Hydrobogic and water fuality Studies in

- $\quad i$ Upper Taylor Creck and Chandler
; : Slough Watersheds, Florida
by

Douglas C. Amon, Wayne C. Haber and James P . Heaney

Department of Environmontal Engincer ing Sotences University of liforida
Cainesville, Florida

Final Report 10
South plorida water Managmant District West Palm Beach, Flurida

L. INTROROCION

For the Kissimme-okechobee draimage artat a wate management shome has been proposed based on detention of runotf, rostrictions on surface water discharge rates, and routing o: as muct flow as possible through natural or mamade morshes. (Division of State Praning, 1976). with this in mind, this report is directed at examining the impact of drainage, principally agricultural, on hyorologic relationships and evaluting the storage and treatment capabilitios of Eresturator marshes. This rescareh is sponsored by the South Fiorida Water Management District (SEWMD), formerly the Central and Southorn Florida flood Control District, and is a continuation of the previous effort, "Enviroment Resources Management Studies in the Kissimmee River Basin." (Huber, et al., 1976).

Upper Taylor Creek, in Okeechobee Comty, in selected as the drainage dmpaet analyses study wate:shed since hydrologic data have been compiled since 1955 by the Agricultural Research Service and the United States Geologioal Survey. This area has undergone a transition from unimproved pasture with a natural oreek bed to a regime dominated by faproved pasture with a controlled channel. The investigations are presented in Chapter If and fall into two categories. First, hydrologio data are analyzed in order to describe the changes in hydrologic responses due to the drainage facilities, and second, hydrologic simulations with the Hydrologic Land-Use Model, HLAND, are used to analyzt the influence of shifting land use and increasing frainage on water $1 o s s e s$ and runoff pathways. The HAND Users Manuel is included as Appendix A to this report.

For the stotage and treatment analyses of freshwater marshes, Chander Glough Matsin is chosen as the study area berause of the availability of recunt Water quality and quantity data from the SFWPD. Chandler Slough Marsh is also in Okeechobee county hut is within tiu kissimme River Valley and is consldered a flood plain marsh. The Chandler Slough Study is presented in Chapter tIl and is divided into flood peak attemation anadysis and evaluation of mutrient removal efficiency. The Storage/Trentment portion of the Storm Water Management Model, Shm, (Huber, et al. 1975) is iutilized to simulate the hydrologic and water quality aspects of Chandet Slough Marsh.

II. HYDROLGMG NALYSIS

INTRODUCTION

The objectives of this portion of the research are to examine the impact of drainage on hydrologic relationships, to quantify baseflow relationships with measured soil storage parameters and to quantify hydrologic-land use interactions. Upper Taylor Creek Watershed is selected as the study area for two reasons. One, this watershed has undergone transition from unimproved pasture, and two, data have been compiled, principally by the Agricultural Research Service (ARS) and U.S.G.S., since 1955. In addition, channel concrol structures were installed in the 1960's under a PL 566 progran.

The Upper Taylon Cnob Watershed is in Okeobhome County and covers about 100 square miles. The dominant soil within the basin is in the Myakka-Basinger association. Table 2.1 shows land-use hydrologic group breakdown for 1958 to 1972 and a map of Dper Raylor Groek Watershed is shown in ligure 2.1.

data Analysis

Iaily mean stramflow, rainfall, pan evaporation and daily mean depth to growdwater are anong the paraneters which are availatie from the ARS Southern Branch (ARS Watershed Florida $\mathrm{W}-2$ and $\mathrm{W}-3$). Data examined prior to 1962 are referred to as "pre-control" and data examined after 1968 are referred to as "post-control". The purposes of data analyses are to describe changes in hycrologic rejationships from the pre-contol period to whe post-control period and to quantify the baseflow relationship for uses in hydrologic simulation.

Groundwater Stage-Duration Curves

Composite groundwater stage daration curves for pro-control and post-control periods are shown in figure 2.2. The gromdwater "stage" is the daily mean depth from ground surface to the water table of seven sampling wells. The post-control curve is a composite of 1969 through 1972 with annal precipitation of $66,50,49$, and 42 inches. Pre-control is from 1969 through 1961 with annual precipitation of 61,59 , and 31 inches. Atso figure 2.3 shows two single year curves, 1969 and 1960 where rainfall and runoff totals were about equal. As show, there seems to be only slight variations in groundwater level frequencies between the two periods. A possible reason for this occurence is that control structures (drop spillways) are responsible for keeping the groundwater table higlei near the stream chanols which counteracts drawdown by ditching. See Pigure 2.1 where rroundwater welt locations are shown. (Note that all but samping site lare near the strean chanela with several sites just upstream from a control scructure.)

Fecession Curves

Figures 2.4 and 2.5 show flow (dainy mean discharge), q_{o}, vs the following day's flow, a_{1}, for ratnfee recession perjods. A discharge relationship, * $q_{6}=q_{0} \mathrm{~K}^{t}$, is derived from these curves where k is the overse siope of the
$q_{1}=q_{0} \exp \left[k^{\prime} \mathrm{c}\right]$ where $\mathrm{K}^{\prime}=\ln (\mathrm{K})$.
Table 2.1 1958/1972 Land Use - Hydroloisc Group Breakdown Area in Acres of Upper Taylor Creek Watershed.

	Hydrologic Group ${ }^{\text {a }}$, ${ }^{\text {a }}$			Total
	2	3	4	
SCS Hydrologic ${ }^{B}$ Soil Group	c	A/D	B/D	
Land Use				
1. Urban	0/0	179/2176	0/102	179/2278
 citrus	0/0	0/230	359/947	359/1177
3. Improved	77/589	13543/50433	1433/5325	15053/56347
4. Unimproved	256/0	37248/0	2560/0	40064/0
5. MARSH 8 Forest	410/154	3763/1894	9036	8857/4710
TOTAL	743	54733	9036	64512/64512

Ahydrologic Group 1 is not represented in Upper Taylor Creek Watershed
BSee "Environmental Resources Management Studies in the Kissimmee River BASin", Huber, et al, for definition or references

FIGURE 2.1 UPPER TAYLOR CREEK FLORIDA WATERSHEDS $w-2$ AND $\mathrm{w}-3$
from ARS, Annual Report, 1971, Soil and Water Conservation Division, Southern liranch, Fort Lauderdale.

line. The value for the recession constant, k, is 0.85 in the pre-control. period (figure 2.4). This K value alion fits the data well in the lower regime of flow (i.e. less than 60 cfs on the ordinate) in the post-control period (figure 2.5). The recession relationship is not altered by drainage facilities in this range of flow. A K value of 0.7 fits the data in the remaining range of baseflow in figure 2.5 . In this range of flow, between $300-60$ cfs, recessions are faster in the post-control period. This faster recession is due to increased interception of subsurface flow by drafnage ditches. The upper bound on baseflow is about 300 cfs since both lines envelop most data points above 300 cfs on the ordinate.

Figure 2.6 shows recession lines using $;$ treanstage plus depty to water tible plus arbitraty datun, instead of Elow. This parancter, H, is assumed to be proportional to soil moisture levels. A schomatic diagram of this parameter is presented in figure 2.7. If q is a function of time and H is a function of time, fiven initial values for earb, q as a function of il cond be derived in the following form:

$$
\begin{equation*}
q_{t} / q_{0}=\left(11_{t} / 1_{0}\right)^{k_{1}}+C \tag{2.1}
\end{equation*}
$$

where K_{1} and C are constants.
Results of plotting q_{i} / q_{0} vs. H_{f} / H on $1 o g-l o g$ paper produced a scatter diagram. Figure 2.6 does, however, show that the recession of this parameter, H, is not much different before aid after control construction.

Streamflow vs. Depth to Groundwater Table
These curves are shown in figures 2.8 and 2.9 . Rainfree recessions are again used. Depth to the water table is the average of ail test wells within Upper Taylor Creek (sce figure 2.1 for sites). For an individual rainfree periods, correlations are mot as good. Once again, the faster recessions in the post-control period are evident. Breakpoints for pre-controj are in the $300-$ 700 cfs range and near 1.75 cfs for the post-control period.

Other Analyses periomed for kaLirrookocession Period
(not shown)

1. h_{S} vs. h_{GW}
semi-log
2. $\overline{\mathrm{a}}$ vs \bar{h}_{Cw}
semi-log
3. 1_{3} vs. h_{GW}
arith.
4. $h_{\mathrm{GW}^{\prime}} \mathrm{h}_{\mathrm{CW}}$ vs. $\mathrm{h}_{\mathrm{S}} / h_{\mathrm{S}_{0}}$
arith.
5. h_{g} vs. h_{GN} per day
arith.
6. q vs. $\mathrm{H} / \mathrm{H}_{\mathrm{o}}$
$\log -\log$
7. Total q vs. hgw
arith.
8. $\overline{\mathrm{c}} \mathrm{vs} . \overline{\mathrm{H}}$
semi-log
9. $\mathrm{q} / \mathrm{q}_{\mathrm{o}} \mathrm{vs} . \mathrm{H} / \mathrm{H}_{\mathrm{o}}$
$\log -\log$

$$
\begin{array}{ll}
\text { 10. } \mathrm{q} / \mathrm{g}_{\mathrm{o}} \text { vs. H } & \text { semi- } \log \\
\text { 11. } \mathrm{q} \text { vs. } \mathrm{H} & \log -\log
\end{array}
$$

Results (of graphs not included)
For individual rainfree periods, baseflow vs. parameters sometimes produced good correlations but for several such periods, correlations were poor. The conclusion is that baseflow relationships for extended periods have not been quantified with these analyses. The graphs, at best, are useful only in a qualitative sense.

hiYDROLOGIC STMCLATION

The main objective of hydrologic simulation with the Hydrologic-Land Use Model, HLAND, (Huber, et al. 1976; Bedient, 1975), is to analyze the effect of drainage on water losses and runoff through the use of continuous simulation before and after drainage facilities were installed in the Upper Taylor Creek Watershed. Other objectives ars co establish and verify the baseflow relationship for the study area and to determine the effects of ditrhing on soil moisture storage levels. Simulations with mAND are for two extended periods, the first from 195 to 1961 where unimproved range was the dominant land use, and 2969 to 1973 where improved pasture dominated. Emphasis of simulation is to calibrate and verify HLAND for Upper Taylor Creek, then investigate the dranage facilities' influence on runoff pathwas water losses, and storage parameters.

