THE APPLICATION OF THE RECEIVING WATER QUANTITY MODEL TO THE CONSERVATION AREAS OF SOUTH FLORIDA

BY
STEVE S.T. LIN

July 1979

Resource Planning Department South Florida Water Management District West Palm Beach, Florida 33402

TABLE OF CONTENTS

Page
ABSTRACT 1
NOTATIONS OF KEY TERMS $i i$
LIST OF FIGURES iii
INTRODUCTION 1
SPECIFIC OBJECTIVES 2
DESCRIPTION OF THE MODEL 2
FORMULATIONS 7
INPUT DATA REQUIREMENTS 13
ASSUMPTIONS 15
EVALUATION OF RESULTS 17
A. Calibration of the Model 17
B. Long Tem Simulation 20
C. Application of the Model in LEC Water Use Plan 33
D. Other Possible Applications 33
E. Limitations of the Model 37
CONCLUSIONS 38
ACKNOWLEDGEMENTS 39
REFERENCES 40
APPENDIX - COMPUTER PROGRAM DOCUMENTATION 41

1. Flow Chart 42
2. Input Data List for 43
a. Computer Program SWFLOW 44
b. Computer Program INDATA 46
3. Program Listing of 50
a. SWFLOW 50
b. INDATA 66
4. Illustrative Input Data Sets for
a. SWFLOW 78
b. INDATA 86
5. Sample Model Output 89

ABSTRACT

The conservation areas of South Florida Everglades are major water storage areas to provide a water supply for the Everglades National Park and Lower East Coast (LEC). Due to the increasing water demands of the area, additional backpumping of the surplus runoff from the LEC area into the conservation areas is being considered as one of several water supply schemes. The Receiving Water Quantity (EPA, 1971) model was adapted and nodified for the Conservation Areas to investigate the hydraul ic impact of additional inflow under various backpumping cases: The various modifications to the original EPA model are related to Manning's roughness coefficient, depth of flow, width of hypothetical channels through marsh areas, rainfall input, seepage rate, and the use of the Monte Carlo technique for nodal area computations. Comparison of values simulated by this modified model with the recorded values in Conservation Areas 1 and 2 A indicated that (a) the model can simulate satisfactorily the hydraulic regime of the Conservation Areas system during wet seasons, and (b) the model can be a useful tool to study the impact of additional inflow resulting from the backpumping as a part of water use planning and management tasks.

NOTATIONS OF KEY TERMS

V Velocity ($\mathrm{ft} / \mathrm{sec}$),
X Distance along the channel (ft),
H Water surface elevation above mean sea level,
g Gravitational acceleration ($32.16 \mathrm{ft} / \mathrm{sec}^{2}$)
F_{f} Acceleration due to fluid resistence ($f t / \sec ^{2}$),
F_{w} Acceleration due to wind stress ($\mathrm{ft} / \mathrm{sec}^{2}$),
n Manning roughness factor
$R \quad$ Hydraulic radius
t Time
$A_{j} \quad$ Water surface area at node j,
Q_{i} Flow through incoming link i,
$Q_{j} \quad$ Outflow at node j,
3 Width of canal or hypothetical channel
Δt time interval,
a proportional constant
$\Delta X \quad$ channel unit length
h depth of water
$\sqrt{g h}$ clerity of the wave
Page

1. Network Systems of Nodes and Links in Conservation Area 1 3
2. Network Systems of Nodes and Links in Conservation Area 2A 4
3. Network Systems of Nodes and Links in Conservation Area 3A 5
4. Assignment of Surface Area and Channel Width (w) to an Illustrative Node A 12
5. Manning's " n " in Area 2A Determined by C.O.E. as Compared to Shih's Study in Chandler Slough 14
6. Simulation of 1974 in Area 1 as Compared to Recorded Values at Selected Gages 18
7. Simulation of 1974 in Area $2 A$ with Two Sets of Manning's " n " Values as Compared to Recorded Values at Selected Sites 19
8. Simulated and Recorded Stages for Gage 2-17 and 3-11 in 1972 21
9. Comparison of Simulated Discharge with Recorded Data at S-11 in 1972. 22
10. Simulation Results for Area 1 During 1962-73 Period Using Gages 1-7 and 1-9. 23
11. Simulation Results for Area 1 during 1962-73 Period Using Gages S-6 and 1-8. 24
12. Simulation Results for Area 1 During 1968-74 Period Using Gages 1-7 and 1-9. 27
13. Simulation Results for Area 2A During 1968-74 Period Using Gages 5-38 and 2-17. 28
14. Simulation Results for Area 3A during 1969-74 Period Using Gages 3-4 and 3-2. 30
15. Simulation Results for Area 3A During 1963-74 Period Using Gages 3-28 and 3-3. 31
16. Annual Simulation Results for Area 3A During 1968-71 Period Using Gages 3-28 and 3-3. 34
17. Annual Simulation Results for Area 3A During 1968-71 Period Using Gages 3-28 and 3-3. 35
18. An Overall Operational Scheme of the Model 36

INTRODUCTION

With the typical seasonal nature of the rainfall pattern coupled with the relatively flat topography of south Florida, the distribution of rainfall inputs in various interconnected parts of a water system becomes a significant piece of information in various water management tasks of planning, regulation and operations. Depending upon the complexities associated with the water system under investigation, the methodology of hydraulic and hydrologic computations varies accordingly. As a part of planning efforts toward the development of the Water Use Plan for the Lower East Coast of South Florida, the South Florida Water Management District has considered several water management schemes to increase the water capabilities of the region to respond to the expected future water demands. One such alternative is the backpumping scheme in which excess surface runoff is to be pumped westward into storage areas instead of allowing that excess runoff to flow eastward to the ocean through the existing canal systems. The storage areas considered in such backpumping alternatives are known as conservation areas of the Florida Everglades and they are covered with sawgrass, red bays, willows, myrtles and various slough aquatics. Currently, these areas function as a water supply storage area for urban, municipal and agricultural uses (including water conveyance to the Everglades National Park). Their indirect functions also include flood control, groundwater recharge, prevention of salt water intrusion and fish, wildife preservation. Considering these valuable functions performed by the conservation areas, the effects of the increased water quantities as envisioned in backpumping alternatives need to be examined. Furthermore, such assessment should be completed in the present tense for the conditions that are likely to occur in the year 1990 or 2000 or 2020. This particular
requirement demands very definitely a mathematical modeling procedure which can adequately simulate the real world complexities of the conservation areas and then estimate consequences of the future water management schemes. To fulfill such a need, the receiving water quantity model of the EPA's storm water management model (known as SWMM model) is explored to estimate the hydraulic distribution of inputs in the conservation areas.

SPECIFIC OBJECTIVES

Basic objectives of applying the receiving water quantity model are:

1. To modify the receiving water quantity model to describe the flow pattern in the interconnected marsh-canal system of the conservation areas,
2. To simulate the discharges and stages at various locations in the conservation areas,
3. To calibrate the model to the extent possible by comparing simulated stages with the historical stages.
4. To perform sensitivity analysis or a trial-error procedure to select optimum parameters and
5. To superimpose backpumping inputs to estimate change in hydraulic regime of the areas under backpumping conditions.

DESCRIPTION OF THE MODEL

The receiving water body of each of three conservation areas is a continuous system even though the flow through their heavily vegetated area is extremely slow as compared to the flow in canals. The water system in three conservation areas is first represented by a network system of nodes and links as shown in Figures 1, 2 and 3. The shape of the grid system is flexible and they can be either orthogonal or triangular or irregular although an acute triangular shape is recommended.

Figure 2. Network System of Nodes and Links in Conservation Area 2A

F亩ure $\angle \angle N K-N O D E$ REDRESENTATION OF CONSERVATION AREA BA

Conservation Areas 1 and 2A represents two different marsh and canal flow systems. Both areas are surrounded by a dike (levee); however, the deep canal exists all around Area 1 but not Area 2A. The flow movement is generally southward. Sawgrass is the dominant vegetation, occurring as extensive marshes interspersed with tree islands on slightly higher ground elevations. Ground elevations range from 16.5 ft . msl in the northern portion to 11.0 ft . ms 1 at the southern end of Area 1 and from 13.2 ft . msi down to 7.5 ft ms 1 in Area $2 A$. The network system of area 1 contains 20 nodes and 57 channels, and 51 channels for Area 2A as shown in Figs. 1 and 2. Total area in Area 1 and 2A are approximately 215 and 175 square miles, respectively.

Rainfall stations in Area 1 are S-5A, Gages 1-8, 1-7, 1-9, S-6, and S-39 with only 1-7, and 199 in the interior marsh area, $\mathrm{S}-10$ structures are used as inflow points to Area 2A. Rainfall data for Area 2A are based on the gages at S-6, S-39, S-7, 2-17, FCD \#103 and \#106 etc. Gage 2-17 is the only gage located inside the interior marsh area, a stage recorder is available on this gage. This gage has been used as an indicator gage to operate $S-11$ structures. The flow from S-10 travels gradually southward and moves through a vast marsh area before reaching S-11. Therefore, the flow characteristics in Area 2A are quite different from Area 1 in which the major portion of flow occurred in the existing canal and the area adjacent to it.

Conservation Area $3 A$ covering an area of 786.6 square miles is also within the confines of the Everglades. Ground elevations range from $13 \mathrm{ft} . \mathrm{msl}$ in the northwesterly portion to 7.0 ft . in the south end. The regulation varies from 9.5 ft , to 10.5 ft . During the dry season, the water storage is largely in the lower southern portion of the area. The construction of Canal 123 traversing the area between pump station S-8 on the north to the south New River Canal enables the more efficient delivery of water to Everglades National Park from

Lake Okeechobee during periods when storage in the south end is inadequate to meet Park demands.

The network system of Area 3A contains 20 nodes and 61 channels as shown in Figure 3. Inflow points of Area 3 A are $\mathrm{S}-8, \mathrm{~S}-140, \mathrm{~S}-190, \mathrm{~S}-11, \mathrm{~S}-150$, and S-9. There are two major openings with an appreciable amount of undefined runoff flowing into the area. One of the major openings is located at the northwest corner of the area along L-2, L-3 and L-4. The other opening is located between L-28 and the L-28 tieback levee which extends for 7 miles . No data was available for S-140, and S-190 prior to September 11, 1969. Junction No. 1 was assumed as the inflow point for backpumping from the Tamiami Canal basin. Outflow points in Area 3A are Junctions 1 and 6 which supply water to ENP and Miami Wellfield. Rainfall stations located within or around Area 3A are S-8, S-7, 3-3, WMD \#3-26, S-9, L-28, 3-4, L-67A-4, S-12D and 40 Mile Bend.

FORMULATIONS

The distribution of the water through the given link-node system of conservation areas is sought by the simultaneous solution of two hydrodynamic equations (known as the equation of motion and continuity equation).

The equation of motion for our one-dimensional link system is written as

$$
\begin{equation*}
\frac{\partial V}{\partial t}=-V \frac{\partial V}{\partial X}-g \frac{\partial H}{\partial X}-F_{f}+F_{W} \tag{1}
\end{equation*}
$$

where:
$V=$ velocity in ft/sec
$t=$ time, sec
$X=$ distance along the link, ft.
$H=$ water surface elevation, ft. msl.
$\mathrm{g}=$ gravitational acceleration
$F_{f}=$ Acceleration due to fluid resistance
$=\frac{g n^{2} V|y|}{2.2 R^{4 / 3}}$
$\mathrm{n}=$ Manning's roughness coefficient (sec/ft)
$R=$ Hydraulic radius ($f t$)
$F_{W}=$ Acceleration due to wind stress
$=$ negligible in our study areas

The continuity equation for each node is given as follows:

$$
\begin{equation*}
A_{j} \frac{\partial H_{j}}{\partial t}=\sum_{i=1}^{K} Q_{i}+Q_{j} \tag{2}
\end{equation*}
$$

where:
$A_{j}=$ the water surface area of the node j^{\prime} 's
$H_{j}=$ the mean elevation of the water surface in node j, (ft. msl.),
$Q_{i}=$ water Importation rate to the junction j
$K=$ number of incoming links

Numerical solution of Eq. 1 and 2 entails rewriting of both equations in finite difference form. The initial value of various parameters at time " t_{0} " is used to determine the rate change of flow and water head during a short interval of time (Δt). Based on the rate change, the next value is computed with the modified Range-Kutta technique (Caraha, 1969) and the whole procedure
is repeated. The interval of integration is divided into four and applied in sequence with the advantage that the intermediate time-step computations improve the stability and accuracy of the model. The velocity, discharge and stage are computed for each time step and each node and each link to provide the spatial and time distribution of the hydraulic regime (in terms of velocity, discharge and stages). The time step is governed by the following criteria as derived by Garrison et al (1969).

$$
\Delta t \leq a \frac{\Delta X}{\sqrt{g h}}
$$

where:

$$
\begin{aligned}
\Delta t & =\text { unit time step in seconds }, \\
\Delta X & =\text { length of the link in ft. } \\
\alpha & =\text { proportional constant }(0.75) \\
\sqrt{g h} & =\text { celerity of wave, }(\mathrm{ft} / \mathrm{sec})
\end{aligned}
$$

The concept of the model, its theoretical development, geometric representation, solution procedure, and computer programs are described in the EPA's report (1971). Other modifications made to the"model are described below.

Concept of Parallel Channel:

To better define the hydrodynamics of flow through vegetated marsh area and through the existing canal systems, the concept of parallel channel, originally advocated by Heaney and Huber (1972), is applied to certain nodes where actual channels are lacated. This concept defined more closely the simultaneous flow through the canal and the overland flow through the heavily vegetated area with different velocities.

Concept of Dual Elevation:

Two bottom elevations for each node are included in the model to be consistent with parallel channel concept. The first elevation refers to ground
elevation at each node, and the second elevation refers to minimum stage which can be reached at the node. For a marsh area, the minimum stage would be a ground elevation. For an existing channel the minimum stage would be the crest elevation of the spillway at the outlet point. The bottom elevations of the actual channel are much different from the crest elevation.

Energy Gradient Through Marsh Area:
The The conservation areas include a greater portion of the Everglades which is often described as a "river of sawgrasses". During periods of abundant rainfall it is a floodplain. When rainfall is deficient it is often swept by fires which may even consume the peat soil. The water movement through these heavily vegetated marshlands is extremely slow. Diking around conservation areas has changed the flow characteristics of the basin. During dry conditions the water stage is comparably low; the stage in the existing channel differs considerably from the higher elevated marsh area. The operation of water control structures may cause flow in marshy areas towards or away from the outlet structure? Since the bottom elevation of the existing canal is much lower than the marsh area, a discontinuity exists between overland flow and flow in the existing canal. In order to generalize such conditions, the estimation of energy gradient between two nodes is based on the following criteria: a) the water stage is first checked with the ground elevation of the two nodes; if the water stage is above the ground elevations; then the head difference of the two nodes divided by the distance between the two nodes is considered as the energy gradient for the channel; b) if the water stage is below either one of the ground elevations then one-half of the difference between the water stage at one node and the ground elevation of the other node (i.e. dry) divided by the distance between two nodes is used for energy gradient of the channel; c) the energy gradient
for the flow through the marsh area is defined

$$
s_{f}=\frac{n^{2} v|v|}{h^{4 / 3}}
$$

where

$$
\begin{aligned}
S_{f} & =\text { Energy gradient } \\
n & =\text { Manning's roughness } \\
h & =\text { flow depth }(f t) \\
V & =\text { velocity }(f t / s e c)
\end{aligned}
$$

Channel Width for Hypothetical Channel

In the EPA's 1971 report, the width of a hypothetical channel is defined as the distance between two links parallel to the channel and passing through the centroids of the two adjacent triangles sharing the same link. The area of a triangle is equal to one-half of the length between two nodes times the vertical distance between the centroid point and the link of two nodes. This vertical distance has been used as the width of the hypothetical channel in the EPA's model. However, this width has been further reduced by half in this study to provide a greater accuracy in estimation of equivalent depth and volume. (Fig.4).

