TECHNICAL PUBLICATION 77-2

June, 1977

PHYTOPLANKTON AND PRIMARY PRODUCTIVITY STUDIES IN LAKE OKEECHOBEE DURING 1974

SOUTH FLORIDA WATER MANAGEMENT DISTRICT

Technical Publication 77-2

Phytoplankton and Primary Productivity Studies in Lake Okeechobee During 1974

bу

Michael L. Marshall

Resource Planning Department South Florida Water Management District West Palm Beach, Florida

June, 1977

TABLE OF CONTENTS

	PAGE
List of Tables	ii
List of Figures	iii
Summary and Conclusions	1
Introduction	4
Materials and Methods	5
Results	8
Discussion	50
Literature Cited	59
Appendix A	61
Appendix B	65
Addendum	69

LIST OF TABLES

<u>Table</u>		PAGE
1	In Situ Primary Productivities by Station for 1974.	11
2	Phytoplankton Observed from 1973 through 1974.	14
3	Phytoplankton Densities and Percentage Composition by Class for 1974.	21
4	Phytoplankton Biovolumes and Percentage Composition by Class for 1974.	24
5	Average Composition and Percentage of Phytoplankton Densities by Station by Class for 1974.	26
6	Average Composition and Percentage of Phytoplankton Biovolume by Station by Class for 1974.	29
7	Regression of Gross Primary Productivity versus Phytoplankton Parameters.	48

LIST OF FIGURES

FIGURE

1	Water Quality and Biological Sampling Stations	
	for 1974.	6
2	Average Primary Productivities for 1974.	9
3	Primary Productivity by Station for 1974.	10
4	Average Phytoplankton Densities by Class for 1974.	20
5	Average Phytoplankton Biovolume by Class for 1974.	23
6	Average Percentage Composition of Phytoplankton by Density by Station for 1974.	27
7	Average Percentage Composition of Phytoplankton by Biovolume by Station for 1974.	30
8-14	Phytoplankton Densities by Class for Station 1-8 in 1974.	32-38
15-22	Phytoplankton Biovolumes by Class for Station 1-8 in 1974.	39-46
23	Average Primary Productivities for 1973 and 1974	51
24	Average Primary Productivities by Station for 1973 and 1974.	52

1. In Lake Okeechobee, two periods of maximum gross primary productivity were observed in 1974. The productivities were 1705 mg C/m³/day in May and 2216 mg C/m³/day in September.

2. The average gross primary productivity for 1974 was 1349 mg C/m³/day. The average productivities for each station were as follows:

Station 1 (north end of the Lake)	1673 mg C/m ² /day
Station 4 (east-central portion of the Lake)	1419 mg C/m ³ /day
Station 5 (mouth of Fisheating Creek)	1278 mg C/m ² /day
Station 6 (south-central portion of the Lake)	1027 mg C/m²/day

3. The highest productivity, 3454 mg $\mbox{C/m}^3/\mbox{day}$, was observed at Station 5 in September.

4. Most of the productivity in Lake Okeechobee was net productivity. Respiration generally accounted for less than 10% and rarely exceeded 20% of the gross primary productivity.

5. The periodicity in primary productivity remained relatively constant from 1973 to 1974.

6. Average gross primary productivity was higher in 1974 than in 1973. Stations near inflows (Stations 1 and 5) had higher average productivities in 1974 than in 1973. Centrally located Stations (4 and 6) showed essentially no differences in average productivity from 1973 to 1974. The largest increase in average productivity (33%) was observed at Station 5. Although some averages were higher, no significant differences were observed between the 1973 and 1974 average productivity means for individual as well as collective stations groupings.

7. A total of 233 species of algae were identified from Lake Okeechobee. A breakdown by algal group is as follows: Blue-green algae (Cyanophyta) 38 species: Green algae (Chlorophyta) 79 species; Diatoms (Chrysophyta, Class Bacillariophyceae) 67 species; Euglenoids (Euglenophyta) 29 species; Cryptomonads

-1-

(Pyrrhophyta, Class Cryptophyceae) 8 species; and Dinoflagellates (Pyrrhophyta, Class Dinophyceae) 12 species.

8. Two peaks in phytoplankton densities and biovolume were observed in 1974. The largest peak in densities (222,061 and 221,760 units/ml) were observed in April and May, respectively). A smaller peak (135,362 units/ml) was observed in August. In terms of biovolume, the August peak (22,598,359 μ^3 /ml)was much larger than the April peak (12,679,851 μ^3 /ml).

9. When phytoplankton populations were analyzed in terms of density, the phytoplankton were dominated by blue-green algae (59%) followed by diatoms (20%), green algae (14%) and cryptomonads (7%).

10. When populations were analyzed on the basis of biovolume, the phytoplankton were dominated by diatoms (41%) followed by bluegreen algae (34%), green algae (12%), cryptomonads (10%), euglenoids (2%) and dinoflagellates (2%).

11. In terms of densities, the spring peak was dominated by diatoms and blue-green algae, whereas, on the basis of biovolume, the spring peak was dominated by diatoms.

12. The fall peak in densities was caused by increases in blue-green algae, green algae, and diatoms. The fall peak in biovolume was caused primarily by blue-green algae.

13. Stations 1, 3, and 5, near inflows, had higher average phytoplankton densities and up to 50% more biovolume than other stations. Stations 6 and 7 at the south end of the Lake averaged about 1/3 of the density and 1/2 of the biovolume of the rest of the Lake stations. Stations near inflows also had higher percentages of blue-green algae (both in density and biovolume) than did other Lake stations. Stations 2,4,6,7 and 8 in the central and southern portions of the Lake had higher percentages of diatoms. 14. The largest algal bloom (189,545 units/ml and 98,979,125 μ^{2} ml) was composed of a blue-green alga, Rhaphidiopsis curvata, Smaller blooms were

-2-

caused by diatoms (<u>Fragilaria pinnata</u>, <u>Fragilaria construens</u>, and <u>Coscinodiscus rothii</u>) at most stations in the spring and fall. A bloom of the green alga, <u>Chlorella sp</u>., was observed at Station 5 in August.

15. Based on the size ranges, the phytoplankton community is composed mainly (estimated 95%) of nannoplankton ($10-50\mu$) with most of the nannoplankton (estimated 85-90%) in the ultraplankton range ($0.5-10\mu$).

16. Peaks in algal densities and biovolume were generally out of phase with those of gross primary productivity.

17. Significant regressions were observed between gross primary productivity and phytoplankton density and biovolume parameters. The strengths of the relationships (as determined by coefficients of determination) were very low for collective stations groupings but moderately high for some individual stations.

18. Significant regressions were observed between certain algal groups (blue-green algae, green algae, and diatoms) and gross primary productivity, but no group showed consistent relationships for each station.

19. The species list presented in this report differs from that presented from the 1973 report (Davis and Marshall, 1975). These differences may be explained by improvements in identification techniques.

20. The periodicity in phytoplankton populations remained relatively constant from 1973 to 1974. The same general pattern in dominance and seasonal succession was observed for both years.

21. Lake Okeechobee exhibits the seasonal patterns and periodicity typical of temperate lakes although the seasonal variation in densities is typical of a tropical lake. Considering primary productivity with these factors, the author concludes that Lake Okeechobee phytoplankton dynamics most closely resemble those of a temperate lake.

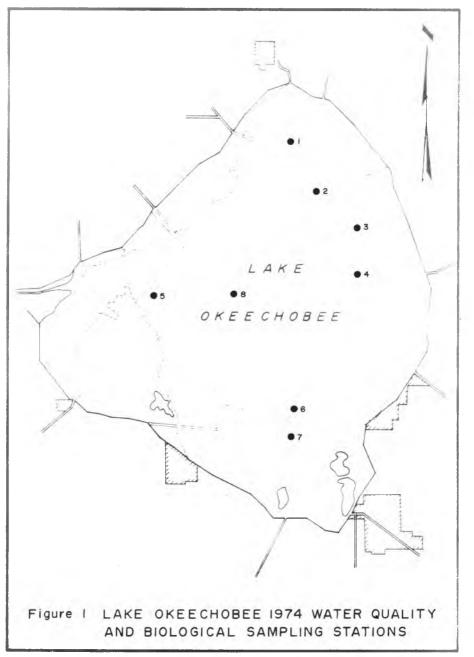
-3-

INTRODUCTION

Lake Okeechobee is the major storage basin for surface water in southern Florida and hence is highly significant in terms of future water management programs. Since 1973, the South Florida Water Management District (formerly Central and Southern Florida Flood Control District) has actively been engaged in limnological studies of Lake Okeechobee. A report published by the District (Davis and Marshall, 1975) produced the first in depth study of the biological and chemical factors affecting the Lake. The present report focuses on phytoplankton dynamics and primary productivity in the Lake during 1974. Seasonal and areal variations in phytoplankton and primary productivity are examined, and an attempt is made to categorize Lake Okeechobee as temperate or tropical in terms of phytoplankton populations and primary productivity.

MATERIALS AND METHODS

Sampling Locations and Frequencies


Figure 1 shows the locations of all stations at which biological data were collected. Phytoplankton samples were taken at Stations 1 through 8 at approximately monthly intervals from January through December 1974. Primary productivity measurements were made at the same frequency at Stations 1, 4, 5, and 6.

Biology Methods

Primary productivity was estimated by the light and dark bottle method (Strickland and Parsons, 1968). Oxygen concentrations were determined in the field by the Azide modification of the Winkler titration (USPHA 13th Ed). Duplicate bottles were suspended vertically from floats, and incubated <u>in</u> <u>situ</u> for six hours at a depth of 0.22 m. This depth was the minimum depth at which bottles could be placed and not have them break the surface during periods of rough water. Bottles were placed in the water between 0900 and 1100 hours. Daily productivities were calculated by multiplication of the observed productivity rate (six hour average) by the day length.

Gross and net primary productivity and respiration were calculated from light and dark bottle data. Gross primary productivity is the total rate at which organic compounds are being produced by cells. Net primary productivity is the rate at which organic compounds are being produced minus losses due to respiration and certain other cellular processes. Respiration is the rate at which organic compounds are being utilized by the cells. A PQ (photosynthetic quotient) value of 1.2 and RQ (respiratory quotient) of 1.0 were used in the productivity calculations. Since estimates of gross productivity by the oxygen method are considered to be more reliable than net productivity estimates

-5-

(Strickland, 1966; Vollenweider, 1969) more emphasis is placed on gross primary productivity in the results and discussion sections.

Phytoplankton samples, 250-300 ml aliquots, were taken from a depth of 0.5 m and preserved in Lugol's solution. Preserved samples were thoroughly shaken and pipetted into 50 ml Wild settling chambers (Wild Heerbrugg Instruments Inc., Farmingdale, L.I., N.Y.). Algae in the samples were allowed to settle overnight and counted by observation with a Wild M40 inverted microscope (Wild Heerbrugg Instruments, Inc. Farmingdale, L.I. N.Y.) at 1875X. At least 100 organisms were counted per sample. Algal concentrations or densities were determined as number of units per milliter (ml). In counting, a colony or filament was considered as one "unit". Cell volumes were calculated using the measurements of individual cells and the appropriate shapes which most closely resembled the alga. The formulae for the following shapes were used in these determinations: cylinder, sphere, cone, oblate spheroid, and prolate spheroid. The volume of each unit was multiplied by the density to determine the biovolume per ml. Diatoms were prepared according to Patrick and Reimer (1966) and mounted in Hyrax.

The following taxonomic keys were used in species determinations: Prescott, 1970; Smith, 1950; Huber-Pestalozzi, 1938-1961; Hustedt, 1930; Drouet, 1968; Drouet and Daily, 1956; Tiffany and Britton, 1971; Patrick and Reimer, 1966; Edmondson, 1959; and Whitford and Schumacher, 1973.

The following persons were instrumental in the identification of various algae: Dr. James B. Lackey for cryptomonads and dinoflagellates; Dr. Francis Drouet for the identification of <u>Rhaphidiopsis</u> curvata; and Mr. David Swift for diatom identification.

-7-

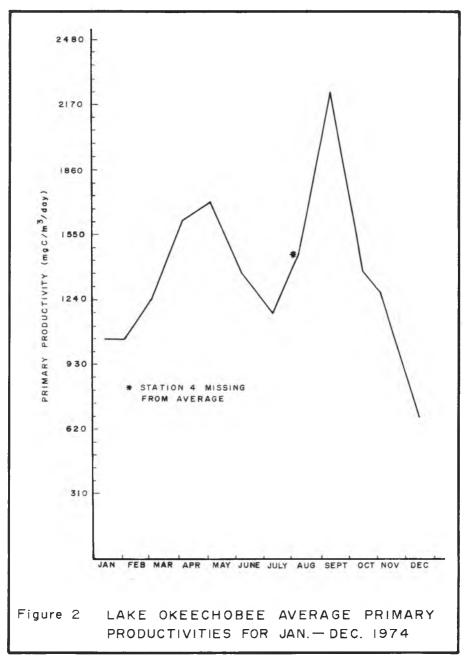
RESULTS

Primary Productivity

Monthly average gross primary productivities for January 1974 through December 1974 are shown in Figure 2. Two peaks in average primary productivity were recorded in 1974. The peak in May was smaller in magnitude (1705 mg $C/m^3/day$) but of longer duration than the September peak (2216 mg $C/m^3/day$).

The average productivities for 1974 by station were 1673 mg C/m³/day at Station 1, 1419 mg C/m³/day at Station 4, 1278 mg C/m³/day at Station 5, and 1027 mg C/m³/day at Station 6. The average primary productivity for all stations in 1974 was 1349 mg C/m³/day.

Primary productivity values for individual stations are shown in Figure 3 and listed in Table 1. In 1974, the spring peak (April) of productivity $(2691 \text{ mg C/m}^3/\text{day})$ at Station 1 showed a smaller increase in magnitude than other stations due to the generally elevated productivity values. The fall peak of productivity (August) was relatively low (2017 mg C/m $^3/\text{day}$).


At Station 4 the spring peak of productivity (May) had a value of 2457 mg C/m³/day. The data collected in the fall was incomplete so that the maximum productivity value could not be ascertained.

At Station 5 in 1974, the spring peak of productivity occurred in March and April. Productivities during these months were 1519 and 1477 mg C/m³/day, respectively. The highest productivity (3578 mg C/m³/day) thus far recorded for the Lake was observed in September 1974 at Station 5.

Productivity data for Station 6 remained relatively consistent throughout the year. The peaks were indistinct with values of 1410 and 1674 mg C/ m^3 /day occurring in the late spring (May) and fall (September) respectively.

Most of the productivity in Lake Okeechobee was net productivity. Net productivity closely approximated the gross productivity and sometimes exceeded

-8-

TABLE 1 Lake Okeechobee 1974

 $\underline{In\ Situ}$ Primary Productivities (Light and Dark Bottle Oxygen Method) Incubated for Six Hours at 0.22 m.

