	Modified Dillon 1975)	$L_{c}(P)_{exc} = 0.034 q_{s}/(1-R_{p})$	$L_{c}(N)_{exc} = q_{s}/(1-R_{N})$
	(Kratzer 1979)	$L_{c}(P)_{perm.} = 0.017 q_{s}/(1-R_{p})$	$L_{c}(N)_{perm.} = 0.5 q_{s}/(1-R_{N})$
7.	Vollenweider (1976)	$L_{c}(P)_{exc} = 0.020 q_{s}(1 + \sqrt{\tau}_{\omega})$	
		$L_{c}(P)_{perm.} = 0.010 q_{s} (1 + \sqrt{\tau}_{\omega})$	
8.	Modified Vollenweider	$L_{c}(P)_{exc} = 0.048 q_{s}(1 + \sqrt{\tau}_{\omega})$	$L_{c}(N)_{exc.} = 0.66 q_{s}(1 + \sqrt{\tau}_{\omega})$
	(1976)	$L_{c}(P)_{perm.} = 0.024 q_{s} (1 + \sqrt{\tau}_{\omega})$	$L_{c}(N)_{perm.} = 0.33 q_{s} (1 + \sqrt{\tau}_{\omega})$

TABLE 9-4, CI	RITICAL	EQUATIONS	FOR	NUTRIENT	LOADING	MODELS

.

NOTE: exc. = excessive perm. = permissible

-226-

Vollenweider (1975) model classified the lake correctly six of the seven years based upon phosphorus; however, it classified the lake correctly for only one year based upon nitrogen. The Shannon and Brezonik model (1972) correctly classified the lake for each year based upon nitrogen; however, it did not correctly classify the lake for any of the years based upon phosphorus. The modified Dillon (1975) model correctly classified the lake 50 percent of the time based upon both phosphorus and nitrogen. The Vollenweider (1968) and Vollenweider (1976) models were the least accurate in classifying the lake. Therefore, based upon the trophic state classifications, the modified Vollenweider (1976) model appears to be the most applicable model for Lake Okeechobee.

The second criterion in evaluating the applicability of the eight models to Lake Okeechobee involves the data base on which the models were developed. Table 9-10 presents the eight models, along with the general geographic region in which the model development lakes were located. The Vollenweider (1968), Vollenweider (1975), Dillon (1975), and Vollenweider (1976) models were developed for temperate lakes and, therefore, are probably the least applicable to Lake Okeechobee. The Shannon and Brezonik (1972) model was developed using a data base consisting of lakes located in Florida; however, Lake Okeechobee was not included among the lakes. The modified models of Vollenweider (1975), Dillon (1975), and Vollenweider (1976) were developed from a data base of Florida lakes which included Lake Okeechobee. Based upon the most pertinent data base, it would appear that one of the latter three models (modified Dillon 1975 or modified Vollenweider 1975, 1976) would be the most applicable to Lake Okeechobee

-227-

-

$$L_{c} (N)_{excessive} = 3.0 + 1.10 q_{s}$$
 (27)

$$L_{c} (N)_{excessive} = q_{s} / (1 - R_{exn})$$
(28)

$$L_{c} (N)_{excessive} = 0.66 q_{s} (1 + \sqrt{\tau_{\omega}})$$
 (29)

As with the phosphorus models, all the above nitrogen models (except Shannon and Brezonik) consider the permissible loading rate to be half the excessive rate. For the Shannon and Brezonik model, the excessive and permissible rates are based on TSI values. The critical nitrogen loading equations are summarized in Table 9-4.

5. Trophic State Probability Analysis

Uncertainty is present in all the trophic state predictive equations, and the loading models based on the equations. In fact, uncertainty is present in most water quality assessments, simply because sampling is not continuous through time and space. All models are by definition simplifications of reality and are, therefore, imprecise. The uncertainty associated with model predictions can be used to weigh the value of the predictions. This uncertainty can be expressed in terms of probability. Reckhow (1978) combined the uncertainty in nutrient loading with the uncertainty in a model to estimate the total prediction uncertainty, expressed as the probability that a lake will fall in each of the three trophic states.

The information required to apply probability analysis to trophic state models includes: model standard error, loading uncertainty, measured nutrient concentrations, trophic state delineation values, and predicted nutrient values. The total prediction uncertainty

-231-

is related to the model standard error and the loading uncertainty by:

$$S_T^2 = S_m^2 + S_L^2$$
 (30)

where,

 S_{T} = total prediction uncertainty

 $S_m = model standard error$

 $S_1 = uncertainty in loading (=kL)$

The model standard error is calculated by the following equation:

$$S_{m} = \sqrt{\frac{\prod_{i=1}^{n} (P_{ob} - P_{e})^{2}}{\prod_{i=1}^{n} n - 2}} \quad \text{or} \quad \sqrt{\frac{\prod_{i=1}^{n} (N_{ob} - N_{e})^{2}}{\prod_{i=1}^{n} n - 2}} \quad (31)$$

where, P_{ob}, N_{ob} = measured total P or N concentration in lake
 P_e, N_e = estimated (predicted) values, i.e., TP, TN
 n = number of lakes in data base used to develop
 predictive equations

For a data base with measured nutrient budgets (i.e., measured flows and concentrations for inputs and outputs) the level of uncertainty in the terms (L_p , L_n , q_s , τ_{ω} , R_{exp} , R_{exn}) is approximately the same as the average uncertainty in these terms in the model development data set. Thus, the loading uncertainty is incorporated in the model standard error, and the trophic state probabilities can be estimated using an S_L of 0 (Reckhow 1978). If the nutrient budgets are based on estimated values, however, (e.g., nutrient export coefficients from various land uses) the loading uncertainty is a oroportion of the loading term (i.e., $S_L = kL$). The probability curves used in the Reckhow analysis assume that the prediction errors are normally distributed. This is done by converting the predicted values to values of the standard normal deviate:

$$Z_n = \frac{P_{t.s.} - P_e}{S_T} \quad \text{or} \quad \frac{N_{t.s.} - N_e}{S_T}$$

where $Z_n = standard normal deviate$

Pt.s., Nt.s. = trophic state delineation values
 (i.e., critical values for P and N)

(32)

It should be noted here that the trophic state probabilities are estimated by assuming that the model error is associated with P_e (or N_e), not $P_{t.s.}$ (or $N_{t.s.}$) (i.e., the transition lines are "true" values, with no uncertainty, while the estimated lake concentration has model and loading uncertainty associated with it).

In summary, three comments need to be made on the restrictions of this probability analysis:

- The application lake should have characteristics similar to those of the model development data set.
- 2. The probability analysis should only use the P and N values predicted from the TP and TN predictive equations, respectively. This is because the models assume that the probability assigned to a trophic state is a function of the error in the prediction. Using the measured $(\overline{P})_1$ and $(\overline{N})_1$ values would negate the purpose of the analysis.
- 3. The assumptions inherent in this analysis should be considered before applying the analysis. Also, the accuracy of the prediction equations for a given lake should be considered before application. Thus, the best proven predictive model for a given lake should be used in order to give a valid trophic state probability assessment.

-233-

ASSESSMENT OF LAKE OKEECHOBEE'S TROPHIC STATUS

1. Trophic State Indicators

The average annual water chemistry values from 1973 to 1979 for Lake Okeechobee are shown in Table 9-5. These values can be compared to the critical values for Secchi disk, chlorophyll <u>a</u>, total and ortho phosphorus, and total and inorganic nitrogen to give a subjective evaluation of the lake's trophic state. Although these critical values lack the simplicity of a numerical index, they are the ultimate criteria for the development of several indices and models.

All the annual average Secchi disk transparencies, chlorophyll a concentrations, and total phosphorus concentrations in Lake Okeechobee during the study period are well above (or below, for Secchi disk) all the critical values for these parameters. With the exception of the 1973 study year, all the ortho phosphorus values are above the reported literature critical values. The total nitrogen concentrations in Lake Okeechobee are considerably above the critical value reported by Kratzer (1979). Inorganic nitrogen concentrations in Lake Okeechobee are all less than the critical values reported by Sawver (1947) and Vollenweider (1968). It should be noted, however, that these criteria were based on spring maximum concentrations in temperate lakes. Indeed, Figure 7-7 indicates that wintertime inorganic nitrogen concentrations are sufficiently high to support a phytoplankton standing crop characteristic of a eutrophic lake (based on the 0.3 mg/L criterion). In general, based on the foregoing discussion, Lake Okeechobee can be subjectively classified as eutrophic.

2. Trophic State Indices

The trophic states associated with values of TSI and each trophic state parameter are shown in Table 9-6. The delineations are based

-234-

Year	OPO ₄ (mg/L)	TPO ₄ (mg/L)	Inorg-N (mg/L)	Total N (mg/L)	Disk (m)	Chl-a (µg/L)
1973	0.005	0.049	0.08	1.63	0.58	-
1974	0.014	0.049	0.16	1.45	0.56	24.0
1975	0.013	0.058	0.16	1.60	0.48	27.0
1976	0.016	0.055	0.22	2.01	0.58	26.1
1977	0.013	0.063	0.13	1.64	0.65	-
1978	0.019	0.067	0.13	1.77	-	-
1979	0.045	0.097	0.26	2.02		-
Average 1973-79	0.018	0.063	0.16	1.73	0.57	25.7

AVERAGE ANNUAL WATER CHEMISTRY VALUES FOR LAKE OKEECHOBEE AND CRITICAL VALUES FOR TROPHIC STATE EVALUATION

TABLE 9-5

Critical Values $\frac{1}{2}$

NES 1975		>0.020			<2.0	>10.0
Kratzer 1979		>0.040		>0.90		>10.0
Sawyer 1947	>0.010		>0.30			
Vollenweider 1968	>0.010	>0.020	>0.30		. :	
Chapra and Tarapchak 1976						>8.8
NAS & NAE 1973						>10.0
Bennedorf 1979	>0.010					
Carlson 1977				- 		>6.0

¹Critical value = value above (or below) which eutrophic conditions can be expected in a lake.

TSI	Trophic State	Water Transparency (Secchi Disk, m)	Chlorophyll <u>a</u> (µg/L)	Total Phosphorus (µg_P/L)	Total Nitrogen (mg N/L)
0	ultraoligotrophic	64	0.04	0.75	0.02
10	ultraoligotrophic	32	0.12	1.5	0.05
20	ultraoligotrophic	16	0.34	3	0.09
30	oligotrophic	8	0.94	6	0.18
40	oligotrophic	4	2.6	12	0.37
45	mesotrophic	2.8	4.4	17	0.52
50	mesotrophic	2	7.3	24	0.74
53	eutrophic	1,6	10	30	0.92
60	eutrophic	1	20	48	1.47
70	hypereutrophic	0.5	56	96	2.94
80	hypereutrophic	0.25	154	192	5.89
90	hypereutrophic	0.12	427	384	11.8
100	hypereutrophic	0.06	1183	768	23.6

TABLE 9-6. TROPHIC STATES ASSOCIATED WITH CARLSON'S TSI AND TSI (TN)

where: TSI $(SD)^{1/2} = 10$ (6 - ln (SD)/ln 2), SD in meters TSI $(CHA)^{1/2} = 10$ (6 - (2.04 - 0.68 ln (CHA())/ln 2), CHA in µg/L TSI $(TP)^{1/2} = 10$ (6 - ln (48/TP)/2 ln 2), TP in µg/L TSI $(TN)^{2/2} = 10$ (6 - ln (1.47/TN)/ln 2), TN in mg/L

 $\frac{1}{from}$ Carlson (1977)

 $\frac{2}{from}$ Kratzer and Brezonik (1981)

-236-

on the Kratzer (1979) critical values for chlorophyll <u>a</u>, total phosphorus, total nitrogen, and their relationships of Carlson's (1977) TSI values. Annual TSI values for each parameter and the TSI (AVG) are given in Table 9-7.

All the TSI values for Lake Okeechobee are above 53, the value delineating eutrophic classification. The general conclusion of the TSI analysis agrees with the previous assessment based on trophic state indicators.

Besides this general conclusion, two interesting trends can be determined from the TSI values shown in Table 9-7. The first is that, in all cases, the TSI (SD) values are significantly higher than the other three TSI's. This is to be expected in Lake Okeechobee due to the poor correlation between the Secchi disk transparency and chlorophyll a and nutrient concentrations (Kratzer 1979). Extensive wave-induced turbidity and moderately high color (Chapter VII) are the primary reasons for this poor correlation; however, the Secchi disk TSI values are still averaged with the other TSI's to compute TSI (AVG) because the clarity of water is an important physical measure of trophic state, regardless of its relationship with the other parameters. The second trend noted in the TSI values is that the TSI (TN) values and the TSI (TP) values are very close for all years except 1979. In fact, based on a comparison of these values the lake has apparently changed from a nutrient balanced condition with fluctuations from P to N limitation to N limitation during the seven year study period. The lake change appeared to occur during the period from 1977 to 1979. This trend is supported by the inorganic N/P ratios for the lake as discussed earlier in this report in Chapter VII.

-237-

			•		
Year	<u>TSI(SD)^{1/}</u>	<u>TSI(CHA)^{2/}</u>	<u>TSI(TP)^{3/}</u>	<u>tsi(tn)</u> 4/	<u>tsi(avg)</u> 5/
1973	67.9	-	60.3	61.5	64.1
1974	68.4	61.7	60.3	59.8	63.3
1975	70.6	62.9	62.7	61.2	64.9
1976	67.9	62.6	61.4	64.6	64.0
1977	66.2	-	63.9	61.6	63.9
1978	-	-	64.8	62.7	62.7
1979	-	-	70.1	64.6	64.6
Average 1973-79	68.1	62.4	63.9	62.3	64.3

TABLE 9-7

TROPHIC STATE INDEX VALUES FOR LAKE OKEECHOBEE

1/ TSI(SD) = 10 (6-1n(SD)/1n2)

2/ TSI(CHA) = 10 (6-(2.04 - 0.68 ln (CHA))/ln2)

3/ TSI(TP) = 10 (6-ln (48/TP)/ln2)

$$4/TSI(TN) = 10 (6-1n (1.47/TN)/1n2)$$

 $\frac{5}{1} \text{ If } TSI(TP) \ge TSI(TN), \ TSI(AVG) = \left[TSI(SD) + TSI(CHA) + TSI(TN)\right] \div 3$ If $TSI(TP) \le TSI(TN), \ TSI(AVG) = \left[TSI(SD) + TSI(CHA) + TSI(TP)\right] \div 3$

APPLICABILITY OF NUTRIENT LOADING MODELS AS APPLIED TO LAKE OKEECHOBEE

The eight nutrient loading models presented in Table 9-4 were evaluated to determine which of these models is most applicable to Lake Okeechobee. The primary criteria used in the evaluation of these models were: (1) the degree to which the model's trophic state assessment agreed with the trophic state assessment based upon trophic state indicators and indices; (2) the data base on which the model was developed; and (3) the ability of the model to predict the actual ambient lake concentrations.

Trophic ratios (actual nutrient loading rate + excessive loading rate) for each model were used to classify Lake Okeechobee based upon both phosphorus and nitrogen (where applicable). These ratios were then compared to the classification based upon trophic state indicators and indices. A trophic ratio of 0 - 0.5 represents an oligotrophic classification, 0.5 - 1 a mesotrophic classification, and 1 and above a eutrophic classification. A ratio greater than 2 was given a hypereutrophic classification.

Tables 9-8 and 9-9 present the trophic state classifications for each model along with the classification based on the trophic state indicators and indices. The modified Vollenweider (1976) model was the only model to accurately classify Lake Okeechobee as eutrophic for each of the seven years, and for the average case, based upon both phosphorus and nitrogen. The Vollenweider (1975) and Dillon (1975) models accurately classified the lake in 7 and 4 years, respectively, based upon phosphorus; however, these models do not have a nitrogen counterpart. The modified

-239-

Year	Classifi <u>Trophi</u> Indica- tors	cation by <u>c State</u> Indices	Voller (19	weider 068)	Shanr Brezo (197	non & ₁ onik — 72)	/ Vollenw (197	veider	Modif Vollenv (197	fied weider 75)	Dillc (1975	in ^{2/}	Modif Dillo (1975	ied2/ on 5)	/ Vollenw (197	veider '6)	Modi Volle (1	fied nweider 976)
1973	E	E	3.79	<u>з/</u> н	0.60	м <u>3</u> /	1.42	<u>3/</u> E	1.19	E	1.16	Ε	0.68	М	3.51	Н	1.46	E
1974	E	Ε	5.00	н	0.78	М	1.83	E	1.47	Е	2.72	H	1.60	Ē	4.72	Н	1.97	E
1975	E	Ε	2 .6 8	Н	0.43	М	1.01	E	0.87	М	1.47	Ε	0.86	M	2,93	Ħ	1.22	E
1976	Ε	Ε	3.60	H	0.57	М	1.36	E	1.14	Ε	0.70	М	0.41	М	3.03	Н	1.26	E
1977	E	Е	3.60	Н	0.57	М	1.41	E	1.24	Ε	1.33	Ε	0.78	М	4.54	H	1.89	E
¦,1978	E	E	3,55	H	0.52	Μ	1.59	Ε	1.30	Ε	2.34	H	1.37	Ε	3.92	H	1.63	E
ې 1979	E	Ε	4.92	H	0.72	Μ	1.89	Ε	1.54	Ε	2.37	H	1.39	Ε	4.66	Н	1.94	E
Averag 1973-7	e 9 E	E	3.88	Н	0.60	M	1.51	E	1.26	E	1.83	Ε	1.07	E	4.00	н	1.66	E
No./% of cor classi	rect fication	S	1/13%		0/0%		8/100	0/ /0	7/88%	;	7/88%		4/50%		1/13%		8/100	%
	<u>1/</u> Usin <u>2/</u> Usin	g the vol g R_ = R	umetric	loadin	g of (0.22 9	3 g/m -yr)											. ·
	<u>3/</u> M = E =	mesotrop eutrophi	xp hic cla c class	ssifica ificati	tion on		•											

TABLE 9-8. TROPHIC RATIOS FOR PHOSPHORUS LOADING MODELS

H = hypereutrophic classification

						21	
Year	Classificati Trophic S Indicators	ion by State Indices	Vollenweider (1968)	Shannon & <u>1</u> / Brezonik (1972)	Modified Vollenweider (1975)	Modified Dillon (1975)	Modified Vollenweider (1976)
1973	E 3/	E	3.13 H	1.09 E	0.87 M	0.67 M	1.32 E
1974	E	E	3.85 H	1.33 E	0.98 M	1.35 E	1.65 E
1975	E .	E	3.09 H	1.09 E	0. 90 M	0.91 M	1.53 E
1976	E	E	2.99 H	1.04 E	0.85 M	0.47 M	1.15 E
1977	E	E	2.97 H	1.03 E	0.94 M	0.84 M	1.70 E
1978	Ε	E	3.79 H	1.22 E	1.01 E	1.29 E	1.58 E
1979	Ε	E	3.59 H	1.15 E	0.92 M	1.31 E	1.44 E
A ver ag e 1973-79	E	E	3.34 H	1.13 E	0.93 M	1.02 E	1.51 E
No./% of Correct Classificatio	o n s		2/25%	8/100%	1/13%	4/50%	8/100%

TABLE 9-9. TROPHIC RATIOS FOR NITROGEN LOADING MODELS

<u>1</u>/

-241-

Using the volumetric loading rate (1.5 g/m^3 -yr)

 $\frac{2}{\text{Using } R_{\text{N}}} = R_{\text{exn}}$

<u>3/</u> M = Mesotrophic classification E = Eutrophic classification H = Hypereutrophic classification

TABLE 9-10. DATA BASE FOR NUTRIENT LOADING MODEL DEVELOPMENT

Mode1

Vollenweider (1968)

Shannon & Brezonik (1972)

Vollenweider (1975)

Modified 1975 Vollenweider (Kratzer 1979)

Dillon (1975)

Modified Dillon (Kratzer 1979)

Vollenweider (1976)

Modified Vollenweider (1976)

Data Base

Temperate lakes

Florida lakes excluding Lake Okeechobee

Temperate lakes

Florida including Lake Okeechobee

Temperate lakes

Florida including Lake Okeechobee

Temperate lakes

Florida including Lake Okeechobee Vollenweider (1975) model classified the lake correctly six of the seven years based upon phosphorus; however, it classified the lake correctly for only one year based upon nitrogen.

The Shannon and Brezonik model (1972) correctly classified the lake for each year based upon nitrogen; however, it did not correctly classify the lake for any of the years based upon phosphorus. The modified Dillon (1975) model correctly classified the lake 50 percent of the time based upon both phosphorus and nitrogen. The Vollenweider (1968) and Vollenweider (1976) models were the least accurate in classifying the lake; therefore, based upon the trophic state classifications, the modified Vollenweider (1976) model appears to be the most applicable model for Lake Okeechobee.

The second criterion in evaluating the applicability of the eight models to Lake Okeechobee involves the data base on which the models were developed. Table 9-10 presents the eight models along with the general geographic region in which the model development lakes were located. The Vollenweider (1968), Vollenweider (1975), Dillon (1975), and Vollenweider (1976) models were developed for temperate lakes, and therefore, are probably the least applicable to Lake Okeechobee. The Shannon and Brezonik (1972) model was developed using a data base consisting of lakes located in Florida; however, Lake Okeechobee was not included among the lakes. The modified models of Vollenweider (1975), Dillon (1975), and Vollenweider (1976) were developed from a data base of Florida lakes which included Lake Okeechobee. Based upon the most pertinent data base, it would appear that one of the latter three models (modified Dillon 1975 or modified Vollenweider 1975, 1976) would be the most applicable to Lake Okeechobee

242A

since it was included in the original data base used to develop (calibrate) the model.

The third criterion was the ability of the models to predict the actual ambient lake concentrations. The results of the predictive equations for total phosphorus and total nitrogen are shown in Tables 9-11 and 9-12, respectively. Note that the Vollenweider (1968) and the Shannon and Brezonik (1972) models do not have corresponding predictive equations. Thus, these two models cannot be evaluated on this criteria. The test used to determine the best predictive model was the percent difference between the predicted values and the corresponding measured ambient values for each year. Negative percent differences indicate an under prediction while positive percent differences indicate an over prediction. The average percent difference is based on a comparison of the average ambient concentration during this study and the predicted concentrations based upon the average seven year material budget. The modified Vollenweider (1976) model was the best predictor of total phosphorus, with an average percent difference of only 2 percent compared to average percent differences ranging between 19 and 54 for the other five models (Table 9-11). The best predictor of ambient total nitrogen levels was also the modified Vollenweider (1976) model with an average percent difference of 26 percent. This is in comparison to 33 and 47 percent for the other two models The modified Vollenweider (1976) model was also the hest (Table 9-12). predictor for total phosphorus and total nitrogen for 5 of the 7 individual years. The modified Vollenweider (1976) model had almost an even split between under predictions (4) and over predictions (3) for phosphorus. while nitrogen was consistently under predicted. The consistent under prediction for nitrogen may have resulted from an underestimation of the nitrogen loading rate, since nitrogen fixation and dry deposition of NO₂ were

-243-

TABLE 9-17. APPLICATION OF PREDICTIVE EQUATIONS FOR TOTAL PHOSPHORUS

	Year		Lak Avera (P)	ke age 1	Vollen (19	weider ^{1/} 75}	Modi Vollenw (197	fied ^{2/} weider 75)	Dillor Rigle (1975	**************************************	Modified & Rig (1975	Dillon <u>4/</u> ler)	Vollenwe (1976	eider ^{5/} 5)	Modin Vollenv (192	fied <u>6/</u> weider 76)
	1973		0.0	49	0.028	-43%7/	0.049	0%	0.023	-53%	0.029	-41%	0.070	43%	0.057	16%
	19 74		0.0	49	0.037	-24%	0.061	24%	0.054	10%	0.061	24%	0.094	9 2 %	0.075	5 3 %
	1975		0.0	58	0.020	-66%	.0.038	-34%	0.029	-50%	0.036	-3 8%	0.059	2%	0.048	-17%
	1976		0.0	55	0.027	-51%	0.048	-13%	0.014	~ 75%	0.019	-65%	0.061	11%	0.050	-9%
	1977		0.0	53	0.028	-56%	0.049	-22%	0.027	-57%	0.033	-48%	0.091	44%	0.073	16%
-21	_ <u>1</u> 978		0.0	67	0.032	-52%	0.055	-18%	0.047	-30%	0.054	-19%	0.079	18%	0.064	-4%
14-	1979		0.0	97	0.038	-61%	0.063	-35%	0.047	-52%	0.054	-44%	0.093	-4%	0.074	-24%
	Average 1973-79	•.	0.0	53	0.029	-54% ^{-<u>8</u>/}	0.051	-19% <u>8</u> /	0.037	-41% ^{8/}	0.044	-30% <u>8</u> /	0.080	27% <mark>8</mark> /	0.064	2% ⁸ /
	<u>1</u> , 2,	[/] тғ / тғ) = =	L _p / 0.843	(10 +	q _s) (10 + q _s)) ^{0.795}									
	<u>3</u> , <u>4</u> ,	[/] тр / тр) =) =	L _p (1 0.748	-R _{exp}) (L _n (1	/ q _s -R _{evp}) / q _s	0.862									
	<u>5</u> ,	/ TF	> =	L _p ./	(q_(1	$+\sqrt{\tau}_{\omega}$))	• .							۰.		
-	<u>6</u> , <u>7</u> ,	/ TF / P N	ercen egati	0.682 t dif ve ind	(L _p / Ference	(q _s (1 + √ = ((pre ander pred	τ _ω)))) dicted - liction/p	0.934 - measure sositive	ed) / me indicat	easured t _e s over) X 100 r predict	ion				
	<u>8</u> /	′Pe ba	rcent sed u	: diff pon t	erence he avei	between the age materia	e averagi 1 budge	e ambient t for the	t conce P 7 veau	ntratio	n (1973-'	1979) and	the pred	icted co	onc ent ra	tion

TABLE 9-12 APPLICATION OF PREDICTIVE EQUATIONS FOR TOTAL NITROGEN

Year	(<u>N</u>)	Modified ^{1/} Vollenweider (1975)	Modified Dillon & [/] Rigler (1975)	Modified Vollenweider ^{3/} (1976)
1973	1.63	2.27 39% <u>4/</u>	0.60 -63%	1.14 -30%
1974	1.45	2.37 63%	1.21 -17%	1.39 -4%
1975	1.60	2.27 42%	0.82 -49%	1.30 -19%
1976	2.02	2.26 12%	0.43 -79%	1.02 -50%
1977	1.64	2.27 38%	0.76 -54%	1.42 -13%
19 78	1.77	2.37 34%	1.15 -35%	1.34 -24%
1979	2.02	2.32 15%	1.17 -42%	1.24 -39%
Average	1.73	2.31 33% <u>5</u> /	0.91 _47% <u>5</u> /	1.28 -26% <u>5</u> /
<u>1/</u>	$TN = 2.85 (L_N /$	(10 + q _s) 0.216		
<u>2</u> /	TN = $0.899 (L_N(1))$	$-R_{exp})/q_{s})^{0.976}$		
<u>3</u> /	$TN = 1.29 (L_N /$	$(q_{s}(1 + \sqrt{\tau_{a}})))^{0.858}$		· · · ·
<u>4</u> / <u>5</u> /	Percent difference Negative indicates (See #8) in Table	= ((measured-predicted under prediction/ positi 9-11).)/measured) X 100 ive indicates over predictio	ิวท

-245-

not considered in the nitrogen budget. The worst case for the phosphorus model was in 1974, percent difference of -53, when the lake had the highest hydraulic loading rate and the lowest water residence time during the study. It appears that the modified Vollenweider (1976) model tends to break down at very low water residence times rather than at high hydraulic loading rates. The rationale being that the relative difference in the 1974 water residence time, as compared to the seven year average, was substantially greater than the relative difference in the 1974 hydraulic loading rate (Table 6-4). Although the modification of the Dillon (1975) model best fits the Florida NES lakes as a group (Table 9-3), the modified Vollenweider (1976) model was the best predictor of limnetic nutrient levels for Lake Okeechobee.