Surface Area of Nodes
Each node is associated with its area. A Monte Carlo technique developed by Shih (1975-1976) is used to compute the areal coverage of each node. The Monte Carlo technique requires much less time and is a more powerful tool than conventional techniques.

Rainfall Input
The original model assumed a uniform rainfall input over the entire study areas. This is inappropriate for the conservation areas due to the wide spatial and temporal variations in rainfall. The weighting factor based on a modified

Thiessen polygon of Shih and Hamrick (1975) is used to estimate the rainfall input for each node using the available vicinity gages.

Seepage Rate

A constant rate was used in the original model, however, the seepage rate increases with the depth of water in the study areas. Therefore, a seepage function related to the water stage in the Conservation Areas was developed. When the stages are low and water is confined in the existing borrow canal along the levee, then a certain percentage (10%) of normal rate is applied in the model. A mathematical equation of the seepage function for different water stages is used in the model.

Manning's Roughness Coefficient
Manning's roughness coefficient for grassed channels is known as the retardance coefficient. The retardance coefficient in Conservation Area 2A was reported by the Corps of Engineers (COE, 1954) as shown in Figure 5. Since the vegetation types and their distribution might have changed considerably since then, this set of data was used as a guideline for Manning's n in the study area. In a recent study by Shih and Hallett (1974) on the same subject for the upland marsh area of Chandler Slough in the Kissimmee River Valley (Figure 5) the values for upland marshes is lower than that reported by the Corps of Engineers. However, those two sets of data were used in the model during calibration. Mathematical relations between n-values and flow depths are developed and used in the madel.

INPUT DATA REQUIREMENTS

Generally two major types of data are required; they include geometric and hydrologic data types.
A. Geometric Data

This set of data is required by the first program called INDATA and includes:

1) Number of days desired
2) The time-step
3) The starting time of hydrograph input
4) Number of junctions of stormwater input
5) Point of rainfall information
6) Total number of nodes and channels in the desired network.

At each node (junction), the input requires:

1) An assigned junction number,
2) Water surface elevation,
3) Bottom elevation
4) Surface Area
5) Junction flow out of receiving water junction
6) Manning's coefficient
7) Junction x - and y - coordinates

B. Hydrologic Data

The hydrologic data included monthly evaporation, daily rainfall at selected gages and daily discharge at all inflow and outflow locations within the study area. The seepage function and Manning's " n " for marshland are also required by the model as mentioned previous 1 y .

ASSUMPTIONS

1. The equation of motion used in the model assumes one-dimensional uniform flow of an incompressible fluid in an open-rectangular prismatic channel.
2. Each cross section of the channels is assumed to have a uniform velocity distribution and a hydrostatic pressure distribution.
3. The water surface is assumed to be horizontal across the cross section.
4. The n-values determined for steady flow are applicable to unsteady flow.
5. Flow is well mixed.
6. Historical hydrologic data are assumed for the future conditions due to the lack of reliable projection method.
7. Characteristics of Conservation Areas: Dre as follows
A. Conservation Area 1 :

Junction No. 18 in Area 1 was assumed to be a new backpumping station near S-5A to avoid excessive inflow with existing pumping Station S-5A. Junction 1 is generally used as outflow point for regulatory flow. However', s-39 is located close to $5-10$. Therefore, Junction 1 is also used as a water supply point for Service Area 1. Summation of these two has been used as total outflow from Junction 1 in the model.

B. Conservation Area 2A:

Junctions 14; 18 and 17 in Area 2 A are inflow points. Inflow from S-10 was split into junction 14 and 18 with junction 17 assumed as backpumping station from service area 2. Junction 1 is also assumed as a water supply station for Area 2A.

C. Conservation Area 3A:

There are two major openings with an appreciable amount of undefined runoff flowing into Area 3A. The two openings are located at the northwest corner of the Area 3A along L-2, L-3 and L-4 and between L-28 and L-28 tie-back levee which extends about 7 miles. S-140 and S-190 flow has been assumed to represent the amounts of flow through these two openings. Junction 1 of Area $3 A$ was assumed to be an inflow point for backpumpina from C-4 basin.

EVALUATION OF RESULTS

A. Calibration of the Model

The purpose of the calibration was to demonstrate the model's ability to simulate the real system under various historical conditions, and to develop a set of parameters which can reproduce adequately the historical events of the real system. If such a parameter can be defined, then the outcome that resulted from the model under various backpumping cases would provide reliable information regarding the impacts to the water regime in the conservation areas. Very little research exists to provide a sound basis for describing the flow characteristics in the Everglades, therefore, the calibration of the model was based on the comparison of the model output with observed historical stages at selected gages located in the conservation areas. The calibration of the model was first approached by selecting several wet periods in the area. The set of Manning's coefficients developed by the Corps of Engineers in Area 2A was then applied to check the simulated results with the recorded values. Occasionally the result on one or two of the selected gages did not check closely with recorded values. Other values were then tried. Sometimes, the bottom elevation of the node points had to be adjusted to account for the variations due to the vegetation types, coverage, presence of tree island etc. This type of trial and error approach was found to be the most difficult part in defining the parameters for the model.

Figure $6 \& 7$ show the simulation results of 1974 in Area 1 and Area 2A at selected gages. The Manning's n values presented in Figure 5 were used in Areas 1 and 2A. The close agreement between the generated and recorded value indicates the validity of the modified model in reproducing adequately the historical pattern of flow distribution in conservation areas. Two sets of Manning's n values were used in Area $2 A$ and their results are plotted with recorded values as shown on Figure 7. The results with a cross mark (x) were

based on Corps of Engineers' value for Area 2A, and the one with a circle mark (o) were based on the values of Shih and Hallett (1975). The later set of values produced much better results for the first five dry months of 1974 for Area 2A; however, the Corps' value produces slightly better results for the wet season. of the year. Therefore, the effect of seasonal change to Manning's roughness and flow characteristics is obvious in Area 2 A than Area 1. This may also be due to the fact that major flow in Area 1 occurred within the existing canal system rather than in the marsh area, in addition, the water condition in Area 1 were wetter (i.e. most of the marsh area is under water even in the spring of 1974) than Area 2A.

The regulation schedule for Area 2 A is shown in Figure 8. If the stage at Gage 2-17 exceeds its regulation schedule, then the gate at S-11 structure would be operated to regulate the water condition. All the historical inflow and rainfall except S-1l flows were inputs to the model. The operation of gates at S-11 structures would be directed by the model according to the generated stage at Gage 2-17 as shown in Figure 8. Figure 8 shows the comparison of generated and recorded stage at Gage 2-17. Figure 9 shows the generated discharge and historical discharge at $S-11$. From the results indicated in these two figures, the model can be a useful management tool to assess the water distributions in the Conservation Areas under various regulation schedules or assumed storm water

B. Long Term Simulation

Application of the model to generate long term historical conditions for the period from Jan. 1, 1962 through Dec. 31, 1973 was performed in Area 1. The results are presented in Figures 10 and 11. Gage S-6 and 1-8 are gages located in the existing canal system, and gages 1-7, and 1-9 are interior gages located in the central marshland of Conservation Area 1. The circle dots shown on the graphs are the recorded month end stages. This simulation was based on the

Fig. 9. Comparison of simulated discharge with recorded data at s-11, in 1972.

initial stage on December 31, 1961. All other recorded rainfall, discharge, monthly Et, and seepage function etc. are inputs to the model. Generally speaking, a fairly close relationship exists between the generated and recorded values as can be observed from these plots. The deviation from recorded values for interior gages is far less than the one in the canal system. There are periods in which the generated stage may either be higher or lower than recorded values, these may result from the following reasons:
a. Only six raingages in the area are available to cover the rainfall characteristics of South Florida.
b. The reliability of the historical flow through the water control structures such as S-5A, S-6, S-10 etc. is a variable. The computed flow for these structures are based on different rating curves. These rating curves are off from $\pm 8 \%$ and more; for example, only three field measurements were available during 1970 and 1971. The current rating was based on these three measurements which are still far from sufficient to determine the amount of flow through $\mathrm{S}-10$. In addition, the current rating is much different from the one used in 1960 as shown in the COE DDM dated 1960. The discharge data was never updated and recomputed.
c. Lack of Manning's n values as a function of vegetation and seasonal changes. The Manning's n values also varies with flow rates. The value of 0.03 is used in canal flow.
d. The assumption of only one outflow point may not reflect the actual field conditions. There are three existing structures at S-10. They are S-10A, C and D with approximately two miles apart. Generally, only one structure ($S-10 A$) was operated, except during high flow condition other structures may operate. Therefore, a second outflow point (Node Point \#2) was used if the flow at S-10 exceeds 4000 cfs. This approach
did help to a certain degree to the result of simulation; however, a closer network with a detailed flow information on each structure should be developed to reflect the real system better.
e. Errors may accumulate and increase over the years. The results for selected monthly periods are checked within a range of 0.20 ft . with the recorded values. However, the difference more than 0.2 ft . were resulting from a longer term simulation. The error may be caused by the above mentioned factors. In order to eliminate the possibility of accumulated errors in the model, annual simulations were made (i.e. the length of simulation is limited to one year). The results of this type of simulation are shown in Figure 12. Some improvements can be observed from the plots, particularly for the year 1974. The parameters developed for the year 1974 were then applied to other years.

Figure 13 shows the simulated results for gages $\mathrm{S}-38$ and 2-17. Gage S-38 is a canal gage, and gage 2-17 is an interior gage located in the center marshland of Area 2A. The generated stages follow the general pattern of the recorded values fairly well for some of the years. However, the generated stages deviated from recorded values generally over 0.20 ft . The results for the early months of 1969-70,73 and 74 tended to be either lower (1969,1970) or higher (1973 and 1974) when compared to historical stage. However, the simulated stages for the wet months are geneally better. As presented in the calibration run in Area 2 A a different set of Manning's n should be applied in the model to cover the change of n-values due to seasonal effects. Since the marsh flow in Area $2 A$ is the dominant factor of the entire flow system, the following reasons may contribute to the poor simulation in Area 2A:
a. Gage 2-17 is the only interior raingage in this 175 sq. miles marsh area. Therefore, the estimation of rainfall input to the system is very approximate.

b. The discharge values at $S-11,7,10$, need to be verified.
c. The variation of Manning's n with flow rate should be further investigated.

Figures 14 and 15 show the generated stages at gages 3-2, 3-4, 3-28 and 3-3 as compared to the recorded month end data. The generated results were based on the initial stage on December 31, 1968 and continued through December 31, 1974 with historical daily flow and rainfall data at those selected raingages. Due to the following reasons, the simulation was not started before 1969.
a. The levee material was directly taken from the borrow canal along L-67A and L-68. Therefore, L-67A and L-68 borrow canal was not a water delivery canal to meet the Everglades National Park demands not until mid 1968. The improvement and enlarging of this borrow canal was done during 1966 through 1968.
b. The Miami Canal in Conservation Area 3A (i.e. C-123) was under impromment until Dec. 1969.
c. Pump station S-140 was not activated until Sept. 1969 and the flow from northwest corner of Area $3 A$ along $L-1, L-2, L-3$, and $L-4$ was not available prior to Sept. 1969.

The flow characteristics in Conservation Area 3 A prior to mid 1969 were not stable due to these changes mentioned. The geometric information for all existing channels in Area 3A were based on the latest as-built map of these canals. The set of n-values based on the simulation results for the year of 1974 was not suitable for rest of the years. Therefore, two sets of n-values had to be used in the simulation (see Fig. 5). One set of n-values was applied to normal or below normal rainfall years, and the other set of n-values was applied to wet years such as 1969 and 1970. The n-values for yearly low or

Figurw 15. Simulation Results for Area 3i 1963-74 Period Using Gages 3-28 and 3-3
normal periods are slightly lower than the wet year values. This may be due to the frequent fires in the Everglades during dry months such as the fire that occurred during the spring of 1971 and 1973.

Simulated results for gages 3-28, 3-3, 3-4, and 3-2 follow the recorded values fairly good except those months when the water was near or below ground surface. For example, the simulated results for early 1971 is higher than recorded values at gages 3-3 and 3-2. These two gages generally respond to local rainfall more than canal flow or inlfow from water control structures such as S-11, S-140, or \$-8 etc. (The influence occurred only during high water conditions). Therefore, the amount of rainfall input to these nodes becomes very improtant. The results at gages $3-3$ is generally much better than gage $3-2$. This may be due to the fact that no rainfall recording device is available at 3-2. The simulation at gage 3-4 is excellent except the summer of 1971 . The simulation at 3-28 is generally good except for the period of early spring where the generated stage always tends to be higher than recorded values. Yet sometime the generated values at this gage did reach down to ground surface during April and May of 1973 , but not in 1971 and 1974. Gage 3-28 generally responds to rainfall, backwater flow from the canal at south end of Area $3 A$ and sometime responds to the overland flow from the opening of L-28. In addition, the higher infiltration rate at this gage may be possible due to the location of this gage which is at the western border of Biscayne Aquifer.

The continuous simulation over a number of years tends to increase the accumulated errors in the simulations. The simulation based on an annal basis was done for the period from Jan. 1, 1968 through Dec. 31, 1971. The period was selected so that a typical wet and dry year could be used in the water quality analysis for the conservation areas as a part of the water use plan for the Lower East Coast. The results based on annual simulation are presented in Figures 16
and 17. The results indicate a general improvement for gages 3-3, 3-2 and part of a 304 but not for 3-28. This indicates a need for improving the model in simulation of the flow through the low lying marsh areas in Area 3A.

C. Application of the Model in LEC Water Use Plans

The simulation for selected typical wet and dry years as mentioned in Item B were applied. Alternative plans included in the Water Use Plan are shown as follows:
a. Backpumping from C-51 basin alone,
b. Backpumping from C-51 and Tamiami Canal basins to Conservation Area 3A.
c. Backpumping from C-51 and Tamiami canal basins to Area 3B
d. Backpumping from C-51, Hillsboro and Tamiami Canal to Area 3A
e. Backpumping from $\mathrm{C}-51$ and Hillsboro Canal to Area 2A.

Under each alternative plan, three levels of land use conditions were evaluated:
a. Present land use (based on 1973 land use)
b. County Master Land Use Plan (future land use)
c. Maximum water supply based on maximum backpumping to meet all demand

It was found that the results for the requirement levels under the county master land use plans, and maximum water supply plan were approximately the same as obtained from the optimization model. Therefore, the water requirements under the future land use condition were used in the analysis to represert the requirements of either the county master land use plan or a maximum water supply plan. Figure 18 shows the scheme of the model with the interactive programs.

D. Other Possible Applications

The receiving water body may be an estuary, a stream, or a lake etc. Since the adapted model did not include tidal effect as boundary condition, the model can be applied to a stream, canal, or a shallow well mixing lake. The model can be used to evaluate any structural or nonstructural changes in

FIGURE

Figure 18. An Overall Operational Scheme of the Model
the water systems of the conservation areas. This may include (a) marsh treatment of inflows (backpumping flow) for water quality enhancement, (b)
(b) water conveyance due to the additional inflow structure near S-6 to provide inflow to the northern corner of Conservation Area 2 and (c) other flow control structures in borrow canal for better water storage distribution. The applications of the model to the Everglades agriculture or other district areas for the evaluation of water quality distribution resulting from agricultural runoff or urban runoff are also possible.

E. Limitations of the Model

In addition to the assumptions mentioned earlier, some limitations of the model are as follows:

1. Number of nodes and links in the network system is 1 imited to 30 and 9 respectively.
2. No mathematical treatment is given to optimize the parameters of the model.
3. Tidal effects or water structures other than dam or spillway are not included.
4. No bridge losses or losses due to expansion or contraction in the canal are estimated in the model.