			Trimary Troducervicy (ing com / day)				
		Corre	cted for Day Lengt	:h			
Date	Station	Gross	Net	Respiration			
1/16/74	1	1346	1231	138			
1/16/74	4	1107	937	205			
1/17/74	5	1193	1022	205			
1/17/74	6	539	539	0			
2/6/74	1	1764	1793	0			
2/6/74	4	1099	1157	0			
2/13/74	5	554	467	105			
2/13/74	6	817	613	245			
3/5/74	1	1395	1488	0			
3/6/74	4	1457	1364	112			
3/7/74	5	1519	1240	335			
3/7/74	6	682	713	0			
4/3/74	1	2691	2691	0			
4/3/74	4	1444	1543	0			
4/4/74	5	1477	1444	40			
4/4/74	6	788	821	0			
5/8/74	1	1911	1945	0			
5/8/74	4	2457	2423	41			
5/10/74	5	9 97	825	206			
5/10/74	6	1410	1341	82			
6/6/74	1	1885	1815	84			
6/6/74	4	2060	2025	42			
6/7/74	5	489	489	0			
6/7/74	6	977	1047	0			
7/9/74	1	1291	1257	42			
7/9/74	4	1291	1222	84			
7/10/74	5	559	523	42			
7/10/74	6	1536	1431	126			
8/7/74	1	2017	2017	0			
8/8/74	5	853	750	123			
8/8/74	6	1536	1604	0			

Primary Productivity (mg C/m³/day)

TABLE 1 Lake Okeechobee 1974 (CONTINUED)

		Corr	ected for Day L	ength
Date	Station	Gross	Net	Respiration
9/11/74	1	1773	1674	118
9/11/74	4	1805	1608	236
9/12/74	5	3578	3282	355
9/12/74	6	1674	1510	197
10/15/74	1	1598	1598	0
10/15/74	4	1137	1199	0
10/16/74	5	2060	1998	74
10/16/74	6	769	799	0
11/6/74	1	1533	1420	136
11/6/74	4	1618	1590	34
11/5/74	5	11 07	937	205
11/5/74	6	852	852	0
12/12/74	1	875	821	66
12/12/74	4	137	137	0
12/11/74	5	957	957	0
12/11/74	6	738	766	0

Primary Productivity (mg C/m³/day)

it (due to empirical derivation).

Respiration generally accounted for less than 10% and rarely exceeded 20% of the gross primary productivity. The highest respiration, 355 mg C/ m^3 /day, was observed at Station 5 in September.

Phytoplankton Populations

A listing of the 233 species of phytoplankton found in Lake Okeechobee appears in Table 2. During the study, 38 species of blue-green algae (Cyanophyta), 79 species of green algae (Chlorophyta), 67 species of diatoms (Chrysophyta, Class Bacillariophyceae), 29 species of euglenoids (Euglenophyta), 8 species of cryptomonads (Pyrrhophyta, Class Cryptophyceae), and 12 species of dinoflagellates (Pyrrhophyta, Class Dinophyceae) were observed.

The most frequently occurring blue-green algae were Lyngbya limnetica, <u>Aphanocapsa delicatissima</u>, Lyngbya contorta, <u>Raphidiopsis curvata</u> and <u>Meris-</u> <u>mopedia tenuissima</u>. Lyngbya limnetica was the most common species. This blue-green alga was often found in large numbers, but because of its small size was not extremely important in terms of biovolume. <u>Raphidiopsis curvata</u> formed the most significant "blooms" both in terms of densities and biovolumes.

Green algae were common but rarely in great abundance. Few species occurred often in the samples. The most often observed green algae were <u>Scenedsemus quadricauda</u>, <u>Tetrastrum staurogeniaeforme</u>, <u>Kirchneriella sp.</u> and <u>Chlorella sp.</u> Green algae blooms were never observed except for one localized bloom of <u>Chlorella sp.</u>

The most commonly observed diatoms were <u>Fragilaria pinnata</u>, <u>Fragilaria</u> <u>construens</u>, <u>Melosira granulata v. augustissima fo. spiralis</u>, <u>Fragilaria</u> <u>capucina</u>, and <u>Nitzschia lorenziana</u>. <u>Fragilaria pinnata</u> was the only diatom observed to form significant blooms. Diatoms dominated the other algal groups in terms of biovolume and occasionally in terms of densities.

-13-

TABLE 2

LAKE OKEECHOBEE PHYTOPLANKTON OBSERVED JANUARY 1973-1974

Cyanophyta (Blue-green Algae) Anabaena bornitiana Anabaena sphaerica Anabaena spiroides Anacystis sp. (Gloeothece) Aphanizomenon flos-aquae Aphanocapsa delicatissima Aphanocapsa pulchra Aphanothece stagnina Aphanothece prasina Arthrospira gomontiana Aulosira infuxa Chroococcus planctonica Chroococcus turgidus Coccochloris sp. Coelosphaerium naegelianum Coelosphaerium sp. Eucapsis alpina Gomphosphaeria aporina Gomphosphaeria lacustris Holopedium irregulare Lyngbya contorta Lyngbya limnetica Lyngbya tenuis Merismopedia elegans Merismopedia glauca Merísmopedia punctata Microcoleus lyngbyaceus Microcystis aeruginosa Microcystis flos-aquae Microcustis incerta Nodularia spumigena Oscillatoria tenuís Oscillatoria terebriformis Phormidium autumnole Raphidiopsis curvata Schizothrix calciola Spirulina laxissima Spirulina subsalsa

Chlorophyta (Green Algae) Ankistrodesmus falcatus Ankistrodesmus spiralis Arthrodesmus sp. Asterococcus spinulosa Carteria cordiformis Chlamydomonas polypyrenoideum Chlamydomonas sp. Chlorella sp. Chlorococcum sp. Chlorogonium sp. Closteridium lunula Closteriopsis longissima Closterium curvaceum Closterium gracile Closterium kutzingii f. sigmoides Closterium setaceum Closterium venus Coelastrum cambricum Coelastrum microporum Cosmarium circulare Cosmarium sp. Crucigenia apiculata Crucigenia guadrata Dictyosphaerium ehrenbergianum Dictyosphaerium pulchellum Elakatothrix gelatinosa Euastrum sp. Eudorina elegans Geminella interrupta Golenkinia radiata Gonium pectorale Heteromastix angulata Kirchneriella contorta Kirchneriella obesa Kirchneriella sp. Lagerhemia citriformis Lagerhemia subsalsa Mougeotia sp. Oocystis sp. Ourococcus bicaudatus Pandorina morum Pediastrum biradiatum Pediastrum boryanum Pediastrum duplex v. gracilimum Pediastrum duplex v. reticulatum Pediastrum simplex Pediastrum simplex v. duodenarium Pediastrum tetras Pedinomonas minor Phacotus lenticularis Platudorina caudata Polyedriopsis spinulosa Pseudotetraedron neglectum

Table 2 (Continued)

Pteromonas aculeata Quadrigula closteroides Scenedesmus abundans Scenedesmus acuminatus Scenedesmus arcuatus v. platydisca Scenedesmus bijuga Scenedesmus denticulatus Scenedesmus dimorphus Scenedesmus opoliensis Scenedesmus quadricauda Schroderia setigera Spermatozopsis exultans Staurastrum cuspidatum Staurastrum limneticum Staurastrum sp. Tetraedron caudatum Tetraedron gracile Teraedron limneticum Tetraedron lobulatum Tetraedron minimum Tetraedron muticum Tetraedron trigonum Tetrastrum staurogeniaeforme Treubaría crassispina Volvulina steinii Westella botryoides Chrysophyta Class Bacillariophyceae (Diatoms) Achnanthes exigua v. heterovalve Achnanthes sp. Amphora ovalis v. libyca Biddulphia laevis Caloneis amphisbaena Cocconeis diminuta Cocconeis hustedtii* Cocconeis placentula Coscinodiscus rothii Cyclotella glomerata Cyclotella kutzingiana Cyclotella menghiniana Cyclotella stelligera Cymatopleura solea Cymbella ventricosa Diploneis oblongella Fragilaria brevistriata Fragilaria capucina Fragilaria construens Fragilaria construens v. subsalina Fragilaria construens v. venter Fragilaria crotonensis Fragilaria pinnata Fragilaria vaucheriae Gomphonema gracile Gyrosigma (near) nodiferum*

*tentative identification

granulata v. augustissima fo. spiralis Pleurosigma (near) salinarium v. boyeri Rhopalodia gibba Nitzschia punctuata v. coarctata Nitzschia tryblionella v. victoriae Navicula hhyncocephala v. germanii Stephanodiscus astrae v. minutula Stephanodiscus invisitatus lanceolata v. minima* Surirella robusta v. splendida granulata muzzanensis (near) holostica* (near) filiforms frustulum Pinnularia (near) major (near) cincta* cruptocephala Synedra actinastroides Synedra ulna Tetracyclus lacustris Skeletonema costatum lonenziana Nitzschia acicularis constricta apiculata augustata dissipata hungarica granulata accomoda* amphibia linearis Nitzschia paradoxa Thalassiosita sp. ambigua italica Navicula pupula exigua Opephona martyi Stauroneis sp. Tabellaria sp. Nitzschia Nelosina Melosina Melosina Navicula Navicula Navicula Melosina Melosina Vavicula

Euglenophyta

Astasia klebesii Euglena acus Euglena desos Euglena hematodes Euglena minuta Euglena oxyuris Euglena polymorpha

*tentative identification

Table 2 (Continued)

Euglena subehrenbergii Euglena tripteris Euglena viridis Euglena sp. Lepocinclis ovum Lepocinclis texta Petalomonas sp. Phacus curvicauda Phacus longicauda Phacus pleuronectes Phacus purum Phacus torta Phacus triqueter Phacus sp. Strombomonas giardiana Strombomonas giardiana v. glabra Strombomonas tambowika Strombomonas sp. Trachelomonas crebea Trachelomonas cylindrica Trachelomonas volvocina

Pyrrhophyta

Class Cryptophyceae

Chilomonas paramecium Chroomonas acuta Cryptomonas erosa Cryptomonas marssoni Cryptomonas ovata Hillea sp.* Rhodomonas lucustris Rhodomonas sp.

Class Dinophyceae

Ceratium brachyceros Ceratium hirundinella fa. furcoides Diplopsalis lenticula + Glenodinium gymnodinium Gonyaulax sp. Gymnodinium neglectum Peridinium inconspicuum Peridinium inconspicuum Peridinium wisconsinense Peridinium sp. Prorocentrum micans

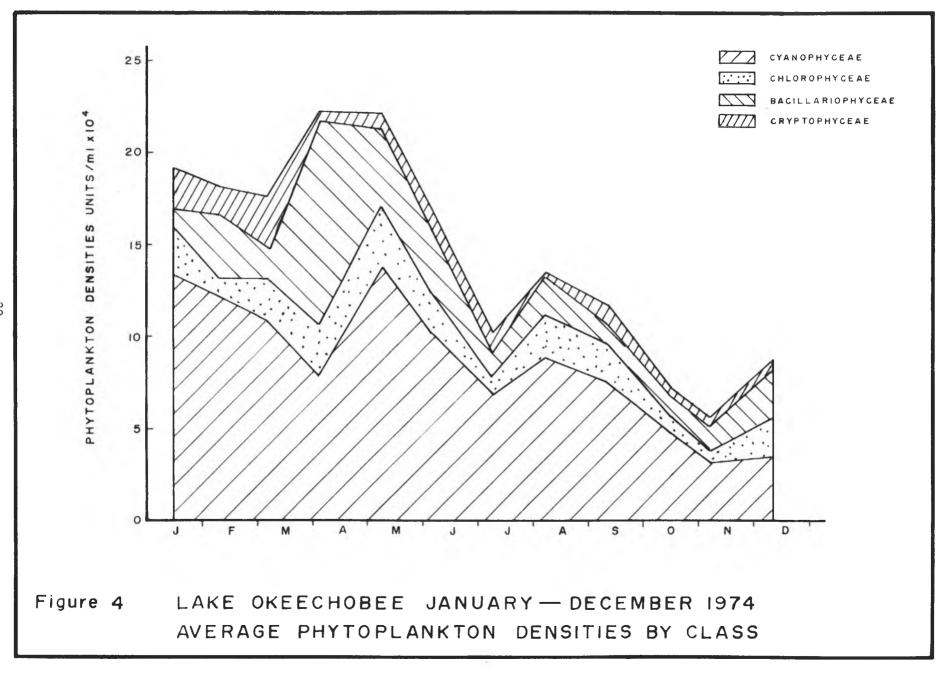
+ may be Peridiniopsis acuta

* tentative identification

<u>Euglena sp.</u> and <u>Euglena subehrenbergii</u> were the most common euglenoids. No. single species was found in great abundance and the group was found only at certain times of the year.

The most abundant species of cryptomonads were <u>Chroomonas</u> <u>acuta</u>, <u>Crypotomonas</u> <u>erosa</u>, <u>Cryptomonas</u> <u>ovata</u>, and <u>Rhodomonas</u> <u>lacustris</u>. Cryptomonads were common but only abundant certain times of the year.

The most commonly observed species of dinoflagellates were <u>Ceratium</u> <u>hirundinella fa. furcoides</u>, <u>Glenodinium gymodinium</u>, and <u>Gymnodinium</u> <u>aeruginosum</u>. Dinoflagellates were never found in abundance and were found only at certain times of the year.


Seasonal Phytoplankton Variation

Seasonal variations in average density and biovolume of phytoplankton populations are shown by month in Figures 4 and 5, respectively, and listed in Tables 3 and 4. Total phytoplankton densities and biovolumes are listed in Appendices A and B respectively, for each month and each station. The category listed as "unknown" represents those entities observed which were of uncertain taxonomic status. The "unknown" organisms were not included in the overall totals.

In 1974 two peaks were observed in algal densities (Figure 4). The highest algal densities were observed in April, 222,061 units/ml, and May, 221,760 units/ml. A smaller peak of algal density (135,362 units/ml) occurred in August. Low densities were observed in July (102,101 units/ml) and November (56,489 units/ml).

A succession of various algal groups accounted for the peak in densities in April and May (Table 3). This "spring" peak was preceded by small peaks in concentration of diatoms, cryptomonads and green algae. In April, a large

-19-

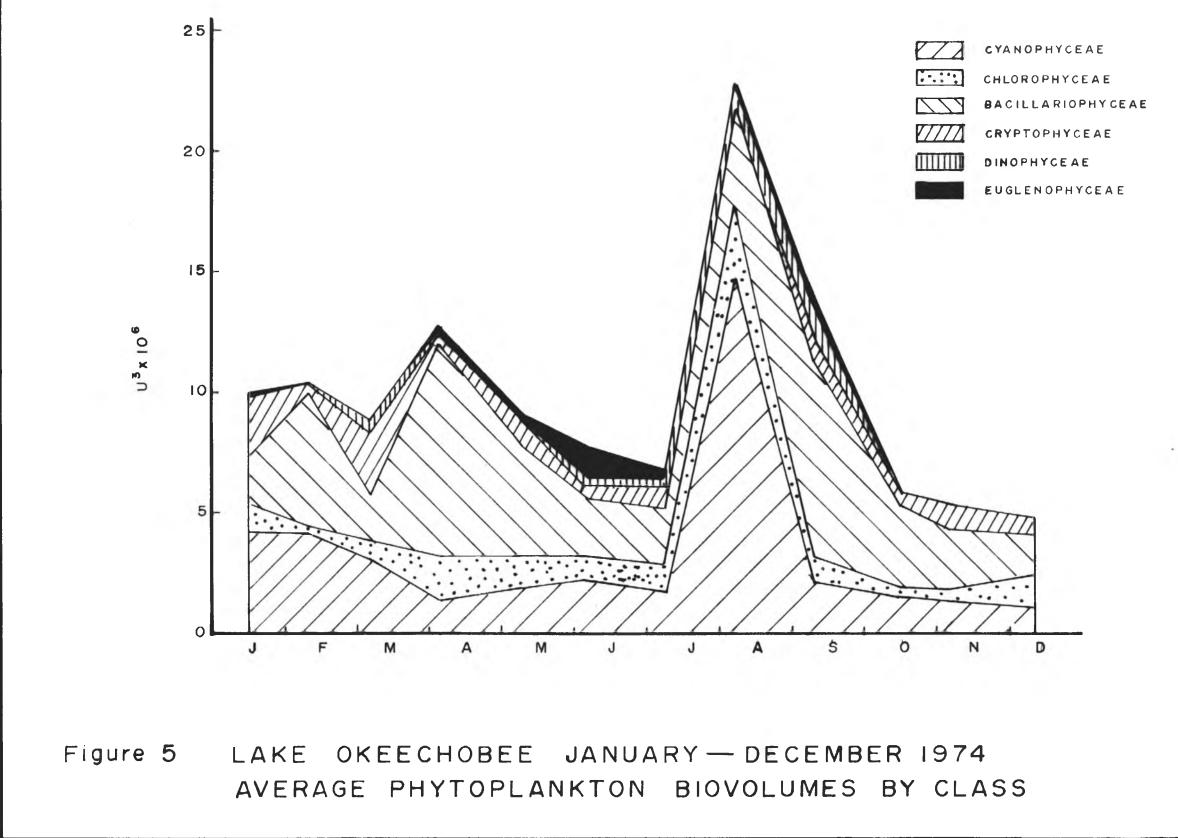
-20-

TABLE 3 Lake Okeechobee, Phytoplankton Densities (units/ml) and Percentage Composition by Class for 1974.