Table 9-13 summarizes the results of the criteria for determining which of the eight models evaluated was most applicable to Lake Okeechobee. In summary, the modified Vollenweider (1976) model was selected because (1) it most accurately and consistently correctly classified the lake as eutrophic based on both phosphorus and nitrogen; (2) it was the best predictor of ambient total phosphorus and total nitrogen levels; and (3) it was based on a data base of Florida lakes which includes Lake Okeechobee.

APPLICATION OF THE MODIFIED VOLLENWEIDER (1976) MODEL TO LAKE OKEECHOBEE

As shown in Table 9-14, the proper application of nutrient loading models requires many assumptions. The main sources of error in these assumptions as applied to Lake Okeechobee are listed below:

(a) The total phosphorus concentration in the lake changed from1973 to 1979. The effect of these nutrient changes on the

-246-

	Troph Classif % of Classif	ic State ications Correct ications	Ambient La <u>Predictio</u> Percent Dif	ke ns ference	
Mode1	P	N	<u> </u>	N	Data Base
Vollenweider (1968)	13%	25%	<u>2</u> /	-	Temperate lakes
Shannon & Brezonik (1972)	0%	100%	-	-	Florida lakes excluding
Vollenweider (1975)	1 0 0%	_ 1/	53% ^{3/} 24%-63% <u>4</u> /	-	Temperate lakes
Modified 1975 Vollenweider (Kratzen 1979)	r 88%	13%	1 9% 0- 35%	33% 12- 6 3%	Florida including Lake Okeechobee
Dillon (1975)	88%	-	41% 10–75%	-	Temperate lakes
Modified Dillon (Kratzer 1979)	50%	50%	30% 19-65%	47% 17-79%	Florida including Lake Okeechobee
Vollenweider (1976)	13%	_	27% 2-92%	-	Temperate lakes
Modified Vollenweider (1976)	r 100%	10 0%	2% 4-53%	26% 4-50%	Florida including Lake Okeechobee
<pre>1/ No nitrogen model a 2/ No predictive equal</pre>	availabl tion ava	e ilable			

TABLE 9-13. SUMMARY OF NUTRIENT LOADING MODEL EVALUATION

3/

Percent difference between average ambient level during this 7 year study and the predicted concentration based upon the average 7 year material budget

4/

 $k_1 \ge 1$

Range of percent differences for the individual years (excluding the average case).

TABLE 9-14

SOME ASSUMPTIONS OF NUTRIENT LOADING MODELS AND THE NUTRIENT LOADING WATER QUALITY RELATIONSHIPS

Assumption

Lake is at steady state (i.e., dP/dt = 0 and dN/dt=0).

Lake acts as a constantly stirred reactor (homogeneous).

Internal nutrient cycling is insignificant.

Surface outflow, sedimentation and denitrification are the only significant sinks.

Surface inflows and rainfall are the only significant nutrient sources.

Annual averages of $(\overline{P})_1$, $(\overline{N})_1$, Chl-a, and Secchi disk adequately characterize the lake's trophic state.

Chlorophyll <u>a</u> is an accurate measure of the lake's primary produced biomass.

Secchi disk transparency depends upon the algal biomass.

Comments of Applicability of Assumption to Lake Okeechobee

Reasonable assumption based on annual average, except for P from 1978-79.

Good assumption for vertical mixing. Fair assumption for horizontal mixing (i.e., north lake is significantly different from south lake).

Poor assumption as discussed in Chapter VII.

Reasonable assumption.

Poor assumption for nitrogen. Nitrogen fixation can supply up to 20% of the total nitrogen loading (Messer and Brezonik 1979), and internal recycling of nutrients from the sediments is a nutrient source.

Reasonable assumption due to year-round growing season.

Questionable assumption due to significant macrophyte population.

Poor assumption due to significant interferences from color and wind induced turbidity.

steady state assumption could be considerable, although the results to date suggest that this increase may be a cyclical phenomena.

- (b) The recycling of nutrients from the sediments and littoral zone may exert a major influence on the concentration of nutrients in the water column of Lake Okeechobee.
- (c) The Secchi disk transparency in Lake Okeechobee is poorly correlated (Kratzer 1979) with the algal biomass as measured by chlorophyll <u>a</u> due to interferences from color and turbidity. Also, the significant macrophyte population in the lake may reduce the chlorophyll <u>a</u> concentration in certain areas of the lake by the competing for nutrients.

Although several of the assumptions of the models are possibly invalid for Lake Okeechobee, the modified Vollenweider (1976) model does predict conditions of the lake fairly accurately. Therefore, since the model appears robust in terms of these assumptions, it is reasonable to use the model to predict the lake's present condition and to predict future trends, provided the limitations of the model are considered.

Determination of Excessive Loading Rates and Trophic State Classification for Lake Okeechobee

The information required for calculation of the excessive phosphorus and nitrogen loading rates based upon the modified Vollenweider (1976) model is L_p , L_n , q_s , and τ_{ω} . For Lake Okeechobee this information is given in Table 9-15. The excessive loading line according to equation (24) is drawn on a plot of L_p/q_s versus τ_{ω} in Figure 9-12. The excessive rate is that nutrient loading rate above which the lake would

-249-

Year	Water Residence ¹ / Time τ_{ω} , yrs	Hydraulic ^{2/} Loading Rate q _s , m/yr	Areal P Loading Rate L _p , g/m ² -yr	Areal N Loading Rate L _N , g/m2-yr
1973	4.63	1.47	0.325	4.03
1974	1.85	1.96	0.437	5.05
1975	4.74	1.22	0.227	3.92
1976	6.78	1.42	0.310	3.87
1977	6.17	0.98	0.310	3.82
1978	2.85	1.78	0.376	5.00
1979	3.96	1.75	0.443	4.53
Average				
1973-79	3.47	1.52	0.347	4.32

TABLE 9-15.	HYDROLOGIC PARAMETERS AND	NUTRIENT LOADING RATES
	FOR LAKE OKEECHOBEE	

Based on surface outflow (excluding evaporation) Based on surface inflow (excluding rainfall)

<u>1</u>/

<u>2</u>/

-250-

have a high probability of progressing to a eutrophic/hypereutrophic state. Also shown is the permissible line (= 1/2 excessive line) and the points corresponding to the Lake Okeechobee data for each year individually and the 1973-1979 average. The same is done for nitrogen in Figure 9-13 using equation (29). The points on the loading plots are essentially visual representations of the trohic ratios presented in Tables 9-8 and 9-9. Thus, Figures 9-12 and 9-13 indicate that Lake Okeechobee is eutrophic based on both phosphorus and nitrogen loading rates. The trophic ratios for phosphorus range from 1.22 to 1.97, and for nitrogen they range from 1.15 to 1.70 (Tables 9-8 and 9-9).

Trophic State Classification Probability Analysis of the Modified Vollenweider (1976) Model

The trophic state probability analysis discussed in the previous section was applied to the modified Vollenweider (1976) model for Lake Okeechobee to determine the probability of the trophic state classifications illustrated in Figures 9-12 and 9-13. The required information for both the phosphorus and nitrogen analysis is presented in Table 9-16. Since the nutrient budget for the Florida NES data base was measured, the loading uncertainty (S_L) is zero (as per Reckhow 1978) and the total prediction uncertainty (S_T) is, therefore, equal to the model standard error (s_m). The oligotrophic and eutrophic lines on Figures 9-14 and 9-15 are drawn by calculating P_e (or N_e) from the appropriate $P_{t.s.}$) and S_T using equation (32) ($Z_n = \frac{P_{t.s.} - P_e}{S_T}$) for given Z_n values. The Z_n values are then translated in probabilities from a table relating Z values to the area under a normal curve (see Mendenhall and Schaeffer).

-252-

-253-

ĩ

TABLE 9-16

TROPHIC STATE PROBABILITY ANALYSIS FOR LAKE OKEECHOBEE

1. Phosphorus:

n = 29 lakes from Florida NES

 $S_{m} = 0.266$ $S_{L} = 0$ $S_{T} = 0.266$ $P_{e} = TP = 0.682 (L_{p}/q_{s} (1 + \sqrt{\tau_{\omega}}))$

for mesotrophic/eutrophic delineation,

$$L_c(P)_{excessive} = 0.048 q_s (1 + \sqrt{\tau_{\omega}})$$

 $P_{t.s.} = 0.682 (0.048)^{0.934} = 0.040 mg/L$

for oligotrophic/mesotrophic delineation,

 $L_c^{(P)}_{\text{permissible}} = 0.024 \text{ q}_s (1 + \sqrt{\tau_{\omega}})$ $P_{t.s.} = 0.682 (0.024)^{0.934} = 0.021 \text{ mg/L}$

Year	<u> Pe</u> 1∕	(P) <u>1</u> 2/	P(0)	P(M)	P(E)
1973	0.057	0.049	0.05	0.23	0.72
1974	0.075	0.049	0.02	0.14	0.84
1975	0.048	0.058	0.09	0.30	0.61
1976	0,050	0.055	0.08	0.28	0.64
1977	0.073	0.0 6 3	0.02	0.14	0.84
1978	0.064	0.067	0.03	0.19	0.78
1979	0.074	0.097	0.02	0.14	0.84
Average 1973-79	0.064	0.063	0.03	0.19	0.78

<u>1</u>/ Predicted P inlake concentration

2/ Actual limnetic concentrations

2. Nitrogen:

n = 27 lakes from Florida NES

$$S_{m} = 0.186$$

 $S_{L} = 0$
 $S_{T} = 0.186$
 $N_{e} = TN = 1.29 (L_{N}/q_{s} (1 + \sqrt{\tau_{\omega}}))^{0.858}$

for mesotrophic/eutrophic delineation,

$L_{c}(N)$	exce	essive	. = (.66	q _s	(1	+ 🗸	τ_)
N _{t.s.}	R	1.29	(0.66)	0.8	58 ≃	0	.90	mg/L

for oligotrophic/mesotrophic delineation,

	$L_{c}(N)$ permissible = 0.33 q _s (1 + $\sqrt{\tau}_{\omega}$)						
	7	t.s. = 1.2	29 (0.33)0	.858 = 0.5	0 m g/L		
Year	Ne [⊥] ∕	$(\overline{N})_1 \frac{2}{2}$	P(0)	P(M)	P(E)		
1973	1.14	1.63	0.02	0.26	0.72		
1974	1.39	1.45	0.01	0.15	0.84		
1975	1.30	1.60	0.01	0.18	0.81		
1975	1.02	2.0 2	0.05	0.34	0.61		
1977	1.42	1.64	0.01	0.14	0.85		
1978	1.34	1.77	0.01	0.17	0.82		
1979	1.24	2.02	0.02	0.20	0.78		
Average 1973-79	1.28	1.73	0.0 2	0.19	0.79		

1/ Predicted N inlake concentration

2/ Actual limnetic concentration

The predicted nutrient concentration (P_e , N_e) parameter is then plotted versus P (O) and P (E) to produce the oligotrophic and eutrophic lines, respectively. Since the trophic state probabilities must sum to zero, the probability of mesotrophic classification P (M) is equal to 1 - (P (O) + P (E)).

The probability of Lake Okeechobee being oligotrophic, mesotrophic, or eutrophic is calculated in Table 9-16 from Figures 9-14 and 9-15 for both phosphorus and nitrogen from 1973-1979. The probabilities are based on the predicted nutrient concentrations (P_e , N_e) from the modified Vollenweider (1976) models, and the assumptions inherent in both the predictive model and the probability analysis. For phosphorus, the probabilities for the entire seven year period (1973-79) are: P (oligotrophic) 3 percent, P (mesotrophic) 19 percent and P (eutrophic) 78 percent. For nitrogen, the probabilities for the probabilities for the probabilities for the classification based upon either phosphorus or nitrogen. Thus, besides qualitatively classifying the lake as eutrophic, Lake Okeechobee has essentially the same probability of being eutrophic (78% to 79%) based on either phosphorus or nitrogen.

MANAGEMENT RAMIFICATIONS

The current study (Chapter VII) indicates that Lake Okeechobee was potentially phosphorus limited from 1973 to 1977, was in transition in 1978, and shifted towards potential nitrogen limitation in 1979, according to the inorganic N/P ratios. This is in accord with Brezonik et al. (1979),

who indicated that in 1978 the lake was neither wholly phosphorus limited nor wholly nitrogen limited, although it exhibited greater tendencies for the former condition. Since this possible shift toward potential nitrogen limitation (1) occurred only recently, (2) is still in the borderline range, and (3) may be transitory, both models should be considered applicable to the lake at this time. A significant reduction in either nutrient would theoretically make that the limiting nutrient; however, this hypothesis is dependent on the lake being completely mixed, as well as the other assumptions of the nutrient loading models discussed previously.

Table 9-17 presents, for the time period 1973 to 1979, the actual phosphorus and nitrogen loading rates and the excessive loading rates based upon the modified Vollenweider (1976) model as it applies to Lake Okeechobee. The excessive loading criteria were selected over the permissible criteria since it is unlikely that Lake Okeechobee was historically a classically defined oligtrophic lake (Gleason and Stone 1975, Brezonik et al. 1979). During the period 1973 to 1979 the phosphorus loading rate to the lake was between 18 and 49 percent above the excessive level. The nitrogen load to the lake was between 13 and 41 percent above the excessive level. On the average, the phosphorus and nitrogen load to the lake was 40 and 34 percent, respectively, above the excessive levels (Table 9-17).

Reduction in the external loading rates to the lake would not produce immediate reductions in nutrient and chlorophyll <u>a</u> levels. The lag time would be a function of the nutrient residence time and internal nutrient loadings. A lag time approximately equal to 3 times the nutrient residence time is needed in order for 95 percent of the reduction in

-259-

				Phosph	orus				Nitrog	en	
	Year 3/	Actual Rate g/m ² -vr	Loading (_{L_}) 10 ⁶ a/vr	Excessive Rate g/m ² -vr	e Loading e 10 ⁶ g/yr	Percent ^{2/} Difference	Actual Rate g/m ² -yr	Loading (L _N) 10 ⁶ g/yr	Excessive Rate g/m ² -yr	e Loading e 10 ⁶ g/yr	Percent ^{2/} Difference
	1073	0.325	547 5	0.223	375.8	31%	4.03	6792.6	3.05	5139.3	24%
	1973 19 7 4	0.437	743.5	0.222	378.1	4 9%	5.05	8607 1	3.06	5211.2	39%
	1975	0.227	371.4	0.186	304.5	18%	3.92	6410.3	2.56	4190.7	35%
	1976	0.310	533.5	0.246	422.9	21%	3.87	6659.9	3.37	5793.0	13%
	1977	0.310	524.4	0.164	277.2	47%	3.83	6475.9	2.25	3802.5	41%
	1978	0.376	687.1	0.230	420.4	39%	5.00	9142.0	3.16	5776.5	37%
	1979	0.443	810.4	0.228	416.8	49 %	4.53	8277.0	3.14	5739.9	3 1%
-260-	Average 1973-79	0.347	602.5	0.209	360.9	40%	4.32	7480 .7	2.87	4956.5	34%

TABLE 9-17. EXCESSIVE NUTRIENT LOADING RATES $\frac{1}{}$ FOR LAKE OKEECHOBEE

 $\underline{1}$ Based upon Modified Vollenweider (1976) model. See Table 9-4 for equations

 $\frac{2}{}$ Percent above actual loading rate (or percent reduction needed to meet excessive loading rate.

 $\frac{3}{2}$ Annual period April through March

ambient nutrient levels to be realized in a completely mixed system (Brezonik et al., 1979). The average residence for phosphorus and nitrogen is 0.5 and 1.1 years, respectively. Therefore, after a reduction in phosphorus inputs, it would take 1.5 years for 95 percent of the expected change in ambient water column phosphorus levels to occur. Similarly, after a reduction in nitrogen inputs, approximately 3.3 years would need to transpire before 95 percent of the expected reduction in ambient nitrogen levels would be realized. Significant internal nutrient loadings could delay substantially these response times.

Assuming phosphorus and nitrogen loads to the lake are reduced to the excessive level and significant net internal loadings don't occur, then Lake Okeechobee would have a 50 percent probability of no longer being eutrophic.

In 1978 the SFWMD proposed permissible and excessive loading rates for Lake Okeechobee basedupon the Shannon and Brezonik (1972) model (SFWMD Technical Publication #78-3, Dickson et al. 1978). The basic rationale for selection of the Shannon and Brezonik model was that it was the only nutrient loading model available at that time which was developed for Florida lakes. It was rationalized that differences between Florida lakes and temperate lakes were more significant than differences between the theoretical considerations of the models available at that time. The Shannon and Brezonik permissible criteria was subsequently adopted by the Florida Department of Environmental Regulation as the criteria by which to manage the eutrophication of Lake Okeechobee.

Since 1972 additional models have been developed which have more refined theoretical considerations and which have been modified for use on Florida lakes. In addition, a larger and more extensive data base now exists on the lake by which to evaluate the trophic state and nutrient

-261-

loading models. Therefore, as discussed in this report, the modified Vollenweider (1976) model appears to be more applicable to Lake Okeechobee and should replace the Shannon and Brezonik (1972) model as the criteria by which to manage the eutrophication of the lake. More specifically, the permissible rate of the Shannon and Brezonik model should be replaced by the excessive rate of the modified Vollenweider (1976) model. This change would require a much greater reduction in phosphorus inputs (i.e. an increase from a 10 percent reduction to a 40 percent reduction) and a slightly lower reduction in nitrogen inputs (i.e. a decrease from a 51% reduction to a 34% reduction. These proposed percent reductions assume no change in the hydrological characteristics of the lake (i.e. the average water residence time and hydraulic loading don't change). If nutrient abatement strategies do appreciably alter the average water residence time and hydraulic loading rate, then the excessive nutrient loading rate should be recalculated.

-262-

SUMMARY

A comparison of Lake Okeechobee with literature critical values for six common trophic state indicators (Secchi disk, chlorophyll <u>a</u>, total phosphorus, ortho phosphate, total nitrogen, and inorganic nitrogen) produced a subjective trophic state assessment of eutrophic. The same assessment was determined for the lake using a quantitative trophic state index (TSI (AVG)) based on four of the indicators (Secchi disk, chlorophyll <u>a</u>, total phosphorus and total nitrogen). This assessment was then used as one criterion for selecting an appropriate nutrient loading model for Lake Okeechobee. Other criteria considered in the selection were the model's predictive ability for nutrient concentration, and the model development data base.

The model which best fits the above criteria for both phosphorus and nitrogen was the modified Vollenweider (1976) model. It predicts the total phosphorus concentration in the lake from 1973-79 within 2 percent, and the total nitrogen concentration within 26 percent. The model was developed from a Florida data base with measured nutrient budgets and considers the effect of the water residence time on the lake's response to nutrient loadings. The modified Vollenweider (1976) model also accurately classified Lake Okeechobee as eutrophic based upon both phosphorus and nitrogen loadings.

Probability analysis was applied to the modified Vollenweider (1976) model to determine the probability of the trophic state classifications made by the model. Based on this analysis, Lake Okeechobee had a 78 percent probability of being eutrophic using the phosphorus loadings and a 79% probability using the nitrogen loadings.

~263-

On the average, the phosphorus and nitrogen loads to the lake from 1973 to 1979 were 40 percent and 34 percent, respectively, above the excessive levels set by the modified Vollenweider (1976) model. Since the lake is neither conclusively phosphorus or nitrogen limited, and since the model predicts the same trophic state based on either nutrient, both the phosphorus and nitrogen based models should be used to manage the lake at this time. After a reduction in phosphorus loadings, it would take approximately 1.5 years for 95 percent of the expected reduction in ambient phosphorus levels to occur. Similarly, it would take about 3.3 years for 95 percent of the expected reduction in ambient nitrogen levels to occur after a reduction in nitrogen loadings.

•

REFERENCES

- Allen, Jr., L. H., Stewart, E. H., Knisel, Jr., W. G., and Slack, R. A., 1975. Seasonal variation in runoff and water quality from the Taylor Creek Watershed, Okeechobee County, Florida. Soil and Crop Science Society of Florida. Proceedings 35, Nov. 18-20, 1975.
- Army Corps of Engineers. Unpublished hydrology data for Lake Okeechobee, 1973-80.
- Benndorf, J., 1979. A contribution to the phosphorus loading concept. Intl. Rev. Gesamten Hydrobiol. (Ger.). 64:177.
- Black, Crow and Eidsness, 1977. Water Quality Studies in the Everglades Agricultural Area of Florida. Project No. 824-7600-05. Gainesville.
- Bortleson, G.E., Dion, N.P/, and McCornwell, J.B., 1974. A method for the relative classification of lakes in the state of Washington from reconnaissance data. U.S. Geological Survey Water Resources Investigation #37-74.
- Brezonik and Federico, 1975. Effects of backpumping from agricultural drainage canals on water quality in Lake Okeechobee. Florida Department of Environmental Regulation, Tech. Ser. 1(1).
- Brezonik, P. L., Blancher, E. C., Myers, V. B., Hilty, C. L., Leslie, M. K., Kratzer, C. R., Marbury, G. D., Snyder, B. R., Crisman, T. L., and Messer, J. J., 1979. Factors affecting primary production in Lake Okeechobee, Florida. Report to the Florida Sugar Cane League. Report No. 07-79-01. Dept. of Env. Eng. Sci., University of Florida, Gainesville.
- Brooks, H. K., 1974. "Lake Okeechobee" in Environments of South Florida: Present and Past. P. J. Gleason, ed. Memoir 2, Miami Geological Society, Miami.
- Burton, T. J., et al., 1975. Studies of the geochemical exchanges across the sediment-water interface in the Kissimmee River-Lake Okeechobee Watershed. Florida Department of Environmental Regulation, Tech. Ser. 1(5).
- Carlson, R. E., 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369.
- Chapra, S. C., 1975. Comment on 'An empirical method of estimating and retention of phosphorus in lakes' by W. B. Kirchner and P. J. Dillon. Water Resources Res. 11: 1033-1034.
- Chapra, S. C., and Tarapchak, S. J., 1976. A chlorophyll <u>a</u> model and its relationship to phosphorus loading plots for lakes. Water Resources Res. 12: 1260-1264.
- CH2M Hill, Inc., 1978. Water quality studies in the Everglades Agricultural Area of Florida. Report submitted to the Florida Sugar Cane League, Gainesville, Florida.

- CH2M Hill, Inc., 1979. Phase 3 Water Quality Studies in the Everglades Agricultural Area of Florida. Report submitted to the Florida Sugar Cane League, Gainesville, Florida.
- Davis, R. E., and Marshall, M. L., 1975. Chemical and biological investigations of Lake Okeechobee, January 1973 - June 1974. Interim Report. Central and Southern Florida Flood Control District, Tech. Pub. No. 75-1.
- Dickson, K. G., Federico, A. C., and Lutz, J. R., 1978. Water quality in the Everglades Agricultural Area and its impact on Lake Okeechobee. South Florida Water Management District, West Palm Beach, Technical Pub. 78-3.
- Dillon, P. J., 1975. The phosphorus budget of Cameron Lake, Ontario: The importance of flushing rate to the degree of eutrophy of lakes. Limno. Oceanogr. 20: 28-39.
- Dillon, P. J., and Kirchner, W. B., 1975. Reply to Chapra's comment. Water Resource Res. 11: 1035-1036.
- Dillon, P. J., and Rigler, F. H., 1975. A simple method for predicting the capacity of a lake for development based on lake trophic status. J. Fish Res. Bd. Can. 31: 1518-1531.
- Douglas, M. S., 1947. The Everglades, River of Grass. Rinehart, New York, 406 p.
- Dye, C. W., Jones, D. A., Ross, L. T., and Willmore, K. L., 1975. Limiting nutrients in the Kissimmee River - Lake Okeechobee basin based on algal bioassay techniques. Florida Department of Environmental Regulation, Reg. Tech. Ser. 1(2): 73 p.
- Environmental Protection Agency, 1974. An approach to a relative trophic state index system for classifying lakes and reservoirs. National Eutrophication Survey Working Paper No. 24, Pacific Northwest Environ. Res. Lab., Corvallis, Oregon, 36 p.
- Environmental Protection Agency, 1977a. Report on Lake Okeechobee, Florida. National Eutrophication Survey Working Paper No. 269, Pacific Northwest Environ. Res. Lab, Corvallis, Oregon. 18 p.
- Environmental Protection Agency, 1978. A compendium of lake and reservoir data collected by the National Eutrophication Survey in eastern, north-central, and southeastern United States. National Eutrophication Survey Working Paper No. 475, Pacific Northwest Environ. Res. Lab., Corvallis, Oregon. 266 p.
- Federico, A., 1977. Investigations of the relationship between land use, rainfall, and runoff quality in the Taylor Creek watershed. South Florida Water Management District Tech. Pub. #77-3.
- Florida Game and Fresh Water Fish Commission, 1966. Annual Progress Report for Investigations Project - Dingell-Johnson Project.