Baseflow-Soil Storage Relationshib

Since hydrologic data analysis did not orovide an adequate long-term baseflow relationship, HLAw simulation is used to nredict storage changes using measured baseflow as in input. (Baseflow components of streamflow are found using hydrograph separation techniques.) This was done for five year periods (1957-1961 and 1969-1973) with a daily time step. A constant value corection factor was applied to the Thornthwaite ET depletion coefficients, DWL, so total measured and predicted streaflow volumes were within reasonable agrement. Then a regression fit was computed between monthly averaged soil storage levels and measured baseflow. In addition, adjustments were made to fit measured hydrographs with the predicted hydrographs during calibration. The baseflow relationships are presented in figure 2.10. In the lower range of baseflow, for soil storage values below 4.35 inches, there is more baseflow in the post-control period. This is due to the presence of stream structure (see figure 2.1 for atructure locations), although soil mositure losses (i.e., evaporanspixation) in the post-control period ate greater due to increased depletion coefficients. See figure 2.11 for a graphical depiction of the offect of changing depletion couficients on water lohses and Tahe 2.2 for the values of the depletion coefficieats used in pro-controt simulatiuns. The relationships for 1957 through 1961 and 1969 through 1973 are as follows:

```
1957-1961 \(\quad \mathrm{BF}=0.95 \exp (0.9 \times\) STPD \()\) for \(4.4<\) STPU STPU Sax
\(B F=0.002 \operatorname{axp}(2.3: 8 T P u)\) for \(3.2<\operatorname{sTH} \leq 4.4\)
\(B F=0.171 \exp (0.91 \times \operatorname{stP}) \quad\) for \(0 \leq \operatorname{sTP} \leq 3.2\)
\(\mathrm{STPp}_{\max }=7.73\) inches,
```


$$
\begin{aligned}
& B F=4.1 T \exp (0.55 \times \text { STMH EOT } 0 \leq \text { STPU } \leq \text { STPU } \\
& \operatorname{STl}_{\text {max }}: 6.00 \text { inches, }
\end{aligned}
$$

where $B F=$ Baseflon for entire watershod, cfs, and
STPU $=$ Average Soil Moisture Storage Level, inches.
Effects of Drainage Facilities on Soil Moisture levels
An analytic method which calculates the phreatic surface between parallel ditches is used to determine maximum soil storage levels of each land usehydrologic gromp as a function of drainage donsity and soil characteristics.

The maximum soil moisture storage for an undrained soil profile is the depth of soil times the effective porosity. When drainage systens are installed the soil profile can retain the same maximum storage but this storage is quickly decreased due to lateral movement (interflow) into the drainage system. This subsurface flow becomes a component of dircet (quick runoff since it is conveyed, ultimately, to the main stream through the lateral drainage network and can no longer contribute to basellow except by reinfiltration.

Drainage density is defincd as the longth of all streans (natural or manade) per mit drainage area (Hortun, 1932). The average length of averland Elow and the average ditch spacing is proportional to the reciprocal of drainage density, hence, as drainage density increases, both length of overland flow and ditch spacing decreases.

The eflects of drainage are incorporated into two parameters in mLAND. First, maximum soil mositure scorage levels. SM(T,K), for land use a and hydrologic group K, are decreased as dranage density increnses. Whenever these levels are oxcoeded, surplus water is created. This surplus water includes subsurface flow, overland flow and water eventually lost by evaporation. The second parameter, $\operatorname{CDET}(J, K)$, is the Eraction of surplus water that will remain on land per day, hence, direct runoff is delayed and attonuated by CoET. As drainage density increases, the CDET values decrease and surplus is removed faster. A current modification in HLAND allows surplus watet remaining each day to be subiect to evaporation and infiltration.

Previous HLAND simulation in Huber, et al., (1976) relied on SCS Rumoff Curve Numbers (SCS, 1972) as a masure of the maximum soil motsture storages, SM(J,k). These curve numbers are determined empirically for hydrologic solicover complexes based on surface runolt occurring 24 hours or less after the rainfall event. Also, depending on the antecedent condtions, diffenent curve numbers are used which makes their application to contiroous simulation difficult. In the SCS procedures drained soil has a izigher maximum storage value or maximum potential infiltration than undrained soil, lherefore, less surface runoff. This surface rumoft does not inelude the sulisurface flow which witi enter the drainage network throurt the highly mormeable Eine sands lound in Taylor breok Watershed and much of South ilorida.

An analytic method is employtu to find Side, $\%$ values for cach land usehydrologic group, in lieu of curve number assigment. This method calcuiates the phreatic surface between paral 101 ditehes as a function of drainage density and physical characteristics of the soil associations found in each hydrologic group. Represcatative values are chosen for saturated hydrualic conductivity, effeotive porosity, soif dopth, and net acereation, then a steady state solution, equation 2.2 (Bear, 1972) is found for the free sumface betwoen the parallel.
ditches.

$$
\begin{equation*}
h(x)=\left[h_{0}^{2}+N / K(1-x) x\right]^{1 / 2} \tag{2.2}
\end{equation*}
$$

where $h_{0}=$ Soil depth - ditch depth, length,
$\mathrm{N}=$ Net Accreation, length/tine,
$K=$ Saturated nydraulic conductivity, iength/time, and
$h(x)=$ Height of surface above impermeable layer a distance x between parallel ditches, Iength.

Equation 2.2 is integrated to detemine the area under the phreatie surface and divided by the diteh spacing to yiald an average dopth to the water table. Using these procedures for all land usewhdrologio groups provides retative vilues for $\operatorname{SH}(J, K)$ which are presented in Table 2.3 for the various land usehydrologic groups found in Upper Taylor Creek Watershed.

Discussion of Model's Performance and Result:s

Generally, HLAND will predict treads in struaflow without extensive calibration efforts. Measured and predicted hydrographs are shown in Aperaix B. Low flow volumes ate usually in good agreement which suggested that the baseflow relaitonships derived as described during calibration runs are adequate for modeling purposes. Since the modei is based on water balance, discrepancies between measured and predicted streamflows are a result of inaccurate predictions of storage changes.

Indications are that short term evapotranspiration, ET, predictions and/ox maccounted for groundwator discharge (or recharge) are the factors influencing these variations. Note that one fourth inch of runoff over the watershed translates into about 260 cfs-day of streamflow, therefore, slight inaccuracies in moisture levels will produce the indicated discrepancies. Also, to be consistent with avaifable inputs, the model makes no distinctions among intensities of ranifall nor among spatial veniations beyond Theissen weights.

The predicted monthly and yoarly dircet, base, and total runoff components are presented in lable $2.4-2.14$ along with measured total runoff for Upper Taylor Craek, 1958 land use is used for the pre-control period and 1972 land use is used for post-control (see Table 2.1). These tables illustrate the shift from baseflow to direct. flow with increased agriculturat development. Note that direct flow inctudes interflow. This shift of runoff pathways can be observed in the flow recession curves (figures 2.4 and 2.5) where there iss a downward shift in flow regimes. 'the same type of effect can also be observed in the streamflow vs. depth to groundwater table curves (figures 2.8 and 2.9).

The mean ratio of ammal basoflow to ammal totai flow is 0.91 (standard Jeviation, $s,=0.06$) in the pro-control period and 0.54 ($s=0.08$) in che post-control period. A decrease in basellow is, primarily, aceompanied by an increase in interflow although the wean annual total flow to anaual precipltation ratio is depressed from $0.38(s=0.12)$ in the pre-control period to 0.27 ($s=$ 0.12) in the post-control period. This fmplies that there is, also, an increase in the El losses due to watershed alterations, at least for the two study periods. Mean anmal ET are 34.91 inches ($=2.24$) and 36.75 imehes $(s=1.51)$ for pre-control and post-control periods, respectively. These predictions are supported by the fact that predictions of er by subtracting annual runoff from annual precipitation and neghecting storage changes are 34.57 fnches and 36.64 inches, respectively.

Table 2.2 Depletion Coefficients, Dwi Pre-Control/Post-Control Simulation Periods
(Inches ${ }^{-1}$)

Land vise	Hydrologic Group		
	2	3	4
1. Urban	$0.181 / 0.258$	$0.205 / 0.293$	$0.409 / 0.584$
2. Crops \& Citrus	$0.197 / 0.281$	$0.233 / 0.322$	0.745/1.064
3. Improved Pasture	$0.160 / 0.228$	$0.181 / 0.258$	$0.287 / 0.409$
4. Unimproved Pasture	$0.093 / 0.132$	$0.129 / 0.185$	$0.189 / 0.269$
5. Marsh \& Forest	$0.082 / 0.1 .17$	$0.114 / 0.163$	$0.166 / 0.238$

Table 2.3 Maximum Soil Storage in Inches for Hydrologic Simulation ${ }^{\text {a }}$

	Hydrologic Group		
Tand Use	2	3	4
i. Urban	6.13	5.38	2.66
2. Crops \& Citrus	5.63	4.71	1.49
3. Improved Pasture	6.95	6.13	3.70
4. Unimproved Pasture	11.77	8.24	5.61
5. Marsh \& Forest	i1. 1.84	8.45	5.76
${ }^{\text {a Calculation from "Procedures to Calculate Soll Storage Parameters for Use }}$			

The mean annual precipitation for the pre-control period and post-controj period are $52.26(s=12.68)$ and $52.48(s=8.62)$, respectively. The mean
 pre- and post-control periods, respectively.