Mo	onth	Cyano.	Chloro.	Bacillario.	Crypto.	Dino.	Eugleno.	Total
	J*	134,039(70)	23,943(13)	12,054(6)	20,390(11)	742(0)	137(0)	191,305
F	F	121,225(67)	11,500(6)	34,541(19)	14,916(8)	61(0)		182,153
	Μ	109,608(62)	21,897(12)	15,889(9)	28,821(16)	379(0)	281(0)	176,875
	А	79,637(36)	26,356(12)	110,978(50)	4,546(2)		544(0)	222,061
	М	138,560(62)	34,172(15)	40,700(18)	7,282(3)	361(0)	685(0)	221,760
	J	102,789(60)	20,658(12)	35,280(21)	8,100(5)	324(0)	2,818(2)	169,969
1 N	J	69,474(68)	9,727(10)	13,084(13)	8,709(9)	163(0)	944(1)	102,101
-21-	А	85,245(63)	27,252(20)	22,055(16)	371(0)	106(0)	333(0)	135,362
	S	75,515(65)	21,254(18)	10,460(9)	7,428(6)	509(0)	894(1)	116,060
	0	47,479(66)	10,319(14)	11,040(15)	3,291(5)			72,129
N D	N	30,643(54)	8,654(15)	11,406(20)	5,786(10)			56,489
	D	35,035(40)	21,026(24)	28,366(32)	4,044(5)		108(0)	88,579
P	vg.	85,771(59)	19,730(14)	28,814(20)	9,474(7)	220(0)	562(0)	144,570

() Percentage Composition

*Average based on seven stations


increase in diatoms accounted for the initial increase in phytoplankton densities. Diatom densities declined in May and there was an increase in blue-green algae density. Hence, the densities for April and May were essentially the same but the phytoplankton was drastically different in composition. All algal groups declined in density through July. The peak of algal concentration in August was due primarily to an increase in diatoms, green and blue-green algae. Although concentrations of all algal groups declined from August through November, declines in blue-green algae accounted for most of the decrease in algal densities. The small increase in density in December was due mainly to increases in green algae and diatoms.

Blue-green algae were dominant in the phytoplankton in every month except April. The percentage of blue-green algae generally exceeded 60% throughout most of the year (Table 3). Diatoms were next in abundance with blooms occurring in April and December. Green algae showed little variation in density throughout the year. Cryptomonads were most abundant in the spring and winter. Euglenoids were very low in abundance with the highest percentage occurring in June and July. Dinoflagellates were the least abundant algal group with highest densities in January and September.

In terms of phytoplankton densities, the average overall percentage composition by class for 1974 was as follows: Blue-green algae (Cyanophyceae), 59%, Diatoms (Bacillariophyceae), 20%; Green algae (Chlorophyceae), 14%; Cryptomonads (Cryptophyceae), 7%; Euglenoids (Euglenophyceae), 0%; and Dinoflagellates (Dinophyceae), 0%.

When biovolumes of the various algal groups were compared, the seasonal predominance was changed (Figure 5). The most obvious change occurred in August. The fall (August) peak (22,598,359 μ^3/ml) was much larger than the

-22-

-23-

TABLE 4 Lake Okeechobee, Phytoplankton Biovolumes (μ^3/ml) and Percentage Composition by Class for 1974.

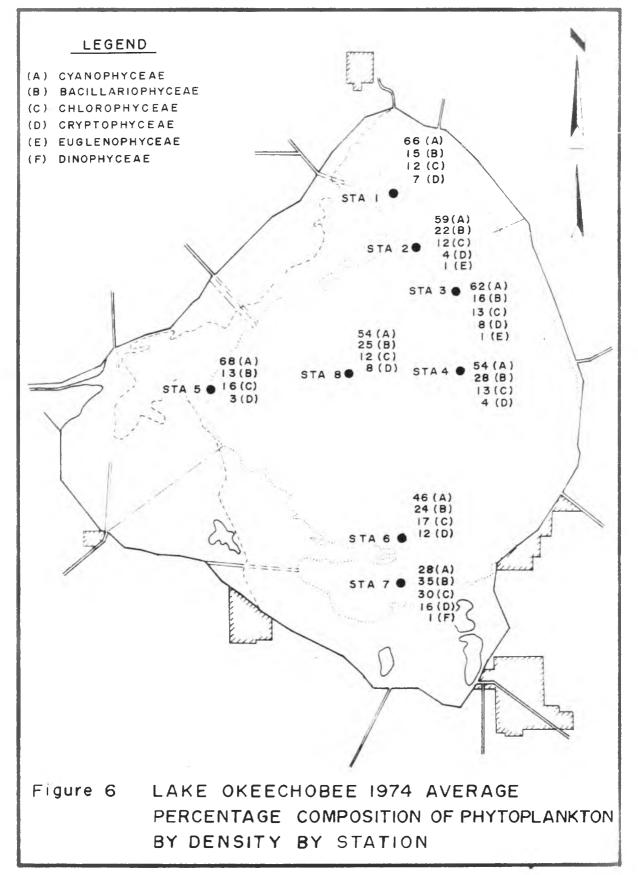
Ī	Month	Cyano.	Chloro.	Bacillario.	Crypto.	Dino.	Eugleno.	Total
	J*	4,254,294(43)	1,022,608(10)	2,127,207(21)	2,498,763(25)	20,772(0)	51,520(1)	9,975,164
	F	4,119,252(40)	371,952(4)	5,461,414(53)	419,357(4)	969(0)		10,372,944
	М	3,061,491(35)	870,729(10)	1,800,060(20)	2,758,385(31)	237,987(3)	96,274(1)	8,824,926
	А	1,461,446(12)	1,799,963(14)	8,789,338(69)	477,757(4)		151,347(1)	12,679,851
	М	1,959,273(21)	1,329,198(15)	4,676,199(51)	1,011,452(11)	8,655(0)	173,989(2)	9,158,766
	J	2,347,375(30)	906,156(12)	2,356,982(30)	564,602(7)	174,616(2)	1,489,000(19)	7,838,731
	J	1,760,186(26)	1,111,637(16)	2,357,704(35)	959,590(14)	184,503(3)	411,204(6)	6,784,824
24-	А	14,624,140(65)	2,939,386(13)	4,481,596(20)	58,032(0)	403,698(2)	91,507(0)	22,598,359
	S	2,128,401(16)	1,071,419(8)	8,083,599(60)	1,042,060(8)	955,191(7)	153,206(1)	13,433,876
	0	1,504,542(26)	468,004(8)	3,289,572(56)	622,178(11)			5,884,296
N D Avg.	Ν	1,422,947(27)	377,716(7)	2,665,279(50)	823,723(16)			5,289,665
	D	1,027,272(21)	1,426,364(29)	1,687,391(34)	743,717(15)		47,241(1)	4,941,985
	3,305,885(34)	1,141,261(12)	3,981,362(41)	998,301(10)	165,533(2)	222,107(2)	9,815,282	

*Average based on seven stations

spring (April) peak (12,679,851 $\mu^3/m1$). Low in biovolumes occurred in December (4,931,985 $\mu^3/m1$) and July (6,784,824 $\mu^3/m1$).

The relative importance of the various algal groups is also different when biovolumes are considered. Peak algal biovolumes of 10,372,944 and 12,679,851 μ^3/ml , were observed in February and April, respectively, and were due mainly to increases in the biovolumes of the diatom populations. The peak in blue-green densities in May was not significant in terms of biovolumes. The peak in biovolume in August was due to a drastic increase in biovolume of blue-green algae. This bloom was short-lived and the biovolumes of the various algal groups, except diatoms, in September returned to the same relative proportions as in July.

The average percentage composition by class on the basis of biovolumes is as follows: Diatoms (41%), Blue-green algae (34%), Green algae (12%), Cryptomonads (10%), Euglenoids (2%), and Dinoflagellates (2%). Blue-green algae were much less important in terms of biovolumes, accounting for more than 50% of the biovolume only in August. Diatoms were the dominant algae on the basis of biovolumes throughout most of the year. The relative importance of other algal groups (cryptomonads, dinoflagellates and euglenoids) increased by 2 to 3%, whereas green algae decreased by 2%.


Table 5 shows the average density and percentage composition of the various classes of phytoplankton at each station. Stations influenced by inflows (5,3, and 1) had the highest average densities (195,532, 184,815 and 180,392 units/ml, respectively). Stations 7 and 6 had the lowest densities (41,171 and 64,173 units/ml, respectively).

Stations near inflows (Stations 5, 1 and 3) had generally higher percentages of blue-green algae (68%, 66%, and 62%, respectively) (Figure 6). The southernmost stations (7 and 6) had the lowest densities of blue-

-25-

Station		Densities (Units/ml)					
	Cyano.	Chloro.	Bacillario.	Crypto.	<u>Dino</u> .	Eugleno.	Total
1	118,981(66)	21,460(12)	26,840(15)	12,457(7)	253(0)	401(0)	180,392
2	97,676(59)	19,517(12)	36,144(22)	6,983(4)	184(0)	945(1)	161,449
3	115,639(62)	23,814(13)	29,277(16)	14,789(8)	252(0)	1044(1)	184,815
4	94,765(54)	23,256(13)	48,032(28)	7,662(4)	0	528(0)	174,243
5	132,466(68)	32,158(16)	24,533(13)	5,642(3)	240(0)	493(0)	195,532
6	29,365(46)	10,879(17)	15,607(24)	7,934(12)	40(0)	347(0)	64,173
7	11,425(28)	8,274(20)	14,572(35)	6,554(16)	227(1)	119(0)	41,171
8	82,576(54)	18,341(12)	38,504(25)	12,706(8)	504(0)	438(0)	153,069

TABLE 5 . LAKE OKEECHOBEE AVERAGE COMPOSITION AND PERCENTAGE OF PHYTOPLANKTON DENSITIES BY STATION BY CLASS FOR 1974.

green algae (28% and 46%, respectively). The highest average percentage of diatoms was at Station 7 (35%) followed by Stations 4 (28%), 8 (25%), and 6 (24%). The lowest percentages of diatoms were observed near inflows at Stations 5, (13%), 1 (15%), and 3 (16%). Stations 7, (20%), 6 (17%), 5 (16%) had the highest percentage of green algae. All other stations had 12% to 13% of green algae. The highest percentages of cryptomonads were recorded at Stations 7 (16%), and 6 (12%). The lowest percentages of cryptomonads were at Stations 5 (3%), 2 (4%), and 4 (4%). The highest percentages of euglenoids (1%) were observed at Stations 2 and 3. Percentages of euglenoids at all other stations were less than 1%. The highest percentage of dinoflagellates (1%) occurred at Station 7. All other stations had

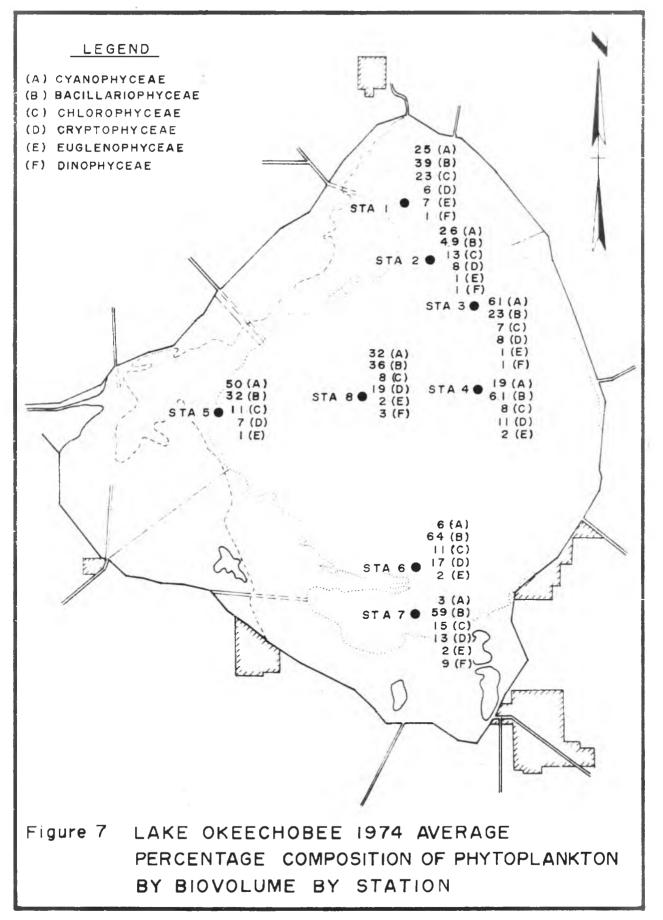

Table 6 shows the average biovolume and percentage composition by biovolume of the various classes of phytoplankton at each station. Stations influenced by inflows (Stations 1, 3 and 5) had an average of about 50% more biovolume than did other stations. Station 3 had the highest biovolume $(17,073,112 \ \mu^3/ml)$, followed by Station 1 (12,662,101 $\ \mu^3/ml)$) and Station 5 (11,621,408 $\ \mu^3/ml)$). Stations 6 (6,233,563 $\ \mu^3/ml)$) and 7 (5,323,654 $\ \mu^3/ml)$) had the lowest biovolumes. Stations 2 (8,815,751 $\ \mu^3/ml)$), 4 (8,609,755 $\ \mu^3/ml)$ and 8 (8,062,717 $\ \mu^3/ml)$) had approximately equal biovolumes.

