TECHNICAL PUBLICATION 76-2

April, 1976

PREDICTIVE WATER DEMAND MODEL FOR CENTRAL AND SOUTHERN FLORIDA

TECHNICAL PUBLICATION: No. 76-2

April 1976

PREDICTIVE WATER DEMAND MODEL FOR CENTRAL AND SOUTHERN FLORIDA

by

Nagendra Khanal

#69

"This public document was promulgated at an annual cost of \$226.42, or \$.453 per copy to inform the public regarding water resource studies of the District." RPD-126 R987 25.

Resource Planning Department Central and Southern Florida Flood Control District West Palm Beach, Florida 33402

TABLE OF CONTENTS

Synopsis	1
Introduction	2
Historical Background Sprinkler Demand Domestic Demand Based on Consumer Theory Industrial Demand	4 5 6 7
FCD Water Demand Models Municipal Demand Data Collection Samples	9 9 11 11
Results and Discussion Validation of the General Predictive Equation Validation of the Water Requirement Predictive Equation on a Municipality Level	12 17 27
Seasonal Demand Estimation Seasonal Variation Method of Analysis Data Collection	33 33 34 34
Summary	36
Conclusions	3 9
Literature Cited	40
Appendix A	43
Appendix B	46
Appendix C	52
Appendix D	57

Page

LIST OF TABLES

<u>No.</u>		Page
1	Counties and the Number of Municipalities Within the County	6
2	Bivariate Statistical Table of the Proposed Model	12
3	Regression Coefficients and the Associated Errors	14
4	Stable Variables and Their Coefficients	15
5	Predictive Equation Check Using Past Population and Pumpage Records for Palm Beach County	21
6	Predictive Equation Check Using Past Population and Pumpage Records for Broward County	22
7	Predictive Equation Check Using Past Population and Pumpage Records	23
8	Predictive Equation Check Using Past Population and Pumpage Records	24
9	Projected Water Requirements - Palm Beach County	25
10	Projected Water Requirements - Broward County	25
11	Projected Water Requirements - Dade County	26
12	Predictive Equation Check Using the Past Population and Pumpage Records	29
13	Predictive Equation Check Using Past Population and Pumpage Records	30
14	Predictive Equation Check Using Past Population and Pumpage Records	31
15	Predictive Equation Check Using Past Population and Pumpage Records	32

<u>No.</u>		Page
1	Location of 69 Sample Sites	41
2	Water Demand Model - Flow Chart	42
3	Projected Water Requirement Palm Beach County	67
4	Projected Water Requirement Broward County	6 8
5	Projected Water Requirement Dade County	69
6	Seasonal Pumpage Variations City of Delray Beach	70
7	Seasonal Pumpage Variations Miami-Dade Sewer & Water Authority	71
8	Seasonal Pumpage Variations City of West Palm Beach	72
9	Seasonal Pumpage Variations City of Boca Raton	73

SYNOPSIS

A predictive water demand model (strictly speaking, a requirement model as the price of water is not taken into account, assuming it to be exogeneous) was developed; based on the social, economic and environmental parameters in the demand model for the central and southern Florida area. The model is validated by using the historic pumpage records for the three counties in the Gold Coast area. It has also been validated on municipality levels for urban areas which are in suburban counties.

The coefficient of determination between the population served and the municipal water pumped is .892. When two other significant parameters (average rainfall/year and median family income) are incorporated in the demand model, the coefficient of determination is improved to .913; a marginal accuracy might be significant in the near future when the scarcity of the natural resources becomes critical. For the present it can be concluded, based on the results of this study, that future water requirements can be predicted reliably if good population projections can be made for the above stated area.

A second model developed is based on the long monthly pumpage records of 5 large utility companies to estimate the seasonal variation of the average yearly water demand. It was determined from this model that the maximum monthly requirement is around 21 percent of the average yearly demand for the FCD area based on this study.

INTRODUCTION

Conventional forecasting of urban water demand simply assumes the demand increases proportionately in some relation to the increase in population; a forecasted population multiplied by a per capita use figure to determine the average annual demand. Fair, Geyer, and Okum (3) in their book on water and waste water engineering, point out that figures derived from these forecasts "generalize the experience" of the engineers of the area. Furthermore, they state that the requirement approach enjoys a certain rudimentary logic. Water use is assumed to be perfectly correlated with population. Using this basic approach to water supply requirements forecasting, many investigators have attempted to "generalize the experience."

Conventional water supply management begins with the premise that water is necessary for life, then proceeds to lay down requirements for increasing water use by grand engineering designs which hope to repeat the tradition of earlier successes in water resources planning. This kind of conventional forecasting works, to an extent, due to the fact that population is the most significant determinant of the model, but excludes factors such as climate, income, type of housing, population density, and price of water. In recent studies by Burke (1), Howe, Linawever (4), and Turnovsky (8), these factors have all been shown to have measureable effects on per capita consumption of water. Thus, it is more appropriate to speak of the demand for water, given certain values of these factors, than to assume a rigid water requirement for a given year.

The Central and Southern Florida Flood Control District recognizes the importance of the above stated socio-economic and environmental parameters

-2-

influencing the quantity of water demanded for municipal uses, and in an attempt to quantify the importance of the above stated variables for our local conditions, this study is undertaken.

Under the provisions of the Florida Water Resources Act of 1972, (Chapter 373), the use of surface and groundwater in the District falls within the permitting responsibilities delegated to the District by the Department of Environmental Regulation. The District must then be in a position to evaluate intelligently applications for water use permits, whether they be municipal, industrial or agricultural.

HISTORICAL BACKGROUND

The first attempt to study the effect that price has on the quantity of water demand by residential customers for household or indoor uses and for outside uses was made at Johns Hopkins University by Charles W. Howe and L. P. Linewever (4). They formulated models of residential water demand and estimated the relevant parameters from cross sectional data. They showed the dependence of water demand on the price charged. Their major findings were: a) domestic demands are relatively inelastic with respect to price and b) sprinkling demands are elastic with respect to price. They studied 39 areas, 10 in the western United States (metered with public sewer), 11 in the eastern United States, 5 metered with septic tanks, 8 flat rate public water and sewer, 5 apartment area buildings, but not individually metered. They differentiated between the domestic demand and the sprinkling demand. The parameters used in these two demand models were as follows:

Domestic Demand

 q_{a} , d = f (v, a, dp, k, pw) (1) Where,

 q_{a} , d = average annual quantity demanded for domestic purposes in

gallons per dwelling unit per day (gpd/du),

- v = market value of the dwelling unit in thousands of dollars,
- dp = number of persons per dwelling unit,
- a = age of the dwelling unit,

k = average water pressure in psi,

pw = the sum of water and sewer charges that vary with water use, evaluated at the block rate applicable to the average domestic use in each study area.

-4-

Theoretical consideration fails to specify a unique functional form, so that both linear and multiplicative forms were fitted to the above parameters as follows:

$$q_{a}$$
, $d = A_{o}V^{A}1 a^{A}2 dp^{A}3 K^{A}4 Pw^{A}5 u$ (2)

Transforming this to linear form one gets:

log, ^qa, d = log A₀ + A₁ log V + A₂ log a + A₃ log dp + A₄log K + A₅ log Pw + log u (3)

Sprinkler Demand

The multiplicative equation form for the sprinkler demand was developed based on the following parameters:

```
qs, s = average summer sprinkling demand in gallons per dwelling
unit per day.
```

q max, s = Maximum day sprinkling demands in gallons per dwelling unit per day.

b = irrigable area per dwelling unit.

- Ws = maximum day potential evapotranspiration in inches.
- rs = summer precipitation, in inches.
- ps = marginal commodity charge applicable to average summer total rates of use.

Thus, the sprinkler demand function takes the form of:

qs, $s = B_0 b$ (Ws - 0.6 r_s) ^B2 ps ^B3 v ^B4 u

(4)

The physical requirement b (Ws - 0.6 r_s) is very likely to be modified as a function of the economic status of the household v, and price.

Maximum sprinkling day demand will occur at a time when previous rainfall has been dissipated and when temperature, humidity, thermal radiation, and wind lead to a maximum rate of evapotranspiration. On such days the

physical requirement would be b w max. For these days the maximum day demand equation was fitted as:

$$q_{\text{max}, s} = B_0 b^{B1} w_{\text{max}}^{B2} p s^{B3} v^{B4} u$$
(5)

The final equations that were developed for the domestic and the sprinkler demand were:

a) 9a, d = 206 + 2.47 V - 1.30 Pr (6)

b) $q_s, s = 1,130 \text{ Ps}^{-.703} \text{ V}^{.429}$ (7)

c) q_{max} , s = 3,400 W_{max} 2.06 v .413 (8)

The "R" or the coefficient of correlation for the above equations is .847.

Turnovsky (8) has developed models based on consumer theory. Starting with an individual's utility function ($u(x_1, \ldots, x_n)$) where x_i is the amount consumed of commodity i, the demand function is $x_i = f_i$ (Pi.....Pn, u), i = 1.....n.

Where,

pi = price of commodity i, and

u = consumers income.

Much of Turnovsky's work concentrates on determining how the individual responds to parameter changes. His basic equation concerning the domestic demand and the industrial demand are as follows:

Domestic Demand Based on Consumer Theory

 $X_i = A_0 + A_1 S_1^2 + A_2 P_i + A_3 hi + A_4 Ri$ (9)

Where,

 X_i = planned per capita consumption in town i in gallons/day,

 S_1^2 = variance of supply in town i in gallons/day squared,

-6-

- Pi = average price of water in town is given by metered revenue divided by metered gallons used, in cents per 1,000 gallons,
- hi = index of per capita housing space given by average number of rooms per dwelling units in town i/median number of occupants per dwelling unit in town i,

Ri= percentage of population under 18 in town i,

 $I^{P}i$ = index of per capita industrial production in town i.

Industrial Demand

 $X_i = B_0 + B_1 S_i^2 pi + B_3 IPi$

These predictive models were applied to Massachusetts data.

(10)

Thompson and Young (7) developed linear equations for water demand models based on the form of derivation for certain types of substitutions in a steam electric generating plant. These linear approximated demand functions were used to evaluate proposed investments in water resources regulation.

Burke (1) recently made a comprehensive model study concerning the water demand for the conterminous United States. The approach taken into consideration to the maximum extent possible, was an accommodation of the myriad impacts on water requirements generated by demographic, social, economic, and environmental factors. Sixteen variables (estimated population served in millions, value added by manufacturing in millions, number of families, precipitation in inches per year, median family income in dollars, family income under \$3,000 in percent, family incomeeover \$10,000 in percent, median value of housing units in dollars, manufacturer's all employees annual average, manufacturer's production workers annual average, and the number of retail establishments) were used to predict the water pumpage in gallong.. A few of the salient points worthy of note from Burke's study are as follows:

-7-

 All the parameters used in the model were obtained from two, and only two, readily available sources. They are:

1) City and County data books - USDC - Census Bureau, and

 Inventory of Municipal Water Facilities - Public Health Service publication, HEW, Washington, D. C.

b) Prediction equations were developed for the State of Florida based on 18 Florida cities with a population in excess of 25,000.

The equation he developed was log linear in nature. Among the 18 parameters for the Florida condition, it was stated that only the following parameters were significant towards increasing the correlation coefficient. The important parameters for Florida conditions were:

a) Estimated population served (in millions).

b) Number of families.

c) Precipitation (inches/year).

d) Median family income (dollars).

The functional form that was developed is:

Y = f(X1, X2, X3, X4)

Where,

1

Y = water demanded.

The type of equation used was multiplicative in nature.

 $Y = A x_1^{B} x_2^{S} x_3^{T} x_4^{D}$ (12)

(11)

Transforming it to linear form one obtains:

Log Y = log A + B log
$$x_1$$
 + S log x_2 + T log x_3 +
D log x_4 (13)

The coefficient of determination was stated to be .946 for the above developed prediction equation.

A water demand model similar to Burke's model is investigated here to determine a functional relation between the quantity of water demanded and the social, economic, and environmental parameters that influence the quantity demanded for the municipalities within central and southern Florida. No restriction is placed on the size of population served in this study.

FCD WATER DEMAND MODELS

Municipal Demand

Kreitman, et. al., (5) made a comprehensive study concerning the water consumption trends within central and southern Florida. Their study was meant to display the gross per capita values and the nature of the distribution within central and southern Florida. The water consumption data were compiled from forty-six municipal and private suppliers. The mean and the standard deviation values of water consumption for the year 1973 were estimated to be 197 and 87 gallons per capita per day. They fitted the data to the Gaussian distribution and banded it with the 90 percent confidence interval band.

The U. S. Geological Survey (12) also compiles municipal pumpage data for the State of Florida on an annual basis. The mean per capita consumption from the survey data was determined to be around 150 gpcd for the year 1973. It was stated in Kréitman et.al.'s (5) report that the discrepancy between the two mean values is due to the fact that several of the per capita groups in the upper limit were not represented in the USGS sample, even though their sample size was larger than the FCD's.

Having known the present average per capita consumption, this study spins off from there. This particular study is geared towards formulating easy to use water demand models to enable rapid determination of municipalities water requirements for future years, without recourse to detailed

-9-

on-site data collection and investigation. More specifically, this study is an attempt to provide a tool for rapidly estimating, with reasonable accuracy, the future water requirements of cities in central and southern Florida with the aim to improve and supplement the existing apparatus on the quantification of water demand.

As stated earlier, this model is being approached in a similar fashion as was approached by Burke (1). Burke's model used Florida cities with populations in excess of 25,000. This study places no limitation on the size of population served. The following parameters were selected to represent the FCD water demand model:

a) Population served	X1
b) Number of people per dwelling	unit X2
c) Rainfall, inches per year	X3
d) Median family income	Х4
e) Population per square mile	X5
f) Percentage of population 18 ye	ears and over X6
g) Percentage of population 65 ye	ears and over X7
h) Quantity of water pumped daily	у Y
In functional notation, the above write	ten variables are written as:
Y = f (X1, X2, X3, X4, X5, X6, X7)) (14)
The appropriate form of the equation p	roposed to be fitted is:
y = Axla x2 ^b x3 ^c x4 ^d x5 ^e x6 ^f x6 ^g	(15)
Transforming the above form of equation	n to linear form, one obtains:
log Y = log A + alog Xl + blog X2	+ clog X3 +dlog X4 + elog X5
+ flog X6 + glog X7	(16)

-10-

Data Collection

Data on the parameters as outlined above, to be used in the predictive water demand model, were abstracted from the following sources:

- a) Florida League of Cities 1972: Compilation on water, solid waste, sewer and electicity (updated to 1974 figures).
- b) 1970 Florida census of population (updated to 1974 figures).
- c) National Oceanic and Atmospheric Administration (formerly U. S.
 Weather Bureau).