SUMMARY

1. Upper Taylor Creck has undergone tiansition from unimproved range and marsh lands to a regimo dominoted by improved pasture; in addition, channel modifications and control structures have been installed in the $1960^{\prime} \mathrm{s}$ through a PI. 566 program.
2. There are oniy slight variations in observed groundwater level frequencies between the two study periods.
3. Streamelow recessions are Gaster in the post-control period. The faster recessions are probably due to increased incerception of subsurface lateral flow by drainage facilities.
4. Hydrograph separation, flow recession data, and streamflow vs. depth to groundwater plots indicate shifts in runoff pathways where the upper limit of baseflow (daily mean discharge) is between $300-700$ cfs for the premcontrol period and near 200 cfs in the post-control period.
5. Nonthly and yearly liLAND predictions of direct, base and tatal runofe components are presented in Tablas $2.4-2.12$ along with mentured total runoff for Upper Taylor Creek. 1958 hand use is used for the pre-control simuiation and 1972 land ase for the post-control simulation.
6. Results from HLAN indicate a major shitt arom base low to direot flow (including interflow) with incroasing agricultumb development. During dhe 1957-1961 period 91% of total flow is baseflow while only 54% is baseflow during the 1969-1973 period.
7. For the 1957-1961 and 1969-1975 periods, mean annual evapotranspiration losses increase from 34.91 to 36.75 inches; mean monthly soil moisture storages decrease from 4.41 inches to 3.82 inches; and the mean anamal ratios of lotal. runole to rainfall are depressed from 0.38 to 0.27 , respectively.

TABLE 2.4	summary of yeariy precipitation, predicted evapotranspiration, predicted runoff, MEASURED RUNOFF (all values in inches)			
year	rainfall	et	PREDICTED RUNOFF	MEASURED RUNOFF
1957	60.02	36.05	21.69	20.95
1958	49.96	38.09	12.84	11.12
1959	61.15	34.70	26.28	25.16
1960	59.16	33.18	27.22	30.66
1961	31.02	32.55	0.49	0.58
total				
1957-1961	261.31	174.57	38.52	33.47
1969	65.76	36.83	23.89	30.15
1970	50.39	33.11	15.56	15.05
1971	49.36	34.34	13.87	13.77
1972	42.36	36.48	5.76	5.73
1973	49.51	37.94	11.60	9.50
total				
1969-1973	257.38	133.73	75.68	74,20

TABLE 2. 5 UPPED TAYLDR CREEK TOS?

MONTHLY ARO ANNUAL PRECIPITATIUN. ET. MEAM SOIL MOISTUOE STGRAGE (STOPI CHANGE- IN

MO	QAIN	ET	STOF	DELSTOP	GASE	$\begin{array}{r} \text { Priptorep } \\ \text { tratot } \end{array}$	$\begin{gathered} \text { RUNOEF } \\ \text { T:TAL } \end{gathered}$	ME Asured bundfac TחTA:-
!	$\because .52$	1.09	3.17	0.39	0.053	0.0	0.053	0,055
2	2.76	1. 65	3.60	1.99	0, 1'8	0,005	0, 12.4	$0,0>?$
3	4. 3	4.59	5.15	-].0!	1.327	$0.0: 9$	1.246	0,6 oc
4	5,5'	3.90	4.5!	0.78	0.996	0.004	0, 929	0, 0 ,
5	7.37	4,40	5.62	1.07	1,355	0.032	2.897	2.127
σ	4.01	4.2:	$5 \cdot 18$	$\cdots 0.66$	1.34	0.009	1,353	- 9.154
7	7,00	4.47	5.99	0.23	2.275	0, 0.?	2.305	2,4\%
\bigcirc	9, ?	3.15	6.63	0.44	$4 \cdot 324$	0.564	5,498	5,449
5	10.63	4.27	0.85	0.09	5.641	0,80:	6.44:	6.975
10	1.20	1.95	5.20	-2,13	1,352	0.0	i. 353	: , A ค
$1 \cdot$	0, 4 $=$	1.59	3.47	-1.21	$0.0 \% 1$	0.0	0.071	0.099
12	4.15	1.23	3.66	2,49	0.416	0,0:4	0.430	0.354
$\begin{gathered} \text { TOTAL } \\ \text { DF } \\ =G A G E \end{gathered}$	$60.0 ?$	36.05	4.95	2.28	20×112	1, 579	21.689	20.949

A1. VALUES ARE IN INCHES

TAELE 2,6 UFPFQ TAYEDR CREEK : 9世,

MOMTHLY AND AFNUAL PPEGIPITATIGN, ET, MEAN SOIL MOLSTUTE STERAGE (STDRYE CHANGT IT

MC	DA!	ET	5 TO	DELSTO	GASE	$\begin{aligned} & p F= O C t \\ & \partial I T=C! \end{aligned}$	$\begin{aligned} & \text { RUNOFF } \\ & \text { TY:AL } \end{aligned}$	$\begin{gathered} M=A S U F O O \text { FUNOF } \\ \text { TOTA. } \end{gathered}$
\ddagger	6.0	$2: 17$	$t .06$	0.71	3.950	0,228	$3 \cdot 78$	2,4*7
2	1.09	2.35	$4 \cdot 83$	2.9	0.872	0,0	0.837	0,409
3	E. 08	2.55	5.2!	1.89	1,5:2	$\therefore 0.0-0$? 9.33	7.943
4	1.70	3.79	4.57	2,69	0,691	0.0	0.691	$0.4 \div$
5	7.90	$3 \cdot 22$	3.87	0.35	0,220	0,001	0.229	0, "
0	5.27	3.35	3.11	$: .55$	0.053	0,007	0.070	.0.095
7	6.9?	$5 \cdot 79$	5.59	- 3.02	1,973	$0,0 \mathrm{a}$	3.357	$r: \pm 7$
n	7.40	5.06	3.42	0.20	1.930	0.087	2.065	\cdots. 60
\bigcirc	5.24	4.20	$5 \cdot 19$	$\cdots 0+18$	1,223	0.003	: 22 ²	$\therefore \therefore 70$
80	3.47	3.04	$4 \cdot 64$	$\cdots 0,30$	0.690	0,001	0,59:	0.473
\pm :	0.44	1.49	3.74	-1.20	0: 50	0.0	$0 \cdot 156$	0, 32
12	$2 \cdot 62$	1.07	7.28	1.41	0.114	0,002	0,116	0.125
$\begin{gathered} \text { TTAL } \\ \text { ПE } \end{gathered}$	49.96	38.09	4.63	$-0,97$	$: 2.809$	0,432	12, 94:	1*119

[^0]TADLE 2． 7 UPPFF TAYLOQ CREFK $195 \circ$

Mr	PA I ${ }^{\text {a }}$	ET	STOF	EELSTGR	BASE	$\begin{array}{r} \text { Beryicreo } \\ \text { 万IRrGT } \end{array}$	$\begin{array}{r} \text { RUNOFF } \\ \text { TOTAL. } \end{array}$	$\begin{gathered} \text { M- ASURED QUMDRF } \\ \text { TITAL } \end{gathered}$
1	3．36	$1 \cdot 53$	4.50	1．40	$0 \cdot 674$	0.017	0,691	0,472
2	O．7 7	1．56	4.60	-1.46	$0,6: 2$	0.0	0,512	0，20¢
3	7．4．9	2.65	5.73	1．55	3,951	－0，42\％	3．zeE	7，23＋
4	2，1：	$3 \cdot 37$	$4 \cdot 55$	1,90	0，548	0,0	0,649	0.31
5	5.46	3.29	3.53	$1 \cdot 93$	0．？ 27	0．01．	0.232	， 0.150
5	－2．49	3.31	6． 55	0.52	$5 \cdot 207$	3.379	3． 664	－，1，7
7	¢ 12	5．47	5.51	． 0.03	$1.63<$	0，00：	1，¢ 2－	1．305
B	3.91	4.46	$4 \cdot 67$	＋．39	0.734	$0 \cdot 0$	O． 734	$0.7>4$
9	6.39	2.72	$5 \cdot 33$	1.87	1．748	0,040	1． 789	？， 700
10	9，55	2.47	6． 06	1.37	$4 \cdot 037$	$0 \cdot 680$	6,717	4.473
11	$3 \cdot 3 *$	2.59	6.04	-1.83	2．573	0,005	2,579	1.835
12	1.45	$1.34{ }^{\circ}$	$4 \cdot 64$	0.58	0.684	0,0	0,584	0,390
$\begin{gathered} T פ T \Delta L \\ M B \\ A V E T A G E \end{gathered}$	6：$: 5$	34.70	$5 \cdot 14$	0.18	21.708	4,468	26.276	つら，5フ

[^1]TAZLE 2 \quad UPPFR TAYLOR CPEFK Y 960

MDNTHEY ANT ANHLAL FRGCIPITATICN, ET MEAN SSTL MOISTUGE STORAGF (STGR) CHANGE IN

TABLF 2.10 UPPEP TAYLDR CDE:K GSG

MONTHLY ANC ANPUAL PGECIPITATION FT MEAN SCIL MOISTURF STOQAGE GSTORIM GHANGE IP SCIE STOFAGE (OELSTOPJ. PPFOICTED OUNOFF (GASF DIPEET.TJTALI AND MEASURED RUNOFF