- Florida Game and Fresh Water Fish Commission, 1967. Annual Progress Report for Investigations Project - Dingell-Johnson Project.
- Florida Game and Fresh Water Fish Commission, 1969. Annual Progress Report for Investigations Project - Dingell-Johnson Project.
- Florida Game and Fresh Water Fish Commission, 1971. Annual Progress Report for Investigations Project - Dingell-Johnson Project.
- Gayle, T., 1975. Systems models for understanding eutrophication in Lake Okeechobee. M. S. Thesis. Dept. of Environ. Eng. Sci., Univ. of Florida, Gainesville.
- Gleason, P. J. and Stone, P. A., 1975. Prehistoric trophic level status and possible cultural influences on the enrichment of Lake Okeechobee. Central and Southern Florida Flood Control District (unpublished manuscript).
- Goldstein, A. L. and Ulevich, R. J., 1980. Upland Detention/Retention Demonstration Project, Annual Report. Technical Memorandum. South Florida Water Management District, West Palm Beach, Florida
- Hand, J. G., 1975. Water quality modeling of the Middle St. Johns River System. M. S. Thesis, University of Florida, Gainesville, Florida. 125 p.
- Hutchinson, G. E., 1957. A treatise on limnology. Volume I. Geography, Physics, and Chemistry. John Wiley and Sons. New York. 1015 p.
- Jones, J. R., and Bachman, R. W., 1976. Prediction of phosphorus and chlorophyll levels in lakes. J. Water Pollut. Control Fed. 48: 2176-2182.
- Joyner, B. F., 1971. Chemical and biological conditions of Lake Okeechobee, Florida 1969-70. U. S. Geological Survey. Open File Report 71006.
- Joyner, B. F. 1974. Chemical and biological conditions of Lake Okeechobee, Florida 1969-72. Report of Inv. No. 71. Tallahassee, Florida: Bureau of Geology.
- Kirchner, W. B., and Dillon, P. J., 1975. An empirical method of estimating the retention of phosphorus in lakes. Water Resour. Res. 11: 182-183.
- Kratzer, C. R. 1979. Application of in-put models to Florida lakes. M.E. Thesis. University of Florida, Gainesville, Florida. 169 p.
- Kratzer, C. R. and Brezonik, P. L., 1981. A Carlson-type trophic state index for nitrogen in Florida lakes. (To be published in Water. Res. Bul.)
- Lamonds, A. G., 1975. Chemical characteristics of the lower Kissimmee River, Florida. U. S. Geological Survey Water Resources Inv., Tallahassee, Florida.
- Lueschow, L., Helm, J., Winter, D., and Karl, G., 1970. Trophic nature of selected Wisconsin lakes. Wisc. Acad. Sci. Arts Lett. 58: 237-264.

- MacGill, R. A., Gatewood, S. E., Hutchinson, C., and Walker, D. D., 1976. Final report on the special project to prevent eutrophication of Lake Okeechobee. Florida Department of State Planning. DSP-BCP-36-76. Tallahassee, Florida.
- Marshall, M. L., 1977. Phytoplankton and primary productivity studies in Lake Okeechobee during 1974. South Florida Water Management District. Technical Publication #77-2.
- McPherson, B. F., Waller, B. G. and Mattraw, H. C., 1976. Nitrogen and phosphorus uptake in the Everglades conservation areas, Florida, with special reference to the effects of backpumping runoff. WRI 76-29. U. S. Geological Survey, Tallahassee.
- Mendenhall, W. and Schaeffer, R. L., 1973. Mathematical statistics with applications. Durbury Press, North Scituate, Massachusetts
- Messer, J. J. and Brezonik, P. L. 1977. Nitrogen transformation in Everglades agricultural area soils and sediments. Draft report submitted to the Florida Sugar Cane League through CH₂M Hill.
- Messer, J. J. and Brezonik, P. L. 1981. Importance of atmospheric fluxes in the nitrogen balance of lakes in the Florida Peninsula. In: S. Eisenreich (Ed) Atmospheric Pollutants in Natural Water Systems: Ann Arbor (in Press).
- Messer, J. J., 1978. Nitrogen mass balances in Florida ecosystems. Ph.D. Dissertation. Univ. of Florida.
- Messer, J. J., Brezonik, P. L., and Snyder, B., 1979. Water quality significance of denitrification in the sediments of Lake Okeechobee Florida. Department of Environmental Engineering Sci. University of Florida, Gainesville, Florida ENV 07-79-03.
- Michalski, M. F. P., and Conroy, N., 1972. Water quality evaluation for the lake alert study. Ontario Ministry of the Environment, Water Qual. Branch Rept. 23 p.
- Parker, G. G. and Cooke, C. W., 1944. Late cenozoic geology of southern Florida, with a discussion of the ground water. Florida Geological Surv. Bull. 27: 1-119.
- Parker, G. G. et al., 1955. Water resources in southeastern Florida with special reference to the geology and ground water of the Miami area. U. S. Geological Survey Water Supply Paper 1255.
- Pesnell, G. L. and Brown, R. T., 1977. The major plant communities of Lake Okeechobee, Florida, and their associated inundation characteristics as determined by gradient analysis. South Florida Water Management District, West Palm Beach, Florida Technical Publication #77-1.

- Rast, W., and Lee, G. F., 1978. Summary analysis of the North American (U.S. portion) O.E.C.D. Eutrophication Project: Nutrient loading – lake response relationships and trophic state indices. U.S. Environmental Protection Agency, EPA-600/3-78-008, Corvallis Environ. Research Lab., Corvallis, Oregon. 454 p.
- Reckhow, K. H., 1977. Phosphorus models for lake management. Ph.D. Dissertation, Harvard University, Cambridge, Massachusetts.
- Reckhow, K. H. 1978. Quantitative techniques for the assessment of lake quality. Michigan State University, East Lansing. Report to Michigan Department of Natural Resources, 138 p.
- Sawyer, C. N., 1947. Fertilization of lakes by agricultural and urban drainage. Journal New England Water Works Assocation, 61: 109-127.
- Scheider, W. A., Moss, J. J., and Dillon, P. J., 1978. Measurement and uses of hydraulic and nutrient budgets. Proceedings of a National Conference on Lake Restoration, August 22-24, Minneapolis, Minnesota.
- Shannon, E. E., and Brezonik, P. L., 1972. Relationships between trophic state and nitrogen and phosphorus loading rates. Environmental Sci. Technology, 6: 719-725.
- Shaw, J. E., 1980. Hydrogeologic investigations along eastern portions of Lake Okeechobee. South Florida Water Management District Technical Memorandum
- Stewart, E. H., Allen, L. H., Jr., and Calvert, D. V., 1977. Water quality of streams on the upper Taylor Creek Watershed, Okeechobee County, Florida. Soil and Crop Science Society of Florida, Proceedings, 37: November 30 - December 1, 1977.
- Tebeau, C. W. 1974. Exploration and early descriptions of the Everglades, Lake Okeechobee and the Kissimmee River. In P. J. Gleason (ed)., Environments of South Florida: Present and past. Memoir 2. Miami Geological Society, Miami.
- Uttormark, P. D., and Wall, J. P., 1975. Lake classification for water quality management. Water Resources Center, University of Wisconsin, Madison, Wisconsin. 62 p.
- United States Geological Survey, 1973. Water Resources Data for Florida, Pt. 1. Vol. 2
- United States Geological Survey, 1974. Water Resources Data for Florida, Pt. 1, Vol. 2
- United States Geological Survey, 1975. Water Resources Data for Florida, Vol. 2
- United States Geological Survey, 1976. Water Resources Data for Florida, Vol. 2

- United States Geological Survey, 1977. Water Resources Data for Florida, Vol. 2A
- United States Geological Survey, 1978. Water Resources Data for Florida, Vol. 2A1
- Vollenweider, R. A., 1968. Water management research. DAS/CSI/68.27. O.E.C.D., Paris. 183 p.
- Vollenweider, R. A., 1969. Possibilities and limits of elementary models concerning the budget of substances in lakes. Arch. Hydrobiol. 66: 1-36.
- Vollenweider, R. A., 1975. Input-output models with special reference to the phosphorus loading concept in limnology. Schweiz Z. Hydrol. 37: 53-84.
- Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. Ist. Ital. Idrobiol. 33: 53-83.
- Will, L. E., 1956. Cracker history of Okeechobee. Great Outdoors Press, St. Petersburg, Florida. 314 p.
- Wisconsin Department of Natural Resources, 1975. Lilly Lake Protection and Rehabilitation Project. Proposal submitted to Environmental Protection Agency, Lake Renewal Program, Washington, D. C.
- Yerger, R. W., 1974. Aquatic vertebrate fauna of the Kissimmee River-Lake Okeechobee Basin. Florida Department of Environmental Regulation. Technical Series, Vol. 1.

APPENDIX A

SUMMARY STATISTICS FOR

THE INLAKE STATIONS

BASELINE EIGHT STATION LAKE OKEECHOBEE WATER CHEMISTRY DATA

		PARAMETER	R PANGE	PANGE OF VALUES		UNITS	
		DATE Depth Sample	ATE 4/ 1/73 - 3/31/80 EPTH 0 - 0 SAMPLE 0.			D MOIDAIÝR O METERS O• TYPE	
		STATION	= L001	CODE			
	TT M C		TONO	• •			
	HOUR,MIN	METERS	CENT	MG/L	45AI. UU	UMHOSICM	
NUM. VALS.		119	73	73	72	71	
AVERAGE		0 .0	24.3	8.6	99.	539.	
ST. DEV.		0.0	5.0	1.6	18.	154.	
MIN. VAL.	830.	0.0	12.7	5.1	64.	125.	
MAX. VAL.	1545.	0.0	31.2	16.0	204.	760.	
	PH	SECCHI	TURB	COLOR	T.SUS.SD	0P04	
		M	JTU	UNITS	MG7L	MC PVL	
NUM. VALS.	73	46	97	69	33	107	
AVERAGE	8.17	0.52	12.7	54.	34.6	0.013	
ST. DEV.	0.47	0.26	9.6	28.	34.2	0.019	
MIN. VAL.	6.20	0.08	2.1	20.	2.3	0.002	
MAX. VAL.	9.00	1.22	42.0	200.	125.6	0.099	
	TPO4	NOX	N02	ND 3	NH4	NTX+NH4	
	MG P/L	MG N/L	MG N/L	MG N7L	MG N/L	MG N/L	
NUM. VALS.	101	105	108	105	107	104	
AVERAGE	0.064	0.085	0.005	0.081	0.03	0.11	
ST. DEV.	0.033	0.124	0.005	0.123	0.03	0.12	
MIN. VAL.	0.019	0.003	0.002	0.004	0.01	0.01	
MAX. VAL.	0.157	0.533	0.016	0.529	0.19	0.54	
	TKN-NH4	TOTAL N	CHLOR A	TOTAL PS	NA	к	
	MG N/L	MG N/L	MG/M3	MG/L	MG/L	MGZL	
NUM. VALS.	103	101	54	50	79	51	
AVERAGE	1.53	1.65	30.2	0.39	49.74	4.15	
ST. DEV.	0.46	0.48	16.5	0.31	13.52	0.82	
MIN. VAL.	0.35	0.36	3.6	0.02	8.30	1.76	
MAX. VAL.	3.06	3.08	90.7	1.43	70.78	5.92	
	CA	MG	ĊL	S (1 4	ALK		
	MG/L	MG/L	MG/L	MG/L	MEQ/L		
NUM. VALS.	80	80	105	40	102		
AVERAGE	40.41	15.04	76.8	51.6	2.21		
ST. DEV.	10.87	4.05	21.2	13.2	0.67		
MIN. VAL.	4.20	2.20	15.4	6.8	0.14		
MAX. VAL.	58.20	21.54	107.8	76.8	3,41		

BASELINE EIGHT STATION

LAKE DREECHOBEE WATER CHEMISTRY DATA

		PARAMETER	RANGE	E OF VALUES	UNITS	
		DATE DEPTH	4/ 1/73 0	- 3/31/	80 MO/DA/ O METERS	YR
		SAMPLE	0.	•	Q. TY	PE
		STATION	= 1002	CODE		
	TIME	DEPTH	TEMP	D.0.	%SAT. DO	SP COND
	HOURPMIN	METERS	CENT	MG/L		UMHOSICM
NUM. VALS.		117	71	71	70	69
AVERAGE		0.0	24.4	8.6	100.	592.
ST. DEV.		0.0	5.0	1.3	13.	119.
MIN. VAL.	843.	0.0	12.8	6.2	76.	137.
MAX. VAL.	1710.	0.0	31.5	11.9	153.	780.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	NPN 4
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	72	46	96	69	36	98
AVERAGE	8.20	0.50	16.9	43.	32.0	0.014
ST. DEV.	0.27	0.28	13.8	17.	23.5	0.020
MIN. VAL.	7.23	0.12	1.2	19.	2.8	0.002
MAX. VAL.	9.10	1.28	73.0	140.	96.8	0.104
	TP04	NAX	N02	NAB	NHA	NOY+NH4
	MGP/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L
NUM. VALS.	94	97	99	97	93	07
AVERAGE	0.061	0.123	0.005	0.120	0.03	0.15
ST. DEV.	0.043	0.188	0.012	2.187	0.03	0.20
MIN. VAL.	0.021	0.003	0.002	0.004	0.01	0.01
MAX. VAL.	0.297	1.412	0.017	1.408	0.25	1.43
					N A	v.
• •	MG NYL	MGN/L	MG/M3	MG/L	MGZL	MGIL
NUM. VALS.	05	03	4.6	4.3	. 60	4 3
AVERAGE	1.54	1.68	26.4	0.42	55 71	3 T. 4 2 3
ST. DEV.	0.48	1+00	11 6	U • 72	9 95	
MTR. WAL.	0.28	0.30	2 B	0.02	22 80	1 00
MAX. VAL.	2.91	3.12	55.4	1.09	73.91	6+30
	C A	MC	C 1	504	A 1 2	
	MGZL	MG/L	MG/L	MG/L	MEOZL	
NERM. VALC.	70	70	0.9	24	05	
AVEDACE	(V 26 31	17 02	70 07 4	54 67 Y	77	
A VERAGE	72+21	1/+U3	0115	24+4	6 • 4 D	
MINE VAL	21 20	2.00	14+U 34 A	11+7	0.42	
	6 2 3 D	7.6U	29.U	17+0 20 4	V•07	
		r (A D 7	1 I M A U	0.0 + 1	3 4 4 0	

BASELTNE	FTGHT	STATION
----------	-------	---------

	PARAMETER		RANG	E OF VALUES	ŰN	UNITS	
		DATE	4/ 1/73	- 3/31/	RO MO /DA/	YR	
		DEPTH	0	 .	0 METERS		
·		SAMPLE	0	•	0. TY	PE	
		STATION	= 1003	CODE			
			2001	ÇHDE			
	TIME	DEPTH	TEMP	D • 🖯 •	7SAT. DO	SP COND	
	HOUR, MIN	METERS	CENT	MG∕L		UМНО\$7СМ	
NUM. VALS.		116	71	71	70	60	
AVERAGE		0.0	24.6	8.4	98.	606.	
ST. DEV.		0.0	5.1	1.3	12.	103.	
MIN. VAL.	856.	0.0	13.0	2.7	35.	136.	
MAX. VAL.	1705.	0.0	31.7	11.6	124.	755.	
	RH	SECCHT	TURB	COLOR	12.5115.5D	() D D A	
		M	JTU	UNITS	MG/L	MG P/L	
NUM. VALS.	72	44	0.5	60	25	٥v	
AVERAGE	8.13	0.45	20 7	61	57 40 4	90	
ST. DEV.	0.29	0 28	17 6	41.e 1.1	40.0	0.010	
MIN. VAL	6.80	0.09	17.0	11.	40.0 2 0	0.010	
MAX. VAL.	8.80	1.14	94.0	1/• 	296 0	0.002	
	0.00		2400	• • •	220.7	U •Urr	
	TP 04	NOX	NDZ	ND3 -	NH4	NBX+NH4	
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N∕L	
NUM. VALS.	93	97	98	97	97	94	
AVERAGE	0.063	0.139	0.005	0.135	0.02	0.16	
ST. DEV.	0.033	0.155	0.002	0.154	0.02	0.16	
MIN. VAL.	0.019	0.001	0.002	0.004	0.01	0.01	
MAX. VAL.	0.170	0.661	0.017	0.653	0.13	0.67	
	TKN-NH4	TOTAL N		TOTAL FF	NA	ĸ	
	MG N/L	MGNIL	MG/M3	MG/L	MG/L	MG/L	
NUM. VALS.	94	94	47	42	68	4.1	
AVERAGE	1.54	1.69	26.3	0.58	57.51	4.37	
ST. DEV.	0.54	0.58	12.7	0.61	8.22	1 L • F	
MIN. VAL.	0.41	0.42	3.4	0.02	33 00	3 40	
MAX. VAL.	3.70	4.08	63.2	2.67	89.00	5.87	
	C۵	MG	C1	504	A 1 K		
	MG/L	MGZL	MGZL	MG/L	MEGIL		
NUM. VALS.	68	67	06	2 2	03	· · ·	
AVERAGE	45,55	17719	70 80 K	3) R4 0	73		
ST. DEV.	8.21	2.67	11 1	20.0 10 F	6.75		
MTN. VAL.	22.R7	8.40	- * * * 7 2 2 2	10+9	1 40		
MAX. VAL.	80.73	22.03	129.0	.72.1	7 48 7 464		
			L C. 7 B V		1		

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			PARAMETER	R RANG	E OF VALUES	UN	ITS
SAMPLE O. O. TYPE STATION LO04 CDDE TIME DEPTH TEMP D.O. ZSAT. DN SP COND AVERACE 120 74 74 73 72 AVERACE 0.0 24.2 8.7 101. 611. ST. DEV. 0.0 5.3 1.4 14. 106. MAX. VAL. 935. 0.0 13.4 6.3 70. 132. MAX. VAL. 1805. 0.0 13.4 6.4 10. 164. NUM. VALS. 73 47 99 71. 35. 106 AVERAGE 8.14 0.30 0.19 16.4 17. 39.3 0.018 MIN. VALS. 7.30 0.71 1.56 0.002 MG/L MG/L MG/L MG/L NUM. VALS. 6.70 0.51 10.01 1.018 0.018 0.024 MAX. VAL. 6.001 0.050 0.54 0.			DATE Depth	4/ 1/73 0	- 3/31/	80 MOZDAZ O METERS	YP
STATION LO04 CODE IIME HDUR,MIN DEPTH METERS TEMP CENT D.N. MG/L ZSAT. DD SP COND UMHOS/CM MW. VALS. AVERACE ST. DEV. MAX. VAL. 120 74 74 73 72 MAY. 935. 0.0 24.2 8.7 101. 611. MAX. VAL. 935. 0.0 13.4 6.3 79. 132. MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TUBB COUNT T.SUS.SD 0P04 NUM. VALS. 73 47 99 71 35 106 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 1.6.11 5.6 0.002 MIN. VAL. 7.00 0.22 1.6 11. 5.6 0.002 VERAGE 0.071 0.139 0.006 0.136 0.64 0.17 ST. DEV. 0.026			SAMPLE	0	•	0. TY	PE
TIME HOUR, MIN DEPTH METERS TEMP CENT D. P. MG/L ZSAT. DD SP CDND UMHOS/CM NUM. VALS. AVEPAGE 120 74 74 73 72 AVEPAGE 0.0 24.2 8.7 101. 611. ST. DEV. 0.0 5.3 1.4 14. 106. MAX. VAL. 935. 0.0 13.4 6.3 79. 132. MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TURB CDUP T.SUS.SD 0P4 MCV. 0.30 0.19 16.4 12. 39.3 0.018 NUM. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.017 MM. VAL. 7.00 0.129 0.06 0.136 0.04 0.17 MM. VAL. 0.016 0.007 0.004 0.017 0.51			STATION	= L004	CODE		
HOUR, MIN METERS CENT MG/L UMHOS/CM AVERAGE 0.0 24.2 8.7 101. 611. ST. DFV. 0.0 5.3 1.4 14. 106. MIN. VAL. 935. 0.0 13.4 6.3 79. 132. MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TURB CDLPP T.SUS.SD DP04 MYENAGE 8.14 0.37 23.2 39. 44.1 0.018 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 12. 39.3 0.018 MAX. VAL. 6.F0 0.85 66.0 65. 180.8 0.074 MM. VAL. 7.00 0.139 0.006 0.136. 0.04 0.17 ST. DEV. 0.043 0.150 0.010 0.150 0.06 0.16 <		TIME	DEPTH	TEMP	D . C .	ZSAT. DO	SP COND
NUM. VALS. 120 74 74 73 72 AVERACE 0.0 24.2 8.7 101. 611. MAX. VAL. 935. 0.0 13.4 6.3 79. 132. MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TURB COLIPP T.SUS.SD 0P04 MKN. VALS. 73 47 99 71 35 106 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 12. 39.3 0.018 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MAX. VAL. 6.60 0.85 60.0 11.5 56 0.002 MAX. VAL. 0.026 0.65 107 105 0.074 0.17 ST. DEV. 0.463 0.150 0.010 0.150 0.04 0.17 ST. DEV. 0.		HOUR,MIN	METFRS	CENT	MG/L		UMHOSICM
AVEPAGE 0.0 24.2 8.7 101. 611. ST. DEV. 0.0 5.3 1.4 14. 10C. MAX.VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TURB COLOP T.SUS.SD OPD4 MW.VALS. 73 47 99 71 35 106 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 17. 39.3 0.018 MIN. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX.VAL. 6.60 0.85 66.0 65. 180.8 0.074 MAX.VAL. 6.60 0.85 66.0 65. 180.8 0.074 MM.VAL. 0.010 0.020 0.036 0.136 0.04 0.17 MVM.VALS. 103 106 108 105 107 105 VERAGE 0.071 0.139 0.006 0.136 0.04 0.01	NUM. VALS.		1 20	74	74	73	72
ST. DEV. 0.0 5.3 1.4 14. 106. MIN. VAL. 935. 0.0 13.4 6.3 79. 132. MAX. VAL. 1805. 0.0 32.5 14.5 188. 846. PH SECCHI TURB COLOP T.SUS.SD 0P04 NUM. VALS. 73 47 99 71 35 106 AVERAGE R.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 17. 39.3 0.018 MIN. VAL. 7.00 0.12 1.6 11. 5.6 0.007 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MAX. VAL. 0.013 106 108 105 107 105 AVERAGE 0.071 0.150 0.010 0.150 0.04 0.17 ST. DEV. 0.043 0.150 0.001 0.150 0.04 0.17 ST. DEV. 0.044 0.050 0.040 0.010	AVERAGE		0.0	24.2	8.7	101	611.
MIN. VAL. 935. 0.0 13.4 6.3 70. 132. MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TUR8 COLPP T.SUS.SD OPD4 MVERACE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 12. 39.3 0.018 MAX. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MAX. VAL. 103 106 108 105 107 105 AVERACE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.150 0.001 0.150 0.06 0.136 MIN. VAL. 0.016 0.001 0.002 0.004 0.017 0.51 MIN. VAL. 0.51 0.57 7.9	ST. DEV.		0.0	5.3	1.4	14.	106.
MAX. VAL. 1805. 0.0 32.5 14.5 188. 840. PH SECCHI TURB COLOP T.SUS.SD OPD4 NUM. VALS. 73 47 99 71 35 106 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 12. 39.3 0.018 MIN. VAL. 7.00 0.12 1.6 1.5.6 0.002 MAX. VAL. 8.60 0.85 66.0 65. 180.8 0.074 MM. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MM. VAL. 0.031 106 108 105 107 105 AVERAGE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.150 0.010 0.002 0.004 0.01 0.016 MIN. VAL. 0.276 0.544 0.099 0.540 0.47 0.58 MIN. VAL. 0.51 0.57 7.9 <td>MIN. VAL.</td> <td>935.</td> <td>0.0</td> <td>13.4</td> <td>6.3</td> <td>79.</td> <td>132.</td>	MIN. VAL.	935.	0.0	13.4	6.3	79.	132.
PH SECCHI M TURB JTU COLPP UNITS T.SUS.SD MG/L OPD4 MG P/L NUM. VALS. 73 47 99 71 35 106 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 17. 39.3 0.018 MIM. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 8.60 0.85 66.0 65. 180.8 0.074 MUM. VALS. 103 106 108 105 107 105 AVERACE 0.011 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.026 0.544 0.099 0.540 0.47 0.58 MIN. VAL. 0.226 0.544 0.099 0.540 0.47 0.58 MIN. VAL. 0.57 7.9 0.64 8.05 0.76 MIN. VALS. 104 103 54 50 <td>MAX. VAL.</td> <td>1805.</td> <td>0.0</td> <td>32.5</td> <td>14.5</td> <td>188.</td> <td>840.</td>	MAX. VAL.	1805.	0.0	32.5	14.5	188.	840.
NUM. VALS. 73 47 99 71 35 106 AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 17. 39.3 0.018 MIN. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MUM. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.60 0.85 66.0 65. 180.8 0.074 MUM. VAL. 0.033 NH4 NDX MG N/L ND3 NH4 NDX+NH4 NUM. VALS. 103 106 108 105 107 105 AVERACE 0.016 0.001 0.002 0.004 0.01 0.01 MAX. VAL.		рн	SECONT	T110 0	CRIDE	T. 5115. 50	0004
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			M	JTU	UNITS	MG/L	MG P/L
AVERAGE 8.14 0.37 23.2 39. 44.1 0.018 ST. DEV. 0.30 0.19 16.4 12. 39.3 0.018 MIN. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.80 0.85 66.0 65. 180.8 0.074 MMW. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.80 0.85 66.0 65. 180.8 0.074 MMW. VALS. 103 106 108 105 107 105 AVERAGE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.150 0.010 0.150 0.066 0.16 MIN. VAL. 0.016 0.001 0.002 0.004 0.01 0.01 MAX. VAL. 0.226 0.544 0.099 0.540 0.47 0.58 TKN-NH4 TOTAL N CHLOR A TDTAL FE NA K MG N/L MG N/L MG/M3	NUM. VALS.	73	47	69	71	35	106
ST. DEV. 0.30 0.19 16.4 17. 39.3 0.018 MIN. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 6.80 0.85 66.0 65. 180.8 0.074 MAX. VAL. 6.80 0.85 66.0 65. 180.8 0.074 MMG P/L MG N/L NUM. VALS. 103 106 108 105 107 105 AVERACE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.150 0.010 0.150 0.066 0.16 MIN. VAL. 0.016 0.001 0.002 0.004 0.01 0.01 MAX. VAL. 0.226 0.544 0.039 0.540 0.47 0.58 TKN-NH4 TOTAL N C4LOR A TOTAL FE NA K MG N/L MG N/L MG N/L MG/L MG/L MG/L NUM. VALS.	AVERAGE	8.14	0.37	23.2	30	44.1	0.018
MIN. VAL. 7.00 0.12 1.6 11. 5.6 0.002 MAX. VAL. 8.80 0.85 66.0 65. 180.8 0.074 MAX. VAL. 8.80 0.85 66.0 65. 180.8 0.074 MAX. VAL. 8.80 0.85 66.0 65. 180.8 0.074 MMM. VALS. 103 106 108 105 107 105 AVERAGE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.150 0.010 0.150 0.06 0.16 MIN. VAL. 0.016 0.001 0.007 0.004 0.01 0.01 MAX. VAL. 0.016 0.001 0.007 0.004 0.01 0.01 MAX. VAL. 0.226 0.544 0.099 0.540 0.47 0.58 TKN-NH4 TOTAL N CHUR A TOTAL FE NA K MG N/L MG N/L MG/M3 MG/L MG/L MG/L NUM. VALS. 104 103 54	ST. DEV.	0.30	0.19	16.4	12.	30.3	0.019
MAX. VAL. FLOD OLL LLO LLO LLO LLO LLO DLO OLOOZ MAX. VAL. 6.80 0.85 66.0 65. 180.8 0.074 MAX. VAL. NOX NOX NOZ NO3 NH4 NOX+NH4 MG P/L MG N/L MG N/L MG N/L MG N/L MG N/L MG N/L NUM. VALS. 103 106 108 105 107 105 AVERACE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.0150 0.007 0.004 0.01 0.01 MAX. VAL. 0.226 0.544 0.099 0.540 0.47 0.58 TKN-NH4 TOTAL N CHLOR A TOTAL FE NA K MG N/L MG N/L MG/M3 MC/L MG/L MG/L ST. DEV. 0.51 0.57 7.9 0.64 8.05 C.76 MIN. VAL. 0.53 0.36 5.3 0.03 30.00 2.60 MVF RAGE	MIN. VAL.	7.00	0.12	1.6	11		0.0020
TP04 N0X N02 N03 NH4 N0X+NH4 MG P/L MG N/L 0.017 105 0.017 105 0.017 0.150 0.010 0.0150 0.066 0.117 0.017 0.016 0.010 0.007 0.004 0.016 0.010 0.007 0.004 0.010	MAY. VAL	8.80	0.85	0+1	11.	1000	0.074
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	AND AND A	0.00	0.07	00+0	• 69	1.00.0	0.014
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		TP04	NOX	ND2	NO3	NH4	NOX+NH4
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L
AVERAGE 0.071 0.139 0.006 0.136 0.04 0.17 ST. DEV. 0.043 0.150 0.010 0.150 0.06 0.16 MIN. VAL. 0.016 0.001 0.007 0.004 0.01 0.01 MAX. VAL. 0.226 0.544 0.099 0.540 0.47 0.58 TKN-NH4 TDTAL N C4LOR A TDTAL FE NA K MG N/L MG N/L MG/M3 MG/L MG/L MG/L NUM. VALS. 104 103 54 50 75 46 AVERAGE 1.59 1.76 23.6 0.72 57.66 4.41 ST. DEV. 0.51 0.57 7.9 0.64 8.05 6.76 MIN. VAL. 0.35 0.36 5.3 0.03 30.00 2.60 MAY. VAL. 3.20 3.61 3P.9 2.45 74.00 6.17 MAY. VAL. 3.20 3.61 3P.9 2.45 74.00 6.17 MUM. VALS. 77 77 106	NUM. VALS.	103	106	108	105	107	105
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AVERAGE	0.071	0.139	0.006	0.136	0.04	0.17
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ST. DEV.	0.043	0.150	0.010	0.150	0.06	0.16
MAX. VAL. 0.226 0.544 0.099 0.540 0.47 0.58 TKN-NH4 TOTAL N CHLOR A TOTAL FE NA K MG N/L MG N/L MG/M3 MG/L MG/L MG/L MG/L NUM. VALS. 104 103 54 50 75 46 AVERAGE 1.59 1.76 23.6 0.72 57.66 4.41 ST. DEV. 0.51 0.57 7.9 0.64 8.05 0.76 MIN. VAL. 0.35 0.36 5.3 0.03 30.00 2.60 MAX. VAL. 3.20 3.61 38.9 2.45 74.00 6.17 MAX. VAL. 3.20 3.61 38.9 2.45 74.00 6.17 MAX. VAL. 3.20 3.61 38.9 2.45 74.00 6.17 MAX. VAL. 3.20 3.61 38.9 0.255 55 57.4 2.55 ST. DEV. 5.71 2.17 106 39 102 55 55 ST. DEV. 5.71	MIN. VAL.	0.016	0.001	0.002	0.004	0.01	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	MAX. VAL.	0.226	0.544	0.099	0.540	0.47	0.58
MG N/L MG/N/L MG/M3 MG/L MG/L <t< td=""><td></td><td>TKN-NH4</td><td>τρται Ν</td><td>CHIDE A</td><td></td><td>NA</td><td>к</td></t<>		TKN-NH4	τρται Ν	CHIDE A		NA	к
NUM. VALS. 104 103 54 50 75 46 AVERAGE 1.59 1.76 23.6 0.72 57.66 4.41 ST. DEV. 0.51 0.57 7.9 0.64 8.05 0.76 MIN. VAL. 0.35 0.36 5.3 0.03 30.00 2.60 MAX. VAL. 3.20 3.61 38.9 2.45 74.00 6.17 CA MG CL SD4 ALK MG/L MG/L MG/L MED/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 V16.0 83.2 3.63	· · ·	MG N/L	MG N/L	MG/M3	MG/L	MGZL	MG/L
AVERAGE 1.59 1.76 23.6 0.72 57.66 4.41 ST. DEV. 0.51 0.57 7.9 0.64 8.05 0.76 MIN. VAL. 0.35 0.36 5.3 0.03 30.00 2.60 MAX. VAL. 3.20 3.61 3P.9 2.45 74.00 6.17 CA MG CL SD4 ALK MG/L MG/L MG/L ME0/L ME0/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	NUM. VALS.	104	103	54	50	75	46
ST. DEV. 0.51 0.57 7.9 0.64 8.05 0.76 MIN. VAL. 0.35 0.36 5.3 0.03 30.00 2.60 MAX. VAL. 3.20 3.61 38.9 2.45 74.00 6.17 CA MG/L MG/L MG/L MG/L ME0/L ME0/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	AVERAGE	1.59	1.76	23.6	0.72	57.66	4.41
MIN. VAL. 0.35 0.36 5.3 0.03 30.00 2.60 MAX. VAL. 3.20 3.61 38.9 2.45 74.00 6.17 CA MG CL SD4 ALK MG/L MG/L MG/L MG/L ME0/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL 58.31 22.29 116.0 83.2 3.63	ST. DEV.	0.51	0.57	7.9	0.64	9 0 5	0.76
MAX. VAL. 3.20 3.61 3P.9 2.45 74.00 6.17 MAX. VAL. CA MG CL SD4 ALK MG/L MG/L MG/L MG/L MG/L ME0/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	MTN. VAL.	0.35	0.36	5.2	0.03	30.00	2.60
CA MG CL SD4 ALK MG/L MG/L MG/L MG/L MG/L ME0/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	MAX. VAL.	3.20	3.61	38.9	2.45	74.00	6.17
MG/L MG/L MG/L MG/L MG/L MG/L MG/L NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63		۲ ۵	MG	C 1	504	A1 K	
NUM. VALS. 77 77 106 39 102 AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63		MGZL	MG/L	MĞZL	MG/L	MESYL	
AVERAGE 46.63 17.62 89.0 57.4 2.55 ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	NHM VAIC.	77	77	104	20	103	
NTERNOL TOTOL TOTOL TOTOL TOTOL TOTOL ST. DEV. 5.71 2.17 11.8 9.9 0.40 MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	AVEDACE	· · · · · · · · · · · · · · · · · · ·	17 43	100	57 57 A	102	
MIN. VAL. 24.79 11.60 27.5 24.6 1.58 MAX. VAL. 58.31 22.29 116.0 83.2 3.63	ST. DEV.	TU+03	11.0C	11 0	27.4	2.00	
	MIN, VAL	2+(1) 26 70	2011 11 40	11+7 77 C	5 7 4 7 54 4	U+4U 1.E0	
	MAX VAL	८न•/७ 58.२1	22.20	116.0	2 4 0 8 2 - 2	1.420 2.43	