Samples

The social, economic and environmental parameters were abstracted for the following municipalities from the counties which are within the FCD boundaries. They are presented in Appendix A. The median family income was projected based on 3 percent geometric growth figure for the year 1974.

Presented in tabular form are the counties and the number of municipalities within the counties which are included in the water demand model (see Map 1).

TABLE 1	COUNTIES	AND	THE	NUMBER	0F	MUNICIPALITIES	WITHIN	THE	COUNTY
<u>Count</u> y				Number	of	Municipalities	Within	the	County
Polk						6			
Highlands						. 3			
Palm Beach						13		•	
Lee						6			
Dade						7			
Seminole						2			
Hendry						2			
Broward						. 10			

-11-

TABLE 1 (Continued) Number of Municipalities Within the County County Volusia. 6 St. Lucie 1 Osceola 1 Orange 4 Brevard 3 Monroe 1 Glades 1 Okeechobee 1 Martin 1 Indian River 1 69 Total

RESULTS AND DISCUSSION

The proposed statistical model as depicted by Equation (16) was run in the CDC 3100 computer located in-house. A standard multivariate analysis package stored on disk was used.

Presented below in tabular form is the bi-variate statistical table, which simply shows the partial correlation coefficient between the dependent variable, which in this case is the municipal water pumped, with respect to the independent variables.

TABLE 2 BIVARIATE STATISTIC	AL TABLE OF THE PROPOSED MODEL
Independent Variables	Partial Correlation Coefficient With the Quantity of Water Pumped
Population Served	. 944
Average Persons Per Unit	. 055
Rainfall Inches/Year	. 369
Median Family Income	.509

-12-

Table 2 (Continued)

Population Per Square Mile	.563	
Percentage of Population 18 Years and Over	.177	
Percentage of Population 65 Years and Over	053	

From the table above, it can be seen that population served has the highest correlation with the quantity of water pumped. Population per square mile and the median family income have linear correlation in excess of 50 percent. If actual population data is not available, data based on zoning (land use) and social status of the people (median family income) can be used in water demand projections.

A recent study by Berry and Bonem (2) approached the development of a water demand model based on the median family income. The linear correlation was determined to be .875. The FCD study shows the correlation coefficient of this variable with respect to quantity of water pumped for the central and southern Florida condition to be .510.

Burke's (1) study pointed out the significant effect of annual precipitation towards improving the coefficient of determination for the Florida condition in particular. This study also shows that effect. The linear coefficient of correlation between the annual average rainfall versus the quantity of water pumped is .369.

In the table following, are presented the regression coefficients and the associated standard errors of each of the independent parameters used in the water demand model.

-13-

TABLE 3	REGRESSION COEFFICIENTS AND THE	ASSOCIATED ERRORS
VARIABLE	COEFFICIENT (LOG)	STANDARD ERROR (LOG)
XO	6.847	
XI	0.986	.049
X2	0.294	1.789
Х3	2.948	.884
X4	-0.694	.649
Хб	0.075	.087
X∌	-1.975	2.504
X8	0.172	0.373

The water demand equation using the above listed regression coefficients is written as follows:

 $\log Y = 6.847 + .986 \log X1 + .294 \log X2 + 2.948 \log X3 - .694$ $\log X4 + .075 X6 - 1.975 \log X7 + .172 \log X8$ (17)

The coefficient of determination determined by use of the above listed parameter is .913. In the above regression derived equation some of the coefficients have errors which are in excess of 100 percent. Use of these kinds of parameters tends to make the derived equation less stable. The parameters that are not stable are: 1) the number of persons per unit, 2) population per square mile, 3) percentage of population 18 years and over, and 4) percentage of population 65 years and over. The above stated parameters were deleted from the water demand model and a second run was made. The parameters that were retained for the second run are as follows:

Municipal Pumpage = f (population served, average rainfall/year, and the median family income) (18)

-14-

The regression coefficients derived from the model are stable. They are presented below in tabular form.

TABLE 4	STABLE	VARIABLES AND THEIR COEFFICIENTS	·
•	VARIABLES	REGRESSION COEFFICIENTS	
	xo	-1.715	
•	XI	0.992	
	X3	2.517	
	X4	-0,357	
			•

The final predictive equation based on the above regression coefficients is as follows:

Log Y = -1.715 + .992 log X1 + 2.517 log X3 - 0.347 log X4 (19)

The coefficient of determination for the above equation is .911. The above equation is fitted to the data from 69 municipalities which are within the FCD boundaries. The observed and the computed pumpage figures are presented in Appendix B.

Another run was made for the 69 municipalities which are within the FCD boundaries with total population served by each municipality as being the only independent variable. The coefficient of determination for this model is .892.

The predictive equation derived is as follows:

Log Y = 5.072 + 1.012 Log Population.

Emphasis is being placed presently on the lower east coast for development of the Water Use and Water Supply Planine Theocounties that eare within the lower east coast are Palm Beach, Broward and Dade. To estimate the municipal water demands of the three counties in the lower east coast, a special run was made based on the data for these counties only. The equation developed is as follows:

(20)

-15-

Log Y = $97.66 + .999 \log X1 - 2.847 \log X3 - 8.827 \log X4$ (21) The coefficient of determination for the above equation is .882.

Another run was made for the lower east coast municipalities with total population served as being the only independent variable. The coefficient of determination for this model is .864.

The equation derived is as follows:

 $\log Y = 5.485 + .9841 \ln X1$

(22)

It is appropriate to state here, that in the strictest sense of the word, the predictive water demand model presented in this study is in reality a water requirement model, since no consideration was given to the effects of price on the quantity of water demanded. This is due to the fact that the model was approached from the management aspect of a large complex water resource system. It is assumed that the pricing of water lies within the utility company, a reasonable assumption for our situation.

The mathematical structure as written above is assumed to describe the expansion path or relationship that water demand can be expected to have with each variable. The above equations, (19, 20, 21 and 22) by themselves cannot project the future water demand values. The variables which are incorporated in the model must first be projected, using an average rate of growth (geometric growth) from past years of record and extending into the future. These values are then transformed to logarithmic form and inserted into the appropriate equations (19, 20, 21 and 22) to obtain the projected future water demand for any municipality incorporated in the model. (See Figure 2).

Researchers in the field of applied mathematics and statistics might question the stability of the derived regression coefficients on the grounds

-16-

that "structural" changes resulting from very many exogeneous factors such as migration, automation, or other circumstances will tend to cause relative elasticities of different variables to change the coefficients derived from the model. If one can posit at the time that a model's structure is finalized, research on using the model - and more importantly - on modifying, changing, or adapting it to reflect apparent changes in structure over time will continue; then the instability of coefficients is no longer a valid argument.

Simply stated, research is an on-going process and if changes are known or even likely, the demand functions can be refitted to the data. As time progresses, with the availability of better statistical data, it is even probable that the structure or methodology of the model posed here might change to reflect the improvements in data availability.

Validation of the General Predictive Equation

The predictive equation that was derived in the previous chapter for the lower east coast is as follows:

Pumpage = $5.485 + .984 \times Ln$. Population

This equation was derived based on the 1970 census figures updated to 1974 population and the quantity of water pumped for the year 1974. For the whole lower east coast the equation predicts the quantity of water required for the year 1974 with a high degree of accuracy. However, the equation was derived using only one year of record for the whole region. In order to develop additional levels of confidence for the predictive equation, it was considered appropriate that several years of data be compiled and compared against the computed values. In addition, it was decided that the equation be developed or the general equation be updated for each of the lower east coast counties. In this exercise, the essential constraint assumed that the

-17-

and the first start of the control month and the must

water demand representing at least 60 percent of the county population must be represented in the predictive equation.

Dade County. For Dade County, the Miami-Dade Water and Sewer Authority supplies water to almost 80 percent of the county population. The utility company provided ten years of pumpage data and the population being served. The general predictive equation as stated above was used to compute the water requirements for the years 1965-1974 inclusive. The percentage of error between the predicted and the historic pumpage varies from -3 to +12 percent. The average error is +6.4 percent. The general equation is slightly modified in order to reduce the error between the actual and the predicted value. The average percentage error is 1.4 percent. The calculations are presented in Tables 7 and 8. Broward County. For Broward County, the Cityes for Hollywood, Fort Lauderdale, Pompano and Deerfield Beach were contacted. The summation of population served by these suppliers represents 65 percent of the county population. Average quantity of daily water pumped and the total number of population served were tabulated for the years 1970-1974 in-The same general equation that was developed for the whole clusive. lower east coast was used to compute the water requirements. The percentage error difference between the predicted and the actual pumpage varies from +10 to -1 percent; however, the average error is only +1%. The lower percentage error between the predicted and the actual pumpage figure shows that the predictive equation can also be used for future water requirements for Broward County. (Table 6).

<u>Palm Beach County.</u> Pumpage data and the population served by Pahokee, Palm Springs, Boca Raton, Delray, Lake Worth, Riviera Beach and West Palm

-18-

Beach were made available for the years 1970-1974 through the courtesy of the utility companies. They were summed up, and the general predictive equation for the lower east coast was used to compute water requirements. The general equation predicted lower water requirement figures than the actual historic. The general equation was then slightly modified as follows:

Pumpage = 5.485 + 1.01 Ln. Population

With the modified equation the percentage error variation between the predicted and the historic pumpage is from -5 to +3 percent. However, the average error is only +1.2 percent, well within the standard error figure (Table 5).

For the "Water Use and Water Supply Development Plan" future population has to be estimated. The University of Florida at Gainesville has projected the county-wide population for the year 2000.for the State of Florida. Based on land use plans or development guides with the county land use restrictions, an estimate of future population was made by the FCD staff. These two projections match fairly well for the lower east coast counties. These projected populations were used to estimate the quantity of water required by each county by the year 2000. Dade County, by the year 2000 will be requiring almost 390 million gallons of water per day for potable water supply purposes. Broward County will require 270 million gallons per day, and Palm Beach County 255 million gallons.

It has been repeatedly stated by demographers that population projection beyond 10 years is speculative, and no confidence level can be attached to it. Projection of population has been made here for 24 years. It is appropriate then to state that these figures have to be updated, as the years progress. The objective of using these projected populations was only to show the order of magnitude of the water requirement for future years. However, in the development of the "Water Use and Water Supply Development Plan" the approach

-19-

taken by the District is not simply to develop a plan to meet the water requirement for the projected population, but rather to show the levels of demand that the water resources of the region can support under various alternative water supply options.

The future water requirements of the three counties are presented in Tables 9, 10, and 11 and also in Figures 3, 4 and 5.

The above validation for the lower east coast demonstrates the power of the simple predictive equation to compute future water requirements of the three counties. By induction, it can be shown that the same general equation or a slight modification could be used to estimate the future water requirements of other counties.

An attempt was made to collect historic pumpage data for a few of the urban counties - i.e., Lee, Orange, St. Lucie and Martin. There are, however, only a few utility companies in these counties and they do not serve, on the aggregate, 60 percent of the county population. Therefore, at the present time the prediction equation can not be validated for these counties on a county-wide level as the constraint on population can not be met. Additional analysis on a municipality level is presented in the next chapter.

110

-20-

						· .	
Year	Past PBppùłation	Log Population	5.485 + 1.01 Log Population	Average Daily Pumpage x 10 ⁶ gals.	Historic Average Daily x106 gals.	Error	%
1964	·				· · ·		
1965							
1966							
1967							
1968	-						
1969							
1970	172,458			46.90	48,60	- 1.70	- 1
1971	182,850			49.75	50.24	49	+ 3
<u>19</u> 72	195,850			53.30	51.50	+ 1.80	+ 2
1973	210,815			57.44	56.22	+ 1.22	+ 2
1974	221,841			60.50	63.96	- 3.46	- 5

-21-

Year	Past. Population	Log Population	5.485 + 1984 Log _Population_	Average Daily Pumpage x 10 ⁶ gals.	Historic Average Daily x106 gals,	Error	%
1964							
1965							
1966							
1967						- <u>-</u>	
1968							
1969							
1970	368,077			72.27	65.72	+ 6.55	+ 10
1971	374,993			73.61	71.91	+ 1.70	+ 2
1972	377,540			74.10	77.09	- 2.99	- 4
1973	406,766			79.78	81.67	- 1.89	- 2
1974	433,747			84.94	86.11	- 1.17	- 1

PREDICTIVE EQUATION CHECK USING PAST POPULATION AND PUMPAGE RECORDS FOR BROWARD COUNTY TABLE 6.