CONCLUSIONS:
The concepts of the receiving water quantity model are modified to describe the hydraulic distribution through the marsh and canal system of three conservation areas of the Florida Everglades. The modifications are related to the concept of dual elevation for each node, hydraulic radius, energy gradient for the marsh area, width for the hypothetical channel, use of the Monte Carlo technique to compute area. The modified model is shown to reproduce adequately historical stages and discharge for a short period of one year. However, in some periods, especially during dry years, the generated stage may either be figher or lower than the recorded values. It is expected that the model be improved continually as state-of-the-art improves and additional field data becomes avallable. Further. Improvement of the model is possible through the following steps:

1. To provide better representation of the real water body of the conservation areas by increasing the number of nodes in the network system.
2. Existing canal section and topographic elevation in conservation areas need to be refined:
3. Historical flow data at water control structures needs to be updated and to be recomputed through the improved structure ratings.
4. The relationship between Manning's roughness coefficient and the variation of the vegetation communities and their seasonal changes is required.
5. To improve the simulation for low water (or dry year) conditions, a soil moisture accounting model for interior nodes may be helpful.

ACKNOWLEDGEMENTS

This report is based on the work performed under in-house Program 8025 towards the development of the Water Use Plan for the Lower East Coast of South Florida. Thanks are expressed to Barbara Hart, hydrologist, SFWMD for her preparation of daily hydrologic input data for the model. Thanks are also extended to Robert Hamrick and Peter Rhoads for their assistance and suggestions during the development of this model. Dr. Tony Shin is acknowledged for his assistance in application of Monte Carlo techniques and in furnishing the Chandler Slough data. This report is prepared as a part of documentation efforts initiated by Stan Winn, Deputy Director of the Resource Planning Department. The technical editing was done by Ashok N. Shahane of the Water Resources Division.

REFERENCES

1. Corps of Engineers, 1954. "Central and Southern Florida Project: Part VI, Section 7 - Design Memorandum, Interim Report on Evaluation of Manning's n in Vegetated Areas", April 2, 1954, Jacksonville, Florida Serial No. 32.
2. Environmental Protection Agency, 1971. "Storm Water Management Model", EPA Report No. 11024 Doc: 07-10.
3. Garrison, J. M., J. M. Granja, and J. T. Price, 1969. "Unsteady Flow Simulation in Rivers and Reservoirs", Journal of Hydraulic Div., Ame. Sac. of Civil Engineers, Vol. 95 (HY5): 1559-1576.
4. Heaney, J. P. and W. C. Huber, 1972. "Simulation of the Impact of Selected Water Management Alternatives on Stages in Water Conservation Area $3 A^{\prime \prime}$, Final Report to South Florida Water Management District, West Palm Beach, Florida.
5. Ree, W. 0., 1949. "Hydraulic Characteristics of Vegetation for Vegetated Waterways", Agr. Eng. 30, 184-187, 189.
6. Shih, S. F., D. W. Hallett, 1974. "Impact of Upland Marsh on Water Quality IIB Roughness Coefficient", October 1974 Memorandum Report to South Florida Water Management District, West Palm Beach, Florida.
7. Shih, S. F., 1975. "FCD Computer Program for Area Calculation", Memorandum Report to South Florida Water Management District, West Palm Beach, Florida.
8. Shih, S. F., R. L. Hamrick, 1975. "A Modified Monte Carlo Technique to Compute Thiessen Coefficients", Journal of Hydrology, Vol. 27: 339-356:
9. Shih, S. F., 1976. "Methods of Computing Area", Agronomy Journal, Vol. 68(5):827-829.

APPENDIX: COMPUTER PROGRAM DOCUMENTATION

FLOW CHART

INPUT DATA LIST FOR SWFLOW AND INDATA
PROGRAM LISTING OF SWFLOW AND INDATA
ILLUSTRATIVE INPUT DATA SETS FOR SWFLOW AND INDATA
A SAMPLE OUTPUT

INPUT ORDER FOR PROGRAM SWFLOW (CARD INPUT)

Card Group	Format	Columns	Description	$\begin{gathered} \hline \text { Variable } \\ \text { Name } \\ \hline \end{gathered}$	$\begin{aligned} & \text { Default } \\ & \text { Value } \end{aligned}$
1	315	1-5	Starting month in a year	JMO	None
		6-10	Ending month in a year	NMON	None
		11-15	Backpumping point	IN	0
2	16F5. 2	1-5	Min. Water Elev. at Node No. 1	FDEP (1)	None
		6-10	" " " " " " 2	FDEP (2)	None
		:	at last node	;	:
		76-80	Min: Water Elev. at last node	FDEP(NJ)	None
3	16F5.2	1-5	Regulation stage at first day of year	REG(1)	None
		6-10	Regulation stage at 2nd day of year	REG(2)	None
		:	:	:	:
		:	Regulation stage at last day of year	REG(365)	None
4	16F5.2	$\begin{aligned} & 1-5 \\ & 6-10 \end{aligned}$	Initial stage at first node	$\begin{aligned} & H(1) \\ & H(2) \end{aligned}$	None None
		:	:	:	:
		\vdots	last node	$\mathrm{H}(\mathrm{NJ})$	None
5	$\begin{aligned} & 2014 \\ & 3 I 5 \end{aligned}$	1-80	Title	Title	None
		1-5	Conservation Area No.	IRD	None
		6-10	Indicator Gage	IND	None
		11-15	No. of year to be run	ICONT	0
7	16 I 5		Storm water input control card NJSW		
		$\begin{aligned} & 1-5 \\ & 6-10 \end{aligned}$	First junction number 2nd Junction number	$\begin{aligned} & \mathrm{JSW}(1) \\ & \mathrm{JSW}(2) \end{aligned}$	None None
		6-10	2nd Junction number		
		-	Last junction number If $\operatorname{ISWCH}(3)=4$ on card 3 of	JSW(NJ)	None
8	315	1-5	Program INDATA skip to 15 Total number of time steps not to	NTIMST	None
			exceed 31:		
		$6-10$	Total No. of raingages (Max. 15)	NGAGE	None
		$11-15$	$\begin{array}{ll} \text { Units for time of flow (time-step) } \\ 0=\text { seconds } & 1=\text { minutes } \\ 2=\text { hours } & 3=\text { days } \end{array}$	NTCC	0
9	8F10.0	1-10	Time of flow for each time step	$\begin{aligned} & \text { TEEM }(N T I \\ & M S T)=T E \end{aligned}$	None
		17-20			
10	16F5.2		Repeat this card for each junction (30)	RCENT	
		1-5	Rainfall weighting factor from first rain gage allocated to junction (NJSW).	(NJSW, NGAGE)	None
		$\begin{array}{r} 6-10 \\ 11-15 \end{array}$	" \quad last junction(NJSW)		

INPUT DATA LIST FOR "INDATA PROGRAM"

$\begin{aligned} & \text { Card } \\ & \text { Group } \end{aligned}$	Format	$\begin{aligned} & \text { Card } \\ & \text { Columns** } \end{aligned}$	Description	$\begin{gathered} \text { Variable } \\ \text { Name } \end{gathered}$	Befault Value
2	$\begin{aligned} & 15 A 4 \\ & 15 A 4 \end{aligned}$	1-60	Run Title Card	ALPHA	None None
		1-60	Storm Title Card	Title	
		1-5	$=0$, System is influenced by downstream head relationship (dam)	ISWCH(1)	0
	1015	6-10	$=2$, System has specified outflow $=0$, Print input channel and junction data =1, skip printing of input channel and junction data	1SWCH(2)	0
		$\begin{aligned} & 11-15 \\ & 16-20 \end{aligned}$	=4, QE (NJSW,2) is computed =1, Triangles are used in card group and different Manning's are desired for each leg of the triangle	$\begin{aligned} & \text { ISWCH(3) } \\ & \text { ISWCH(4) } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
		$\begin{aligned} & 21-25 \\ & 26-30 \end{aligned}$	=1, Parallel channels are used $=0$, and triangles are used in card group 11 junction surface area must be left out of input data card group No. 9 $=2$, and triangles are used in card group No. 11, junction surface area	$\left.\begin{array}{l} \text { ISWCH(5) } \\ \text { ISWCH } \\ 6 \end{array}\right)$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
		31-35	$=1$, Manning's coefficient for channels is computed. Not used Not used	ISWCH(7)	0
		36-40		ISWCH (8)	0
		41-45		ISWCH(9)	0
		46-50	If $\operatorname{ISWCH}(S)=1$, then channel numbers $\operatorname{ISWCH}(10)$ greater than this number (ISWCH(10)) are parallel to other lower numbered channels.		0
4	$\begin{aligned} & \text { I5 } \\ & \text { 4F5.0 } \end{aligned}$	$\begin{gathered} 1-5 \\ 6-10 \\ 11-15 \\ 16-20 \\ 21-25 \end{gathered}$	Number of day cycles desired Number of hr/day cycle Length of hydraulic time step, hr. Length of hydraulic time step, sec. Initial time for start of hydrograph input from cards, hr.	NTCYC Period QINT DELT TBERO	None None None None None
	315	26-30	Number of junction for time-history printout	NHPRT	None
		31-35	Number of channels for time-history printout Number of plots desired	NQPRT	None
		36-40		NPLT	0
	3 F 5.0	$\begin{aligned} & 41-45 \\ & 46-50 \\ & 51-55 \end{aligned}$	Evaporation, in./mo. Wind velocity, mph. Wind direction, clockwise, degrees from North.	$\begin{aligned} & \text { EVAP } \\ & \text { WIND } \\ & \text { WDIR } \end{aligned}$	0
	415	56-60	Day cycle where printed ouput will start Number of junctions of storm water input from cards	NJSW	None None
		61-65			

[^0]
*Head is negative when below datum plane,
**Depth is distance to bottom from datum plane (downward is positive).

Card					
Group	Format	Card Columns	Description		Variable
:---:					
Name		Default			
:---:					
Value					

$\begin{aligned} & 10 \\ & 11 \end{aligned}$	I5	1-5	To terminate junction cards, write 77777 REPEAT CARD 11 FOR EACH CHANNEL OR TRIANGLE (Max. = 99) Channet or Triangle Cards		
	515	$\begin{aligned} & 1-5 \\ & 6-10 \end{aligned}$	Channel or Triangle Number Junction at lower end of channel (Numerically lower)	$\underset{\mathrm{NTEMP}(1)}{\mathrm{N}}$	None None
		11-15	Junction at upper end of channel (Numerically higher)	NTEMP(2)	None
		16-20	Blank unless program is to develop geometric data through the use of triangles. Then NTEMP (1), NTEMP (2), NTEMP (3) are the vertices of the acute triangle. Program will develop channel characteristics.	NTEMP(3)	0
		21-25	Blank unless it is a number of a fourth junction which lies between a pair of previous three junctions. Program will develop geometric data.	NTEMP(4)	0
			If INTEMP (3) is supplied then leave columns $26-80$ blank. But if ISWCH(4)=1 on card 3, ALEN=MANNING FOR CHANNEL NTEMP (1) TO NTEMP (2), WIDTH=MANNING FOR CHANNEL NTEMP (2) TO NTEMP (3), RAD=MANNING FOR CHANNEL NTEMP (1) TO NTEMP (3).		
	5F10.0	26-35	Length of channel (ft)	ALEN	None
		36-45	Width of channel (ft.)	WIDTH	None
		46-55	Average depth of channel (ft. refer to datum)	RAD	None
		56-65	Manning's coefficient, n.	COEF	0.018
		66-75	Initial velocity (fps)	VEL.	None
12	15	1-5	To terminate channel cards, write 99999		

PROGRAM LISTING OF SWFLOW
C
C
C
C

DIMENSION EXXT(31,30),TEEM(31),RCENT $(30,13)$, DRAIN(15)
DIMENSION DOIN(30), DQDU(30),REG(366)
DIMENSION IENDER(2),ISN(10)
DIMENSICN BP(31), ONEW(31), FDEP(30)
CONTROL
COMMON TITELZ(20), ISWCH(10)

COMMON ALPHA(15)
JUNCTIONS
COMMON H(30), HN(30), HT(30), HEAR (30)
1, $\operatorname{NCHAN}(30,12), \operatorname{IPOINT}(30,12), \operatorname{AS}(30), \operatorname{VOL}(30), X(30), Y(30)$
2. $\operatorname{DEP}(30), \operatorname{COF}(30), \operatorname{QIN}(30), Q Q U(30), Q \operatorname{INST}(30), O \operatorname{INBAR(30),QOUBAR(30)SWFL} 2$

CHANNELS
COMMON LEN(90),NJUNC $(90,2), B(90), R(90), A(90), \operatorname{AT}(90), \operatorname{AK}(90)$
1, O(90),QBAR(90),QAVE(90),V(90),VT (90), VBAR(90)
2, FWIND(90),NUMCH(90),NTEMP(12),NCLOS(90)
PRINTDUT AND PLOTTING
COMMON JPRT(30),PRRTH(1,90)

1. $\operatorname{CPRT}(90), \operatorname{PRTV}(1,90), \operatorname{PRTQ}(1,90), \operatorname{ICCL}(12)$

2, JPLT(30), HPLT(30),TT(10)
Stage-time coefficients

STORMWATER
SWFL 38
SWFL 39
SWFL 40
SWFL 43
SWFL 44
SWFL 45
COMMON TITLE(15), QE (30,2),JSW(30), RAIN(50), INTIME(50)
COMMON
QT(30,2), ISW(30)
INITIALIZATION
OATA (IENDER=8HENDQUANT)

```
    N5=60
    N6=61
    N2O=20
    REWIND N2O
    N21=0
    N22=22
    NEXIT=0
    00 70 I =1,90
    O(I)=0.0
    VT(I)=0.0
    B(I)=0.0
    FWIND(I)=0.0
    CONTINUE
subrdutine indata called to READ INPUT DATA

SWFL 85
SWFL 86
SWFL 87
```

