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ABSTRACT

The methods of computing area from maps are classified under two
categories: (1) bounded area, and {2} weighted sub-areas. Pioneering
methods of planimeter, coordinate squares, triangular rule, trapezoidal
rule, Simpson's rule, double-meridian-distance {(DMD), coordinates, and
digitizer are compared with the relatively easy methods of weighing technique
and finite segments, and also with a recently developed Monte Carlo
process.

The bounded area which is used extensively in computing area of land
use can be obtained by any one of three methods: graphical, arithmetical
and computer. The graphical method includes four technigues: weighing,
planimeter, coordinates squares and digitizer. The accuracy of this graph-
ical method is highly dependent upon the skill of the analyst and the
correctness of instruments. The arithmetical method involves three rules:
triangular, trapezoidal, and Simpson. The accuracy of this arithmetical
technique is dependent upon the number of offsets used to divide the entire
region. If a region is of very irregular shape and of large size, then this
arithmetical method is very tedious and cumbersome to use. The techniques
of double-meridian-distance, coordinates, finite segments and Monte Carlo
are introduced by using a computerized procedure. The signs of latitudes,
departures, and starting point are easily confused in the methods of DMD and
coordinates. Finite segments can overcome some limitations such as a figure
having some inactive areas within the figure, but it is also strongly dependent
upon the direction used to select the boundary nodes. Monte Carlo is only
a method which is independent of the direction and can be used in any compli-

cated form of figure.



The weighted sub-area which is used widely in computing the areas
weighted to a measurement station can be obtained by any one of the four
techniques: simple arithmetic method, Thiessen method, stratified method
and modified Monte Carlo method; however, the medified Monte Carlo method
can be simulated directly by the computerized procedure and also has been
applied successfully to compute the weighted area to each measured station.

Finally; from this study it can be concluded that the weighing technique
is relatively easy to use in the laboratory: the finite segments method is
a quick computerized procedure when the direction of selecting boundary
points are correctly performed; and the Monte Carlo process is more applicable
and powerful than other computerized methods because this method is not only
independent of the direction used to select the boundary nodes but also
applicable to any complicated form of figures‘with arbitrary signs of lati-

tudes, departures and starting points.



INTRODUCT IO

The computation of an area of Jand is most freguently used in several
fields of water resource systems. Area calculations of interest to water
resource workers include land use estimation, water quality, ecological
systems, stratified sampling programs, etc. Pioneering methods used in
computing area from maps, (hereafter the area computations are only re-
ferred to the arca computed from the maps), are those of planimeter, coordi-
nate squares, triangular rule, trapezoidal rule, Simpson's rule, double-
meridian-distance (DMD), and coordinates (Brinker, 1969). Recently, a
digitizer was also used (SAC, 1972). However, if an area is very irregular
in shape and/or is of large size or has inactive areas within its boundaries,
then the previous methods are very difficult to adapt to a computerized
procedure. Hence, there is a need to introduce some other practical methods
from which the area can be calculated directly, either by the computeri:zed

procedure or by a weighing machine.

OBJECTIVES
The purposes of this study are:
(1) To discuss the existing methods used in computing areas;
(2) To introduce two relatively easy methods of weighing techniques
and finite segments, and a recently developed Monte Carlo process,
together with their ranges of application, and

(3) To compare the advantages and disadvantages of each method.

-DESCRIPTION OF METHQDS
The methods of computing area from maps may be classified under two

categories: (1) bounded area and {2) weighted to sub-areas.



BOUNDED AREA

The bounded area has been widely used in determining the area of Tand

included within the boundaries. The area to be measured can be obtained by

any one of the following methods:

I. Graphical Methods: The area is measured by using instruments such as:

planimeter, coordinate squares counter, digitizer and weighing machine.

a.

Weighing Method: A weighing machine used in a laboratory can be

employed to obtain the area. Three procedures are involved: First,
a ratio between a known area and weight must be procured from a
control unit. Second, the weight of an unknown area is weighed.
Third, multiplying the weight of an unknown area by the ratic which
is obtained in the first procedure gives the area of an unknown
figure. The nonuniform thickness of the paper and changing humidity

can affect significantly the accuracy of measurement.

Planimeter: The planimeter is the commonest way of checking the area

of a figure. It is a small instrument consisting of an arm, carrying
& tracing point, which is moved over the outline of the figure to be
computed. Poor setting of the planimeter scale bar, and failure to
check the scale constant by tracing a known area, can cause an error
of measurement.

Coordinate Squares: The figure is marked off in squares of unit area.

The number of complete unit squares included is counted, and the sum

of the partial units are also estimated. A transparent paper marked
in squares to some scale is placed over the figure and the number of
squares and partial units counted. The number of squares can also be

counted by a mechanical dot counter or a transparent paper dotter.



d.

Using coordinate squares which are too large makes it difficult to

estimate the partial blocks and could cause an error in computation.

Digitizer: A digitizer is a device used to convert information in
graphic form into numerical intelligence suitable for processing,
recording, or transmission on a digital data system. After the (x, y)
coordinates of each point on the outline of the figure is recorded,

the size of the plane area also can be computed. This method is highly

dependent upon the direction used to digitize the boundary coordinates.

II. Arithmetic Methods: A figure can be divided into geometricé1 shapes

(triangles, trapezoids, and rectangles), and the following rules can be

used to compute the area:

a.

Triangular Rule: A figure may be divided into simple triangles. The

area can be computed by the formula:

Area = /5(5-a)(S-b)(S-c) (1)
where

a, b, and c are the sides of the triangle

S=0.5(a+b+c) (2)
Another formula is used when an angle between two sides is known,

Area = 0.5 a b sin C (3)
where C is the angle included between two sides a and b.

Trapezoidal Rule: If the figure is considered as made up of a series

of trapezoids, all having the same base, the area can be determined

based on the formula

d
Area—z(ha+22h+hb) {(4)
where

d = common distance between offsets and
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ITI.

h h,, and h = first, last and intermediate offsets.

a’ b
Simpson's Rule: For generally parabolic areas, Simpson's one-third

rule as follows is applicable to obtain the size of the plane area.

Area =

W [

(ha +2ohyyqt4dce heven + hb) ' (5)
where
d = common distance between offsets,

h_,h_,h and h = first, last, odd and even offsets.
a*>b even

odd

Furthermore, if the figure is very irregular in shape, then the

arithmetical method is very difficult to adapt by a computerized procedure.

Therefore, the following computerized methods are introduced:

Computer Methods: The following four methods can be performed by the

computerized procedure.

a.

Double-Meridian-Distance {(DMD): The DMD of a traverse line is twice

the distance from a meridian through the most westerly station to the
middle point of the 1ine. The double éreas of all of the trapezoids
may now be found by multiplying each DMD by the adjusted latitude

of that side. The area obtained by plus latitudes and minus latitudes:
should be considered as a positive and negative area, respectively.

The sum of these double areas will be double the area of the figures to
be measured. The disadvantages of this DMD method is that the signs

of DMD's, latitudes, departures, or areas are easily confused.
Coordinates: The area is equal to one-half the sum of the products
obtained by each x-coordinate by the difference between the adjacent
y-coordinate, taken in the same order around the figure. Similar to
the DMD method, the signs of coordinates, latitudes, departures, or

areas are easily confused.