-22-

Year	Past Population	Log Population	5.485 + .984 Log Population	Average Daily Pumpage x 10 ⁶ gals.	Historic Average Daily x10 ⁶ gals.	Error	ġ,
1964							·
1965	700,000	13,46	18,73	136.2	140,5	- 4.3	- 3
1966	730,000	13,50	18,77	142.0	146.5	- 4.5	- 3
1967	750,000	13.52	18.80	146.0	133.2	+12.8	+ 9
<u>1968</u>	770,000	13.55	18,82	149.0	136,9	+12.1	+ 9
79 1969	790,000	13.58	18.85	153.6	137.1	+16.5	+12
ຼຼາ ໄອຼັກດຸ ງ	9007000	13,71	18.92	16 4.6	153.0	+11.6	+ 7
1971	920,000	13.73	19,00	178.5	159.1	+19.4	+12
1972	940,000	13.76	19.02	182.0	162.7	+19.3	+12
1973	975,000	13,79	19.05	187.6	177.2	+10.4	+ 5
1974	1,000,000	13,82	19.08	193.3	187.4	+ 5.9	+ 3

TABLE 7. PREDICTIVE EQUATION CHECK USING PAST POPULATION AND PUMPAGE RECORDS Miami-Dade Water & Sewer Authority

-23-

Year	Past Population	Log Population	5:485 ‡ .980 Log Population	Average Daily Pumpage x 10 ⁵ gals.	Historic Average Daily x 10 ⁶ gals.	Error	%
1964							
1965	700,000			129.1	140.5	- 11.4	- 8
1966	730,000			134.2	146.5	- 12.3	- 8
1967	750,00 0			136.9	133.2	+ 3.7	+ 3
1968	770,000			141.0	136.9	+ 4.1	+ 3
1969	790,000			145.1	137.1	+ 8.0	+ 6
1970	900,000			164.8	153.0	+ 11.8	+ 8
1971	920,000			168.1	159.1	+ 9.0	+ 6
1972	940,000			173.1	162.7	+ 10.4	+ 6
1973	975,000			178.3	177.2	+ 1.1	+1
1974	1,000,000			183.7	187.4	- 4.7	- 3
Avera	ige Error				· · · · · · · · · · · · · · · · · · ·	-	+ 1.4%

TABLE 8.PREDICTIVE EQUATION CHECK USING PAST POPULATION AND PUMPAGE RECORDS
Miami-Dade Water & Sewer Authority.

-24 **ہ** 1.1

TABLE 9. PROJECTED WATER REQUIREMENTS - PALM BEACH COUNTY

Year	Projected Population	5.485 + 1.01 x Projected Ln. Population	Forecasted Water Requirement <u>x 10⁶ gals.</u>
		POPULATION - LAN	D USE PLAN
1980 1990 2000	577,558 692,012 805,894	18.88 19.07 19.22	158.97 190.08 222.55
		POPULATION - U.	OF FLORIDA
1980 1990 2000	543,000 730,200 928,800	.3 (* 18.82 19.12 19.36	149.36 201.45 256.86

Water Requirement = $5.485 + 1.01 \times Ln$. Population

TABLE 10. PROJECTED WATER REQUIREMENTS - BROWARD COUNTY

Year	Projected Population	5.485 + .98 x Projected Ln. Population	Forecasted Water Requirement x 10 ⁶ gals.		
		POPULATION ~ LAND USE PLAN			
1980 1990 2000	945,000 1,140,900 1,403,000	18.97 19.15 19.36	172.99 208.06 254.83		
		POPULATION - U. OF FLORIDA			
1980 1990 20 0 0	985,700 1,245,400 1,504,300	19.01 19.24 19.42	180.28 226.72 272.83		

Water Requirement = 5.485 + .98 x Ln. Population

× ~25÷

TABLE 11. PROJECTED WATER REQUIREMENTS - DADE COUNTY

Year	Projected Population	5.485 + .980 x Projected Ln. Population	Forecasted Water Requirement x 10 ⁶ gals.	
		POPULATION - LAND USE PLAN		
1980 1990 2000	1,610,000 1,930,000 2,160,000	19.49 19.67 19.78	291.60 348.29 388.92	
		POPULATION- U.	OF FLORIDA	
1980 1990 2000	1,511,000 1,8 61, 000 2,165,800	19.43 19.63 19.78	274.02 336.09 389.95	

Water Requirements = 5.485 + .980 x Ln. Population

Validation of the Water Requirement Predictive Equation on a Municipality

The water requirement predictive equation that was developed, based only on 1974 population for the whole FCD region, is as follows:

Total Average Daily Pumpage = 5.012 + 1.012 x Ln. Population (1) Another water requirement predictive equation that was explicitly developed for the lower east coast is as follows:

Total Average Daily Pumpage = 5.485 + .984 x Ln. Population (2) The predictive water requirement equation (2) developed for the lower east coast was validated on a county level by data obtained from municipalities serving at least 60 percent of the county population, for each of the lower east coast counties.

The constraint on population which was imposed in the validation process of the lower east coast could not be met for other FCD areas because of the large rural population not on municipal water supply systems. However, it was decided to use the predictive equation for the whole FCD region to see how far off the fit was; at least for the populous urban areas.

With the above-stated reasoning, the following municipalities were contacted concerning the population they serve and the average daily quantity of water they pump. These municipalities are: Orlando, Vero Beach, Fort Myers and Fort Pierce.

<u>Orlando Utilities:</u> The original equation was slightly modified to reduce the error between the historic and the calculated pumpage. The error varied from a high of +8 to -6 percent, the average error being less than 1 percent. It can be stated then, that the fit between the historic and the predicted pumpage is good.

<u>Vero Beach Utilities:</u> The fit for this utility company is also good as the average error is only +3 percent.

-27-

Fort Myers Utilities: The slight modified predictive equation predicts the water requirement close to the historic pumpage. The averagemerror between the predicted and the actual historic error is within 10 percent.

<u>Fort Pierce Utilities:</u> The general predictive equation or a modification of it does not fit the historic data. The error varies from +24 to -5 percent, the average being +10 percent. It can only be stated, based on other county and municipal validation processes, that the data might have inherent errors.

	Log Y =	5.012 + 1.000	x Log Populat	ion			
Year	Past Population	Log Population	5.012 + 1.000 Log Population	Average Daily Pumpage x10 ⁶ gals.	Historic Average Daily x 10 ⁶ gals.	Error	- %
1964							
1965							
1966							
1967							
1 96 8	· · · · · · · · · · · · · · · · · · ·						
1969	· · ·						,
1971	19,491	9.88		2.93	2.58	+.35	+ 14
1972	21,392	9.97		3.21	3.10	+ .11	+ 4
1973	23,173	10.05		3.48	3.31	+ .17	+ 5
1974,	24,549	10.11		3.69	3.80	11	3
1975,	24,913	10.13		3.76	3.91	15	- 4

-29-
TABLE	13. PREDICTI Orlando	VE EQUATION CH	ECK USING PAS	T POPULATION AN	D PUMPAGE RECORI	D\$	
	Loa Y =	5.012 + 1.037	x Log Populat	ion			
Year	Past Population	Log Population	5.012 + 1.037 Log Population	Average Daily Pumpage x 106 gals.	Historic Daily Average x 10 ⁶ gals.	Error	%
1964							
1965							
1966	· · · · · · · · · · · · · · · · · · ·					·	
1967	•						
1968							
1970	149,900	11.92		35.07	32.40	+ 2.67	+ 8
1971	153,709	11.94		35.81	34.13	+ 1.68	+ 5
1972	158,479	11.97		36.94	36.97	07	- 0
1973	160,998	11.99		37.72	39.27	- 1.53	- 4
1974	164,907	12.01		38.51	40.97	- 2.46	- 6
1975	165,669	12.02		38.90	40.98	- 2.08	- 5
Avera	ge Error						33%

-30-

TABLE	14. PREDICTIV Fort Pier	E EQUATION CHE ce Utility Com	CK USING PAST pany.	POPULATION AND) PUMPAGE RECORD	S	
·	Log Y = 5	.012 + .990 x	Log Populatio	'n		- -	
Year	Past Population	Log Population	5.012 + .990 Log Population	Average Daily Pumpage x 10 ⁶ gals.	Historic Daily Average x10 ⁶ gals.	Error	%
1964			·				
1965	·				: :		
1966							
1967							
_1 96 8							
1969							
<u>197</u>]	34,300	10.44		4.62	3.86	+ .76	+ 20
1972	36,771	10.51		4.95	3.98	+ .97	+ 24
1973	37 ,6 84	10.53		5.05	4.52	+ .53	+ 12
1974	38,115	10.55		5.16	5.24	08	- 2
197.5	38,017	10.55		5.16	5.43	27	- 5
Average	Error			· ·	ł		+ 9.80%

-3 -

TABLE	15. PREDICTI Fort Mye	VE EQUATION CHE rs Utility Comp	CK USING PAST Dany,	POPULATION AND) PUMPAGE RECOR	DS	
	Log Y =	5.012 + 1.000 >	cLog Populati	ion			•
Year	Past Population	Log Population	5.012 + 1.000 Log Population	Average Daily Pumpage x 10 ⁶ gals.	Historic Average Daily x 100 gals.	Error	%
1964							
1965							
1966			· · · · · · · · · · · · · · · · · · ·			·····	
1967	l						
1968							
1969						<u> </u>	
1971	34,524	10.45		5.18	4.91	+ .27	+ 5
1972	35,038	10.46		5.24	5,06	+ .18	+ 4
1973	35,560	10.48		5.40	5.64	24	
1974	36,375	10.50		5.50	5.69	19	_ 3
1975	37,884	10.54		5.70	5.83	13	- 2
Average	Error						0%

-32-

SEASONAL DEMAND ESTIMATION

Monthly groundwater pumpage can be considered as a time series defined by the values P_1 , P_2 ... of a variable P (Pumpage) at times t_1 , t_2 Thus, pumpage P is a function of time t, symbolized as P = f (t). Characteristic movements of time series may be classified into four main types, often referred to as components, and they are: 1) long term or trend, 2) cyclical variation about the trend line, 3) seasonal variation, and 4) irregular, random, or unaccounted movements. The long term or trend movement can be estimated by various methods. The first chapter of this report dealt with that. This chapter is entirely devoted to seasonal variation of pumpage.

Seasonal Variation

This refers to the identical, or almost identical, patterns which a time series appears to follow) during corresponding months of successive years. Such movements are due to recurring events which take place annually, as for instance, the sudden increase of department store sales before Christmas, the increase in municipal pumpage during dry months for lawn sprinkling, etc.

Concerning the groundwater pumpage, the climatological situation of the central Florida area is such that almost 70 percent of the annual rain falls during the months of June through September. During this period, it is assumed for purposes of this study, that the moisture content of the soils are at field capacity, no lawn irrigation is anticipated, and the groundwater pumpage is at the lowestannual level. As time progresses, however, the moisture content of the soil starts to decline and people start to irrigate their lawns; the pumpage goes up gradually. Finally, during the dry period (April through May) the pumpage reaches its peak. This phenomenon reoccurs every year. The objective of this study is to estimate this peak demand so that the quantity of water demanded during the critical period can be best estimated.

-33-

Method of Analysis

To estimate the seasonal variation one must see how the data in the time series vary from month to month throughout the year. A set of values showing relative values of a variable during the months of the year is called a seasonal index for the variable. If for example, one knows the pumpage during January, February, March, etc., are 101, 115, 118, percent of the average monthly pumpage for the whole year, the numbers 101, 115, and 118 provide the seasonal index for the years. The mean seasonal index for the whole year should be 100%, i.e., the sum of the index numbers should add to 1,200%.

Various methods are available for computing a seasonal index. The method which has been used here is the average percentage method. In this method the data for each month of a year is expressed as percentages of the average for the year. The percentages for corresponding months of different years are then averaged, using the mean.

The resulting 12 percentages give the seasonal index. If their mean is not 100 percent (i.e., if the sum is not 1,200%) these should be adjusted by multiplying by a scaled factor.

Data Collection

Monthly pumpage data were compiled from Delray Beach, Miami-Dade, West Palm Beach, Boca Raton, and Belle Glade. Belle Glade has only 8 years of data whereas the remainder of the utility companies have more than 15 years of record. The monthly pumpage and the total for the year are presented in Tables in Appendix C. By dividing the yearly records by 12, an average value was obtained. The monthly values for a particular year divided by the average value of that year gives the monthly percentage of the yearly values which are presented in Tables in Appendix D. These were then averaged and the seasonal pumpage variation was obtained. It can be seen from Tables in Appendix D and also from Figures 3-6 that the monthly pumpage for Delray Beach varies from .80 to 1.25 percent, the maximum occuring during the dry month of April. For Boca Raton, the variation is from .78 percent to 1.29 percent, the maximum also occuring during the month of April. Miami-Dade's maximum monthly pumpage is only 12 percent over and above the monthly average. West Balm_Beachisdmaximumemonthly-pumpage isel.18 percent of the average. The City of Belle Glade is the only one where the maximum month occurs during the month of December. Due to lack of at least 10 years of data, Belle Glade was eliminated from further calculations. Averaging the municipalities' peak monthly pumpage (excluding Belle Glade), the average peak monthly pumpage for the central and southern area is estimated to be around 21 percent over and above the average figure.

SUMMARY

- A predictive water demand model (in a strict sense a requirement model since the price of water demanded was not incorporated) was set up using the social, economic, and environmental parameters for municipalities within the FCD area. Data from 19 counties with 69 municipalities that are within the FCD boundaries were used in the development of the model.
- A computer run was made with seven independent parameters that were thought to have significant effects on the amount of municipal pumpage. These parameters were: a) a population served, b) number of persons per dwelling unit, c) rainfall inches/year, d) median family income,
 e) population per square mile, f) percentage of population 18 years and over, and g) percentage of population 65 years and over.
- 3. The coefficient of determination was determined to be .913 for the general model with all seven parameters included. However, some of the regression coefficients determined from the model showed the error to be in excess of 100 percent. These variables were: a) average persons per unit, b) population per square mile, c) percentage of population 18 years and over, and d) percentage of population 65 years and over. They were deleted from the predictive water demand model.
- 4. A second computer run was made with the stable parameters which are: a) population served, b) average rainfall/year, and c) median family income. The coefficient of determination for the above model was determined to be .911.
- 5. The coefficient of determination between the population served and the quantity of water pumped was determined to be .892 for the same set of data.

-36-

- 6. Presently, the primary emphasis in the Resource Planning Department of the District is being placed on the development of a "Water Use and Water Supply Development Plan" for the lower east coast (Palm Beach, Broward, and Dade Counties). A separate computer run was made incorporating the seven parameters as stated above for these three counties. The coefficient of determination was determined to be .882. Population served alone was also correlated against the quantity of water pumped the coefficient of determination was determined to be .864.
- 7. The general predictive model was updated and validated on the county level for the lower east coast area. It was assumed in the validation process that the water demand representing at least 60 percent of the county population must be represented in the predictive equation. For Dade County, the Miami Sewer and Water Authority provides 80% of the county population with its potable water. Pumpage data for the years 1965-1974 were compared against those calculated by use of the predictive equation. For the period of record, the average percentage error is found to be 1.4 percent.