BASELINE EIGHT STATION

LAKE DEECHOBEE WATER CHEMISTRY DATA

		PARAMETER	R RANGE	OF VALUES	UM	ITS
		DATE DEPTH	4/ 1/73 0	- 3/31/3	80 MOZDAZ O METERS	ΥÞ
	<u>.</u> 1	SAMPLE	0	•	0. TY	ÞE
•		STATION	≠ L005	CIDE		
	TIME	DEPTH	TEMP	D.D.	ZSAT. DO	SP CONF
	HOUR, MIN	METERS	CENT	MG/L		UMHDS/C
NUM. VALS.		121	76	73	73	73
AVERAGE		0.0	24.5	8.7	101.	567
ST. DEV.		0.0	5.1	1.3	12.	140.
MIN. VAL.	856.	0.0	13.2	3.2	40.	141.
MAX. VAL.	1645.	0.0	31.2	11.8	131.	750.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	0P04
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	74	48	102	71	35	110
AVERAGE	8.31	0.83	10.9	49.	25.7	0.013
ST. DEV.	0.60	0.36	12.7	23.	21.7	0.038
MIN. VAL.	5.00	0.24	D •5	1.	1.3	0.002
MAX. VAL.	9.20	1.80	64.0	149.	108.3	0.342
	TP 04	NOX	NDZ	NO 3	NH4	NDX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N /L
NUM. VALS.	107	110	110	110	109	109
AVERAGE	0.045	0.070	0.005	0.067	0.02	0.09
ST. DEV.	0.049	0.124	0.002	0.123	0.02	0.13
MIN. VAL.	0.005	0.001	0.002	0.004	0.01	0.01
MAX. VAL.	0.406	0.599	0.017	0.593	0.15	0.61
	TKN-NH4	TOTAL N	CHLOR A	TOTAL FE	ΝΑ	к
	MG N/L	MG N/L	MG/MB	MG/L	MG/L	MG/L
NUM. VALS.	105	106	56	50	79	49
A VERA GE	1.52	1.61	25.2	0.28	54.81	4.13
ST. DEV.	0.48	0.51	17.2	0.37	11.18	0.97
MIN. VAL.	0.26	0.29	4.4	0.02	10.60	0.44
MAX. VAL.	4.05	4.06	84+8	1.86	77.05	6.27
	C A	MG	CL	S 0.4	ALK	
	MG/L	MG/E	MG/L	MG/L	MEO/L	
NUM. VALS.	80	80	108	42	105	
AVERAGE	42.80	16.89	84.7	54.6	2.44	
ST. DEV.	8.35	3.58	17.6	12.1	0.62	
MIN. VAL.	6.20	3.60	4.0	10.8	0.15	
MAX. VAL.	56.30	22.71	140.7	75.4	6.49	

BASELINE EIGHT STATION

2

LAKE DREECHOBEE WATER CHEMISTRY DATA

		PARAMETER	RANGE	RANGE OF VALUES		UNITS	
		DATE DEPTH SAMPLE	4/ 1/73 0	4/ 1/73 - 3/31/80 0 - 0.		YR	
		STATION	* £006	CODE			
	TIME HOUR,MIN	DEPTH Meters	TE MP CENT	D.O. Mg/L	%SAT. DO	SP COND UMHOS/CM	
NUM. VALS. Average		122	76 24.3	74 8•4	74 97.	73 602.	
ST. DEV.	900	0.0	5.0	1.2	11.	105.	
MAX. VAL.	1535.	0.0	31.1	12.3	132.	141. 790.	
	РН	SECCHI M	TURB JTU	COLOR UNITS	T.SUS.SD MG/L	OP 04 Mg p/l	
NUM. VALS.	75	47	101	70	36	109	
AVERAGE ST. DEV.	· · · · · · · · · · · · · · · · · · ·	0.56	21.0	42.	34.3	0.023	
MIN. VAL.	6.15	0.15	1.2	13.	20.2	0.002	
MAX. VAL.	9.10	1.58	76.0	80.	134.1	0.099	
	TPD4 Mg P/L	NOX Mg N/L	NO2 Mg N/L	N03 Mg N71	NH4 Mg N/I	NOX+NH4 MG N/I	
NUM. VALS.	106	108	111	108	111	108	
AVERAGE	0.065	0.186	0.005	0.182	0.03	0.21	
ST. DEV.	0.041	0.153	0.002	0.152	0.05	0.16	
MIN. VAL.	0.015	0.001	0.002	0.004	0.01	0.01	
MAX. VAL.	0.267	0.602	0.016	0.596	0.50	0.64	
1997. 1997.	TKN-NH4 Mg N/L	TOTAL N Mg N/L	CHLOR A Mg/m3	TOTAL FE MG/L	NA MG/L	K Mg/l	
NUM. VALS.	109	106	55	52	79	49	
AVERAGE	1.44	1.65	19.4	0.40	56.73	4.29	
ST. DEV.	0.56	0.59	14.2	0.36	7.60	0.68	
MINE VALE Max. Val.	4.46	0+30	3.3	0.02	27.00	2.20	
	4440	4412	0,10	1.01	13471		
	CA MG/L	MG MG/L	CL MG/L	S 04 MG /L	ALK Meo/L		
NUM. VALS.	81	81	109	44	106		
AVERAGE	46.18	17.38	87.8	57.0	2.53		
ST. DEV.	6.74	2.43	12.7	9.8	0.39		
MAX. VAL.	27143	9.80 22 A7	10.0	36•Z	1.59		
CANT VALE	19940	2 2 • V I	TTG•O	03.6	3.00		

BASELINE	EIGHT STATE	ON LA	KE OKEECHO	BEE WATER C	HEMISTRY D	ΔΤΔ
		PARAMETER	RANG	E OF VALUES	אט	ITS
		DATE DEPTH Sample	4/ 1/73 0	- 3/31/ -	80 MO/DA/ OMETERS D. TY	ſ₽Ę.
		STATION	= L007	CODE		
	TIME HOUR,MIN	DEPTH Meters	TEMP Cent	0.0. MG/L	7SAT. DD	SP COND Umhosicm
NUM. VALS. Average St. dev.		117	73 24.5 5.3	71 8.5 1.4	71 99. 14.	70 615. 114.
MIN. VAL. Max. Val.	820. 1710.	0.0	12.8 36.6	5.1 11.7	59. 158.	13 8. 915.
	рн	SECCHI	TURB JTU	COLOR UNITS	T.SUS.SD MG/L	OPO4 Mg P/L
NUM. VALS. Average ST. dev.	72 8.10 0.40	44 0.83 0.58	96 13.4 13.6	70 44. 15.	35 26.1 22.0	90 0.020 0.022
MIN• VAL• Max• Val•	6.80 9.13	0.15 2.73	1.2 63.0	10. 88.	1.9 96.0	0.002
	TPO4 Mg p/l	NDX Mg n/l	NO2 M3 N/L	NO3 Mg N/L	NH4 Mg n/l	NOX+NH4 Mg N/L
NUM. VALS. AVERAGE ST. DEV.	96 0.054 0.030	97 0.202 0.285	99 0.005 0.004	97 0.197 0.281	99 0.03 0.03	97 0.23 0.29
MAX. VAL.	0.010	2.507	0.052	2.465	0.01	2.53
	MG N/L	MG N/L	MG/M3	MG/L	MG7L	MG /L
AVERAGE ST. DEV.	96 1.55 0.56	94 1.77 0.68	44 17.1 13.3	43 0.28 0.29	69 56.10 8.51	42 4.30 0.64
MAX. VAL.	3.61	4.86	70.0	1+21	74.90	6.20
	MG/L	MG/L	MG/L	SU4 MG/L	ALK MEQ/L	
AVERAGE ST. DEV. MIN. VAL	69 45.86 6.81 19.20	70 17.29 2.60 8.60	98 89.2 11.4 47.8	32 56.3 9.1 32.8	96 2.58 0.43	
MAX. VAL.	58.80	22.50	119.4	71.8	3.76	

· · ·

•

BASELINE EIGHT STATION LAKE OKEECHOBEE WATER CHEMISTRY DATA

		PARAMETER	RANGE	OF VALUES	ŲN	ITS
		DATE	4/ 1773	- 3/31/	80 MO/DA/	YR
	· .	DEPTH	0	-	O METERS	
		SAMPLE	0.	· .	0. TY	PE
		STATION	* L008	CODE		
	TTME	DEPTH	TENP	D. D.	75AT. DO	SP COND
	HOUR, MIN	METERS	CENT	MG/L	SUATE DO	UMHOSICM
NUM. VALS.		114	68	67	66	67
AVERAGE		0.0	24.6	8.7	101.	608.
ST. DEV.		0.0	5.0	1.1	11.	109.
MIN. VAL.	904.	0.0	12.8	6.6	85.	138.
MAX. VAL.	1715.	0.0	31.0	11.6	134.	790.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	0P04
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	67	44	94	67	36	96
AVERAGE	8.21	0.45	27.2	44.	47.3	0.016
ST. DEV.	0.47	0.29	23.0	24.	50.4	0.019
MIN. VAL.	5.70	0.10	2.5	15.	3.7	0.002
MAX. VAL.	9.20	1.11	93.0	200.	256.0	0.097
	TPD4	NOX	ND2	ND3	NH4	NOX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L
NUM. VALS.	93	.95	95	94	94	93
AVERAGE	0.067	0.144	0.005	0.137	0.02	0.17
ST. DEV.	0.042	0.166	0.003	0.164	0.03	0.17
MIN. VAL.	0.016	0.003	0.002	0.004	0.01	0.01
MAX . VAL .	0.207	0.720	0.023	0.714	0.28	0.73
	TKN-NH4	TOTAL N	CHLOR A	TOTAL FE	NA	ĸ
	MG N/L	MG N/L	MG/M3	MG/L	MG/L	MG/L
NUM. VALS.	91	91	47	39	68	41
AVERAGE	1.56	1.71	27.0	0.52	55.99	4.30
ST. DEV.	0.52	0.58	16.8	0.49	8.42	0.67
MIN. VAL.	0.22	0.23	2.3	0.04	36.00	3.30
MAX. VAL.	3.86	4.09	96.9	1.92	75.56	6.68
	C A	MG	CL	S 🖸 4	ALK	
	MGZL	MG/L	MG/L	MG/L	MEQ/L	
NUM. VALS.	69	69	94	33	91	
AVERAGE	45.32	17.24	88.5	55.6	2.55	
ST. DEV.	6.79	2.55	11.2	8.1	0.41	
MIN. VAL.	24.20	11.20	58.0	35.0	1.57	
MAX. VAL.	62.69	23.27	114.1	73.2	3.82	

LAKE OKEECHOBEE 40 STATION DATA SET

		PARAMETER	RANGÉ	DE VALUES	UN	ITS
		DATE DEPTH	5/20/78 0	- 9/15/ -	79 MOZDAZ O METERS	YR
		SAMPLE	0.		0. TY	PE
		STATION	- LZ1	C D E		
	TIME	DEPTH	TEMP	ð.n.	ZSAT. DO	SP COND
	HOUR + MIN	METERS	CENT	MCVL		UMHOSVCH
NUM. VALS.	· · ·	16	16	16	16] #
AVERAGE		0.0	27.0	P.4	102.	486.
ST. DEV.		0.0	4.4	1.4	15.	136
MIN. VAL.	1050.	0.0	15.9	6.1	76.	242.
MAX. VAL.	1540.	0.0	32.0	10.3	124.	645.
			1 A.			
	PH .	SECCHI	TURB	COLOR	T+SUS+SP	<u>na 0</u> 4
		M	JTU	UNITS	MG/L	MG P/L
NEM. VALS.	16	0	16	16	0	1 6
AVEDAGE	9 61		3.0	10	Ū.	0.032
ST. DEV.	0.60		1.5	24		0.05/
MTN. VAL	6.05		1 0	9 D	х.	0.007
MAX. VAL	0 1 0		1 • * 4 · R	140		0 • V • V · · ·
PARA VALA	~.10		5.2 € 5.2	179.		U • 2 * 5
	TPD4	NOX	NO2	ND3	NH4	NPY+NH4
	MG P/L	MG N/L	MG N/L	MG NZL	MG N/L	MG N/L
NUM. VALS.	16	16	16	16	16	16
AVERAGE	0.106	0.038	0.005	0.034	0.02	0.06
ST. DEV.	0.056	0.080	0.002	0.078	0.02	0.08
MTN. VAL.	0.037	0-004	0.004	0.004	0.01	C . 01
MAX. VAL.	0.240	0.322	0.010	6.312	0.10	0,23
	TKN-NH4	TOTAL N	TOTAL FE	ΝA	ĸ	CA -
	MG N/L	MG N/L	MGZL	MG/L	MCIL	MG / 1
NUM. VALS.	14	14	16	0	ð	Ø
AVERACE	1.73	1.78	0.20			
ST. DEV.	6.34	0.32	0.13			
MTN. VAL.	1.19	1.40	0.03			-
MAX. VAL.	2.34	2.37	0.49			
	MC	C I	504	A E M		
	MGZI	MGZI	MGZI	MECZE		
	, . L		0,1	and an an an an an		· .
NUM. VALS.	0	16	0 -	16		
AVERAGE		71.2		1.84		
ST. DEV.		21.5		0.48		
MIN. VAL.		35.9		1.02		
MAX. VAL.		96.9		2.48		

LAKE DREECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UN	ITS
3		DATE DEPTH	5/20/78 0	- 9/15/	79 MOZDAZ O METERS	YR
		SAMPLE	0.		0. TY	PE
		STATION	= L72	CODE		
	TIME	DEPTH	TEMP	D.O.	754T. DO	SP COND
	HOUR, MIN	METERS	CENT	MG/L		UMHOSICM
NUM. VALS.		16	16	16	16	16
AVERAGE		0.0	26.7	8.7	105.	480.
ST. DEV.		0.0	4.3	1.6	18.	123.
MIN. VAL.	1037.	0.0	15.7	5.8	71.	262.
MAX. VAL.	1525.	0.0	31.3	11.4	139.	645.
	рн	SECCHI	TURB	COLOR	T.SUS.SD	0P04
		м	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	16	0	16	16	1	16
AVERAGE	8.05		4.5	62.	8.0	0.022
ST. DEV.	0.74		3.5	41.		0.035
MIN. VAL.	6.30		1.3	22.	8.0	0.002
MAX. VAL.	9.00		16.0	170.	8.0	0.099
	TP04	NOX	NO2	ND 3	NH4	NDX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L
NUM. VALS.	16	16	16	16	16	16
AVERAGE	0.092	0.021	0.004	0.018	0.01	0.03
ST. DEV.	0.055	0.044	0.001	0.043	0.00	0.05
MIN. VAL.	0.027	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.222	0.177	0.008	0.171	0.02	0.19
	TKN-NH4	TOTAL N	TOTAL FE	NA	к	CΛ
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MG/L
NUM. VALS.	14	14	16	0	0	0
AVERAGE	1.63	1.66	0.23			
ST. DEV.	0.42	0.42	0.21			
MIN. VAL.	1.11	1.13	0.02			
MAX. VAL.	2.64	2.72	0.75			
	MG	CL	504	ALK		
	MG/L	MG/L	MG/L	MEOIL		
NUM. VALS.	0	16	0	16		
AVERAGE		70.3		1.74		
ST. DEV.		20.5		0.50		
MIN. VAL.		32.4		0.96		
MAX. VAL.		96.9		2.39		

		LAKE UNCEUNTED 40 JEAT			TOR DATA SET		
		PARAMETER	RANG	OF VALUES	UNITS		
		DÀTE DEPTH Sample	5/20/78 0 0.	- 9/15/ -	79 MOIDAI O METERS D. TY	Y R 9 E	
		STATION	• LZ3	CULE			
	TIME HOUR,MIN	DEPTH Meters	TEMP Cent	D.C. MG/L	7SAT. PD	28 CUND 28 CUND	
NUM. VALS. AVERAGE ST. DEV. MIN. VAL.	1102.	16 0.0 0.0 0.0	16 26.7 4.4 15.3	16 F.5 1.3 6.8	16 103. 15. 84.	16 508. 153. 120.	
MAK• VAL•	1910. PH	SECCHI M	JI.4 TURB JTU	LOLOR UNITS	130. T.SUS.SD MG/L	0004 Ma 071	
NUM. VALS. Average St. Dev. Min. Val. Max. Val.	15 7.92 0.84 6.20 8.63	0	16 5.6 4.0 2.4 16.0	16 55. 39. 20. 160.	9	16 0.022 0.024 0.002 0.056	
	TPD4 Mg P/L	NOX Mg N/L	ND2 Mg N/L	NDA Mg NVL	NH4 Mg N/L	NOX+NH4 Mg M/L	
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	16 0.083 0.032 0.044 0.151	16 0.046 0.070 0.004 0.262	16 0.005 0.002 0.004 0.011	16 0.043 0.069 0.004 0.258	16 0.02 0.01 0.01 0.04	16 U.06 C.07 C.01 C.27	
	TKN-NH4 MG N/L	TOTAL N Mg N/L	TOTAL FE MG/L	N A M G / L	MGIL	C∧ MG/L	
NUM. VALS. Average ST. DFV. MIN. Val. MAX. VAL.	14 1.64 0.65 0.10 3.07	14 1.70 0.65 0.10 3.14	16 0.28 0.21 0.03 0.71	0	ງື້. -	0	

NUM. VALS. AVERAGE ST. DEV.

MIN. VAL. MAX: VAL.

