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ABSTRACT

The methods of computing area from maps are classified under two 

categories: (1) bounded area, and (2) weighted sub-areas. Pioneering

methods of pianimeter, coordinate squares, triangular rule, trapezoidal 

rule, Simpson's rule, double-meridian-distance (DMD), coordinates, and 

digitizer are compared with the relatively easy methods of weighing technique 

and finite segments, and also with a recently developed Monte Carlo 

process.

The bounded area which is used extensively in computing area of land 

use can be obtained by any one of three methods: graphical, arithmetical

and computer. The graphical method includes four techniques: weighing,

planimeter, coordinates squares and digitizer. The accuracy of this graph­

ical method is highly dependent upon the skill of the analyst and the 

correctness of instruments. The arithmetical method involves three rules: 

triangular, trapezoidal, and Simpson. The accuracy of this arithmetical 

technique is dependent upon the number of offsets used to divide the entire 

region. If a region is of very irregular shape and of large size, then this 

arithmetical method is very tedious and cumbersome to use. The techniques 

of double-meridian-distance, coordinates, finite segments and Monte Carlo 

are introduced by using a computerized procedure. The signs of latitudes, 

departures, and starting point are easily confused in the methods of DMD and 

coordinates. Finite segments can overcome some limitations such as a figure 

having some inactive areas within the figure, but it is also strongly dependent 

upon the direction used to select the boundary nodes. Monte Carlo is only 

a method which is independent of the direction and can be used in any compli­

cated form of figure.
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The weighted sub-area which is used widely in computing the areas 

weighted to a measurement station can be obtained by any one of the four 

techniques: simple arithmetic method, Thiessen method, stratified method

and modified Monte Carlo method; however, the modified Monte Carlo method 

can be simulated directly by the computerized procedure and also has been 

applied successfully to compute the weighted area to each measured station.

Finally; from this study. 1t can be concluded that the weighing technique 

is relatively easy to use in the laboratory; the finite segments method is 

a quick computerized procedure when the direction of selecting boundary 

points are correctly performed; and the Monte Carlo process is more applicable 

and powerful than other computerized methods because this method is not only 

independent of the direction used to select the boundary nodes but also 

applicable to any complicated form of figures with arbitrary signs of lati­

tudes, departures and starting points.
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INTRODUCTION

The computation of an area of ]and is most frequently used in several 

fields of water resource systems. Area calculations of interest to water 

resource workers include land use estimation, water quality, ecological 

systems, stratified sampling programs, etc. Pioneering methods used in 

computing area from maps, (hereafter the area computations are only re­

ferred to the area computed from the maps), are those of planimeter, coordi­

nate squares, triangular rule, trapezoidal rule, Simpson's rule, double- 

meridian-distance (DMD), and coordinates (Brinker, 1969). Recently, a 

digitizer was also used (SAC, 1972). However, if an area is very irregular 

in shape and/or is of large size or has inactive areas within its boundaries, 

then the previous methods are very difficult to adapt to a computerized 

procedure. Hence, there is a need to introduce some other practical methods 

from which the area can be calculated directly, either by the computerized 

procedure or by a weighing machine.

OBJECTIVES

The purposes of this study are:

(1) To discuss the existing methods used in computing areas;

(2) To introduce two relatively easy methods of weighing techniques 

and finite segments, and a recently developed Monte Carlo process, 

together with their ranges of application, and

(3) To compare the advantages and disadvantages of each method.

DESCRIPTION OF METHODS

The methods of computing area from maps may be classified under two 

categories: (1) bounded area and (2) weighted to sub-areas.
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BOUNDED AREA

The bounded area has been widely used in determining the area of land 

included within the boundaries. The area to be measured can be obtained by 

any one of the following methods:

I. Graphical Methods: The area is measured by using instruments such as:

planimeter, coordinate squares counter, digitizer and weighing machine.

a. Weighing Method: A weighing machine used in a laboratory can be

employed to obtain the area. Three procedures are involved: First,

a ratio between a known area and weight must be procured from a 

control unit. Second, the weight of an unknown area is weighed. 

Third, multiplying the weight of an unknown area by the ratio which 

is obtained in the first procedure gives the area of an unknown 

figure. The nonuni form thickness of the paper and changing humidity 

can affect significantly the accuracy of measurement.

b. Planimeter: The planimeter is the commonest way of checking the area

of a figure. It is a small instrument consisting of an arm, carrying 

a tracing point, which is moved over the outline of the figure to be 

computed. Poor setting of the planimeter scale bar, and failure to 

check the scale constant by tracing a known area, can cause an error 

of measurement.

c. Coordinate Squares: The figure is marked off in squares of unit area.

The number of complete unit square included is counted, and the sum 

of the partial units are also estimated. A transparent paper marked 

in squares to some scale is placed over the figure and the number of 

squares and partial units counted. The number of squares can also be 

counted by a mechanical dot counter or a transparent paper dotter.

- 4 -



Using coordinate squares which are too large makes it difficult to 

estimate the partial blocks and could cause an error in computation.

d. Pigitizer: A digitizer is a device used to convert information in

graphic form into numerical intelligence suitable for processing, 

recording, or transmission on a digital data system. After the (x, y) 

coordinates of each point on the outline of the figure is recorded, 

the size of the plane area also can be computed. This method is highly 

dependent upon the direction used to digitize the boundary coordinates.

II. Arithmetic Methods: A figure can be divided into geometrical shapes

(triangles, trapezoids, and rectangles), and the following rules can be 

used to compute the area:

a- Triangular Rule: A figure may be divided into simple triangles. The

area can be computed by the formula:

Area = / S(S-a)(S-b)(S-c) (1)

where

a, b, and c are the sides of the triangle

S = 0.5(a + b + c) (2)

Another formula is used when an angle between two sides is known,

Area = 0.5 a b sin C (3)

where C is the angle included between two sides a and b.

b. Trapezoidal Rule: If the figure is considered as made up of a series

of trapezoids, all having the same base, the area can be determined 

based on the formula

Area = j  (ha + 2 z h + h^) (4)

where

d = common distance between offsets and
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h . h, , and h = first, last and intermediate offsets, 
a D

c. Simpson‘s Rule: For generally parabolic areas, Simpson's one-third

rule as follows is applicable to obtain the size of the plane area.

even
(5)

where

d = common distance between offsets

h.,hk>h and h 
a’ b odd even

= first, last, odd and even offsets.

Furthermore, if the figure is very irregular in shape, then the 

arithmetical method is very difficult to adapt by a. computerized procedure. 

Therefore, the following computerized methods are introduced:

III. Computer Methods: The following four methods can be performed by the

computerized procedure.

a. Double-Meridian-Distance (DMD): The DMD of a traverse line is twice 

the distance from a meridian through the most westerly station to the 

middle point of the line. The double areas of all of the trapezoids 

may now be found by multiplying each DMD by the adjusted latitude

of that side. The area obtained by plus latitudes and minus latitudes 

should be considered as a positive and negative area, respectively.

The sum of these double areas will be double the area of the figures to 

be measured. The disadvantages of this DMD method is that the signs 

of DMD's, latitudes, departures, or areas are easily confused.

b. Coordinates: The area is equal to one-half the sum of the products

obtained by each x-coordinate by the difference between the adjacent 

y-coordinate, taken in the same order around the figure. Similar to 

the DMD method, the signs of coordinates, latitudes, departures, or 

areas are easily confused.
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If the signs and starting point are recorded carefully and 

without any inactive areas within the figure, the above two methods 

can be used quite satisfactorily by using a computerized procedure; 

however, in practical application the above methods can accrue

difficulty such as an inactive area included within the figure.