MO	PATM,	ET	STOQ	OELSTOF	BASE	$\begin{array}{r} \text { ORIDICTEO } \\ \text { DIGCCT } \end{array}$	FUNOFF TITAL	$\begin{gathered} \text { MF ASUCNO HWHOEF } \\ \text { TOT At } \end{gathered}$
$!$	2. 04	2.09	$4 \cdot 50$. 0.65	0,579	0.013	0.592	0,274
2	1.2?	2.5i	$2 \cdot 79$	-1.40	0.201	$0 \cdot 0$	0,20:	0. ${ }^{54}$
3	8.39	2.13	4.89	3.00	0.283	$\therefore 2,381$	$3 \cdot 2.64$	4.3 2 ¢
4	1.69	$4 \cdot 3 \pm$	$3 \cdot 7 \geq$	-3.05	0.435	0.001	0,425	$0 \cdot 2=1$
5	7.30	2.63	$4 \cdot 74$	3.04	0.750	0.913	1. 563	, 5 5 5
6	8, a*	2.65	$5 \cdot 56$	0,10	0.988	4,678	$5 \cdot 6.57$	- $5 \cdot 075$
7	5.? 5	5. 4	4.78	-0.52	0.636	0.054	0.740	0.924
θ	9.33	4.64	$5 \cdot 64$	0,42	1.065	3,246	Q, 31:	4.576
9	5.52	3.48	5.48	0,60	0.950	0.487	97438	1.67a
10	10.49	3.65	$5 \cdot 60$	0.84	1.050	4.94 .3	5.993	5.957
11	7.83	1.52	$5 \cdot 77$	-0.74	1.071	: 9.955	3,056	7.237
12	2.16	2.07	5.44	$-1 \cdot 55$	0.957	$0.63 ?$	1.637	1.270
$\begin{gathered} T r T A L \\ \operatorname{SF} \\ A V A G E \end{gathered}$	65.75	36. 89	$4 \cdot 92$	0.0	9.626	99,264	28.386	30.35
ALL VAt	AQF I	CHES						

TABLE 2.11 UPPEP TAYLOF GFEFK • 170

$\cdots \mathrm{n}$	OAIN	= 7	STOF	OELSTCO	$\square A S E$	$\begin{aligned} \text { PF I } \\ \text { DIFTFET } \end{aligned}$	$\begin{aligned} & \text { DUNOF }= \\ & \text { TOTAL } \end{aligned}$	$\begin{gathered} \text { MEASuDCD aumOFe } \\ \text { TOT, At } \end{gathered}$
*	4. ${ }^{\text {a }}$	1.6:	5. $5 \cdot 9$	$0 \cdot 44$	1.039	$?, 930$	2, 86	2.97?
z	2.37	2.19	5.08	-0.46	0.720	0,219	0.738	1.177
7	$7.0 \cdot$	2.20	$5 \cdot 15$	1.43	0. 345	- 2,55a	3.398	3,577
A	0.14	$3 \cdot 98$	3.65	-4.2.8	0.445	0.00:	0.445	0.345
5	6,09	2.31	1. 1.7	3.47	0.148	0.127	0,275	0,354
6	6.84	5.25	$5 \cdot 24$	0.36	0.939	0.393	1.332	- 0, 070
7	7.00	4.80	5.52	-0.01	0,301	1.236	$2 \cdot 2: 7$	2.393
A	5.60	4.32	5.49	-0.19	0.974	0.589	1. 56?	! , : 4
9	$5 \cdot 17$	$4 \cdot 57$	4.3e	0.06	0.522	0,0:9	0.540	0.750
20	$4 * 4{ }^{\prime}$	3.02	$5 \cdot 45$	-0.?	0.950	0.580	1,649	. 469
11	0.05	2.be	$3 \cdot 37$	2.92	0,326	$0 \cdot 0$	0.326	0.240
12	$0.4 ?$	1.2?	1.52	0.90	0.110	0,0	0.110	0.153
$\begin{gathered} T O T A L \\ \cap V=P A G E: \end{gathered}$	50,30	38,11	4.32	-3.28	7.9:7	7.645	$\pm 5 \times 562$	* 5,050

ALL VALUFS ARE IN INCHES

TAELE 2.:2 UPPEF TAYLOP CPE゙EK 107,

Mr	QAIP	$E T$	$5 \operatorname{TOR}$	DELSTOP	$B A S E$	$\begin{array}{r} \text { ODIDICTED } \\ \text { DIOECT } \end{array}$	RUNGFF TMTAE	$\begin{gathered} \text { AF ASIJOER DUAMG: } \\ \text { TOTAI } \end{gathered}$
3	0.10	0.60	0.91	-0,50	0.070	0,0	0,073	0.13
2	3,4?	1.55	$\pm .40$	1,82	0.100	0.003	0, 100	0, $21+$
3	1, 27	2.51	1.66	.1 .36	0.12u	0,0	$0: 20$	0×14
4	0,37	1-10	0.60	0.79	0.050	0.0	0.066	$0.0 \rightarrow \rightarrow$
5	5.5:	$3=17$	2.48	2.20	0.128	$0.0: 7$	$0 .: 45$	0.190
ϵ	:2,0:	5.53	4.54	$3 \cdot 32$	0.756	2.296	3.052	- 2.7P9
7	6.95	4.42	5.70	0.10	1,026	1.292	2.378	2.50°
9	6,13	3.99	5.77	. 0.01	$1=125$?, 055	2,194	2.323
5	6.00	3.62	5.60	$\cdots 1.87$	1.027	3.216	$4 * 24.3$	3.973
10	5.00	$3 \cdot 10$	4.83	1.15	0.709	0,039	0.747	0.983
11	0.73	2.62	4.25	$-2 \cdot 37$	0.513	$0.0: 6$	0.529	0.307
12	1.70	2.04	2.65	-0.54	0.205	0.0	0.205	0.202
$\begin{gathered} T \cap A L \\ A V=O A G E \end{gathered}$	49.36	34.34	$3 \cdot 30$	1.15	5.926	$7: 940$	13.866	*.765

TAELE 2.13 UPPER TAYLOR CREEK AOT?

MONTHLY AND ANNUAL PPECIPITATICN, ET, MCAN STIL MOISTUDE STORAGE (STDR), EHAAGE IA

MO	RAIN	ET	STOF	DELSTCO	BASE	$\begin{array}{r} \text { DFPICTEO } \\ \text { DIGECT } \end{array}$	RUNOFF TOAL	$\begin{gathered} \text { M=ASUPED RUMOF } \\ \text { TOTAL } \end{gathered}$
?	0,25	1.13	1.81	-1.0)	0.129	0.0	0.129	0.16:
$?$	2, 3	1.76	2.15	0.44	0.145	0,0	0.145	$0,: \in 0$
3	$4,5]$	1.7:	1.59	2.47	0.1:3	0.230	0.345	0.15:
4	1.17	3.77	2.42	-2. 20	0.195	0.010	0,205	0.3き?
5	5.07	3.74	1.78	1.21	0.375	0,007	0,142	$0.1 n 4$
6	6.96	4.90	3.82	2.25	0,462	0.757	0,2:5	- 0,003
7	3.75	5.16	3.61	-1.81	0.363	0,04:	0.403	0.350
ロ	10.60	$4 * 17$	2.73	4,71	0.237	1,524	1.810	?.0\%
9	0.83	3.64	$4 \cdot 62$	4,02	0.657	0.547	1.205	-.785
10	: .66	2.62	2.33	$-1,13$	0.174	0.0	0, 74	0.218
$1:$	3, 3:	3.69	$2=21$	1.47	0.164	0.009	0.173	0.1 ± 0
12	1,75	2.18	2.67	-0.64	0.207	0.004	0,212	0.15 .5
	42, 36	36.46	2.65	0,14	3. 034	2.725	5,75e	5,727

ALL. VALUFS ARE IH INCHES

TABLE 2.14 UPORF TAYLDF GREFK 9.97

MONTHLY AND ANHUAL PRECIPITATIGN, ET, MEAN SOIL MDISTUSG STGRAGE (STORI, CHANGO IM SOIL STGOAGE (OELSTQP), DKEDIGTFD RUNOFF (EASF DIFECT.GTAL) AND MEASUFED OUNIFF

ALL VALUES ARE IN INCHES
III. ANALYSES OF STORAGE/TREATMLYT CAPABLLITTES OF A FRESBWATER MARSH

INTRODUCTION

The use of swanps, marshes and available depressions for storage and possible treatment of stormwater runoff has been suggested in recent years. Recent studies have quant fied nutient uptake by marshes and swamps (Shih and Hallett, 1974; McPherson, et al., 1976). The main objective of this chapter is to determine the ability of natural marshes to serve as quantity and quality control areas. For this purpose, the Chandler Siough Marsh is studied iri detail because of availability of previous work and recent data.

DESCRIPTION OF CHANDLER SLOUGH
Chander Slough Marsh is located within the Lower Kissimnee River Basin in Okeechobee County. The study area, shown in Figure 3.1, is the portion of Chander Slough between C-38 and U.S. 98 , the downstream end of a drainage system which includes Gore Slough, Fish Slough, Cypress Stough, Ash Slough and Peat Marsh. The drainage area is approximately 74,000 acres of land dominated by improved pasture.

In order to properly evaluate the attenuation abilities and treatment efficiency of Chandier Slough Marsh, several fundamental hydrologic relationships are determined, particularly the stage-volume-discharge relationshipe. Hydrologic data used for the research include daily mean inflows at the North and South 3ridge stations and daily mean stage record at Chandjer Slough Marsh station, (see figure 3.1 for location). The stage-area-volume relationships in figure 3.2 are derived from transects of Chandler Slough Marsh supplied by the SFWMD.