REWIND 23
READ (23) NTCYC,PERICD,DELT,TZERO, NHPRT,NOPRT,NPLT,EVAP,WIND,WDIR
1, NOSWRT,NJSW,INRAIN,JGW
READ(23) NQCYC,NHCYC,NJ,NC,A1,A2,A3,A4,A5, A6, A7, NPDEL
DO $150 \mathrm{~J}=1, \mathrm{NJ}$
$\operatorname{READ}(23) I, H(J), D E P(J), A S(J), \operatorname{DN}(J), Q Q U(J),(N C H A N(J, K), K=1,12)$
$1, \quad X(J), Y(J)$
$A S(J)=A S(J) * 10.0 * * 6$
150 CONTINUE
DO $160 \mathrm{~J}=1, N C$
READ(23) LEN(J), B(J),R(J),A(J), AK (J), V(J), (NJUNC(J,K),K=1,2)
160 CONTINUE
DO $165 \mathrm{~J}=1, \mathrm{NJ}$
READ(23) QINST(J), (IPOINT(J,K),K=1,10)
165 CONTINUE
READ(23) (CPRT(I), I $=1$, NQPRT)
READ(23) (JPRT(I), I=1,NHPRT)
READ(23) (JPLT(I),I=1,NPLT)
READ(23) ALPHA,TITLE, (NTEMP(I),I $=1,4)$
READ (23) (ISWCH(I), I=1,10)
WRITE (61,7092) (ISWCH(I), I =1,10)
READ(23) (RAIN(I), INTIME (I), $I=1,50)$
REWIND 23
DO $4 \mathrm{~J}=1$; NJ
DOIN(J) $=$ OIN(J)
DQOU(J) x QOU(J)
4 CONTINUE
READ $(60,15)$, MM , $\mathrm{NMON}, \mathrm{IN}$
$\operatorname{READ}(60,2332)$ (FDEP(J), J=1,NJ)
READ (60, 2332) (REG(I), $I=1,365$)
$\operatorname{READ}(60,2332)(H(J), J=1, N J)$
DELTQ=DELT*FLOAT(NHCYC)
WRITE(N20) TITLE,ALPHA,NJ,NC,NOCYC,DELTQ, ((NCHAN(J,K),K=1,IO);
$X A S(J), J=1, N J),(L E N(N),(N J U N C(N, K), K=1,2), N=1, N C)$
READ(60,7097) TITLE
WRITE(61,7097) TITLE
READ (60,15)IRD, IND, ICONT
$R D=0.0$
15 FORMAT (3I5)
REWIND N22
SWFL 98
NCGT=ISWCH(10)
$00175 \mathrm{~J}=1$, NC
IF(J.GT.NCGT) GO TE 175
$B(J)=0.5 \div B(J)$
CONTINUE
DO $170 \mathrm{~J}=1 \mathrm{~g} \mathrm{NJ}$
$D E P(J)=-H(J)$
170 CONTINUE
I YEAR $=1$
$L N=J M D$
501 KDAY $=0$
$50 \mathrm{TEPP}=\mathrm{NTCYC}+86400$.
SWFL 93
IF(NTCYC.EQ. 1 JTEPP=PERIDD $\$ 3600$.
SWFL 94
IF (JMO.EQ.1.OR.3) TEPP = (PERIUD + 24.0)*3600.0
IF (JMO.EQ.2) TEPP=(PERIDD-48.0) $\$ 3600.0$
IF(JMD.EO.4.OR.6) TEPP=PERIOD*3600.0
IF (JMO.EQ.5.OR.7) TEPP $=(P E R I D O+24.0) * 3600.0$
IF(JMD.EQ.8.OR.10) TEPP = (PERIDD + $24.01 \neq 3600.0$
IF (JMO.EQ.9.OR.11) TEPP=PERIOD*3600.0
IF (JMO.EQ.12) TEPP=(PERIOO + 24.0$) \star 3600.0$

NTINT $=0$
$T T(1)=0.0$
$T T(2)=0.0$
NINREC=1
NSTEPS $=0$
MJSW $=0$
NQUAL $=0$
TDELT $=0$
WEIRI $=A 1$
$W E I R 2=A 2$
WEIR3 $=43$
DO $220 \quad \mathrm{I}=1,12$
220 ICOL (I) $=1$
DO $222 \mathrm{I}=1,30$
ISW\{I) $=0$
QT $(I, L)=0.0$
QT $\{I, 2\}=0.0$
QE(I.I) $=0.0$
222 QE(I, Z) $=0.0$
$T E=0$.
$T E P=0$.
DELT2=0ELT/2.0
TZERD=TZERO*3600.0
$W=6.2832 /\{3600$. $4 P E R I O D\}$
EVAP=EVAP/(12.*30.*86400.)
TOLD=0.
KRAIN=1
PREC $=0.0$
T=TZERD
OD 224 I $=1, N H P R T$
MJPRT = JPRT(I)
PRTH (1,I) = H(MJPRT)
224 CONTINUE
DO $225 \mathrm{I}=1$ NOPRT
MCPRT = CPRT(I)
PRTQ(I,I) $=$ Q(MCPRT)
$\operatorname{PRTV}(1, I)=V(M C P R T)$
225 CONTINUE
READING DF INITIAL HYDROGRAPH INFORMATION FROM INTERFACING

SWFL 99
SWFLL 100
SWFL 101
SWFL102
SWFL 103
SWFL 104
SWFL 105
SWFL 106
SWFL 107
SWFL 108
SWFL 109

SWFL 112

SWFL114
SWFL 115
SWFL 116
SWFL117
SWFL116
SWFL 119
SWFL 120
SWFL121
SWFL 122
SWFL 123
SWFL 124
SWFL 125
SWFL 126
SWFL 127
SWFL128
SWFL130
SWFL 131
SWFL 132
SWFL 133
SWFL134
SWFL 135
SWFL136
SWFL137
SWFL 138
SWFL 139
SWFL 140
SWFL 141
SWFL 142
SWFL 143
REWIND N2I
READ (N21)
TITEL2
WRITE (N6, 7097) TITELZ
SWFLI45
7097 FORMAT (1H1,(20A4))
READ (N21) NSTEPS,MJSW,NQUAL, TDELT,TZERO,TAREAWRITE(N6, 7093)
7093 FORMATI///1H, 7X, 6HNSTEPS,5X,4HMJSW, 6X,5HNOUAL, $2 X, 5 H T D E L T, 5 X$,1 5HTZERO,5X, SHTAREAIWRITE (N6,7091) NSTEPS,MJSW,NQUAL, TDELT, TZERC, TAREA
7091 FORMAT (3110,3F10.2)
READ(N21) (ISW(L),L=I,MJSW)
SWFLI51
WRITE(N6,7095)
7095 FORMAT(///1H,23HSTORM WATER INPUT NODES/)WRITE(N6, 7092) (ISW(L),L=1,MJSW)
7092 FDRMAT(10110)READ(N21) TT(1),(QT(L,1),L=1,MJSW)WRITE (N6, 7096)
7096 FORMAT(///1H, $12 H T I M E-S T E P$, $4 X, 4 H T I M E, 7 X, 36 H I N F L O W S ~ F R O M ~ S T O R M ~ W ~$later input nodes/IWRITE(N6, 7094)NINREC, TT(1), (QT(L, 1$), L=1, \mathrm{MJSW})$7094 FORMAT(17,3X,9F10.1, /,(20X,8F10.11)SWFL163
READ(N21) TT(2), (OT(L,2),L=1,MJSW)
NINREC $=2$WRITE(N6, 7094)NINREC, TT(2), (QT(L,2),L=1,MJSW)I $1=1$12=2$T \mathrm{TP}=0$.
230 IF(NJSW.EQ.O) GD TO 235SWFL152SWFL164
$L D O=J M O-L N+1$
IF(IYEAR.GT.I.OR .LDD.GT. 1) GO TO 45
READ(60,100) (JSW(L),L=1,NJSW)
45 IF(ISWCH(3).NE.4)GO TO 234SWFL172
READ(N5,231) NTIMST,NGAGE,NTCC
231 FORMAT(3I5,F5.0)IFIIYEAR.GT.I.OR .LDD.GT.I) GO TO 3READ(60,232) (TEEM(KM),KM=1,NTIMST)
232 FORMAT((8F10.0))
DD 2330 JTT=1,NJSW
SWFLI76
SWFL177
$2330 \operatorname{READ}(60,2332)$ (RCENT(JTT,ITT),ITT=1,NGAGE)
2332 FORMAT(16F5.2)SWFL179
3 DO 2328 KMT=1,NTIMST
DO 2328 JMM=1,NJSW
$B P(K M T)=0.0$
QNEW(KMT) $=0.0$
2328 EXXT (KMT, JMM) $=0.0$
IF(LDD.GT.1.OR.IYEAR.GT.1) GO TO, 351
READ (60,231) NTIMST,NGAGE,NTCC
351 READ(N5,231) LXK
IF(LXK.EQ.0) GD TD 23310
DO 2331 L=1, LXK
READ(N5,231) JMM
READ(N5,232) (EXXT(KMT,JMM),KMT=1,NTIMST)
2331 CONTINUE
23310 TCN=1.
20 NNTTM=1
IF(NTCC.EO.1)TCN=60.
IF(NTCC.EQ. 2)TCN $=3600$.
IF (NTCC.EQ.3)TCN $=86400$.READ (N5,462)(DRAIN(LT),LT=1,NGAGE)DO $2333 \mathrm{JLT}=1$, NJSW
$S U M G A G=0$.
DO $233 \mathrm{JLK}=1$, NGAGE
233 SUMGAG=SUMGAG+RCENT(JLT,JLK)*DRAIN(JLK)
$J N U M=J S W(J L T)$

SWFL182
SWFLI 83
SWFL184
SWFL185
SWFLI86
SWFL187
SWFLIB8
SWFLIE9
SWFL190
SWFL191
SWFL192

```
    2333 QE(JLT,2)=EXXT(NNTTM,JLT) +.96*AS(JNUM)*SUMGAG/(12*86400)
    TE=TEEM(NNTTM)*TCN
    TEE=TEEM(NTIMST)
    WRITE(N6,102) (JSW(L),L=1,NJSW)
    WRITE(N6,76) JMO
    76 FORMAT (5X,5HMONTH, [5//)
C
    WRITE{N6,105)
    DO 2336 I=1,NTIMST
    TFIRST=(TEEM(I)*TCN)/3600.
    TSECND=TFIRST/24.
C WRITE(NG,106) TFIRST,TSECND,(EXXT(I,J),J=1,NJSW)
    2336 CONTINUE
            GOTO 237
    100 FORMAT (16I5)
    234 READ(N5,104) TE,(OE(L,2),L=1,NJSW)
C WRITE(N6,102) (JSW(L),L=1,NJSW)
102 FORMAT(1H1,3OHHYOROGRAPH INPUTS TO SYSTEM//1H, 24X,16HJUNCIIDN
    I NUMBER/1H,(17X,10I10))
    237 IF(ISWCH(3).EO.4) WRITE(N6,2337) (JSW(L),L#I,NJSW)
2337 FORMATIIHI,49HHYDROGRAPH INPUTS TO SYSTEM WITH RAIN ADDED//
    1 1H,24X,15HJUNCTIDN NUMBER/1H,(17X,10I10))
C WRITE(N6,105)
SWFL211
105 FORMAT(1H,8X,4HTIME/IH,14H HOURS DAYS,10X,12HVGLUME (GFS))
    TEP=TE/3600.
    TEPP2=TEP/24.
C WRITE(N6,106) TEP,TEPP2,(QE(L,2),L=1,NJSW)
    106 FORMAT(1X,FG.2,2X,F6.2,3X,10F10.1,f,(18X,10F10.1),1)
    235 CONTINUE
            TIME=TZERD
C
C
C
C
            IF (ISWCH(1).NE.1) GO TO 236
            H(JGW)=A1+A2*SIN(W*T)+A 3*SIN(2.*W*T)+A4*SIN(3.*W*T)
        1 +A5*COS(W⿱⿱亠䒑日\zh20十
    236 CONTINUE
C
C
                    CHANNEL CONSTANTS COMPUTED
            IF(LDD.GT.1) GD TO 2711
            DO 280 N=1,NC
            IF(NJUNC(N,1).LE.O)GO TO 280
            NL=NJUNC(N,1)
            NH=NJUNC(N,Z)
            R(N)=R(N)+(H(NL)+H(NH))/2.
            IF(R(N).LE.O.O) R(N)=0.0
            A(N)=B(N)*R(N)
                INITIAL TIME-STAGE RELATIONSHIP
                COMPUTED
                    SWFL231
    SWFL198
                            SWFL202
SWFL193
SWFL194
SWFL195
    SWFL199
    SWFL200
SWFL213
SWFL 214
SWFL215
SWFL216
SWFL217
SWFL218
SWFL219
SWFL220
SWFL221
SWFL222
SWFL223
SWFL224
SWFL225
SWFL226
SWFL227
SWFL228
SWFL229
SWFL233
SWFL234
SWFL235
    IF (WIND.LE.O.0) GO TO 270
SWFL236
    SWFl237
            FWIND(N)=-WIND**2#CDS(WDIR/57.-ATAN(\ X(NH)-X(NL)),(Y(NH)-Y(NL))))SWFL238
            1 *8.64E-6
SWFL238
    270 CONTINUE
    AT(N)=A(N)
    OAVE(N)=0.
    280 CONTINJE
    SWFL239
SWFL240
SWFL241
    280 CONTINJE
                                    NOdAL VOLUMES COMPUTED
SWFL242
C
C
c
C
2711 D0 340 J=1,NJ
SWFL243
SWFL244
SWFL245
    VOL(J)=0.
    IF(AS(J).EQ.C.) GO TO 340
    SWFL246
SWFL247
SWFL248
    AREA=O.
SWFL249
SWFL250
```

```
    VOLUME=0.
SWFL251
    DO 300 K=1,10
    N=NCHAN(J,K)
    IF(N.LE.O) GO TO 300
    AREA=AREA+B(N)*LEN(N)
    VOLUME=VDLUME + B (N)*LEN(N)* (R (N) +RD)
IF(VOL(J).LE.0.0) VOL(J)=0.0
    300 CDNTINUE
    300 CDNTINUE
    OEPTH=VDLUME/AREA
    VOL(J)=DEPTH*AS(J)
    340 CONTINUE
N
    WRITE(N22) NEXIT,NHCYC,NT,DELT,TZERD,NHPRT,NOPRT,NJSW
C
N
C Clol
Cl
    DO 345 J=1,NPLT
    I=IABS(JPLT(J))
345 HPLT(J)=H(I)
    HOUR=TZERO/3600.
    WRITE(N20) HOUR,(HPLT(J),j=1,NPLT)
    NPTOT=1
    IF(NINREC.GE.NSTEPS.OR.NINREC.EQ.2)GOTO 347
5WFL269
START OF PROGRAM CORE, WITH
MAJOR HYDRAULIC COMPUTATIONS
START DF DAY DO LOOP, OUTER DO
LODP DF 3 NESTED DO LOOPS
C
SWFL271
SWFL.272
SWFL273
SWFL274
SWFL275
SWFL276
    WRITE(N6,7097)TITEL2
    WRITE(N6.7093)
    WRITE (NG,7091) NSTEPS,MJSW,NQUAL,TDELT,TZERD,TAREA
SWFL280
    WRITE(N6.7095)
    WRITE(N6.7092) (ISW(L),L=1,MJSW)
    WRITE{N6:7096}
    347 CONTINUE
    350 CONTINUE
    LTIME=0
C
C
    NOCYC=NTIMST
    DO 1240 NQ=1,NQCYC
    KDAY=KDAY+1
    IF (NT.LT.NQSWRT) GO TO 380
    DO 360 N=1,NC
    VBAR(N)=0.
    360 QBAR(N)=0.
    OD 370 J=1,NJ
    HBAR(J)=0.
    QINBAR(J)=0.
    QOUBAR(J)=0.
    370 CDNTINUE
    380 CONTINUE
        START OF QUALITY DO LOOP
    DO 300 K=1,10
    SWFL253
SWFL254
SWFL255
SWFL255
SWFL257
SWFL259
SWFL260
SWFL261
SWFL262
SWFL263
SWFL264
SWFL265
SWFL 266
SWFL 267
SWFL268
SWFL256
```

$S 120=0.0$

001040 NHH $=1, \mathrm{NHCYC}$
IF(NT.LE.NQSWRT) GO TO 520
TIME =TIME + DELT

PRECIPITATION COMPUTATIONS FOR EACH TIME STEP

SWFL311
SWFL312
SWFL313
SWFL314
SWFL 315
SWFL.316
SWFL317
SWFL 318
SWFL319
SWFL320
SWFL 321
SWFL 322
SWFL323
SWFL 324
SWFL325
SWFL 326
SWFL327
SWFL328
SWFL329
SWFL330
418 QIN(J)=OINST(J)*DELT
420 IF(TIME-TT(I2)) 435,425,425
425 DO $430 \mathrm{~L}=1, \mathrm{MJSW}$
$J=I S W(L)$
430 QIN(J) $=$ QIN(3)+QT(L,I1)*(TT(I2)-TTP)
TTP=TT(I2)
ITEMP=I2
12=11
I1=ITEMP
IF(NINREC-NSTEPS) 431,432,432
$431 \operatorname{READ}(\mathrm{~N} 21) \mathrm{T}(\mathrm{I} 2),(Q T(\mathrm{~L}, \mathrm{I} 2), \mathrm{L}=1, \mathrm{MJSW})$
NINREC $=$ NINREC +1
WRITE(NS, 7094) NINREC,TT(I2), (OT(L,I2),L=1,MJSW)
GO TO 420
$432 \mathrm{TT}(\mathrm{I} 2)=1000000$.
DO $433 \mathrm{~L}=1, \mathrm{MJSW}$
$433 \operatorname{OT}(\mathrm{~L}, \mathrm{I} 2)=0$.
GO TD 420
435 DO 440 L=1, MJSiw
$J=I S W(L)$
$440 \operatorname{QIN}(J)=(Q I N(J)+Q T(L, I 1) *(T I M E-T T P)) / D E L T$
TTP=TIME
445 CONTINUE
IF(NJSW.EQ.O) GO TO 520
SWFL 331
SWFL332
SWFL 333
SWFL 334
SWFL335
SWFL 336
SWFL 337
SWFL338
SWFL339
SWFL 340
SWFL341
SWFL 342
SWFL 344
SWFL 345
SWFL346
SWFL347
SWFL348
SWFL349
SWFL350
SWFL 351
SWFL 352
SWFL 353
SWFL 354
SWFL355
READ HYOROGRAPH INPUT OR AVERAGESWFL356 OR INTERPOLATE FOR TIME STEP SWFL357