Therefore, the following two methods which can overcome the 

limitations are introduced.

c. Finite Segments: The boundary of a figure is defined by a series of

linear segments between node points. The clockwise or counter­

clockwise direction used to record {x, y) coordinates is dependent

upon the figure either to be active or inactive, respectively. The

area is obtained by the following formula:

M-l y *.i + y. Yi + Ym
flre a  = ^  ( X 1+, -  X ,0  ^ .......+ ( X ,  -  XM> ( 6 )

where X-, = coordinates of boundary nodes;

i = boundary segment index, and

M = total number of segments.

d. Monte Carlo Method: The Monte Carlo method is a procedure which takes

advantage of the high speed of an electronic computer in solving complex

problems in physical and mathematical fields. Monte Carlo applications 

in the field of science and engineering are summarized in books by 

Hammersley and Handscombe (1964) and Shrieder (1967). This method 

involves enclosing the figure to be measured within a rectangular

area and by generating random numbers choosing points randomly distri­

buted throughout this rectangle. The proportion of these points 

falling within the figured area is, in the limit, the proportion of 

the rectangular area contained within the figure. But, in practical
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application, the previous method has some limitations which were 

removed by Shih and Hamrick (1974).

i■ To Determine Whether a Random Point is Within or Without the 
Watershed;

Shih and Hamrick (1974) developed an alternative test 

based on the principle that for any completely bounded region, 

a radial line constructed in any direction from a given point 

must cross the boundary an odd number of times if the point is 

located within the region or an even number of times

if without (assuming zero to be an even number). This test is 

ambiguous only in the case of node points (the intersections 

of straight line segments representing the figure boundary).

They also developed a second rule with a computerized technique 

for solving the ambiguity that exists when the radial line 

penetrates the boundary at the node point,

ii. Procedure of Computation:

Based on the technique described in the previous section, 

the following procedures are used to obtain an analog of any 

shape of figure.

(1) Enclose the irregularly shaped boundary with a rectangle 

whose coordinates are also recorded.

(2) Read the X and Y coordinates of the boundary segments.

(3) Compute the weighting factor of each boundary node according 

to Rule 2 (Shih and Hamrick, 1974).

(4) Generate random points with uniform probability over the 

enclosing rectangle.
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(5) Draw an imaginary line from the random point and parallel 

to the x-axis.

(6) Count the number of intersections of this line with the

boundary

(7) Test whether the random point falls within the boundary

according to Rule 1 (an odd or even number of inter­

sections).

(8) If the above test succeeds, increase the counter of accepted 

points by one.

(9) Repeat the processes of 5> 6, 7 and 8 until the number of points 

assigned is reached.

(10) Compute the area by dividing the accepted points by the total

number of random points, and multiplying this ratio by

the enclosing rectangular area.

The above procedure is simulated as a flow chart shown in Figure 1.

iii. Selecting Boundary Segments

The boundaries of a watershed can be defined by the given 

coordinates of successive points along the boundary (in a clockwise 

direction) and considering the boundary between each pair of successive 

points to be a straight-linear segment. The actual boundaries could 

be approximated as closely as desired by increasing the number of 

such segments; but,the user should note that the more segments chosen 

the more computing time and user's time are required. A later 

example will show the effects of many irregularities of natural 

boundaries such as lake shorelines and the watershed may be averaged 

by reducing the boundary planform to a simplified polygon. The 

general principle of this procedure is to represent the planform
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Figure 1; Flowchart for Solving Integrated Area
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with as few sides as possible without changing the basic shape of 

the boundary,

iv. Convergence of Weights

Because the Monte Carlo method relies on the laws of probability, 

a large number of random trials should be taken in the interest 

of precision. The method normally used to estimate the relationship 

of sample size and accuracy is the large-sample normal approxi­

mation. Using the Central-Limit Theorem, the binomial distribution 

can be approximated by a normal distribution for a large N, where 

N is the total number of trials. The sampling error of any statistic 

is proportional to 1 / ( N ) ^ .  The convergence of the Thiessen

weights is a statistical convergence i.e., the probable error of

1/2
estimation is proportional to 1/(N) • A detailed discussion was

given by Shih and Hamrick (1974).

WEIGHTED SUB-AREAS

The average amounts of environmental elements such as water quality,

ecology system, and land use, etc. over a specific area is required in many

water resource problems. Thus, mean value problems can be solved by sampling 

techniques. For convenience let variables A-j, A^, and X-j, ..., X^ be the

subareas and measured values of stations 1, ...k, respectively. Then the 

estimated weighted average amounts for the region are

k
X = W1X1 + ... + WkXk = i  ̂ WiXi (7)

where = A^/A, weighted area; and 

A = A-| + ... + A^, total area.

In most cases the values of are obtained first by laboratory experiments 

or field measurements, and then the values of VJ-j are estimated based on the
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following four methods:

I. Simple Arithmetical Method: The values of A^ are assumed equal to one.

Equation 6 can be rewritten as 

k
X = i X./k (8)

i=l 1

Equation 8 is the simplest method which can give a good estimation of 

average value in a flat area under the condition of measurements that 

are uniformly distributed and the individual measurement does not vary 

widely from the true average. However, this method does not take into 

account the measurements outside, but near the boundaries of the area.

II. Thiessen Polygon Method: Thiessen (1911) developed a method which attempts

to allow for nonuniform distribution of measurements by providing a 

weighting factor for each measurement. The measured points are plotted 

on a map, and connecting lines are drawn. Perpendicular bisectors of 

these connecting lines form polygons around each measured point. The 

sides of each polygon are the boundaries' of the effective area assumed 

for the measured point. The values of A^ are determined by the methods 

indicated in the section of bounded area computation. However, the 

limitation of this method is its inflexibility; for instance, a new 

polygon being required every time there is a change in sampling location. 

Also, the method makes no attempt of overcome the orographic influences.

III. Stratified Method: This method is a plan by which the region is divided

into homogeneous subregions or strata. In computing a strata the analyst 

can make full use of his knowledge of orographic effects or other 

influential factors. After constructing the strata, the following equation 

is used to calculate the mean values, X,
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M k .
X = z s1 W, .x,, (9 )

i = l j=l J

where

M = total number of strata

k. = total niimber of observed stations in the ith stratum 

i aj = index of stratum and observed station, respectively; and 

W^j = observed value of the jth station in the ith stratum

The values of A^j can be determined by either simple arithmetical method

or the Thiessen method. If a simple arithmetical method is used, then 

equation 9 is reduced as 

M
X = i W,!.: (10)

i=l 1

where

W- = A.j/As weighted area of the ith stratum; and 

ki
X- = E X. ./k., average observed area of ith stratum.
1 j=l 1

If a Thiessen method is used to perform the subpolygon for each station

X.., then equation 9 is used to calculate the weighted area. The greatest
' J

limitation of the stratified method is also its inflexibility.

IV. Modified Monte Carlo Method: As indicated in previous sections, the

Thiessen polygon and stratified methods suffer from their inflexibility

in that a new Thiessen diagram is required every time there is a change 

in the sampling location or a recorded station with missing data. This 

limitation can be overcome by the modified Monte Carlo method (Shih and 

Hamrick, 1975).
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a. Procedures of Computation

The following procedures are used to compute an area weighted to 

each measured station:

1. Compute the weighting factor of each boundary node which relies 

on the procedures 1, 2 and 3 as indicated in the previous section 

of the Monte Carlo method.

2. Determine whether a random point falls within any shape boundary

which is based on the procedures 4, 5, 6, 7 and 8 as indicated

in the previous section of Monte Carlo method.

3. Assign the random point which is falling within the boundary to

the nearest measuring point.

4. Repeat processes 2 and 3 until a predetermined large number of 

points are reached.

5. Compute the relative area ratio of the bounded region to the 

enclosing rectangle by dividing the number of accepted points by 

the total number of random points.

6. Calculate the computed weights of each measuring point by dividing 

the number of points assigned to each measuring point by the 

total number of accepted points.

7. Check whether the sampling location is changing*

8. If the response to 7 is yes, the processes from 2 to 7 are repeated. 

The above procedures are simulated in a flow chart in Figure 2. „

b. An Irregular or L-Shaped Watershed

An expected accuracy of computation by this Monte Carlo method 

depends upon not only the number of random points, but also the shape 

of the watershed. The number of random points that affects the sample 

error has been discussed in a previous section. However, the
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Figure 2 - Flowchart for Computing the Weighted Sub-area.
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efficiency of this Monte Carlo method affected by the shape formed 

by the watershed should also be discussed because a large number of 

random points fall off the outside boundaries of the watershed

which differs greatly from that of the enclosing rectangle. This

difficulty can be overcome by following three techniques:

i. Equal Rectangles: A watershed is enclosed by a number of 

smaller rectangles of equal area that have a common edge 

which cuts the watershed. In order for this method to be 

used more widely, the following relationship should be 

introduced. Let A ^ , An be the relative area ratio 

falling within the boundaries of sub-watershed 1, n.