Since the outlfow from Chandler Slough is not gauged, the stage-discharge relationship, figure 3.3 ,is estimated by ploting receding inflow vs. stage measured at the Chandler Slough Marsh station and fitting these data with a curve. The assumption here is that for slow recession periods, inflow is appoximately equal to outflow. Note in figure 3.3 at stage 29 fect above MSL the inflow is minimai although there are still fluctuations in the stage below this level due to backwater from $\mathrm{C}-38$ and secondary inflows and outflows (e.g., evaporation, seepage). To allow for this fluctuation, zero depth is set at 28 feet above MSL since che stage rarely is below this level, and 29 feet above MSl can be thought of as a "weir" height corresponding to the point at which actual outflow in the marsh begins. The following equation represents the depth-discharge function:

$$
\begin{equation*}
q=21.5(D-1)^{2.1} \tag{3.1}
\end{equation*}
$$

where $Q=$ daily mean outflow, cfs,
$D=$ depth above 28 ft MSL, ft , and
$\mathrm{Q}=0$ when $\mathrm{D} \leq 1$.
These hydrologic relationships are used in the Storage/Treatment portion of the Storm Water Managment Mode1, Haber, et il., 1975, to simulate the hydrology of Chandler Slough Marsh. Verification of these relationships is achieved by comparing measured parameters with predicted parameters, as shown in figure 3.4 for stage in the marsh.

FIGURE 3.2 Stage-Area-Volume relationships for Chandler Slough Marah

FIGURE 3.3 Stage vs. FLOW at chandler slough marsh station

FLOOD PEAK ATTENUATION

Flood attenuation is a function of storage capacity, with greater attenuation related to greater storage copacity. The effectiveness of a marsh in attenuating a given flood peak is related to the available storage (i.e., initial conditions) and the magnitude of the flood event. Also, decreasing the size of the marsh arcas will affectively reduce storage time (residence time), implying, therefore, that a decrease in the amount of attenuation will also occur. In addition, it may be desirable from a quantity and/or quality standpoint to control the marsh's outflow and storage levei. Attenuation factor is defined as the ratio of outflow peak discharge to inflow peak discharge. Therefore, analyses are performed to determine how the attenuation factor is related to the percent of a catchent area in marshes, initial storage, and stage-discharge function.

Since the hydrologic relationships for the marsh are known, it is desirable to keep the marsh area constant and vary the catchment size. In the simulation scheme, all the marsh area is assumed to be at the downstream end of the catchment. Also, to evaluate the effect of a control structure on the marsh outhlow, two additional arbitrary depth-discharge relationships are modeled along with the uncontrolled (existing natural) relationship. Figore 3.5 shows the three cases simulated: 1) uncontrolled outflow, 2) broad-crested weir lengtin 40 feet and weir height at 29 feet above MSL and, 3) broad-crested weir with weir length of 40 feet and weir height at 30 feet above MSL.

The motivation for the attentation analysis is the relationship of Barnes and Golden (1966) for attenuation of the mean anmal flood. They derive a curve for the reduction of the mean annual lood discharge in relation to the percent of the drainage area in lakes and swamps by comparing discharge records for drainage basins containing lakes and swamp with otherwise equivalent basins.

Since the entire Lower Kissimmee Basin has discharge records only at tho upper and lower boundaries, it would be necessary to simulate on a long-term basis the hydrology of a lateral tributary in the Lower kissimnee Basin to define the mean annual flood event for that lateral watershed. This could be accomplished by continuous simulation using HLAND, (Huber, et al., 1976; Bedient, 1975), although this would require simulating many years just to find the average mean anmual flood.

Instead, a simplor method is cmployed to estinate the mean annual flood hydrograph. The method involves certain assumptions about the flood peak, the volume of the event, and the geonetry of the lydrograph.

The flood peak is taken from the relationship of Barnes and Golden for the amamumean amual flood poaks within the region which inchudes the fissmmee River Basin:

$$
\begin{align*}
& Q_{\text {reak }}=285 \mathrm{~A}_{\mathrm{d}}^{0.5}, 10 \leq \mathrm{A}_{\mathrm{d}} \leq 100 \tag{3,2}\\
& \text { where } Q_{p e a k}=\text { mean annual flood peak, cfs, and } \\
& \hat{d}_{\mathrm{d}}=\text { drainage area, sq. miles. }
\end{align*}
$$

This relationship is derived fron data up to 1.961 and is generalized for a large region, not just Chandler Slough drainage area. In addition, the mean annual flood peak may be higher now because of increased developnent in the basin. An example of how agricultural development influences discharge in the neighboring Taylor Creek Watershed is illustrated in figure 3.6.

The Barnes and Golden relationship provides the magnitude of the flood peak but says nothing about the total volume of the flood event nor the time to the peak. As the size of the catchment increases, both of these parameters increase.

Since the return period for the mean annal flood is 2.33 years, the maximum 24 -hour rainfall to be expected once in 2 years is assumed to be the event which produces the mean annual flood. Actually, the 2 year maximum $24-$ hour rainfall may not be related to a flood with a simular return period, since the magnitude of a flood is controlled, to a large extent, by antecedent conditions. For the Chandler Slough area, the maximum 24 -hour rainfall to be expected once in 2 years is 5.0 inches (Hershfield, 1961). This represents the maximun point value. The ratio of area rainfall (i.e., spatially averaged rainfall) to point to point rainfall for durations of 24 hours is between 0.93 to 0.99 for areas in the range of interest in this analysis (Eagleson, 1970). The area rainfall producing the mean annal flood is thus assumed to be 0.96 times the point rainfall.

To estimate the volume of rumff from the rainfall of 4.8 inches, the Runoff Curve Nunber Method (SCS, 1972) is used. Using the antecedent moisture conditions with the highest runoff potential, the Runofe Curve Number Method gives the runoff equal to 3.9 inches over the drainage area excluding the marsh area. Hence, the runoff which produces the flood event is estimated to be about 4 inches per acre, which probably is more extreme than the actual mean anmual flood. To provide a lower bound for the mean annual thood volume, analysis is also performed using total runoff equal to 2 inches per acre. These two volume assumptions are made because data concerned with the return periods of total flood volumes are not available.

As for the time to the peak, $T p$, a dimensionless triangular unit hydrograph figure 3.7, is employed. This hydrograph was developed from a large number of natural unti hydrographs from watersheds varying widely in size and geographical Iocations (SCS, 1972). Since the total flood volume and Qpeak are know for a given catchment size and 37.5% of the volume is under the rise limb of this unit hydrograph, T_{p} is as follows:

$$
\begin{equation*}
T_{p}=2(.375 \mathrm{Vol}) / Q_{\text {peak }} \tag{3.3}
\end{equation*}
$$

where Vol $=$ total flood volume.
Knowing the peak and assuming the above mationed characteristics, inflow hydrographs can be determined for various ratios of marsh area to catchment area. Two examples are shown in figure 3.8. Note that as the fraction in marsh, A, deceases (i.e., catehmem area increases) the total volume and time to peak increase.

These inflow hydrographs are not necessarily related to the "true" mean annual flood except that they both share the same peak. Nevertheless, the hydrographs allow for a consistent evaluation of attenuation under various conditions.

DIMENSIONLESS CURVILINEAR UN AND EQUIVALENT TRIANGULAR HYDROGRAPHS (from SCS National Engineering Handbook-Sec. 4 Hydrology 1972)

FIgure 3.9a MAXIMUM FLOOD PEAK ATTENUATION VS. PERCENT AREA IN MARSH

FIGURE 3.9 B MAXIM..M FIOOD PFAK ATTFNIINTION

Since greater storage implies grater attemation, maximum attenuation occurs when the initial depth of the marsh is zero. Maximun attenuation will rarely be realized since a major flood will rarely occur when the marsh depth is zero. For the marsh depth to be zero, the groundwater levels within the drainage basin would also have to be low. For the three cases modeled, maximum attenuation, as it relates to percent of catchment in marsh, is shown in figures 3.9 a and 3.9 b . The arrow represents the present condition of Chandler Slough-Cypress Slough Watershed with 18 percent of the catchment in marshes, which is less than half the area in marshes in 1958 . At the 18 percent level the maximum attenuation factor (ratios of outflow peaks to inflow peaks) for the three cases are about. 0.22, 0.14 and 0.0 (total capture), respectively, with the 4 inch per acre event and 0.02 , 0.03 and 0.0 , respectively, with the 2 inch per acre event. The conclusion drawn from this analysis is that control structures increase the single event attenuation achieved by the marsin although the control structures modeled lose their effectiveness when the marsh area decreases below about 5 percent.

Figure 3.10 shows the effect of initial condition of the marsh on its ability to reduce the flood peak for the present condition. As initial depth increases, available storage decreases and the attenuation factor increases. This figure also shows results for a more conservative estimate, 2 inches per area, of runoff. Here again, it is evident that a control structure with a gate is advantageous, since the marsh stage could be regulated to increase the marsh's ability to reduce the peak discharges. This may only consist of drawing down the marsh stage at the beginning of the wet season which may also be advantageous from a water quality standpoint.

Evaluation of treatment efficiency

Nass Loading

Mass loadings to and from the Chandier Slough Marsh are calculated in order to determine the effectiveness of the marsh in nutrient removal. A water quality sampling progran for the Chandler Slough area was initiated by the FCD in 1974 (Federico, et al., 1978). SFWMD personnel indicate that 1975 data are the most complete with regard to sampling around major runoff events, hence, 1975 is chosen co evaluate removal efficiency. Loadings for 1976 are also calculated although samples were not taken during May, the beginning of the 1976 wet season. Although a wide range of chemical parameters were sampled, only total phosphorus and chloride ion are included in the analysis discussed below, the former because of its significance in the entrophication process and the latter because it is a conservative substance. Siace nulfow from Chandier Slough is not gauged and therefore must be generated by simulation, the conservative chloride ion serves as an indicator of the accuracy of outflow prediction. In addition, tatal influw is taken as the sum of the two major tributaries, Chander Slough at North Bridge and Cypress Slough at the South Bridge. All additional inflows and outflows, such as evaporation, seepage and rainfal, are assumed to be negligibie and/or offsetting. More detailed water chenistry investigations in Chandler Slough Marsh, including description of sampling procedures are in Federico et al., 1978.