The population criteria as established above was met for Broward County by summing the population served by cities of Hollywood, Fort Lauderdale, Pompano Beach and Deerfield Beach. Five years (1970-1974) of historic pumpage data was compared against the one obtained by use of the predictive equation. The average error between the predicted and the historic pumpage values is within 1 percent.

Pumpage data and the population served by Pahokee, Palm Springs, Boca Raton, Delray Beach, Lake Worth, Riviera Beach and West Palm Beach were also compiled for the years 1970-1974, inclusive. The modified predictive equation was used to compute the water requirement figures for the above stated years. The average error between computed and historic pumpage values is within 1.2 percent.

-37-

- 8. The water requirement for future years for the three lower east coast counties has been projected. The future water requirement is based on two sets of population projections; (a) population projection based on University of Florida's study, and (b) land use projections. The average daily quantity of water that will be required to support the projected population for the three counties would be 390 million gallons per day for Dade County, 270 million gallons per day for Broward County and 255 million gallons per day for Palm Beach County. These figures are projected 24 years from now and are very speculative. The population projection has to be revised as the years progress and water requirements must be recalculated.
- 9. The population constraint imposed in the validation process for the lower east coast area could not be used for other counties because of the large rural populations. However, the equation was used in the more populous urban areas. The predictive equation was checked for the following municipalities: Orlando, Vero Beach, Fort Myers and Fort Pierce. The average error between the computed and the historic pumpage figures is within the 3 percent level for the four municipalities. The average error is, however, in excess of 10 percent for the municipality of Fort Pierce alone.
- 10. A second statistical model was used to quantify the amount of water being used for lawn irrigation purposes during dry months of the year.
- 11. Based on the analysis of the 5 largest utility companies' monthly pumpage records, it was determined that the peak monthly pumpage varied from 12 percent (Miami) to 29 percent (Boca Raton) of the average yearly pumpage.

CONCLUSIONS ·

It is concluded from this study that population served is the most determinant parameter of the water demand model for the Central and Southern Florida Flood Control District area. There is a slight increase (2 percent) in the coefficient of determination if socio-economic and meteorologic parameters, namely the median family income and the average annual rainfall, are included in the water demand model. However, this is a marginal increase and subsequent incorporation of these parameters into the working model is not anticipated.

The methodology presented in this report permits the estimation of future water demands. The Water Use and Water Supply Development Plan being prepared by the District will evaluate the levels of water demand that can be supported by the water resources of the region, given the present conditions and various alternative water supply development options, and will utilize this methodology. The two sets of projected population are presented herein only to illustrate the magnitude of potential water requirements.

The water requirement model developed here will also have application to the evaluation of water use applications.

The second model shows the monthly variation of yearly pumpage, and is important for planning purposes in that it permits estimation of water requirements for drought months. Also, if only the average daily per capita consumption figure is available, this in turn can be converted to each monthly water requirement. It is also concluded from this study that the peak monthly pumpage rate is 21 percent of the average yearly pumpage.

-39-

LITERATURE CITED

- Burke, T. R., 1970. "Municipal Water Demand Model for the Conterminous United States." Water Resources Bulletin, Vol. 6, No. 4.
- Berry, D. W., and Bonem, Gilbert W., 1974. "Predicting the Municipal Demand of Water." W.R.R., Vol. 10, No. 6.
- 3) Fair, M. A., Geyer, J. C., and Okum, D.A., 1958. "Water and Waste Water Engineering." John Wiley & Sons, Inc.
- 4) Howe, C. W., and Linaweaver, F. P., Jr., 1969. "The Impact of Price on Residential Water Demand and its Relation to System Design and Price Structure." Water Resources Research, Vol. 3, No. 1.
- 5) Kreitman, A., Walker, R. H., and Beck, J. A., 1974. "Water Consumption Trends Within the Central and Southern Florida Flood Control District." Technical Publication #74-3.
- 6) MMarshall,G., and Loucks, D. P., 1971. "Some Long Run Effects of Water Pricing Policies." Water Resources Research, Vol. 17, No. 6.
- 7) Thompson, R. G., and Young, H. P., 1973. "Forecasting Water Use for Policy Making." Water Resources Research, Vol. 9, No. 4.
- 8) Turnovsky, S. J., 1969. "The Demand for Water: Some Empirical Evidence on Consumer's Response to a Commodity Uncertain in Supply." Water Resources Research, Vol. 5, No. 2.
- 9) United States Department of Commerce, 1970. "Census of Population Detailed Characteristics, Florida."
- 10) United States Weather Bureau. "Annual Rainfall Values for Central and Southern Florida."
- 11) U. S. Geological Survey. "Water Use by Selected Municipalities in Florida."
- 12) Whiteford, P. W., "Residential Water Demand Forecasting," 1972. Water Resources Research, Vol. 8, No. 4.

-42-

APPENDIX A

COUNTY	POPULATION IN 1,000's	NUMBER OF PEOPLE PER D. UNIT	RAINFALL INCHES PER YEAR	MEDIAN FAMILY INCOME \$1,000's	DAILY PUMPAGE MGD	POPULATION PER SQUARE MILE	PERCEN POPUL 18 YEARS AND OVER	TILE OF ATION 65 YEARS AND OVER
Polk	12.0 17.0 13.0 81.5 14.0 45.0	3.1 3.1 3.1	52.0 52.0 52.0	7.98 7.98 7.98	1.40 2.58 1.55 15.63 2.10 5.10	123 123 123	65.6 65.6 65.6	12.6 12.6 12.6
Highland	1 8.5 .7 13.0	2.8	52.0	6.21	.96 .19 2.60	30	69.1	21.1
Palm Bea	ach 22.0 45.0 24.0 23.7 26.0 7.6	2.8	62.0	9.65	3.48 13.09 5.69 7.03 4.71 1.41	173	70.1	17.3
	16.9 69.7 10.0 10.0 7.6 25.1 9.3		•	• • •	4.46 18.02 5.71 5.33 2.00 4.60 4.90			
Lee	16.0 30.8 8.0 26.0	2.8	52.0	8.35	1.50 5.64 1.52 3.23	134	71.1	18.8
- 43	9.5		· · · · ·		.55	•		

SOCIAL, ECONOMIC, AND ENVIRONMENTAL PARAMETERS FOR THE WATER DEMAND MODEL

SOCIAL, ECONOMIC, AND ENVIRONMENTAL PARAMETERS FOR THE WATER DEMAND MODEL

COUNTY	POPULATION IN 1,000's	NUMBER OF PEOPLE PER D. UNIT	RAINFALL INCHES PER YEAR	MEDIAN FAMILY INCOME \$1,000's	DAILY PUMPAGE MGD	POPULATION PER SQUARE MILE	PERCENT POPULA 18 YEARS AND OVER	TILE OF ATION 65 YEARS AND OVER
Dade	15.5 14.5 17.5 844.0 55.0	2.9	60.0	9.79	4.33 6.37 5.16 177.21 10.15	621	70.6	13.7
	14.0 95.0		-	• •	23.28			· ·
Seminole	14.8 25.0	3.2	52.0	9.43	1.40 4.35	274	62.4	9.3
Hendry	2.2	3.2 4.7	52.0	7.47 1.03	.21	10	60.1	6.9
Broward	6.7 9.6 20.0 205.0	2.7	61.0	10.07	1.00 1.78 4.61 42.74	509	71.8	18.0
	30.8 124.0 13.5 23.0				4.56 13.50 3.38 2.40		· · ·	
	19.0 58.7		• <u> </u>		2.59 14.98	3 5 3		
Volusia	63.0 18.0 8.7 12.1 27.6	2.7	52.0	7.46	9.58 2.38 .79 2.14	160	73.0	22.3
-44	5.2				1.01	•		

4

SOCIAL, ECONOMIC, AND ENVIRONMENTAL PARAMETERS FOR THE WATER DEMAND MODEL

I COUNTY	POPULATION IN 1,000's	NUMBER OF PEOPLE PER D. UNIT	RAINFALL INCHES PER YEAR	MEDIAN FAMILY INCOME \$1,000's	DAILY PUMPAGE MGD	POPULATION PER SQUARE MILE	PERCEN POPUL 18 YEARS AND OVER	TILE OF ATION 65 YEARS AND OVER
St. Lucie	31.5	3.0	56.0	6.74	. 4.52	87	65.8	14.6
Osceola	3.03	3.3	52.0	6.60	.46	15	60.7	12.0
Orange	8.05 190.00 9.0 53.8	3.1	52.0	9.41	1.47 39.26 1.30 11.88	372	65.2	9.7
Brevard	125.00 66.70 34.00	3.3 3.3	53.0	11.79	14.07 8.57 3.81	288	61.1	5.6
Monroe	27.50	3.1	56.0	7.77	3.00	51	70.1	8.6
Glades	1.20	3.2	52.0	6.53	.20	5	61.7	9.6
Okeechobe	ee 4.50	3.5	52.0	6.90	.97	14	57.1	8.1
Martin	8.00	2.7	60.0	7.72	1.98	50	71.9	21.0
Indian River	16.00	2.9	56.0	7.72	3.40	71	66.7	17.3

-45-

· ·

•

.

APPENDIX B

	·	10+07444445 477007801	14.1430041 - 14.0041 - 14.1430041 - 1	22000017,21	1 L.	
		0-42745756	35.45544714	14 E1044674	ני נ פר ס	
		• 4 9 5 7 9 5 4 7	13.57978A22	14.n76n8369	7.1	
		51002499 • 51466463 •		17.08549039 17.0854901	ר עי נייב	
		- 1969512V		1 4 4 J 3 7 J J 7 1	1 (4 (
·		-25374725	15.32402255	15.5776981	23	• .
		.13454218	14.99799270	15.12753488	קר - י	
					1 1 1	
		-0-06305541] 7 = 5706459] 1 5 - 8* 840449	17.5075904n	6 l	
		-0-34379692	15.76569726	15.42190035	נ_ פני	
-		-11527133	14+68261105	14.79788237	17	
-			15,74373842	10.17177704 14.7951694n	 	
		9697637498 96976370	14.30212392	14.45844891	 	
		-0.82081075	15-66711003	14.84629928	13	
		+29587986	13_A)551056	14.1119042	21	
			15.4595548	39.40441444] 1	
		204254085 0-	12,240,004 4,286,121,441	13 46441444 13 46473506	- - 0	
		-0-36498868	15+29107810	14.916n8942	ı ¢c	
		41955727	14.22097567	14.64053293	. 7	
		-n-1 983251	15-55422291	15,4343883n	0 × (
		601250600°01 00924059°	10.38735914	16,05345775	ль	-
		1040AJ044			- (*	91
			13.77468856	14.]]8]3480	נת ו	7-
		-21924927	14.15198279	14.37125206		
		DIFFERENCE	NASERVED	EXPFCTED	SET	
1056040*0-	.34544160		16[94646"0"	•114510+9	. 1] 7 7] 7 4 9	, X 4
2666191	71017767 76771047	2.5)799969	3.54559117	1.76879194	1.97479823	: × • •
+9267748	.04555929	-1.71516926 .99277896	21.79092097	66.A1140551	92 + 481 69519	× × - つ
STD 8 VALUE	STO ERROR B	H VALUES	T FOR Ho R(I)≖N	SS TF X(T) LAST	SS FOR X(I) ADJ	SOURCE
		• 3751 n229	SIGMA =	*91173775	P-SQUAPF *	
			•			
				103.6186]634	TOTAL 68	
•			•]4070]73	9.14561244	NEVIATIONS 65	
	•	598485 [8.Ed2	31.49100130	94 • 4 7 3 n ft 3 9 n	E NUISSEGER	
			•	1		
		F VALUE	MEAN SQUARE	STIM OF SQUARES		

ањ

١

	14,52428961	14.55744790
	15.513A5301	15+36519847
	15.51385301	15.36519847
	14.29929628	14.15910026
	14.80691365	15.03338627
	14,12300032	13.21767356
	13.91602389	14.20077296
	15.98194664	15.96377829
	18.88101560	18.99284603
	15,33587078	14-69097930
	15,39061933	14.91412265
	12.15687736	12-20607265
	14,40358402	14-57631639
	16,16985684	16+13298426
	16.71245393	16.96310518
·	15.09618080	15,31065932
	15.14619516	14.76716843
	13,44962496	13.78505135
	14.81146135	14.55267462
	17.05442431	17.48571675
	15.22223980	14.84155215
	14.56524135	13.47302025
	14.56524135	15.48886180
	14.29278623	14.50865774
	13,48578128	13,36922346
	16.26672685	16.52222654
	13.57841008	13.82546089
	15.48243211	15.34590526
	13.83052383	14.02252473
	14.53994999	14.77102200
· · ·	14.34071447	14.49860740
	15.31296807	15+15313975
		12.03920399
	10,771/299/	10./0077201
	15 68346345	1940//0/902
	1200240343	134444/3110
	1200132025	TO*5AN2000\

DEVIATIONS1111#

33

34

3.5

36

37

38

39 40

41

42

44

45

46 47

48 49

50

51

52

53

54

55

56

57

58

59

60

61 62

63

64 65

66

67

68

69

9,14561244

9.14561358

-0.00000114

-0.03315829

-0.22647262

+14865455

.14865455

+14019601

.90532676

+01816835 -0+11183042

.64489148

.47649648

-0-04919529

-0.17273236

-0.25065125

-0-33542639

-0.43129244

.37902672

.25878673

.38068765

.11655783

.13652684
.0.19200090

1.09222110

-0.92362044

-0.21587151

-0.25549969

-0.24705001

-0.23107201

-0.15789293 +15982832

-0.18030886

-0+21526834

-0+05122729

-0.48841595

.23871235

-47-

-04-	
AD MARAMARARARARARARARARARARARARARARARARAR	SOUDEE DE REGRESSION 1 DEVIATIONS 67 Total 68 Resquare 68 SS FOR X(1) 40J SS FOR X(1) 40J
1 4 4 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4	SHW OF SQHAPFS 92.48169519 11.13692115 103.61861634 .89252007 SS TF X(1) LAST 92.48169519
14 14 13 14 14 15 15 15	HEAN SOUARE 92-48169519 -16622770 SIGMA = T FOR HO R(1)=0 23-58754381
I I	F VALUE 5.40770419 8 VALUES 5.01265813 1.01201589
	STN ERROR 8
	STD 8 VALUES

.