If the signs and starting point are recorded carefully and
without any inactive areas within the figure, the above two methods
can be used quite satisfactorily by using a computerized procedure;
however, in practical application the above methods can accrue
difficulty such as an inactive area included within the figure.
Therefore, the following two methods which can overcome the
lTimitations are introduced.

Finite Segments: The boundary of a figure is defined by a series of

Tinear segments between node points. The clockwise or counter-
clockwise direction used to record {x, vy} coordinates js dependent
upon the figure either to be active or inactive, respectively. The

area is obtained by the following formula:

Area = Té: (Xi+1 - X;) fiilif_fi_.+ Xy - XM} Il;;;ﬁi__ (6)
where X5 Y; = coordinates of boundary nodes;
i = boundary segment index, and
M = total number of segments.

Monte Carlo Method: The Monte Carlo method is a procedure which takes

advantage of the high speed of an electronic computer in solving complex
problems in physical and mathematical fields. Monte Carlo applications
in the field of science and engineering are summarized in books by
Hammersley and Handscombe (1964) and Shrieder (1967). This method
involves enclosing the figure to be measured within a rectangular

area and by generating random numbers choosing points randomly distri-
buted throughout this rectangle. The proportion of these points

falling within the figured area is, in the limit, the proportion of

the rectangular area contained within the figure. But, in practical



application, the previous method has some limitations which were

removed by Shih and Hamrick (1974).

i

ii.

To Determine Whether a Random Point is Within or Without the
Watershed:

Shih and Hamrick (1974) developed an alternative test
based on the principle that for any completely bounded region,
a radial line constructed in any direction from a given point
must cross the boundary an odd number of times if the point is

located within the region or an even number of times

if without (assuming zern to be an even number). This test is
ambiguous only in the case of node points (the intersections

of straight line segments representing the figure boundary).
They also developed a second rule with a computerized technigue
for solving the ambiguity that exists when the radial line
penetrates the boundarvy at the nodé point.

Procedure of Computation:

Based on the technique described in the previous section,
the following procedures are used to obtain an analog of any
shape of figure.

(1) Enclose the irregularly shaped boundary with a rectangle
whose coordinates are also recorded.

{2) Read the X and Y coordinates of the boundary segments.

(3) Compute the weighting factor of each boundary node according
to Rule 2 (Shih and Hamrick, 1974}.

(4) Generate random points with uniform probability over the

enclosing rectanale.



(5) Draw an imaginary line from the random point and parallel
to the x-axis.
(6) Count the number of intersections of this line with the
boundary
(7} Test whether the random point falls within the boundary
according to Rule 1 (an odd or even number of inter-
sections}.
(8) If the above test succeeds, increase the counter of accepted
points by cne.
(9) Repeat the processes of 5, 6, 7 and 8 until the number of points
assigned is reached.
(10) Compute the area by dividing the accepted points by the total
number of random points, and multiplying this ratio by
the enclosina rectangular area.
The above procedure 1is simulated as a flow chart shown in Figure 1.

Selecting Boundary Segments

The boundaries of a watersned can be defined by the given
coordinates of successive points along the boundary (in a clockwise
direction) and considering the boundary between each pair of successive
points to be a straight-linear segment. The actual boundaries could
be approximated as closely as desired by increasing the number of
such segments; but, the user should note that the more segments chosen
the more computing time and user's time are required. A later
example will show the effects of many irreguiarities of natural
boundaries such as lake shorelines and the watershed may be averaged
by reducing the boundary planform to a simplified polygon. The

general principle of this procedure is to represent the planform

-9 -



Figure 1: Flowchart for Solving Integrated Area
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with as few sides as possible without changing the basic shape of
the boundary.

iv. Convergence of Weights

Because the Monte Carlo method relies on the laws of probability,
a large number of random trials should be taken in the interest
of precision. The method normally used to estimate the relationship
of sample size and accuracy is the large-sample normal approxi-
mation. Using the Central-Limit Theorem, the binomial distribution
can be approximated by a normal distribution for a large N, where
N is the total number of trials. The sampling error of any statistic
is proportional to 1/(N)1/2. The convergence of the Thiessen
weights is a statistical convergence i.e., the probable error of

1/2. A detailed discussion was

estimation is proportional to 1/(N)
given by Shih and Hamrick (1974).
WEIGHTED SUB-AREAS
The average amounts of environmental elements such as water quality,
ecology system, and land use, etc. over a specific area is reguired in many
water resource problems. Thus, mean value problems can be solved by sampling
technigues. For convenience let variables A1, ceey Ak, and Xy, «..5 X be the
subareas and measured values of stations 1, ...k, respectively. Then the

estimated weighted average amounts for the region are

k

X o= WXy + W = ?=1 WX, (7)

H

where Ni A;/A, weighted area; and
A= A] + ...t Ak’ total area.
In most cases the values of Xi are obtained first by laboratory experiments

or field measurements, and then the values of “1 are estimated based on the

- 11 =-



following four methods:

I.

II.

III.

Simple Arithmetical Method: The values of A; are assumed equal‘to one.

Equation 6 can be rewritten as

X = X:/k , (8)

1

—

=]
Equation 8 is the simplest method which can give a good estimation of
average value in a flat area under the condition of measurements that

are uniformly distributed and the individual measurement does not vary
widely from the true average. However, this method does not take into
account the measurements outside, but near the boundaries of therarea.
Thiessen Polygon Method: Thiessen (1911} developed a method which attempts
to allow for nonuniform distribution of measurements by providing a
weighting factor for each measurement. The measured points are plotted

on a map, and connecting lines are drawn. Perpendicular bisectors of

these connecting lines form polygons around each measured point. The

sides of each polygon are the boundaries of the effective area assumed

for the measured point. The values of Ai are determined by the methods
indicated in the section of bounded area computation. However, the
limitation of this method is its inflexibility; for instance, a new

polygon being required every time there is a change in sampling location.
Also, the method makes no attempt of overcome the orographic influences.
Stratified Method: This method is a plan by which the region is divided
into homogeneous subregions or strata. In computing a strata the analyst
can make full use of his knowledge of orographic effects or other
influential factors. After constructing the strata, the following equation

is used to calculate the mean values, X,

- 12 -



H K.

SRR FUt ©)
where
M = total number of strata
ki = total number of observed stations in the ith stratum
i,J = index of stratum and observed station, respectively; and
wij = observed value of the jth station in the ith stratum
The values of A;; can be determined by either simple arithmetical method

13
or the Thiessen method. If a simple arithmetical method is used, then

equation 9 is reduced as

M
i=]
where
W; = Aj/A, weighted area of the ith stratum; and
— k
Xy =T Xij/ki’ average observed area of ith stratum.
3=1

If a Thiessen method is used to perform the subpolygon for each station
Xij’ then equation 9 is used to calculate the weighted area. The greatest
limitation of the stratified method is also its inflexibility.

Modified Monte Carlo Method: As indicated in previous sections, the
Thiessen polygon and stratified methods suffer from their inflexibility

in that a new Thiessen diagram is required every time there is a change

in the sampling location or a recorded station with missing data. This

Timitation can be overcome by the modified Monte Carlo method (Shih and

Hamrick, 1975).