Water chemistry sampling locations include both North and South Bridges and a station at $C-38$ (see figure 3.1). Concontration data are shown in Table 3.1 for 1975 and 1976. Data are intermittent, therefore, concentrations for days without data were generated by linear interpolation between the previous and next availabie data points. Knowing the concentrations of the parameters and the measured inflows and predicted outflows, mass loadings to and from

Chandler Slough Marsh are found. Tables 3.2 and 3.3 show the monthly sumary of intluxes and efflumes of Elow, total phosphorus and chloride ion in 1975 and 1976, respectively. The 1975 and 1976 annual precipitation totals (measured at Basinger) are approximately 33% and 1% below the mean amual precipitation of 52 inches (SCS, 1973).

The overall removal of total phosphorus is 6.73 percent indicating that the marsh in 1975 has low effectiveness in removal of this nutrient. There is an apparent removal of 4.97 percent of the conservative chloride ion which suggests dilution by the presence of adiditional inflows and thus even a lower actual removal of total phosphorus than indicated.

Pollutographs of inflow and outflow, figure 3.11, illustrate the "first flush" effect during June - July of 1975, where undoubtedly much of the previous year's deposition of total phosphorus is released. During the remaining portion of the wet season and in 1976 there is a net reduction in total phosphorus between the inflow and outflow loads. The pollutograph peak in June corresponds to the daily mean inflow and daily mean outflow hydrograph peak, which is the largest daily mean flow of 1975. During this event, detention times are on the order of one day and average velocities are on the order of $0.1 \mathrm{ft} / \mathrm{sec}$, assuming a uniform velocity distribution across the marsh cross-section. From a water quality standpoint, additional attenuation of the above mentioned peak would be desirable since detention times would increase and velocities decrease, possibly decreasing the release of total phosphorus.

The 1976 calculations indicate an 8.60% net removal of chloride ion and a 34.76% net removal of total phosphoras. The high net removal of total phosphorus is suspect since the first wet season samples were not taken until June 1.1 and abute 25% of 1976 rainfall (measured at Basinger) occurs in May. In addition, about 17% of the measured inflow into Chandler Slough marsh occurs priar to these first samples. The question arises: "Is there a period in 1976 of net phosphorus release similar to the 17 day period in June and july 1975?" Intlows similar in magnitude to the "flushing" inflows of 1975 begin on June 10 , 1976. Figure 3.12 shows a comparison between daily mean inflows and daily mean stage for the similar events in 1975 and 1976 where both periods incluce the largest daily mean inflows of each year. During the 1976 event and for the remainder of 1976 the marsh acts as a phosphorus sink (21% net removal between June 10 and June 16). This figure illustrates the importance of antecedent conditions (i.e., stage) on the treatment efficiencies of the marsh. The marsh state prior to the 1975 peak is about 0.8 ft. lower than the stage prior to the 1976 peak. In 976 , with the higher stage, an aditional 180 acres are inundated.

If a major flushing event occurs in 1976 it would lave to occur prior to June 10. About 8260 acre-ft of inflow to the marsh is recorded between May 17 and June 9 which is equivalent to about 1.5 inches of runoff over the drainage areas. The largest disily mean inflow during this period occurs on June 1 and is 726 acre-ft which is only one third the magnitude of the largest daily mean inflow that produced to 1975 net release. If this inflow is assumed to be adequate to flush the marsh and the most extreme conditions are assumed, e.g., all of the May 1976 import (2.20 metric tons) and all of the 1975 deposition (2.33 metric tons) are released, the net removal of total phosphorus for 1976 would 17.3 percent.

Table 3.1 Total Phosphorus and Chloride Ion Concentrations for Chandler Slough Marsh, 1975-76.

Not Inciuded

Table 3.2 Sumary of Flow, Total Phosphorus and Chloride Ion Imports and Exports for Chandler Slough Marsh 1975

Month	$\begin{gathered} \text { Elow } \\ (\operatorname{acre-ft}) \end{gathered}$		Total Phosphorus (metric tons)		Chloride Ion (metric cons)	
Jaw.	30	80	0.00	0.00	2	2
Feb.	30	40	0.00	0.00	3	3
Mar.	0	0	0	0	0	0
Apr.	0	0	0	0	0	0
May	0	0	0	0	0	0
June	8410	6720	3.75	5.09	190	120
July	9590	9880	4.40	4.05	290	291
Nug.	2590	3390	1.1 .4	0.69	67	98
Sept.	5740	4990	1. 43	0.84	198	164
Oct.	13990	12550	2.68	1. 80	54.1	466
Nov.	6400	8760	1.31	L. 22	234	298
Dec.	110	410	0.01	0.04	3	15
TOTAL	46890	46730	14.72	13.73	1.528	1452
Net Cha	ge -160		-0.99		-76	
\% Net	moval 0.35		6.73		4.97	

[^2]Table 3.3 Sumary of Flow, Total Phosphorus and Chloride Ion Imports and Exports for Chandler Slough Marsh 1976

[^3]

Water quality simbation is necessary to evaluate the effects of altering the hydrologic relationships on the marsla's ability to serve as a water quality control unit. The Storage/Treatment block of swm (Huber, et al., 1975) is used to simulate Chandler Slough Marsh. Plug flow is assumed with nutrient removal following a simple first-order docay relationship.

Since the hydrology of Chander Slough Marsh has already been calibrated in the mass loading and attenuation analyses, the calibration effort is directed at determining the first-order decay coefficient, K. It is realized that actual removal (and release) mechanisms involved complex interactions among physical, chemical and biological pathways but the first-order decay relationship will have to suffice since knowledge of the above pathways is liaited and data are restrictive. The mass loads for total phosphorus derived from measured concentration data are assumed to represent the "actual" loads. Inflow loads to the model are equal to the combined loads calculated at the North and South Bridges; predicted outflow loads are then compared with "actual" outflow loads using various values for k. In addition, k is assumed to be temperature dependent and is expressed as

$$
\begin{equation*}
\mathrm{K}=\mathrm{K}_{20}(\mathrm{~T} .047)^{\mathrm{Te}-20^{\circ}} \tag{3.4}
\end{equation*}
$$

where $\mathrm{Te}=$ nean monthly temperature, ${ }^{\circ} \mathrm{C}$, and

$$
\mathrm{K}_{20}=\text { reaction coefficient at } 20^{\circ} \mathrm{C}, \mathrm{hr}^{-1} \text {. }
$$

This allows the first-order decay coefficient seasonal variation.
A four month period commencing on August 1, 1.975 is chosen as the calibration period because the marsh acts only as a phosphorus sink, apparent removal of chloride ion is small (1.3%) and the temperature is variable. Net release of total phosphorus is not allowed in the model.

Table 3.4 shows the pounds of total phosphorus released using K_{20} equal to $0.008,0.007$, and 0.006 per hour and the "actual" release during the calibration period. A K_{20} of 0.007 per hour (0.168 per day) yields the closest agreement witl the "actual" release total. Therefore, this value is chosen to represent the first-urder decay coefficient at $20^{\circ} \mathrm{C}$ for subsequent simulations of Chandler Slough Marsh. The mean monthly water temperatures for the kissimmee-Everglades area between May and November range between 28.0 and $22.0^{\circ} \mathrm{C}$ and average about $25^{\circ} \mathrm{C}$ (Shih and Hallett, 1974). Hence, the average wet season K is about 0.2 day ${ }^{-1}$. Comparisons between predicted and "actual." monthly loads during the calibration period are presented in Table 3.5 .

The effects of controlling the outflow of Chandler Slough Marsh are evaluated using 1976 inflow and loading data. Simulations are performed using the broad crested weir formula as the depth-discharge relationship. Also, the predieted net removal of total phosphorus for 1976 with the "naturat" depthdischarge relationships is 27.38%. Figure 3.13 sumarizes the results using various combinations of weir lengtis and weir heights. Percent removal, average stage and maximum stage for the 1976 wet season are plotted as functions of the weir parameters. This figure illustrates the trade-offs between flood control and water quality considerations. For instance, the highest weir height results in longer detention times and thus higher nutreint removal, but the higher stages result in more frequent inundation of surrounding areas.

Table 3.4 Predicted and actual release of total phosphorus (August-November, 1975) with various values of K_{20}.

$\begin{gathered} \mathrm{k}_{20}^{\mathrm{a}} \\ \left(\text { hour }^{-1}\right) \end{gathered}$	Release Predict	sphorus Actual ${ }^{b}$	Percent Error
0.008	9630	10030	-3.99
0.007	10060	10030	+0.30
0.006	10550	10030	+5.18

Table 3.5 Comparison between predicted and actual monthly release, of total phosphorus (August-November, 1975) with $\mathrm{K}_{20}=0.007 \mathrm{hr}^{-1}\left(0.168 \mathrm{day}^{-1}\right)$.

Month	Release of Total Phosphorus (ibs.)		Percent Brros	```Mean Monthly }\mp@subsup{}{}{C Temperature ('0}\textrm{C```
	Predicted	Actual ${ }^{\text {b }}$		
August	1560	1520	2.63	26.5
September	1880	1850	1.62	25.0
October	3790	3970	-4.53	22.0
November	2830	2690	5.20	22.0

$a K=K_{20}(1.047), T-20^{\circ}$
${ }^{\mathrm{b}}$ Actual vaiues are derived from intermittent concentration values and predicted (SWMM) outElows.