•

•

• .

۰.

-0.0000087	11.13692203	11.13692115	DEVIATIONS1111*
62129552*0-	16.29036687	, 16.03674558	69
-41106805	15.44475110	15.85581915	58
.14916759	14.07787482	14.22704241	67
-0.40951159	16.70699281	16.29748122	66
-0-22996592	15.03928599	14.80932007	65
.41900936	15.15313975	15.57214911	
-0-39076329	14.49860740	14.10784411	63
-0.17183627	14.77102200	14.59918573	62
-0.12481496	14.02252473	13.89770977	61
-0.07727332	15.34590526	15.26863195	60
-0.14004353	13.82546089	13.68541736	65
-0-39674722	16.5222654	16.12547932	58
•26296951	13,36922346	13.63219297	57
-0.45272326	14.50865774	14.05593448	56
-1.15519287	15.49886180	14.33366893	55
•86064868	13-47302025	14.33366893	54
•51954635	14.84155215	15.36109851	53
-0-17222879	17.48571675	17.31348796	52
.12150955	14.55267462	14.67418418	51
-0.25948490	13.78505135	13.52556645	50
-21606682	14.76716843	14.98323526	49
-0.44595679	15,31065932	14,86470253	48
-0.35109318	16.96310518	16.61201200	47
-0.07408318	16,13298426	16.05890106	+6
-0.04973663	14.57631639	14.52657976	↓
-0.01814410	12.20607265	12.10792854	
-44330228	14,91412285	15.35742512	₽
.48560690	14.69097930	15.17658619	42
-0.17025246	18.99284603	18*855226	41
-29031208	15.96377829	16.25409037	40
-0.08649773	14.20077296	14.11427523	Ê Ê Î
1.06408574	13.21767356	14.28175930	38
-0-39606673	15.03338627	14.63737954	
-0-09652959	14.15910026	14.06257067	36
-0.06453678	15.36519847	15,30066169	5.

-64-

SOURCE ×
o × (JA NEVIATIONSI 11* SS FOR Y(T) ANJ R-SOUARF = NEVIATIONS PEGBESTON Souce TOTAL 39161168.15 •N2064488 • 653942P0 SF T 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ŝ у S \mathcal{S} ב 20 19 19 19 บ ษ ີນ ເກ Ę ¥ 4 ž 4271 2 ÷ ъ. SS TE X(1) LAST STATES SUMPES 32.24518713 ANDECTARS TE 35.5145.15 33 196159519611 15.56918474 16_08291867 14.37161922 LA.]490450A 15_42396297 4.64598912 4.64598A12 4.95492745 [5,]7n29553 6.85920159 16.3129923× 5.14586577 19.64219967 6-90713284 5.43932951 5.46071956 4.27246935 5.05007944 5.52092109 4.31845652 4.31845652 4.5455384 4.61338730 4.37817251 5.60001452 5.]68567d4 2.20822001 4.98042369 3.91323340 7.93204283 • > n 5 9 5 5 2 > .45394280 ·88291954 FXDFCTEP T FOR Hn B(I)≠0 -1.94569879 -1.09192330 13.66275181 10.05555979 MEAN SOUDRE 16.7069928 16.38735914 14.55267462 14.76716843 15 5542208 15.04254245 14.51965774 5.48986180 13.47702025 15.31065932 5.44711003 15.29177910 5.74590526 5.5222654 6.96310518 4.69797930 H.03584603 5-13338627 4.15910026 5.36519847 .6.4]920024 5.33283318 4.39212392 3.81551056 4. 71848764 6.13298426 5.45644714 7.5706458] 5.76569726 5.34373842 ·17273826 = VNOIS UBSERVED -0.12179670 -0.00003111 -0.1370385 -0-41990897 -0.]1945457 97.6657.1569 -0.43930786 -0.84297367 -0.14036379 -0.1039n359 -0.25744725 -0.23831407 -8.8274]996 62.84224303 -0.287A8630 9623996299 -0.68648634 -0-23010665 14665540.0--2.8473895) 1.17296787 DIFFERENCE .22327948 .04935365 *10649542 .11698014 6644493 E088E666* 22628265° •187759n2 18000809 -23561635 -37132012 +454A8647 -21907235 4PR93260 +41561793 8 VALUES F VALUE STD ERROR .07314691 2.60768271 4.53688926 æ STD R VALUES -0.14651343 -0.08167190 .94389242