A-12

\$04

MG/L

0

ALK

MEO/L

16 1.86 0.61 0.30 2.57

CL

MG/L

16

74.9 25.0 13.5

100.0

мG

MGIL

0

		88°2 69°0 99°0 91	Q	6 ° 86 5 6 2 7 ° 5 2 9 ° 5 4 9 T	0	MAX, VAL, MIN, VAL, ST, DEV, NUM, VALS, NUM, VALS,
		MEONE Vek	י אטרי אטרי	אפיר כר	NG/L MG	
ù	Q	0	66°2 50°0 97°0 97°0	50°2 91°1 55°0 06°1 +1	20 ° E 18 ° O 85 ° O 62 ° I	WVX* AVF* WIN* AVF* 21* DEA* VAE&VCE
A D MG/L	ν γ€γΓ κ	1/94 VN	TOTAL FE MG/L	N BW LOTAL N	WG AVF IKN-NH¢	
0*36 0*01 0*13 0*15 1*0	0 • 0 5 0 • 0 6 0 • 0 6 1 6 1 6	578°0 700°0 211°0 840°0 91	660°0 700°0 010°0 010°0 91	0°3964 0°065 0°154 085 19	610°1 660°0 662°0 21£°0 91	MAX, VAL, MIN, VAL, Average Num, Val,
N 9₩ 9HN+XON	7/N 9w 7HN	WC N/F 80N	WC NIC NUS	MG NNF Mux	1/d 9₩ ≠Dd1	
976°0 200°0 652°0 212°0 91	0	•07E •II •E8 •58 •51	10•0 2•2 2•2 9•5 91	Û	55°6 02°9 05°0 18°2 51	MAX, VALS. Average Min, Val. Mex, Val.
7/a 9W 7/a 9W	1/9W 1* 8N8 * 8D	NAITS Corus	89UT UTU	W Zecchi	Hd	· · ·
• 539 • 231 • 551 • 065 91	• 77 T • L • E E • 96 • 9 T	2°01 9°0 2°2 6°2 91	8°78 9°51 2°5 0°22 91	0*0 0*0 0*0 0*0 91	•0091 •£111	WEX. VEL. Niv. Vel. St. Dev. Nem. Vels.
П₩НО2\СЫ 26 сои0	00 •1 4 52	M671 0•0	CEN1 LEWD	NETERS Depth	HUN6∿WIN ⊥IWE	
		3 60 C	5 27	= NGIIAIS		· .
о Е КВ	79 MOLDAI) O Meters Typ	- 191/6	.*0 0 871021€	ATAO Htgao Bjamar		
, S‡I	١NN	OF VALUES	8 V N C E	9273M4949		

TAKE DREECHOBEE 40 STATION DAIN SET

EI-A

		29°2 27'2 79'0 20'2 91	Ŭ	2 • 00 T 0 • 2 4 T • 2 T 6 • 0 8 9 T	ð	NUM, VALS. Average St, dev. Miv, val. Mex, val.
		WEON MEK	1/9W 616	M <u>e V</u> E CE	WG V F WC	
U	O	υ	29•0 20•0 20•0 2 0 •2 2 0	95•2 56•1 76•0 68•1 71	ササ・2 30・I 2€・0 78・I サⅠ	NUM, VALS. Average St. dev. Min, val. Max, val.
₩ 6 ۷ آ	ЧС. К	WG VF N▼	TOTAL FE MG/L	N JATOT Ng mvl	HN-NH LKM-NHT	
22•0 10•0 20•0 10•0	0*10 0*0 20*0 70*0 19	862°0 500°0 290°0 0E0°0 9T	670°0 700°0 110°0 200°0 91	0.265 0.004 0.004 0.036 1.6	516.0 020.0 820.0 811.0 -91	MAX, VAL, Min, Val, St, Dev, Num, Vals,
1∕n SX ⊅HN+XGN	17N 9W 7Hn	MC NVL	MG N/L NUS	W€ N∖F N⊔X	₩0 5\1 160¢	
202.0 200.0 220.0 220.0 220.0 91	0	•031 •02 •07 •35 91	0°51 1°2 1°5 1°9 91	0	62•6 79•9 59•0 16•8 51	NUM, VALS, Average Min, Val, Mix, Val,
1/a 9w 70dü	179M 1798-120	AND COLUE	110 168	H SECCHI	Hd	
*329 *006 *601 *779 y1	1744 175 175 1911 1911	カ・ヒ I カ・カ I・Z G・6 タ I	8°18 7°41 5°7 6°92 51	0 • 0 0 • 0 0 • 0 0 • 0 7 9 T	• 8631 • 0101	W W X * A V C * W I M * A V C * 2 L * D E A * V A & V V C *
S P COND	£8∧T. DQ	чс. 1.9м 0.0	CEN1 LEW6	NT PTH 2 A BT BM	HUNB*WIN LIWE	
•		3 Gu D	sz1 =	NULTAT2		
ыс К	0° IXI 0 WETERS 1XI	- /\$1/6 -	•0 0 2 2 2 3	Z∀W&FE Dedth D¢te		· · · ·
511	נאח	Sanjva au	вамая	PARAMETER		
13	ITAN DATA ST	EE ¢O SIVI	КЕ ОКЕЕСНОВ	¥۲٦		

LAKE DREECHOPEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	5 UN	ITS
		DATE DEPTH	5/20/78	- 9/15/ -	79 MO/DA/ C_METERS	ΥP
		SAMPLE	0.		· O• TY	P F
		STATION	= LZ6	C OD E		· .
	TIME	DEPTH	TEMP	₿∙ብ•	ZSAT. DD	SP COND
	HOUR, MIN	METERS	CENT	MG/L		UMHOSZCM
NUM. VALS.		16	16	16	16	16
AVERAGE		0.0	27.0	9.2	113.	547.
ST. DEV.		0.0	4.5	1.6	21.	94.
MIN. VAL.	1024.	0.0	15.7	7.4	90.	360.
MAX. VAL.	1550.	0.0	32.0	3.5.6	158.	672.
	РН	SECCHI	TURB	COLAR	T.SUS.SD	0P04
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	15	0	16	16	0	16
AVEPAGE	8.22		7.4	50.		0.029
ST. DEV.	0.75		6.7	34.		0.030
MIN. VAL.	5.80		1.2	20.		0.002
MAX. VAL.	8.90		28.0	120.		0.106
	TPO4	NOX	ND2	N0 3	NH4	NOX+NH4
	MG P/L	MG N/L	MGNZL	MG N/L	MG N/L	MG N/L
NUM. VALS.	16	16	16	16	16	16
AVERAGE	0.094	0.064	0.004	0.061	0.01	0.07
ST. DEV.	0.045	0.121	0.000	0.121	0.01	0.12
MIN. VAL.	0.032	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.202	0.357	0.004	0.353	0.03	0.37
	TKN-NH4	TOTAL N	TOTAL FE	NA	ĸ	C۸
·	MGINZL	MG N/L	MG/L	MG/L	MG/L	MG/L
NUM. VALS.	14	14	16	0	0	0
AVERAGE	1.85	1.91	0.+29			
ST. DFV.	0.88	0.86	0.28			
MIN. VAL.	0.94	0.98	0.05			
MAX. VAL.	4.39	4.41	1.01			
	MC	CL	504	ALK		
	MG/L	MG/L	MG/L	ME0/L		
NUM. VALS.	0	16	0	16		
AVERAGE		82.3		2.05		
ST. DEV.		16.4		0.37		
MIN. VAL.		45.9		1.37		
MAX. VAL.		101.1		2.52		

LAKE OKEECHOBEE 4C STATION DATA SET

		PARAMETER	PANGE	DE VALUES	₽N	115
		DATE	5/20/78	- 9/15/	79 MA/DA/	YR
		DEPTH	0	-	O METERS	
		SAMPLE	0.		0. TY	PE
	-	STATION	= 177	CODF		
	TIME	DEPTH	TEMP	D.O.	%SAT. DC	SPICOND
	HOUR, MIN	METERS	CENT	MG/L		UMHDS/CM
NUM. VALS.		17	17	17	17	17
AVERAGE		0.0	25.7	7.2	85.	364 .
ST. DEV.		0.0	4.8	2.4	25.	169.
MIN. VAL.	900.	0.0	15.4	2.8	36.	95.
MAX. VAL.	1435.	0.0	30.4	10.7	118.	565.
	ън	SECCHT	TURB	COLOR	T. 5115.5D	N P N 4
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	16	0	17	17	0	17
AVERAGE	7.55	•	4.2	78.	,Y	0.648
ST. DEV.	1.02		3.6	60.		0.050
MIN. VAL.	5.70		1.6	30.		0 002
MAX. VAL.	8.84		17.0	270.		0.214
	TPO4	NUX	N02	NO 3	NH 4	N⊡¥⇒N⊟Z
	MG P/L	MGN/L	MGNIL	MG N/L	MGN/L	MG NYL
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.103	0.029	0.010	0.021	0,05	0.08
ST. DEV.	0.048	0.048	0.013	0.044	0.06	0.05
MIN. VAL.	0.048	0.004	0.004	0.004	0-01	0.01
MAX. VAL.	0.234	0.185	0.045	0.179	0.17	0.22
	TKN-NH4	τηται Ν	TOTAL FE	NI A	· • •	C A
	MG N/L	MGNIL	MG/L	MGIL	MG/L	MOZL
NUM. VALS.	15	15	17	0	0	0
AVERAGE	1.63	1.71	0.38	· ·		`+-
ST. DEV.	0.52	0.50	0.22			
MIN. VAL.	0.81	0.84	0.08			
MAX. VAL.	2.52	2.55	0.82			
	MG	CL	S 0 4	ALK		
	MG/L	MG/L	MG/L	MEQ/L		
NUM. VALS.	0	17	0	17		·
AVERAGE	·	54.4	0	1.20		
ST. DEV.		28.3		0.71		
MIN, VAL.		14.5		0.34		
MAX. VAL.		92.1	٠	2.35		

LAKE OKEECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UN	ITS
		DATE	5/20/78	- 9/15/	79 MO/DA/	YR
		DEPTH	. 0	-	O METERS	
		SAMPLE	0.		0. TY	PE
		\$T. 1 T. 0.1	- 190	0005		
		STATION	= 179	CUDE		
· .	TIME	DEPTH	TEMP	D•0.	ZSAT. DO	SP COND
	HOUR, MIN	METERS	ĊENT	MG/L		UMHOS/CM
NUM. VALS.		17	17	17	17	17
AVERAGE		0.0	25.6	8.4		455
ST. DEV.		0.0	4.9	1.6	1 5	157
MTN. VAL.	1010.	0.0	15 0	1.0	40	1274
MAY VAL	10101	0.0	10.0	2.9	69.	112.
MAA. VAL.	1447.	0.0	30.4	10+8	125.	680.
	.PH	SECCHI	TURB	COLOR	T.SUS.SD	CPD4
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	16	0	17	17	n	17
AVERAGE	7.72	Ū	.	57.		0 014
ST. DEV.	0.95			27		0.010
MIN. VAL	5 60					0.018
MAY MAI	2.00			10.		0.002
PA. VAL.	C • F 3		30.0	150+		0.068
	TPO4	NOX	NO	ND3	NH4	NOX+NH4
	MG P/L	MG N/L	14 N/L	MG N7L	MG N/L	MG N/L
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.076	0.035	0.004	0.032	0.01	A 05
ST. DEV.	0.034	0.065	0.000	0.065	0.00	0.03
MTN. VAL.	0.028	0 004	0.000	0.005	0.00	0.07
MAY VAL	0 1 4 0	0.004	0.004	0.004	0.01	0.01
PARE VALE	0.100	0.274	0.005	0.270	0.02	0.58
	TKN-NH4	TOTAL N	TOTAL FE	ΝA	ĸ	CA
	MG N/L	MG N/L	MG/L	MGZL	MG/L	MG/L
NUM. VALS.	15	15	17	0	0	0
AVERAGE	1.56	1.60	0.38	-	5	
ST. DEV.	0.40	0.39	0.43			
MIN. VAL.	6.99	1.05	0.02			
MAX. VAL.	2.40	2.44	1.85			
	MO	. .				
	비원 11년 11년	CL	504	ALK		
1997.	MG/L	M 671	MG/L	MEQ/L		
NUM. VALS.	0	17	0	17		
AVERAGE		67.5		1.69		
ST. DEV.		26.5		0.69		
MIN. VAL.		14.5		0.28		
MAX. VAL.		102-8		2.58		

		PARAMETER	RANGE	DE VALUES	٩U	ITS
		DATE DEPTH Sample	5/20/78 0 0.	- 9/15/	79 MO/DA/ 0 METERS 0. TY	Y9
		STATION	= LZ9	C (7) D F		
	TIME HOUR,MIN	DEPTH METERS	TEMP CENT	0.0. MG/L	TSAT. DO	SP CHND Umhds/C
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	1020. 1500.	17 0.0 0.0 0.0 0.0	17 25.7 5.0 15.0 31.0	17 8.9 2.4 5.0 16.0	17 106. 29. 76. 204.	17 495. 166. 125. 725.
	РН	SECCHI	TURB JTU	COLOP UNITS	T.SUS.SD MG/L	0004 Mg D/L
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	16 7.94 0.72 6.20 8.50	0	17 6.7 2.1 26.0	17 58. 49. 20. 200.	0	17 0.016 0.021 0.002 0.086
	TPO4 Mg p/l	NOX Mg n/L	NDZ Ng N/L	ND3 Mg N/L	NH4 Mg N/L	N9¥+NH4 Mg N/L
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	17 0.079 0.034 0.024 0.145	17 0.041 0.066 0.004 0.258	17 0.004 0.001 0.004 0.008	17 0.037 0.065 0.004 0.254	17 0.02 0.01 0.01 0.06	17 0.07 0.07 0.01 0.27
	TKN-NH4 Mg N/L	TOTAL N Mg N/L	TOTAL FE MG/L	NA MG7L	K Mg/l	CA MG/L
NUM• VALS• AVERAGE ST• DEV• MIN• VAL• MAX• VAL•	15 1.65 0.45 0.80 2.36	15 1.71 0.46 0.85 2.46	17 0.30 0.24 0.04 0.85	0	0	Ŷ
	MG MG/L	CL MG/L	504 MG/L	ALK Meq/L		
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	0	17 73.1 26.3 15.4 100.1	0	17 1.82 0.68 0.35 2.57		·

LAKE DEECHOPEE 40 STATION DATA SET

LAKE DEFECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	S UN	ITS
		DATE DEPTH Sample	5/?0/78 0	- 9/15/	79 MD/DA/ O METERS	YR
		SHIFLE CTATION			V• 11	rc
		SEATION	= 1210	CUDE		
	TIME HOUR,MIN	DEPTH Meters	TEMP Cent	D.C. MG/L	75AT. DO	SP COND Limhds/cm
NUM. VALS.		17	16	16	16	16
AVERAGE		0.0	26.9	8.8	107.	615.
ST. DEV.		0.0	4.5	1.8	24.	109.
MIN. VAL.	1035.	0.0	16.2	5.3	6 P -	460.
MAX. VAL.	1610.	0.0	33.5	11.8	153.	875.
	РН	SECCHE	TURB JTU	COLOR UNITS	T.SUS.SD MG/L	OP04 Mg P/L
	1.6	•			_	
NUM • VALS•	17	Ū.	17	17	O	17
AVERAGE	8.17		8.2	40.		0+020
SI DEV.	0.50		5.9	16.		0.027
MIN. VAL.	7.38		1.6	20.		0.002
MAX. VAL.	8, 83		21.0	81.		9.100
	TP04	NOX	ND2	NO 3	NH4	NDX+NH4
		MG N/L	MGN/L	MIG NYL	MG N/L	MG N7L
NUM. VALS.	17	17	17	17	17	17
AVEPAGE	0.087	0.103	0.010	0.094	0.02	0.12
ST. DEV.	0.051	0.146	0.019	0.134	0.02	0.15
MIN. VAL.	0.022	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.200	0.464	0.082	0.385	30.0	0.51
	TKN-NH4	TOTAL N	τητάι εε	NA	к	. С А
	MG N/L	MG N/L	MG/L	MGZL	MG/L	MGIL
NUM. VALS.	15	15	17	0	0	0
AVERACE	1.98	2.09	0.31	Ŷ	•	v
ST. DEV.	0.80	0.02	0 28			
MENL MAL	1 1 1	1 2 2	0.02			· · · ·
MAX. VAL.	4.93	5.12	0.91			
				'		
	n G	CL	5.04	ALK		
•	MG/L	MG/L	MG/L	MEO/L		
NUM. VALS.	0	17	0	17		
AVERAGE		89.2		2.39		
ST. DEV.		19.9		0.69		
MIN. VAL.		55.2		1.39		
MAX. VAL.		137.1		4.29		

LAKE DREECHOBEE 40 STATION DATA SET

•		PARAMETER	PANGE	TE VALUES	UN	ITS
			5/20/78	- 9/15/	79 MO/DA/	YR
		SAMPLE	Ő.	-	0. TY	P F
		STATION	= L711	CDDE		
			_			
	TIME Hour,Min	DEPTH METERS	TEMP CENT	D.O. MG/L	ZSAT. DO	SP CEND Umadis/Cm
NUM. VALS.		16	16	16	16	1*
AVERAGE		0.0	26.7	9.1	111.	567.
ST. DEV.		0.0	4.4	1.7	21.	1. Ť.
MIN. VAL.	1105.	0.0	16.5	6.7	83.	400.
MAX. VAL.	1625.	0.0	31.5	12.4	158.	690.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	<u>)</u> 9 74
		м	UTU	UNITS	MG/L	MG P/L
NUM. VALS.	15	n	16	16	0	16
AVERAGE	8.11		8.4	37.		0.017
ST. DEV.	0.54		6.4	18.		0.016
MIN. VAL.	6.50		3.0	20.		0.002
MAX. VAL.	8.70		22.0	90.		0.049
	T P 04	NOX	NO2	ND3	NH4	NDY+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/E
NUM. VALS.	16	16	16	16	16	. 16
AVERAGE	0.083	0.106	0.008	0.099	0.01	0.12
ST. DEV.	0.041	0.147	0.014	0.140	0.01	0.15
MIN. VAL.	0.048	0.004	0.004	0.004	0.01	6.01
MAX. VAL.	0.192	0.428	0.061	0.424	0.03	0.44
	TKN-NH4	TOTAL N	TOTAL FE	N۸	· ĸ	ĊΔ
	MG N/L	MG N/L	MG/L	MG / L	MG/L	MG/L
NUM. VALS.	14	14	16	0	0	n
AVERAGE	1.72	1.82	0.31			
ST. DEV.	0.74	0.81	0.31		• •	
MIN. VAL.	0.71	0.73	0.05			
MAX. VAL.	3.55	3.95	0.91	•		
	MG	CL	5 D 4	ΔΓΚ		
	MG/L	MG/L	MG/L	MEO/L		
NUM. VALS.	0	16	0	16		
AVERAGE		84.1		2.14		
ST. DEV.		14.3		0.29		
MIN. VAL.		51.4		1.58		
MAX. VAL.		104.0		2.52		

LAKE DEECHOBEE 40 STATION DATA SET

		PARAMETER	RANGI	E OF VALUES	S UN	ITS
		DATE	5/20/78	- 9/15/	79 MD/DA/	ΥÞ
		DEPTH	ິ	-	O METERS	_
		SAMPLE	0	•	0. TY	ь£
		STATION	 LZ12 	спре		
	TIME	DEPTH	TEMP	D.O.	75AT. D0	SP COND
	HOUR, MIN	METERS	CENT	MG/L		UMHOSICM
NUM. VALS.		16	16	16	16	16
AVERAGE		0.0	25.8	8.8	105.	602.
ST. DEV.		0.0	5.2	1.2	11.	70.
MIN. VAL.	928.	0.0	15.1	7.0	87.	400.
MAX. VAL.	1635.	0.0	31.5	10.8	132.	710.
	рн	SECCHI	TURB	COLOR	T. SUS. SD	<u>A</u> PD4
		M	JTU	UNITS	MG/L	MGP/L
NUM. VALS.	15	· 0	16	16	0	16
AVERAGE	8.16		8.7	31.	U .	0.016
ST. DEV.	0.21		7.7	10.		0.016
MIN. VAL.	7.87		2.0	19.		0.002
MAX. VAL.	8.52		26.0	50.		0.058
	TPD4	NOX	N02	NO 3	NH4	NOX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L
NUM. VALS.	16	16	16	16	16	16
AVERAGE	0.068	0.071	0.004	0.068	0.02	0.08
ST. DEV.	0.040	0.101	0.001	0.100	0.01	0.10
MIN. VAL.	0.030	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.165	0.291	0.006	0.287	0.04	0.31
	TKN-NH4	TOTAL N	TOTAL FE	ΝΑ	K	A ٦
	MG N/L	MG N/L	MG/L	MGZL	MGZL	MG/L
NUM. VALS.	14	14	16	0	0	0
AVERAGE	1.80	1.88	0.38			a
ST. DEV.	0.51	0.57	0.38			
MIN. VAL.	1.16	1.18	0.03			
MAX. VAL.	2.78	3.09	1.09			
	MG	CL	\$0 ⁴	ALK		
	MG/L	MG/L	MGJL	MEQ/L		
NUM. VALS.	0	16	0	16		
AVERAGE		91.5		2.24		
ST. DEV.		8.8		0.29		
MIN. VAL.		74.0		1.61		
MAX. VAL.		102.0		2.63		

		LAKE OKEECHOBEE 40 STATION DATA SET					
		PARAMETER	RANGE	RANGE OF VALUES		UM 115	
		DATE DEPTH SAMPLE	ATE 5/20/78 - 9/15/7 EPTH 0 - SAMPLE 0.		79 MOJDAJYR O METERS O • TYDE		
		STATION	• LZ13	CODE			
	TIME	DEPTH	TEMP	D.O.	TSAT. DO	SP COND	
	MUCK® WIN	MELERS	CENT	MGZL		UMH(:SVCM	
NUM. VALS.		16	16	16	16	16	
AVERAGE		0.0	26.0	8.5	101.	6 J 3	
ST. DEV.		0.0	5.2	1.?	12.	70.	
MIN. VAL.	1005.	0.0	15.0	6.6	83.	472.	
MAX. VAL.	1705.	0.0	31.6	11.2	115.	720.	
	DH	SECCUT.	TUDD				
		SECCHI M		LULUK	1.505.50	្រូបក្នុង សភាព ២.៥	
		. 17	310	UNITS	~ G / L	MG P7L	
NIM. VALS.	15	٥	16	16	0	16	
AVERAGE	7,99	Ŭ	11.5	10	V	0.022	
ST. DEV.	0.30		10 1	2 C •			
MIN. VAL.	7.25		2 2 2	10.		0.002	
MAX. VAL.	8.60		20.0	1(+		0.054	
THAT TALE	0.00		27.0	20.		0.074	
	TP04	NOX	NOS	NO3	NH4	NDX+NH4	
	MG P7L	MG N/L	MGN/L	MG N/L	MG N/L	MG N/L	
		• .					
NUM . VALS.	16	16	16	16	16	16	
AVERAGE	0.073	0.102	0.004	0.099	0.02	0.12	
ST. DEV.	0.037	0.138	0.000	0+137	0.01	6.14	
MIN. VAL.	0.029	0.004	0.004	0.004	0.01	0.01	
MAX. VAL.	0.154	0.418	0.004	0.414	0.03	0.43	
	TKN-NH4	τοται Ν	TOTAL FF	N A	x	۲ A	
	MG N/L	MG N/L	MG/L	MGIL	MGZL	MG/I	
NUM. VALS.	14	14	16	0	0		
AVERAGE	1.62	1.75	0.42			÷	
ST. DEV.	0.41	0.44	0.43				
MIN. VAL.	0.99	1.17	0.02				
MAX. VAL.	2 . 32	2.53	1.27				
	HC	<u>^.</u>					
	- PG MC/I		204 ·				
	mG/L	more.	MGFL	MEW/L			
NUM. VALS.	0	16	n	16			
AVERAGE	*	97.1	◄ .	2.22			
ST. DEV.		9.4		0 27			
MIN. VAL.		77.0		1 60			
MAX. VAL		105.1		ו07 7 70			
		*****		L + I L			

A-22
LAKE OKEECHOBEE 40 STATION DATA SET

. .

DATE 5/20/78 - 9/15/79 MO/DA/YR	
DEPTH O - O METERS	
SAMPLE O. C. TYPE	
STATION = LZ14 CODE	
TIME DEPTH TEMP D.D. ZSAT. DD S	
HOUR, MIN METERS CENT MG/L U	MHDS/CM
NUM . VALS	1 5
AVERAGE 0.0 26.1 8.6 103.	603.
ST. DEV. 0.0 5.4 1.7 19.	70
MIN. VAL. 1046. 0.0 14.8 5.2 67	366
MAX. VAL. 1758. 0.0 31.5 10.6 126.	796
784. VALE 1790. 0.0 51.9 10.0 100.	1024
PH SECCHI TURB COLOR T.SUS.SD (]P04
M JTU UNITS MG/L	4G P/L
NUM. VALS. 14 0 15 15 0	16
AVERAGE 8.07 18.1 42	0 026
ST. DEV. 0.30 31.1 24	0.020
MIN. VA1 = 7.60	0.024
	0.002
	0.070
TPO4 NOX NO2 NO3 NH4 CONN	X+NH4
MG P/E MG N/E MG N/E MG N/E MG N/E MG	GNIL
NUM. VALS. 15 15 15 15	15
AVERAGE 0.094 0.170 0.017 0.155 0.02	0.19
ST. DEV. 0.061 0.204 0.047 0.180 0.02	0.21
MIN. VAL. 0.034 0.004 0.004 7.004 0.01	0.01
MAX. VAL. 0.244 0.600 0.185 0.461 0.07	0.62
ΤΚΝ-ΝΗ4 ΤΠΤΑΙ Ν ΤΠΤΑΙ ΕΕ ΝΑ Κ	C A
MG N/L MG N/L MG/L MG/L MG/L	MGZL
	_
NUM VALS. 13 13 15 0 0	0
AVERAGE 1.11 1.89 0.47	
Si. DEV. 0.47 0.63 0.49	
MIN. VAL. 0.94 0.97 0.02	
MAX. VAL. 2.70 3.32 1.58	
MG CL SO4 ALK	
MG/L MG/L MG/L MFQ/L	
NUM. VALS. 0 15 0 15	
AVERAGE 88.7 2.25	
ST. DEV. 12.9 0.32	
MIN. VAL. 45.9 1.49	
MAX. VAL. 101.8 2.67	

		LA	ке окееснов	EE 40 STAT	FIDN DATA S	ET
		PARAMETER	PANGE	OF VALUES	S UN	UTS
		DATE	5/20/78	- 9/15.	/79 M9/DA/	1 Y P
		DEPTH	0	-	O METERS	
		SAMPLE	0.		G. TY	n e
		STATION	= L715	CODE		
	TTME	NCOTH	TEMO		00 TA27	50 COND
	HOUR, MIN	METERS	CENT	MG/L	6 9446 (55	UMH3S/CM
NUM. VALS.		16	16	16	16	16
AVERAGE		10.0	26.2	8.6	103	P Q A
ST. DEV.		0.0	5.2	1 1	12	- 40
MTN. VAL.	1104	0.0	15 2	· · · · ·	1 2 2	0 4 •
MAY WAL	1910	0.0	19+6		04. 120	402.
TAX. VAL.	1010.	0.0	26.1	10.3	129.	(35.
	РН	SECCHI	TURB	00109	D2.202.T	0204
		M	JTU	UNITS	MG/L	MG P/L
NITIM TALE	1.5	•	1.4	14		
AVEDACE	7 05	U	10	10	0	10
CT DEV	0 30		11.47	30.		0.021
SIN DEVN	7 50		12.7	14.		0.017
MAN NAL	1.20		1.8	10.		0.692
MAX. VAL.	0.25	1	40.0	6 0 +		0.052
	TPD4	NOX	ND2	NO 3	NH4	NDX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG M/L
NUM. VALS.	16	16	16	15	16	16
AVERAGE	0.083	0.093	0.013	0.092	0.02	0.11
ST. DEV.	0.048	0.126	0.034	0.129	0.01	0.13
MTN. VAL.	0.032	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.186	0.388	0.141	0.383	· C • Q 4	0.01
	TKN-NH4	TOTAL N	TOTAL FE	NΔ	К	CΔ
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MG/L
NUM. VALS.	14	14	16	0	0	· o
AVERAGE	1.63	1.73	0.48			
ST. DEV.	0.36	0.39	0.55			
MIN. VAL.	1.04	1.06	0.03			
MAX. VAL.	2.26	2.35	1.63			
	MA	C1	504			
	MCVI	MC71	303 MC71	MEA /		
	007L	91 U / L	007L	me v/t		
NUM. VALS.	0	16	0	16		
AVERAGE		89.8		2.20	•	

8.4 71.5 104.9

ST. DEV.