Figure 7 shows the average percentage composition by biovolume of phytoplankton at each station. In terms of biovolume, diatoms were most important in Lake Okeechobee. Station 6 had the highest percentage (64%) of diatoms, followed by Stations 4 (61%) and 7 (59%). Station 3 had the lowest percentage (23%) of diatoms. Station 3 had the highest percentage (61%) of blue-green algae followed by Station 5 (50%). Stations 7 (3%)

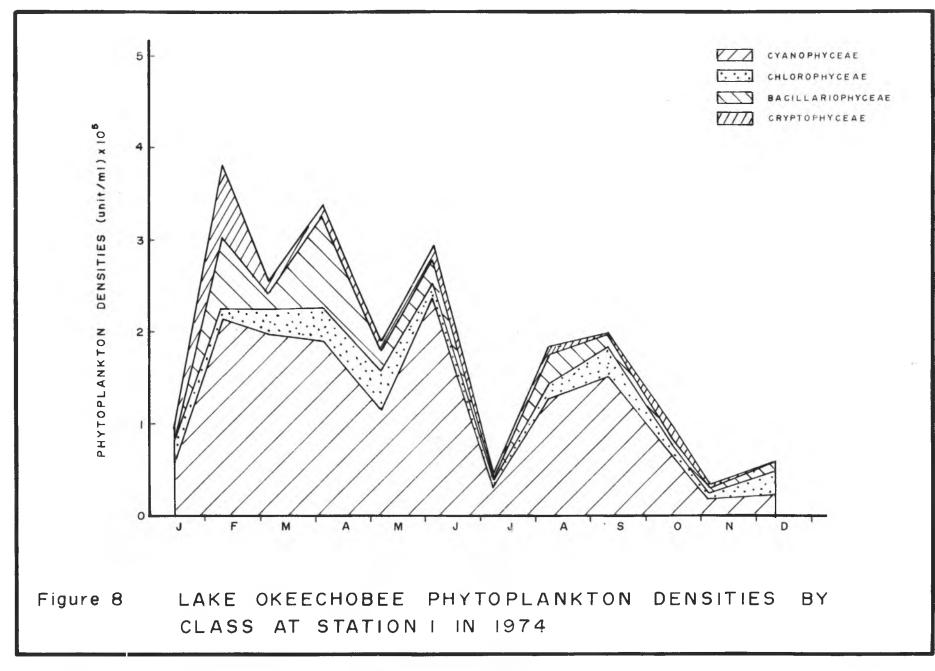
-28-

Static	on	Biovolume [µ ³ /ml]				() Percentage		
	Cyano	Chloro	Bacillario	Crypto	Dino	Eugleno	Total	
1	3,163,753(25)	2,861,147(23)	4,966,160(39)	709,750(6)	135,768(1)	825,523(6)	12,662,101	
2	2,258,697(26)	1,125,473(13)	4,291,447(49)	707,869(8)	264,868(3)	167,397(2)	8,815,751	
3	10,330,501(61)	1,121,341(7)	3,871,226(23)	1,388,841(8)	158,658(1)	202,545(1)	17,073,112	
4	1,603,580(19)	686,996(8)	5,226,895(61)	932,972(11)		159,312(2)	8,609,755	
5	5,804,591(50)	1,222,112(11)	3,723,159(32)	783,706(7)	5,770(0)	82,070(1)	11,621,408	
6	360,368(6)	661,712(11)	4,006,290(64)	1,071,750(17)	646(0)	132,797(2)	6,233,563	
7	164,632(3)	782,250(15)	3,154,073(59)	712,656(13)	475,570(9)	34,497(1)	5,323,654	
8	2,540,063(32)	641,114(8)	2,869,951(36)	1,548,391(19)	281,248(3)	181,950(2)	8,062,717	

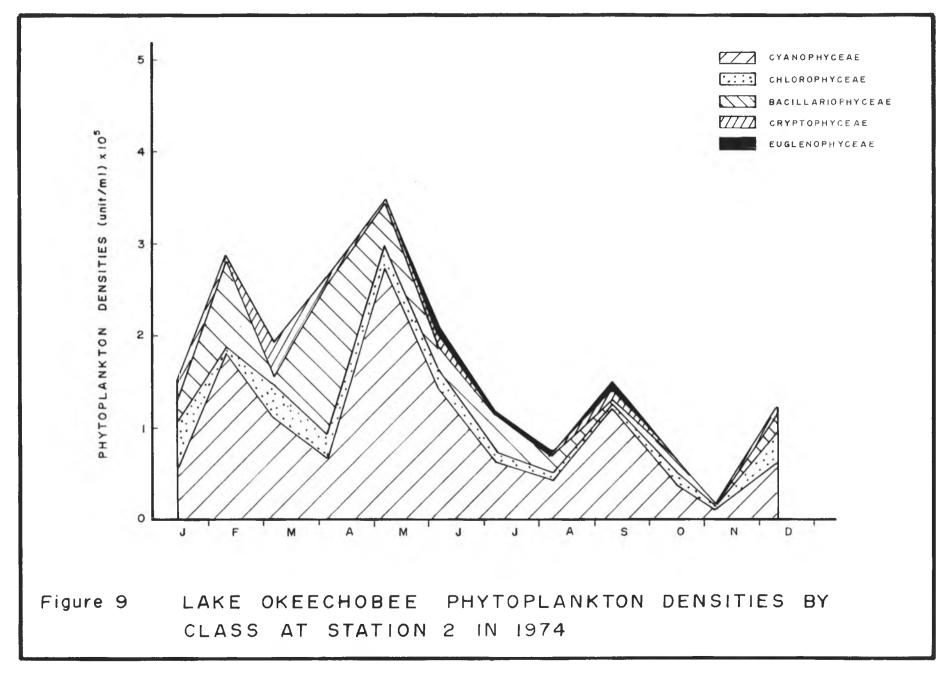
TABLE 6 Lake Okeechobee Average Composition and Percentage of Phytoplankton Biovolume by Station by Class for 1974.

and 6 (6%) had the lowest percentage of blue-green algae. The green algae percentage was highest at Station 1 (23%) and lowest at Station 3 (7%), 4 (8%), and 8 (8%). Cryptomonad percentages were highest at Station 8 (19%), and 6 (17%) with lowest percentages at Station 1 (6%), 5 (7%), 2 (8%), and 3 (8%). The highest percentage of euglenoid biovolume was observed at Station 1 (7%) with only 1 or 2% observed at other stations. The dino-flagellate percentage was highest at Station 7 (9%) with very low percentages (0-3%) at all other stations.

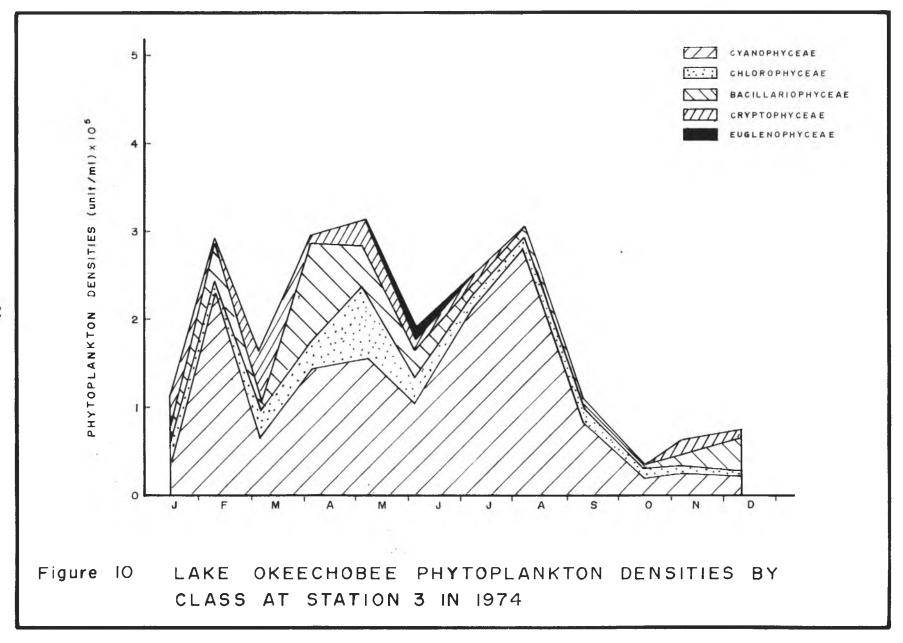
Algae Blooms

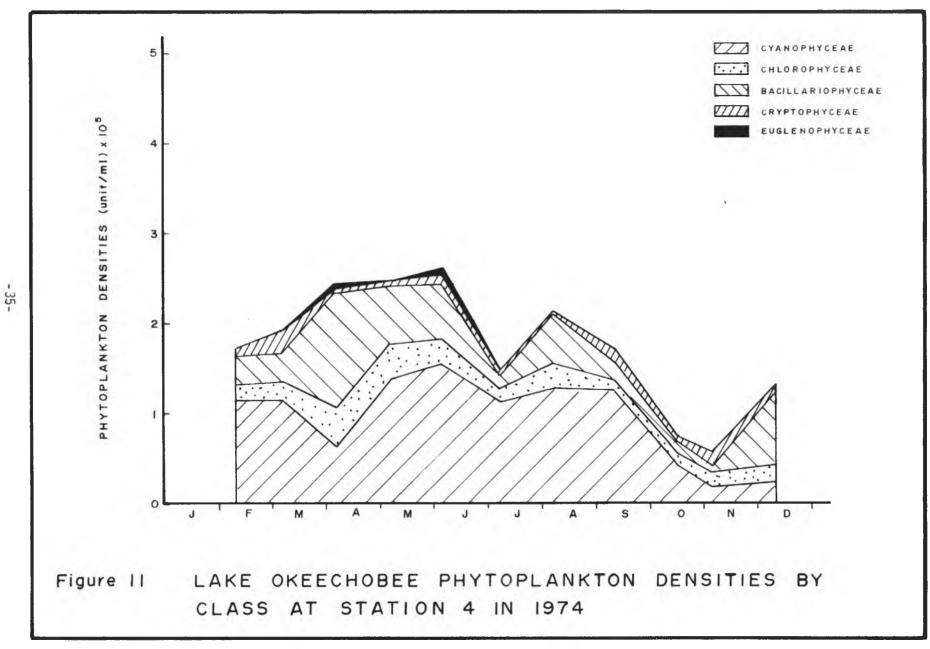

Figures 8 through 14 show the phytoplankton densities by station, whereas Figures 15 through 22 show the phytoplankton biovolume by station for 1974. Considerable variation, both in terms of density and biovolume, was observed from station to station.

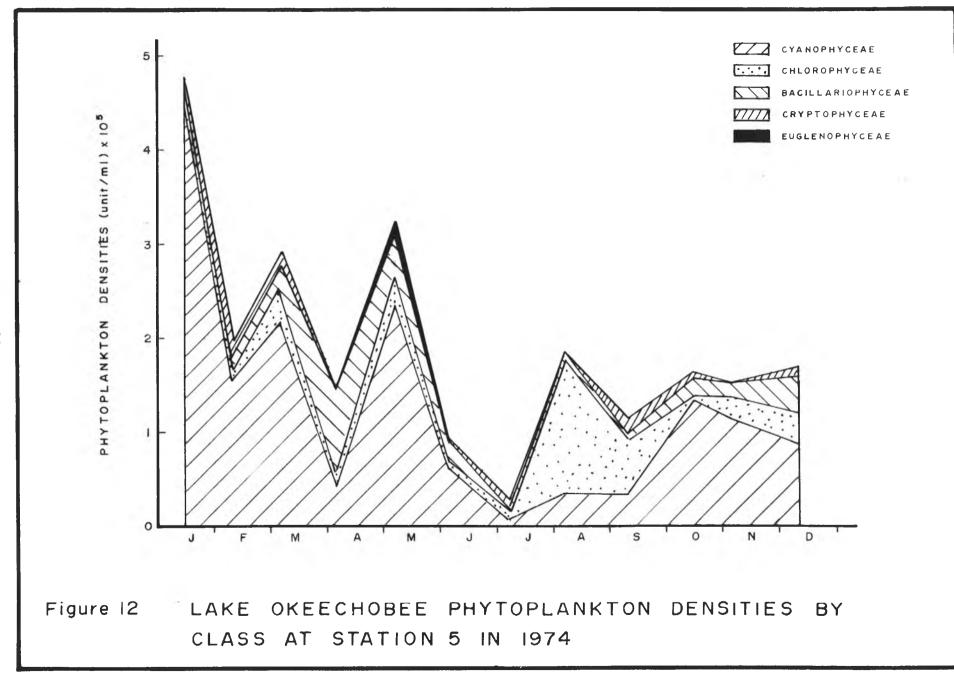
An algae "bloom", as defined by this author, is a concentration of algae dominated by one or two species of algae with concentrations well above (at least two times greater than) seasonal background levels. Exact threshold density and biovolume concentrations varied due to the wide seasonal variation in algal concentrations. Blooms of algae occurred at most stations.


The most significant algae blooms in terms of densities and biovolumes occurred near inflows in the summer. <u>Raphidiopsis</u> <u>curvata</u>, a blue-green alga, was responsible for the most significant blooms on the Lake. The largest such bloom, 189,545 units/ml and 98,979,125 μ^3 /ml, was observed at Station 3 in August. During a bloom, this alga dominates almost to the exclusion of other algal groups. <u>R. curvata</u> was responsible for most of the other minor peaks in blue-green algae concentrations.

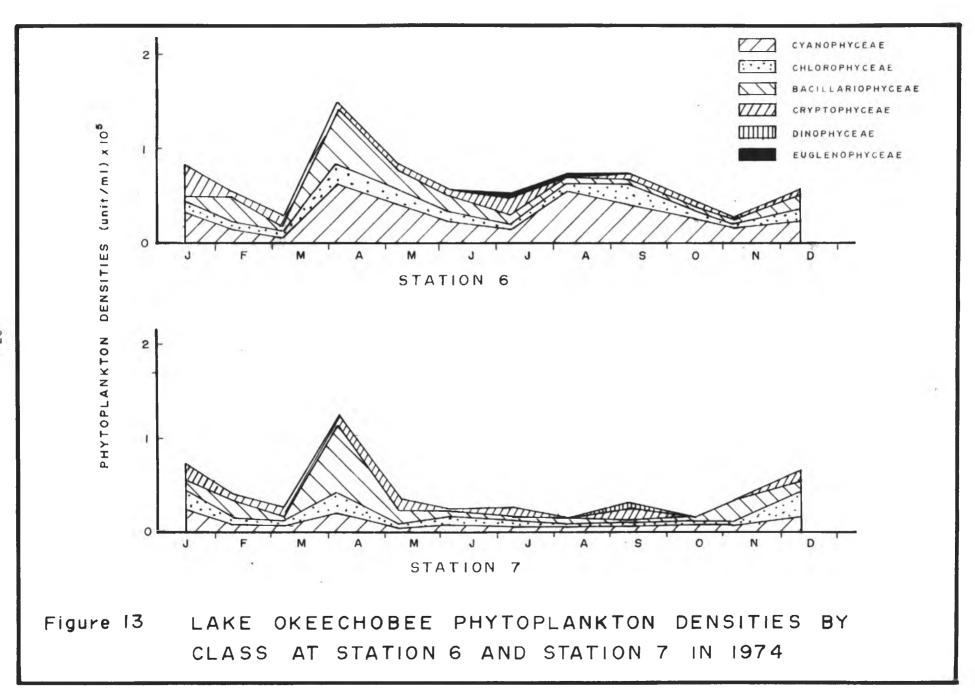
Diatom blooms occurred in the spring and were caused by <u>Fragilaria</u> pinnata. Blooms due to F. pinnata in April occurred at Station 2