-09-

ANALYSIS OF VARIAIDS IAMLE + BECHESSIC: COSSETATENIS + AND STATISTICS OF FIT FOR VARIABLE X 5

PUDWORL

00.0.050 4F.N. (2010) (F F VALUE 11.401101 (A 17.4.574.574.574 11.4021746 17.4.574.574.574 4.23544 -1.4.92746 4.23544 -1.4.92746 4.23544 -1.4.92746 4.23544 -1.4.92746 4.23544 -1.4.92746 4.23544 -1.4.92746 4.23544 13.1.711116 11.455 13.1.711116 12.4.757 13.1.7211116 13.1.7211116			000 40 - 50 - 5			
00.0.05 4F.A. S.DU.AFF F. VALUE 11.916.6 11.901191.65 172.4574363 30.42.0 14922756 4300305 30.42.0 14922756 4300305 30.42.0 14922756 4300305 30.42.0 14922756 4300305 30.42.0 14922756 4300305 30.42.0 14922756 4300305 30.42.0 14922756 4300305 30.42.0 13.11211116 9452472 07497079 30.42.0 13.11211116 9452472 07497079 30.42.0 13.11211116 9353454 07497079 30.41251 15.55427514 013864541 07497079 30.41251 15.55427514 013864541 07497079 30.41251 15.55427514 013864541 07497079 30.411116 9235454 333442 13454644 4.111152 1445551 1345444 1345444 4.111115 1445551 1345444 1345444 4.11115 144544 1345444 1345444 4.111115 144544 134544 14454 4.1111111 1114111 1		- <i>0</i> .24387456	16.7069281	16.46315015	v د	
001.255 dF AN, SQUARE F VALUE 1191.65 11,301191.45 172.45314.51 1191.65 11.301191.45 172.45314.51 1191.65 13.10111.6 172.45314.51 1191.65 13.112111.6 194.92756 4.23544 13.112111.6 .930170.05 1191.65 13.112111.6 .930170.05 1191.65 13.112111.6 .944.924.72 1191.65 13.112111.6 .944.924.72 1191.65 13.112111.6 .944.924.72 1191.65 13.11211.16 .944.924.72 1191.65 13.11211.16 .944.924.72 1191.65 13.41251.116 .944.924.72 1191.65 13.41251.116 .944.924.72 1191.65 13.412.914.2 .0.139.66.73 1191.65 13.412.914.2 .0.139.66.73 1191.65 13.412.914.2 .0.139.66.73 1191.65 13.412.914.2 .0.139.66.71 1191.65 13.412.914.2 .0.139.66.71 1191.65 13.412.914.2 .0.1139.66.71 1191.65 .12.62.914.64.91 .0.12.92.914.91 1191.65 .13.12.914.91 .13.419.91 1191.74 .13.914.91 .13.914.914.91 1191.74 .13.9	•	-11635206	12-3420256	15.46225733		
0)(A,EC 4F AC SUUAR F VALUE 111106 1, ac)19165 172-4534360 1144220 -14422766 -43907205 1144220 -14422766 -43907205 1144220 -14422766 -43907205 1144220 -14422766 -43907205 1144220 -14422766 -43907205 1144220 -14422766 -43907205 1144220 -14422766 -43907205 1144220 13,11211116 -43907205 119166 13,11211116 -94452472 119166 13,11211116 -94452472 119166 13,11211116 -94452472 119166 13,11211116 -94452472 119166 13,11211116 -94452472 119171576 -10,22345472 -07497079 119186 13,11211116 -9245246 119186 13,11211116 -9245246 119186 13,11211116 -9245246 119186 13,11211116 -9245246 119186 13,11211116 -9245246 119187 15,444511 -10,11645253 119189 15,445611 -10,22434642 119191 15,445611 -10,241524 119191 15,446511 <td< td=""><th></th><td>-5-22639783</td><td>16.5222654</td><td>16°24545454</td><td></td><td></td></td<>		-5-22639783	16.5222654	16°24545454		
000.855 dFAA QUIANT F VALUE 119165 11, 20119145 172,4534,960 304.20 .14492756 .43009205 304.20 .14492756 .43009205 42354 .14492756 .43009205 42354 .14492756 .43009205 42354 .14492756 .43009205 42354 .14492756 .43009205 42354 .14492756 .43009205 19165 13,13211116 .9445245 19166 13,13211116 .9445245 19165 13,13211116 .9445245 19166 13,13211116 .9452472 1917156 .13,13211116 .9452472 191415 .144274 .010716417 191416 .15,14224 .07497079 191417 .16,132742 .011065253 191417 .16,132742 .011065253 191417 .16,132742 .011065253 191417 .16,4132014 .03574051 191417 .16,4132014 .03574051 191417 .16,4132014 .03574051 191417 .16,4132014 .03574051 191417 .16,4132014 .03574051 191417 .16,4132014 .03114642 <th></th> <td>-0.22615524</td> <td>14.57965774</td> <td>14.29250250</td> <td>50</td> <td></td>		- 0.22615524	14.57965774	14.29250250	50	
000.255 4F.A. GUIAR F.VALUE 119106 1.30119165 172.44534.960 314420 .14402756 .43907205 423546 .14402756 .43907205 423546 .14402756 .43907205 42354 .14402756 .43907205 42354 .14402756 .43907205 42354 .14402756 .43907205 42354 .14402756 .43907205 119165 .1317211116 .43907205 119166 .1317211116 .9452472 119166 .1317211116 .9452472 119166 .1317211116 .9452472 119166 .1317211116 .9293546 119167 .15.446471 .0156285 119167 .15.446471 .01166526 119167 .15.446471 .01166555 11917 .15.446471 .10.4274631 11917 .15.446471 .10.427475 11917 .15.446471 .10.427164 11918 .15.446471 .10.427164 11918 .15.446471 .10.427164 11918 .15.446471 .10.427164 11918 .15.446471 .10.4271765 11918 .10.447074 .10.447474		-0-93616944	15.4P886180	14.55269236	ນ	
004.4E5 -4FAA \$QUARE F VALUE 119166 11.aq119145 177.44534.360 334420 -11.4492756 177.44534.360 334420 -11.4492756 177.44534.360 443337 \$11.4492756 -43309205 443337 \$11.4492756 -43309205 443337 \$1.4492756 -43309205 11.457 I.5.462845 -43309205 11.41157 I.5.462845 -43309205 11.44125 I.3.11211116 -5.4448462 11.41157 I.5.462845 -0.35396541 11.41157 I.5.462845 -0.35396541 11.41157 I.5.462845 -0.32346235 11.41157 I.5.462845 -0.37396454 11.41157 I.5.4628456 -0.3334623 11.41157 I.5.4628456 -0.3334623 11.4115 I.5.4628456 -0.3334623 11.4117 I.5.46467466 -0.3334623 11.4117 I.5.46467466 -0.3334623 11.41187 I.5.46467466 -0.3334623 11.4117 I.5.46467466 -0.3334623 11.4117 I.5.46467466 -0.33346423 11.4117 I.5.46467466 -0.33346423 11.4117 I.5.46467466 -0.34346423		1.07067211			10 IV 10 IV	
0014.0E5 4FAA \$QUARE F VALUE 119165 11.402176 172.453441 334420 .14492766 172.453441 423584 .14492766 .43909205 423584 .14492766 .43909205 423584 .14492766 .43909205 119165 13.11211116 .43909205 119165 13.11211116 .94429472 124171 15.45542815 .254448462 19165 13.11211116 .94429472 19165 13.11211116 .94429472 19165 13.11211116 .94429472 194125 .13.11211116 .94429472 19165 .13.11211116 .94429472 19165 .13.11211116 .94429472 19165 .13.41511 .15.445424 19165 .13.41511 .0.3238654 1914175 .15.445414 .0.3238654 1914176 .14.492776 .12637712 194476 .15.445414 .0.3238654 194476 .15.445414 .0.3238654 194476 .14.492776 .1284861 194476 .14.494774 .1284861 194476 .15.447344 .0.371926 194476 .15.447344 .0.3719461		46446166°	4.57057450	025120000 VI 10112421301	1 C C C C C C C C C C C C C C C C C C C	
DUALES VEAL SUULIE F VALUE 113165 11.40119145 1172.45734363 334423 -11492736 -43009205 423546 11.41492736 -43009205 423546 11.4192736 -43009205 423546 11.4192736 -43009205 423546 11.4192736 -43009205 114165 11.4192736 -43009205 114171 11.4192736 -43009205 114172 11.4192736 -43009205 114173 11.4192736 -43009205 114174 11.4192746 -43009205 114175 11.419211116 -5.44489462 114175 11.419211116 -5.44489462 114175 11.419211116 -5.44489462 1141757 11.419211116 -5.44489462 1141757 11.412511105 -0.13986918 1141757 11.412511105 -0.13986918 1141757 11.412511105 -0.13986918 1141757 11.412511105 -0.13986918 1141757 11.412511116 -0.35374625 1141757 11.412511116 -0.35374625 1141757 11.412511116 -0.35374625 1141757 11.412511116 -0.35374625		-0-24135876	15-31065932	45006640 51	1	
QUALES VEAK SUURIE F VALUE 1111165 11.aq119145 172.4534361 334420 .14492756 172.4534361 43330 STRUE .43907205 43337 STRUE .43907205 44337 STRUE .43907205 452937 STRUE .43907205 114165 13.11211116 .43907205 12.11116 .14492766 .94428462 13.11211116 .9442845 .07497079 .9.14857 T FOR Hold (11=0) NEFFRENCE .9.1487 T FOR Hold (11=0) .94452472 .9.1487 13.41551056 .0.13966526 .9.14127 13.41551056 .0.13966785 .9.141284 13.41551056 .0.13966785 .9.139674 .1.3415914 .0.23740174 .9.141284 13.4159142 .0.13966785 .9.1396745 .0.13966785 .0.13966785 .9.1396712 .1.2497155 .0.13966785 .9.141284 13.4159074 .0.13966785 .9.128476 .9.097712 .1.249714 .9.129476 .1.3415971 .1.3415971 .9.129476 .1.3415971 .1.3415971 .9.129476 .1.3415971 .1.3415971 .		-0-1996041	14.3410218	16.76914477	21	
QUALES VELVE F_VALUE 111165 11.40110145 172.45214361 111165 11.40110145 172.45214361 111165 11.4012756 172.45214361 423544 11.4012756 172.45214361 423544 11.4012756 11.41422756 423544 11.41422756 11.41422756 423544 11.41422756 11.41422756 42354 11.41422756 11.11116 114165 11.111116 5.44484462 114165 11.11116 5.44484462 114165 11.11116 5.44484462 114165 11.11116 5.44484462 114116 11.1116 5.44484462 114116 11.1116 5.44484462 114116 11.1116 5.44484462 114116 11.1116 5.44484462 1141165 11.1116 5.44484462 1141165 11.1116 5.44484462 1141165 11.1116 11.1116 1141165 11.1116 11.1116 1141175 11.11116 11.11116		-09A07472	16-13298426	16.73135H99	5 L .	
QUARES 4FAA SUUARE F VALUE 114165 11.40119145 172.45274340 374420 .14492756 172.45274340 423544 .14492756 .43909205 423544 .14492756 .43909205 423544 .14492756 .43909205 423544 .14492756 .43909205 423544 .14492756 .43909205 114165 11.41927 .14492756 12.57 1.6.1875514 .4396541 114165 13.17211116 .54448442 .01557 15.1422081 .0156541 .015684052 .03386541 .0749707 .1449275 15.45472 .0749707 .15.4569726 .0.1396785 .0749707 .1449275 .15.4569776 .0.1396785 .1449275 .15.4569776 .0.1396785 .1449275 .15.4569776 .0.1396785 .15.4569776 .0.1396785 .0749707 .141111 .15.4569776 .0.1396785 .141111 .15.4569776 .0.1396785 .15.4569776 .0.1396785 .0.1396785 .141111 .15.4569776 .0.1397817 .141111 .15.4569776 .0.1397817 .141111 .15.		6A173263	06616069°4. • • • • • • • • • • • • • • • • • • •	15,37271)97 15,37271)97		
QuiAles 4FAA SUUAIE F VALUE 114165 11.a0119145 172.45374361 334420 .14492756 439097205 423544 .14492756 .43009205 423544 .14492756 .43009205 423544 .14492756 .43009205 423544 .14492756 .43009205 42354 T FOR An allian .43009205 114165 13.13211116 .54448462 114165 13.13211116 .54448462 114165 13.13211116 .54448462 114175 15.36254285 .07497079 114175 15.36254285 .07497079 114175 15.36254285 .011865553 114175 15.3647214 .0.1396784 1293845 .12037612 .035278921 1341753 11.5476451 .035278921 1341753 15.3649714 .035278921 1341753 15.3649714 .035278921 1341753 15.3649714 .035278921 1341753 15.3649714 .035278921 1341754 15.364974 .035278921 1341754 .12038455 .12038455 1341754 .12038455 .12038455 1341754 .120376		- 1 - 0 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	LUVVBCUC BI			
0114165 4FAN SUUARE F VALUE 119165 11.30119145 172.453445 334420 .14492756 172.453445 423546 .14492756 .43097205 423546 .14492756 .43097205 423546 .14492756 .43097205 11.457 T FOR HO G(11=0) B VALUES 11.457 T FOR HO G(11=0) B VALUES 11.457 T FOR HO G(11=0) B VALUES 11.457 13.11211116 .43097205 11.457 13.11211116 .94452472 .07497079 .92985446 .119165 13.11211116 .08569451 .0.256540526 .119276 .07497079 .92985446 .0.13966541 .41227 .13.4121103 .13.4121103 .0.13966784 .41227 .13.4121103 .13.4121103 .0.13966784 .41227 .13.4121103 .13.4121103 .0.13966784 .41227 .13.41211103 .141231 .15.4281314 .15.4381314 .0.35374812 .15.4381314 .0.35374812 .15.4381314 .0.35374812 .16.4182074 .10.3537482 .1744476 .15.4381314		0 12985810	14.1910105			
QUALES VEAN SUUNIE F VALUE 119165 11.30119145 172.4534450 334420 .14492756 172.4534450 423544 .14492756 .43007205 423544 .14492756 .43007205 423544 .14492756 .43007205 423544 .14492756 .43007205 423544 .14492756 .43007205 423544 .14492756 .43007205 11415 11.1211116 .54489462 11416 13.11211116 .54489462 11415 13.11211116 .54489462 11416 13.11211116 .54489462 11416 13.11211116 .54489462 11417 16.37735914 .0.33386541 15.441297 15.4551056 .14940174 15.441297 15.45450726 .0.13960784 15.441201 14.3291742 .1.12017417 15.441201 14.32972 .1.2001741 16.3412001 .1492754 .0.1364553 171475 15.4412001 .1.2001741 16.4120014 .1.2001741 .1.2001741 171475 15.44120014 .1.2001741 171475 15.44120014 .1.20017412 171475 15.44120014 </td <th></th> <td>- 12A21 952</td> <td>15.36519847</td> <td>15.49941599</td> <td>14</td> <td></td>		- 12A21 952	15.36519847	15.49941599	14	
QHAPES AFAN SUDAR F VALUE 114165 11.40110145 172.4574430 334420 .1402756 172.4574450 423546 .1402756 172.4574450 423546 .1402756 .43009205 423546 .1402756 .43009205 423546 .1402756 .43009205 423546 .1402756 .43009205 423546 .13101116 .4300205 114165 11711116 .430452472 114165 .131121116 .9452472 114165 .131211116 .9452472 114165 .131211116 .9452472 114165 .131211116 .9298546 114171 15.54623041 -0.35346526 114171 .15.54623041 -0.35346526 114171 .15.54623041 -0.13960736 114175 .15.4710101 -0.2334626 114175 .15.47104531 -0.13466736 114175 .15.4710101 -0.2334623 115.5469750 .1346748 .12037617 115.5469750 .0.34746751 .104427053 115.4120004 .0.0427053 .104427053 115.4120004 .0.0427053 .104427053 115.1420004 .0.042705		-0.352799Z)]5.456447]4	1974791.51		-
014.165 0F.A. SUUAIF F. VALUE 119165 11.40119145 172.4534450 334420 .14492736 .14492736 423584 .14492736 .43009205 423584 .14492736 .43009205 423584 .14492736 .43009205 423584 .14492736 .43009205 119165 13.13211116 .43009205 119165 13.13211116 .43009205 119165 13.13211116 .4309205 119165 13.13211116 .9452472 119165 13.13211116 .9452472 119165 13.13211116 .9452472 119165 13.13211116 .9452472 119165 13.13211116 .9452472 119165 13.13211116 .9268541 119165 13.13211116 .9268541 119165 13.13211116 .9268541 119165 13.13211116 .9268541 119165 13.13211116 .9268541 119165 13.13211116 .9268541 119165 13.14211116 .9268541 119165 13.14211116 .9268541 119165 13.14211116 .9268551 119171 13.14211116 .917486551 <th>•</th> <td></td> <td>10-41829024</td> <td>17,10778476</td> <td></td> <td></td>	•		10-41829024	17,10778476		
011.4E5 4FAA GUUARE F VALUE 1113166 11.402156 172.4531436 334420 -11492756 172.4531436 4235442 -11492756 172.4531436 4235442 -11492756 172.4531436 4235442 -11492756 11492756 4235442 -11492756 -43007205 4235442 -11492756 -43007205 423544 -11492756 -43007205 119165 13.11211116 -43007205 119165 13.11211116 -4307205 119165 13.11211116 -98452472 119165 13.11211116 -98452472 119165 13.11211116 -98452472 119165 13.11211116 -98452472 119165 13.11211116 -98452472 119165 13.11211116 -98452472 119165 13.11211116 -98452472 119165 15.74526728 -0.35386521 13412292 13.4125910 -0.13960784 13412292 13.41259174 -0.35346742 1322020 15.74537342 -0.35346		-1-4-4-2-1-1-2 	HILECONCE MI Introdute Ji	1241244		
011.4EG 4FAN GUUARF F VALUE 111916G 11.402756 172.4534450 334420 -14492756 172.4534450 423546 -14492756 172.4534450 423546 -14492756 172.4534450 423546 -14492756 172.4534450 423546 -14492756 -43009205 423546 -14492756 -43009205 11416G 13.13211116 -43093205 11416G 13.13211116 -5.4848462 11416G 13.13211116 -5.4848462 11416G 13.13211116 -5.4848462 11416G 13.13211116 -5.4848462 114427 15.5422041 -0.1396451 1344373 15.5422041 -0.13964526 1344373 15.542104 -0.13964526 1344373 15.542104 -0.2334623 1341257 15.3437342 -0.20346235 1341267 14.32312342 -0.10662553 1311280 15.34373642 -0.10662553			15.76569726	15.4270004	1 41	
OHARES WEAK SUUARE F VALUE 119165 11.30119145 172.4531453 334420 .14492756 172.4531453 423546 .14492756 172.4531453 423546 .14492756 .43003205 423546 .14492756 .43003205 423546 .14492756 .43003205 423546 .14492756 .43003205 119165 177.4576 .43003205 119165 13.13211116 .54448462 119165 13.13211116 .5444862 119165 13.13211116 .9436256 119165 13.13211116 .92985445 194373 15.362204 DIFFERENCE 1944223 .13.3230174 .0.13906784 14.1397 15.3622014 .0.13906784 14.1397 15.3622014 .0.13906784 14.1397 15.3622014 .0.13906784 14.1397 15.3622015 .0.13906784 14.1397 15.3622014 .0.13906784 14.1397 15.3622015 .0.13906784 14.1397 15.3622017 .0.13906784 14.1397 15.3622017 .12037427 14.1397 14.1392 .12037427		-0.10862553	15.34373842	15.27511289		
011.1ES 4FAN GUUANF F VALUE 1119166 11.90[10145 172.45014360 334420 .14492756 172.45014360 423546 .14492756 172.45014360 423546 .14492756 172.45014360 423546 .14492756 .14492756 423546 .14492756 .172.45014209 423546 .14492756 .14492756 423546 .14492756 .14492760 12.57 13.11211116 .430017205 1114165 113.11211116 .544488462 1114165 13.11211116 .98452472 1114165 13.11211116 .98452472 1114165 .13.1121116 .92985462 1114165 .13.1121116 .92985462 11441229 .13.1121116 .9298546 13.41229 .13.1151056		2181EUET.	14.39212392	14.51250209	-1	
ninites wF/M_StUMRF F_VALUE 119166 11.90119145 172.4531436 334420 .14492756 172.4531436 423546 .14492756 .14492756 423546 .14492756 .14492756 423546 .14492756 .14492756 423546 .14492756 .14492756 423546 .14492756 .14492756 42357 T_FOR H0 R(1)=0 B_VALUES STD_ERROR_B STD_ERROR_B STD_B_VALUES) LAST T_FOR H0 R(1)=0 S_5.4448462) LAST T_FOR H0 R(1)=0 .5.4448462) LAST T_S.13211116 .94427472 .07497079 .92985462 .0190784 .035386541 .144229 .15.54232081 .0.1390784 .0.1390784 .13.135105 .34200174		<u>-</u> n.7486n417	15+66711003	14.91853586	- 	
ημιμές «ΕΛΝ ςυμΛώξ Ε VALUE 119166 11.30119145 172.4534360 334420 .14492756 172.4534360 423546 .14492756 .43003205 462932 STARA = .43003205 462932 STARA = .43003205 462932 STARA = .43003205 11.457 FOR H9 (III=0 B VALUES STD ERBOR B STD E VALUES 11.457 13.13211116 .54848462 11.4155 13.13211116 .92985446 11.4157 15.542304 .01495779 .92985446 11.41574 .013986541 .07497079 .92985446 13.4373 15.5423041 .0.13986541 .07497079 .92985446 13.4373 15.5423041 .0.13986541 .0.13986541 461297 15.5423041 .0.13986541 .0.13986541 14.12757 15.5423041 .0.13986541 .0.13986541 14.1297 15.5423041 .0.13986541 .0.13986541 14.1297 15.5423041 .0.13986541 .0.13986541 .14.1297 15.5423		. 34290174	13.41551056	14 15441229	رۍ	
OIIAJES JEAN SUUARE F VALUE 113165 11.30]19145 172.453436 334420 .13492756 172.453436 423546 .13492756 172.453436 423546 .13492756 172.453436 423546 .13492756 172.453436 423546 .13492756 .43009205 423546 .13492756 .43009205 423546 .13492756 .43009205 114165 17.45370 B VALUES 114165 13.13211116 .43009205 114165 .131311116 .99452472 114165 .1313211116 .99452472 114165 .1313211116 .99452472 114165 .1313211116 .99452472 114165 .1313211116 .929854462 114171 .16.338735914 .0.35386541 114171 .16.338735914 .0.13960784 115.422041 .0.13960784 .013960784		56295862*0-	12°54101410	14.98771575	4	19
minites wFAN GUINHE F VALUE 119165 11.a0119165 172.453450 334420 .13492756 172.4534360 423546 .13492756 .43009205 462932 STR HOR HO HILLED .43009205 1.LAST T FOR HO HILLED .929854462 1.119165 13.11211116 .98452472 .07497079 .92985446 1.190465 15.00254285 .26540526 .07497079 .92985446 1.190465 15.00254285 .26540526 .07497079 .92985446		-0.13960784	15.55422091	15.41461297	د ا	-
OHAJES VEAN SQUARE F VALUE 119165 11.30119145 172.4534360 334420 .13492756 172.4534360 334420 .13492756 172.4534360 423546 .13492756 172.4534360 423546 .13492756 .43009205 423546 .13492756 .43009205 11.4492756 .43009205 423546 .13492756 11.4492756 .43009205 11.457 I FOR H0 R(I)=0 12.457 I FOR H0 R(I)=0 13.13211116 .43009205 .98452472 .07497079 .92985446 .07497079 .92985446 .0400526 .24440526		-0.35386541	16-38735914	10,000,000 11,000,000 11,000,000	ν-	
OHATES MEAN SOUTHE E VALUE 119165 11.40119145 172.45314360 334420 .14492736 172.45314360 423546 .14492736 .14492736 423546 .14492736 .14492736 423546 .14492736 .14492736 12.457 STG #A = .43003205 13.13211116 .43003205 .98452472 .07497079 .929854462 .92985446 .92985446 .92985446		• 24440526	15-36254235	1 1 1 4 4 4 4 5 1 7 1	_	
QHARES MEAN GOUNRE F VALUE 119165 11.90119145 172.45294360 394420 .14492756 172.45294360 423586 .14492756 .43009205 423586 .14492756 .43009205 423586 .14492756 .43009205 423586 .14492756 .43009205 423586 .14492756 .43009205 423586 .14498275 .43009205 110165 .13.13211116 .43009205 110165 .13.13211116 .994452472 .07497079 .92985445 .92985445 .92985445		DIFFERENCE	ORSERVED	FXPFCTED	SFI	
קאזאא, איז	.07497079 .929854	5.48488462 .98452472	13.17211116	59161168°16	31.89119165	× × H O
GIAVES MFAN GUUARE F VALUE 119165 11.9019165 172.45074360 334420 .14492756 172.45074360 403546 .14492756 .49003205 4652930 STO ERROR B STO B VALUES						
рналес мбла сонлае б VALUE 119165 41.901048 б 172.45074960 374420 .13492756 172.45074960 403546 .13492756	STD ERROR B STD B VALUE	B VALUES	T FOR 19 9(1)=9	SS FF X(T) LAST	SS FOR X(T) ADJ	SONACE
GUATES MEAN GUUATE F VALUE 119165 11.30119165 172.45374360 334420 .13492756 172.45374360 423546 .13492756 .13492756			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
рналес мбла санлар б Value 119165 11.9019145 172.45094960 .1994420 .19492756 172.45094960		2006005		06.00 3.3 D		
лна тест мелл слилие е VALUE 119165 11.20119145 172.45274360 374420 .13492756		•		· .		
1914785 MEAN GOUARE E VALUE 119165 11.9019145 172.45274360 .134420 .13492756				36+88423586	TOTAL 28	
1119165 MEAN GOUNTE E VALUE 119165 11.901007 AEA 11000000000000000000000000000000000			-14492756	4.97334420	DEVIATIONS 27	
DUARES MEAN SOUDARE E VALUE		172*45274360	11°161105°11	31+41143164	Ferbeled in	
TOUR TEST MEAN SOUTHER F VALUE						
		F VALUE	MEAN SOUCH	SHI DE SOHARES	Source June	
					•	