MIN. VAL. MAX. VAL.

•

A-24

2.20

0.22

1.85

2.56

LAKE OKEECHOPEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	чU	ITS
		DATE	5/20/78	- 9/15/	79 MD/DA/	YR
		DEPTH	0		0 METERS	
		SAMPLE	0.		0. TY	PE
			•			r have
		STATION	≖ LZ16	CUDE		
	TIME	DEPTH	TEMP	D. C.	∜SAT. DO	SP COND
	HOUR,MIN	METERS	CENT	MG/L		UMHDSICM
NUM. VALS.		16	16	16	16	16
AVERAGE		0.0	25.8	£.7	104	604
ST. DEV.		0.0	ε υ	1 2	104.	CU70 40
-010 U/U/V.0 -267.N3 - 1/A.0	1012	0.0	2.0	1.6		09.
MAY MALE	1012.	0.0	10.0	6.4	87.	20Z •
MAX. VAL.	1802.	0.0	30.9	11.6	120.	735.
	РН	SECCHI	TUPB	COLOP	T.SUS.SD	OP 0 4
		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	15	0	16	16	0	14
AVERACE	. ຂັດວ	•,	14 0	22	V .	0 025
ST DEV	~ ↓ • • • • • • • • • • • • • • • • • •		17.0	34.		0.029
-218 -01298 	7 26		12.4	12.		0.017
INF VALE	/ + 5 7		6.4	16.		0.002
MAX. VAL.	8 * 20		34.0	65.		0.054
	TPD4	NOX	N 02	ND 3	NH4	NOX+NH4
	MG P/L	MG N7L	MG N/L	MG N/L	MG N/L	MG N/L
NUM. VALS.	16	16	16	15	16	16
AVERAGE	0.086	0,111	0.010	0.112	· 0.02	0.13
ST. DEV.	6.048	0.141	0.024	0 144	0.01	0.15
MTN. VAL.	0.337	0.004	0 004	0.004	0.01	
MAY, VAL.	0 174	0.004	0.004	0 260	0.01	0.01
HAS VALS	0.114	U •37 4	0.099	0.309	0.04	0.43
	TKN-NH4	TOTAL N	TOTAL FF	N A	к	CΑ
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MG/L
NUM. VALS.	14	14	16	0	0	. 0
AVERAGE	1.66	1.78	0.52			-
ST. DEV.	0.45	0.47	0.56			
MIN. VAL.	1.11	1.20	0.03			
MAX. VAL.	2.70	2.78	1.58			
	MC		604	A 1 1/		
	P-0		304			
	1967L	m G / L	MG/L	MEQ/L		
NUM. VALS.	C	16	0	16		
AVERAGE		92.3		2.21		
ST. DEV.		7.6		0.29		
MIN. VAL.		76.2		1.65		
MAX. VAL.		101.3		2.76		

LAKE OKEECHOPEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UN	110
	·	DATE Depth	5/20/78	- 9/15/	79 MC/DA/ O METERS	Y Q
		SAMPLE	٥.	,	0. TY	PF
		STATION	= L717	CODE		
	TIME	DEPTH	TEMP	n.g.	75AT. 00	SP CUNE
	HOUR, MIN	METERS	CENT	MG/L		LMHOSICA
NUM. VALS.		17	17	17	17	17
AVERAGE		0.0	26.0	8.1	97.	£11.
ST. DEV.		0.0	5.1	1.5	15.	£5.
MIN. VAL.	1020.	0.0	14.5	5.6	69.	460.
MAX. VAL.	1550.	0.0	32.8	11.7	126.	715.
	PH	SECCHI	TURB	CDLOR	T.SUS.SD	0204
		Μ	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	17	0	17	17	٥	17
AVERAGE	7.96		12.1	38.	-	0.030
ST. DEV.	0.28		12.9	16.		0.021
MIN. VAL.	7.65		1.1	21.		0.002
MAX. VAL.	P.58		44.0	70.		0.069
	TP04	NOX	NO2	ND3	NH4	NDX+NH4
	MGP/L	MG N/L	MGNZL	MG N/L	MG N/L	MG NZL
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.085	0.179	0.014	0.165	0.02	0.20
ST. DEV.	0.048	0.234	0.038	0.218	0.01	6.23
MIN. VAL.	0.042	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.243	0.740	0.163	0.732	0.05	0.75
	TKN-NH4	TOTAL N		NA		C A
1	MG N/I	MGN/I	MGZI	MGZI	MGZE	MEZE
			012			
NUM. VALS.	16	16	17	Ö	0	÷
AVERAGE	1.75	1.95	0.43			
ST: DEV.	0.66	0.71	0.45			
MIN. VAL.	1.03	1.07	0.04			
MAX. VAL.	3.61	3.63	1.69			
	MG	ÇL	5.04	ALK		
	MG/1	MG/L	MG/L	MEQUL		
NUM. VALS.	0	17	0	17		
AVERAGE		92.7		2.30		
ST. DEV.		10.9		0.32		
MIN. VAL.		62.3		1.76	•	
MAX. VAL.		113.7		2.98		

LAKE OKEECHOPEE 40 STATION DATA SET

•

		PARAMETER	RANGE	OF VALUES	UN UN	VITS .
		DATE DEPTH	5/20/78 0	- 9/15/	79 MD/DA/	YR
	•	SAMPLE	· · ·	•	0. TY	PE
		STATION	= 1718	CODE		
·	TIME	DEPTH	TEMP	D • C •	ZSAT. DO	SP COND
	HOUR, MIN	METERS	CENT	MGZL		IIMHOS/CM
NUM. VALS.		17	17	17	17	17
AVERAGE		0.0	25.9	8.6	107.	610.
ST. DEV.		0.0	5.0	1.3	14.	64.
MIN. VAL.	1032.	0.0	14.6	6.7	81.	470.
MAX. VAL.	1603.	0.0	32.5	11.8	135.	715
	РН	SECCHI	TURB	COLOR	T.SUS.SD	<u>NP04</u>
· · ·		M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	17	0	17	17	0	17
AVERAGE	8.05		12.4	34.		0.026
ST. DEV.	0.22		12.1	11.		0.018
MIN. VAL.	7.85		1.5	16.		0.002
MAX. VAL.	8.71		48.0	60.		0.053
	TPO4	NOX	ND2	ND 3	NH4	NOX+NH4
	MG P/L	MG N/L	MG N/L	MG NIL	MG N/L	MG N7L
NUM. VALS.	17	17	17	17	17	17
AVFPAGE	0.080	0.145	0.011	0.142	C.01	0.16
ST. DEV.	0.045	0.188	0.028	0.187	0.01	0.19
MIN. VAL.	0.037	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.221	0.584	0.120	0.580	0.03	0.60
	TKN-NH4	TOTAL N	TOTAL FE	NA	к	C A
	MG NZL	MG N/L	MG/L	MG7L	MG/L	MG/L
NUM. VALS.	16	16	17	0		0
AVERAGE	1.69	1.86	0.46			
ST, DEV.	0.46	0.52	0.47			
MIN. VAL.	1.07	1.29	0.07			
MAX. VAL.	2.84	3.44	1.68			
	MG	CL	S 🛛 4	ALK		
	MG/L	MG/L	MG/L	MEQUL		
NUM. VALS.	0	17	0	17		
AVERAGE		92.4		2.27		
ST. DEV.		6.7		0.27		
MIN. VAL.		77.9		1.69		
MAX. VAL.		100.5		2.64		

LAKE OKEECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UN	ITS
	·		5/20/78	- 9/15/		¥ þ
		SAMPLE	്റം		0. TY	ÞE
		STATION	L719	CPDF		
	·					
	TIME HOUR,MIN	DEPTH Meters	CENT	<u>0.</u> MG/L	"SAT. PO	О <mark>мној/с</mark> м 26 самр
NUM. VALS.		17	17	17	17	1 7
AVERAGE		0.0	26.0	7.8	03.	631.
ST. DEV.		0.0	5.1	1.9	19.	50.
MIN. VAL.	945.	0.0	14.8	4.2	53.	500.
MAX. VAL.	1616.	0.0	32.5	11.9	117.	710.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	C204
		м	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	17	o	17	17	0	17
AVERAGE	7.81	• ·	8.0	37.		0.026
ST. DEV.	0.61		5.8	13		0.015
MIN. VAL.	5.65		1.7	18.		0.002
MAX. VAL.	8.50		22.0	70.		0.050
	TPO4	NITX	N02	NOS	NUL	
	MGP/L	MGN/L	MGNIL	MG N/L	MGNZL	MGNZL
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.071	0.258	0.013	0.246	0.03	0.29
ST. DEV.	0.019	0.329	0.026	0.308	0.04	0.36
MIN. VAL.	6.046	0.004	0.004	0.004	6.01	0.07
MAX. VAL.	0.114	1.281	0.113	1.168	0.15	1.43
				ы а	v	C A
	MG N/L	MGN/L	MG/L	MG /L	MGIL	MG/L
NILIM WALS	. 14	14	1 7	<u>^</u>		
AVEDACE	10	10	17	ų,	C .	",
ST. DEV	0 62		0.25			
MIN. VAL	0 79	0.90	0.75		•	
MAX. VAL.	2.19	3.26	0.81	·		
	MC	ан на с н	604			
	MGZL	MG/L	MG/L	ALK MEOZL		
	~	-	-	. –		
NUM+ VALS+	. 0	1/	0	17		
AVERAUE		94.2		2.42		
.⊃I€ UEV∎ MENI 1744		. 9. 8		0.40		
HING VALG MAV VAR		/1.8		1.82		
PAA+ VAL+		108.4		3.47		

LAKE DREECHDEEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	S UN	ITS
	•	DATE Depth	5/20/78	- 9/15/	0 METERS	YR
· · · · ·		SAMPLE	0.		0. TY	PE
		STATION	= LZ20	CODE		
	TIME HOUR.MIN	DEPTH	TEMP Cent	D.0. MG/I	75AT. 00	SP COND UMHOS/CM
			02.01			0.1.037.07
NUM . VALS.		17	- 17	17	17	17
AVERAGE		0.0	26.2	8.7	105.	614.
ST. DEV.		0.0	5.3	1.5	18.	58.
MIN. VAL.	952 •	0.0	14.8	6.7	83.	490.
MAX. VAL.	1626.	0.0	33.5	12.0	160.	695.
	PH	SECCHI M	TURB JTU	COLOR UNITS	T.SUS.SD MG/L	OPO4 Mg P/L
NEM. WALS.	17	0	17	1 7	0	14
AVEDACE	7 07	U	11 6	17	0	. 10
ST. DEV.	0.60		11.17	36.		0.020
MIN. VAL	5 97		11.1	10.		0.015
MAN VALE	0.07		6.0	10.		0.002
HAX. VAL.	C • 7 2		40.U	21.	*	0.050
	TPO4	NOX	NB2	ND3	NH4	NOX+NH4
	MG P/L	MGNIL	MG N/L	MG N/L	MGN/L	MG N/L
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.077	0.167	0.000	. 0 160	1 /.	11
ST. DEV.	0.030	0.166	0.013	0 142	0.02	0 17
MIN. VAL.	0.038	0.006	0.015	0.102	0.01	0.17
MAY. VAL	0.206	0.468	0.059	0.004	0.01	0.01
	0.12.00	0.400	0.010	0.404	0.04	0.50
	TKN-NH4	TOTAL N	TOTAL FE	ΝA	ĸ	C A
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MG/L
NIM. VALS.	16	16	17	0	0	<u>`</u>
AVERAGE	1.61	1.80	0.40		U .	v
ST. DEV.	0.43	0.44	0.41	•		
MIN VAL	1.05	1 27	0.04			
MAY. VAL.	2.45	2.63	1.65			
NHA: VHL	2012	2000	1.05			
	MG	CL	\$04	ALK		
	MG/L	MG/L	NG/L	MEQ/L		
NUM. VALS.	n	17	0	17		
AVERAGE	· ·	02.5		2.28		
ST. DEV.		2 • 4 R _ R	:	A 36		
MTN. VAL		82.4		1 70		
MAX. VAL		110.0		1 • 1 4		
		1170U		6.04		

A-29

. .

		ĹA	KE UKEECHUB	EE 40 SIA1	TON DATA S	
		PARAMETER	RANGE	OF VALUES	UN	ITS
		DATE DEPTH Sample	5/20/78 0 0.	- 9/15/	79 MO/DA/ 0 Meters 0. Ty	PE
		STATION	= L721	CUDE		
	TIME Hour,Min	DE P T H ME TE R S	TEMP Cent	D.P. Mg/L	*SAT. 00	SP СОЮ Имноз <mark>іс</mark> м
NUM. VALS. Average St. dev.		17 0.0 0.0	17 26.1 5.2	17 8.5 1.8	17 102. 22.	17
MIN. VAL. Max. Val.	959. 1641.	0.0 0.0	14.8 33.5	6.1 12.8	73. 171.	490. 700.
• •	PĤ.,	SECCHI M	TUPB JTU	COLOP UNITS	T.SUS.SP MG/L	np⊡4 MG P∕L
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	17 8.01 0.30 7.70 8.75	0	17 8.0 6.4 1.5 25.0	17 33. 10. 17. 50.	3	17 0.022 0.016 0.002 0.051
	TP04 Mg P/L	NOX Mg N/L	NOZ Mg n/L	NO≄ Mg N/L	NH4 Mg N/L	NOX+NH4 Mg N/1
NUM. VALS. AVFRAGE ST. DEV. MIN. VAL. MAX. VAL.	17 0.060 0.022 0.032 0.098	17 0.167 0.163 0.004 0.509	17 0.006 0.005 0.004 0.025	17 0.161 0.162 0.004 0.505	17 0.02 0.01 C.01 0.05	17 0.18 0.17 0.01 0.52
	TKN-NH4 Mg N/L	TATL N MG N/L	TOTAL FE. MG/L	MAMGYL	K MG/L	C 4 M 6 7 L
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	16 1.73 0.64 0.91 3.51	16 1.92 0.64 1.10 3.88	17 0.25 0.22 0.02 0.71	0	0	0
	MG MG/L	CL Mg/l	504 Mg/L	ALK MEQ/L		
NUM. VALS. AVERAGE ST.:DEV. MIN. VAL. MAX. VAL.	0	17 92.6 6.0 83.0	n	17 2.32 0.29 1.76 2.75		

.

			DARAMETER	RANGE	UF VALUES	N	TTS
			DATE Depth Sample	5/20/78 0	- 9/15/	79 MULDA/ 0 METERS 0. TY	<u>α</u> ω Σ α
			STATION -	• LZ22	ίυDΕ		
		TIME Hour,Min	DEPTH METERS	TEMP CENT	л. 17ЭМ	75AT. DC	SP CUND UMHOS/CM
N A I	IN VALS.		17	17 25.2	17	17 89.	17 795.
	I. DFV. In. Val. IX. Val.	1007.	000	まち うちう うちう	ы • • • • • •	19. 55. 118.	195. 495.
		Т a	SECCHI	TURB JTU	CUL DR UNITS	T-SUS-SD MG/L	1∕a 9w 0004 MG p∕l
л Ли Ли	M. VALS. Feage	17 7.73	O	17	17	C.	17
	r. nev.	7.15		0.0 0.0	25		0.018
4 2	IX. VAL.	8.45		13.0	173.		0.063

	TPD4	X ON	ND2	ND3	2 HN	5HN + X L N
	L P/L	MG N/L	MG N/L	MG N/L	WG N/L	MG N/L
"NUM - VALS.	17	17	17	16	17	17
AVFRAGE	0.071	0.534	0.054	0.523	0.08	0.61
ST. DEV.	0.020	0.879	0.089	0.839	0.10	06.0
MIN. VAL.	0.039	0.00F	0.004	. 400 * 0	0.01	0.01
MAY. VAL.	0.118	3.261	0.306	3.130	0.39	3.30
· ·	1 K N – V H 7	TUTAL N	TOTAL FE	N N	.¥	۲ ۵
	WG N/L	I/N DW	MG/L	M6/L	1/9M	NG/L
NUW. VALS.	13	j j	17	c	c	Ċ
AVEPAGE	2.09	2.75	0.19			
SI. 9EV.	C. P7	1.54	0.20			
MTN. VAL.	0.73	0.82	0.02			
MAX. VAL.	ຕ ພາ ຄ	6.69	0.63			
	ن <u>ک</u>	L C	S 04	ALK	-	
	MG/L	M 6/L	MG/L	WE0/L		
NUM. VALS.	Ċ	17	o	17		
AVEPAGE		110.4		3 4 4		
51. PFV.		19.8		1.41		
MIN. VAL.		81.0		1.96		
MAX. VAL.		151.6		7.58		

A-31

e .

LAKE	DKEECHOPEE	40	STATION	DATA	SET

		PARAMETER	PANGE	OF VALUES	U N	?T ['
		DATE Depth	5/20/78 0	- 9/15/	0 METERS	ΥR
		SAMPLE	0.		0. TY	, p È
		STATION	= L723	CDDE		
	TIMF HOUR,MIN	DEPTH Meters	TEMP Cent	D.D. MG/L	₹SAT. DO	SA KAND DMHOSVCM
NUM. VALS. Average		17	17 26.4	17	17 74.	17 866.
MIN. VAL. MAX. VAL.	949. 1800.	0.0	5.5 15.6 34.5	7.5 J.7 10.0	3L. 15. 123.	295. 545. 1620.
	рн	SECCHI	TURB	COLOR	T.SUS.SD	0°04
NUM. VALS.	17	m O	J T U	UN115	MG71	×G P/L
AVERAGE ST. DEV. MTN. VAL.	7.62 0.52 6.80		4.9 3.0	69. 43. 25.		0.044
MAX. VAL.	8.60		14.0	172.		0.261
	TPD4 Mg P/L	NDX Mg N/L	ND2 Mg N7L	NETS MG NZL	NH4 MG N∕L	NTX+NH4 Mg N/L
NUM. VALS. Avfpage	17	17	17	17	17 C - 19	17
ST. DEV. MIN. VAL.	0.083	1.394	0.053	1.373	0.30 0.01	1.47
MAX. VAL.	0.400	4.757	0.174	4.719	1.21	4.82
	TKN-NH4 MG N/L	TOTAL N MG N/L	TOTAL FE MC71	NA MGZL	к М д /L	04 ₩071
NUM. VALS. Average St. dev.	15 2.48 1.01	15 3.71	17 0.16	0	0	0
MTN. VAL. MAX. VAL.	1.23 4.55	1.71 7.94	0.02 0.64			
	MG MG/L	CL MG/L	504 MG/L	ALK MEOZL		
NUM. VALS. AVEPAGE ST. DEV. MIN. VAL.	0	17 116.2 27.7 92.5	0	17 3.90 1.83 2.01		
MAX. VAL.		186.0		7.42		

•

LAKE DEECHDREE 40 STATION DATA SET

		PARAMETER	R A N G E	DE VALUES	UN	ITS
		DATE DEPTH	5/23/78	- 9/15/	79 MO/DA/	YR
		SAMPLE	ॅ ०.		0. TY	PF
		• • • • • •				4 * #
		STATION	= LZ24	CODE		
	TIME	DEPTH	TEMP	D.İ.	75AT. DO	SP CONC
	HUUR, MIN	METERS	CENT	MG/L		UMHOSICM
BUM. VALS.		17	17	17	17	17
AVERAGE	·	0.0	26.5	8.8	106.	864.
<t. dev.<="" td=""><td></td><td>0.0</td><td>5.7</td><td>1.7</td><td>21.</td><td>235.</td></t.>		0.0	5.7	1.7	21.	235.
MIN. VAL.	914.	0.0	14.8	6•1 ×	73.	595
MAX. VAL.	1744.	0.0	37.4	12.1	151.	1350.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	0 P 0 4
		м	JTU	UNITS	MC/L	MG P/L
NUM. VALS.	17	0	17	17	1.	17
AVERAGE	8.01	0	4.9	72.	10.0	0.00%
ST. DEV.	0.20		2.8	41.	10.0	0.005
MIN. VAL.	7.60		1.8	35.	10.0	0-002
MAX. VAL.	8.73		13.0	180.	10.0	0.020
	TPO4	ΝΠΧ	NO2		NH4	
· · · · · · · · · · · · · · · · · · ·	MG P/L	MG N/L	MG N/L	MG N/L	MGN/L	MG N/L
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.056	0.332	0.048	0.286	0.04	0.37
ST. DEV.	0.023	0.512	0.088	0.454	6.07	0.55
MIN. VAL.	0.021	0.004	0.004	0.004	0.01	0.01
MAY. VAL.	0.108	1.551	0.285	1.479	0.28	1.56
	TKN-NH4	TOTAL N	TOTAL FE	NA	к	CA
	MG N/L	MG N7L	MG/L	MG/L	MG∕L	MG/L
NUM. VALS.	15	15	17	0	0	0
AVERAGE	2.66	3.08	0.11			
ST. DEV.	0.88	1.27	0.15			
MIN. VAL.	1.39	1.44	0.02			
MAX. VAL.	3.96	5.52	0.63			
	MG	٢L	S 🛛 4	ALK		
	MG/L	MGZL	MG/L	MECZL		
NUM. VALS.	0	17	c	17		
AVERAGE		118.0		4.07		
ST. DEV.		24.7		3.72		
MIN. VAL.	•	90.5		2.24		
MAX. VAL.		167.2		8.70		

		PARAMETER	RANGF	OF VALUES	UN	ITS		
		DATE	5/20/78	- 9/15/	79 MJ/DA/	YR		
		DEPTH	0	-	0 METERS			
		SAMPLE	0.		0. TY	TYPE		
		STATION	= L725	CODF				
	TIME	ПЕРТН	TEMO	n n	0.0 7428	SD COND		
	HOUR MIN	METERS	CENT	MG/L	730I∎ UN	00000000000000000000000000000000000000		
NUM. VALS.		17	17	17	17	17		
AVERAGE		0.0	26.4	9.4	114.	679.		
ST. DEV.		0.0	5.4	2.7	34.	75.		
MIN. VAL.	935.	0.0	14.8	6.0	74.	495		
MAX. VAL.	1719.	0.0	36.5	18.3	232.	E10.		
	РН	SECCHI	TURB	CHEOR	T.SUS.SD	0°04		
		M	JTU	UMITS	MCIL	NC 011		
NUM. VALS.	17	0	17	17	0	17		
AVERAGE	8.22		9.2	43.		0.005		
ST. DEV.	0.36		15.3	16.		0.007		
MIN. VAL.	7.80		1.6	19.		0.002		
MAX. VAL.	8.90		67.0	72.		0.031		
	TPO4	ΝΠΧ	ND2	NO3	NH4	NOX+NH4		
	MG P/L	MG N/L	MG N/L	MG N/1	MG N/L	MG N/L		
NUM. VALS.	17	17	17	17	17	17		
AVERAGE	0.066	0.172	0.009	2.164	0.02	0.19		
ST.DEV.	0.072	0.462	0.020	0.444	0.02	0.48		
MIN. VAL.	0.017	0.004	0.004	0.004	0.01	0.01		
MAX. VAL.	0.333	1.804	0.087	1.717	0.08	1.98		
	TKN-NH4	TOTAL N	TOTAL FE	NA	ĸ	CΔ		
	MG N/L	MG N/L	MG/L	MG/L	MG/L	₩ G /L		
NUM. VALS.	15	15	17	0	0	ic.		
AVERAGE	2.30	2.52	0.23					
ST. DEV.	1.89	1.90	0.54					
MIN. VAL.	1.17	1.18	0.02		4 a			
MAX. VAL.	8.87	8.94	2.30					
	MG	CL	S 04	Δίκ	,			
	MG/L	MG/L	MG/L	MEQ/L				
NUM. VALS.	0	17	0	17				
AVERAGE		102.3		2.92				
ST. DEV.		9+1		0.64				
MIN. VAL.		87.4		2.10				
MAX. VAL.		124.9		4.62				

.