Then the new relative area ratio, R^, Rn , of sub­

watershed 1, n are equal to 

n
R, = Ai/ l A 
1 i=l 1

• ’ (11)

Rn * V  S./i

The final computed weights, W-j, W , of rainfall stations 

1, ..., m are equal to

¥ n
1=1

n * 0 2 )

wm = Z R.E.
i im

where E^j is the computed weight of rainfall station j in 

subrectangle i; j includes the rainfall station from 1 to 

m and i includes the subrectangle from 1 to n. For example,
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m is the total number of rainfall stations and n is the total 

number of subrectangles,

ii. Unequal Rectangles: The technique of unequal rectangles is

similar to the equal rectangles method except that the water­

shed is enclosed by a number of smaller unequal rectangles.

Let S^, ..., Sn represent the area of enclosing rectangles 

1, n; A-| , and R-], ...,Rn are defined in the case

of equal rectangles. The value of R- is 

n
R-j = A-|S-|/ £ A-jS-j

i = l •
(13)

Rn = Ansn// .z. Aisi

The final computed weights, W-j, ..., W of rainfall stations,

1, ..., m, are similar to equation 12, except that the R̂

values are replaced by equation 13.

iii. Single Rectangle: The more random points chosen, the greater

the accuracy of the estimates obtained. Therefore, in a 

watershed which has a lower relative area ratio, the single­

rectangle technique is still applicable by increasing the 

random trials. A detailed technique of application was given 

by Shih and Hamrick (1975).

c. New Thiessen Coefficients for Missing Data

As Linsley et al. (1958) indicated the greatest limitation of the 

Thiessen method is its inflexibility, because a new Thiessen polygon

is required every time there is a change in the gage network. This

modified Monte Carlo method can be used to overcome this limitation.
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In general, there are two cases of missing data. Case 1: The missing

data of each rainfall station are priorly known, and any missing periods 

of record are assigned as a new station set. The distance of a random 

point from all rain measuring stations is calculated simultaneously 

in each station set, and the random point is assigned to the nearest 

rain measuring station in each set. Case 2: The missing data of

each rainfall station is posteriorly known, i.e.,how many stations 

with missing data are unknown. In this case, if a station with a 

missing record is found, then that station is omitted and a new 

gage network is considered. Based on this new gage network, a com­

puted weight is performed by a repeating procedure. A detailed 

description of these procedures will be discussed in the section of 

computer program.

COMPUTER PROGRAM

Based on Equation 1 of finite segments, procedures for computation in 

Monte Carlo and modified Monte Carlo methods, a systematic flow chart for 

the computer program development is shown in Appendix 1. Nomenclatures for 

the computer program are listed in Appendix 2. The systematic flow chart 

was converted to a computer program called E084 for the CDC 3100 computer 

with Fortran IV language. The users manual for the E084 program is also 

presented in Appendix 4. An example of using the Upper Kissimmee Basin for 

input is demonstrated on Appendix 5. The results of computer output are 

also shown in Appendix 6.

EXAMPLES OF APPLICATION 

Four examples are used to illustrate the application of computing the 

bounded and weighted sub-areas.
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EXAMPLE 1. SIMPLE GEOMETRICAL SHAPE

In order to test the applicability of these newly developed techniques, 

an irregular area as shown in Figure 3 not only has inactive areas within the 

figure, but also can be calculated easily by the triangular rule. As mentioned 

in the previous sections, the direction used in setting boundary nodes is a 

very important feature in some methods, because an improper procedure can cause 

a serious error. In order to investigate this nature, as Figure 3 illustrates, 

four different sequences used to select the coordinates are demonstrated:

Case 1A: 1-2-3-4-5-6-7-8-9-10-6-11-12-13-14-11-5-1,

Case 2A: 1-2-3-4-5-6-10-9-8-7-6-11-12-13-14-11-5-1,

Case IB: 1-2-3-4-5-6-7-8-9-10-11-12-13-10-9-14-6-5-1,

Case 2B: 1-2-3-4-5-6-14-9-10-13-12-11-10-9-8-7-6-5-1.

Based on these four cases, several methods are used to obtain the areas. The

results are shown in Table 1. As can be seen from Table 1, the cases of 1A 

and IB have a serious error by using the methods of finite segments and 

digitizer. The results of areas calculated by the Monte Carlo method with 

2000 random walks are all the same values in four cases. This implies that 

the technique used to select the consecutive points along the boundary in either 

a clockwise or counterclockwise direction, or a combination of both directions, 

gives no difference in the results obtained by using the Monte Carlo method.

This is a very useful tool when the directions used to select the boundary 

nodes are mixed up in both directions. The accuracy of Simpson's method is 

directly proportional to the number of divisions. For example, the number of 

eight and ten offsets as shown in Figure 3 are called Cases 1 and 2, respectively. 

The calculating results are also shown in Table 1. As Table 1 shows, Case 2 

has a better solution than Case 1. The results obtained by the coordinates 

and weighed method give a good agreement with the results obtained by the 

triangular rule.
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Fig. 3. Area Under an Irregularly Shaped Form.
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Table 1. Comparison of the results of bounded area obtained by Monte Carlo 
method with other methods.

Diff.
Cases

Graphical Method Arithmetical Method Computerized Method
Coordinate Digitizer Weighed 
Squares Method Method

Triangular Simp. 
Rule Rule

Monte Finite 
Carlo Segments

1A 16.97 34.03 17.18 17 18.3 17.06 35

2A 16.97 17.03 17.18 17 17 17.06 17

IB 20.84 29.82 19.98 21 20 20.81 29

2B 20.84 20.92 19.98 21 21 20.81 21

EXAMPLE 2. KISSIMMEE RIVER BASIN

The Kissimmee River basin as shown in Figure 4, with sixteen rainfall

stations is used as a practical problem to exemplify the technique of a single

rectangle as mentioned in the previous section of modified Monte Carlo method.

It should be noted that the coordinates chosen for enclosing the rectangle 

are an important factor. The coordinates should be chosen to make the enclosing 

rectangle as small as possible so that as high an area ratio as possible can be 

obtained. The results with random trials of 2,000, .4,000 and 6,000 are shown 

in Table 2. Comparison of the single rectangle results with the actual values

as shown in Table 2, indicates that the single rectangle is applicable to a

watershed with a long and narrow shape.

EXAMPLE 3. UPPER KISSIMMEE RIVER BASIN

The Upper Kissimmee Basin,as shown in Figure 5 with two different cases 

of selecting boundary points such as 103,demonstrates the planform of watershed 

boundary affecting the accuracy and computing time of estimation. The results 

showed that the computing time was reduced about 70% in the 10 points case 

and accuracy did not change appreciably. Therefore, a case with boundary points
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Table 2. Computed weights and relative area ratio of Figure 4 shown.

Rainfal1 

station

Graphi cal 

method

Monte Carlo method
No. of random points 

2000 4000 6000

1 0.029 0.036 0.034 0.030
2 0.102 0.107 0.105 0.107
3 0.002 0.0 0.0 0.001
4 0.058 0.054 0.057 0.057
5 0.166 0.179 0.188 0.190
6 0.113 0.117 0.118 0.114
7 0.053 0.044 0.042 0.044
8 0.071 0.054 0.069 0.068
9 0.089 0.081 0.079 0.084

10 0.015 0.016 0.013 0.012
11 0.053 0.047 0.043 0.046
12 0.043 0.044 0.042 0.046
13 0.080 0.096 0.085 0.080
14 0.078 0.066 0.073 0.071
15 0.046 0.058 0.051 0.050
16 0.002 0.002 0.001 0.001

Ratio of 
area

0.621 0.624 0.630
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Fig. 5. U p p e r  K is s im m ee R i v e r  B a s i n
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is also used to demonstrate the bounded area and Thiessen coefficients compu­

tations. Comparison of bounded area obtained by different random points are 

given in Table 3, showing that the bounded area can improve the accuracy by 

increasing the random points. However, too many random points are not 

recomnended in practical application because a longer computing time is 

involved for this little improvement in accuracy. In general, 2,000 - 6,000 

random points can give quite good results. As can be seen from Table 3, the 

area computed by finite segment method is 1605 square miles which is very 

close to the area of 1607 square miles given by U.S.D.A. (1974).