SWFL358
SWFL359
IF(TIME.LE.TE) GO TO 480
TEO=TE
DO $460 \mathrm{~L}=1, \mathrm{NJSW}$
460 QE(L, 1)=OE(L,2)
READ HYOROGRAPHS
IF(ISWCH(3).NE.4)GOTO 469
IF(TEEM(NNTTM).EQ.TEEIGO TO 480

SWFL360
SWFL361
SWFL362
SWFL363
SWFL364
SWFL 365
SWFL366
SWFL367

```
    NNT TM=NNTTM+1
    READ(N5,462)(DRAIN(LT),LT=1,NGAGE)
    462 FORMAT(16F5.2)
    DO 468 JLT=1,NJSW
    SUMGAG=0.
    DO 463 JLK=1,NGAGE
    463 SUMGAG=SUMGAG+RCENT(JLT,JLK)*DRAIN(JLK)
    JNUM=JSW(JLT)
    468 0E(JLT,2)=EXXT(NNTTM,JLT)+.96*ABS(AS(JNUM))*SUMGAG/(12*86400)
    TE=TEEM(NNTTM)*TCN
    GO TO 470
C
    469 READ (N5,104) TE,(QE(JJ,2),JJ=1,NJSW)
    104 FORMAT (8F10.0)
    470 CONTINUE
        TEP=TE/3600.
        IF(TE.GT.TEPP)GD TD 480
    TEPP2=TEP/24.
    WRITE(N6,106) TEP,TEPP2,(QE(L,2),L=1,NJSW)
                                    INTERPOLATE HYDROGRAPH
    DO 500 L*1,NJSW
    J=JSW(L)
    SLOPE=(QE(L, 2)-QE(L,1))/(TE-TEO)
    500 OIN(J)=QINST(J)+OE(L,I)+SLOPE#(TIME-TEO)
    520 CONTINUE
    480 CDNTINUE
                                    INITIALIZATIGN
    T2=T+DELT2
    T=T+DELT
    DO 525 N=1,NC
    NCLOS(N)=0
    DO 525 M=1,2
525 NJUNC(N,M)=IABS(NJUNC (N,M))
    OD 530 J=1,NJ
    AS(J)*ABS(AS(J))
    DO 530 K=1.10
530 NCHAN(J,K)=IABS(NCHAN(J,K))
    NTIMS=0
\(T 2=T+D E L T 2\)
\(T=T+D E L T\)
DO \(525 \quad N=1, N C\)
NCLOS(N) \(=0\)
DO \(525 \mathrm{M}=1,2\)
525 NJUNC \((N, M)=I A B S(N J U N C(N, M))\)
DO \(530 \mathrm{~J}=1 \mathrm{NJ}\)
\(A S(J)=A B S(A S(J))\)
DO \(530 \mathrm{~K}=1,10\)
530 NCHAN(J,K): LABS(NCHAN(J,K))
NTIMS \(=0\)

COMPUTATIONS OF VELDCITIES AT HALF TIME STEP, AND FLOWS AT QUARTER TIME STEP

\section*{540 CONTINUE}
```

NDRY=0
NTIMS = NTIMS +1
DO $580 \mathrm{~N}=1, \mathrm{NC}$
IF(NJUNC(N,1).LE.O)GOTO 580
SWFL 368
SWFL 369
SWFL 370
SWFL371
SWFL372
SWFL373
SWFL374
SWFL375
SWFL 376
SWFL 377
SWFL 378
SWFL 379
SWFL 380
SWFL381
SWFL 382
SWFL 383
SWFL 384
SWFL 385
SWFL386
SWFL 387
SWFL 388
SWFL391
SWFL 389
SWFL 392
SWFL 393
SWFL394
SWFL 395
SWFL 390
SWFL 396
SWFL397
SWFL 398
SWFL399
SWFL 400
SWFL 401
SWFL402
SWFL403
SWFL404
SWFL 405
SWFL406
SWFL408
SWFL409
SWFL4 40
SWFL411
SWFL412
SWFL 413
SWFL4 14
SWFL415
SWFL416
SWFL417
SWFL 418
SWFL419
SWFL420
DRY CHANNEL CHECK (UNDER 0.1 FT)SWFL421
SWFL422
IF(R(N).GT.O.10) GO TO 560
$V T(N)=0.0$
$Q(N)=0.0$
GO TO 580
560 CONTINUE
$\Delta D=P(N)+R D$
$I F(N \cdot G T \cdot N C G T) \quad \Delta D=R(N)$

```
\(N L=N \operatorname{JUNC}(N, 1)\)
SWFL428
NH=NJUNC \(\{\mathrm{N}, 2\) )SWFL429
IF(ISWCH(7).NE.1)GO TO 565SWFL430
IF (ISWCH(5).EQ.1.AND.N.GT.NCGT)GO TO 565SWFL431
564IF (AD.LT.0.5) AK (N) \(=5.5\)IF (AD.GE.0.5.AND.AD.LE.5.0) AK(N) \(=0.39+.4 / A D\)IF (AD.GT.5.0) AK (N) \(=1.8 / A D-0.003 \% A D\)
\(565 \operatorname{IF}(A T(N)-A(N)) 7,7,8\)
8 IF (A (N).LE.O.O) \(A(N)=A T(N)\)
7 DELV2=V(N) \# (1.-AT(N)/A(N))SWFL435
\(D D D=D E L T 2 *(V(N) * V(N) * B(N) / A(N)-32.1739)\)
\(D D E=A B S(D D D)\)
IF(DDE.LE.1.OE-20) DDD \(=0.0\)
IF(N.GT.NCGT) GO TO 394
DO1 = \(-F O E P(N H)\)
\(D D C=-F D E P(N L)\)
\(A B=D D C\)
IF(DO1.GT. DOC) \(\quad A B=D O 1\)
\(I F(H(N H) \cdot G E \cdot A B \cdot A N D . H(N L), G E \cdot A B) \quad G O T O\) ..... 394
\(0 H=0.5 *(H(N H)-H(N L))\)
GD TO 393
\(394 \mathrm{DH}=\mathrm{H}(\mathrm{NH})-\mathrm{H}(\mathrm{NL})\)
393 DELV2=DELV2+DDD*DH/LEN(N)
DELV2=DELV2+FWIND(N)/R(N) \&DELT2
\(V 2=V(N)+D E L V 2\)
SWFL4 38
TEMP=DELT 2*AK(N)/AD*ち1.33333SWFL43
DD1 \(=1 . / T E M P+2 . * A B S(V 2)\)
DDE=DD1**2-4.*V2*V2
IF(DDE.LT.O.O) DDE=0.0
DO2=SORT (DOE)
DELV1*0.5*(DD1-DD2)
DELV1=-SIGN(DELV1,V2)
SWFL442
\(383 \mathrm{VT}(N)=V(N)+D E L V 1+D E L V 2\)SWFL443
IF(N.GT.NCGT) GO TO 374
\(I F(A B S(V T(N)) . G T .10 .0) \quad V T(N)=0.05\)
\(3740(N)=V T(N) \neq A(N)\) SWFL444
580 CONTINUE

SWFL 445
COMPUTATIUN OF NDDAL STAGE AThalf Time step

SWFL446
SWFL447
SWFL448
SWFL449
SWFL 450
SWFL451

SWFL453
SWFL454
SWFL455
SWFL 456
SWFL457
SWFL458
SWFL459
600 SUMQ \(=S U M Q-Q(N)\)
620 CONTINUE
IF(AS(J).LE.O.) GD TO 660
\(C=0.233\) * \(\mathrm{H}(\mathrm{J})-2.26\)
\(I F(H(J) . L E \cdot 10.0) \quad C=0.1\)
14 SUMQ \(=\) QOU(J) \(+C-Q I N(J)+(E V A P-P R E C) \neq A S(J)+S U M O\)
IF(ISWCH(1).EO.2) GO TO 644
IF (J.EQ.JGW.AND.ISWCH(1).NE.1) GO TO 650
\(644 \mathrm{HT}(\mathrm{J})=H(\mathrm{~J})-D E L T 2 * S U M O / A S(J)\)
IF(HT(J)+DEP(J).GT.O.1 GOTO 660
SWFL463
SWFL464
SWFL465
\(\operatorname{VOL}(J)=V O L(J)-S U M O * D E L T 2\)
IF(VOL(J).GT.0.0) GU TO 6
\(\operatorname{VOL}(J)=0.0\)
```

 HT(J)=-DEP(J)
 DDE=ABS(FDEP(J))
 IF(HT(J).LE.DDE) HT(J)=-FDEP(J)
 GO TO 16
 6 DDE=ABS(FDEP(J))
 IF(HT(J).LT.DDE) HT(J)=DDE
 DEP(J)=-HT(J)
 16 AS(J)=-AS(J)
 17 D0 645 K=1,10
 NX=NCHAN(J,K) SWFL471
 IF(NX.LE,O) GO TO }64
 SWFL472
 NCLOS(NX)=1
 645 CONTINUE
 NDRY=NORY+1
 GO TO 660
 650 CONTINUE
 DELHH=0.
 IF(H(IND).GT.REG(KDAY)) GO TO 6551
 DELHH=DELT2/AS(J)*(-SUMQ)
 GO T0 656
 6551 DO 655 ICT=1,3
SWFL479
BASE=H(JGW)-WEIR2+DELHH/2.0
IF(H(JGW).GE.13.2) BASE=12.5-WEIR2+DELHH/2.0
IF(H(JGW).GE.14.0) BASE=13.0-WEIR2+DELHH/2.0
IF(BASE.LE.O.O) BASE=0.0
DELHH=DELT2/AS(J)%(-SUMO-WEIR1*BASE**WEIR3)
655 CONTINUE
SWFL481
656 HT (J)=H(J)+DELHH
660 CONTINUE
IF(NDRY.EQ.O) GO TD 675
IF(NTIMS.GT.2) GO TO 675
DO 670 N=1,NC
IF(NJUNC(N,I).LE.O) GO TO 670
IF(NCLOS(N).NE.I) GO TO 670
IF(VOL(J).GT,0.0) GO TD 11
Q(N)=0.
V(N)=0.
11 00 668 I=1,2
II=NJUNC(N,I)
SWFL492
DO 664 J=1,10
IF(NCHAN(II,J).EQ.N) GO TO 666
664 CDNTINUE
GO TO 668
6 6 6 ~ N C H A N (I I , N) = - N
668 NJUNC(N,I)=-II
670 CONTINUE
GO TO 540
675 CONTINUE
G
C
C
C
BDUNDARY STAGE CONDITION AT
HALF TIME STEP
IF (ISWCH(1).NE.1) GO TO 676
HT(JGW)=A1+A2*SIN(W*T2)+A3*SIN(2.*W*T2)+A4*SIN(3.*W*T2)
1 +A5*COS(W*T2)+A6*COS(2.***T2)+A7*COS(3.*W*T2)
6 7 6 ~ C O N T I N U E ~
CONPUTATION DF CHANNEL CROSS-
SECTIONAL AREAS AT HALF TIME
STEP, FLOWS AT HALF TIME STEP, SWFL513
SWFL483
SWFL484
SWFL485
SWFL486
SWFL487
SWFL489
SWFL494
SWFL495
SWFL496
SWFL497
SWFL498
SWFL499
SWFL500
SWFL501
SWFL502
SWFLSO2
SWFL503
SWFL504
SWFL505
SWFL506
SWFL507
SWFL508
SWFL509
SWFL510
SWFL511
SWFL512
AND VELDCITIES AT FULL TIME STEPSWFL514
SWFL515

```


1 I4,12H QUAL CYCLE,I4,13H HYDRO CYCLE,14,7H DEPTH,E7.2/1H 28HVELGCITY,E12.2,6H FLOW,E12.2,6H AT \(=, E 12.0,4 \mathrm{H} \quad A=, E 12.0\),
3 9H DELV1 m, E12.1/1H,7HDELV2 m,E12.1.6H V2 m,E12.1,1X, \(48 \mathrm{HHT}(\mathrm{NH})=, \mathrm{E} 12.2,1 \mathrm{X}, 8 \mathrm{HHT}(\mathrm{NL})=, \mathrm{E} 12.2,7 \mathrm{HH}(\mathrm{NH})=, \mathrm{E} 12.2,1 \mathrm{X}, 7 \mathrm{HH}(\mathrm{NL})=\), 5 E12.2/1H, 7 HAK (N) \(=\) E12.2,10X, 8HSWFL 520)
CALL EXIT

\section*{740 CONTINUE}

COMPUTATION OF NDDAL STAGE AND VOLUME AT FULL TIME STEP

DO \(900 \mathrm{~J}=1, \mathrm{NJ}\)
\(S \cup M Q=0\).
\(\operatorname{HN}(J)=-D E P(J)\)
DDE=-FDEP(J)
IF(HN(J),LT, DDE) \(H N(J)=-F D E P(J)\)
IF(AS(J).LE.O.) GU TO 900
DO \(800 \mathrm{~K}=1,10\)
IF(NCHAN(J,K).LE.O) GO TD 800
\(N=N C H A N(J, K)\)
IF(J.NE,NJUNC(N,I))GD TO 780
\(S U M Q=S U M Q+Q(N)\)
GO TO 800
780 SUMQ 2 SUMQ-O (N)
800 CONTINUE
IF(J.NE.JGW) GO TO 820
IF(ISWCH(1).EQ.2)GO TO 820
IF (ISWCH(1).NE.1) GO TO 802
\(H N(J G W)=A 1+A 2 * S I N(W * T)+A 3 * S I N(2 . * W * T)+A 4 * S I N(3 . * W * T)\)
\(1+A 5\) 事 \(\operatorname{COS}(W\) 후 \()+A 6 * \operatorname{Cos}(2 . * W * T)+A 7 * \operatorname{COS}(3 . * W * T)\)
GOTO 814
802 CONTINUE
DELHH=DELHH*2.
IF(H(IND). GT.REG(KDAY)) GO TD 8021
\(D E L H H=D E L T / A S(J) ⿻(-S U M Q)\)
GO TO 809
8021 DO 808 ICT=1,3
BASE=H(JGW)-WEIR2+DELHH/2.0
IF (H(JGW),GE.13.2) BASE=12.5-WEIR2+DELHH/2.0
\(I F(H(J G W) . G E \cdot 14.0) B A S E=13.0-W E I R 2+D E L H H / 2.0\)
IF(BASE.LE.0.0) BASE=0.0
\(0 Q=W E I R 1\) * \(B A S E\) * \(+W E I R 3\)
\(D E L H H=D E L T / A S(J) *(-S U M Q-Q Q)\)
808 CONTINJE
\(S 12 Q=S 12 Q+Q Q * D E L T / 86400.0\)
\(809 \mathrm{HN}(J)=H(J)+D E L H H\)
814 CONTINUE
DVOL = (HN(JGW)-H(JGW))*AS(JGW)
OOU(JGW)=0.
QIN(JGW) = (DVOL./DELT) +SUMQ
IF (OIN(JGW).GT.O.) GO TO 815
QOU(JGW) \(=-Q I N(J G W)\)
\(0 I N(J G W)=0\).
\(815 \mathrm{VOL}(J G W)=V O L(J G W)+D V D L\)
IF(HN(JGW)+DEP(JGW).GT.0.0) GO TO E25
IF (VOL (JGW).GT.0.0) GO TO 824
VOL(JGW) \(=0.0\)
\(H N(J G W)=-D E P(J G W)\)
GO TO 825
SWFL 605

824 IF (HN(JGW).LE.WEIR2) HN(JGW)=WEIR2
\(D E P(J G W)=-H N(J G W)\)
\(D D E=A B S(F D E P(J G W))\)

\section*{IF(HN(JGW).LT.DOE) HN(JGW) \(=-F D E P(J G W)\) GO TO 825}
```