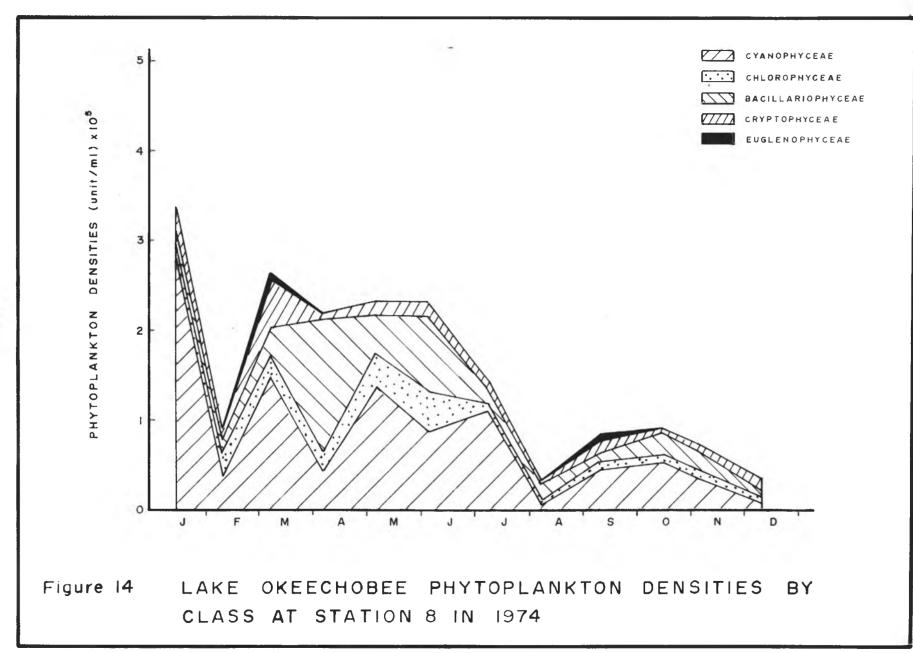

-31-


- 32-

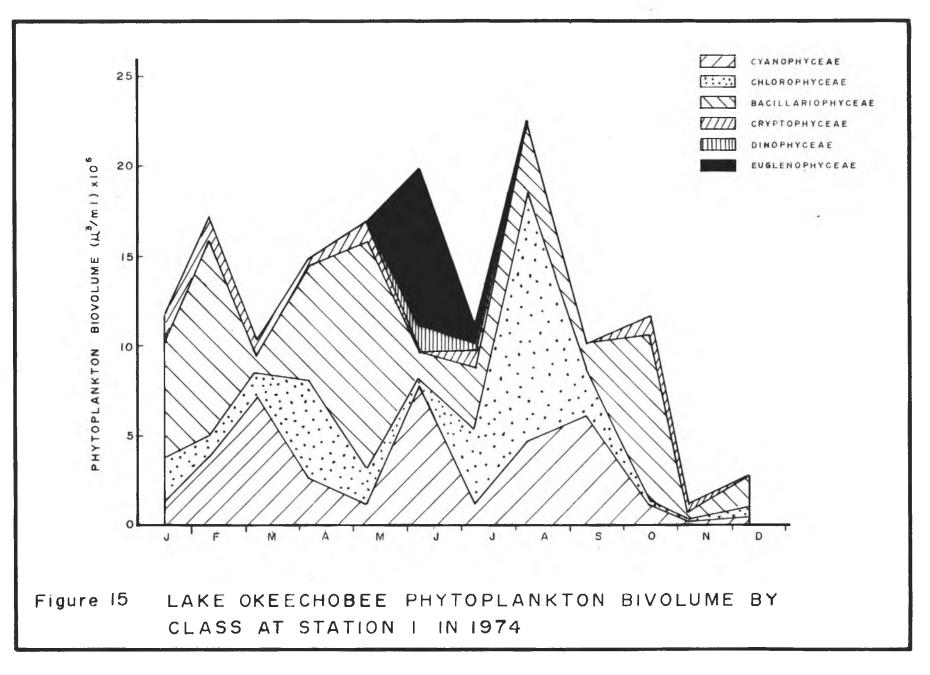


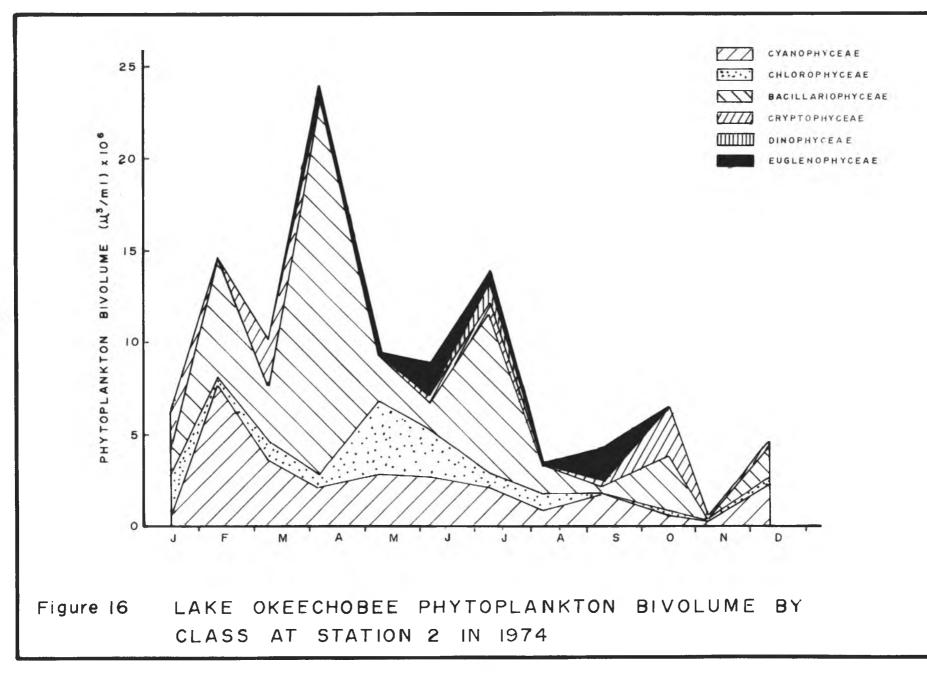
မို

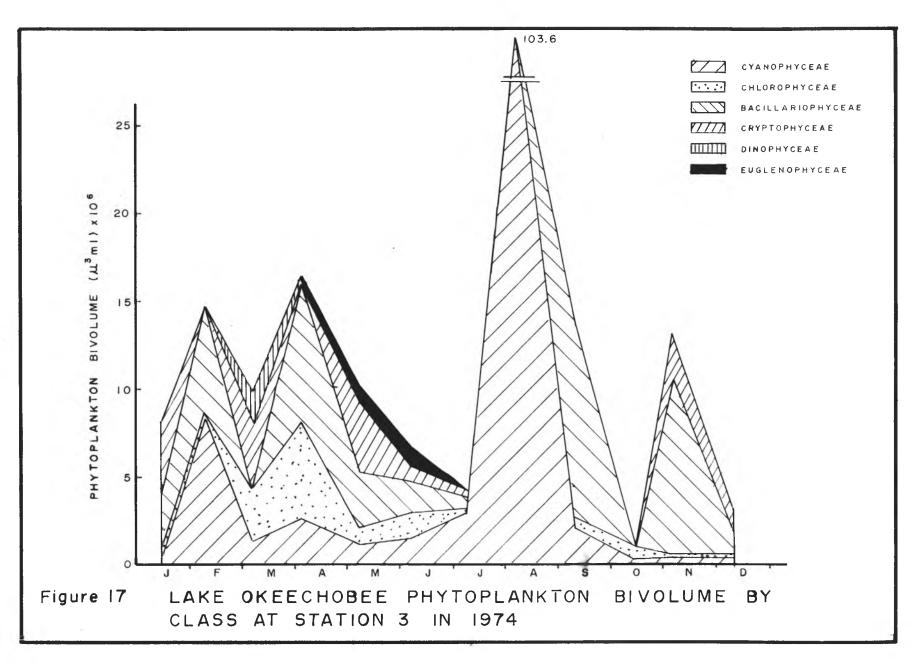

- 34-



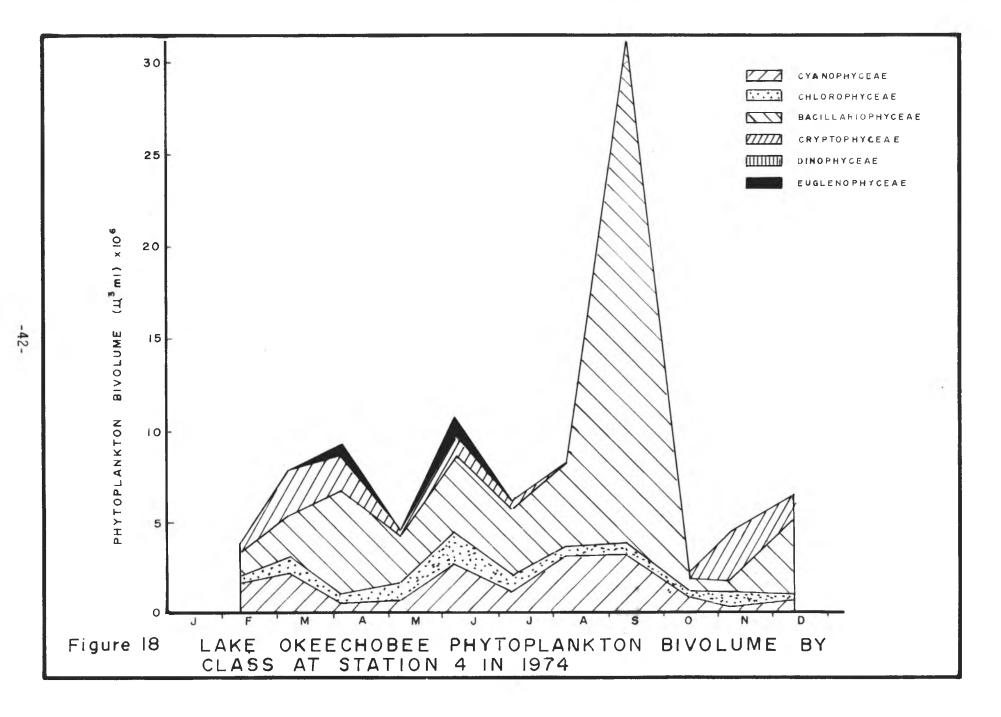
- 36-

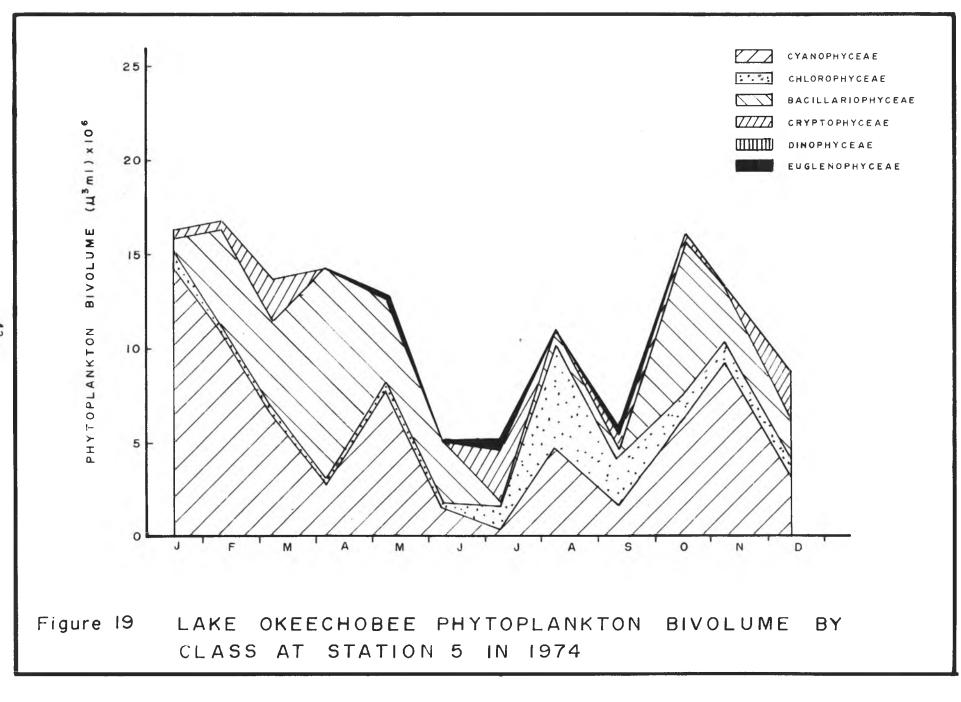

•

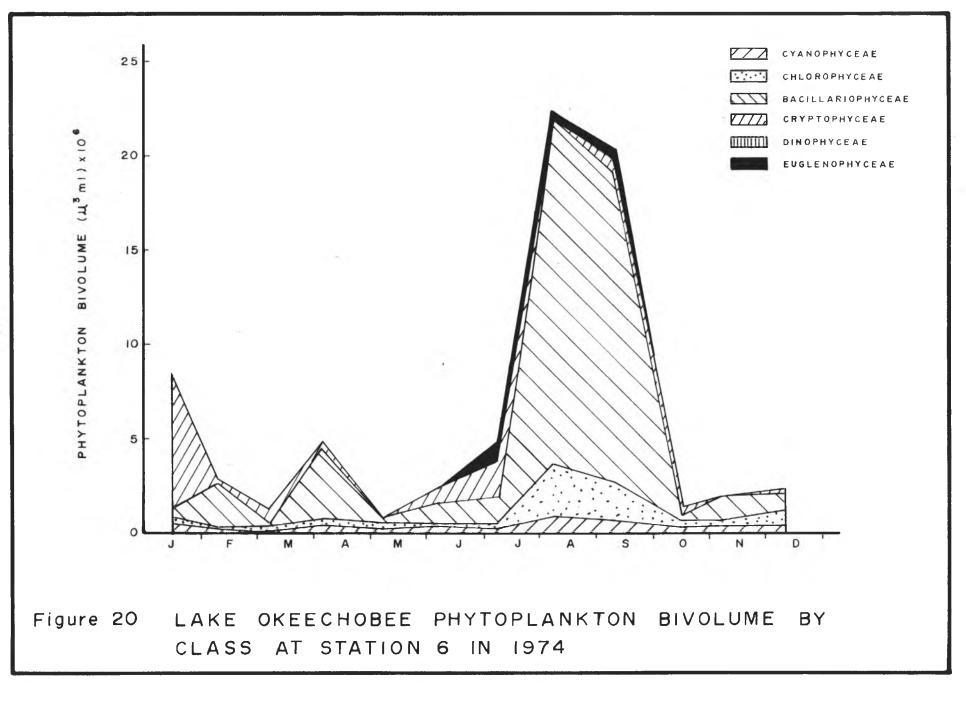

-37-

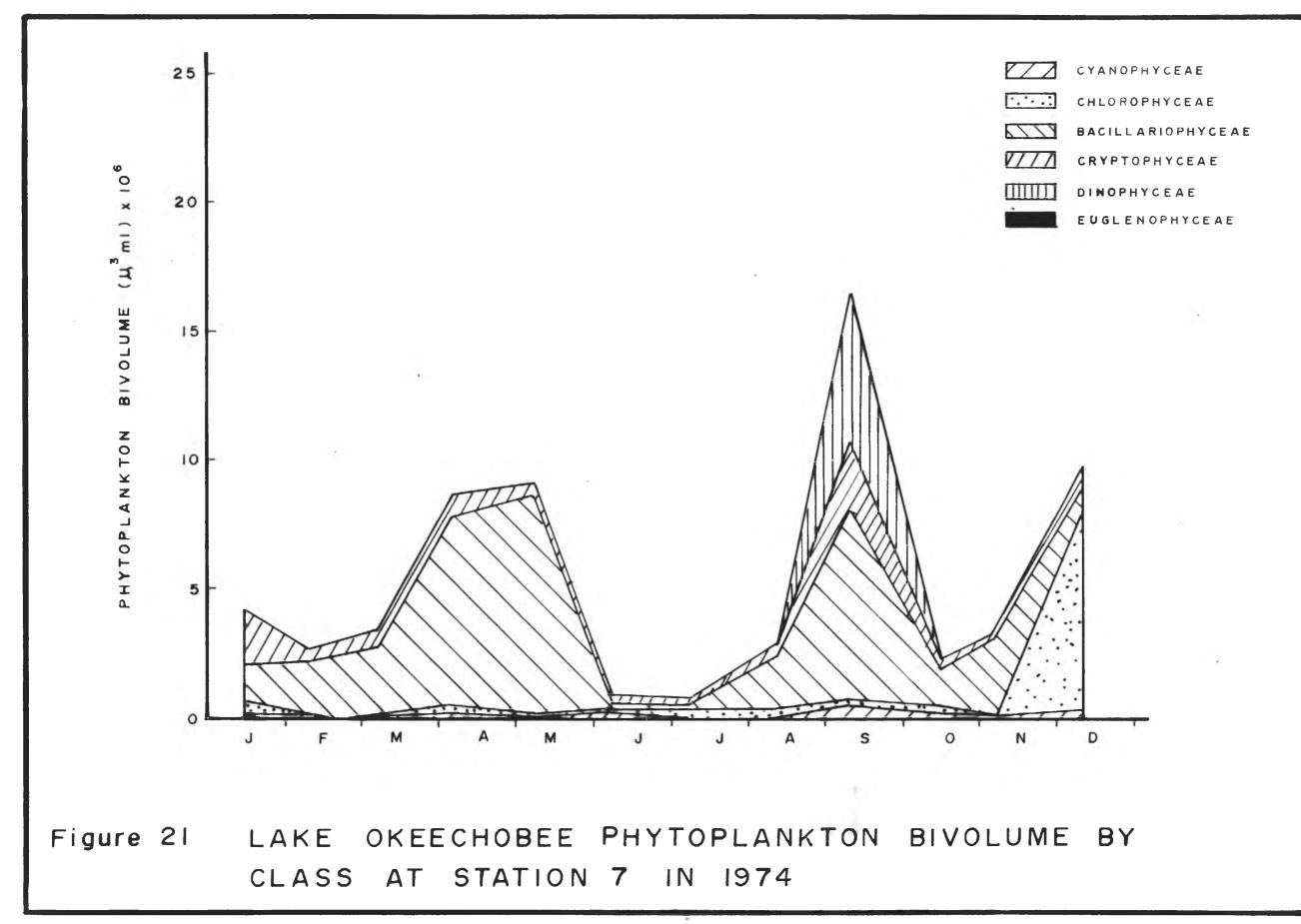


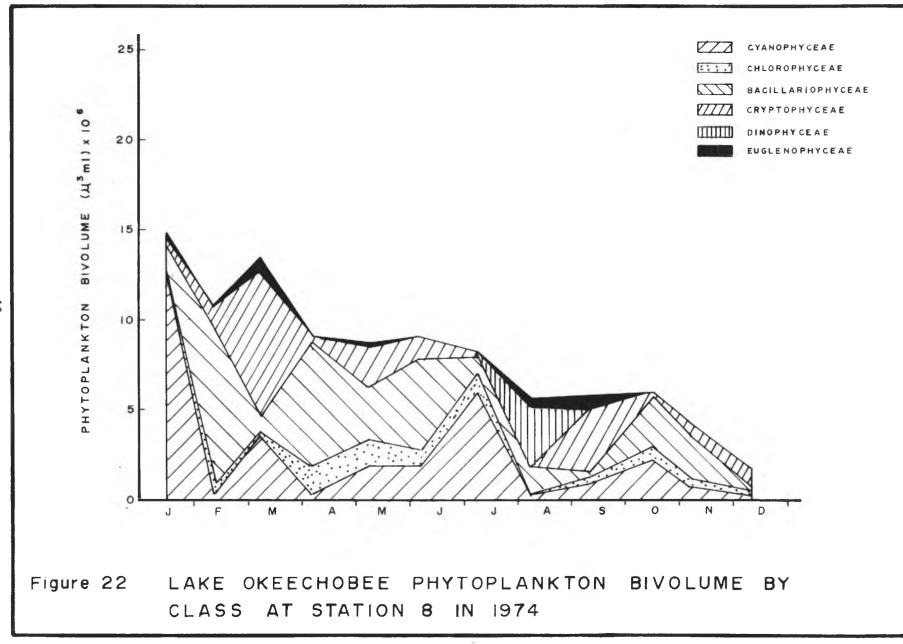
-38-




- 39 -




-41-



-44-

-45-

-46-

(142,142 units/m1 and 7,368,109 $\mu^3/m1$) and Station 8 (133,288 units/m1 and 7,098,582 $\mu^3/m1$). In April most of the total biovolume (5,759,646 $\mu^3/m1$) at Station 3 was due to F. construens (5,306,724 $\mu^3/m1$).

The large diatom biovolumes at Station 4 (23,791,860 μ^3/m) and 6 (5,968,867 μ^3/m) in September and Station 7 (7,443,721 μ^3/m) in May were due to the presence of the large centric diatom, <u>Coscinodiscus</u> rothii.

The only green algae bloom of any significance took place at Station 5 in August. Concentrations of <u>Chlorella</u> <u>sp</u>. reached 141,315 units/ml and 5,040,093 μ^3/ml .

Phytoplankton Size Distribution

A survey of the raw data indicates that approximately 95% of the measured algae were less than 50_{μ} in length along the longest axis. Most of the algae in this size range were blue-green algae filaments and pennate diatoms with diameters ranging from 0.3_{μ} to 3_{μ} . An estimated 85-90% were less than 10_{μ} along the longest axis. Generally, the size range of the species of algae that were identified and measured from Lake Okeechobee were smaller than those reported in the reference keys.

Algae Populations and Primary Productivity

The results of regression analyses for gross primary productivity and phytoplankton parameters (density and biovolume) at Stations 1, 4, 5, and 6 are presented in Table 7. Stations were tested both individually and collectively. Diatoms, blue-green, green and cryptomonad components were tested in addition to collective groupings (totals). The assumed dependent variable was gross primary productivity. The symbol "*" indicates that the slope was significantly different from zero at the 95% confidence level

-47-

INDEL .	versus Phytoplankton Parameters.										
	* t.05	**t.0	**t.01			(r ²)					
Gross Pri Productiv		S T A T I O N S									
VS		A11	1	4	5	6					
Density Total Diato Blueg Greer Crypt	om green	*(.10) *(.06) *(.06)	*(.41 **(.55 *(.36) *(.31))) *(.35)							
Biovolume Total Diato Blueg Greer Crypt) m jreen	**(.12) *(.07) **(.12)		**(.50)		*(.36) **(.45) *(.41)					

TABLE 7 Lake Okeechobee 1974 Regression of Gross Primary Productivity versus Phytoplankton Parameters.

(t.05) in a one-tailed test; while "**" denotes significance at the 99% confidence level (t.01). The coefficient of determination (r^2) for each significant regression is also shown.

Significant regressions were observed for total, diatom, and blue-green densities. No significant regressions were observed with green algae or cryptomonad densities. The coefficients of determination were very low for all regressions in the collective station grouping.

Coefficients of determination were high at individual stations. Stations 1 and 4 had significant regressions with density parameters. A highly significant regression with the highest coefficients of determination observed in the study was observed between gross primary productivity and diatom density at Station 1. Lower coefficients of determination were observed with total blue-green densities at Stations 1 and 4.

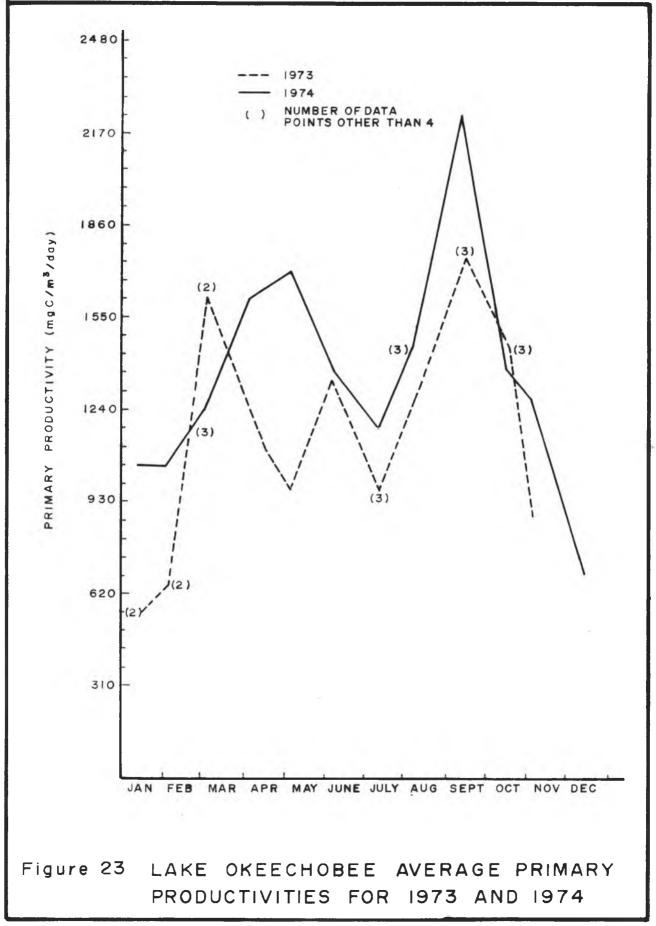
Significant regressions were observed with total, diatom, and green algae biovolumes. No significant regressions were observed with blue-green algae or cryptomonads biovolumes. The coefficients of determination were slightly higher with biovolume components than with density components.

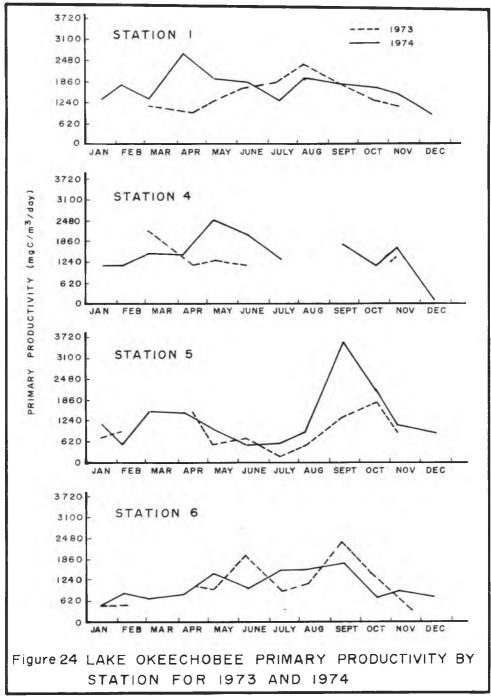
Stations 4 and 6 had significant regressions with biovolume parameters. A highly significant regression with a moderately high coefficient of determination was observed between gross primary productivity and green algal biovolume at Stations 4 and 6 and between primary productivity and diatom biovolume at Station 6. Less significant regressions were observed between primary productivity and total and green algae biovolumes at Station 6. No significant regressions with either density or biovolume were observed at Station 5.

-49-

DISCUSSION

Primary Productivity


Monthly average primary productivities for 1973 (Davis and Marshall, 1975) and 1974 are plotted in Figure 23. Comparison of the 1973 and 1974 productivity data is difficult, since the data record for 1973 is relatively incomplete. In both years, the fall peak (September) was of greater magnitude than the spring peak (March 1973, May 1974) and low productivity occurred in the winter months (November through February) and late summer (July). Since the 1974 data are more complete these data may provide a better picture of primary productivity on Lake Okeechobee than the 1973 data.


Monthly average primary productivities by station for January 1973 through December 1974 are plotted in Figure 24. At Station 1 a spring peak in productivity was not observed in 1973 but was observed in 1974. The fall peak in productivity in 1973 occurred in the same month (August) as in 1974 and was slightly greater in magnitude.

Data for 1973 were incomplete and were not comparable with the 1974 data for Station 4.

The 1974 productivity data for Station 5 generally followed the same pattern as the data for 1973. The fall peak in productivity in 1974 was of much greater magnitude and occurred a month earlier (September) than that of 1973 (October).