LAKE DKRECHPREE 40 STATION DATA SET

	LAKE OKEECHOBEE 40 STATION DATA SET 1						
		PARAMETER	RANGE	DE VALUES	UN	VITS	
		DATE DEPTH Sample	5/20/78 0 0.	- 9/157	79 MOVDAVYR O METERS O. TYPE		
•		STATION	= LZ26	CODE	· · ·		
	TIME HOUP,MIN	DEPTH METERS	TEMP	D.N. MG/L	%SAT. DO	SP COND Umhos/cm	
NUM. VALS. Average St. dev. Min. val.	903.	17 0.0 0.0 0.0	17 26.7 5.2 15.6	17 8.2 2.0 3.9	17 100. 27. 45.	17 794. 220. 538.	
MAX. VAL.	1809.	0.0	33.1	12.2	162.	1450.	
	рц	SECCHI M	TURB JTU	COLOR UNITS	T.SÚS.SD MG/L	OP04 Mg P/L	
NUM. VALS. Average SI. Dev. Min. Val. Max. Val.	17 7.87 0.50 7.00 9.10	0	17 3.7 1.9 0.8 7.3	17 61. 35. 30. 138.	0	17 0.020 0.033 0.002 0.099	
	TPD4 Mg P/L	NDX Mg N/L	ND2 Mg N/L	ND3 Mg N/L	NH4 Mg N/L	NÖX+NH4 MG N7L	
NUM. VALS. Average St. dev. Min. val. Max. val.	17 0.090 0.086 0.028 0.350	17 0.362 0.362 0.008 1.156	17 0.046 0.077 0.004 0.321	17 0.316 0.309 0.004 0.932	17 0.06 0.08 0.01 0.30	17 0.42 0.37 0.01 1.17	
	TKN-NH4 Mg N/L	TOTAL N Mg N/L	TOTAL FE MG/L	N A M G / L	K Mg/l	CA MG/L	
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	15 2.29 0.84 1.28 4.13	15 2.75 1.08 1.36 5.02	17 0.10 0.13 0.02 0.58	0	0	O	
	MG MG/L	CL Mg/L	504 MG/L	ME OVL ALK			
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	0	17 109.7 21.6 92.1 180.3	0	17 3.60 1.47 2.30 8.05			

LAKE OKSECHOPEE 40 STATION DATA SET

		PARAMETER	RANGE	RANGE DE VALUES		UNITS	
		DATE Depth	5/20/78 0	- 9/15/	79 MOZDAZ O METERS	YR	
		SAMPLE	0.		0. TY	PE	
		STATION	= 1227	CODE			
	TIME HOUR, MIN	DEPTH Meters	TEMP CENT	D.D. MG/L	ZSAT. DO	SP COND UMHOS/CM	
NUM. VALS.		17	17	17	17	17	
AVERAGE		0.0	26.5	7.2	84.	802.	
ST. DEV.		0.0	5.2	2.1	24.	199.	
MIN. VAL.	850.	0.0	15.8	3.7	46.	560.	
MAX. VAL.	1830.	0.0	33.5	11.2	142.	1220.	
	РН	SECCHI	TURB	COLOR	T.SUS.SD	<u>0°</u> 04	
		M	JTU	UNITS	MG/L	MG P/L	
NUM. VALS.	17	0	17	17	0	17	
AVERAGE	7.90		4.6	64.		0.009	
ST. DEV.	0.50		1.5	38.		0.014	
MIN. VAL.	7.15		1.8	25.		0.002	
MAX. VAL.	8.91		8.0	147.		0.050	
	TPO4	NOX	ND2	NO 3	NH4	N 🛛 X + NH 4	
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L	
NUM. VALS.	17	17	17	17	17	17	
AVERAGE	0.054	0.689	0.033	0.656	0.15	6.04	
ST. DEV.	0.016	1.141	0.046	1.106	0.27	1.35	
MIN. VAL.	0.028	0.004	0.004	0.004	0.01	0.01	
MAY. VAL.	0.093	3.374	0.144	3.335	0.91	3.79	
	TKN-NH4	TOTAL N	TOTAL FE	ΝA	ĸ	C A -	
•	MG N/L	MG N/L	MG/L	MG/L	MG/L	MG/L	
NUM. VALS.	15	15	17	o	0	0	
AVERAGE	2.39	3.33	0.15				
ST. DEV.	0.90	2.19	0.18				
MIN. VAL.	1.15	1.21	0.02				
MAX. VAL.	4.15	7.94	0.69				
	MG	CL	S 0 4	ALK -			
	MG/L	MG/L	MG/L	MEQUL			
NUM. VALS.	0	17	0	17			
AVERAGE		107.4		3.77	·.		
ST. DE.V.		15.3		1.66			
MIN. VAL.		91.3		1.96	•		
MAX. VAL.		139.5		7.45			

LAKE OKEEC	HOBEE 40	STATION	DATA	SET
------------	----------	---------	------	-----

		PARAMETER RAN		RANGE OF VALUES		INITS	
		DATE DEPTH Sample	ATE 5/20/78 - 9/15/79 EPTH 0 - Sample 0.		/79 MO/DA/ 0 Meters 0. Ty	YPE	
		STATION	* LZ28	CODE			
	TIME HOUR,MIN	DEPTH METERS	TEMP Cent	D.D. MG/L	28AT. DO	SP COND Umhos/cm	
NUM. VALS. Average St. dev.		17 0.0	17 26.3	17 8.6	17 103.	17 619.	
MIN. VAL. Max. Val.	925. 1710.	0.0	15.2 36.6	5.1 11.7	59. 158.	495. 715.	
·	iła	SECCHI	TURB J t u	COLOR	T.SUS.SD MG/L	OPO4 Mg P/L	
NUM. VALS. Average ST. dev. MTN. VAL.	17 8.19 0.40 7.70	0	17 7.8 5.0	17 31. 12.	0	17 0.018 0.017 0.002	
MAX. VAL.	9.13		17.0	61.		0.053	
	TPD4 Mg P/L	NOX Mg N/L	NO2 Mg N/L	NDB Mg N/L	NH4 Mg n/L	NDX+NH4 MG N/L	
MUM. VALS. AVERAGE ST. DFV. MIN. VAL. MAY. VAL.	17 0.057 0.024 0.012 0.096	17 0.154 0.163 0.004 0.460	17 0.004 0.000 0.004 0.005	17 0.151 0.162 0.004 0.456	17 0.01 0.00 0.01 0.02	17 0.16 0.16 0.01 0.47	
	TKN-NH4 Mg N/L	TOTAL N Mg N/L	TOTAL FE MG/L	NA MG/L	K MG/L	CA MCZL	
PUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	15 1.82 0.75 1.07 3.61	15 1.97 0.73 1.09 3.79	17 0.22 0.23 0.02 0.97	0	0	0	
	MG MG/L	CL MG/L	SO4 MG/L	ALK MEOZL			
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	0	17 93.9 8.3 82.4 119.4	0	17 2.37 0.25 2.06 2.79			

LAKE DREECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UNITS	
		DATE	5/20/78	- 9/15/	79 MO/DA/	YP
		DEPTH	0	-	O METERS	2
		SAMPLE	0.		0. TY	(D F
		STATION	• LZ29	CODE		
	TIME	DEPTH	TEMP	D. n.	ŻSAT. DO	59 COMD
	HOUR, MIN	METERS	CENT	MG/L		UMHOSICM
NUM. VALS.		17	17	17	17	17
AVERAGE		0.0	25.3	8.3	97.	508
ST. DEV.		0.0	4.6	1.5	11.	60
MIN. VAL.	800.	0.0	14.5	6.4	80.	500.
MAX. VAL.	1510.	0.0	29.9	12.3	120.	5.60.
	DH	5500HT	TUPB		0.2 2112 T	0004
	• • •	M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	17	0	17	17	0	1 7
AVERAGE	7.85	.0	14 2	. 30	• 1	n
ST. DEV.	0.48		14 7	10		
MIN. VAL	6.15		1 7	10.		0.018
MAY . VAL	G + 1 2		EO 0	10.		0.002
PAR VAL	0.47		90.0	20.		0,055
	TP 04	NOX	NO2	ND 3	N H4	NOX+NH4
	MG P/L	MG N/L	MG N/L	MG M7L	MG N/L	MG N/L
NUM. VALS.	17	17	17	17	17	17
AVERAGE	0.079	0.179	0.004	0.175	0.02	C.10
ST. D.EV.	0.043	0.168	0.001	0.167	0.01	0.17
MIN. VAL.	0.017	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.201	0.602	0.004	0.596	0.04	0.64
	TKN-NH4	TOTAL N	TOTAL FF	NΔ	ĸ	C۸
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MELL
NUM. VALS.	16	16	17	0	0	0
AVERAGE	1.66	1.86	0.35			t, *
ST. DEV.	0.56	0.60	0.38			
MIN. VAL.	0.92	1.08	0.02			
MAX. VAL.	2.80	3.02	1.36			
	MG	Ct.	\$04	A1 ¥		
	MGZL	MG/L	MG/L	MEQIL		
NUM. VALS.	D	17	2	17		
AVERAGE	*	01.0	1	2.21		
ST. DEV.		8.0		0.24		
MIN. VAL.		83.1		1.80		
MAX. VAL.		118.0		2.53		

.

		LAKE UKEEUNDEE 40 STATION DATA SET							
		PARAMETER	RANGE	DE VALUE	5 UN	ITS			
• •		DATE DEPTH Sample	5/20/78 0 0.	- 9/15. -	79 MOZDAZYR O METERS O. TYPE				
		STATION	= 1.Z30	CODE					
	TIME HOUR,MIN	PEPTH METERS	TEMP Cent	D.0. Mg/L	25AT. DO	SP COND Umhos/cm			
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	847. 1435.	16 0.0 0.0 0.0 0.0	16 25.4 4.6 14.4 29.9	16 8.5 1.4 7.2 11.6	16 102. 12. 87. 133.	16 602. 76. 482. 760.			
	PH	SECCHI	TURB JT()	COLOR UNITS	T.SUS.SD MGZL	∩>∏4 MG ₽/L			
NUM. VALS. Average St. Dev. Min. Val. Max. Val.	16 8.20 0.29 7.90 8.83	0	16 10.9 8.4 1.5 30.0	16 30. 9. 19. 51.	1 7.5 7.5 7.5	16 6.022 0.020 0.002 0.058			
	TPD4 Mg P/L	ND¥ Mg N/L	NOZ Mg n/l	ND3 Mg N7L	N⊬4 Mg N/L	NOX+NH4 Mg N/L			
NUM. VALS. AVERAGE ST. DFV. MIN. VAL. MAX. VAL.	16 0.070 0.041 0.025 0.148	16 0.141 0.175 0.004 0.485	16 0.005 0.009 0.004 0.039	16 0.138 0.175 0.004 0.481	16 0.02 0.01 0.01 0.04	16 0.16 0.18 0.01 0.50			
	TKN-NH4 Mg N/L	TOTAL N Mg N/L	TOTAL FE MG/L	N A M G / L	K MC7L	CA MC/1			
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	14 1.58 0.45 1.11 2.74	14 1.75 0.47 1.21 3.10	16 0.31 0.30 0.02 1.04	O	0	O			
· .	MG MG / L	CL MG/L	504 MG/L	ALK MEQ7L					
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	C .	16 92.7 10.0 78.7 119.6	o	16 2.20 C.25 1.90 2.63					

LAKE DEFECTOBEE 40 STATION DATA SET

LAKE OFFECHOREE 40 STATION DATA SET

		PARAMETER	PANGF	DE VALUES	UN	UNTTS	
		DATE DEPTH SAMPLE	5/20/78 - 9/15/3 0 -		79 MOJOA/ 0 METERS	Υp γp	
		CTATION .			U • 1 •	т. Т.	
		STATIUN	1731	CHDE			
	TIME HOUR+MIN	DEPTH Meters	TEMP Cent	n.0. MG7L -	ZSAT. DC	SP COND UMHCS/CM	
NUM. VALS.		17	17	17	17	17	
ST. DEV.		0.0	4.7	2.6	22	125.	
MIN. VAL.	815.	0.0	15.5	2.0	25.	370	
MAX. VAL.	1548.	0.0	33.0	10.7	131.	920.	
	РH	SECCHI	TURR JTU	CELER UNITS	T.SUS.SD MG7L	0204 MG 271	
NUM. VALS. AVERAGE	16 7.47	o	17 3.3	17 57.	0	17 0.020	
ST. DEV.	9.61		1.9	24.		0.035	
MIN. VAL.	6.45		1.3	30.		0.002	
MAX. VAL.	8.88		7.0	120.		0.103	
	TP04 Mg P/L	NOX Mg N/L	NO? Mg N/L	NOB Meinvl	NH4 Mg N7L	NAX+NH4 Mg N/L	
NUM. VALS.	17	17	17	17	17	17	
AVERAGE	0.071	0.125	0.015	0.110	0.07	0.20	
ST. DEV.	0.050	0.145	0.016	0.131	0.08	0.21	
MIN. VAL.	0.025	0.004	0.004	0.004	0.01	0.02	
MAX, VAL.	0.213	0.431	0.052	388.0	0.32	∩.7 5	
	TKN-NH4	TOTAL N	TOTAL FE	ΝA	ĸ	ÇΔ	
	MG N/L	MG N/L	MG/L	MGZL	MG/L	RCAL	
NUM. VALS.	15	15	17	0	0	, o	
AVERAGE	1.99	2.21	0.10				
ST. DEV.	0.62	0.66	0.11			•	
MIN. VAL.	0.94	1.20	0.02				
MAX. VAL.	3.20	3.22	0.50				
	MG	CL.	S 🛛 4	ALK			
	MG/L	MG/L	MG/L	MEQUI			
NUM. VALS.	° O	17	0	17			
AVERAGE		95.9		3.02			
ST. DEV.		8.2		0.64			
MIN. VAL.		84.0		2.04			
MAX. VAL.		112.1		4.20			

A-40

4

LAKE DREECHDBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UN	ITS
		DATE DEPTH	5/20/78 0	- 9/15/ -	79 MD/DA/ O METERS	YP
		SAMPLE	0.		0. TY	PE
		STATION	= LZ32	CODE		
	TIME	DEPTH	TEMP	D • • •	*SAT. DO	SP COND
	HOUR,MIN	METERS	CENT	MGIL		UWH021CM
NUM. VALS.		15	15	15	15	15
AVERAGE		0.0	27.0	4.3	52.	658.
ST. DEV.		0.0	4.2	1.8	21.	174.
MIN. VAL.	825.	0.0	17.0	1.7	21.	257.
MAX. VAL.	1540.	0.0	32.2	8.0	88.	938.
	РН	SECCHI	TURB	COLOR	T.SUS.SD	OPC4
		1 M	JTU	UNITS	MG/L	MG P/L
NUM. VALS.	15	ο	15	15	0	15
AVERAGE	7.18		2.1	112.		0.040
ST. DEV.	0.23		0.9	157.		0.062
MIN. VAL.	6.90		0 + 8	23.		0.002
MAX. VAL.	7.62		4.3	650.		0.182
	TPO4	NOX	NOZ	ND3	NH4	NCX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG N/L
NUM. VALS.	15	15	15	15	15	15
AVERAGE	0.079	0.120	0.017	0.104	0.09	0.21
ST. DEV.	0.065	0.151	0.019	9.133	0.12	0.24
MIN. VAL.	0.028	0.004	0.004	0.004	0.01	0.01
MAX. VAL.	0.233	0.544	0.070	0.474	0.47	0.79
	TKN-NH4	TOTAL N	TOTAL FE	NΔ	ĸ	C A
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MG/L
NUM. VALS.	13	13	15	0	0	0
AVERAGE	1.78	2.00	0.13			
ST. DEV.	0.59	0.70	0.14			
MIN. VAL.	1.00	1.02	0.04			
MAX. VAL.	2.77	3+23	0.55			
	MG	CL	S04	ALK		
	MG/L	MG/L	MG/L	MEO/L		
NUM. VALS.	0	15	0	15		
AVERAGE		90.3		2.79		
ST. DEV.		23.0		0.87		
MIN. VAL.		33.2		0.85		
MAX. VAL.		123.3		4.15		

LAKE DEECHOPEE 40 STATION DATA SET

DATE DEPTH 5/20/78 9/15/79 MD/DA/YR D.METERS STATION = LZ33 CODE TIME HOUR,MIN DEPTH METERS TEMP CENT D.P. ZSAT. DD SP CONT NUM. VALS. 14 14 14 14 14 14 AVERAGE 0.0 25.0 P.5 102. 410. ST. DEV. 0.0 4.0 1.1 E. 75. MAX. VAL. 825. 0.0 16.1 7.2 89. 457. MAX. VAL. 1245. 0.0 30.0 11.2 113. F00. VUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.002 0.00 NUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.005 0.01 0.01 NUM. VALS. 14 0 14 14 0 0.02			PARAMETER	RANGE	DE VALUES	UN	115
SAMPLE O. O. TYPE STATION - LZ33 CODE TIME DEPTH TEMP D.O. ZSAT.DO SP.CONT NUM. VALS. 14 14 14 14 14 14 AVERAGE 0.0 25.0 P.5 102. 610. ST. DEV. 0.0 4.0 1.1 E. 95. MAX. VAL. 1245. 0.0 30.0 11.2 113. S00. PH SECCHI TURB COLOR T.SUS.SD JP04. MUM. VALS. 14 0 14 14 0 14 MUM. VALS. 14 0 14 14 0 14 MUM. VALS. 14 0 14 14 0 14 MUM. VALS. 14 0 14 14 14 0 16 MIN. VAL. 8.05 2.7 15.0 57. 0.014 0.014		· · · · · · · · ·	DATE DEPTH	5/20/78 0	- 9/15/	79 MD/DA/ O METERS	YR
STATION - L233 CODE TIME HOUR, MIN DEPTH METERS TEMP CENT D.O. MG/L ZSAT. DD SP COMF NUM. VALS. AVERAGE 14 14 14 14 14 14 14 ST. DEV. MIN. VAL. 0.0 25.0 8.5 102. 452. MIN. VAL. R75. 0.0 16.1 7.2 80. 457. MAX. VAL. 1245. 0.0 30.0 11.2 113. FOO. PH SECCHI TUBB COLOR T.SUS.SD 3P04 AVERAGE P.42 6.7 32. 0.002. ST. DEV. 0.255 4.1 11. 0.002. MIN. VAL. 8.05 2.7 15. 0.002. MAX. VAL. 8.75 15.0 57. 0.01 0.01 MM. VALS. 14 14 14 14 14 14 14 AVERAGE 0.56 0.061 0.004 0.064		14	SAMPLE	0.		0. TY	PE
TIME HOUR, MIN DEPTH METERS TEMO CENT D. R. MG/L XSAT. DD SP CONF UMHOS/C NUM. VALS. AVERAGE ST. DEV. MAX. VAL. 14 225.0 14 25.0 12 25.0 102. 45 25.0 MIN. VAL. DEV. MAX. VAL. 875. 0.0 16.1 7.2 80.4 457. MAX. VAL. 1245. 0.0 16.1 7.2 80.4 457. NUM. VALS. 14 0 0 14 14 14 14 0 14 0.0000 NUM. VALS. 14 0.257 0.14 14 0.0000 0.001 0.004 0.004 0.004 0.004 0.004 0.004 0.001 0.004 0.001 0.001 0.001 NUM. VALS. 14 14 14			STATION	= LZ33	CODE		
HOUR.MIN METERS CENT MG/L UMMOS/C NUM. VALS. 14 14 14 14 14 14 AVERAGE 0.0 25.0 9.5 102. 410. ST. DEV. 0.0 4.0 1.1 8.95. 95. MAX.VAL. 1245. 0.0 30.0 11.2 113. F00. MAX.VAL. 1245. 0.0 30.0 11.2 113. F00. MUM.VALS. 14 0 14 14 0 14 VUM.VALS. 14 0 14 14 0 14 VUM.VALS. 14 0 14 0 14 VUM.VALS. 14 0 14 0 14 NUM.VALS. 14 0 14 0 14 NUM.VALS. 14 14 14 14 14 AVERAGE 0.056 0.061 0.057 0.01 0.071	÷.	TIME	DEPTH	TEMP	D. n.	ZSAT. DO	SP CONF
NUM. VALS. 14		HOUR,MIN	METERS	CENT	MG/L		UMHOSIC
AVERAGE 0.0 25.0 8.5 102. 610. ST. DEV. 0.0 4.0 1.1 8.95. 95. MAX. VAL. 1245. 0.0 1611 7.2 69.457. MAX. VAL. 1245. 0.0 30.0 11.2 113. F00. PH SECCHI TURB COLOR T.SUS.SD 3PD4. MUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.006 ST. DEV. 0.25 4.1 11. 0.014 MEX. VAL. 8.05 15.0 57. 0.001 MAX. VAL. 8.05 15.0 57. 0.004 MAX. VAL. 8.05 0.56 0.661 0.059 0.01 0.01 NUM. VALS. 14 14 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 14	NUM. VALS.		14	14	14	14	14
ST. DEV. 0.0 4.0 1.1 E. 95. MIN. VAL. B75. 0.0 15.1 7.2 89. 457. MAX. VAL. 1245. 0.0 30.0 11.2 113. 60.4 PH SECCHI TURB COLOR T.SUS.SD 3PD4. MUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.00 0.00 ST. DEV. 0.25 4.1 11. 0.112 0.000 MIN. VAL. 8.05 2.7 15.0 57. 0.0043 MIN. VAL. 8.05 15.0 57. 0.0043 NUM. VALS. 14 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 0.07 NUM. VALS. 12 12	AVERAGE		0.0	25.0	8.5	102.	610.
MIN. VAL. R25. 0.0 16.1 7.2 E0. 452. MAX. VAL. 1245. 0.0 30.0 11.2 113. F00. PH SECCHI TURE COLDR T.SUS.SD JP04 MUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.00 ST. DEV. 0.25 4.1 11. 0.00 0.01 MAX. VAL. 8.05 2.7 15. 0.000 MAX. VAL. 8.05 15.0 57. 0.001 MMM. VALS. 14 14 14 14 0.000 MAX. VAL. 8.05 0.001 0.002 ND3 NH4 NMX+NH4 MG P/L MG N/L MG N/L MG N/L MG N/L MG N/L MC N/L NUM. VALS. 14 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 0.07 MW. VALS. 14 14 14	ST. DEV.		0.0	4.0	1.1	8	95
MAX. VAL. 1245. 0.0 30.0 11.2 113. FOR. PH SECCHI TURB COLOR T.SUS.SD JP04 MUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.002 ST. DEV. 0.25 4.1 11. 0.002 MAX. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 0.014 MG N/L MG N/L MG N/L NUM. VALS. 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 0.07 MIN. VALS. 14 14 14 14 14 14 14 AVERAGE 0.005 0.419 0.000 0.118 0.001 0.07 MAX. VAL. 0.210 0.419 0.005 0.415 0.11 0.43 <td>MIN: VAL.</td> <td>825.</td> <td>0.0</td> <td>16.1</td> <td>7.2</td> <td>89.</td> <td>452</td>	MIN: VAL.	825.	0.0	16.1	7.2	89.	452
PH SECCHI M TURB JTU COLOR UNITS T.SUS.SD MG/L JPD4 MG P/L NUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.000 ST. DEV. 0.25 4.1 11. 0.002 MAX. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 15.0 57. 0.041 NUM. VALS. 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 AVERAGE 0.056 0.061 0.000 0.118 0.001 0.017 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 7.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 7.01 MAX. VAL. 0	MAX. VAL.	1245.	0.0	30.0	11.2	113.	600
M JTU UNITS MG/L MG/L MG/L MG/L MG/L NUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.006 ST. DEV. 0.25 4.1 11. 0.14 MIN. VAL. 8.05 2.7 15. 0.007 MAX. VAL. 8.85 15.0 57. 0.01 MG P/L MG N/L MG N/L MG N/L MG N/L MC N/L NUM. VALS. 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 ST. DEV. 0.054 0.119 0.000 0.118 0.00 0.01 MAX. VAL. 0.0210 0.419 0.006 0.004 0.01 0.01 MAX. VAL. 0.0210 0.419 0.005 0.415 0.01 0.01 MAX. VAL. 1.210 1.41 1.52 0.02 0.01 0.01 MMM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.02 0.01 MMX. VALS. 12 12 14		РН	SECCHI	TURB	COLOR	T.SUS.SD	<u>1914</u>
NUM. VALS. 14 0 14 14 0 14 AVERAGE 8.42 6.7 32. 0.002 ST. DEV. 0.25 4.1 11. 0.002 MIN. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.05 0.014 MG N/L MG N/L N02 MAX. VAL. 8.05 0.061 0.014 N04 N04. NUM. VALS. 14 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 14 14 NUM. VALS. 14 14 14 14 14 14 14 NUM. VALS. 0.056 0.061 0.000 0.116 0.000 0.01 0.07 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.03 0.43 NUM. VALS.			M	JTU	UNITS	MG/L	MG P/L
AVERAGE 8.42 6.7 32. 0.000 ST. DEV. 0.75 4.1 11. 0.012 MIN. VAL. 8.05 2.7 15. 0.001 MAX. VAL. 8.05 2.7 15. 0.001 MAX. VAL. 8.05 15.0 57. 0.004 MMM. VALS. 14 14 14 14 14 AVERAGE 0.056 0.019 0.000 0.116 0.00 0.17 MIN. VAL. 0.0210 0.419 0.004 0.004 0.01 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.43 MMM. VALS. 12 12 14 0 0 0 0.43 MUM. VALS. 12 12 14 0 0 0 0 MAX. VAL. 0.35 0.33 0.18 MG/L MG/L MG/L MC/L MIN. VALS. 1.41 1.52	NUM. VALS.	14	0	14	14	0	14
ST. DEV. 0.25 4.1 11. 0.12 MIN. VAL. 8.05 2.7 15. 0.002 MAX. VAL. 8.85 15.0 57. 0.041 MG P/L MG N/L MG N/L MG N/L MG N/L MG N/L MG N/L NUM. VALS. 14 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 C.07 ST. DEV. 0.054 0.119 0.000 0.116 0.00 C.12 MIN. VAL. 0.008 0.004 0.0104 0.001 C.07 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.407 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.43 MK NG N/L MG N/L MG/L MG/L MG/L MG/L MG/L MG/L NUM. VALS. 12 12 14 0 0 0 0 NUM. VALS. 187 1.91 0.19 0.19 0.16 0.16 </td <td>AVERAGE</td> <td>8.42</td> <td>-</td> <td>6.7</td> <td>32.</td> <td></td> <td>0.006</td>	AVERAGE	8.42	-	6.7	32.		0.006
MIN. VAL. 8.05 2.7 15. 0.022 MAX. VAL. 8.85 15.0 57. 0.041 MAX. VAL. 8.85 15.0 57. 0.021 MAX. VAL. 8.85 15.0 57. 0.021 MAX. VAL. 8.85 15.0 57. 0.021 MMM. VALS. 14 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 C.07 ST. DEV. 0.054 0.119 0.000 0.118 0.00 0.12 MAX. VAL. 0.0210 0.419 0.004 0.004 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.13 0.43 MAX. VAL. 0.210 0.419 0.005 0.415 0.13 0.43 MAX. VAL. 0.210 0.419 0.005 0.415 0.13 0.43 MMM. VALS. 12 12 14 0 0 0 0 NUM. VALS. 12 12	ST. DEV.	0.25		4.1	11.		0.012
MAX. VAL. 8.85 15.0 57. 0.041 TPD4 NDX ND2 ND3 NH4 NDX+NH4 MG P/L MG N/L	MIN. VAL.	8.05		2.7	15.		0.002
TPD4 MG P/L NOX MG N/L NO2 MG N/L NO3 MG N/L NH4 MG N/L NOX + NH4 MG N/L NUM. VALS. 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 C.07 ST. DEV. 0.054 0.119 0.000 0.11E 0.000 C.07 MIN. VAL. 0.008 0.004 0.004 0.004 0.01 C.07 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 7.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 7.01 MAX. VAL. 1.87 1.91 0.19 0.19 0.002 MG/L MC/L NUM. VALS. 12 12 14 0 0 0 0 MG L MG/L MG/L MG/L MG/L MC/L MC/L MMX. VAL. 1.41 1.52 0.02	MAX. VAL.	8.85		15.0	57.		0.041
MG P/L MG N/L NUM. VALS. 14 14 14 14 14 14 14 14 14 14 14 AVERAGE 0.056 0.061 0.004 0.059 0.01 0.07 MIN. VAL. 0.008 0.004 0.004 0.004 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 NUM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.19 0.19 ST. DEV. 0.35 0.33 0.18 MG/L MG/L MIN. VAL. 1.41 1.52 0.02 0.02 0.01 MAX. VAL. 2.52 2.53 0.51 0.19 <td< td=""><td></td><td>TPD4</td><td>NOX</td><td>N02</td><td>ND3</td><td>NH4</td><td></td></td<>		TPD4	NOX	N02	ND3	NH4	
NUM. VALS. 14 16 0 0 17 17 17 17 17 17 17 17 17 17 17 17 17 16 17 16 16 16 16 16 16 16 16 16 17 17 17 17 17 17 17 17 17 17 16		MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MC N/L
AVERAGE 0.056 0.061 0.004 0.059 0.01 0.07 ST. DEV. 0.054 0.119 0.000 0.118 0.00 0.17 MIN. VAL. 0.008 0.004 0.004 0.004 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MMX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MMX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 NUM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.19 0.02 ST. DEV. 0.35 0.33 0.18 0.02 0.02 MAX. VAL. 1.41 1.52 0.02 0.02 0.51 MAX. VAL. 2.52 2.53 0.51 0.14 0 14 NUM. VALS. 0 14 0 14 0	NUM. VALS.	14	14	14	14	14	14
ST. DEV. 0.054 0.119 0.000 0.118 0.00 0.128 MIN. VAL. 0.008 0.004 0.004 0.004 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.43 TKN-NH4 TOTAL N TOTAL FE NA K CA MG N/L MG/L MG/L MG/L MC/L MC/L NUM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.19 0 0 0 ST. DEV. 0.35 0.33 0.18 0 0 0 0 MAX. VAL. 1.41 1.52 0.02 0 0 0 0 MAX. VAL. 2.52 2.53 0.51 0 0 1 NUM. VALS. 0 14 0 14 0 14 AVERAGE 92.1 2.34 0.42 0	AVERAGE	0.056	0.061	0.004	0.059	0.01	ē.07
MIN. VAL. 0.008 0.004 0.004 0.004 0.004 0.001 0.01 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.43 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.43 MAX. VAL. 0.210 0.419 0.005 0.415 0.01 0.43 TKN-NH4 TOTAL N TOTAL FE NA K CA MG N/L MG N/L MG/L MG/L MC/L MC/L MC/L NUM. VALS. 12 12 14 0 0 0 0 ST. DEV. 0.35 0.33 0.18 0.19 0.19 0.10 0.02 MAX. VAL. 1.41 1.52 0.02 0.51 0.02 0.51 0.51 0.51 MG/L MG/L MG/L MG/L MEO/L MEO/L 0 14 NUM. VALS. 0 14 0 14 0 14 AVERAGE 92.1 2.34 0.42 0.42 0.42 0.42	ST. DEV.	0.054	0.119	0.000	0.118	0.00	0.12
MAX. VAL. 0.210 0.419 0.005 0.415 0.03 0.43 TKN-NH4 TOTAL N TOTAL FE NA K CA MG N/L MG/L MG/L MG/L MG/L MG/L MG/L NUM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.19 0 0 0 ST. DEV. 0.35 0.33 0.18 0 0 0 0 MAX. VAL. 2.52 2.53 0.51 0 0 0 0 MG CL SD4 ALK MEO/L 0 14 NUM. VALS. 0 14 0 14 0 14 NUM. VALS. 0 14 0 14 0 14 AVERAGE 92.1 2.34 2.34 0 14 14 NUM. VALS. 9.6 0 0 14 14 14 14 14 14 14 14 14 14 14 <	MIN. VAL.	0.008	0.004	0.004	0.004	0.01	3.01
TKN-NH4 MG N/L TOTAL N MG N/L TOTAL FE MG/L NA MG/L K MG/L CA MG/L NUM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.19 0 0 0 ST. DEV. 0.35 0.33 0.18 0 0 0 0 MIN. VAL. 1.41 1.52 0.02 0 0 0 0 MAX. VAL. 2.52 2.53 0.51 0 0 14 NUM. VALS. 0 14 0 14 0 14 NUM. VALS. 0 14 0 14 0 14 NUM. VALS. 0 14 0 14 0 14 AVERAGE 9.6 0.42 1.46 1.46 1.46 MAX. VAL. 10.8 3.25 1.46 1.46 1.46	MAX. VAL.	0.210	0.419	0.005	0.415	0.03	0.43
MG N/L MG/L <t< td=""><td></td><td>TKN-NH4</td><td>TOTAL N</td><td>TOTAL FF</td><td>NΔ</td><td>ĸ</td><td>C۵</td></t<>		TKN-NH4	TOTAL N	TOTAL FF	NΔ	ĸ	C۵
NUM. VALS. 12 12 14 0 0 0 AVERAGE 1.87 1.91 0.19 0.19 0 0 0 0 ST. DEV. 0.35 0.33 0.18 0 0 0 0 MIN. VAL. 1.41 1.52 0.02 0 0 0 0 MAX. VAL. 2.52 2.53 0.51 0 0 0 14 NUM. VALS. 0 14 0 14 MEO/L MEO/L NUM. VALS. 0 14 0 14 0 14 AVERAGE 9.6 0.42 1.46 1.46 1.46 MAX. VAL. 10.8 3.25 1.46 1.46 1.46 </td <td></td> <td>MG N/L</td> <td>MG N/L</td> <td>MG/L</td> <td>MG/L</td> <td>MGZL</td> <td>METL</td>		MG N/L	MG N/L	MG/L	MG/L	MGZL	METL
AVERAGE 1.87 1.91 0.19 ST. DEV. 0.35 0.33 0.18 MIN. VAL. 1.41 1.52 0.02 MAX. VAL. 2.52 2.53 0.51 MG CL SD4 ALK MG/L MG/L MG/L MEO/L NUM. VALS. 0 14 0 14 AVERAGE 92.1 2.34 2.34 ST. DEV. 9.6 C.42 4.46 MIN. VAL. 78.4 1.46 3.25	NUM. VALS.	12	12	14	0	0	Ō
ST. DEV. 0.35 0.33 0.18 MIN. VAL. 1.41 1.52 0.02 MAX. VAL. 2.57 2.53 0.51 MG CL SD4 ALK MG/L MG/L MG/L MEO/L NUM. VALS. 0 14 0 14 NUM. VALS. 0 14 0 14 ST. DEV. 9.6 0.42 0.42 MIN. VAL. 78.4 1.46 3.25	AVERAGE	1.87	1.91	0.19	-	· · ·	
MIN. VAL. 1.41 1.52 0.02 MAX. VAL. 2.52 2.53 0.51 MG CL SD4 ALK MG/L MG/L MG/L MEO/L NUM. VALS. 0 14 0 14 NUM. VAL. 9.6 0.42 1.46 MAX. VAL. 110.8 3.25 3.25	ST. DEV.	0.35	0.33	0.18			
MAX. VAL. 2.52 2.53 0.51 MG CL SD4 ALK MG/L MG/L MG/L MEO/L NUM. VALS. 0 14 0 14 AVERAGE 92.1 2.34 ST. DEV. 9.6 0.42 MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25	MEN. VAL.	1.41	1.52	0.02			
MG CL SD4 ALK MG/L MG/L MG/L MEO/L NUM. VALS. 0 14 0 14 AVERAGE 92.1 2.34 ST. DEV. 9.6 0.42 MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25	MAX. VAL.	2.52	2.53	0.51	ŀ		
MG/L MG/L MG/L MG/L MEO/L NUM. VALS. 0 14 0 14 AVERAGE 92.1 2.34 ST. DEV. 9.6 0.42 MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25		MG	CL	5.04	A1 K		
NUM. VALS. 0 14 0 14 AVERAGE 92.1 2.34 ST. DEV. 9.6 0.42 MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25		MG/L	MGTL	MG/L	MEO/L		
AVERAGE 92.1 2.34 ST. DEV. 9.6 0.42 MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25	NUM. VALS.	0	14	Ó	14		
ST. DEV. 9.6 0.42 MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25	AVERAGE		92.1	~	2.34		
MIN. VAL. 78.4 1.46 MAX. VAL. 110.8 3.25	ST. DEV.		9.6		0.42	•	
MAX. VAL. 110.8 3.25	MIN. VAL.		78.4		1.46		
	MAX. VAL.		110.8		3.25		