- 13 -



Procedures of Computation

The following procedures are used to compute an area weighted to
each measured station:

1. Compute the weighting factor of each boundary node which relies
on the procedures 1, 2 and 3 as indicated in the previous section
of the Monte Carlo method.

2. Determine whether a random point falls within any shape boundary
which is based on the procedures 4, 5, 6, 7 and 8 as indicated
in the previous section of Monte Carlo method.

3. Assign the random point which is falling within the boundary to
the nearest measuring point.

4. Repeat processes 2 and 3 until a predetermined large number of
points are reached.

5. Compute the relative area ratio of the bounded region to the
enclosing rectangle by dividing the number of accepted points by
the total number of random points.

6. Calculate the computed weights of each measuring point by dividing
the number of points assigned to each measuring point by the
total number of accepted points.

7. Check whether the sampling location is changing,

8. If the response to 7 is yes, the processes from 2 to-7 are repeated.

The above procedures are simulated in a flow chart in Figure 2. .

An Irregular or L-Shaped Watershed

An expected accuracy of computation by this Monte Carlo method
depends upon not only the number of random points, but also the shape
of the watershed. The number of random points that affects the sample

error has been discussed in a previous section. However, the

- 14 -



Figure 2:
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efficiency of this Monte Carlo method affected by the shape formed
by the watershed should also be discussed because a large number of
random points fall off the outside boundaries of the watershed
which differs greatly from that of the enclosing rectangle. This
difficulty can be overcome by following three techniques:

i. Equal Rectangles: A watershed is enclosed by a number of

smaller rectangles of equal area that have a common edge
which cuts the watershed. In order for this method to be
used more widely, the following relationship should be

introduced. Let A,, ..., An be the relative area ratio

']!
falling within the boundaries of sub-watershed 1, ..., n.

Then the new relative area ratio, R1s +evs Rn’ of sub-

watershed 1, ..., n are eﬁual to
n
: : (11)
. n
Rn = A,/ §=1Ai

The final computed weights, Wy, ..., W, of rainfall stations

1, ..., m are equal to
n
no - (12)
W =1 RE,
m i=1 T 1

where Eij is the computed weight of rainfall station j in
subrectangle i; j includes the rainfall station from 1 to

m and i includes the subrectangle from 1 to n. For example,

- 16 -



m is the total number of rainfall stations and n is the total
humber of subrectangles.

ii. Unequal Rectangles: The technique of unequal rectangles is

simitar to the equal rectangles method except that the water-
shed is enclosed by a number of smaller unequal rectangles.

Let S ) Sn represent the area of enclosing rectangles

TIREE
1, ..., N A], ...An and Ry, ...,R, are defined in the case

of equal rectangles. The value of Ri is

n
. . (13)
- n -
Rn = AsS/ T ASy
i=1
The final computed weights, Wy, ..., W of rainfall stations,
T, ..., m, are similar to equation 12, except that the R,

values are replaced by equation 13.

iii. Single Rectangle: The more random points chosen, the greater

the accuracy of the estimates obtained. Therefore, in a
watershed which has a lower relative area ratio, the single-
rectangle technique is still applicable by increasing the
random trials. A detailed technique of application was given
by Shih and Hamrick (1975).

New Thiessen Coefficients for Missing Data

As Linsley et al. (1958) indicated the greatest limitation of the
Thiessen method is its inflexibility, because a new Thiessen polygon
is required every time there is a change in the gage network. This

modified Monte Carlo method can be used to overcome this limitation.

- 17 -



In general, there are two cases of missing data. Case 1: The missing
data of each rainfall station are priorly known, and any missing periods
of record are assigned as a new station set. The distance of a random
paint from all rain measuring stations is calculated simultaneously
in each station set, and the random point is assigned to the nearest
rain measuring station in each set. Case 2: The missing data of

each rainfall station is posteriorly known, i.e.,how many stations
with missing data are unknown. In this case, if a station with a
missing record is found, then that station is omitted and a new

gage network is considered. Based on this new gage network; a com-
puted weight is performed by a repeating procedure. A detailed
description of these procedures will be discussed in the section of

computer program.

COMPUTER PROGRAM

Based on Equation 1 of finite segments, procedures for computation in
Monte Carlo and modified Monte Carlo methods, a systematic flow chart for
the computer program development is shown in Appendix 1. Nomenclatures for
the computer program are listed in Appendix 2. The systematic flow chart
was converted to a computer program called E084 for the CDC 3100 computer
with Fortran IV language. The users manual for the E084 program is also
presented in Appendix 4. An example of using the Upper Kissimmee Basin for
input is demonstrated on Appendix 5. The resuits of computer output are

also shown in Appendix 6.

EXAMPLES OF APPLICATION
Four examples are used to illustrate the application of computing the

bounded and weighted sub-areas.

- 18 -



EXAMPLE 1. SIMPLE GEOMETRICAL SHAPE

In order to test the applicability of these newly developad techniques,
an irregular area as shown in Figure 3 not only has inactive areas within the
figure, but also can be calculated easily by the tfiangu]ar rule. As mentioned
in the previous sections, the direction used in setting boundary nodes is a
very important feature in some methods, because an improper procedure can cause
a serious error. In order to investigate this nature, as Figure 3 illustrates,
four different sequences used to select the coordinates are demonstrated:

Case TA: 1-2-3-4-5-6-7-8-9-10-6-11-12-13-14-11-5-1,

Case 2A: }-2-3-4-5-6-10-9-8-7-6-11-12-13-14-11-5-1,

Case 1B: 1-2-3-4-5-6-7-8-9-10-11-12-13-10-9-14-6-5-1,

Case 2B: 1-2-3-4-5-6-14-9-10-13-12-11-10-9-8-7-6-5-1.
Based on these four cases, several methods are used to obtain the areas. The
results are shown in Table 1. As can be seen from Table 1, the cases of 1A
and 1B have a serious error by using the methods of finite segments and
digitizer. The results of areas calculated by the Monte Carlo method with
2000 random walks are all the same values in four cases. This implies that
the technique used to select the consecutive points along the boundary in either
a ciockwise or counterclockwise direction, or a combination of both directions,
gives no difference in the results obtained by using the Monte Carlo method.
This is a very useful tool when the directions used to select the boundary
nodes are mixed up in both directions. The accuracy of Simpson's method s
directly proportional to the number of divisions. For example, the number of
eight and ten offsets as shown in Figure 3 are called Cases 1 and 2, respectively.
The calculating results are also shown in Table 1. As Table 1 shows, Case 2
has a better solution than Case 1. The results obtained by the coordinates
and weighed method give a good agreement with the results obtained by the

triangular rule.

- 19 -
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Table 1. Comparison of the results of bounded area obtained by Monte Carlo
method with other methods.