Comparisons of the results of Thiessen coefficients affected by different 

random points are shown in Table 4. As can be seen from Table 4, 2,000 - 6,000 

random points also can give quite satisfactory results from Thiessen coefficients. 

A detailed discussion on the relationship between random points and accuracy 

of Thiessen coefficients computation was given by Shih and Hamrick (1975).

Table 3. Comparison of the results of bounded area obtained by the different 
random points.

Finite MONTE CARLO METHOD
Bounded Segments

— — — — - -
Number of Random Points Assigned

Area Method 500 1000 2000 4000 6000 1 10000 20000. ..

Sq. Miles 1605 1693 1712 1648 1628 1617 1612 1600

Percent of 
Deviation 0.0 5:50 6.70 2.68 1.43 0.75 0.44 0.31
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Table 4. Comparison of the results of Thiessen Coefficients affected 
by different random points.

Rainfall Stations
Thiessen
Polygon

MODIFIED MONTE CARLO METHOD
Number of Random Points Assigned

500 1000 2000 4000 6000 10000 20000

Lake Alfred 0.034 0.029 0.023 0.029 0.034 0.034 0.037 0.034

Kissimmee II 0.288 0.274 0.279 0.296 0.296 0.289 0.295 0.296

Isleworth 0.091 0.055 0.087 0.088 0.083 0.088 0.090 0.087

Orlando 0.052 0.068 0.063 0.054 0.052 0.049 0.051 0.051

Bithlo 0.001 0.003 0.002 0.003 0.002 0.001 0.001 0.001

Lake Hart 0.160 0.140 0.150 0.147 0.152 0.153 0.150 0.156

Ind. Lake Estates 0.259 0.309 0.275 0.263 0.269 0.267 0.263 0.263

Mount. Lake Estates 0.115 0.121 0.122 0.120 0.113 0.118 0.112 0.118

This example was also used to test the.applicability of the missing data 

case. The new computed Thiessen weights with 2,000 random points for missing 

data of each station in these eight stations are shown in Table 5. The results 

indicate that the modified Monte Carlo method technique is capable of over­

coming difficulties due to changes in network.

EXAMPLE 4. ESTIMATING THE CONCENTRATION OF NUTRIENTS IN CONSERVATION AREA 2A.

Conservation Area 2A, as shown in Figure 6, with 15 measuring stations 

is used to exemplify the application of the Modified Monte Carlo technique. It 

should be noted that the coordinates chosen for enclosing the rectangle are an 

important factor. The coordinates should be chosen to make the enclosing 

rectangle as small as possible so that as high an area ratio as possible be 

obtained. The results of the weighting area of 15 measured stations, obtained 

by both methods of the Thiessen polygon and Monte Carlo technique, are shown in
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Fig. 6., Sampling Locations of Conservation Area 2A.
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Table 5. Computed new weights and relative area ratio in missing data for the upper 
Kissimmee River Basin as shown in Figure 5.

Rainfall
station 0 1

Station with missing data 
2 3 4 5 6 7 8

Lake Alfred 0.034 0.109 0.034 0.034 0.034 0.034 0.034 0.066
Kiss. II 0.300 0.324 - 0.348 0.300 0.300 0.386 0.341 0.314
Isleworth 0.090 0.090 0.134 - 0.127 0.090 0.090 0.090 0.090
Orlando 0.059 0.059 0,063 0.100 - 0.059 0.088 0.059 0.059
Bithlo 0.001 0.001 0.001 0.001 0.001 - 0.040 0.001 0.001
Lake Hart 0.155 0.155 0.271 0.155 0.177 0.156 - 0.156 0.155
Indian Lake Estates 0.258 0.258 0.283 0.258 0.258 0.258 0.258 - 0.315
Mountain Lake Estates 0.103 0.114 0.140 0.103 0.103 0.103 0.103 0.320 -

Ratio of 
area

0.580 0.580 0.580 0.580 0.580 0.580 0.580 0.580 0.580



in Table 6. Comparisons of the .Monte Carlo results with the values obtained 

by the graphical method indicates that the Monte Carlo method is applicable 

to a region for obtaining an area weighted to each measure station. The 

sampling program of Chloride and Silica concentrations in Conservation Area 2A 

was conducted by Gleason (1974). The average of the concentrations are 

computed by using the simple arithmetical method, Thiessen polygon and Monte 

Carlo method. The results are also shown in Table 6. As Table 2 shows, 

the averages of Chloride and Silica concentrations obtained by the Thiessen 

polygon and Monte Carlo methods give a similar result.

In order to investigate the applicability of the modified Monte Carlo 

method to the water quality sample program, the average of 49 sample data 

and percentage of deviation among each method were listed on Table 7. Some 

abbreviation terms are used in Table 7. For example, the simple arithmetic 

method with 49 sample data is called SMM49 and with 15 samples is called 

SMM15; the Theissen coefficient polygon and Monte Carlo method with 15 sample 

data are called TCP!5 and MCM15, respectively. As Table 7 shows, the following 

results can be drawn:

(1) Based on the statistical viewpoint, the more samples taken the more 

accurate should be the estimation of the mean value. In other words, 

the sample data with 49 points should be better than the 15 points,

i.e., the average values of 113.96 ppm of chloride and 17.20 ppm of 

Silica have more reliable estimation than others. Therefore, the 

results of SMM49 are better than the SMM15.

(2) When the sample sizes are as few as 15 points, the estimations 

based on TCP15 and MCM15 are better than SMM15 because the 

deviation percentages between SMM49 and SMM15 are about 17% in 

Cl and 11% in SiQ?, but between SMM49 and TCP!5 are only 7%,
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Table 6. Comparison of the results of mean chloride and silica concentrations 
obtained by modified Monte Carlo method with graphical method.

Weighted Sub-area C h 1 or i de Concentration, ppm Silica Concentration, ppm

Sampli ng 
Stat i ons

Th i essen3 

Polygon

Monte

Carlo
Method

Observed

Data

T h 1 essena 
Polygon

Monte

Carlo
Method

Observed
Data

Thi essend 
Polygon

Monte
Carlo
Method

A 1 0.0529 0.0524 243 12.86 12.72 33-2 1 .76 1.74

0.0673 0.0598 44 2.96 2.63 0.5 0.03 0.03

b3 0.0712 0.0806 112 7.97 9.02 10.2 0.73 0.82

B5 0.0431 0.0444 179 7.71 7.94 23.9 1.03 1 .06

C 1 0.0484 0.0412 166 8.04 6.84 21 .6 1.05 0.89

C4 0.0543 0.0585 182 9.88 10.65 2 3 . 7 1.29 1 .39

C7
0.0819 0.0718 112 9.17 8.04 12.2 1.00 0.88

D1 0.0371 0.0339 152 5.64 5.15 17-9 0.66 0.6!

D4 0.0991 0.1157 114 11.30 13.19 21.6 2.14 2.50

d7 0.0932 0.1004 115 10.71 11.55 21 .6 2.01 2.17

E2 0.1381 0.1219 81 11.19 • .9.87 18.7 2.58 2.28

E7 0.0442 0.0451 152 6.71 6.86 1 9 .2 O .85 O .87

g6 0.0514 0.5527 137 7.04 7-23 22.5 1.16 1.19

h 3 0.0818 ".0888 82 6.71 7.29 16.9 1.38 1.50

1 0.0360 0.0328 134 4.82 4.40 21.6 0.78 0.71

Tota i
Mean Value

1.0000 1.0000 2005 t 
133-6 7 122.71 123.28

285.3
19.02 18.45 18.64

a The areas of Thiessen polygon are obtained by graphical method.