Productivity data at Station 6 for 1974 followed much the same pattern as those for 1973 and were in the same general range. The fall peak (September) in productivity in 1974 was slightly more compressed than that from 1973.

	<u>Gross Primary Productivity (mg C/m³/day)</u>						
Station	1973	1974					
1 4 5 6	1440 1376 874 1073	1673 1419 1278 1027					
Average	1156	1349					

Primary productivities for 1973 and 1974 can be summarized as follows:

Station 1 had a slightly higher average productivity in 1974 than in 1973. Average productivities at Stations 4 and 6 were essentially the same in 1974 as in 1973. The average productivity for Station 5 increased by one-third from 1973 to 1974. This increase in the average at Station 5 was due to the extremely high productivity observed in September of 1974 and probably reflects a higher nutrient loading rate. The stations near inflows (Stations 1 and 5) changed in average productivity from year to year, but those in the open Lake (Stations 4 and 6) did not. The data suggest that those stations near inflows are more strongly influenced by loadings. Changes in productivities at Stations 1 and 5 accounted for most of the increase in average productivity of the Lake from 1973 to 1974.

A two-tailed Student's t-test for equality of means, assuming equal variances, was used to test the means of the 1973-1974 productivities. No significant differences (90% confidence level) were observed between the means of individual or grouped stations.

Recent studies by Marshall, (unpublished 1977) have shown that the 0.22 m depth of incubation generally is the depth at which maximum productivity is reached in Lake Okeechobee. Productivity bottles incubated at 0.0, 0.5, 1.0, and 2.0 m generally had less production than those incubated at 0.22 m. The reported productivities in 1973 and 1974 probably are good estimates of maximum productivities.

-53-

Algae Populations

The first published phytoplankton study on Lake Okeechobee was conducted by Joyner (1974). Phytoplankton samples were collected on nine dates between January 1969 and April 1971 and 17 species were reported.

Davis and Marshall (1975) collected monthly phytoplankton samples during 1973 and identified 83 species of algae. Seasonal and areal variations in populations were described.

The present study was a continuation of the 1973 study with improvements in identification and counting techniques. The 233 species of algae that were identified in the present study indicated considerable differences between reported dominant species in 1973 and 1974.

The <u>Oscillatoria sp</u>. which was reported as the dominant bloom producing blue-green alga in 1973 was in fact <u>Raphidiopsis curvata</u>. These species are distinguished on the basis of akinetes. None of the 1973 samples were observed to have akinetes, but three akinetes were observed in the 1974 samples. According to Dr. F. Drouet (personal communication), the akinetes develop only under certain conditions which obviously were not present in the Lake during the study periods. <u>Lyngbya limnetica</u> (1974) was misidentified as an <u>Oscillatoria</u> (1973). Observations at higher magnification permitted the detection of the sheath of <u>L</u>. <u>limnetica</u> which separates it taxonomically from <u>Oscillatoria</u>. The change in magnification (from 400X to 1875X) accounted for the reported differences in diatoms. This higher magnificationwas also responsible for the separation of <u>Cryptomonads</u> from the group of "green flagellates" reported in the 1973 data.

An improvement in counting techniques is responsible for the apparent difference in phytoplankton densities between 1973 and 1974. The relative

-54-

high densities and low densities of phytoplankton were the same for the two study periods. Peaks in phytoplankton densities in the spring and fall were observed in both studies and were roughly of the same magnitude (that is a higher density in the spring peak as opposed to the fall peak). The same succession in algal groups (cryptomonads (1974), green flagellates (1973)--diatoms--blue-green algae) was observed in both study periods.

Dominance in densities by blue-green algae was evident in both study periods. The improvement in counting techniques is felt to be responsible for the increase in reported diatoms for the 1974 period.

Both density and biovolume analyses are presented in this report since each method has inherent biases that favor one group of algae over another. Densities do not give a true evaluation of the importance of an alga since algae differ greatly in size (Vollenweider, 1969). Density data tend to overestimate the smaller algae, such as small filamentous and colonial bluegreen algae and flagellates, which may be numerous but account for very little biovolume. Biovolume data tend to overestimate the larger algae, such as large diatoms, which may be uncommon but are very large. It is generally accepted that biomass (biovolume times density of water) data gives the best estimate of standing crop (Wetzel, 1975). Density data, however, may be important in terms of productivity since smaller algae are generally more productive per unit biomass (Findenegg, 1966). The inclusion of both density and biovolume data provides the broadest base from which characterizations can be made.

The calculation of biovolumes was felt to be useful in gaining perspective as to the relative importance of the various algal groups to the Lake. Diatoms were generally more important in terms of biovolume than blue-green algae, except during summer blue-green algae blooms.