Graphical Method Arithmetical Method |Computerized Method
Diff. Coordinate Digitizer Weighed{ Triangular Simp. | Monte Finite
Cases Squares Method Method Rule Rule Carlo Segments
1A 16.97 34.03 17.18 17 18.3 | 17.06 35
2A 16.97 17.03 17.18 17 17 17.06 17
1B 20.84 29.82 19.98 21 20 20.81 29
2B 20.84 20.92 19.98 21 21 20.81 21

EXAMPLE 2. KISSIMMEE RIVER BASIN

The Kissimmee River basin as shown in Figure 4, with sixteen rainfall
stations is used as a practical prob]em to exemplify the technique of a single
rectangle as mentioned in the previous section of modified Monte Carlo method.
It should be noted that the coordinates chosen for enclosing the rectangle
are an important factor. The coordinates shoh]d be chosen to make the enclosing
rectangle as small as possible so that as high an area ratio as possible can be
obtained. The results with random trials of 2,000, 4,000 and 6,000 are shown
in Table 2. Comparison of the single rectangle results with the actual values
as shown in Table 2, indicates that the single rectangle is applicable to a
watershed with a long and narrow shape.
EXAMPLE 3. UPPER KISSIMMEE RIVER BASIN

The Upper Kissimmee Basin,as shown in Figure 5 with two different cases
of selecting boundary points such as 103, demonstratesthe planform of watershed
boundary affecting the accuracy and computing time of estimation. The results
showed that the computing time was reduced about 70% in the 10 points case

and accuracy did not change appreciably. Therefore, a case with boundary points

- 21 -
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Table 2. Computed weights and relative area ratio of Figure 4 shown,

Rainfall Graphical Eontzftar]g methqdt
. 0. random pgints
station method 5000 4000 5000
i 0.029 0.036  0.034 0.030
2 0.702 0.107 0.105 0.107
3 0.002 0.0 0.0 0.001
4 0.058 0.054  0.057 0.057
5 0.166 0.179 0.188 0.190
6 0.113 0.117 0.118 0.114
7 0.053 0.044  0.042 0.044
8 0.071 0.054  0.069 0.068
9 0.089 0.081 0.079 0.084
10 0.015 0.016 0.013 0.012
11 0.053 0.047 0.043 0.046
12 0.043 0.044  0.042 0.046
13 0.080 0.096  0.085 0.080
14 0.078 0.066  0.073 0.071
15 0.046 0.058  0.051 0.050
16 0.002 0.002  0.001 0.001
Ratio of 0.621 0.624 0.630
area
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is also used to demonstrate the bounded area and Thiessen coefficients compu-
tations. Comparison of bounded area obtained by different random points are
given in Table 3, showing that the bounded area can improve the accuracy by
increasing the random points. However, toc many random points are not
recommended in practical application because a longer computing time is
involved for this little improvement in accuracy. In general, 2,000 - 6,000
random points can give quite good results. As can be seen from Table 3, the
area computed by finite segment method is 1605 square miles which is very
close to the area of 1607 square miles given by U.S.D.A. (1974).

Comparisons of the results of Thiessen coefficients affected by different

random points are shown in Table 4.

As can be seen from Table 4, 2,000 - 6,000

random points also can give quite satisfactory results from Thiessen coefficients.

A detailed discussion on the relationship between random points and accuracy

of Thiessen coefficients computation was given by Shih and Hamrick (1975).

Table 3. Comparison of the results of bounded area obtained by the different
random points.
: Finite - MONTE CARLO METHOD
Bounded Segments Number of Random Points Assigned
Area Method - 500 1000 2000 ;7 4000 : 6000 % 10000 20000
Sq. Miles 1605 1693 1712 1648 1628 1617 1 1612 1600
Percent of l
Deviation 0.0 5:50 6.70 2.68 1.43 0.75 | 0.44 0.31

- 25 -



Table 4. Comparison of the results of Thiessen Coefficients affected
by different random points.

Thiessen MODIFIED MONTE CARLO METHOD

Rainfall Stations Polygon Number of Random Points Assigned

500 1000 2000 4000 6000 10000 20000

Lake Alfred 0.034  0.029 0.023 0.029 0.034 0.034 0.037 0.034
Kissimmee II 0.288 0.274 0.279 0.296 0.296 0.289 0.295 0.296
IsTeworth 0.091 0.055 0.087 0.088 0.083 0.088 0.090 0.087
Orlando 0.052 0.068 0.063 0.054 0.052 0.045 0.051 0.051
Bithlo 0.001 0.003 0.002 0.003 0.002 0.001 0.001 0.001
Lake Hart 0.160 0.140 0.150 0.147 0.152 0.153 0.150 0.156
Ind. Lake Estates 0.259 0.309 0.275 0.263 0.269 0.267 0.263 0.263
Mount. Lake Estates 0.115 0.121 0.122 0.120 0.113 0.118 0.112 0.118

This example was also used to test the applicability of the missing data
case. The new computed Thiessen weights with 2,000 random points for missing
data of each station in these eight stations are shown in Table 5. The results
indicate that the modified Monte Carlo method technique is capable of over--
coming difficulties due to changes in network.

EXAMPLE 4. ESTIMATING THE CONCENTRATION OF NUTRIENTS IN CONSERVATION AREA 2A.

Conservation Area 2A, as shown in Figure 6, with 15 measuring stations
is used to exemplify the application of the Modified Monte Carlo technique. It
should be noted that the coordinates chosen for enclosing the rectangle are an
important factor. The coordinates should be chosen to make the enclosing
rectangle as small as possible so that as high an area ratio as possible be
obtained. The results of the weighting area of 15 measured stations, obtained

by both methods of the Thiessen polygon and Monte Carlo technique, are shown in
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Table 5. Computed new weights and relative area ratio in missing data for the upper
Kissimmee River Basin as shown in Figure 5,

Rainfall Station with missing data
station 0 ] 2 3 4 5 6 7 8
Lake Alfred 0.034 - 0.109 0.034 0.034 0.034 0.034 0.034 0.066
Kiss. I1 0.300 0.324 - 0.348 0.300 0.300 0.386 0.341 0.314
Isleworth 0.090 0.090 0.134 - 0.127 0.090 0.090 0.090 0.090
Orlando 0.059 0.059 0.063 0.100 - 0.059 0.088 0.059 0.059
Bithlo 0.001 0.001 0.001 0©.001 0.001 - 0.040 0.001 0.001
Lake Hart 0.155 0.155 0.271 0.155 0.177 0.156 - 0.156 0.155
Indian Lake Estates 0.258 0.258 0.283 0.2%8 0.258 0.258 0.258 - 0.315
Mountain Lake Estates 0.103 0.114 0.140 0.103 0.103 0.103 0.103 0.320 -

Ratio of 0.580 0.580 0.580 0,580 0.580 0.580 0.580 0.580 0.580

area




in Table 6. Comparisons of the Monte Carlo results with the values obtained
by the graphical method indicates that the Monte Carlo method is applicable

to a region for obtaining an area weighted to each measure station. The
sampling program of Chloride and Silica concentrations in Conservation Area 2A
was conducted by Gleason (1974). The average of the concentrations are
computed by using the simple arithmetical method, Thiessen polygon and Monte
Carlo method. The results are also shown in Table 6. As Table 2 shows,

the averages of Chloride and Silica concentrations cbtained by the Thiessen
polygon and Monte Carlo methods give a similar result.

