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ABSTRACT

A modified application of Monte Carlo methods to solve the Thiessen

Coefficients was developed and also extended to compute the new coefficients

for the precipitation with missing record. A general principle is to choose the

boundary segments of the entire watershed which represents the planform of

the watershed by a polygon with as few sides as possible without changing the

basic shape of the boundaries. A new technique was demonstrated to determine

where a random point falls within an arbitrary shaped boundary. The convergence

of the computed weights based on the number of random trials and the relative

area ratio of the watershed boundaries to the enclosing rectangle was discussed.

If the number of random points falling outside the boundary of the watershed

differs greatly from that of the enclosing rectangle, then the three

techniques of equal rectangles; unequal rectangles; and single rectangle

can be used to obtain the computed weights.





INTRODUCTION

The average depth of precipitation over a study area, either on storm,

monthly, seasonal, or annual basis, is required in many types of hydraulic

problems. In general, Linsley, et.al (1958) indicated that there are three

common methods that are available to use. First, the simplest one is called

the arithmetic mean method, and this method gives good estimates in flat area

under the condition of gages that are uniformly distributed and the individual

gage catches do not vary widely from the mean. However, this method does

not take into account the stations outside, but near the boundaries of the

area. Second, the Thiessen Method (1911) attempts to allow for nonuniform

distribution of gages by providing a weighting factor for each gage. Horton

(1923) found that the results obtained by the Thiessen Method are usually

more accurate than those obtained by simple arithematical averaging. But,

Linsley et.al. (1958) said that the greatest limitation of the Thiessen

Method is its inflexibility, because a new Thiessen diagram is required every

time there is a change in the gage network. Third, the isohyetal method is

highly dependent upon the skill of the analyst to construct the isohyetal map.

If linear interpolation between stations is used, the results will be essentially

the same as those obtained with the Thiessen Method. Moreover, an improper

analysis may lead to serious error. This method also involved a degree of

subjectivity because a different user could draw different isohyetal lines

from which a different area rainfall can be obtained under the same rainfall

event. Thus, the Thiessen Method is less dependent upon the skill of the analyst

and can be easily performed by Monte Carlo techniques as reported by Diskin (1969).

A more detailed description of Monte Carlo application in the fields of science



and engineering is summarized in books by Hammersley and Handscombe (1964)

and Shreider (1967). However, the Monte Carlo technique as reported by

Diskin have some limitations to use in practical applications. For example,

limitations of application to a watershed with arbitrary shaped form, perform

the convergence of computed weight, and to divide a subarea for a hypothetical

L shaped watershed, etc. are needed to be modified to that the Monte Carlo

application can be more widely adopted.

The purposes of this study are:

(1) to demonstrate a new technique used for determining the random

point position;

(2) to show a new concept for performing convergence of weights;

(3) to introduce a general rule for choosing the boundaryisegiments

in the entire watershed;

(4) to devise a new technique for estimating a hypothetical L shaped

watershed; and

(5) to extend this Monte Carlo technique to estimate the new weighting

factors for some rainfall stations with missing data.

METHODOLOGY DESCRIPTION

The following five terms concerning the methodology of Monte Carlo

applications are described as follows:

A. New Technique to Determine a Random Point Position:

Diskin (1969) presented a method which can be used to check a random

point falling within the boundary. However, the watershed boundaries in

Figure 1 not only show that the boundary has an irregular shaped form, but

also a shaded area exists within the boundary. The computer program as

developed by Diskin is used to find the area of Figure 1 and comparing the



results with those obtained by the graphical procedure. The results are

43.9 and 36.4 in Diskin's program and graphical method, respectively. As

can be seen from this result, the deviation between these two methods is

about 20 percent. In other words, the Diskin method does not appear to be

suited to estimating areas in watershed with complicated boundaries. Therefore,

Shih and Hamrick (1973) developed a new technique to determine whether a

random point falls within an arbitrary shaped boundary.

This method is based on the concept that, given any completely bounded

region, a radial line constructed in any direction from a given point must

cross the boundary an odd number of times if the point is located within the

boundary or make an even number of intersections if it is located outside the

bounded entity (assuming zero to be an even number). This is true with any

degree of deformation of the boundary. It will also account for bounded,

excluded subregions completely surrounded within the region. In general, the

result for any stated point is ambiguous only in the case where the point is

co-incident with the boundary. Some arbitrary ruling must be made in these

cases.