The mean values are obtained by arithmetical method.
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and between SMM49 and MCM15 are also only 8%.

{3} Based on the methods of TCP15 and MCM15, the error of estimation 

average can be reduced at least 53% in Cl and 21% in Sit^. This 

implies that either the TCP!5 or the MCM15 can give a better 

result of the average value over a specific area.

(4) The results of modified Monte Carlo method and Theissen coefficient 

polygon are similar. This implied that the Modified Monte Carlo 

method not only can be used to estimate the mean value over a 

specific area, but also can be computed directly by a computerized 

procedure.

Table 7. Percentage differences and average concentrations of chloride 
and silica in Conservation Area 2A.

Cl
deviation %

Average
Concentration

Si 02 
deviation %

Average
Concentrate

Methods SMM49 SMM15 TCP 15 ppm SMM49 SMM15 TCP!5 ppm

SMM49* 113.96 17.20

SMM15 17.30 133.67 10.58 19.02

TCP15 7.68 8.93 122.71 7.27 3.09 8.45

MCM15 8.18 8.43 0.46 123.28 8.37 2.04 1.03 18.64

* SMM49 is the simple arithmetic method with 49 sample data.
SMM15 is the simple arithmetic method with 15 sample data.
TCP15 is the Theissen coefficients with 15 sample data,
MCM15 is the Monte Carlo method with 15 sample data.
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RESULTS AND DISCUSSION

After applying the techniques to several practical problems, the following 

conclusions were drawn:

1. The accuracy of the graphical method is highly dependent upon the 

skill of the analyst and the correctness of the instruments. Although 

the results obtained by the coordinate squares, planimeter and 

weighing technique are in good agreement with the results obtained

by the triangular rule, some observations must be mentioned. For 

example, the nonuniform thickness of the paper and varying humidity 

can significantly affect the accuracy of weighing measurement. Poor 

setting of the planimeter scale bar, and failure to check for the 

scale constant by tracing a known area, can cause an error of 

planimeter measurement. Using coordinates which are too large make 

it difficult to estimate the partial blocks from which an error of 

computation can occur. The cases of 1A and IB will have a serious 

error if the digitizer is used. These results show that the digitizer 

is highly dependent upon the direction used to digitize the boundary 

coordinates.

2. The accuracy of the arithmetical technique is dependent upon the number 

of offsets used to divide the entire region. Case 2 with ten offsets 

has a better solution than Case 1 with only eight offsets. If a 

region has a very irregular shape and large size, then this arith­

metical method is very tedious and cumbersome to use.

3. The signs of latitudes, departures, and starting points are easily 

confused in the methods of DMD and coordinates. Although finite
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segments can overcome some limitations such as a figure having some 

inactive areas within the figure, as Case 1A and IB shows; it is strongly 

dependent upon the direction used to select the boundary nodes but 

also applicable to any complicated form of figures with arbitrary sign 

of latitudes, departures and starting points.

4. The modified Monte Carlo method has been successfully applied to compute 

the weighted sub-area. The result also indicated that only the modified 

Monte Carlo method can be simulated directly by a computerized procedure 

to compute the weighted sub-area to each measured station.

5. The modified Monte Carlo method can be applied to compute the weighted 

sub-area not only for rainfall stations but also for any type of 

estimating mean value over a specific area. For example, a mean chloride 

and silica concentration in Conservation Area 2A can be computed based

on the modified Monte Carlo method.

6. The modified Monte Carlo method has been extended to compute the new 

weighting factors when data are missing.
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APPENDICES



Appendix 1. Systematic Flow Chart For Computer Program Development
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Appendix 2. Nomenclature For Computer Programs.

Variables of Input:

IN - Methodology indicator, the finite segments method used

1 = Finite Segments Method Used

2 = Monte Carlo Method Used

3 = Modified Monte Carlo Method Used 

0 = End of Job

TITLE - Input data identification

N - The number of boundary points chosen

M - The number of measuring stations

NSET - The number of Monte Carlo Points assigned

XMIN - Minimim range in X axis

XMAX - Maximum range in X axis

YMIN - Minimum range in Y axis

YMAX - Maximum range in Y axis

FAC - The scale of feet used in per unit of length, zero means

the dimensionless of area 

X - X coordinate of the boundary point

Y - Y coordinate of the boundary point

AX - X coordinate of the measuring station

AY - Y coordinate of the measuring station

Variables of Output:

AF - Relative area ratio

AREA - Total area in acres

I - Measuring station identification

WF{l) - Thiessen coefficient of station I

FACT - Area converting factor in unit of acres

SUM - Total area in acres computed by finite segments method.

- 37 -



Appendix 3. Users Manual For E084

For Program to Compute the Areas and Thiessen 
Coefficients Based on Finite Segments, Monte 
Carlo and Modified Monte Carlo Methods



Program Limitations

1. Limit of 400 boundary points per area

2. Limit of 500 measuring station per area

Requisition for Computer Work

Estimated Time - 5 seconds is needed in Finite Segment per area,

15 seconds is needed in Monte Carlo method per 1000 random points

20 seconds is needed in Modified Monte Carlo Method per
1000 random points

Category - Production run

Job Run No. - E084

Disk - 6000

FORMAT INFORMATION

Symbols used to indicate the proper method for numbers or letters entered 

in card columns shown are :

RJ - indicates that a whole integel number must be right justified 

in card columns shown 

DP - indicates that the number must have a decimal point indicated in 

one of the card columns.

A - any alpha-numeric character.

CARD FORMAT INFORMATION 

First Card: Control and Parameters Card

C.C. Symbol Descri ption

I-5 RJ An integral value is required. 1 , 2 ,  and
3 indicate that the finite segments, Monte 
Carlo, and Modified Monte Carlo are used, 
respectively.

II-80 A Title Input data identification.
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Second Card: Parameters Card

C.C. Symbol Description

Type I: when the integer 1 is shown in first card on
column 5

1-10 RJ Total number of boundary points

11-20 DP Scale of feet used in per unit of length

Type II: When the integer 2 is shown in first card on 
column 5

1-10 RJ Total number of random points assigned

11-20 RJ Total number of random points assigned

21-30 DP Minimum value of enclosing rectangle
coordinates along X-axis

31-40 DP Maximum value of enclosing rectangle
coordinates along X-axis

41-50 DP Minimum value of enclosing rectangular
coordinate along Y-axis

51-60 DP Maximum value of enclosing rectangular
coordinate along Y-axis

61-70 DP Scale 4 feet used in per unit of length

Type III: When the integer 3 is shown in first card on
column 5

I-10 RJ Total number of boundary points

II-20 RJ Total number of rain measuring stations.
If a relative area ratio of study area 
to enclosing rectangle is expected,only 
the value of 1 should be used.

21-30 RJ Total number of random points assigned.

31-40 DP Minimum value of enclosing rectangular
coordinate along X-axis

41-50 DP Maximum value of enclosing rectangular
coordinate along X-axis

51-60 DP Minimum value of enclosing rectangular
coordinate along y-axis

61-70 DP Maximum value of enclosing rectangular
coordinate along Y-axis

71-80 DP Scale of feet used in per unit of length
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Description

Third Card: Boundary Points Coordinates Card(s)

C.C. Symbol

1-5 DP

11-15 DP

31-35 DP

41-45 DP

51-55 DP

61-65 DP

71-75 DP

6-10 DP

16-20 DP

26-30 DP

36-40 DP

46-50 DP

56-60 DP

66-70 DP

76-80 DP

x coordinate value of boundary segments 
choosing in clockwise direction

y coordinate value of boundary segments 
choosing in clockwise direction.

Note: The maximum boundary points included per card is only 8 points. Therefore, 
the card can be used as much as required in number of stations. For 
example, 7 cards are needed in 50 boundary points.
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Measuring Stations Coordinate Card(s): This card is required only when the
integer 3 is shown in the first card 
on column 5.