In order to investigate the applicability of the modified ﬂonte Carlo

method to the water quality sample program, the average of 49 sample data

and percentage of deviation among each method were listed on Table 7. Some
abbreviation terms are used in Table 7. For example, the simple arithmetic-
method with 49 sample data is called SIMM49 and with 15 samples is called

SMM15; the Theissen coefficient polygon and Monte Carlo method with 15 sampie
data are called TCP15 and MCM15, respectively. As Table 7 shows, the following
results can be drawn:

(1) Based on the statistical viewpoint, the more samples taken the more
accurate should be the estimation of the mean value. In other words,
the sample data with 49 points should be better than the 15 points,
i.e., the average values of 113.96 ppm of chloride and 17.20 ppm of
Silica have more reiiable estimation than others. Therefore, the
results of SM449 are better than the SMMI5.

(2) When the sample sizes are as few as 15 points, the estimations
based on TCP15 and MCMI5 are better than SMM15 because the
deviation percentages between SMM49 and SMM15 are about 17% in

C1 and 11% in Si05, but between SMM49 and TCP15 are only 7%,
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Table 6. Comparison of the results of mean chloride and silica concentrations
obtained by modified Monte Carlo method with graphical method.

Weighted Sub-areajChloride Concentration, ppm [Silica Concentration, ppm
Sampling |Thiessend Monte |Observed Thiessen® Monte Observed 1hiessenc Monte
Stations Polygon Carlo Data Polygon Carlo Data Polygon Carlo
Method Method Method
AI 0.0529 0.0524 | 243 12.86 12.72 33.2 1.76 1.74
A3 0.0673 0.0598 Ly 2.96 2.63 0.5 0.03 0.03
B3 {0.0712 0.0806 112 7.97 9.02 10.2 0.73 0.82
B5 0.0431 0.044h 179 7.71 7.94 23.9 1.03 1.06
C 0.0484 0.0412 | 166 8.0k 6.84 21.6 - 1.05 0.89
Cy 0.0543 0.0585 182 9.88 10.65 23.7 1.29 1.39
¢y 0.0819 0.0718 | 112 9.17 8.04 12.2 1.00 0.88
D, 0.0377 0.0339 152 5.6k ‘ 5.15 17.9 0.66 0.61
Dy 0.09%1 0.1157 114 11.30 13.19 21.6 2.14 2.50
Dy 0.0932 0.1004 115 10,71 11.55 21.6 2.01 2.17
E, 0.1381 0.1219 81 11.19 . 9.87 18.7 2.58 2.28
E7 0.0442 0.045] 152 6.71 6.86 19.2 0.85 0.87
Gg, 0.0514 0.0527 137 7.0b 7.23 22.5 1.16 1.19
Hy 0.0818 n.0888 82 6.71 7.29 16.9 1.38 1.50
{ 0.0360 0.0328 134 4.82 L. Lo 21.6 0.78 0.71
Totai 1.0000 1.0000 2005 285.3
Mean Value 133.67% 122.71  123.28 19.02  18.45 18.64

@ The areas of Thiessen polygon are obtained by graphical method.

" The mean values are obtained by arithmetical method.
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and between SMM49 and MCM15 are also only 8%.

Based on the methods of TCP15 and MCM15, the error.of estimation
average can be reduced at least 53% in C1 and 21% in S$i0,. This
implies that either the TCP15 or the MCMI5 can give a better

result of the average value over a specific area.

The results of modified Monte Carlo method and Theissen coefficient

polygon are similar. This implied that the Modified Monte Carlo
method not on]y can be used to estimate the mean value over a

specific area, but also can be computed directly by a computerized

procedure.
Table 7. Percentage differences and average concentrations of chloride
and silica in Conservation Area 2A.
Cl Average | 5107 Average
__deviation % Concentration}  deviation % . Concentratit
Methods SM¥49  SMMI5S  TCP15 ppm SMM4S  SMM15  TCP15 ppm
SHMA9 113.96 17.20
SMM15 17.30 133.67 10.58 19.02
TCP15 7.68 8.93 122.71 7.27 3.09 8.45
MCHM15 8.18 8.43 0.46 123.28 8.37 2.04 1.03 18.64

* SMMA9 is the simple arithmetic method with 49 sample data.
SMMI5 is the simple arithmetic method with 15 sample data.
TCP15 is the Theissen coefficients with 15 sample data.
MCM15 is the Monte Carlo method with 15 sample data.
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RESULTS AND DISCUSSION

After applying the techniques to several practical problems, the following

conclusions were drawn:

1. The accuracy of the graphical method is highly dependent upon the
skill of the analyst and the correctness of the instruments. Although
the results obtained by the coordinate squares, planimeter and
weighing technique are in good agreement with the results obtained
by the triangular rule, some observations must be mentioned. For
example, the nonuniform thickness of the paper and varyfng humidi ty
can significantly affect the accuracy of weighing measurement. Poor
setting of the planimeter scale bar, and failure to check for the
scale constant by tracing a known area, can cause an error of
planimeter measurement. Using coordinates which are too large make
it difficult to estimate the partial blocks from which an error of
computation can occur. The cases of 1A and 1B will have a serious
error if the digitizer is used. These results show that the digitizer
is highly dependent upon the direction used to digitize the boundary

coordinates.

2. The accuracy of the arithmetical technique is dependent upon the number
of offsets used to divide the entire region. Case 2 with ten offsets
has a better solution than Case 1 with only eight offsets. If a
region has a very irregular shape and large size, then this arith-

metical method is very tedious and cumbersome to use.

3. The signs of latitudes, departures, and starting points are easily

confused in the methods of DMD and coordinates. Although finite
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segments can overcome some limitations such as a figure having some
inactive areas within the figure, as Case 1A and 1B shows; it is strongly
dependent upon the direction used to select the boundary nodes but

also applicable to any complicated form of figures with arbitrary sign

of latitudes, departures and starting points.

The modified Monte Carlo method has been successfully applied to compute
the weighted sub-area. The result also indicated that only the modified
Monte Carlo method can be simulated directly by a computerized procedure

to compute the weighted sub-area to each measured station.

The modified Monte Carlo method can be appliied to compute the weighted
sub-area not only for rainfall stations but also for any type of
estimating mean value over a specific area. For example, a mean chloride
and silica concentration in Conservation Area 2A can be computed based

on the mogified Monte Carlo method.

The modified Monte Carlo method has been extended to compute the new

weighting factors when data are missing.
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Appendix 1. Systematic Flow Chart For Computer Program Development

( START )

READ INPUT DATA
METHODOLOGY SELECTION
‘ TITLE OF INPUT IDENTIFICATION

IS

END OF JOB
?

CALL SUBRQUTINE |
FINITE SEGMENTS
™1 METHOD USED TO
COMPUTE AREA

IS yes

yes _( CALL EXIT )

MONTE CARLO

METHOD
USED
?

no

CALL SUBROUTINE

MONTE CARLO

METHOD USED TO
COMPUTE AREA

MODIFIED MONTE CARLO METHOD
USED TO COMPUTE AREA AND
THIESSEN COEFFICIENTS

- 36 -




Appendix 2. Nomenclature For Computer Programs.