[^4]

Detention times for Chander Slough Marsh are apprioximated by:

$$
\begin{align*}
\mathrm{T} & =\mathrm{STOR} / \mathrm{Q} \tag{3.5}\\
\text { where } \mathrm{T} & =\text { detention time, sec, } \\
\text { STOR } & =\text { volume in storage, ft }{ }^{3}, \text { and } \\
\mathrm{Q} & =\text { discharge rate, cfs. }
\end{align*}
$$

Equation 3.5 represents the "instantaneous" detention tine for a complete mix storage unit. Actual detention times, computed by the SWMM simulation using plug flow, are the number of time steps a plug or fraction of a plug remain in the storage unit. Nevertheless, the instantaneous detention time is useful to approximate the detention time because STOR and Q are expressed as functions of depth or stage.

The volume-depth relationship, illustrated in figure 3.2 , is expressed as:

$$
\begin{equation*}
\text { STOR }=3.12 \times 10^{7}(0)^{1.264} \tag{3.6}
\end{equation*}
$$

$$
\text { where } D=\text { marsh depth, ft. }
$$

Note that zero marsh depth is at about 28 feet above MSL.

The discharge-depth function, equation 3.1 , for the present conditions (i.e., uncontrolled, no structures) is as follows:

$$
\begin{equation*}
Q(c f s)=215(D-1)^{2.1} \tag{3.1}
\end{equation*}
$$

The detention time, in days, \mathbb{F} or Chandler Slough Marsh, substituting equations 3.1 and 3.6 into equation 3.5 , is thus approximately:

$$
\begin{equation*}
T=1.68(0)^{1.264} /(D-1)^{2.1} \tag{3.7}
\end{equation*}
$$

where D is greater than 1 foot.
For the fixed weir outlet, the detention time is:

$$
\begin{equation*}
\mathrm{T}=2.70 \times 10^{12} \mathrm{D}^{1.264} /[3.33 \mathrm{WEIRL}(\mathrm{D}-\mathrm{WEIRHT})] \tag{3.8}
\end{equation*}
$$

where WIIRL = weir length, Ft and WEIRET = weir height, ft.

Detention times from equations 3.7 and 3.8 as they relate to depth for Chandler Slough Marsh are shown in figure 3.14 for present conditions and for several fixed weir outlets.

SUMMARY

The fraction of marsh ared to catchment area determines the amount of flood attenuation. Fixed outlet structures can increase single event attenuation although they change the stage frequency thereby altering available storage. An outflow structure, such as a gated spillway, allows for stage regulation. The attenuation analysis assumes all marsh area is downstream of the catchment. Scattered upland detention areas may achieve greater atteruation.

FIGURE 3.14 Detention Times vs. Depth of Chandier Slough Marsh.

The mass calculations indicate Chander Slough Marsh removes 4.97% and 8.60% of chlorides in 1975 and 1976 which suggests that there are additional inflows into the marsh other than the Chandler Slough (North Bridge) and the Cypress Slough (South Bridgc) drainage systems.

Net total phosphorus removal for 1975 is between 2.1% and 6.7% with an "uptake" of as much as 2.3 metric tons. For 1976 net total phosphorus removal is between 17.3% and 34.8% with an "uptake" of between 6.3 and 7.8 metric tons.

There is considerable room for error in these water quality analyses. Since only about 30 days of concentration data are available for each wet season (1975 and 1976) with fewer (less than five) data points for the remainder of each year. Concentration values are estimated for the intermittent days by interpolating between data points.

The wet season equivalent first order decay coefficient for total phosphorus is found to be on the order of $0.2 \mathrm{day}^{-1}$ which is equivalent to about 18% removal of total phosphorus per day of detention in the marsh.

The marsh in its present state may periodically release a large portion of accumulated phosphorus, as is the case in 1975. "Flushing" of the marsh is speculated to occur due to large inflows after a period of low water (i.e., large portions or all of the marsh area are dry). If this is the case, stage regulation with an outlet structure could minimize marsh dry out and possibly reduce release of phosphorus by increasing the hydroperiod. For instance, if the marsh depth and weir height are 2 feet and inflow ceases, it will take about 3.4 months and 5.1 months to reduce the depth to 1.0 foot and 0.5 foot, respectively, assuming a constant net loss of 3.5 inches per month.

The flushing of the marsh provides a means by which deposited material is removed. By altering the present cycle with an outlet structure, increased buildup of material may occur. A more effective method of reducing nutrient release into $C-38$ is probably to atilize upland marshes and sand ponds as control units in conjunction with the downtream marsh. By detaining surface runoff, these units will increase detention time and change the regime of much of the runoff from direct to subsurface pathways, thereby reducing inflow peaks and nutrient concentrations to the downstream marsh.

Fixed weir outhet structures are simulated for 1976 inflow and mass loading data. Their effects on phosphorus removal, average, and maximum wet season stage for 1976 are shown in figure 3.13. Increasing the weir height of the outlet structure will improve phosphorus removal by increasing storage and detention times. Also, phosphorus removals increase as weir lengths decrease. Both increasing the weir height and decreasing the weir length will increase the average and the maximum stage. For example, with a weir length and weir height of 100 ft . and 2 ft ., respectively, the net 1976 total phosphorus removal is about 40% while the average and maximun 1976 wet. season stages are 30.45 and $3: .85 \mathrm{ft}$. above Mhl. But with a weir Jongth and weir height of 150 ft . and 1.5 ft ., respectively, the net 1976 total phosphorus removal is about 30%, white the average and maximum 1976 wet season stages are 29.86 and 30.95 ft . above MSL.

The net total phosphorus removal predicted by $S W M M$ is $27,4 \%$ and the average and maximum stages are 29.68 and 30.90 ft , above MS], for the 1976 wet season with natural outflow from Chander Slough Marsh.

Chapter II

```
BF = Baseflow for entire watershed (cis):
```

COET = Fraction of surplus water remaining on land per day
DWL = ET depletion coefficient (mal).
$H_{t}=h_{S}+h_{G W}+$ arbitrary datman at tibe t (fa).
${ }^{h_{G W}}=$ Daily mean depth to groumbater mable (ft).
$h_{o}=$ Sail depth - ditch depth (ft).
$h_{S}=$ Stream stage measured at Taylor Creek ar U.S. Uty. 441 (ft).
$h(x)=$ Height of phreatic surface above imperncable lager ia distance x
between parallel ditches (it).
$\mathrm{K}, \mathrm{K}^{\prime}, \mathrm{K}_{\mathrm{l}}, \mathrm{C}=$ Constancs.
$k=$ Saturated indranlic conductivity (Jength/time).
$q_{t}=$ Daily mean discharge at time $t(c i s)$.
$S=$ Standard deviation.
$S M=$ Maximum suld mojsture storage (inches).
StPU = Average soid moisture storage level for the enthe watershed (inches).

Chapter III.
$A_{d}=$ Drainage Area (nile ${ }^{2}$).
$D=$ Depth of Ratsh above 28 At . MSL (IG).
$\mathrm{K}=$ First-order iecay coefticiont (time ${ }^{-1}$).
$\mathrm{K}_{20}=\mathrm{K}$ at $20^{\circ} \mathrm{C}$. (ime ${ }^{-1}$).
$\mathrm{O}=$ Waily mean ont low (cis).
$Q_{\text {peak }}=$ Mean anamal Plood peak (chs).
SOR = Volume in storage (rt ${ }^{3}$).
$\mathrm{T}=$ Decontion Ltme
$T_{e}=$ Mean monthay tomperature (${ }^{\circ} \mathrm{C}$).
$T_{p}=$ Time to peak of rlood event.
Vol $=$ Tocal thood volume (Et ${ }^{3}$).
WETRHT = Weir heip:it (ft).
WEIRL = Weir length (ft).
$X=$ Area in marshes/total dranage area.

1. Agriculturai Research Servico, Ambth Report (s), Soil Water Conservation Research Division, Southern Branch, Fort Lauderdale, Fla., Field Station, 1956-1975.
2. Barnes, H.H., Jr., and H.G. Golden, "Magnitude and Frequency in the United States," U.S. Geologica Survey Water Supply Paper 1674, cart 2b, 1966.
3. Bear, Jacob, DVnandcs of Luids in Parous Media, Americam Elsevier Press, 1972 .
4. Bedient, P.B., "Hydrologic Land Use Ineractions in a Florida River Basin," Ph.D. Dissertation, Department of Enviromental Sciences, University of Florida, Cainesvilie, 1975.
5. Bedient, P.B., W.C. Huber, amd J.E. Hanmey, "Modoling Gydratogic-mand Use Interactions in Fiovid. " Fed Con: , on Bnviromontal Modeling \& Simalation, Cincimmati, Onio. April 1976.
6. Crawford, N.h. and R.k. Linctey, Tho Stanford Watershed Model IV, Techaical Report 39 , Dept. of Civ, Embimoring, Staford University, 1960.
7. Division of State Planing, 1 ha R Report ou the Special profect bo prevent Eutrophication of Lake Okeechobee, Dlorida Depariment of Administration, Tallahassee, 1976.
8. Eagloson, P.S., Bgams, butology, HoGraw-ifil, Now York, 1970.
9. Federico, A.C., J.E. Nijleson, P.S. Milar, and M. Rosen, "Environmental Studies in thehandler Slumh Watmened", South Elorida Water Management District, "Draft", March 1978.
10. Henderson, F.M., Open Chamel Flow, Mackíllat, New York, 1966.
11. Horghfield, D.M., "Rainfall Prequency Athas of the United States fot purations from 30 Ninutes to 24 Hours and keturn Periods from 1 to 100 Years," U.S. Weather Bureai Technical Report 40, May 197.
12. Huber, W.C., J.P. Heaney, M. A. Medina, W.A. Peltz, Fi. Sheikh, and G.F. Smith, Storn Watet Mamagement Wodel: User" B Manual Version IL, PPs-670/2-75-017, Mareh 1975.
13. Hubew, w. C., J.P. Heaney, B. B. Badient, and J.P. Bowden, Bnvironmental Resources Mandgement Shudes dn the Kissiame River Basin, ENV-05-76-2, Departnent of Environmental Engineering Scionces, University of Florida, Ganesville, 1976.
 Ilorida," USGS Water Supply paper 225 , Packer, G.G et al., eds, 1955, pp. 511-570.
 McGrab-HL11 Book Co., Now York, 1975.
14. Mopherson, B.F., E.G. Whlicr am A.C. Natraw, Nitrogen and Phosphorus uptake in the Everglades Conservation Aron, Ftorda, with Special Reference to the Effects of Backpuming Runof, WR1 76-29, U.S. Geological Survey, Tallahassee, 1976.
15. Shin, S.F. and D.W. Hallet, Jmact of umand Marsh on Water gality, Preliminary Report, Central and Southem Florde Food Control District, West Pala Beach, Florida, 1974.
16. Sofi Conservation Service, National Hagineering Bandbok: Section 4, Hydrology, U.S. Departinent of Agricultare, Rasingeton, D.C., 1972.
17. Soil Conservation Service, Berut for Kiesimeo-Everglades Area, Plorida, U.S. Dept. of Agric., Gainesville, Florida, 1973.
18. Thomehwaite, C.W. and J.R. Nather, "The Water Bainnce," Dexel Institute of Technology, Publicatons in Climatology, Centerton, N.J., 8(3), 1955.
19. Thornthwate, C.W. and J.R. Mather, "instaretions and Thbles for Conputing Fotential Evapotranspiration and the Water Balance," Droxel Institute of Techology, Pubtications in Climatology, Centerton, b.j., 10(3), 1957.
20. U.S. Dept. of Agriculture, UspAh-70, Model of Waterahed kiydrology, Tech. Bull. No. 1435, Washington, D.C., 1970.
21. Viessman, W., t.E. Hambagh, and J.w. Knapp, Introduction to Hydrology, Intext Efucational Publishers, New York, 1972.