-55-

The Summer Blue-green Algal Bloom

The bloom-forming blue-green alga, <u>Rhapidiopsis</u> <u>curvata</u>, has at least 21 synonymous species including <u>Anabaenopsis philippinensis</u>, <u>Aphanizomenon</u> <u>americanum</u>, <u>Anabaenopsis seriata</u> and <u>Anabaenopsis wustericum</u> (Drouet, 1973), <u>R. curvata</u> has been found in temperate and tropical regions throughout most of the world and develops in regions where water becomes very warm during the summer. In Florida, <u>R. curvata</u> has been identified in Lake Warren (Orange County), Lake Mulberry (Polk County), Gainesville, and the St. Johns River at Welaka (Drouet, 1973). The large bloom observed in this study was first detected at Station 3 in August. More recent studies (Marshall, unpublished 1977) showed that in 1975 and 1976 these blooms of <u>R. curvata</u> originated at Nubbins Slough.

Classification of Algae by Size

Lake Okeechobee phytoplankton consists mainly of very small organisms. Generally accepted size ranges for the classification of plankton (Strickland, 1960) are:

Macroplankton	500 µ			
Microplankton (net plankton)	ca 50 to 500 µ			
Nannoplankton	10 to ca 50 µ			
Ultraplankton	0.5 to 10 µ			

Using this classification system, the major component of Lake Okeechobee phytoplankton is the ultraplankton.

Primary Productivity and Algal Populations

In Lake Okeechobee the observed maxima and minima algal densities and biovolume are out of phase with the periodicity of the primary productivity. The low coefficients of determination between gross primary productivity and phytoplankton parameters for the collective station grouping reflect this phenomenon. This lack of synchrony between density and primary productivity generally occurs in most lakes (Wetzel, 1975). Moderately strong relationships (higher coefficients of determination) were observed for individual stations. The explanation for the stronger relationships at various stations with different algal classes is not apparent.

Lake Okeechobee: Temperate or Tropical?

The following discussion addresses the temperate-tropical nature of Lake Okeechobee phytoplankton and primary productivity.

Lake Okeechobee phytoplankton exhibits seasonal patterns and periodicity that are typical of temperate lakes. A summary of temperate phytoplankton characteristics by Wetzel (1975) describes many of the occurrences observed in Lake Okeechobee:

- a. Spring maximum of phytoplankton (usually diatoms) usually less than
 3 months in durations.
- b. Spring maximum followed by brief period of low numbers and biomass (summer minimum) which phases into a later summer profusion of bluegreen algae (in eutrophic lakes).
- c. Second maximum generally not as strongly developed as that of the spring period.
- d. Decline in populations to a winter minimum.

In contrast, a single maximum in phytoplankton concentrations often is observed in the winter in tropical lakes (Wetzel, 1975).

Lake Okeechobee does not exhibit the wide fluctuations in numbers and biomass that are characteristic of temperate lakes. In temperate lakes the seasonal amplitude in phytoplankton numbers is great, of the order of a thousandfold. By contrast, in tropical waters the seasonal variation may be as little as fivefold (Fogg, 1975). The winter minimum occurs with ice coverage in temperate lakes. Since Lake Okeechobee never freezes over, the drastic reduction in phytoplankton numbers and biomass due to light and temperate reduction does not occur. The seasonal variation in numbers and biovolume in Lake Okeechobee approximates those of a tropical lake. Comparison of Lake Okeechobee With A Tropical Lake

A survey of the literature was made in an attempt to find a tropical lake which limnologically resembled Lake Okeechobee. The lake which most closely resembles Lake Okeechobee (that this author could find) is Lake George, Uganda. Lake George is a shallow (average depth of 2.5 m) eutrophic tropical lake with no permanent stratification. The species composition includes <u>Microscystis</u> <u>aeruginosa, M. flosaquae</u>, <u>Anabaenopisis sp.</u>, <u>Lyngbya sp.</u>, <u>Aphanocapsa sp.</u>, <u>Chroococcus sp.</u>, <u>Pediastrum sp.</u>, <u>Seenedesmus sp.</u>, <u>Kirchneriella sp.</u>, <u>Synedra</u> <u>sp.</u>, <u>Nitzschia sp.</u>, and <u>Melosira sp</u>. (Burgis et al, 1973).

Lake George differs from Lake Okeechobee in terms of phytoplankton in several aspects. The Lake George phytoplankton community is dominated throughout the year by blue-green algae (70-80% of the phytoplankton biomass) (Ganf, 1969; Buris et al, 1973). Seasonal fluctuations of species composition and density are small (Burgis et al, 1973). The concentrations of phytoplankton (using chlorophyll ā as an index) range from 150 to 350 mg/m³ (Burgis et al, 1973) as opposed to 14 to 38 mg/m³ in Lake Okeechobee (Marshall, unpublished).

Gross primary productivity in Lake George is much higher than in Lake Okeechobee. Gant (1969) reported a productivity of 5.4 g $C/m^2/day$ for Lake George. Assuming a euphotic zone of 1.2 m, Lake Okeechobee has a maximum productivity of 1.6 g $C/m^2/day$.

The primary production in Lake George is relatively uniform throughout the year (Talling, 1965; Ganf, 1974), whereas wide fluctuations in productivity occur in Lake Okeechobee.

LITERATURE CITED

- Burgis, M.J., J.P.E.C. Darlington, J.G. Dunn, G.G. Ganf, J.J. Gwahaba, and L.M. McGowan, 1973. The Biomass and Distribution of Organisms in Lake George, Uganda. Proc. R. Soc. Land, B. 184:271-298.
- Davis, F.E. and M.L. Marshall, 1975. Chemical and Biological Investigations of Lake Okeechobee, January 1973 - June 1974. Interim Report. Technical Publication #75-1. Central and Southern Florida Flood Control District, West Palm Beach, Florida.
- Drouet, F., 1968. Revision of the Classification of the Oscillatoriareae Monograph 15 of the Academy of Natural Sciences of Philadelphia.
- Drouet, F., 1973. <u>Revision of the Nostocaleae With Cylindrical Trichomes.</u> Hafner Press, New York. pp. 197-201.
- Drouet, F., and W.A. Daily, 1956. Revision of the Coccoid Myxophyceae Butler Univ. Bot. Stud. 12:1-218.
- Edmondson, W.T., 1959. Fresh-Water Biology. John Wiley & Sons, Inc. New York.
- Findenegg, I., 1966. Relationship between Standing Crop and Primary Productivity Primary Productivity in Aquatic Environments. C.R. Goldman, ed. University Calif. Press, Berkley, Calif. pp. 271-289.
- Fogg, G.E., 1975. <u>Algal Cultures and Phytoplankton Ecology</u>. Second Edition University of Wisconsin Press, Madison. 175 pp.
- Ganf, G.G., 1969. Physiological and Ecological Aspects of the Phytoplankton of Lake George, Uganda. Ph.D. Thesis, University of Lancaster, U.K.
- Ganf, G.G., 1974. Diurnal Mixing and the Vertical Distribution of the Phytoplankton in a Shallow Equatorial Lake (Lake George, Uganda). Limnol. Oceanogr. 19:313-25.
- Huber-Pestalozzi, G., 1938-1961. Das Phytoplankton des Susswassers... in A. Thienemann. Die Binnengewasser... Bd. 16, Theil 1-5.
- Hustedt, F., 1930. Bacillariophyta, In A. Pascher's Die Susswasser-Flora Mitteleuropus. 10:1-466.
- Joyner, B.F., 1974. Chemical and Biological Conditions of Lake Okeechobee, Florida, 1969-72. Report of Investigations No. 71. United States Geological Survey.
- Patrick, R., and C.W. Reiner, 1966. <u>The Diatoms of the United States</u>. Monograph No. 13. The Academy of Natural Sciences of Philadelphia.

- Prescott, G.W., 1970. <u>Algae of the Western Great Lakes</u>. Wm. C. Brown Company, Publishers. Dubuque, Iowa.
- Smith, W.D.P., 1950. The Fresh-water Algae of the United States. McGraw-Hill Book Company, New York.
- Strickland, J.D.H., 1960. Measuring the Production of Marine Phytoplankton Bull. Fish. Res. Bd. Canada 122, 172 pp.
- Strickland, J.D.H., 1966. Measuring the Production of Marine Phytoplankton J. Fish Res. Board, Canada, Bull. 122. 203 pp.
- Strickland, J.D.H. and T.R. Parsons, 1968. A Practical Handbook of Seawater Analysis, Bull. #167, Fisheries Research Board of Canada, Ottawa, Canada, pp. 263-266.
- Talling, J.F., 1965. The Photosynthetic Activity of Phytoplankton in East African Lakes. Int. Revue ges. Hydrobil. Hydrogr. 50: 1-32.
- Tiffany, L.H. and M.E. Britton, 1971. <u>The Algae of Illinois</u>. Hafner Publishing Company, New York.
- Vollenweider, R.A., 1969. A Manual on Methods for Measuring Primary Production in Aquatic Environments. IBP Handbook No. 12, Blackwell Scientific Publications, Oxford and Edinbourgh, 213 pp.
- Wetzel, R.G., 1975. Limnology W.B. Saunders Company, Philadelphia. 743 pp.
- Whitford, L.A. and G.J. Schumacher, 1973. <u>A Manual of Fresh-Water Algae</u>. Sparks Press, Raleigh, N.C.

APPENDIX A LAKE OKEECHOBEE, JANUARY - DECEMBER 1974

PHYTOPLANKTON TOTAL DENSITIES (UNITS/ML)

Date	Sta.	Cyano.	Chloro.	Bacillario.	Crypto.	Dino.	Eugleno.	Unknown	Total
1/16/74 1/16/74 1/16/74 1/17/74 1/17/74 1/17/74 1/17/74	1 2 3 5 6 7 8	55,825 54,527 32,525 454,390 32,716 27,869 280,423	20,772 50,632 26,785 14,540 12,117 19,388 23,368	1,298 27,263 16,262 3,635 3,635 11,511 20,772	18,176 23,369 38,264 7,270 34,534 13,328 7,789	5,193	957		96,071 155,791 114,793 479,835 83,002 72,096 337,545
	Ave.	134,039	23,943	12,054	20,390	742	137		191,305
2/6/74 2/6/74 2/6/74	1 2 3	215,078 181,756 236,282	12,117 8,078 7,789	75,732 38,371 51,930	81,790			6,058	384,717 228,205 296,001
2/6/74 2/13/74 2/13/74 2/13/74 2/13/74	4 5 6 7 8	115,112 158,128 14,540 9,088 39,813	18,176 8,088 7,270 8,709 20,772	33,322 14,540 26,173 14,768 20,772	6,058 12,723 3,877 7,952 6,924	485			172,668 193,479 52,345 40,517 88,281
	Ave.	121,225	11,375	34,451	14,916	61			182,028
3/6/74 3/6/74 3/6/74 3/6/74 3/7/74 3/7/74 3/7/74 3/7/74	1 2 3 4 5 6 7 8	199,932 112,358 68,158 116,324 218,107 5,049 6,991 149,949	24,991 31,394 28,778 21,811 33,755 7,068 4,660 22,719	15,904 11,566 9,088 29,081 28,562 1,515 1,864 29,535	15,904 36,351 57,556 23,628 10,386 15,146 10,253 61,343	3,029	2,272	1,817 699	256,731 191,669 166,609 190,844 290,810 28,778 23,768 265,818
	Ave.	109,608	21,897	15,889	28,821	379	284		176,878

-61-

(Continued)

Date	<u>Sta</u> .	Cyano	Chloro.	Bacillario.	Crypto.	Dino.	Eugleno.	Unknown	Total
4/3/74 4/3/74 4/3/74 4/3/74 4/4/74 4/4/74	1 2 3 4 5 6	190,843 67,576 143,202 64,624 45,439 62,915	36,351 25,632 30,293 44,429 13,769 18,176	102,995 167,775 112,909 127,229 89,501 64,314	6,058 8,262 6,058 4,194		2,330 2,019	5,508	336,247 263,313 294,666 244,359 148,709 149,599
4/4/74 4/4/74	7 8	20,089 42,410	22,002 20,195	73,659 149,444	5,740 6,058			2,870 2,019	121,490 218,107
	Ave.	79,637	26,356	110,978	4,546		544		222,061
5/8/74 5/8/74 5/8/74 5/8/74 5/9/74 5/9/74 5/9/74 5/9/74	1 2 3 4 5 6 7 8 8	117,315 272,634 158,387 139,346 239,456 40,390 2,364 138,589 138,560	42,960 27,263 80,492 40,390 25,965 17,502 4,729 34,079 34,079	21,480 48,468 46,737 66,644 51,930 20,868 26,303 43,167 40,700	6,609 25,965 2,019 1,346 4,137 18,176 7,282	2,885	2,885	2,596 4,039 2,885 2,019 591 4,544	188,364 348,365 311,581 248,399 323,121 80,106 37,533 234,011 221,436
6/6/74 6/6/74 6/6/74 6/7/74 6/7/74 6/7/74 6/7/74	1 2 3 4 5 6 7 8	238,879 141,770 105,749 154,493 61,451 23,657 9,473 86,839	15,579 23,628 28,089 27,263 5,193 9,809 9,253 46,449	28,562 29,081 33,046 63,615 25,100 16,733 3,305 82,800	2,596 7,270 13,219 13,632 865 7,501 1,542 18,176	2,596	2,596 5,453 11,566 2,272 661	5,193 577 8,078	290,808 207,202 191,669 261,275 92,609 57,700 24,234 234,264
	Ave.	102,789	20,658	35,280	8,100	324	2,818		169,969

Appendix A	(Continued)
------------	-------------

	Date	<u>Şta.</u>	Cyano.	Chloro.	Bacillario.	Crypto.	<u>Dino.</u>	Eugleno.	Unknown	Total
	7/9/74 7/9/74 7/9/74 7/9/74 7/10/74 7/10/74	1 2 3 4 5 6	30,145 62,316 212,654 112,689 7,501 14,281	7,979 8,655 16,358 15,752 9,232 2,596	2,660 39,813 12,723 13,329 1,154 12,982	1,773 6,924 10,905 6,058 11,540 19,474	443 865	2,216 865 2,308 2,164	1,773	45,216 119,438 252,640 147,828 31,735 51,497
	7/10/74 7/10/74	7 8	5,852 <u>110,352</u>	8,157 9,088	1,241 20,772	7,802 5,193			177	23,052 145,405
		Ave.	69,474	9,727	13,084	8,709	163	944		102,101
-63-	8/7/74 8/7/74 8/7/74 8/7/74 8/8/74 8/8/74 8/8/74 8/8/74	1 2 3 4 5 6 7 8	127,229 43,872 280,423 129,047 35,442 55,176 5,373 5,396	16,523 6,267 12,982 27,263 144,042 6,491 2,172 2,272	36,351 21,309 15,579 59,979 4,544 8,439 4,115 26,127	1,652 627 686	852	1,298 229 1,136	457	181,755 72,075 308,984 216,289 184,028 71,404 12,575 35,783
		Ave.	85,245	27,252	22,055	371	106	333		135,362
	9/11/74 9/11/74 9/11/74 9/11/74 9/12/74 9/12/74 9/12/74 9/12/74	2 3	150,857 121,171 81,312 127,229 31,262 41,245 6,361 44,682	34,534 6,732 22,002 12,117 60,343 20,972 1,212 12,117	12,723 13,463 7,653 30,293 7,270 3,495 2,726 6,058	4,039 14,540 4,194 18,478 18,176	1,346	2,693 1,515 727 699 1,515	303 4,544	198,114 149,444 110,967 171,154 114,142 70,605 31,503 82,548
		Ave.	75,515	21,254	10,460	7,428	509	894		116,060

Appendix A(Continued)