Variables of Input:

IN - Methodology indicator, the finite segments method used

It

1 = Finite Segments Method Used

2 = Monte Carlo Method Used
3 = Modified Monte Carlo Method Used
0 = End of Job
TITLE - Input data identification
N - The number of boundary points chosen
M - The number of measuring stations
NSET - The number of Monte Carlo Points assigned
XMIN - Minimim range in X axis
XMAX - Maximum range in X axis
YMIN - Minimum range in Y axis
YMAX -~ Maximum range in Y axis
FAC -~ The scale of feet used in per unit of length, zero means
the dimensionless of area
X - X coordinate of the boundary point
Y - Y coordinate of the boundary point
AX - X coordinate of the measuring station
AY - Y coordinate of the measuring station

Variables of Output:

AF - Relative area ratio

AREA - Total area in acres

I ~ Measuring station identification

WF{I) - Thiessen coefficient of station I

FACT - Area converting factor in unit of acres

SUM - Total area in acres computed by finite segments method.
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Appendix 3. Users Manual For EQ84

For Program to Compute the Areas and Thiessen
Coefficients Based on Finite Segments, Monte
Carlo and Modified Monte Carlo Methods

£084
(FCD AC)
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Program Limitations

1. Limit of 400 boundary points per area

2. Limit of 500 measuring station per area

Requisition for Computer Work -

Estimated Time - 5 seconds is needed in Finite Segment per area,
15 seconds is needed in Monte Carlo method per 1000 random points

20 seconds is needed in Modified Monte Carlo Method per
1000 random points

Category - Production run
Job Run No. - EO84
Disk - 6000
FORMAT INFORMATION

Symbols used to indicate the proper method for numbers or Jetters entered
in card columns shown are :
RJ - indicates that a whole integel number must be right justified
in card columns shown
DP - indicates that the number must have a decimal point indicated in
one of the card columns.

A - any alpha-numeric character.

CARD FORMAT INFORMATION

First Card: Controcl and Parameters Card

C.C. Symbol Description
1-5 RJ An integral value is required. 1, 2, and

3 indicate that the finite segments, Monte
Carlo, and Modified Monte Cario are used,
respectively.

11-80 A Title Input data identification.
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Second Card:

Parameters Card

C.C. Symbol

Type I:
1-10 RJ
11-20 DP

Type II:
1-10 RJ
11-20 RJ
21-30 DP
31-40 DP
41-50 DP
51-60 DP
61-70 pp
Type
1-10 RJ
11-20 RJ
21-30 RJ
31-40 DP
41-50 DP
51-60 pp
61-70 Dp
71-80 pp

II1:

Description

when the integer 1 is shown in first card on
column 5

Total number of boundary points

Scale of feet used in per unit of length

When the integer 2 is shown in first card on
column 5

Total number of random points assigned
Total number of random points assigned

Minimum value of enclosing rectangle
coordinates along X-axis

Maximum value of enclosing rectangle
coordinates along X-axis

Minimum value of enclosing rectangular
coordinate along Y-axis

Maximum value of enclosing rectangular
coordinate along Y-axis

Scale 4 feet used in per unit of length

When the integer 3 is shown in first card on
column 5

Total number of boundary points

Total number of rain measuring stations.
If a relative area ratio of study area
to enclasing rectangle is expected,only
the value of 1 should be used.

Total number of random points assigned.

Minimum value of enclosing rectangular
coordinate along X-axis

Maximum value of enclosing rectangular
coordinate along X-axis

Minimum value of enclosing rectangular
coordinate along y-axis

Maximum value of enclosing rectangular
coordinate along y-axis

Scale of feet used in per unit of length
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Third Card: Boundary Points Coordinates Card(s)

C.C. Symbol Description
1-5 Dp
11-15 DP
31-35 P
x coordinate value of boundary segments
41-45 DP choosing in clockwise direction
51-55 DP
61-65 DP
71-75 DP
6-10 DP
16-20 DP
26-30 DP
36-40 DP
46-50 DP y coordinate value of boundary segments
choosing in clockwise direction.
56-60 DP
66-70 DpP
76-80 DpP

Note: The maximum boundary points included per card is only 8 points. Therefore,
the card can be used as much as required in number of stations. For
example, 7 cards are needed in 50 boundary points.
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Measuring Stations Coordinate Card(s): This card is required only when the
integer 3 is shown in the first card
on column 5.

c.C. Symbo1 Description

1-5 DP

11-15 DP

21-25 bp

31-35 op
41-45 DpP x coordinate of rain measuring station
51-55 DP
61-65 op

71-75 DP

6-10 DP

16-20 P

26-30 Dp

36-40 DP . |

y coordinate of rainfall measuring station

46-50 DP
56-60 DP

66-70 DP

76-80 DP

Note 1: The maximum measuring stations involved per card is only 8 stations.
Therefore, use as many new cards as necessary.

Note 2: Use as many new control and title cards with succeeding cards as
necessary. The last card must be present as a blank form.
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Appendix 4. Example of Upper Kissimmee River Basin Input
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_bv-

3.39
7.9%

3.3¢
7495

3.30
T.95
3.2V

0,18 2,00 0498 0,50 BoH5 4,1y 9,90 5,20
UeY2 4460 0.90

FINITFE SEGEMENTS METHOD USED TO COMPUTE THE AREA
1Y 31600.0

MONTE CARLO METHOD 1ISED TO COMPUTE THE AREA
19 19490 0.00" R,0060 C.000 17.800 31000,0

MODIFIED MONTE CARI O METHOD USED TO COMPUTE THIESSEN COEF,
19 7 1000" 0.000 B.000 0.000 10.000

0,18 2.00 0.98 0,50 8,65 4,17 9.90 5,2 8,50 5,85 9,15 7.05 5435 6,25 3,75
0.92 4,60 0,90

31000.0

0.18 2.C00 0,98 0,50 8465 4413 990 S,20 8,50 S,85 9,15 T.05 5,35 6,25 3.75
.92 4.60 0,90
5e25 190 930 4,40 9.6 675 950 5,775 TaT0 4425 490 1.55 2.30



Appendix 5. Example of Upper Kissimmee River Basin Cutput
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FINITE SEGEMENTS HMETHOD USED TO CoaWPUTE THE AREA
NUMBER OF BOUNDARY SHEGMENTS = |0

ARFA CoONVERTIMG FACTOIR = 272vA1 57433

TOTAL AREA IN ACRES = 102693n.340529
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MOMNTE CARLO

NUMRER
N MAE 2
A=8X1%
X=AXTS
Y=-axIs
Y=-841%

METHOD USEN 10

COMPJITE THE ARFA

OF sQUNDARY SFGMENTS = 12

OF RAMNDOM
AINTMUM
MA X TMLUM
MINIMUM
MA X T M4

LI T T I |

AREA CONVERTING

RELATIVE

O‘)I 4Iq = 1—..)71\_‘
LA TR
) QPR P
FACTHK = 22.:h1 4572433
.S34T7UN TOTAL AREA IN ACRES
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METHOD USED TO COAMPUTE THIESSEN COFF.