The specific application here is to the two-dimensional case. The

boundary is defined by a series of linear segments between node points, such

that the accuracy of representation is suitable for the particular use at

hand. Rule 1 below gives the methodology for determining whether the randomly

generated point falls within the boundary or not. Rule 2 solves the ambiguity

that exists when the radial line penetrates the boundary at the node point.

Passing through a node point may possibly be scored as even number of

intersections (0 or 2) or an odd number of intersections (1) as illustrated.



A computer program relying on these two rules and a detailed technique

of application introduced by Shih and Hamrick (1973) were used to estimate the

area of Figure 1 as given. The result is 36.8 which is very close to that

obtained by a normal graphical method. The deviation is almost negligible.

B. Convergence of Weights:

Diskin's paper indicated that the computations are organized on

cumulative sets of randomly generated points. Each set of computations contains

as assigned arbitrary large number of points. At the end of each set, the

weights of the stations are computed and compared to the weights obtained at

the end of the previous set. The computations are terminated when the differences

between each of the new values of the weights and the previous values are less

than an arbitrarily set small quantity. A later example will show this concept

of convergence is not quite applicable in some cases.

Because the Monte Carlo method relies on the laws of probability,

a large number of random walks should be taken if the result is to closely

approximate actual value. The common method used to estimate the sample

size and accuracy is the large sample normal approximation. Using the

Central Limit Theorem the binomial distribution can be approximated by a

normal distribution for a large N where N is the total number of trials. It

also shows that a sample error is proportional to 1/40. The convergence is

a statistical convergence, i.e., the probable error is proportional to 1/AV.

For example, a watershed as shown in Figure 2 with eight rainfall stations was

used to discuss this concept of convergence of weights. The results of the

computed weights and relative area ratio formulated by Diskin's computation

are given in Table 1. As can be seen from Table 1, Diskin said the computations



are terminated when the differences between set 8 and set 9 are less than

an arbitrarily small quantity such as 0.001. However, according to the

Central Limit Theorem the more sample sizes taken, the more accuracy of

estimation can be obtained. For instance, combining the number of sets

shown in Table 1 into a form with more number of random points such as

4000, 6000,..., 18000 random points gives a new relative area ratio and

computed weights as shown in Table 2. The results of Table 2 indicate that

the 4000 points will give a more reliable estimation because the statistical

error of 1/vN is 1.581% in 4000 points, and 2.236% in 2000 points. It is

obvious that 4000 points is better than 2000 points. In a similar case, the

statistical errors are 1.291%, 1%, and 0.745% in 6000 points, 10000 points,

and 18000 points respectively. In general, if 2% of the statistical error

is admitted, then a number of trails from 2000 to 4000 is recommended. It

should be noted that one must increase the random point by a factor of 4 in

order to halve the error. Therefore, the difference of the relative area

ratio between set 8 and set 9 in Table 1 is less than 0.001, from which a

convergence of weights was concluded by Diskin. The difference between two

consecutive sets within a tolerance is a case of chance only and not a case

of consistent phenomenon. In other words, if a different group of random

numbers is used, the different relative area ratio within a tolerance 0.001 may

be non existant between set 8 and set 9. Another example of watershed as

shown in Figure 3, will show that the Diskin's concept of convergence of

weights is not applicable. The results of Figure 3 indicate that 113 sets

were run and the differences between two consecutive sets were never less than

the tolerance 0.001. The computing time was more than an hour in this test,

and a different number of random points were used to test the sensitivity of

convergence. The results of computed weights and relative area ratio difference



between different random points admitted are shown in Table 3. As shown by

Table 3, the convergence is very slow after the random point is over 20000 points.

Therefore, a computing process with too many sets or too many random points,

is not recommended in practical application because a longer computing time

is spent and little accuracy of estimation is improved. In general, 2000 to

6000 random points can give a quite good results. A detailed discussion of

the convergence concept in practical application will be explained in a

later section.

B. Selecting Boundary Segments:

Diskin (1969) defined the boundaries of the watershed by giving the

coordinates of successive points along the boundary (in a clockwise direction)

and considering the boundary between each pair of successive points to be a

straight linear segment. The actual boundaries could be approximated as

closely as desired by increasing the number of such points. But, the user

should note that the more segments chosen, the more computing time and user's

time is required in setting up the more segments. A later example will show

the effects of the many irregularities of natural boundaries such as lake

shorelines, and the watershed may be averaged by reducing the boundary planform

to a simplified polygon. The general principle of this procedure is to

represent the planform by a polygon with as few sides as possible without

changing the basic shape of the boundary. An example of this is the Upper

Kissimmee River Basin as shown in Figure 3 which has two different cases 
of

selecting boundary points, i.e., 103 segments and 10 segments. Comparision of

the computed weights, relative area ratio, and computing time differences 
between

2000 and 6000 random trials are given in Table 4. As can be seen from Table 4,

although the boundary segments are reduced from 103 segments to 10 segments,



the results of computed weights and relative area ratio do not change

appreciable, but the computing time can be reduced about 60-70%.