C.C. Symbol Description

1-5 DP

11-15 DP

21-25 DP

31-35 DP

41-45 DP x coordinate of rain measuring station

51-55 DP

61-65 DP

71-75 DP

6-10 DP

16-20 DP

26-30 DP
*

36-40 DP

46-50 DP

56-60 DP

66-70 DP

76-80 DP

y coordinate of rainfall measuring station

Note 1 : The maximum measuring stations involved per card is only 8 stations.
Therefore, use as many new cards as necessary.

Note 2: Use as many new control and title cards with succeeding cards as
necessary. The last card must be present as a blank form.



Appendix 4. Example of Upper Kissimnee River Basin Input
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1 F I N I T F  SF.GE^FNTS M E T H O D  U S E D  TO C O M P U T E  T H E  A R E A

I > 3 1 0 0 0 . 0
3 .  30 0 . 1 8 2 . P 0  0 . 9 8  0 . 5 0  8 . 6 ' .  4 . 1 m 9 . 9 0  5 . 2 '  B . S O  5 . 8 5  9 . 1 5 7 . 0 5  5 . 3 5 6 . 2 5 3 . 7 5
7 , 9 5 0 . 9 2 4 . 6 0  0 . 9 0

2 MONTE:  C A R L O  ME T H O D  U S E D  T O  C O M P U T E  T H E  A RE A
10 i a o ! ) o  o . e o r * . o o o  o . o o o  n . c o o 3 1 0 0 0 . 0

3 . 3 0 0 . 1 8 2 . 0 0  0 . 9 a  0 . 5 0  8 . 6 5  4 . 1 ' )  9 . 9 0  5 . 2 ' ?  8 . 5 0  5 . 8 5  9 . 1 5 7 , 0 5  5 . J 5 6 . 2 5 3 . 7 5
7 * 9 5 0 . 9 2 4 . 6 0  0 . 9 0

3 M O D I F I E D  MO N T E  CARI  0 M E T H O D  U S E D  T O  C O M P U T E  T H I E S S E N  C O E E .
1*) 7 1 0 0 0 "  0 . 0 0 0  8 . 0 0 0  0 . 0 0 0 1 0 . 0 0 0 3 1 0 0 0 . 0

3 . 3 0 0 . 1 8 2 . 0 0  0 . 9 8  0 . 5 0  8 . 6 5  4 . 1 3  9 . 9 0  5 . 2 0  8 . 5 0  5 . 8 5  9 . 1 5 7 . 0 5  5 . 3 5 6 . 2 5 3 . 7 5
7 , 9 5 0 . 9 2 4 . 6 0  0 . 9 0
3 , 2 0 6 . 2 5 1 . 9 0  9 . 3 0  4 . 4 0  9 . 6  6 . 7 5  9 . 5 0  5 . 7 * ,  7 . 7 0  4 . 2 5  . 9 0 1 . 5 5  2 . 3 0

i



Appendix 5. Example of Upper Kissimmee River Basin Output
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F I M T F  S F G E M t N T S  M E T H O D  U S E D  T O  C O M P U T E  THE A P E A

NJMHFr? OF B O U N D A R Y  S^GME.NTS = 10
A^FA CONVERT I* 6 F A C T t ^  = 2/?-'̂  1 .S?<+33

T O T A L  A « E A  I N  ACWES s  1 0 2 6 ^ 3 ^ . 3 8 0 8 ? ^
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M O N T E  C A k |_0 METHOiJ U S F O  TO C O m p j TE TH F  A ^ F A

N J  y P E y OF r tOUNOARY S-OMFNi TS = 10
N U « 8 E P  OF P A N H O M  ^OI .T S = \
X-AXIS M I MM l Im  = .1
X - A X I S  MAXIMUM = *.i
y - a x i s  m i n i m u m  = :
Y — AX IS MAXIMUM = 1 r, <j
AREA COWE.RT l^G FACT:^ = 2 2 . ; M . S ? 4 3 3

R E L A T I V E  AREA R A T I O  = . 5 8 4 7  Of. TOTAL AREA IN' ACRE S  = 1031  * 4 4 .  A622<+4
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M O D I F I E D  M O N T E  C A R L O  M F T H O D  U S E D  T O  C O M P U T E  T H I F S S E N  C O F F .

NUMRER OF B O U N D A R Y  S F G M E N T S  = 10
NUMPER OF  R A I N F A L L  S T A T I O N S  = 7
NUMBE R OF  RANDOM p O T 1 i T 5 = 1 C 0 0 C  
X - A X I S  M I N I M U M  = a
X - A X I S  MA X I MU M = 8 . J . 0 0
Y - A X I S  M I N I M U M  = ?
Y - A X I S  MAXI MUM = 1 . (,■ i; 0 0
ARE A C O N V E R T  I MG F A C T O R  = 22<; 6 1 . 5 2 4 3 3

R E L A T I V E  A R F . A  R A T I O  =  . 5 * 4 7 0 0  T O T A L  A R E A  I N  A C R E S  =  1 0  3 1 * < + 4 . 8 6 2 2 ^ 4

C O M P U T F D H E I G H T OF R A I N F A L L S T A T I O N 1 = . 3 2 2 3 * 8

C O M P U T E D W E I G H T OF PA I N F A L L S T A T  I ON 2 . 0 4 0 4 7 4

C O M P U T p D W E I G H T OF R A I N F A L L S T A T I O N 3 = . 0 5 0 9 6 6

c o m p u t e d w/E I G h T OF R A I N F A L L S T A T I O N 4 - • 0  0 QrtSS

C O M P U T P D H E I G H T OF R A I N F A L L S T A T I O N S = . 1 4 9 9 4 1

C O M P U T E D W E I G H T O F R A I N F A L L S T A T I O N 6 = . 2 6 2 6 9 4

c o m p u t e d W E I G H T O F P A  I N F A L L S  T  A  T I  O N 7 It . 1 2 2 6 2 7
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Appendix 6. E084 - Computer Program 

(FCDAC)
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PROGWA m F C D A C  
C x I S  T h e  X C O O R D I N A T E  OF T m E B O U N D A R Y
C Y I «  T H E  Y C O O R D I N A T E  OF  T H E  R O U N D L Y
C NN I S  A W E I G H T I N G  F A C T O R  F OR NODE  P O I N T  OF  R O U N D A R Y
c ] a  a n d  i x  #!.*£ i n i t i a l  o d d  i n t e g e r  f o r  u s i n g  i n  r a n d u  s u r ^ o u t i n l

C N I S  T H E  NUMBER OF B O U N D A R Y  P O I N T S  C' HOSEM
C m i s  T H E  NUMBE R OF R A I N  ^ - \ S U R  I N G  S T A T I O N
C N S F T  15 T H E  NUMBE R OF  pA,\ii>0* P O I N T S  E X P E C T E D  
C X M I N  AcjD XMAX ARE T H E  M I N I M U M  AND MA X I MU M R A N G E  I N  K Ax I S
C Y M I N  AND YMAX A ^ E  T HE  M I N T  MUM AND MA X I MU M P A NGE  I N  Y A X I S
C AX I S  T H F  X C O O R D I N A T E  OF T H E  R A I N  M F A S U P I N G  s t a t i o n

C AY 1^  T H E  Y C O O R D I N A T E  OF  T H E  R A I N  M F A S l l ^ I N G  S T A T I O N
C F A C  I S  T H F  F E E T  U S ^ D  I N p f R U N I T  Z E R O  MF ANS  D I  M E N S I O N L E S S  OF  AREA 

R F A L  L < 5 0 0 >
D I M E N S I O N  X ( 4  tH ) • Y ( t+ 0 !l ) . A X  ( 5 * 0 )  ♦ A Y ( 5 0  0 )  * W F { 5  U J ) * N S < 5 fJ  0 ) • Y Y ( 4 0 0 )  » 

I N N ( 4 G 0 )  * T l T L F ( ' y )
NR = ̂ - »
N* = 6  1

C R E A D  I N P U T  D A T A
33  R E A D ( N R . 3 )  I ^ * T I T L E

3 F O R MA T  ( I S .  3 X. S * A« >
I A =S 
i x  = 7

C C H E C K  Al HF T H^ P  T H E  E N D  OF ^ T a T I O N  S E T  
I F  ( I W . E Q . o ) GO T O  8S 
r i W I T t T I T L E