MODIFIED MONTE CARLO

NUMBER OF BOUNDARY SFGMENTS = 10
NUMHER OF RAINFALL STATIONS = 7

NUMRER OF RANDOM BOT=TS = 10000

X-0X1S MINIMUM = "

X=AXIS MAXIMUM = Aa2L 06

Y=AXIS MInIMUM = n

Y=AXIS MAXIMUA = 17aii 00

ARES CONVERTING FACTOR = 22i061.57433

PELATIVE AREA RATIO = «RRHETOV TOTAL AREA IN ACRES = 1031949.8627244
COMPUTED WEIGHT OF 24INFALL STATION ] = .3122383

COMRUTED WEIGHT OF PAINFALL STATION 2 090474

COMPUTED WEIGHT OF RAINFALL STATION 3 050966

COMPUTED WEIGHT OF RAINFALL STATION 4 «000AS55

COMPUTFD WEIGHT OF RAINFALL STATION S < 149991

COMPUTED WwEIGHT OF RAINFALL STATION & «P62699

COMBUTED WEIGHT OF BAINFALL STATION 7 122627
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Appendix 6. E084 - Computer Program
(FCDAC)
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sXsleoloNasNaNaNeNe e Ne Ne!

C

C

C

PROGRAM FCDAC
X IS THE X cQORDINATE OF TreE BOUNDARY
Y < THE Y CONRDINATE NF THE RBOUNDARY
MW IS A WEIGHTING FACTOR FUR NOLE PIOINT OF ROUNDARY
1A any IX elE INITIAL Q0D INTEGER FOR USING IN  RANDU  SURRPQUTINE
MOIS THE NUMBER OF S0UMDa2Y RPOINTS CROSEM
M I3 THE NUMBER OF RAIN «#FASURING STATIOM
NSFET I3 THF NUMBER NOF RPANGOY POINTS FXPECTED
xMI AWE XMAX ARE THE sInTeuM AMD MAXIMUM RANGE IN x AXIS
YMIA AND YUAX 4ARE THE MINTMUM AND MAXIMUM RANGFE IN Y AXIS
AX IS THFE X COORDIMATE OF THE RAIN MFASURING STATION
AY IS THE Y COORDINATE OF THE RAIN MFASHRING STATION
FAC IS THF FEET USFD IM Pre UNIT ZERD MFANS DIMENSIONLFESS OF AREA
REAL LL{50))
DIMENSTION X{4cel) oY {(aN?) s AX(SODY s AY (560 eWF {SUU) e NS(SHUT) e YY (400}
INN(a9I)Y « TTTLF (1) ’
MR=AD
Nv=6]
FEAN INPUT DATA
33 READ(NR«3) JW»sTITLE
3 FORPMAT (IS 3Xe9ARN)
[A=5
[x=7 .
CHECK ANHFTHCR THE FND OF <TaTION SET
IFC(IWNLEQ.e) GO T A3
WRITE (INWeR) TITLE
S FORMAT (1rle//5XsGA8B//) '
TF(IW.FO.1) GO Ty 1229 -
[FIW.FQ.2) GO 10 1)n
READ(NRgH) NeMaNSETeXMI e XMAX s YMINe YMAX oF AL
B FORMAT(3I10+5F13.3)
IFAC=FAC+3 1
FACT=FAC*FAC/435601,."
IF({IFAC.ET«n) FACT=1,
WHITE (MWelUHR) NeMeNSET o xMINeXMAXaYMINSYMAXSFACT

IUR FORMAT (/7)1 0X 4 29HANUMBER OF BOUMDARY SEGMENTS =414/10X.29HNUMBER OF

IRAINFALE STATIONS =a]4/7 X9 25HNUMAER OF RANDOM POINTS =416/10Xe16H
SX=BXKIS MINIMUA =eF5,4/1 LelorX=AXIS MAXIMIM =4FB 4/17K¢1AMY-AX]S M
JINIMUM =aF R 471 0XKeTRHY=0X15 MAXIMIIM =, FR,4/12Xe24HARFA CONVERTING
GFACTIR =4F15.5//)
READ (MRew)y (XC(TI)aY(I)YoI=]on)
9 FORMAT(IAFS 1)
READ (NRs&) (AX{I)sAY(I)al=1eM)
4 FORMAT(1AFS,1)
ADD A SMALL VALUE T0O EaCH NODE FOR ONTAIMG THE NN FACTOR
DD 1A T=]en

106 YY{I)=Y(T)+0,.,L2D0]

COMPUTE THE WEIGHTING FACTOR NN FORP FACH RQIINDARY NNODE
DO 171 I=1aN
MN(IY=
IFIY (D) dEQLY(I+12) GO T 102
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TFAYY (D) sl ToY (I *1 ) AND, YY(]) GTYL(T)) NN(TISNN(I)+1
IF(IeEQel} GO TO 103
IF(YY (D) aLTaY(I=]1) o AND YY (1) aGTaY(TI)) MN(TISNN{I)+]
GO Ta 101
F03 TFOYY (T ol TV (NI JANDSYY{I) aGTWY (L)) NMNII)=NN(I)+]
GO Ta 101
132 NHII)=1
171 CONTINUE
NO 157 I=1eM
NS(I) = 9
In7 CONTINUE
NA={)
Nikk=)
XMN=XMAX=XMI
YMN=YMAX=YMIN
DO 530 IK=14+NSET
Tw=9
IL=v
C GENERATE THE RANDOM NUMBER
CALL RANMDD(IXeIYsRDM)
Ix=1Y
XT=XHMIN ¢ RDM#XMN
CALL RANDD(IA«IR«RDMN)
14a=18
YT=YMIN + RON#YMN
X{N+1)=X(1)
Y(N+1)=Y(1)
C CALCULATE THE NUMBER OF [WNTERSECTION ALOMG THE X AXIS IN EITHER SIDF
DO 330 K=)] N
IF(YTEQaY(K) AN XTJEQ.X(K)} GO T 315
IF(YTeEQeY({K) e AN« YT ENLY{Kel)) GO TO 190
IFIYT.EQeY{K})) GO TO 22
JF(Y(K) «GTaYToANDJYTGT,Y{K+1Y} GO TO 40
IF(YTeOToY(K) ANDCY (K+1) oBTL,YT) OGN TO 4§
GO TO 333
10 TF(X(K) LT o AT AND X (K+1),06TXT)Y G T 319
TF(A{K) eGT o AT LAND LXK +1) LT XT) GO TO 319
IF(XT=X{K)) 11s31Gsl2
11 IR=IReNN(K)
GO TO 349
12 IL=IL+NN({K)
GO TO 349
2 IF(X{K)=XT) 12+310s11
Gu XX=X(K)+ (YT=Y(K))®#{X(K+])=X{K})/(Y{Ke+]l)}=Y(K))
IFIXX=XT) 424313441
41 IK=IR+]
GO TI 307
42 IL=IL+1
393 CONTINUE
C CHECK WHETHFER THE RANDOM 20INT IS FALLING WITHIN THE BOUNDARY
IF{(IR=IR/2%#2) JEQ.C,OR, (IL-IL/2%2) .,EQ,.") GO TO 342
315 NA=NA+]
C ASSIGN THE FALLING wHAITHIY BOUNDARY POINT TO THE NEAREST STATION
LIL)=(XT~aX{1))ea2 «(YT=-AY{]))%=2
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SAVE=L (1)
I1SuR =1
NO 9] [ =2+M
LUII=(XT=AX())#e2 +(YT=AY(])) &¥p
IF(L(I)=SAVEY]1 391491
13 SAavFE=L({)