D. Dividing a Large Irregular Shaped Watershed:

An expected accuracy of computation by this Monte Carlo method depends

upon not only the number of random points, but also 
the shape of the

watershed. The number of random points that affects the sample error has 
been

discussed in a previous section. However, the efficiency of this Monte Carlo

method affected by the shape formed by the watershed should also 
be discussed

because a large number of random points fall off the outside 
boundaries of

the watershed which differs greatly from that of the enclosing rectangle.

This difficulty can be overcome by following three techniques:

(1) Equal Rectangles: Diskin (1969) suggested that the watershed is

enclosed by a number of smaller rectangles of equal area that 
have

a common edge which cuts the watershed. In order for this method

to be used more widely, the following relationship should 
be

introduced. Let A1 , ... , An be the relative area rationfalling

within the boundaries of sub-watershed 1, ... , n. Then the new

relative area ratio, R 1 , .. , of sub-watershed 1, ... , n

are equal to
n

R = A 1  A. (1)
i-1.

n.
Rn = An/ E A

i=1

The final computed weights, W 1 , ... , Wm , of raingall stations 1,

... , m are equal to



n
W1 = E RiEil

i=1 (2)

Sn
Wm = RiEim

i=1

where Eij is the computed weights of rainfall station j in

subrectangle i; j includes the rainfall station from 1 to m and

i includes the subrectangle from 1 to n. For example, m is the

total number of rainfall stations and n is the total number of

subrectangles. A hypothetical L shaped watershed with five

rainfall stations as shown in Figure 4 was divided into two equal

rectangles. Such as efgh and opik; i.e., n=2 and m=5. The results

of the computed weights of 2000 random trials, 4000 trials, and

6000 random trials are shown in Table 5. In 2000 random trials,

the values of R1 , R2 , W', W2, W3, W4 and W5 are calculated by

equations 1 and 2, i.e.

R1 = 0.545/(0.545 + 0.573) = 0.487477

R2 = 0.573/(0.545 + 0.573) = 0.512522

W1 = 0.314 x 0.487477 + 0 x 0.512522 = 0.153

W2 = 0.686 x 0.487477 + 0.087 x 0.512522 = 0.379

W3 = 0 x 0.487477 + 0.068 x 0.512522 = 0.035 (4)

W4 = 0 x 0.487477 + 0.609 x 0.512522 = 0.312

W5 = 0 x 0.487477 + 0.236 x 0.512522 = 0.121

These results compare quite favorably with graphical data. However,

the procedure of selecting equal rectangles to include a similar weight in

each rectangle is relatively difficult and time consuming especially for a

watershed including more than two equal rectangles.



(2) Unequal Rectangles: The technique of unequal rectangles is similar

to the equal rectangles method except that the watershed is enclosed

by a number of smaller unequal rectangles. Let S1 , ... , Sn represent

the area of enclosing rectangles 1, ... , n; A 1,... An and R 1 , ... , Rn

are defined in the case of equal rectangles. The value of R i is

n
R1 = A 1 S1 / E AiSi

Rn = AnSn/ E AiS ii=1

The final computed weights, W 1 , ... , Wm of rainfall stations, 1, ... , m, are

similar to equation 2, except that the R i values are replaced by equation 5.

For example, the watershed as given in Figure 4 was divided into two unequal

rectangles, i.e., efgh and mnik. If a scale as shown in Figure 4 is used,

the values of S1 
= 

45.36 square miles and S2 = 30.8125 square miles are obtained.