C
NODAL VOLUMES AND FLOWS SUMMED
IF (NT.LT.NQSWRT) GD TD 940
DO 920 J=1,NJ
HBAR(J)=HBAR(J)+HN(J)
QINBAR(J)=OINBAR(J)+QIN(J)
OOUBAR(J)=QOUBAR(J)+QOU(J)
920 CONTINUE
940 CONTINUE
FULL TIME STEP CDMPUTATION OF HYDRAULIC RADIUS ANO CHANNEL CROSS-SECTIONAL AREAS
DO $980 \mathrm{~N}=1, \mathrm{NC}$
IF(NJUNC(N,I).EQ.O) GD TO 980
$N L=I A B S(N J U N C(N, 1))$
$N H=I A B S(N J U N C(N, 2))$
$D E L H=0.5 *(H N(N H)-H(N H)+H N(N L)-H(N L))$
$R(N)=R(N)+D E L H$
computation of cordinary nodes volume and stage
SWFL 606
nodal volumes and flows summeo
$820 \mathrm{C}=0.233$ * $\mathrm{H}(\mathrm{J})-2.26$
IF(H(J).LE.10.0) C=0.1
19 SUMQ $=$ QQU(J) *C-OIN(J)+(EVAP-PREC)*AS(J)+SUMO
HN(J)=H(J)-DELT*SUMQ/AS(J)
$\operatorname{VOL}(J)=V Q L(J)-D E L T * S U M Q$
IF(VOL(J).LE.0.0) VOL(J) $=0.0$
825 CONTINUE
900 CONTINUE
C
IF (NT.LT.NQSWRT) GO TD 940
DO $920 \mathrm{~J}=1, \mathrm{NJ}$
HBAR (J)=HBAR(J)+HN(J)
QINBAR(J)=QINBAR(J)+QIN(J)
OOUBAR(J)=QOUBAR(J)+QOU(J)
920 CONTINUE
940 CONTINUE
IF(N.GT.NCGT) GD TO 982
$D D E=0.5 *(H N(N H)+H N(N L)+F D E P(N H)+F D E P(N L))$
IF(R(N).LT.DDE) GO TO 982
$R(N)=D D E$
$982 \operatorname{IF}(R(N) . L E \cdot 0.01 R(N)=0.0$

```
\(A(N)=A(N)+B(N) * D E L H\)
980 CONTINUE
NODAL STAGE ARRAYS SHIFTED
D0 \(1020 \mathrm{~J}=1, \mathrm{NJ}\)
\(1020 \mathrm{H}(\mathrm{J})=\mathrm{HN}(\mathrm{J})\)
IF(NT.LT.NQSWRT) GO TO 1040
IF(NPTOT.NE.NPDEL) GO TO 1030
DO \(1025 \mathrm{~J}=1, \mathrm{NPLT}\)
\(I=I A B S(J P L T(J))\)
1025 HPLT(J) \(=\mathrm{H}(\mathrm{I})\)
HOUR = HOUR +DELT/3600.*NPDEL
WRITE(N2O) HOUR, (HPLT(J),J=1,NPLT)
NPTOT=0
1030 NPTOT=NPTOT +1

END OF HYDRAULIC OR INNER DO LOPP

SWFL637
SWFL638
SWFL639
SWFL640
SWFL641
SWFL 643
SWFL644
SWFL645
SWFL646
SWFL647
SWFL648
SWFL649
SWFL 650
SWFL651
SWFL652
SWFL653
SWFL 654
SWFL 655
SWFL656
SWFi657
SWFL658

IF (NT.LT.NQSWRT) GD TO 1100
DO \(1060 \mathrm{~N}=1, \mathrm{NC}\)
IF(NJJNC(N,I).LE.O) GO TO 1060
SWFL661

QBAR (N) = QBAR(N)/FLOAT (NHCYC)
SWFL662
SWFL663
\(\operatorname{VBAR}(N)=\operatorname{VBAR}(N) / F L O A T(N H C Y C)\)
SWFL664

OAVE \((N)=Q A V E(N)+Q B A R(N) / F L O A T(N O C Y C)\)
SWFL665
SWFL666
\(001080 \mathrm{~J}=1, \mathrm{NJ}\)
QINBAR(J) \(=\) QINBAR(J)/FLOAT(NHCYC)
QOUBAR(J)= QQUBAR(J)/FLDAT (NHCYC)
HBAR (J) =HBAR(J)/FLOAT(NHCYC)
IF(OINBAR(J).EQ.O.) GOTO 1080
IF(OOUBAR (J).EQ.O.) GOTO 1080
QINBAR(J)=QINBAR(J)-QOUBAR(J)
QOUBAR (J) \(=0\).
IF(OINBAR(J).GT.O.) GO TO 1080
QQUBAR(J) \(=-Q I N B A R(J)\)
QINBAR \((J)=0\).
1080 CONTINUE

WRITE HYDRAULIC INFORMATION FOR USE IN QUALITY PROGRAM

SWFL682
SWFL683
WRITE(N2O) NQ, (QBAR(N),VBAR(N),N=1,NC),
1 (VOL(J), OINBAR(J), OOUBAR(J),J=1,NJ)
C
C
c

1100 IF (NT.EQ. (NQSWRT-1).AND.NQ.EQ.NQCYC) GJ TO 1120
GO TO 1180
1120 DO \(1140 \mathrm{I}=1, \mathrm{NHPRT}\)
MJPRT = JPRT(I)
PRTH (1, I) \(=\mathrm{H}(M J P R T)\)
1140 CONTINUE
DO \(1160 \mathrm{I}=1\), NQPRT
MCPRT = CPRT(I)
\(\operatorname{PRTQ}(1, I)=Q(M C P R T)\)
\(\operatorname{PRTV}(I, I)=V(M C P R T)\)
1160 CONTINUE
GO TO 1240
1180 IF(NT.LT.NQSWRT) GO TO 1240
LTIME = LTIME + I
C
C
C
STORE QUTPUT FOR SUBSEQUENT PRINTOUT

SWFL 693
SWFL694
SWFL695
SWFL696
SWFL 697
SWFL698
SWFL699
SWFL700
SWFL701
SWFL702
SWFL 703
SWFL 704
SWFL705
SWFL 706
SWFL 707
SWFL 708
DO \(1200 \mathrm{I}=1\), NHPRT
SWFL709
1200 PRTH(1,I) =H(MJPRT)
QNEW(NO) \(=5120\)
WRITE(N22) LTIME, (PRTH(1,I), I=1,NHPRT)
WRITE(61,1) (PRTH(1,I), I=1,NHPRT)
1 FORMAT(10E11.3)
C
c
C
```

DJ $1220 \mathrm{I}=1$, NOPRT
MCPRT=CPRT(I)

SWFL 711
STORE FLOWS AND VELOCITIES

```
    1220 PRTV(1,I)=V(MCPRT)
    WRITE(N22) LTIME,(PRTQ(1,I),I=1,NQPRT)
C WRITE(G1,1) (PRTV(I,I),I=1,NOPRT)
    WRITE(N22) LTIME,(PRTV(1,I),I=I,NQPRT)
```



```
C
c
C
C
C
    IF (NT.LT.NOSWRT) GO TO 1300
SUBRDUTINE PRTOUT CALLED FOR
HYDRAULIC INFORMATION PRINTOUT
FOR A ONE DAY CYCLE
C WRITE(N22) (CPRT(I),I=1,NQPRT)
C WRITE(N22) (JPRT(I),I=1,NHPRT)
C WRITE(N22) (JSW(I),I=1,NJSW)
C
C END OF SUBROUTINE SWFLOW
1300 CONTINUE
SWFL733
SWFL734
SWFL735
SWFL736
    WRITE(61,232) (QNEW(I),I=1,NTIMST)
    IF(JMO-NMON) 2,41,41
        2 JMO=JMO+1
    DELT=3600.0
    TZERO=0.0
    DO 5 J=1,NJ
    H(J)=PRTH(1,J)
    DEP(J)=-H(J)
    IF(AS(J).(T.O.0) AS(J)=-AS(J)
    OIN(J)=00IN(J)
    OOU(J)= DQDU(J)
    5 CONTINUE
    READ(N5,232) EVAP,WIND,WDIR
    GO TO 50
    41 IF(IYEAR - ICONT) 47,48,48
    47 I YEAR=IYEAR+1
    JMO=1
    GOTO 501
    48 ENOFILE N22
    REWIND 22
    DUMMY=0.0
    TMAX=10000.0
C WRITE(N2O) TMAX,(DUMMY,J=1,NPLT)
    END FILE NZO
    REWIND 20
    MCOUNT =0
SWFL740
1340 READ(N5,110)IFINAL,ICARD
    110 FORMAT (2A4)
    IF (IFINAL.EQ.IENDER(1)) GO TO 1360
    MCOUNT = MCOUNT + 1
    SWFL744
    IF (MCOUNT.GT.30) GO TO 1380
    GO TO 1340
SWFL745
SWFL746
1360 IF (ICARD.EQ.IENDER(21) GO TD 1400
    MCOUNT = MCOUNT + 1
    MCOUNT = MCOUNT + 1
    GO TO 1340
1380 WRITE (N6,112)
SWFL748
SWFL749
SWFL750
SWFL751
    112 fORMAT (G2HOQUALITY PROGRAM HAS READ MORE THAN 30 CARDS AFTER COMPSWFL752
```

PROGRAM LISTING OF INDATA
业市
＊＊DATE＝ $12 / 05 / 78$ TIME＝21／41／59
＊
あ＊
市れ
＊
あ

＊${ }^{\text {\％}}$					
＊＊	本戠产	＊${ }_{\text {＊}}$	あ章	＊＊	交京
＊${ }^{\text {\％}}$		市市	＊	＊	＊＊
＊	＊${ }_{\text {＊}}^{\text {＊}}$	＊${ }_{\text {＊}}$	市章	＊${ }_{\text {＊}}$	＊
＊${ }^{\text {\％}}$	あれ ${ }^{\text {¢ }}$	＊	＊${ }_{\text {＊}}$	＊${ }_{\text {\％}}$	＊
		＊${ }_{\text {＊}}$	＊＊	＊＊	＊＊
	市禹				

キ 辛もあれああれ	＊	あれ ${ }_{\text {\％}}$
＊${ }_{\text {＊}}$	＋	卒辛草
市市	＊${ }_{\text {＊}}^{\text {京 }}$	＊＊
	そ安れ	
＊${ }^{\text {\％}}$	\＃\＃	＊
\＃${ }_{\text {\＃}}$	＊	
		中れああれあれあ女

J0B，0075－203，U001，10，，
U001
FORTRAN，X

FORTRAN DIAGNOSTIC RESULTS FOR UOOI

NO ERRORS

LOAD，56
RUN

INDA INDA INDA 3
INPUT DATA
INDA 4
HYORODYNAMICS PROGRAM SPECIFICATION STATEMENTS

CDNTROL

TYPE DESIGNATIONS
INTEGER CPRT
REAL LEN, INTIME
COMMON N5,N5,ISWCH(10), EN(4),AVGH(99),IICOL(10),T(5),NX(5)
GENERAL
COMMON IALHA(15),NJ,NC
JUNCTIONS
COMMON H(35),NJUNC(99,2), IPOINT(35,12), AS(35),X(35),Y(35),DEP(35) 1, $\operatorname{CDF}(35), \operatorname{QIN}(35)$, QOU(35), QINST(35)

CHANNELS
COMMON LEN $(99), \operatorname{NCHAN}(99,12), B(99), R(99), \operatorname{A}(99), A K(99), V(99)$ 1. NUMCH(99), NTEMP(12)

COMMON JPRT(99),CPRT(99),JPLT(99),TT(99)

STAGE-TIME COEFFICIENTS

STORMWATER
COMMON ITIL(15),RAIN(50), INTIME(50)
DATA (YES=4H YES), (BLANK=4H)

* * * OPTION SWITCH, ISWCH(I) * * *
** ISWCH(1) **
IF O, INFLUENCED BY DOWNSTREAM HEAD RELATIONSHIP (DAM)
IF I, WILL CALL TIDAL
COEFFICIENTS PROGRAM
IF 2, SPECIFIED OUTFLOW

INDA 27
INDA 28 INDA 29
INDA 5
INDA 6
INDA 7
INDA 8
INDA 9
INDA 10
INDA 54
INDA 55
INDA 56
INDA 58
INDA 59
INDA 14
INDA 15
INDA 16
INDA 20
INDA 21
INDA 22

INDA
34
INDA 35
INDA 36
INDA 40
INDA 41
INDA 42
INDA 43
INDA 46
INDA 47
INDA 48

INDA 60
INDA 61
INDA 62
INDA 63
INDA 63A
INDA 63 B
INDA 64
INDA 65
INDA 66

```
## ISWCH(2)
    IF 0, PRINT INPUT CHANNEL AND
    JUNCTION DATA
    IF 1. SUPPRESSES CHANNEL AND
    NOCAL INFORMATION PRINT
** ISWCH(3) ##
    IF 4, QE(NJSW,2) 15 COMPUTED
** ISWCH(4) ##
    IFWG URED IN CARDINDA 71B
    IF 1, TRIANGLES ARE USED IN CARDINDA 71B
    GRCUP 15 ANO DIFFERENT MANNING INDA 7IC
    COEFFICIENTS ARE DESIRED FOR INDA 710
    EACH LEG OF THE TRIANGLE INDA 71E
** ISWCH(5) **
    INDA }7
    If 1, PARALLEL CHANNELS ARE USEDINDA 73
** ISWCH(6) ## INDA 74
    IF O, AND SUBROUTINE TRIAN IS INDA 75
    USED JUNCTION SURFACE AREA INDA 76
    MUST BE LEFT OUT OF INPUT DATA INDA 77
    IF 2, AND SUBROUTINE TRIAN IS INDA 78
    USED JUNCTION SURFACE AREA INDA 79
    MUST BE FURNISHED INDA 8O
** ISWCH(7) ** INDA 81
    IF 1,AK(N) IS COMPUTED IN SWFLOWINDA 82
** ISWCH(8) ** INDA 82A
    NOT USEO INDA 82B
** ISWCH(9) ** INDA 82C
    NOT USED
    INDA 820
** ISWCH(10) **
INDA 8
    IF ISWCH(5) = 1, THEN CHANNEL INDA }8
    NUMBERS GREATER THAN THIS INOA }8
    NUMBER (ISWCH(10)) ARE PARALLEL INDA 86
    TO OTHER LOWER NUMBERED CHANNELSINDA 8?
INDA 88
    STEP DNE INDA 89
    INITIALIZATION INDA 90
    INDA 91
    INDA }9ISWCH(2) \$INDA67
```

```JUNCTION DATAINDA 67 A
```