APGNOLX B

Measured and Predicted hydrographs Upper Taylor creek 1957-1961 and 1969-1973

-

㤟

APPCNDIX C .

PROCPDURES TO CALCULATE SOTL STORAGE PARMALTERS

TOR LSE IN HLAND

TNTRODUCTION

The following procedures are designed to determine the maximum sofl mojsture storages, $\operatorname{SM}(J, K)$, for use in the Hydrologic-Land Use Model, HLAND. $5 M$ values are found as functions of drainage donsities and soil parameters, in lieu of the analogy to the SCS Curve Number procedures (see equation A-5). The depth to the impermeable barrier times the effective porosity is the maximum possible soil storage. Each land use, depending on its drainage fensity, has some fraction of this maximum soil storage. This method uses a steady state Dupuit equation for the free surface between parallel ditches.

Figure $C-1$ shows the idealized representation of the soil cross section. The soil profile is assumed to be homogeneous with respect to porosity, hydraulic conductivity and depth within each hydrologic soil proup. The drainage network is assumed to be paralled with ditch depth and ditch spacing remaining constant for each land use. Parameters vary between hydrologic soil groups (e.g., values for hydrologic conductivities, effective porosities and soil depth are generally highest in SGS Hydrologic Soil Croup A and lowest in Croup b). Although most parameters must be estimated, the method gives relative indications of the effects of drainage densities on soil moisture parameters.

DEFLRITION OF TERMS
$H=$ Depth to impermeable layer (ft.) $=$ Soil depth (ft.).
$N=$ Net average accretion (inches/agy).
$K=$ Hydraulic conductivity (inches/day).
$n_{e}=$ Effective porosity.
$D_{d}=$ Uralnage density (mile/sq. mile).
$\mathrm{L}=$ Ditch spacing (ft.) [teglect ditch width].
$S M=$ Maximum soil moisture scorage (inches).
$\mathrm{d}=$ Ditch depth (ft.).
$h(x)$ Height above the impomeable layer of the stady atate phrentic sutface at distance x from parallel sitch (ft.).
$h_{o}=H-d(E t).$.
$\mathrm{I}_{\text {max }}=$ Ditch length where $n\left(x=\mathrm{L}_{\text {max }} / 2\right)-\mathrm{if}$ (it.).
$\mathrm{CN}=$ Curve number.

PROCEDURES

STEP 1 Detemine representative values fur k, k, and ne for the hydrologic soil group of interest.
$\operatorname{sTEP} 2$ Estinate N, d and D_{d} for the land use of interest. $N=$ average runoff adjusted to the same units as k .

STEP 3 Find ditch spacing, L (ft) where $\mathrm{I}=5280 / \mathrm{D}$.
STEP 4 The steady state equation for the shape of the poreatic surface (Bear, 1972) is as tollows:

$$
\begin{equation*}
h(x)=\left[h_{0}^{2}+N(L-x) x / k\right]^{1 / 2} \tag{0.1}
\end{equation*}
$$

Solving eq. C. 1 for $L_{\text {max }}$ when $h(x=1$ max $/ 2)=H$

$$
\begin{equation*}
I_{\max }=\left[4 \mathrm{~K}\left(\mathrm{H}^{2}+\mathrm{h}_{0}^{2}\right) / \mathrm{N}\right]^{1 / 2} \tag{C.2}
\end{equation*}
$$

STEP 5 If ditch spacing, L, for the land ube js less than or equal to Lmax, then 60 TO STEP 8. If L is greater than $L_{\text {max }}$, then GO TO STEP 6.

STEP 6 Integrate eq. C. 1 from $x=0$ to $x=L_{\text {max }}$.

$$
\begin{aligned}
& I=L_{\max } h_{0} / 2+(K / N)^{1 / 2}\left(h_{0}^{2}+\operatorname{NL}^{2} / 4 \mathrm{~N}\right) \arcsin [A](C .3) \\
& \text { Where } I=f \text { h(} x \text {) dx from } x=0 \text { to } x=I_{\text {max }} \\
& \mathrm{A}=\left(\mathrm{NL}_{\max }^{2} /\left(\mathrm{NH}_{\max }^{2}+4 \mathrm{Kh}_{0}^{2}\right)\right]^{1 / 2} \\
& -\pi / 2 \leq \arcsin [A] \leq \pi / 2
\end{aligned}
$$

STEP 7 Find the average height of the phreatic surface, $h(x)$, when L, L max .

$$
\begin{equation*}
\overline{\mathrm{h}(\mathrm{x})}=\mathrm{I} / \mathrm{L}+\left(\mathrm{I}-\mathrm{L}_{\mathrm{max}}\right) \mathrm{H} / \mathrm{L} \tag{0.4}
\end{equation*}
$$

GO TO SHPP 10.
STEP 8 Integrate eq. C. 1 Frum $x=0$ to $x=L$. (anae as eq. C. 3 but with hax L).
STEP 9 Find the average height of the phrentic surface, $\overline{h(x)}$, when L s $L_{\text {max }}$.

$$
\begin{equation*}
\overline{\mathrm{h}(\mathrm{x})}=\mathrm{I} / 1 \tag{0.5}
\end{equation*}
$$

STEP 10 Determine the maximm soil moistime stotage parameter, Si (inches).

$$
\begin{equation*}
S M=h(x) n_{e} 12.0 \tag{C.6}
\end{equation*}
$$

STEP 1]. Convert SM to curve number form for input jnto HLAND.

$$
\mathrm{CN}=1000 /(\mathrm{sm}+10.0)
$$

EXAMPEE 1

Detemine SM for improved pasture in SCS Mycrologic Soil Sioup C whth the dranage density equal to $1.7 .7 \mathrm{mile} / \mathrm{sq}$. mile.

STEF 1 K is estimated to be 320 inches/day.
n_{e} is estimated to be 0,18 .
H^{e} is estimated to be 5.5 ft .
STEP $2 N=$ average runofe $=0.0358$ incins/dmy. d is assumed to be 3 ft .
$\operatorname{STE} 3 \quad L=5280 / D=450 \mathrm{It}$.
SMEP $4 \dot{L}_{\text {Rax }}=926 \mathrm{ft}$.
STEP 5 L is less than Leax therefore $G 0$ TO STEP S.
$\operatorname{STEP} 9 \quad \mathrm{~T}=1419 \mathrm{Ft}$
$\operatorname{STEP} 9 \quad \overline{\mathrm{~h}(\mathrm{x})}=3.15 \mathrm{ft}$.
SHEP $10 \quad \mathrm{SM}=6.8$ inches.
STEP $11 \quad C N=59$.

EXMULLE 2
Same as example 1 except for unimprovai pasture with dratmge density $=1.7 \mathrm{mi} / \mathrm{mi} .^{2}$
STPP 1 and STEP 2 same as oxample 1.
$\operatorname{STEP} 3 \quad \mathrm{~L}=3106 \mathrm{It}$.
STEP $4 \quad y_{\text {max }}=926 . \mathrm{fe}$.
StBi 5 L is greater than hax therebore of ro Step 6.
$\operatorname{STEP} 6 \quad I=4298 \mathrm{ft} \mathrm{E}^{2}$
$\operatorname{STEP} 7 \quad \mathrm{~h}(\mathrm{x})=5.24 \mathrm{ft}$.

STEP $10 \quad \mathrm{SM}=11.33$ frches.
$\operatorname{STEF} 11 \quad \mathrm{CN}=47$.

[^0]: AHL VALUES ARE IN INCHES

[^1]: ALS．WALUES ARE IN INRHES

[^2]: $a_{\text {inflow }}$ is the sum of North Bridge and South Bridge discharges b computed by SWM

[^3]: ${ }^{a}$ inflow is the sum of North Bridge and South Bridge discharges bcomputed by ShMi

[^4]: ${ }^{C}$ Mean monthly water temperatures for Kissimmee-Everglades area (Shih and Hallett, 1974).