•

•

4

APPENDIX C

.

BOCA RATON PUMPAGE IN MILLION GALLONS/MONTH

•

•

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	TOTAL
								· ·					
1961	89.9	93.3	122.5	128.9	104.2	90.5	132.8	105.1	102.9	88.5	96.1	108.9	1263.60
1962	105.7	114.8	125.9	106.5	153.8	89.6	95.9	109.4	105.4	127.9	111.5	125.2	1371.60
1963	96.0	76.9	131.3	161.2	130.9	96.2	185.0	172.0	95.6	125.7	133.9	132.2	1536.90
1964	106.6	105.4	157.0	187.3	133.9	161.1	164.6	171.7	126.0	136.5	145.6	146.3	1742.00
1965	163.7	123.9	197.4	251.9	257.0	157.8	182.7	185.4	141.5	129.7	130.6	161.9	2083.50
1966	114.3	150.2	182.8	209.6	172.6	92.5	137.2	165.4	120.3	132.7	168.7	172.5	1818.80
1967	151.6	159.1	205.8	289.5	288.8	142.6	221.8	188.3	169.5	150.5	193.7	200.9	2362.10
1 9 68	224.6	207.4	264.4	332.9	188.6	113.1	263.8	270.2	207.2	161.6	240.9	299.8	2774.50
1969	205.0	251.1	223.8	277.7	220.6	207.0	270.4	259.8	191.9	227.0	254.9	250.3	283 9. 50
1970	270.2	258.6	265.1	440.2	410.0	229.8	306.9	364.1	314.7	317.3	376.0	388.0	3940.90
1971	375.6	323.8	431.7	440.3	308.7	264.6	354.4	341.1	257.2	295.2	290.2	326.8	4009.60
1972	329.9	304.0	427.4	397.7	311.1	232.5	336.8	426.7	352.6	436.8	337.7	340.8	4234.00
1973	382.1	345.3	461.1	509.5	410.3	296.3	240.2	247.7	215.3	249.7	357.0	393.9	4107.90
1974	430.3	457.7	612.0	560.6	575.3	412.5	441.5	384.9	490.5	461.6	446.4	455.8	5729.10
1975	535.7	436.3	5 96. 8	688.7								·	2257.50
						·							
Monthly Avg.	105.3	114.3	128.08	145.17	173.63	151-57	196-84	231.21	236,63	<u>328.4</u> 1	334.13	352.83	
	342.33	477.43	188.13										
					· <u>···</u>								
					· · · ·								
	· · · · · · · · ·						-	· .					
<u> </u>													
	· · · · ·												
									· · ·	· · · · · ·			
					·		· · · · · · · · · · ·	· · · ·				·	· · · · · · · · · · · · · · · · · · ·
												•	
· · · · · · · · · · · · · · · · · · ·								· · · · · ·					
	· · · · · · · · · · · · · · · · · · ·						-						
				·									
		· · ·											
							· · · · · · · · · · · · · · · · · · ·						
													·

FORM 17-A

• •

MIAMI-DADE PUMPAGE IN MILLION GALLONS/DAY

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
						1							
1960	93.4	93.8	101.4	101.3	97.5	86.4	102.7	91.4	83.5	82.9	88	94.1	1116.4
1961	92.9	99.8	106.6	116.7	105.7	97.5	106.6	107.7	102.2	96.4	93.7	100.2	1226
1962	97.6	113.4	112.4	110.2	122.3	95.1	101.4	104.2	96.0	104.6	95.8	106.0	1259
1963	105.0	105.3	125.5	134.4	119.1	105.3	123.0	120.0	107.0	105.7	111.1	113.6	1375
1964	116.5	118	127.9	135.3	118.5	119.4	127.7	130.1	125.2	117.2	122.4	122.4	1480.6
1965	130.3	130.1	143	161.6	166.1	143.1	145	137	134.2	127.7	129.8	138.1	1686
1966	119.1	132.5	127.7	133.1	135.4	115.3	122.9	127.7	126.8	123.1	124.1	129.4	1759.7
1967	129.5	131.4	140.7	148.9	156.7	124.4	130.4	125.9	135.3	119.4	122.0	133.0	1597.6
1968	130.9	134.7	141.4	166.0	131.3	122.5	138.5	140.0	130.5	125.5	133.8	148,2	1643.3
1969	133.8	142.2	139.2	141.1	134.2	131.3	140.9	140.3	134.9	134.0	133.1	140.3	1645.3
1970	139.2	142.5	144.5	172.3	169.7	144.8	148.6	158.7	152.1	144.8	154.3	164.9	1836.4
1971	165.9	163.4	176.9	185.0	152.9	146.1	159.9	152.1	146.4	150.2	151.2	159.2	1909.2
1 9 72	155.2	155.6	166.8	174.6	158.0	154.6	165.7	173.7	160.4	165.0	160.3	162.0	1951.9
1973	166.6	165.6	180.3	193,3	187.4	178.4	173.3	172.5	172.1	173.3	182.8	180.4	2126
1974	182.7	194.3	202.4	205.0	194.0	181.0	180.5	187.3	186.7	178.5	132.7	180.1	2249.2
Monthly Avg.	93.0	102.1	104.9	114.5	123.3	140.5	146.6	133.1	136.9	137.1	153.0	159.1	
	162.6	177.1	187.4										
							_						
_(1)													
Ŵ													
·····													
													·
			<u> </u>						······································			· · · · ·	
<u>1</u> 1										L	<u>I</u>		

WEST PALM BEACH PUMPAGE IN MILLION GALLONS MONTH

YEAR	JAN	FEB	MAR	APR	МАУ	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
			·										
1955	300.7	288.3	380	348.9	354.6	271.8	313.4	325.4	371.6	330.0	343.2	269.9	3897.8
1956	315.9	336.1	427.5	395.3	369.5	306.8	319.7	308.8	213.2	268.2	294.9	316.0	3871.9
1957	343.9	291.7	326.0	307.6	292.2	281.2	306.8	266.3	264.6	270.4	316.5	326.3	3593.5
1958	257.5	292.9	308.3	327.9	310.6	330.6	389.4	334.6	288.1	325.3	297.1	281.6	3743.9
1959	305.5	331.2	323.7	383.4	387.3	343.1	364.4	327.2	268.3	296.5	272.1	339.9	3941.6
1960	387.4	305.4	379.4	389.0	446.4	334.3	454.9	393.3	243.2	282.7	315.9	380.1	4311.9
1961	366.2	379.0	459.8	445.9	393.1	385.6	503.1	428.5	458.7	362.8	373.8	404.6	4961.1
1962	405.2	433.5	480.0	422.0	498.2	318.0	337.1	362.5	351.4	361.9	361.6	397.6	4729.0
1963	343.6	297.1	418.3	525.2	415.9	370.4	543.6	445.2.	299.4	330.1	360.2	380.9	4629.9
1964	325.0	328.1	455.2	460.0	393.3	408.7	434.3	417.5	327.6	357.6	324.4	330.3	4562.0
1965	380.0	313.9	441.2	545.2	540.8	328.4	437.6	496.7	425.2	359.3	361.9	428.1	5103.2
1966	321.1	364.7	437.5	454.9	453 .9	299.7	358.0	323.4	315.1	329.4	396.0	414.4	4468.1
1967	390.8	374.4	487.4	593.1	622.8	384.9	461.6	404.7	389.6	338.6	404.6	470.8	5323.2
1968	451.1	369.1	482.6	560.1	383.9	374.7	466.0	464.9	339.7	265.3	357.2	416.9	4832.0
1969	409.1	435.6	401.1	499.1	395.4	399.9	500	433.7	362.9	369.4	401.4	450.1	5058.6
1970	437.0	399.2	461.8	608.6	642.5	430.7	543.2	594.4	516.9	454.8	535.3	584.6	6209.3
1971	551.6	499.0	642.6	630.1	491.1	408.4	557.8	519.4	417.6	457.9	436.4	489.0	6101.4
1972	487.4	449.4	578.3	507.2	396.9	362.8	515.0	575.7	547.7	566.4	464.5	496.6	5948.2
1973	500	435.8	569.0	626.4	648.5	504.7	498.2	536.5	471.5	496.8	541.5	525.6	6355.0
1974	493.8	<u>534.5</u>	702.1	700.8	661.3	531.6	565.4	567.9	597.1	538.2	559.7	555.8	7008.2
Monthly Avg.	324.8	322.6	299.4	31 1.9	328.4	359.3	413.4	394.0	385.8	380.1	425.3	372.3	
	443.6	402.7	421.5	517.4	508.4	495.7	529.5	584.0					
				-									
L	ļ				· · · · ·								
L_G													· · · · · · · · · · · · · · · · · · ·
									·				
			·										
							·						
		•											

FORM 17-A

ESTIMATION OF SEASONAL VARIATION OF MUNICIPAL PUMPAGE IN MILLION GALLONS/MONTH

		· ·											
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ОСТ	NOV	DEC	TOTAL .
1955	77.1	70.7	95.1	84.3	100.1	65.8	87.6	102.1	52.9	82.5	97.1	64.8	980.1
1956	88.0	93.6	117.1	112.4	100.7	107.1	121.3	93.4	35.6	49.2	68.3	83.1	1069.8
1957	93.7	85.1	75.2	73.3	53.6	93.2	76.2	56.9	68.5	62.5	83.2	77.5	898 .9
1958	53.5	72.9	67.9	82.4	71.4	140.2	100.1	72.5	80.5	91.2	74.3	47.2	954.0
1959	64.0	69.6	63.0	104.7	103.3	82.9	86.0	85.4	60.2	82.1	61.8	94.9	957.9
1960	100.1	71.8	86.3	91.3	119.9	86.2	117.6	100.2	47.0	46.1	66.7	93.8	1027.0
1961	80.8	99.4	129.6	134.3	109.2	97.7	159.4	133.4	133.0	88.8	88.8	96.3	1350.7
1962	98.6	116.7	134.4	129.7	178.4	81.3	95.3	101.7	91.0	112.2	103.7	103.0	1346.0
1963	76.0	64.4	110.0	128.2	116.5	92.2	158.1	150.8	77.2	91.3	101.3	104.1	1270.1
1964	79.6	86.3	127.8	137.6	96,9	119.2	140.1	136.6	81.8	93.7	105.2	97.3	1302.1
1965	116.7	87.3	141.7	193.1	207.3	107.2	112.4	157.3	96.3	88.3	96.6	116.6	1520.8
1966	78.3	98.5	125.0	138.5	112.0	67.3	92.6	99.0	77.4	88.4	125.8	123.4	1226.2
1967	100.3	117.8	169.6	191.4	208.2	95.7	161.2	114.3	111.1	93.0	134.9	127.5	1625.0
1968	147.9	124.7	156.8	204.6	119.0	68.8	153.0	145.1	101.7	82.3	133.9	154.9	1581.7
1969	112.4	143.9	123.7	148.9	116.0	123.0	159.0	141.7	105.4	118.7	127.3	147.1	1567.1
1970	141.9	128.0	142.7	234.9	232.4	122.6	156.6	181.8	149.1	144.4	157.3	177.8	1969.5
1971	168.6	147.2	206.5	215.1	163.0	134.0	142.2	141.3	123.0	132.1	143.5	172.6	1889.1
19 72	173.5	149.9	227.8	228.0	193.6	140.2	177.9	221.7	202.4	264.9	189.9	155.8	2325.6
1973	179.3	153.6	220.8	249.8	241.2	188.4	169.1	173.2	152.5	223.5	282.6	303.7	2537.7
Monthly Avg.	81.6	89.1	74.9	79.5	79.8	85.6	112.5	112.1	105.8	108.5	126.7	102.1	135.4
	131.8	164.1	157.4	193.8	211.5								
					· · · · ·							· · · · · ·	
	<u>∦ ·</u>												_
f													·····
<u>G</u>	Ű											· · · · · · · · · · · · · · · · · · ·	·
<u> </u>						<u>_</u>							
1													·
	┃			<u>.</u>									
				<u> </u>		· · · · · · · · · · · · · · · · · · ·							·
······													
													I
	1			. 1	· · · ·		., <u>Anna 199</u>				,	· .	