INDA

```IF 1. SUPPRESSES CHANNEL AND67BNOCAL INFORMATION PRINTINDA 68
```

INDA 69

* \ddagger ISWCH(3) *\# INDA 70
IF $4, ~ Q E(N J S W, 2)$ IS COMPUTED INDA 71
* ${ }^{\text {4 }}$ ISWCH(4) \#\# INDA 71A

```GRCUP 15 ANO DIFFERENT MANNINGINDA 71C
```

```EACHLEG OF THE TRIANGLEINDA 71E
```

** ISWCH(5) ** 72
IF 1, Parallel channels are usedinda 73
** ISWCH(6) \#\#

```INDA 75
```

INDA 8
IF and SUBROUTINE TRIAN IS

```INDA 78
```

79

```INDA 81
```

IF 1,AK(N) IS COMPUTED IN SWFLOWINDA 82
** ISWCH(8) **

```INDA 82 B
```

** ISWCH(9) ** INDA 82C

```NOT USEDINDA 820** ISWCH(10) **INDA83
```

NNEL

```INDA85
```

```TO OTHER LOWER NUMBERED CHANNELNUMBERED CHANNELSINDA87
```

```INDA89
```

INITIALIZATION

```INDA92
```

INDA 93
N2O ASSIGNED IN RECEIV
INDA 94
INDA 95
INDA 96
STEP TWO INDA 97
TITLES, GENERAL CONTROL DATA, INDA 98
AND JUNCTION AND CHANNEL INFOR-

```MATIONINDA100
    \(N=60\)
    \(\mathrm{N} 20=20\)
    DO \(50 \mathrm{I}=1,35\)
    \(D E P(I)=0.0\)
    \(A S(I)=0.0\)
    \(\operatorname{QIN}(I)=0.0\)
    OOU (I) \(=0.0\)
50 CONTINUE
    DO \(60 \quad \mathrm{I}=1,12\)
    NTEMP (I) \(=0\)
    \(0060 \quad \mathrm{~J}=1,35\)
    NCHAN(J,I) \(=0\)
    \(\operatorname{IPOINT}(\mathrm{J}, \mathrm{I})=0\)
    60 CONTINUE
    DO \(70 \mathrm{I}=1,99\)
\(70 \mathrm{~B}(\mathrm{I})=0.0\)
    REWIND N20

READ TYPE A CARDS
(FIRST TWO CARDS CONTAIN HEADINGS FOR HYORODYNAMICS, SECONO TWO CAROS CONTAIN HEADINGS INDA104 INDA105 INDA106
FOR IDENTIFICATION OF STORMWATERINDAIO7
INFORMATION)
INDA108
INDA 109
READ(N5, 100) IALHA
READ (N5,100) ITIL
100 FORMAT(15A4)

READ (N5,104) (ISWCH(I), I=1,10)
104 FDRMAT (1015)
DO \(11 \quad I=1,10\)
11 IICOL(I)=I
WRITE(NG,6)IICOL, ISWCH
6
FORMAT(1H1,55X,16HSWITCH SETTINGS//1H,14HSWITCH NUMBER, 10I10/
1 1H,14HSWITCH SETTING,10I10)
WRITE(NG,102) IALHA
102 FORMAT 1 H1, \(1544,20 \mathrm{X}, 36 \mathrm{HC}\) a 5 FLORIDA FLOOD CONTROL DISTRICT/1H, 80 1X,22HW. PALM BEACH, FLORIDAIIH, \(80 \mathrm{X}, 29 \mathrm{HRECEIVING}\) WATER HYORDDYNAMI 2CS//1
READ TYPE B CARDS
READ TYPE C CARDS
CONTROL INFORMATION
ELT,TZERO, NHPRT, NOPRT,NPLT,EVAP

READ (N5,106) NTCYC,PERIOD, QINT,DELT,TZERO,NHPRT,NQPRT,NPLT,EVAP
I,WIND,WDIR, NQSWRT,NJSW, INRAIN, JGW
106 FORMAT (I5,4F5.0,3I5,3F5.0.415)
NCGT=ISWCH(10)
TTZERT=TZERO*3600.
IPERID = PERIOD + 0.1
IQINT=QINT*3600.+0.1
IDELT \(=\) DELT +0.1
NOCYC=(IPERID *3600)/IOINT
NHCYC = IQINT/IDELT
NINT \(=\) (IPERIO*3600)/IDELT
NPDEL = (NINT+50)/100
READ TYPE D CARDS
PRECIPITATION IS READ AT THIS
POINT, RATE IS INCHES PER HOUR, TIME IS READ IN MINUTES FRDM START DF STORM

INDA125
INDA126
INDA 127
INDA128
INDA129
INDA130
INDA131
INDA132
INDA133
INDA134
INDA135
INDA136
INDA1 37
INDA138
INDA139
INDA140
INDA141
INDA142
INDA143
INDA144
INDA145
INDA 146
INDA147
INDA148
INDA149
DO \(210 \quad N=1,50\)
\(\operatorname{RAIN}(N)=0.0\)
INDA151
INTIME (N) \(=0.0\)
210 CDNTINUE
IF (INRAIN.EQ.0) GO TD 215
READ(N5,110)(RAIN(I), INTIME(I),I=I,INRAIN)
110 FBRMAT (BF10.0)
215 CONTINUE
DELTQ=DELT*FLOAT(NHCYC)
WRITE(N6,112) NTCYC
112 FORMAT (15HOQAYS SIMULATED,I4)
WRITE(N6,114) NOCYC
114 FORMAT (29HOWATER QUALITY CYCLES PER DAY, I4)
WRITE (N6,116) NHCYC

INDA152
INDA153
INDA154
INDA155
INDA156
INDA157
INDA 158
INDA159
INDA160
INDA161
INDA162
INDA163
```

 116 FORMAT (43HOINTEGRATION CYCLES PER WATER OUALITY CYCLE,I4)
 INDA164
 WRITE(N6,118) DELT
 118 FORMAT (3OHOLENGTH OF INTEGRATION STEP IS,FG.0,8H SECONDS)
 INDA166
 WRITE(N6,120) TZERO
 120 FORMAT (13HOINITIAL TIME,FG.2,GH HOURS) INDA168
 WRITE(N6;122)EVAP
 122 FORMAT (18HOEVAPQRATION RATE,F5.1,17H INCHES PER MONTH)
 WRITE(N6,124)WIND,WDIR
 INDA169
INDA170
INDA171
WRITE(N6,124)WIND,WDIR
IGREES FRDM NORTH)
IF (ISWCH(1).NE.1) GO TO 216
WRITE (N6,126)
126 FORMAT (1GHOESTURIAL SYSTEM)
GO TO 218
216 CONTINUE
WRITE (NG,127)
127 FORMAT (19HOSTREAM/LAKE SYSTEM)
218 CONTINUE
WRITE (N6,128) NOSWRT
128 FORMAT (2GHOWRITE CYCLE STARTS AT THE,I4,1IH TIME CYCLE//)
IF (INRAIN.LE.O) GO TO 225
WRITE (N6,130)
130 FORMAT(75HORAIN IN INCHES PER HOUR, AND TIME IN MINUTES, MEASURED INDAI8G
IFROM START OF STORM/)
WRITE (N6,131)
INDA172
INDA174
INDA175
INDA176
INDA177
INDA178
INDA179
INDA180
INDA181
INDA182
INDA183
INDA184
INDA185
130 FORMAT(75HORAIN IN INCHES PER HOUR, AND TIME IN MINUTES, MEASURED INDAI8G
INDA187
INDA188
131 FQRMAT (15X,8H IN./HR., 2X,8H MINUTES,4X,8H IN./HR., 2X,8H MINUTES, INDAI89
14X,BH IN./HR,,2X,8H MINUTES, 4X,8H IN./HR,,2X,8H MINUTES,4X,8H IN./INDA190
2HR.,2X,8H MINUTES/J
INDA191
DO 220 I= 1,50,5
L=MINO(I + 4,50)
WRITE (NG,132) I, L, (RAIN(J),INTIME(J), J=I,L) INOA194
132 FORMAT(I4,4H TO,I3,10F11.3)
220 CONTINUE
INDA196
DO 222 I=1,50
222 INTIME(I)=INTIME(I)*60.
GO TO 230
INDA198
INDA199
225 CONTINUE
WRITE (NG,133)
133 FORMAT (23HONO PRECIPITATION INPUT)
230 CDNTINUE
C
C
C
C
C
READ(N5,134)(JPRT(I),I=1,NHPRT)
READ TYPE E GARDS
JUNCTION NUMBERS FOR DETAILED
PRINTOUT
INDA200

```

```

C
PRINTOUT

```

```

WINDIRECTIONOF．OS19H INDA173

```
```118 FORMAT（3OHOLENGTH OF INTEGRATION STEP IS，FG．0，8H SECONDS）INDA166INDA168INDA169INDA170
```和
 都 ． ．

都．．

INDA 226 INDA227 INDA228
INDA 229
INDA230
INDA231
INDA232
INDA240
INDA 237
INDA241
INDA 242
INDA243
INDA244
INDA 245
INDA 246
INDA247
162 FORMATI//IH, \(38 H\) WEIR BOUNDARY CONDITION AT JUNCTION,I5//IH, 118 H WEIR1 \(=A 1=, F 12.2,4 \mathrm{X}, 14 \mathrm{H}\) WEIR2 \(=\mathrm{A} 2, F 12.2,4 \mathrm{X}\), 211 H WEIR3 \(\quad=, F 12.2 / 1)\)
580 CONTINUE
\(\mathrm{NJ}=0\)
INDA251
INDA252
INOA253
INDA254
INDA 255
INDA256

READ (N5, 166) J,HEAD,SURF, QF1, QF2, DT, CF, X1,Y1
INDA258
166 FORMAT(I5,F5.0,F10.0,2F5.0,2F10.0,20X,2F5.0)
IF (J.GT. 30) GU TD 640
\(I F(J, G T, N J) N J=J\)
\(H(J)=H E A D\)
\(A S(J)=S U R F * 10.0 * * 6\)
QIN \((J)=Q F I\)
OINST(J)=OF1
QJU(J) =QF2
\(X(J)=X 1 \neq 10.0 * * 3\)
\(Y(J)=Y 1 * 10.0 * * 3\)
\(D E P(J)=D T\)
\(\operatorname{COF}(J)=C F\)
620 CDNTINUE
640 CONTINUE
\(N C=0\)
\(C\)
\(C\)
\(C\)
\(C\)

> READ CARDS FOR
> CHANNEL INFORMATIUN
\(00660 \quad I=1,80\)
READ (N5, 172)N, (NTEMP(K), K=1,4), ALEN,WIDTH,RAD,COEF,VEL
172 FORMAT (5I5,5F10.0)
IF(N.GT. 80) GO TO 670
IF(NTEMP(3).NE.O) GO TO 655
\(N C=N C+1\)
\(N=N C\)
NNTEM1=NTEMP(1)
NNTEM2 = NTEMP (2)
\(R(N)=(D E P(N N T E M 1)+D E P(N N T E M 2)) / 2\).
IF(ISWCH(5). EQ.I. AND.N.GT.NCGTIR(N) \(=P A D\)
\(A(N)=R(N)\) tWIOTH
\(A V G H(N)=\{H(N N T E M 1)+H(N N T E M 2)\} / 2\).
\(L E N(N)=A L E N\)
\(B(N)=W I D T H\)
\(A K(N)=C D E F\)

INDA261
INDA262
INDA 263
INDA 264
INDA265
INDA266
INDA 267
INDA 268
INDA269
INDA270
INDA271
INDA272
INDA 273
INDA274
INDA275
INDA276
INDA277
INDAZ 79
INDA280
INDA 281
INDA282
INDA283
INDA2 24
INDA285
INDA286
INDA287
INDA288
INDA289
INDA 290
INDA2?1
INDA292
INDA293
```