A-42

19 E

LAKE OKEECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	OF VALUES	UN	ITS
		DATE DEPTH Sample	5/20/78 0 0.	- 9/15/ -	79 MOIDAI O METERS O. TY	YR PE
		STATION	LZ34	CODE		
	TIME HOUR,MIN	DE PTH Meters	TEMP CENT	0.0. MG/L	7S∆T. DΩ	SP COND Umhos/cm
NUM. VALS. Average		14	14 26.3	14 8•4	14 301.	14 609.
ST. DEV. MIN. VAL. MAX. VAL.	904.	0.0	4.3 16.1 30.0	1.4 6.6	14. 85.	81. 465. 715.
	PH	SECCHI	TURB	COLOR	T.SUS.SD	0P04
NUM. VALS.	14	M	JTU 14	UNITS 14	MG/L	MG 971
AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	8.34 0.30 7.95 9.00	-	12.3 10.4 3.2 40.0	30. 10. 15. 52.	ŭ	0.012 0.012 0.002 0.037
	TP04 Mg P/L	NØX Mg N/L	NO2 Mg N/L	NO3 Mg N/L	NH4 Mg N/L	NOX+NH4 Mg N/L
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	14 0.066 0.035 0.017 0.133	14 0.075 0.127 0.004 0.433	14 0.004 0.001 0.004 0.006	14 0.072 0.126 0.004 0.429	14 0.01 0.01 0.01 0.03	14 0.08 0.13 0.01 0.44
	TKN-NH4 Mg N/L	TOTAL N Mg N/L	TOTAL ES MG/L	N A M G / L	K Mg/l	CA MG∕L
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	12 1.67 0.35 1.27 2.44	12 1.73 0.32 1.29 2.45	14 0.33 0.28 0.04 0.86	Ő	0	0
	MG MG/L	CL MG/L	SD4 MG7L	ALK MEQ7L		
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	0	14 92.5 7.6 83.2 104.6	0	14 2.30 0.30 1.61 2.76		

LAKE OKEECHOBEE 40 STATION DATA SET

		PARAMETER RAN		OF VALUES	UN UN	UNITS	
		DATE	5/20/78	- 9/15/	79 MO/DA/	YP	
		DEPTH	0	-	0 METERS		
		SAMPLE	0.		0. TY	D E	
	•	STATION	- L Z 35	CODF			
	TIME	DEPTH	TEMP	D . O .	75AT. DO	SC COND	
	HOUR, MIN	METERS	CENT	MG/L	1997 (* 1946 - 1976) 1	UMHOS/CM	
NUM. VALS.		14	14	14	14	14	
A VERA GE		0.0	26.3	8.7	105.	607.	
ST. DEV.		0.0	4.7	1.5	15.	02	
MIN. VAL.	856.	0.0	16.4	5.9	74.	467	
MAX. VAL.	1320.	0.0	30.8	11.6	131.	720.	
	РН	SECCHI	TURB		T.SUS.SD	10 1 4	
	••••	M	JTU	UNITS	MG/L	MG P/1	
NUM. VALS.	14	0	14	14	0	16	
AVERAGE	8,53	v	6.6	÷ † *0	V ·	0,008	
ST. DEV.	0.22		4.2	13		0.005	
MIN. VAL.	8.25		2.2	⊥		0.002	
MAX. VAL.	9.10		15.0	F9.		0.018	
	TPD4	NOX	N02	ND 3	NH4	ΝΠΥ+ΝΗ4	
	MG P/L	MG N/L	MG N/L	MG N/L	MG N/L	MG M/L	
NUM+ VALS+	14	14	14	14	14	14	
AVERAGE	0.045	0.046	0.004	0.043	0.01	0.05	
ST. DEV.	0.028	0.103	0.000	0.102	0.00	0.10	
MIN. VAL.	0.010	0.004	0.004	0.004	0.01	0.03	
MAX. VAL.	0.106	0.348	0.005	0.344	0.02	0.26	
	TKN-NH4	TOTAL N	TOTAL FE	NA	ĸ	C A	
	MG N/L	MG N/L	MG/L	MG/L	MG/L	MGZL	
NUM. VALS.	12	12	14	. 0	0	n	
AVERAGE	1.77	1.81	0.18		v	·	
ST. DEV.	0.42	0.41	0.17				
MTN. VAL.	1.20	1.22	0.02				
MAX. VAL.	2.37	2.38	0.58				
	MG	CI	504	A1 4			
	MG/L	MGIL	MG/L	MEOZL	-		
NILLM . MAKS	~	14	•	• •			
AVEDACE	U	14	U	14			
CT OCH		90.9		2.27			
310 UCV. MTN VAL		10.6		0.33			
MINE VALE Mav 1444		72.8		3.55			
PAK• VAL•		105.2		2.85			

LAKE DREECHOBEE 40 STATION DATA SET

		PAPAMETEP	RANGF	RANGE OF VALUES		ti ni ti z	
		DATE DEPTH SAMPLE	5/20/78 0 0.	- 07157	0 • TY	bt Að	
		STATION	= 1236	CanE.			
	TIME HOUR, MIN	DEPTH METERS	Т F М Р С # N Т	∩.∩. *671	*SAT. 0.0	SP COND UMHESVOM	
HEM. VALS. Average St. Dev. Myn. Val. May, Val.	813. 1525.	15 0.0 0.0 0.0 0.0	15 26.1 4.3 15.7 30.6	15 P.J 1.6 4.7 10.9	15 96. 17. 60. 132.	15 497. 120. 290. 650.	
	5 F1	SECCHI M	ТНАВ ТНАВ	С О Ц ПР 11 м 1 т с	T.SUS.SO MG71	SP04 MG P∕L	
MOM. VALS. AVEPAGE ST. DEV. MIN. VAL. MAX. VAL.	15 8.24 0.49 7.15 8.88	Ú	15 4.0 2.1 1.0 9.3	15 81. 94. 25. 360.	0	15 0.024 0.057 0.002 0.002	
	ΤΡΠΑ ΜG Ρ/Ι	NCX MG N/L	ND2 Mg n/l	NO SVL	MH4 MG M71	MG N \ I MG N \ I	
NUM. VALS. AVERACE SI. DEV. MIN. VAL. MAX. VAL.	15 0.074 0.059 0.015 0.255	15 0.030 0.066 0.004 0.257	15 0.005 0.005 0.004 0.028	15 0.025 0.064 0.004 0.248	15 0.04 0.11 0.01 0.45	15 0.07 0.14 0.01 0.49	
	TKN-NH4 MC NZU	TATAL M MG N/L	TOTAL FE MG/L	N A M C 71	MG71	CA MGAL	
NEM, VALS. AVCPAGE ST. DEV. MIN. VAL. MAX. VAL.	13 1.92 0.47 1.04 2.75	13 1.90 0.51 1.32 3.20	15 0.29 0.25 0.06 0.91	•,	С	C	
· · · · ·	мр MG/L	CL MG7L	504 MG71	MEDAL VER		:	
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAY, VAL.	ſ	15 62.5 21.7 16.9 92.4	0	15 1.74 0.82 0.42 2.48			

LAKE ORESCHOPES 40 STATION DATA COL

			PARAMETER	RANGE	DE RALIES	. (j.s.)	1.000 + 4.00	
			DATE DEPTH Sample	°/20/78 0 0.	- 97107 -	0. 14 0. METIES 0. TY	5 12 7 3	
			STATION	= L737	(n)r			
		TIPE Hour, Min	DE PTH Meters	TEMP CENT	∩.°. MG/L	*SAT. DE.	So Jone Jerena ya	
	NUM. VALS. Average St. drv.		15 0.0 0.0	15 74.7 4.4	15 6.4 2.1	15 77. 26.	15 11 15	
N	MIN. VAL. MAX. VAL.	851. 1510.	0. 0	1°•7 31•1	2.2 10.5	2°. 133.	ිනි. 240ිම	
		ρĦ	SECCHI M	TURR JTU	C L L DA UNITS	T.SUS.SP MOZI	가 가려고 제주 - 1 /1북	
h 4 9 9	NUM. VALS. Average St. Dev. 4In. Val. 4AX. Val.	15 7.17 0.88 5.95 8.80		15 2.3 1.6 0.7 5.6	15 137. 20. 340.	()	1.011 0.011 0.015 1.000 0.011	
		TPD4 MC P/L	NUX Mg Nit	NO2 Mg N/L	MOB MG NAT	NH4 MG N71	- MOXANHA MG NYL	
۲ ۱ ۱	NUM. VALS. Average St. dev. Min. Val. Max. Val.	15 0.119 0.051 0.057 0.231	15 0.067 0.084 0.004 0.307	15 0.008 0.004 0.004 0.015	15 0.080 0.081 0.004 0.204	15 0.04 0.04 0.01 0.13	1: 	
		TKN-NH4 MG N71	TOTAL N MC N/L	TETAL PE MG/U	N A M C Z L	K MG7t	т с Міліт	
	VUM. VALS. NVERAGE ST. DEV. MIN. VAL. MAX. VAL.	13 1.66 0.52 0.87 2.82	13 1.77 0.48 1.00 2.84	15 0.40 0.25 0.09 0.92	Ċ	č		
		MG Mg/L	CL MG/L	504 MG71	WEDYI V(k			
N S N N	NUM. VALS. NVERAGE ST. DEV. MIN. VAL. MAX. VAL.	C C	14 40.3 21.8 10.3 95.5	0	14 C.09 C.50 C.49 2.17			

.

LAKE DEECHOBEE 40 STATION DATA SET

		PARAMETER	RANGE	DE VALUES	אט א	ITS
		DATE DEPTH Sample	5/20/78 0 0.	- 9/15/	0 METERS	YR DE
		STATION	= 1738	CODE	•	
	T T N C	0 C 0 T 11	TT 110	• •	***	
	HOUR MIN	METERS	CENT	D.+.D.+ MGZL	ZNAL, DU	SP COND UMHOS/CM
NOM: WALS.		14	14	14	14	14
AVERAGE		0.0	26.5	8.1	98.	542.
ST. DEV.		0.0	4.5	1 • ¹²	18.	146.
MIN. VAL.	912.	0.0	16.3	5.2	64.	370.
Mry. VAL.	1216.	0.0	31.1	11.9	127.	882.
	рн	SECCHI	TURB	COLOR	T.SUS.SD	<u> 1984</u>
		M	310	UNITS	MGZU	MGP/L
NEW. VALS.	14	0	14	1.4	0	1 A
AVEPACE	8,33	9_ 1	4 - R	45.	**	0.007
TT. SEV.	0.56		2.0	+2+ 1₽.		0.007
MIN. VAL.	6.95		1.5	18.		0.002
MAX. VAL.	8.80		10.0	87.		0.034
		-				
	TPC4	N D 14	NO2	NO 3	NH4	NDX+NH4
	MG P/L	MG N/L	MG N/L	MG N/L	MC N/L	MG N/L
NUM. VALS.	14	1.4	14	14	14	14
AVERAGE	0.059	0.019	0.005	0.015	0.02	0.04
ST. DEV.	0.031	0.036	0.005	0.030	0.03	0.06
MIN. VAL.	0.025	0.004	0.004	0.004	0.01	0.01
"AX. VAL.	0.138	0.139	0.023	0.116	0.10	0.24
	TKN-NH4	TOTAL N	TOTAL FE	NΔ	к	C A
	MGINZL	MG N/L	MG/L	MG/L	MG/L	MOL
MAM. VALS.	12	12	14	· 0	0	C
AVERACE	1.80	1.85	0.23	0		
⊴ ≭. DÉV.	0.46	0.48	0.21			
PIN. VAL.	1.15	1.17	0.02			
MANA WALA	2.78	2.89	0.71			
	мC	CL	504	A L K		
	MOVL	MG/L	MG/L	MEO/L		
WALS.	(1	14	0	14		
AVEPAGE		78.2	·	2.01		
ST. DEV.		18.3		0.42		
SEN. VAL.		45.2		1.18		
MAY. VAL.		99.9	•	2.64		

LAKE ORFECHOREE 46 STATION DATA SET

		PARAMETER	PANG	E DE VALUES	4JN	TTS
		DATE Depth Sample	5/20/78 0 0	- 9/15/ -	79 M970A7 ? M970A ? M975P 0. TY	ЧÞ DE
		STATION	≖ LZ39	r (in F	-	
	TIME Hour, Min	DEPTH Meters	TEMP Cent	D.3. MG/L	7°AT. 00	so Crain Leactac
NUM. VALS. AVERACE ST. DEV. MIN. VAL. MAX. VAL.	932. 1225.	14 0.0 0.0 9.0	14 26.4 4.4 16.1 31.7	14	14 103. 13. 81.	14 570 170 61() 746
	рН	SECCHI	TURB JTU		T.SUS.SO MG/1	110 MC 271
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	14 8.44 6.29 8.10 9.13	0	14 7•1 4•5 ?•2 18•0	14 32. 16. 75.	0	34 0.007 007 0.002 0.024
	TP04 Mg P/L	NNX MG N/L	NO2 Mg N/L	ND3 MG N71	NH4 Mg N7l	NOX4MH4 MC MAL
NUM. VALS. AVERAGS ST. DEV. MIN. VAL. MAX. VAL.	14 0.056 0.026 0.026 0.115	14 0.044 0.080 0.004 0.245	14 0.004 0.000 0.004 0.005	14 0.042 0.079 0.004 0.241	14 0.01 0.00 0.01 0.02	14 0,000 0,000 0,000 0,000
	TKN-NH4 MG N/L	TOTAL N Mg N/L	TOTAL FF MG/L	N A MG Z L	₩Ċ\î K	ел. МСЛЦ
NUM. VALS. AVERAGE ST. DEV. MTN. VAL. MAX. VAL.	12 1.99 0.64 1.25 3.77	12 2.03 0.63 1.39 3.79	14 0.42 0.75 0.06 2.97	C	0	. C
.	MG	CL MG/L	504 MG/L	ALK MEOZL		
NUM. VALS. AVERAGE ST. DEV. MIN. VAL. MAX. VAL.	0	14 89.0 11.7 55.7 101.7	0	14 2.27 0.28 1.71 2.69		

		5482 72*1 16*0 27*2 51	0	サ・201 日・0日 サ・2 サ・2 ケ・10 ら1	U	WVX* AVF WIM* AVF LL* DEA* MIM* AVF AVEBVCE
		MEONE VER	W6/F 20¢	עפער רב	- NGVL MG	
 С		Û	91*1 90*0 98*0 95*0 51	10 ° E 98 ° O 85 ° O 84 ° L 4 T	ет 33.0 93.0 93.5 93.5	₩ŸX* AVF* A{A* AVF* at* DEA* VAE5VGE wow AVF2*
17.5 w 7.0	יא אפער אי	עפער עי≽ אי≽	TOTAL FE MG/L	WC N/L 101vr n	лум Эм Тки-лит	
68.0 19.0 91.0 51.0 51	0.02 0.01 0.02 0.01 0.01 1.2	928*0 900*0 291*0 281*0 381	SI0*0 +00*0 £00*0 \$00*0 SI	082°0 500°0 851°0 981°0 51	631.0 070.0 860.0 880.0 230.0	WAX, VAL. MIN, VAL. 21, DEV. Avrevce MUM, Vals.
17N - 50 7HN + XU)	и "ТИ ЭМ УНИ	17N 9w 80N	N 5W 800	N 90	אט 2/ן בום⊄	
940°0 200°0 910°0 920°0 920°0	O	•85 •8 •81 •26 51	0.03 5.5 5.71 0.71 2.1	0	92 * 8 92 * 9 29 * U 78 * 2 91	WAX, VAL, MIN, VAL, St, DEV, Ven, VALS,
775 SM ⇒C60	Wevr 0\$•\$h\$•1	ПИГЕЗ Согов	agut Ute	м Zegohi	Ha	
*332 •075 •24 •319 51	153 62 67 71 86 12	り * OT ム * タ し * T 工 * 8 公 し	0°08 9°91 8°5 4°52 1	0°0 0°0 0°0 51	•2251 •028	×VX* AVF* KIN* AVF* Z1* DEA* VAESVGE KIN* AVF2*
MÜZSÜHAL Ündu dis	2 (10 •142%)	лиел 1.0•с∙	CENT LEWO	WELEBŻ DEBIH Ziwituk -	НСАВ [•] WI <i>N</i> 11WE	
-	70 MULDALYF 0 Meters 14P4		• 0 • 0 • 120718	54₩0ĽE 0¥114 0¥124 0¥124		
51	LING	галай ан	Б⊻ис⊧	a∃T <u>am</u> aqa		
L	IDW DVIV 2EJ	1V15 07 33	ке икеснии	л¥П — — — — — — — — — — — — — — — — — — —		

67-∀

•

APPENDIX B

CONTOUR MAPS

1.00 mg/L CONTOUR INTERVALS FOR TOTAL NITROGEN (JUNE 1979)

0.50 mg/L CONTOUR INTERVALS FOR INORGANIC NITROGEN (JUNE 1978)

B-29

B-30

B-M