5 F O R M A T < l n l » / / 5 X i V A 8 / / )
I F  ( I W . F O .  1 ) GO T O  1 !<•} 
i F d r t . ^ Q . ? )  GO T O 1 ] a

R E A D ( N R » h ) N . M .  NS E  T .  X MI w « XMAX *Y M I N . Y M A X . F A C
8 F O R m a T ( 3 I 1 0 * 5 E I J . 3 )

i f a c = f a c  + o - - m

F A C T = F A C * F A C / 4 3 5 6  I .
I F  ( I F A C . E O . m  F A C T =  1 ,
W R I T E ( N W . I O H )  N . M . N S E T  » x M l N . X M A X . Y M I N . Y M A X . F A C T  

l t ) 8  F O R M A T f / / l o x , 2 V H N U M B E R  OF B O U N D A R Y  S E G M E N T S  = . I 4 / i O X .  2 9 HNUMBE R OF 
1 PA I N F  A L L  S T A T I O N S  = » I 4 / i x , 2 5 H N U M B E R  O F  RANDOM P O I N T S  = ♦ I 6 / 1 0 X , 1 6H 
2 X - A X I S  M I N I M U M  = , F r i . 4 / l  * . i e > H X - A X l S  MA X I MU M = . Ffl  . 4 /  1 'J X . 1 6 H Y - A  X I S  M 
3 I N I M U M  = . F 8 . 4 / 1 O X * I n H Y - A X I S  MA X I MU M = ,  F H . 4 /  1 0 X . 2 4 H A R E A  C O N V E R T I N G  
4 F A C T O R  = « F 1 5 . 5 / / )

R E A D ( M R . ( X ( I ) * Y ( I ) » I = i » N )
9 f o r m a t ( l f c F S . i >

R E A D ( N R # 4 )  ( A X (  I ) » A Y  ( I ) . 1 = 1 *M)
«  F O R M A T ( 1 6 F S . 1 )

C ADD A S M A L L  V A l U E  T O  E A C H  N O DE  F O R  O R T A  I MG T H E  NN F A C T O R  
DO 1 ? 6  1 = 1 * N 

1 3 6  Y Y ( I ) = Y ( T ) + 0 . 1 0 0 i i  
C C O M P U T E  T H E  W E I G H T I N G  F A C T O R  NN ^ O R  E A C H  R O U N D A R Y  NODE  

DO m  I = 1 « N 
N N ( I ) = 0
I E  ( Y ( I )  . E O .  Y ( I + I ) ) GO T O \{,2
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I F ( YY ( I ) . L T . Y  < 1 * 1 1 . A N D . Y Y ( I ) . G T . Y ( T ) )  N N ( I ) = N N (  I ) + 1  
I F ( I . F Q . l )  GO TO 103
I F (YY ( I ) . L T . Y ( I - l ) . A N D . Y Y (I ) . G T . Y ( I ) > N N ( I ) = N N { I )+1

GO TO 1 '■ 1
103 IF ( YY ( I) ,[.T.Y (N) . A N D . Y Y  ( H  .GT.Y t I )) N N ( I ) = N N  ( I )+1 

GO TO ] 1
\ )2 NN t I ) = 1
m  C O N T I N U E

no ri7 i = i *m
MS ( I )  -  0 

1H7 C O N T I N U E
N A = 0 
N p w = [)
X M N = X M A X - X M I N  
Y M N = Y M A X - Y M I N  
DO 5 0 0  I K = 1 , N S E T
lK='J
I L  = U

C G E N E R A T E  T H E  RANDOM NUMBER 
C A L L  RANDQ < I X » I Y * R O M )
I X = I Y
X T = X M I N  + RDM*XMN 
C A L L  R A N O D t I A * I * r » « R D N )
I  A = I B
Y T = Y M I N  + R O N *  YMN 
X (N +1> = X ( 1 )
Y ( N ■*-1 ) = Y ( 1 )

C C A L C U L A T E  T H E  N J M B E P  OF  I N T E R S E C T I O N  A L O N G  T H E  X A X I S  I N  E I T H E R  S I D E  
DO 3 0 0  K = 1 * N
I F ( Y T . E O . Y ( K ) . A N O . X T . E Q . * ( K ) ) GO rn 31 A

I F(YT.EQ.Y<K) .AND . Y T .E Q .Y <K ♦1) ) GO TO 10
I F ( Y T . E Q . Y ( K ) ) GO TO ? o
I F ( Y ( K ) . G T . Y T . A N D . Y T . G T . Y ( K + l ) ) GO TO 40
IF(YT . GT . Y C K >.A N D . Y (K ♦ 1 ) .GT.YT) GO TO 40
GO TO 30 0
I F (X (K ),L T . X T •A N D •X (K ♦1>.GT.XT) GO TO 315
I F (X {K ) . G T . X r . A N O . X ( K > ] > .LT.XT) GO TO 310
IF ( X T - X  < K )) 1 1 * 3 1 0 * 1 2

11 IR = IR + N N (K )
G O TO 3ft0

12 IL=IL«-NN(K)
GO  TO 30 0

? .{ IF ( X < K ) -X T  ) 1 2 * 3 1 0 * 1 1
4 c  X X ~ X ( K ) +  ( Y T - Y ( K )  ) * ( X C K + 1 ) - X ( K ) ) / ( Y ( K  + 1 } - Y ( K ) )

IF C X X - X T ) 4 2 * 3 1 3 * 4 1
41 I R =  I R+ 1

GO TO 30 0
42 I L =I L*1  

30 U C O N T I N U E
C C H E C K  vJHETHrR THE R A N D O M  =>OINT IS F A L L I N G  W I T H I N  THE  B O U N D A R Y  

IF { (I R - I R / 2 * 2 )  . E Q . C . O R .  (I L - I L / 2 * 2 >  .EQ.f') GO  TO 30 2 
31 v N A = N A +  1

C A S S I G N  TH E C A L L I N G  W H I T H l N  B O U N D A R Y  P O I N T  TO TH E N E A R E S T  S T A T I O N  
L(1) = { X T - A X < 1 > > * * 2  ♦ (Y T - A Y  < 1 ) )**2
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S A V E = L  ( 1 )
i s u b  = 1
o n  9 ]  I = ? , M
L < I ) = ( X T - A X  ( I ) )  * * 2  * ( Y T - A Y  ( I  ) I
I f  cl  c I ) - s a v e ) 1 3 * 9 1 * 9 1

13 S A V F - L ( I )
I S U H = I

41 C O N T I N U E
MS ( I  S U P )  = N S U S U B ) + l  
GO T O 5'', :'i

3 0 2 m p p = n P W + 1 
V n  C O N T I  MUE

C O M P U T E  R E L A T I V E  A R F A  P A T I O  AND * £ I G H T  1 F A C T O R  OF  E A C H  S T A T I O N  
AF = N A / ( F L O A H N A  + N P O )  )
A P r  A = A p * ( X M A X - X M I N ) w ( Y M 6 X - Y M I N ) &F AC T 

P R I N T  T HE  R E S U L T S  
W R I T E ( N w * 7 )  A F « A R f A  

7 F O R M A T ( 1 0 X . 2 1 H P E L A T I V F  AREA R A T I O  = * F 3 . 6 * 2 4 H  T O T A L  A RE A  I N  A C R E S  
1 = « F l S . 6 / / >

DO 21 1*1 »M
tfjF( i > = n s { I ) / f l o a t ( n a )

?1 I T E  ( NW * f>) I . W F ( I )  
fi F O R M A T  { n x * 3 5 H C 0 ^ P U T e n  >'E I G H T  OF  P A I n F A L L  S T A T I O N *  I ^ * 3 H  = » F 9 . 6 / )

GO T O  83  
1 3 9  C A L L  A R A A ( X « Y » NR « t\luj)

GO T O  83  
l l v  C A L L  m o N T F ( X * Y » Y Y * N N * M ^ . M W )

GO T O 83  
H~, C A L L  E X I T  

FMO

S U B R O U T I N E  A P A A  { X , Y . NR. V ' */)
D I M E N S I O N  X d ) . Y ( l )
r e a d  i n p u t  d a t a