ISUR=]

91 CONTINUE
MS(ISUR) =NS{ISUR) +1
B0 TD §4a

312 NRPDS=NRRe+]

59¢ CONTIHUE

C COMPUTE RELATIVE AREA RATIO AND &EIGHTLING FACTOR OF EACH STATIQN
AF= NA&/{FLOAT{NA+NRR))
ARFA=AF# (XMAX=XMIN) % (YMaX=-YMIMN)®FalT
C PRINT THE RESULTS
WRITE(NuweT} AF «ARFA
7 FOSMAT (10« 21HRELATIVE AREA RATIO =aF9,6+24H ToTAL AREA IN ACRES

1 =«F1%5.,6//7)
DY 21 I=1eM
WF(IY =NS(I)/FLOAT (NA)

21 WRITE(Nwea) TawF({I)

6 FORMAT{1JdX«3SHCOYPUTED »FIGHT OF RAINFALL STATIONs lae3H =eF9,6/)

GO TO R3
139 CALL ARAA(X+YoNRaNW)
GO TO A3
11, CALL MONTF(XaYsYYsNNeNRaMW)
GO TO A3 '
K3  CALL EXIT .
FHD

SURRUUTINFE ARAA( XK eV eNRaMW)
. DIMENSIOM X{1)YsY (1)
C READ INPUT DATA

READ(NRsAY NeFAC

6 FORMAT (TI13eF1ue3)
READ(NRsa) (X{IVaY(I)al=1laeN)

4 FORMAT(16F5.1)
IFAC=FAC+n.C1
FACT=FAC®FAC/4356An,.C
IF(IFAC.EN.C) FACT=].7
WRITE (NWe10H) N«FACT

128 FORMAT (/ /13X« 29HNUMBER IF BOUNDARY SEGMENTS =4 I4/10X24HAREA CuNVE

IRTING FACTOR =eF15.9/7)
SuUM= N
X{Nn+1)=X(]}
Y(N+1)=y(1])}
NO 7 K=lay
SUMI={X(K+1) =X (K} )2 (Y(K+])+Y(K))/?,0

7 SUM=SUM+SIIM]
SUM=SUM#FACT
WRITE (NWweR) SUM
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B OFORMAT{/2%Xe21HTOTAL AREA IN ACRES =sF1%.6//)
ReETURN
E0D

SUHRJUTINFE MONTE(XsYeYY JHNsNRoeNW)
DIMENSION X(1)eY(1)aYY(1)sNNC(I)
14=5
Ix=7
C READN INPUT DATA
READ(NReH) NsNSETsXMINGXMAX s YMINeYMAX,FAC
8 FORMAT(2I10+5F1n,.3)
IFAC=FAC+n.01
FACT=FAC®#FAC/43560,.¢
IF(IFACLEND) FACT=1.¢
WRITE (NWe10&8) Ns NSETaXMINeXMAXe YMIM,YMAXSFACT
178 FORMAT(//10X«29HNUMBER OF BOUNDARY SEGMENTS =+14/710X+25HNUMBER OF
1RANDOM POINTS =eI6/)10Xe1AHX=AAIS MINIMUM =oFH,4/10Xs]16HX=AXIS WMAXI
PMUM ZeF B 4/1 0% 16HY=AXTS MINIMUM =4FB,4/17Xs16HY=AXIS MAXIMUM =+F8
e/l Ay 24HAREA CONVERTING FACTOR =+F15,5//)
READ(NR ) (X(I)e¥Y(I)Yal=)eN)
9 FORMAT(16F5.1)
C ADD A SMALL VALUE TO EACH NODE FOR ORTAING THE NN FACTDR
DO 1236 I=1KN '
106 YY{ID)=Y{])+0,000"]
C COMPUTE THE WEIGHTING FACTOR NN FOR FACH SO0tINDARY NODE
DO 121 I=1eN
NN(I)=%
IF{Y(I)eENeY(I+1)})Y GO T 1322
IFCYYCOT) alT oY (I +]1) d ANDSYY (L) ¢GTaY{T)}) NN{I})=NN{I)+1l
IF(IeEQel}) GO TO 143
IFCYY (Il T ¥ {I=1) o ANDLYY(T)oGT Y (T)) NN(IY=NN(T)+1
G0 TO 191
60 TO 1391
172 NN(I)=]
131 CONTINUE
C GENERATE THE RANDOM POINT
NA=O
MRH=D
XMN=XMAX=XMIN
YMNSYMAX=YMIN
DO 530 IK=T+NSET
IR=9
IL=0
CALL RANDDU(IXeIYsRDM)
IX=T1Y
XT=XMIN +« RDM#XMN
CALL RANNDD(IA+IB«RDN)
[1a=18
YT=YMIN « RONBYMN
X{N#1)=X{])
Y(Ne1¥=Y{])
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C CALCULATE THE NUMHER OF INTERSECTION ALOMG THE X AXIS
NO 3ul K=1eN
IF(YTaFEQ Y (K) JANDLAT EQ.X(K})} GO TN 31
IF (Y TaEQaY(K) JANDYTEQ.Y(K+1)Y) GO TO 1D
IF(YTeFQev(K))Y G TO 24
IF(YIKY anTeYTeANDGYTLGT,Y(K+1)) GO TO 4t
ITF(YTaGT Y (K) ANNJY(Ke]) 4aGT,YT) 6N TO 40
GO TO 3an
1v TFUXIK) LT e XTeAND <X (K +]1) GT.XT) GN TO 31C
IF(X(K) aCGT e XTeANNJX(K+]) LT LXT)Y GN TO 1143
IF(XT=X{K)) 11s31tsl?2
11 IR=IR+NNI(K)
GO T3 a9
12 TL=IL+NNIiK}
6O TO 309
2y IF(X(K)=XT) 12319411
ai, XX=X(K)+ (YT=-Y(K))# (X (Ke]l)=X(K}))/(Y(K+1)}=YI(K)})
IF(XX=XT) 42+3]10sc¢)
41 IR=IR+]
GO TO 399
42 IL=1IL+1
300 CONTINUE
C CHECK WHETHER THE RANDOM POINT IS FALLING WITHIN THE BNOUNDARY
IF((IR=IR/2%2) EQaNOR,(TL~TL/2%2) EQ.2) GO TO 382
319 NA=NA+]
G0 T 5%
302 NRR=NRR+)
590 CONTINUE
AF= NA/Z(FLOAT{NA+NRR)}
ARFA=AF®# (XMAX=XMIN)# (YMAX<-YMIN}®FACT
WRITE(NW.7) AF 2 AREA .
7 FORMAT (13X+21RRELATIVE AREA RATID =eF9,6s2aH TOTAL AREA IN ACRES
1 =«Fl15.,6//)
RETURN
END

SURROQUTINF RANDDUIX+IYWsYFL)
C GENERATE THE RANDOM NUMHER
Iy=1X%4{399
IF(IY)ISeb46
S IY=1Y+B33R607+1
£ YFL=IY
YFL=YFL/818R6GT .0
RETURN
Eri
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