	Date	<u>Sta</u> .	Cyano.	Chloro.	Bacillario.	Crypto	Dino.	Eugleno.	Unknown	Total
	10/15/74 10/15/74 10/15/74 10/15/74 10/16/74 10/16/74 10/16/74 10/16/74	1 2 3 4 5 6 7 8 Ave.	61,393 38,659 20,089 40,967 133,720 26,473 8,330 50,199 47,479	14,540 11,540 10,842 14,425 5,193 9,088 3,938 12,983 10,319	7,270 9,232 2,870 14,425 23,369 4,346 2,575 24,234 11,040	12,925 2,885 319 1,731 2,596 2,371 909 2,596 3,291			319 577 5,193 790 <u>865</u>	96,128 62,316 34,120 71,548 164,878 42,278 15,752 90,012 72,129
-64-	11/7/74 11/7/74 11/7/74 11/7/74 11/7/74 11/7/74 11/7/74 11/7/74	1 2 3 4 5 6 7 8 4ve.	18,359 10,229 25,815 19,277 115,112 15,042 6,979 34,332 30,643	5,508 3,619 7,376 13,219 24,234 4,011 1,163 10,098 8,654	5,875 3,147 11,063 7,711 13,632 7,521 22,101 20,195 11,406	1,469 472 17,385 19,277 752 872 6,058 5,786			1,515	31,211 17,467 61,639 59,484 152,978 27,326 31,115 70,683 56,489
	12/11/74 12/11/74 12/11/74 12/11/74 12/12/74 12/12/74 12/12/74 12/12/74	1 2 3 4 5 6 7 8 Ave.	21,918 65,246 23,069 23,302 89,580 20,902 28,332 7,931 35,035	25,660 30,759 13,981 20,972 41,544 15,449 13,899 5,948 21,026	11,226 24,234 31,458 82,722 31,158 17,267 10,691 18,176 28,366	535 1,864 5,592 5,825 7,789 1,818 6,949 1,983 4,044		535 330 108	3,495 454	59,339 122,103 74,100 132,821 170,071 55,436 60,406 34,368 88,579

APPENDIX B LAKE OKEECHOBEE, JANUARY - DECEMBER 1974

PHYTOPLANKTON BIOVOLUME ($\mu^3/m1$)

Date	Sta.	Cyano.	Chloro.	Bacillario.	Crypto.	Dino.	Eugleno.	Unknown	Total
1/16/74 1/16/74 1/16/74 1/17/74 1/17/74 1/17/74 1/17/74	1 2 3 5 6 7 8	1,354,731 592,005 360,642 14,318,738 521,034 205,990 12,426,917	2,336,214 2,068,124 539,528 926,956 372,600 351,395 563,444	6,422,478 1,564,400 3,117,594 708,848 397,440 1,461,924 1,217,765	1,607,891 2,113,563 3,792,004 334,431 7,126.047 2,125,333 392,074	145,405	360,642		11,721,314 6,338,092 8,170,410 16,288,973 8,417,121 4,144.642 14,745,605
	Ave.	4,254,294	1,022,609	2,127,207	2,498,763	20,772	51,520		9,975,164
2/6/74 2/6/74 2/6/74	1 2 3	3,828,993 7,746,845 8,381,548	1,251,087 393,805 244,072	10,841,745 6,444,260 6,130,370	1,290,468			145,405	17,212,293 14,584,910 14,755,990
2/6/74 2/13/74	4 5	1,593,394 10,943,529	421,068	1,413,153 5,196,404	292,324 314,438				3,719,939
2/13/74 2/13/74	6 7	105,661 45,060	85,789 51,498	2,439,893 2,109,127	142,981	7,755			2,782,079 2,566,546
2/13/74	8	308,985	295,651	9,116,362	953,786				10,674,784
	Ave.	4,119,252	371,952	5,461,414	419,357	969			10,372,944
3/6/74 3/6/74 3/6/74	1 2 3	7,011,238 3,611,987 1,408,609	1,501,759 993,049 2,774,808	981,482 3,030,368 269,605	933,771 2,569,369 3,619,974	1,903,894			10,428,250 10,204,773 9,976,890
3/6/74 3/7/74	4 5	2,346,470 6,574,374	674,315 329,757	2,342,835 4,253,090	2,564,577 2,318,687	, _ <u>,</u> .		59,979	7,928,197 13,475,908
3/7/74 3/7/74 3/7/74	6 7 8	24,487 56,857 3,457,908	366,036 39,847 286,266	35,594 2,646,880 840,622	1,244,776 702,790 8,113,133		770,191	932	1,670,893 3,446,374 13,468,120
	Ave.	3,061,491	870,729	1,800,060	2,758,385	237,987	96,274		8,824,926

-65-

Appendix B CONTINUED

	Date	Sta.	<u>Cyano</u> .	<u>Chloro</u> .	<u>Bacillario</u> .	Crypto.	Dino.	Eugleno.	Unknown	Total
	4/3/74 4/3/74 4/3/74 4/3/74 4/4/74 4/4/74 4/4/74 4/4/74	1 2 3 4 5 6 7 8 Ave.	2,647,579 2,050,581 2,541,830 587,678 2,963,174 447,399 110,010 343,317 1,461,446	5,482,973 659,448 5,538,050 472,566 115,663 317,374 270,721 1,542,906	6,391,753 20,608,334 8,093,650 5,759,646 11,246,841 3,969,271 7,550,527 6,694,679 8,789,338	357,453 275,388 1,861,989 198,533 639,972 488,722 477,757		538,277 672,497 151,347	77,109 78,442 286,771	14,879,758 23,856,640 16,448,918 9,354,376 14,325,678 4,932,577 8,571,230 9,069,624 12,679,851
					·····					
- 66 -	5/8/74 5/8/74 5/8/74 5/9/74 5/9/74 5/9/74 5/9/74	1 2 3 4 5 6 7 8 Ave.	1,257,421 2,683,930 1,217,765 688,653 7,720,302 190,507 16,255 1,899,350 1,959,273	2,116,631 4,068,305 1,002,255 1,015,814 490,453 321,775 134,765 1,483,583 1,329,198	12,344,537 2,656,667 2,975,605 2,692,008 4,515,050 1,046,107 8,416,928 2,762,691 4,676,199	1,273,944 3,923,333 119,151 79,434 496,504 2,199,248 1,011,452	69,240 8,655	934,745 141,366 <u>315,801</u> 173,989	331,200 40,390 50,488 19,210	16,992,533 9,408,902 10,053,703 4,515,626 12,936,411 1,637,823 9,064,452 8,660,673 9,158,766
	6/6/74 6/6/74 6/6/74 6/7/74 6/7/74 6/7/74 6/7/74	1 2 3 4 5 6 7 8 Ave.	7,919,369 2,537,314 1,543,274 2,801,314 1,525,019 285,040 202,685 1,964,984 2,347,375	233,686 2,726,340 1,368,127 1,697,147 128,095 162,138 144,083 789,629 906,156	1,467,031 1,595,818 1,870,434 4,134,949 3,405,761 1,078,996 359,106 4,943,763 2,356,982	85,685 232,648 779,898 1,097,352 57,123 841,271 73,804 1,349,033 564,602	1,396,925	8,882,675 890,604 1,135,149 990,570 12,998 1,489,000	43,167 91,744 8,078	19,985,371 7,982,724 6,696,882 10,721,332 5,115,998 2,367,445 792,676 9,047,409 7,838,731

Appendix B CONTINUED

	Date	<u>Sta.</u>	Cyano.	Chloro.	<u>Bacillario</u> .	Crypto.	Dino.	Eugleno.	Unknown	Total
	7/9/74 7/9/74 7/9/74 7/9/74 7/10/74	1 2 3 4 5	1,305,983 2,065,960 2,933,542 1,176,567 466,796	4,152,460 849,926 258,094 920,897 1,202,186	3,302,196 8,711,305 552,538 3,449,729 260,805	1,127,331 490,741 498,011 547,691 2,687,969	232,293 1,243,730	1,023,597 579,888 656,630	290, 810	11,143,860 13,941,550 4,242,185 6,094,884 5,274,386
	7/10/74 7/10/74 7/10/74 7/10/74	6 7 8	128,527 87,952 5,916,158	358,319 116,501 1,034,711	1,487,370 78,554 1,019,132	1,731,875 347,730 245,371	1	1,029,518	67,737	4,735,609 630,737 8,215,372
		Ave.	1,760,186	1,111,637	2,357,704	764,754	184,503	411,204		6,589,988
	8/7/74 8/7/74 8/7/74 8/7/74 8/8/74	1 2 3 4 5	4,682,695 898,752 102,377,962 3,077,129 4,756,100	13,858,069 779,671 207,721 519,822 5,313,637	5,049,512 1,771,808 971,096 4,745,649 981,482	152,014 36,978				23,742,290 3,487,209 103,556,779 8,342,600 11,051,219
-67-	8/8/74 8/8/74 8/8/74	6 7 8	962,009 68,930 169,544	2,578,339 166,667 91,162	18,572,218 2,210,679 1,550,322	275,263	3,229,577	197,736 36,923 500,397	46,525	22,310,302 2,758,462 5,541,002
		Ave.	14,624,140	2,939,386	4,481,596	58,032	403,698	91,507		22,598,359
	9/11/74 9/11/74 9/11/74	1 2 3	6,108,819 1,756,975 2,141,851	2,655,455 35,005 484,045	1,335,907 390,439 10,906,317	238,302	1,934,692		483,336	10,100,181 4,355,413 13,532,213
	9/11/74 9/12/74 9/12/74 9/12/74	4 5 6 7	3,250,403 1,638,712 634,748 549,812	580,105 2,551,127 1,960,868 103,298	27,248,254 520,549 16,528,611 7,372,932	1,001,839 838,175 2,769,961	5,706,835	89,363 186,845 366,308	272,634	31,168,125 5,899,072 20,328,710 16,502,838
	9/12/74	8 Ave.	<u>945,889</u> 2,128,401	<u>201,446</u> 1,071,419	<u>365,784</u> 8,083,599	<u>3,488,201</u> 1,042,060	955,191	<u>583,134</u> 153,206	112,083	<u>5,584,454</u> 13,433,876

Appendix B CONTINUED

	Date	<u>Sta.</u>	Cyano.	Chloro.	<u>Bacillario.</u>	Crypto.	<u>Dino</u> .	Eugleno.	Unknown	Total
	10/15/74 10/15/74 10/15/74 10/15/74 10/16/74 10/16/74 10/16/74	1 2 3 4 5 6 7 8 Ave.	1,139,004 507,763 361,599 949,747 6,344,583 312,541 202,809 2,218,289 1,504,542	168,023 124,056 686,846 267,152 1,178,817 313,727 248,097 757,317 468,004	9,359,222 3,279,686 132,331 761,644 8,421,794 181,361 1,508,726 2,671,813 3,289,572	1,055,800 2,643,829 106,503 103,284 153,194 519,585 242,038 153,194 622,178			751,258 148,290 934,745 790 231,955	11,722,049 6,555,334 1,287,279 2,081,827 16,098,388 1,327,214 2,201,670 5,800,613 5,884,296
-68-	11/7/74 11/7/74 11/7/74 11/7/74 11/7/74 11/7/74 11/7/74 11/7/74	1 2 3 4 5 6 7 8 Ave.	157,522 219,523 379,317 464,304 9,134,754 307,606 68,922 651,629 1,422,947	38,554 132,186 155,415 725,922 1,240,485 238,414 25,591 465,161 377,716	467,058 146,821 10,016,073 649,915 3,064,103 1,377,585 3,197,452 2,403,218 2,665,279	593,002 59,012 2,516,135 2,607,923 31,087 38,096 744,526 823,723			177,212	1,256,136 557,542 13,066,940 4,448,064 13,439,342 1,954,692 3,330,061 4,264,534 5,289,665
	12/11/74 12/11/74 12/11/74 12/12/74 12/12/74 12/12/74 12/12/74 12/12/74	1 2 3 4 5 6 7 8 Ave.	551,683 2,432,734 318,073 703,722 3,269,011 404,861 360,305 177,790 1,027,272	538,853 675,759 197,135 262,148 955,517 865,159 7,734,252 182,086 1,426,364	1,630,993 1,297,458 1,419,095 4,298,063 2,103,177 961,035 936,043 853,262 1,687,391	39,559 109,986 1,154,850 1,068,399 2,536,794 107,236 479,515 453,399 753,717		364,047 <u>13,880</u> 47,241	139,113 233,686 59,979	2,761,088 4,515,937 3,089,153 6,332,332 8,864,499 2,338,291 9,874,162 1,680,417 4,931,985

ADDENDUM

In Davis and Marshall (1975), Table 7 listed the primary productivity values that were measured on Lake Okeechobee during 1973. Since the publication of that report, an error has been discovered in the calculation procedure for primary productivity. Table 7 is reproduced in the present report with the corrected values. The average gross primary productivity for 1973 was 1156 mgC/m³/day rather than 1864 mgC/m³/day as reported in Davis and Marshall (1975).

Appendix E (Davis and Marshall, 1975) is reproduced in the present report with the corrected rate, $100 \text{ mgC/m}^3/\text{hr}$.

A comparison of productivity rates with those of other lakes classified by Brezonik, et al (1969) leads this author to conclude that Lake Okeechobee may be classified as either mesotrophic or eutrophic.

TABLE 7 LAKE OKEECHOBEE 1973

IN SITU PRIMARY PRODUCTIVITIES (LIGHT AND DARK BOTTLE OXYGEN METHOD)

	Primary	Productivity rrected for da	(mgC/m ³ /day)	
Date	Station	Gross	Net	Respiration
1/16/73	5	682	496	186
1/16/73	6	434	434	0
2/6/73	5	868	806	62
2/6/73	6	434	496	0
3/5/73	1	1054	1240	0
3/5/73	4	2170	2294	0
4/19/73	1	930	930	0
4/19/73	4	1054	558	620
4/12/73	5	1488	1550	0
4/12/73	6	992	1054	0
5/3/73	1	1240	1302	0
5/2/73	4	1240	1302	0
5/9/73	5	496	434	62
5/9/73	6	930	806	124
6/4/73	1	1612	1116	558
6/4/73	4	1054	930	124
6/5/73	5	744	744	0
6/5/73	6	1984	1984	0
7/12/73	1	1860	1860	0
7/10/73	5	186	310	0
7/10/73	6	868	806	62
8/9/73	1	2294	2418	0
8/10/73	5	434	372	62
8/10/73	6	1116	1054	62
9/12/73	1	1674	1674	62
9/13/73	5	1302	1178	186
9/13/73	6	2294	2108	186
10/11/73	1	1240	1302	0
10/12/73	5	1674	1488	248
10/12/73	6	1426	1426	62
11/15/73	1	1054	992	124
11/15/73	4	1364	1240	186
11/20/73	5	868	806	62
11/20/73	6	248	310	0

APPENDIX E

GROSS PRIMARY PRODUCTIVITY VALUES OF VARIOUS FLORIDA LAKES (Brezonik, et al., 1969)

(Lake Okeechobee, gross primary productivity values: 100 mg $C/m^3/hr$)

, <u> </u>	0
Location	<u>mg C/m³/hr</u>
Lake Apopka	386.0
Lake Dora	1020.0
Lake Harris	37.0
Lake Eustis Lake Griffin	274.0
Lake Weir	183.0 11.0
Lake Well' Lake Santa Fe	13.5
Lake Newman	53.6
Lake Orange	43.0
Lake Lochloosa	35.6
Lake Altho	10.3
Lake Cooter	87.0
Lake Little Santa Fe	6.6
Lake Little Orange	12.7
Lake Tuscawilla	12.2
Lake Watermelon	5.3
Lake Wauberg	124.3
Lake Bivens Arm	77.5
Lake Burnt	54.4
Lake Elizabeth	0.58
Lake Hawthorn	55.5
Lake Hickory	7.52
Lake Jeggord	4.26
Lake Kanapaha	26.9
Lake Long	1.42 12.9
Lake Moss Lee	3.36
Lake Palatka	10.5
Lake Trout Lake Clear	69.1
Lake Clearwater	0.33
Lake Meta	3.59
Lake Mize	7.46