The values of R1 , R 2, W1 , W 2, W 3 , W 4 , and W 5 in 2000 random trials case are

calculated as follows:

Rl= 0.495 x 45.36 = 0.523269
0.495 x 45.36 + 0.565 x 30.8125

R = 0.565 x 30.8125 = 0.436730
2 0.495 x 45.36 + 0.565 x 30.8125

W1= 0.274 x 0.52369 + 0 x 0.436730 = 0.154

W2= 0.655 x 0.523269 + 0 x 0.436730 = 0.369

W3= 0.006 x 0.523269 + 0.074 x 0.436730 = 0.036

W4= 0.065 x 0.523269 + 0.665 x 0.436730 = 0.327

W5 = 0 x 0.523269 + 0.271 x 0.436730 = 0.118

The values of equation 5 are also shown in Table 5. Comparing these results of

unequal two rectangles with the graphical method gives a good agreement. The

random trials with 4000 and 6000 are performed in a similar way. The results

are also shown in Table 5. These unequal small rectangles are more convenient



to use as desired by changing the area of each subrectangle. However,

additional time is needed in this method for dividing the entire watershed

to obtain the computed weight of each station. In practical application,

this method is only recommended in the case of a watershed such as new moon

shape which is really needed to divide into several subrectangles. The

reason for choosing unequal rectangles in a special shaped watershed will be

discussed in the following section of single rectangle.

(3) Single Rectangle: Based on the Central Limit theorem, the more

random points chosen, the greater the accuracy of the estimate

obtained. As previously discussed, a number of random points between

2000 and 6000 is recommended in a general shaped watershed. This is

true only if the relative area ratio of the watershed to the

enclosing rectangle is not less than a certain percent. For example,

the watershed shown in Figure 2 has about 68% as shown in Tables 1

and 2. The percentage implied that 68% of the total random point

will fall within the watershed. If a watershed with relative

area ratio is less than 0.3 and only 2000 random trials are

used, the random points falling within the watershed will be less

than 600 points. This may cause a bias estimation because the

sample error 1/iN, used in estimating the portion of the watershed

area may be over 4 percent. If the relative area ratio is only

0.1, the error may be over 10 percent. Therefore, a watershed

which has a lower relative area ratio, more random trials should

be taken. For example, a watershed as given in Figure 4, the

relative area ratio to the rectangle abcd is about 0.4, and the

random trials with 2000, 4000, and 6000 are used in this study.

The results of computed weights and relative area ratio in those



different number of trials are shown in Table 5. As can be

seen from Table 5, comparing this single rectangle, abcd

technique with other techniques indicates that the single

rectangle is as accurate as other methods. But, it should be

realized that the single rectangle technique is relatively

easy to use. Another example is the Kissimmee River Basin,

Florida as shown in Figure 5, with 16 rainfall stations used to exemply

the technique of a single rectangle. It should be noted that the

coordinates chosen for enclosing the rectangle is an important

factor. The principle of choosing coordinates for the enclosing

rectangle can be performed as small as possible from which a more

relative area ratio of watershed can be obtained. As can be

seen from Figure 5, the x and y coordinates are chosen from the

enclosing rectangle performed as small as possible. The results

of these estimates with random trials of 2000, 4000, and 6000

are shown in Table 6. Comparing the single rectangle with the

graphical technique as shown in Table 6 indicates that the single

rectangle is applicable to a watershed with a long and narrow

shape.

As mentioned in the section of unequal rectangles, a new moon

shaped watershed from which the relative area ratio to the enclosing

single rectangle may be less than 0.1. In that case, a user

desiring to decrease the statistical error can be overcome by two

ways. First, the user can increase the random points to 10,000

or more from which a 1000 random trial may be falling within the new

moon shaped watershed. Second, dividing the new moon shaped watershed



into two smaller subrectangles, and the relative subarea ratio

to enclosing subrectangles may be assumed equal to 0.5. Therefore,

the user should be able to justify in an economical way the

accuracy of computation for special shaped watershed by either

increasing the random points or dividing them into a set of smaller

rectangles.

E. New Thiessen Coefficients for Missing Data:

As Linsley et.al. (1958) indicated the greatest limitation of the

Thiessen method is its inflexibility, because a new Thiessen polygon is

required every time there is a change in the gage network. This modified

Monte Carlo method can be used to overcome this limitation. In general, there

are two cases of missing data. Case 1: The missing data of each rainfall

station are priorly known, and any missing period of record are assigned as a

new station set. The distance of a random point from all rain measuring

stations are calculated simultaneously in each station set, and the random

point is assigned to the nearest rain measuring station in each set. Case 2:

the missing data of each rainfall station is posteriorly known, i.e. how many

stations with missing data are unknown. In this case, if a station with a

missing record is found, then that station is omitted and a new gage network

is considered. Based on this new gage network, a computed weights is

performed by a repeating procedure. The detail description of these procedures

will be discussed in the section of computer program.