...

CITY OF BELLE GLADE ESTIMATION OF SEASONAL VARIATION OF MUNICIPAL PUMPAGE IN MILLION GALLONS/MONTH

								1					
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	TOTAL
1967	65.6	63.2	71.2	58.4	67.4	51.6	49.5	42.3	30.8	33.5	53.7	82.3	669.5
1968	92.6	83.8	88.1	73.8	72.2	65.1	48.7	52.7	46.7	57.3	67.3	90.8	8 9.1
1969	97.0	<u>91.9</u>	89.7	84.7	72.8	58.8	56.4	54.9	46.9	56.5	67.6	97.9	875.1
1970	108.1	<u>98.3</u>	102.8	98.6	106.4	91.1	_0.0	58.9	56.8	67.3	95. 1	108.7	1052.2
1971	111.3	100.0	102.6	103.3	103.5	92.6	63.5	63.0	63.6	<u>94,1</u>	100.4	103.8	1101.7
1972	107.8	100.4	114.0	101.7	<u>113.3</u>	109.4	110.0	95.4	65.7	97.1	107.6	107.6	1230.0
1973	104.9	100.8	115.9	113.1	119.9	106.3	103.2	99.9	78 .6	113.3	104.5	108.1	1268.5
1974	107.6	98.9	119.3	116.5	109.4	94.3	105.3	107.0	96.8	90.9	105.2	109.6	1260.8
								<u> </u>					
						·							
Monthly Avg.	55.7	69.9	72.9	87.6	91.8	102.5	105.7	105.0				·	
									· · · ·				
1967	1,18	1.13	1.28	1.05	1.21	.93	.89	.76	.55	.60	.96	1.48	<u> </u>
1968	1.32	1.20	1.26	1.06	1.03	.93	.70	.75	.67	.82	.96	1.30	
1969	1.33	1.26	1.23	1.16	1.00	.81	.77	.75	.64	.78	.93	1.34	
1970	1.23	1.12	1.17	1.13	1.21	1.04	.68	.67	.65	.77	1.09	1.24	
1971	1.21	1.09	1.12	1.13	1.13	1.01	.69	.69	.69	1.03	1.09	1.13	
1972	1.05	, 98	1.11		1.11	1.07	1.07	.93	.64	.95	1,05	1,05	
1973	.99	.95	1.10	1.07	1.13	1.01	.98	.95	.74	1.07	.99	1.02	
1974	1.02	.94	1.14	1.11	1.04	.90	1.00	1.02	.92	.87	1.00	1.04	
Average	1.17	1.08	1.18	1.09	1.11	.96	.85	.82	.69	.86	1.01	1.20	12.02
	 												
						· · ·		· · · · · · · · · · · · · · · · · · ·					·
·					· · ·								
	 										·		
					<u> </u>								
	ļ												
					· ·								

FORM 17-A

DELKAY BEACH MONTHLY PERCENTAGE MONTHLY VALUES/MONTHLY AVERAGE

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	MONTHLY AVERAGE
1955	.94	.87	1.17	1.03	1.23	.81	1.07	1.25	.65	1.01	1.19	, 79	81.6
1956	.99	1.05	1.32	1.26	1.13	1.20	1.37	1.05	40	.55			
1957	1.25	1.14	1.00	.98	.72	1.24	1.02	.76	.91	.83	1,11	1.03	74.9
1958	.67	92	.85	1.04	.90	1.76	1.26	.91	1.01	1.15	.93	.59	79.5
	.80	.87	.79	1.31	1.29	1.04	1.09	1.07	.75	1.03	.77	1.19	79.8
1960	1.17	.84	1.01	1.07	1.40	1.01	1.37	1.17	.55	.54	.78	1.10	85.6
1961	.72	.88	1.15		.97		1.42	1.19	1.18	.79		.86	112.5
1962	.88	1.04	1.20	1.16	1.59	.73	.85	.91	.81	1.00	.93	.92	112.1
1963	.72	.61	1.04	1.21	_1.10	.87	1.49	1.43	.73	.86	.96	98	105.8
1964	.73	.79	<u>1.18</u>	1.27		1.10	1.29	1.26	.75	.86	.97	.90	108.5
1965	.92	.67	1.12	1.52	1.64	<u>.85</u>	.89	1.24	.76	.70	.76	.92	126.7
1966	.77	.96	1.22	1.36	1.10	.66	.91	.97	.76	.87	1.23	1.21	102.1
1967	.74	.87	1.25	1.41	1.54	.71	1.19	.84	.82	.69	1.00	.94	135.4
1968	1.12	.95	1.19	1.55	.90	.52	1.16	1.10	.77	.62	.93	1.18	131.8
1969	.86	1.10	.95	1.14	.89	.94	1.22	1.09	.81		.98	1.13	130.5
1970	.86	.78	.87	1.43	1.42	.75	95	1.11	.91	.88	.96	1.08	164.1
1971	1.07	.94	1.31	1.37	1.04	.85	.90	.90	.78	.84	.91	1.10	157.4
1972	.90		1.18	1.18	1.00		.92	1.14	1.04	1.3/	.98		193.8
1973	.85	.73	1.04	-1.18	1.14	.89	•80	.82	.72	1.06	1.34	1.44	211.5
								2.00					
	.89	- 88	1.10	1.43	1.13			1.06_	.80	.8/	.96		11.99
					<u> </u>			· · ·					
1													
<u>ú</u>													
	· · · · · ·												
	<u> </u>												
								f					
	<u>├</u>							· · · · ·					

,

FORM 17-A

4

APPENDIX D

BOCA RATON MONTHLY PERCENTAGE MONTHLY VALUES/MONTHLY AVERAGE

-

-

YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	-
													· · · · · · · · · · · · · · · · · · ·
1961	0.85	0.89	1.16	1.22	0.99	0.86	1.26	1.00	0.98	0.84	0.91	1.03	· · ·
1962	0.92	1.00	1.10	0.93	1.35	0.78	0.84	0.96	0.92	1.12	0.98	1.10	
1963	0.79	0.60	1.03	1.26	1.02	.75	1.44	1.34	0.75	0.98	1.05	1.03	· · · · · · · · · · · · · · · · · · ·
1964	0.73	0.73	1.08	1.29	0.92	1.11	1.13	1.18	0.87	0.94	1.00	1.01	
1965	0.94	0.71	1.13	1.45	1,48	.90	1.05	1.06	.81	. 74	.75	.93	
1966	.75	.99	1.20	1.38	1.13	.61	.90	1.09	.79	.87	1.11	1.13	
1967	.77	.80	1.04	1.47	1.46	. 72	1.12	<u>.95</u>	.86	.76	.98	1.02	
1968	.97	. 89	1.14	1.43	. 81	.49	1.14	1.16	.89	. 69	1.04	1.29	
1969	.86	1.06	.94	1.17	.93	<u>.8</u> 7	1.14	1.09	.81	.95	1.07	1.05	
1970	.82		.81	1.34	1.25	.70	.93	1.11	.96	.97	1.14	1.18	
1971	1.12	.97	1.29	1.31	.92	.79	1.06	1.02	1.07	.88	.87	.98	
1972	.93	.86	1.21	1.13	.88	.66	.95	1.21	1.00	1.24	.96	.96	
1973	1.12	1.00	1.35	1.49	1.20	.86	.70	.72	.63	73	04	1.15	
1974	.90	.96	1.28	1.17	1.20	.86	.92	.80	1.03		.93		
	.89	.88	1.13	1.29	<u>1.11</u>	.78	1.04	1.05	.88	.90	.99	1.06	
					··				· · · · · · · · · · · · · · · · · · ·				
													·
· · · · · · · · · · · · · · · · · · ·	┝ ╍─── ┤											·	
	·	-											
	· · ·												
	-												
				[
									1				
	·									<u> </u>			

FORM 17-A

-

·....

.

·													
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	ост	NOV	DEC	
									· · · · · · · · · · · · · · · · · · ·				
1960	1.00	1.00	1.09	1.09	1.05	.93	1.10	.98	.89	. 89	.95	1.01	
1961	.91		1.04	1.14	1.03	.95	1.04	1.05	1.00	.94	.92	.98	······································
1962	.93	1.08	1.07	1.05	1.16	.91	.97	.99	.92	.97	.91	1.01	. <u> </u>
1963	.92	.92	1.09	1.17	1.04	.92	1.07	1.05	.93	.92	. 99	.99	
1964	.94	.96	1.04	1.10	.96	.97	1.03	1.05	1.01	.95	.99	.99	
1965	.93	92	1.01	1.15	1.18	1.02	1.03	.97	.95	.91	.92	.98	
1966	.81	.90	.87	.91	.92	.79	.84	.87	.86	.84	.85	.88	
1967	.97	99	1.05	1.11	1.17	.93	. 98	.94	1.01		.92	1.00	
1968	.96	.98	1.03	1.21	.96	.89	1.01	1.02	.95	.92	.98	1.08	
1969	.97	1.04	1.01	1.03	. 98	.96	1.03	1.02	.98	.98	.97	1.02	······································
1970	.91		. 94	1.13	1.11	.95	.97	1.03	.99	.95	1.00	1.08	
1971	1.04	1.02	1.11	1,16	. 96	.92	1.00	.96	.92	.94	.95	1.00	
1972	.95	.96	1.02	1.07	.97	.95	1.01	1.061	.99	1.01	.98	1.00	
1973		.93	1.02		1.06	1.00	.98	. 97	.97	. 98	1.03	1.01	
1974	.97	1.03	1.08	1.09	<u> </u>	.96	.96	1.00	1.00		.97	.96	
· · ·													
	.94	.98	1.03	1.10	.97	.94	1.00	1.06	.96	.94	.95	.93	
	.96	1.00	1.05	1.2	.99	.96	1.02	1.08	.98	.96	.97	.95	
	ļļ												
	· ·												
		·										·	·
<u> </u>												·	
-0-										·			
	· · · · · · · · · · · · · · · · · · ·												
	· · · · · · · · · · · · · · · · · · ·												
	· · ·								_ _				
						·							
			·····										·
	<u> </u>										·		
										<u> </u>			
i		· .			·	<u> </u>							
													· · · · · · · · · · · · · · · · · · ·

FORM 17-A

3

WEST PALM BEACH MONTHLY PERCENTAGE MONTHLY VALUES/MONTHLY AVERAGE

.

• •

								•••					
										·			
YEAR	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC	1
													<u></u>
1955	.92	.98	1.17	1.07	1.09	. 84	.96	1.00	1.14	1.02	1.06	.83	· · · · · · · · · · · · · · · · · · ·
1956	. 98	1.04	1.32	1.22	1.14	.95	.99	.96	.66	.83	.91	.98	· · · · · · · · · · · · · · · · · · ·
1957	1.15	.97	1.09	1.03	.97	.94	1.02	.89	.88	.90	1.06	1.09	
1958	.82	.94	.99	1.05	.99	1.06	1.25	1.07	.92	1.04	.95	.90	
1959	.93	1.01	. 98	1.17	1.18	1.04	1.11	.99	.82	.90	.83	1.03	
1960	1.08	.85	1.05	1.08	1.24	.93	1.27	1.09	.68	.79	.88	1.06	
1961	. 88	.92	1.11	1.08	.95	.93	1.22	1.04	1.11	.88	.90	.98	
1962	1.03	1.10	1.22	1.07	1.26	.81	.85	.92	.89	.92	.92	1.01	
1963	.89	.77	1.08	1.36	1.08	.96	1.41	1.15	.78	.85	.93	.99	
1964	.85	.86	1.11	1.21	1.03	1.07	1.14	1.10	.86	.94	.85	.87	
1965	.89	.74	1.04	1.28	1.27	.89	1.03	1.16	1.00	.84	.85	1.00	
1966	.86	.98	1.17	1.22	1.22	.80	.96	.87	.85	.88	1.06	1.11	
1967	.88	.84	1.09	1.34	1.40	.87	1.04	.91	.88	.76	.91	1.06	
1968	1.12	.92	1.19	1.39	. 95	.93	1.16	1.15	.84	.66	.89	1.03	
1969	.97	1.03	.95	1:18	. 94	.95	1.19	1.03	.86	.88	.95	1.07	
1970	.84	.77	.89	1.18	1.24	.83	1.05	1.15	1.00	.88	1.03	1.13	
1971	1.08	.98	1.26	1.24	.96	.80	1.10	1.02	82	.90	.86	.96	
1972	.98	.91	1.17	1.02	. 80	.73	1.04	1.16	1.10	1.14	.94	1.00	
1973	.94	.82	1.07	1.18	1.22	.95	.94	1.01	.89	.94	1.02	.99	
1974	.84	.91	1.20	1.20	1.13	.91	.97	.97	1.02	.92	.96	.95	
· ·													
	.95	.91	_1.11	1.18	<u>1.10</u>	.91	1.08	1.03	.90	. 89	.94	1.00	
é													-
0													
· · · · · · · · · · · · · · · · · · ·													
· · · · · · · · · · · · · · · · · · ·													
			<u> </u>										<u></u>
										·			
						_							

FORM 17-A

.

.

۰.

PROJECTED WATER REQUIREMENT PALM BEACH COUNTY

-61-

FIGURE 3

4

PROJECTED WATER REQUIREMENT BROWARD COUNTY

-62-

PROJECTED WATER REQUIREMENT DADE COUNTY

-63-

SEASONAL PUMPAGE VARIATIONS CITY OF DELRAY BEACH

-64~

SEASONAL PUMPAGE VARIATIONS CITY OF WEST PALM BEACH

-66-

SEASONAL PUMPAGE VARIATIONS CITY OF BOCA RATON