RF A D ( NR * 6 )  N » F AC
6 F O R M A T ( I 1 0 * F 1 j . 3 )

R E A D ( N R , i » )  ( X { I ) * Y ( I > * I = 1 *N)
4 F O R M A T <1 6 F S . 1 )

I F A C = F A C * C . C 1  
F A C T  = F A C * F A C / ^ 3 5 f x‘».f 

I F <I F A C . E O . O ) F A C T - 1 . C  
WR ITE ( Nî  f 1 ) N * F A C T

108 F O R M A T ( / / l D X , 2 9 H N U M 8 F P  TF B O U N D A R Y  S E G M E N T S  =, 14 / 1 0 X ,2 4 H A R E A  C u N V E  
I R T I N G  F A C T O R  = * F 1 5 . 5 / / )

SUM = i: .  *
X { N + 1 ) = X { 1 >
Y < N + 1 > = Y ( 1 )
DO 7 K = 1 * \|
SUM 1 = ( X ( K + l ) - X ( K > ) * ( Y ( K  + n +  Y ( K ) ) / 2 . 0

7 S U M = S l.J M ♦ S11M 1 
S U M = S U M * F A C T  
W ° I T E ( N W . 8 )  SUM



a F O R M A T { / ? X * 2 1 H T 0 T A L  ARE  & I N A C R E 5  = » F l H . 6 / / >  
R F T U R N  
F.' iO

S U H R O U T  I N F  M O N T E ( X , Y * Y Y ♦NN * NR * NW)
D I M E N S I O N  X ( l ) « Y < 1 ) « Y Y ( 1 ) < N N ( 1 )
T A = 5
IX = 7

C R E A D  I N P U T  D A T A
R F A D  ( N R * 8 )  N f N S E T f  X M I N » X M 4 X »  Y M I N * Y M A X  * F A C  

d F O R M A T ( ? I 1 0 * S F 1 0 . 3 )
I F A C = F A C + n . 0 1  
F A C T = F A C » F A C / 4 3 5 ^ 0 . 0  
I F  ( I F 4 C . E Q . C )  F A C T  = 1 .  »"■
W R I T E ( N W * 1 G 8 >  N* N S E T i X M I N , X M A X * Y M I N , Y M A X * F A C T  

108 F O R M A T ( / / I 0 X . 2 9 H N U M B E R  OF B O U N D A R Y  S E G M E N T S  = * 1 4 /  1 0 X • 2 5 H N U M B E R  OF  
1 PANDOM P O I N T S  = »  I 6 / 1 0 X * 1 6 H X - A A I S  M I N I M U M  = * F S  . 4 / 1 0 X ♦16 H X - A  X I S  MA X I  
2MUM = « F 8 . / + / M X *  1 6 H Y - A X I S  M I N I M U M  = , F 8 . 4 / 1  1X , 1 6 H Y - AX I S  MA X I MU M = * F «  
3 . 4 / n * » 2 4 H A R E A  C O N V E R T I N G  F A C T O R  = * F l 5 * 5 / / )

RE A O ( NR * 9 )  ( X ( I ) * Y ( I ) * 1 = 1 , N>
4 F O R M A T ( 1 A F 5 . 1 )

C ADO A S M A L L  V A L U E  T O  E A C H  NODE F OR O H T A I N G  T H E  NN F A C T O R  
DO 1 } 6  1 = 1 « N 

1 0 6  YY < 1 > = Y < I ) + 0 . 0 0 0 ^ 1  
C C O M P U T E  T H E  W E I G H T I N G  F A C T O R  NN F O B  E A C H  BO' J NOARY  NODE  

DO 101 1 = 1 *N 
N N ( I ) = 3
! F { Y ( I > . F Q . Y f I + l > >  GO TO 102
I F < Y Y U ) . L T . Y ( I * 1 )  . A N D . Y Y ( I )  . G T . Y C I )  > NN ( I > = N N { I ) ♦ 1 
I F ( I . E Q . l )  GO T O  1 03
I F ( Y Y ( I ) . l T . Y ( I - 1 ) . A N D . Y Y ( I ) * G T . Y ( I M  N N ( I ) - N N ( I ) +  1
GO T O  101

1 0 3  I F ( Y Y ( I > . L T . Y ( N ) . A N D . Y Y f I > . G T . Y t I I )  N N ( I ) = N N { I ) ♦1
GO T O  101 

1 0 2  N N ( I ) = 1  
101  C O N T I N U E  

C G E N E R A T E  T H F  RANDOM P O I N T  
NA = 0 
NRR = <>
X m n = X M A X - X M I N
y m n = y m a x - y m i n  
DO 5 0 0  I K = 1 * N S E T  
I R  = 0 
I L  = 0
C A L L  R A N D O U X *  I Y « R 0 M )
I X = I  Y
X T  = X M I N  ♦ PD M» X MN  
C A L L  R A N D D ( I A * I B . R D M )
I A= I B
y T  = Y M I N  ♦ » O N * Y M N
X <N+ 1 ) =X <1)
Y ( N *  1 ) = Y { 1 )
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C C A L C U L A T E  T h E n u m b e r  o f  I N T E R S E C T I O N  a l o m g  t h e  X A X I S  
nn 3 \j c k — ] * n
I F ( Y T . E O . Y ( K ) . A N D . X T . E O . X ( K ) > GO T O
I F ( Y T . E O . Y ( K > . A N D . Y T . E O . Y ( K + 1 ) ) GO TO 10
I F ( Y T . F O . r ( K ) )  GO T O  2*
I F ( Y ( K ) . G T . Y T . A N O . Y T . G T . Y ( K + i  ) ) GO T O 4 C
I F  ( Y T . G T . Y  ( K )  .  ANr ) .  Y ( K ♦ 1 ) . G T . Y T  > GO T O 40
GO T O 30 0
I F ( X ( K ) . L T . X T . A N D . X ( K + l ) • G T . XT  ) GO T O m e
I F ( X ( K ) . G T . X T .  A N D •X ( K + ] ) . L T . X T ) GO TO 313
I F  ( X T - X  ( K ) ) 11 * 3 1 ' t t  1?

11 I Q = I R + NN ( k )
GO T O  30 0

12 I L = I L + N N ( K >
GO T O  30 0

2 y  I F  ( X ( K ) — X T ) 1 2 * 3 1 0 » H
L+r, XX = X ( K ) +  (YT-Y <K> >*(X ( K + n - X  (K) >/ ( Y ( K  + 1 >-Y (K> >

I F ( X X - X T )  4 2 » 3 1 0 » 4 l
41 I I =?+ 1 

GO T O  3 ■*'!
4 2  I L =  I L 1 

3 00  C O N T I N U E
C C H E C K  WH E T H E R  T HE RANDOM P O I N T  I S  F A L L I N G  W I T H I N  T H E  B O U N D A R Y  

I F  ( < I R - I R / 2 * ? )  . E O . O . O R .  < I L - I L / 2 * 2 >  . E O . ' J )  GO T O  3rt?
31 J N A = N A + 1

GO T O S')
3 C 2  \|PR = NPP + 1  
SOO C O N T I N U E

a f = n a / ( f l o a t  ( n a + n r r m

A ^ F A = A F * (X M A X - X M I N ) * ( Y M 6 X - Y M I N > * F A C T  
*/RITt'_(NW»7) AF * ARb A

7 F O R M A T (10x^21 H R E L A T I V E  A P E A  R A T I O  = , F ^ , 6 * 2 4 H  T O T A L  A R E A  IN A C R E S  
1 = • F 15.6//)

r e t u r n

E ND

S U R R O U T I N F  R A N D D ( I X * I Y . Y F L )  
C G E N E R A T E  THE R A N D O M  N U M B E R

IY =IX * 40 9 9 
I F ( IY ) 5 » 6 « 6 

^ I Y = I Y * 8 3 6 8 6 0 7 + 1  
ft YFL = I Y

Y F L = Y F L / 8 3 8 B 6 0 7 . 0
R E T U R N
E
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