 V(N) = VEL
 NJUNC(N,1)=MINO(NTEMP(1),NTEMP(2))
 NJUNC(N,2)=MAXO(NTEMP(1),NTEMP(2))
 K=NJUNC (N,1)
 DO 643 J=1,12
 IF(ISWCH(5).EO.1)GO TO 642
 IF(IPOINT(K,J).EQ.NJUNC(N,2))GO TO 648
 642 IFIIPOINT (K,J).EQ.O) GO TO 646
643 CONTINUE
6 4 6 ~ I P O I N T ~ (K , J) = N J U N C ~ (N , 2)
NCHAN(K,J)=NC
GO TO 660
648 NC=NC-1
M =NCHAN(K,J)
NNTEM1=NTEMP(1)
NNTEMZ=NTEMP(2)
R(M)=(DEP(NNTEM1)+DEP(NNTEM2))/2.
A(M)=R(M)*WIDTH
AVGH(M)=(H(NNTEM1)+H(NNTEM2))/2.
LEN(M)=ALEN
B(M)=B(M)+WIDTH
AK(M)=COEF
V(M) =VEL
GO TO 660
655 IF(ISWCH(4).EO.0)GO TO 657
EN(1)=ALEN
EN(2)=WIDTH
EN(3)=RAD
EN(4)=COEF
657 CALL TRIAN(NTEMP(1),NTEMP(2),NTEMP(3),NTEMP(4))
6 6 0 ~ C O N T I N U E ~
670 CONTINUE
IF {ISWCH(2).EQ.1) GO TO 674
LDELT=DELT
WRITE(N6,170) LDELT
INDA294
INDA295
INDA296
INOA297
INDA298
INDA299
INDA300
INDA301
INDA302
INOA3O3
INDA304
INDA305
INDA307
INDA30E
INDA309
INDA310
INDA311
INDA312
INDA313
INDA314
INDA315
INOA316
INDA317
INDA318
INDA319
INDA320
INDA321
INDA322
INDA323
INDA324
INDA325
INDA326
INDA327
INDA328
170 FORMAT\I29HICHANNEL LENGTH WIOTH AREA MANNING VELQCIT
IY HYD RADIUS JUNCTIONS AT ENDS
2EEDED BY/1H
3 NUMBER (FT) (FT) (SQ FT) COEF.
4
674 CONTINUE
DO 695 N=1,NC
IF (AK(N).LE.0.O) AK(N)=0.018
IF(B(N).GT.0.) GO TO 683
K=NJUNC{N,1)
NJUNC(N,1)=0
IDEL=0
(SEC)
(FPS) (FT)INDA332
STEP OF,IG/1
DO 682 J=1,12
IF(IPOINT(K,J).EQ.O) GO TO 682
IF(IPDINT(K,J),NE,NJUNC(N,2)) GD TJ 68I
WRITE(NG,168) N,K,NJUNC(N,2)
168 FORMAT (8H CHANNEL,I4,8H JOINING,I4,4H AND,I4,38H DELETED DUE TO ZINDA 345
IERO OR NEGATIVE WIDTHI
NCHAN(K,J)=0
IPOINT (K,J)=0
NJUNC (N,Z)=0
GO TO }69
681 CONTINUE
6E2 CONTINUE
683 CONTINUE
K=NJUNC(N,2)
DO 6B4 J=1,12

```

INDA 334
INDA 335
INDA 336
INDA 337
INDA338
INDA339
INDA340
INDA 341
INDA342
INDA343
INDA 344
ZINDA 345
INDA346
INDA 347
INDA 348
INDA 349
INDA350
681 CDNTINUE
INDA351
INDA 352
683 CONTINUE
INDA 353
INDA 354
INDA355



TRIA 52
TRIA 5 54

IF(II.NE.O) GO TO 300
TRIA 60
TRIA 61
TRIA 62
TRIA 63
TRIA 64
TRIA 65
TRIA 66
TRIA 67
TRIA 68
TRIA 69
set up triangle parameters
\(\mathrm{NX}(1)=\mathrm{II}\)
\(N X(2)=3 J\)
\(N \times(3)=K K\)
\(N \times(4)=I I\)
\(N \times(5)=J J\)
\(T(1)=(X(J J)-X(K K)) * * 2+(Y(J J)-Y(K K)) \neq * 2\)
\(T(2)=(X(K K)-X(I I)) \neq * 2+(Y(K K)-Y(I I)) \neq * 2\)
\(T(3)=(X(I I)-X(J J)) * * 2+(Y(I I)-Y(J J)) \neq * 2\)
\(T(4)=T(1)\)
\(T(5)=T(2)\)
\(N B=2\)
IF(LL.EO.O) NB=1
DO \(600 \mathrm{~N}=1,3, \mathrm{NB}\)
do all three sides
\(I=\operatorname{MINO}(N X(N+1), N X(N+2))\)
\(J=\operatorname{MaxO}(N X(N+1), N X(N+2))\)
DO \(350 \mathrm{~K}=1,12\)
IFIIPQINT(I,K).EO.J) GO TO 370
IF(IPOINT(I,K).EQ.O) GO TO 360
350 CONTINUE
360 IPOINT \((I, K)=J\)
\(N C=N C+1\)
NCHAN(I,K) \(=\mathrm{NC}\)
\(M\) IS CHANNEL NUMBER JUST ASSIGNED
\(\operatorname{NJUNC}(M, 1)=I\)
NJUNC(M,2) \(=\mathrm{J}\)
SUB=T(N+1)+T(N+2)-T(N)
IF(SUB.LT. 1 )SUB \(=1\)
\(G=S Q R T(T(N)) / 2\).
\(\operatorname{LEN}(M)=2 * * G\)
\(\mathrm{C}=\mathrm{G} / \operatorname{SORT}(4 . * T(N+2) * T(N+1)-S U B * * 2) * S U B\)
G=GI?.* \(C\)
WRITE(61,2) I,K,IPOINT(I,K),LEN(M),B(M),H(I),H(J)
2 FORMAT(1X,315,4F20.31)
IFIISWCH(6).EQ.2)GOTO 390
TRIA114
\(A S(I)=A S(I)+G\)
TRIA115
\(A S(J)=A S(J)+G\)
TRIA116
continue
TRIA117
IF(C.LE.0.) WRITE(NG,102) M,C
\begin{tabular}{|c|c|c|c|}
\hline 102 & FORMAT (1H, 26HNEGATIVE WIDTH CHANNEL NO., I5,9H \(B(M)=B(M)+C\) & WIDTH \(=\) E12.4) & \\
\hline & \(B(M)=B(M)+C\) & & TRIA 120 \\
\hline & \(R(M)=(D E P(I)+D E P(J)) / 2\). & & TRIA121 \\
\hline & \(A V G H(M)=(H(I)+H(J)) / 2\). & & TRIA122 \\
\hline & \(\Delta(M)=B(M) * R(M)\) & & TRIA123 \\
\hline & IF(ISWCH(4).NE.1)GO TO 500 & & TRIA124 \\
\hline & IFII.EQ.II.AND.J.EQ.JJ.OR.I.EQ.JJ.AND.J.EQ.II)GO & T0 400 & TRIA125 \\
\hline & IF (I.EO.JJ.AND.J.EQ.KK.OR.I.EQ.KK.AND.J.EQ.JJ)GD & TO 410 & TRIA126 \\
\hline & \(A K(M)=E N(3)\) & & TRIA127 \\
\hline & GOTO 580 & & TRIA128 \\
\hline 400 & \(A K(M)=E N(1)\) & & TRIA129 \\
\hline & GOTO 580 & & TRIA130 \\
\hline 410 & \(A K(M)=E N(2)\) & & TRIA131 \\
\hline & GOTD 500 & & TRIA132 \\
\hline 500 & \(A K(M)=(C O F(I)+C O F(J)) / 2\). & & TRIA133 \\
\hline 580 & \(V(M)=0.0\) & & TRIA134 \\
\hline 600 & CONTINUE & & TRIA135 \\
\hline & IF (LL.EQ.O) RETURN & & TRIA136 \\
\hline & DO \(750 \mathrm{NN}=3,4\) & & TRIA137 \\
\hline & \(I=M I N O(N X(N N), L L)\) & & TRIA138 \\
\hline & \(J=M A X O(N X(N N), L L)\) & & TRIA139 \\
\hline & D0 \(620 \mathrm{~K}=1,12\) & & TRIA140 \\
\hline & IF(IPOINT(I,K).EQ.J) GO TO 640 & & TRIA141 \\
\hline & IF(IPOINT (I,K), EQ. O) GO TO 630 & & TRIA142 \\
\hline 620 & CONTINUE & & TRIA143 \\
\hline 630 & IPOINT \((I, K)=J\) & & TRIA144 \\
\hline & \[
N C=N C+1
\] & & TRIA 145 \\
\hline & NCHAN (I, K) \(=\) NC & & TRIA146 \\
\hline 640 & \(M=N C H A N(I, K)\) & & TRIA147 \\
\hline & NJUNC \((M, 1)=I\) & & TRIA148 \\
\hline & NJUNC \((M, 2)=1\) & & TRIA149 \\
\hline & \(S \cup B=T(3)+T(4)-T(2)\) & & TRIAI50 \\
\hline & \(\mathrm{G}=5\) QRT(T(2))/2. & & TRIA151 \\
\hline & LEN(M) \(=\mathrm{G}\) & & TRIA152 \\
\hline &  & & TRIA153 \\
\hline & G=G/2.辛C & & TRIA154 \\
\hline & IF(ISWCH(6).EQ.2)G[ TO 690 & & TRIA155 \\
\hline & \(A S(I)=A S(I)+G / 2\). & & TRIA156 \\
\hline & \(A S(J)=A S(J)+G / 2\). & & TRIA157 \\
\hline 690 & CONTINUE & & TRIA158 \\
\hline & IF(C.LE.O.) WRITE(N6,102) M, C & & \\
\hline & \(B(M)=B(M)+C\). & & TRIA160 \\
\hline & \(R(M)=(D E P(I)+D E P(J)) / 2\). & & TRIA161 \\
\hline & \(A V G H(M)=(H(I)+H(J)) / 2\). & & TRIA162 \\
\hline & \(A(M)=B(M) * R(M)\) & & TRIA163 \\
\hline & IF(ISWCH(4).EO.0)GD TO 700 & & TRIA164 \\
\hline & IF (NN, EQ, 3)AK(M) \(=E N(3)\) & & TRIA165 \\
\hline & IF (NN.EQ.4) \(\triangle K(M)=E N(4)\) & & TRIA166 \\
\hline & GO TO 710 & & TRIA167 \\
\hline & \(A K(M)=(\operatorname{CDF}(I)+\operatorname{COF}(J)) / 2\) & & TRIA166 \\
\hline 710 & \(V(M)=0\) & & TRIA169 \\
\hline 750 & CONTINUE & & TRIA170 \\
\hline & RETURN & & TRIAI71 \\
\hline & END & & TRIA172 \\
\hline & ENDCOSY/ & & \\
\hline \$FORTR & AN, \(I=54, L, M, X=40\) & & \\
\hline \$REWIN & ND,54 & & \\
\hline \$CROS & SREF & & \\
\hline \$INPU & \(T=54\) & & \\
\hline SEND & & & \\
\hline
\end{tabular}

\section*{ILLUSTRATIVE INPUT DATA SET FOR SWFLOW}

\title{
1PLETION) CALL EXIT
}

1400 WRITE (N6,114)
114 FORMAT (33HOCOMPLETION OF RECEIVING OUANTITY)
RETURN TO SUBROUTINE RECEIV
CALL EXIT END FINIS
\$EOUIP, 22=MT,23=MT \$LOAD,56, M SRUN


2AWF 1
2AWF 2
2AWF 3
\(2 A W F 4\)
2AWF 5
2AWF 6
ZAWF
2AWF 9
2AWF10
2AWF11
0.500 .50
\begin{tabular}{llll}
0.70 & 0.20 & & 0.10 \\
0.10 & & 0.70 & 0.20 \\
& 0.40 & 0.40 & 0.20 \\
& & 1.00 & \\
& & 1.00 & \\
& & 1.00
\end{tabular}
2AWF13 2 AWF14 2AWF15 2AWF16 2AWF17 2AWF18 2AWF19 2AWF20 2AWF21 2AWF22 2AWF23 2AWF24 2 AWF 25
2AWF26
2AWF27
2AWF28
2AWF 29
2AWF30
CA2750101
CA2750102 CA2750103 CA2750104 CA2750105 CA2750106 CA2750107 CA2750108 CA2 750109 CA2750110 CA2750111 CA2750112 CA2750113 CA2750114 CA 2750115 CA2750116 CA2750117 CA2750118 CA2750119 CA2750120 CA2750121 CA2750122 CA2750123 CA2750124 CA2750125 CA2750126 CA2750127 CA2750128 CA2750129 CA2750130 CA2750131
\begin{tabular}{rrr} 
& 3.20 & \\
0 & 6 & 3
\end{tabular}
0.03
Ca2750201
0.01
0.020 .01
0.18
CA2750202
CA2750203
CA2750204
CA2750205
\(0.06 \quad 0.21\)
CA2 750206 CA2750207 CA2750208

\begin{tabular}{rll}
30 & 5.0 \\
2 & 6 & 3
\end{tabular}

18
\begin{tabular}{rrrrrrrr}
0 & 0 & 0 & 0 & 265 & 491 & 484 & 479 \\
479 & 480 & 483 & 482 & 479 & 476 & 471 & 467 \\
465 & 468 & 467 & 469 & 471 & 473 & 475 & 1570 \\
2307 & 2206 & 2161 & 2073 & 2010 & 1951 & &
\end{tabular}


CA 2750520 CA2750521
CA2750522
CA2750523
CA2750524
CA2750525
CA2750526 CA2750527 CA2 750528
CA 2750529
CA2750530
CA2750531
CA2750601
CA2750602
CA2750603
CA2750604
CA 2750605
CA2750606
CA2750607
CA2750608
CA 2750609
CA2750610
CA2750611
CA2 750612
CA2750613
CA2750614
CA2750615
CA 2750616
CA2750617
CA2750618
CA2750619
CA2750620
CA2750621
CA2750622
CA2750623
CA 2750624
CA2 750625
CA2750626
CA2750627
CA2750628
CA2750629
CA2750630
\(0.150 .50 \quad 0.02\)
2.90

316
4
\begin{tabular}{rrrr}
17 & & \\
659 & 656 & 659 \\
810 & 926 & 883 \\
776 & 767 & 758 \\
0 & 0 & 0
\end{tabular}

18
636
799
748
359
14
636
784
739
354
10
6777
6777
6777
679
863
748
0

651
846
714 372

648 838 699 368

6777
\begin{tabular}{rr}
686 & 659 \\
851 & 816 \\
729 & 431 \\
0 & 0
\end{tabular}

\section*{667}

825
689 375

662 821 679 371
\(0-2\)

664
803 542 378 664 799 499 372

6777

696 790
\begin{tabular}{rr}
662 & 696 \\
803 & 790 \\
0 & 0 \\
0 &
\end{tabular}

675
776
329 384

675
680
753
344
686
763 349

767
324
375

137
0.7

067 \(-27\)

786 0
0 0
0.18
\[
\begin{array}{ll}
0.88 & 0.52 \\
0.07 & 0.24
\end{array}
\]
```

2.74
0.22 0.20
0.08 0.08
0.05
0.18 2.40
0.23 2.07 2.61
0.03
0.80
0.04
0.13 0.37 0.32
1.33 1.21 0.14 0.48
ENDOUANTITY

```
CA2750816


\title{
ILLUSTRATIVE INPUT DATA SET FOR INDATA
}
hYDROLOGIC ANALYSIS OF WATER CONS. AREA \(2 A\)
ANALYSIS OF OCT. 1969 CONDITION


77777
\begin{tabular}{rrrr}
1 & 1 & 30 & 4 \\
2 & 30 & 2 & 3
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 3 & 30 & 3 & 4 & & & & \\
\hline 4 & 3 & 7 & 4 & & & & \\
\hline 5 & 4 & 7 & 5 & & & & \\
\hline 6 & 3 & 8 & 7 & & & & \\
\hline 7 & 3 & 2 & 8 & & & & \\
\hline 8 & 2 & 28 & 8 & & & & \\
\hline 9 & 2 & 9 & 28 & & & & \\
\hline 10 & 9 & 29 & 28 & & & & \\
\hline 11 & 29 & 10 & 11 & & & & \\
\hline 12 & 29 & 11 & 28 & & & & \\
\hline 13 & 11 & 10 & 12 & & & & \\
\hline 14 & 11 & 12 & 13 & & & & \\
\hline 15 & 11 & 13 & 24 & & & & \\
\hline 16 & 11 & 24 & 25 & & & & \\
\hline 17 & 8 & 11 & 25 & & & & \\
\hline 18 & 8 & 28 & 11 & & & & \\
\hline 19 & 8 & 25 & 27 & & & & \\
\hline 20 & 8 & 27 & 7 & & & & \\
\hline 21 & 7 & 27 & 16 & & & & \\
\hline 22 & 7 & 16 & 6 & & & & \\
\hline 23 & 5 & 7 & 6 & & & & \\
\hline 24 & 27 & 15 & 16 & & & & \\
\hline 25 & 16 & 26 & 21 & & & & \\
\hline 26 & 26 & 22 & 21 & & & & \\
\hline 27 & 26 & 15 & 22 & & & & \\
\hline 28 & 15 & 23 & 22 & & & & \\
\hline 29 & 15 & 25 & 23 & & & & \\
\hline 30 & 15 & 27 & 25 & & & & \\
\hline 31 & 25 & 24 & 23 & & & & \\
\hline 32 & 22 & 17 & 21 & & & & \\
\hline 33 & 22 & 18 & 17 & & & & \\
\hline 34 & 22 & 23 & 18 & & & & \\
\hline 35 & 23 & 14 & 18 & & & & \\
\hline 36 & 23 & 24 & 14 & & & & \\
\hline 37 & 24 & 19 & 14 & & & & \\
\hline 38 & 24 & 13 & 19 & & & & \\
\hline 39 & 13 & 20 & 19 & & & & \\
\hline 40 & 13 & 12 & 20 & & & & \\
\hline 41 & 1 & 30 & 0 & 10500.0 & 80.00 & 8.50 & 0.025 \\
\hline 42 & 30 & 2 & 0 & 10600.0 & 80.00 & 8.50 & 0.025 \\
\hline 43 & 2 & 9 & 0 & 15800.0 & 60.00 & 7.00 & 0.028 \\
\hline 44 & 9 & 29 & 0 & 13700.0 & 60.00 & 5.00 & 0.025 \\
\hline 45 & 29 & 10 & 0 & 14800.0 & 55.00 & 5.00 & 0.025 \\
\hline 46 & 2 & 3 & 0 & 10500.0 & 85.00 & -7.00 & 0.050 \\
\hline 47 & 1 & 4 & 0 & 18500.0 & 70.00 & 8.50 & 0.025 \\
\hline 48 & 4 & 5 & 0 & 15800.0 & 65.00 & 6.50 & 0.030 \\
\hline 49 & 5 & 6 & 0 & 21100.0 & 65.00 & 6.00 & 0.030 \\
\hline 50 & 18 & 17 & 0 & 12500.0 & 35.00 & 0.00 & 0.030 \\
\hline 51 & 14 & 18 & 0 & 12600.0 & 35.00 & 0.00 & 0.030 \\
\hline 99 & & & & & & & \\
\hline
\end{tabular}

A SAMPLE OUTPUT


60000000000000000000日000日00000
 \％0000000 0000000000000000000000 \％00日0000 0000000000000000000000 000000000000000000000000000000











```


[^0]: *Card columns that are not included in the taltie are "not used"