A watershed of the upper Kissimmee River Basin is used in this study

to test the applicability of this missing data case. The results of new

computed weights for the missing data of each station in these eight stations

are shown in Table 7. The results indicated that the modified Monte Carlo



techniques are applicable to overcome the limitation of changing the gage

network.

COMPUTER PROGRAM

As described in previous sections of new coefficients for missing data,

the case 2 is more common in practical application. Based on this case 2

problem, the following procedures are developed to compute the weights of

rainfall station:

(1) Enclose the watershed boundaries with a rectangle whose coordinates

are also recorded.

(2) Read the x and y coordinates of the boundary segments.

(3) Compute the weighting factor of each boundary node according to

Rule 2 introduced.

(4) Generate random points with uniform probability over the enclosing

rectangle.

(5) Draw an imaging line from the random point and parallel to the

x-axis.

(6) Count the number of intersections of this line with the boundary

in either the left or the right hand side of the random point.

(7) Test whether the random point is falling within the boundary according

to the Rule 1 indicated.

(8) If the above test fails, increase the counter of rejected points by

one, otherwise, increase the counter of accepted points by one.

(9) If the random point is accepted, then the random point is assigned

to the nearest station.

(10) Repeat the processes 5, 6, 7, 8, and 9 until a large number assigned

is reached.
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(11) Compute the relative area ratio of the watershed boundaries to the

enclosing rectangle by dividing the accepted points by total number

of random points.

(12) Calculate the computed weights of each station by dividing the

assigned points to each station by the total accepted points.

(13) Check whether the record is missing data or not.

(14) If the check is yes, the processes from 4 to 13 are repeated.

The above procedure is simulated to a flow chart figure as shown in

Appendix A. The flow chart was also converted to a computer program for

CDC 3100 computer with Fortran IV language. The computer program is available

from the authors.
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SUMMARY AND CONCLUSIONS

A modified application of Monte Carlo methods to solve the Thiessen

coefficients has been successfully developed. After applying this newly

developed technique to several practical problems, the following

conclusions were drawn:

(1) A new technique used for determining the random point falling

within the watershed boundaries was demonstrated.

(2) A new concept to perform the convergence of computed weights

was introduced. The convergence of computed weights depends

upon not only the number of random trials but also the relative

area ratio of the watershed boundaries to the enclosing rectangle.

i.e., if the watershed boundary has less relative area ratio, the

more number of random points should be run.

(3) A general principle to choose the boundary segments of the entire

watershed is to represent the planform of the watershed by a

polygon with as few sides as possible without changing the basic

shape of the watershed boundaries.

(4) A large number of random points falling outside the boundary of

the watershed which differs greatly from that of the enclosing

rectangle can be overcome by three techniques - equal rectangles,

unequal rectangles, and single rectangle.

(5) This modified Monte Carlo method has been extended to compute

the new weighing factors for the missing data case.
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Table IV. Comparison of computed weights, relative areas and computing
time with different numbers of boundary segments.

Rainfall Thessien
stations Polygon

Lake Alfred 0.034
Kiss. II 0.288
Isleworth 0.091
Orlando 0.052
Bithlo 0.001
Lake Hart 0.160
Ind. Lake ST. 0.259
Mountain Lake 0.115
Ratio of area

Computing *
time,sec.

* CDC 3100 Computer syst
this comparison

Number of boundary segments
103 segments 10 segments

Random points Random points
2000 6000 2000 6000

0.036 0.030 0.034 0.030
0.298 0.321 0.300 0.321
0.091 0.087 0.090 0.085
0.057 0.054 0.059 0.055
0.001 0.001 0.001 0.001
0.151 0.150 0.155 0.153
0.250 0.248 0.258 0.252
0.116 0.109 0.103 0.102
0.583 0.586 0.580 0.586

146 247 91 147

tem with Fortran IV Language was used in
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Table VI. Computed weights and relative area ratios of Fig. 5.

Rainfall Graphical Monte Carlo method
No. of random points
2000 4000 6000

1 0.029 0.036 0.034 0.030
2 0.102 0.107 0.105 0.107
3 0.002 0.0 0.0 0.001

4 0.058 0.054 0.057 0.057
5 0.166 0.179 0.188 0.190
6 0.113 0.117 0.118 0.114
7 0.053 0.044 0.042 0.044

8 0.071 0.054 0.069 0.068
9 0.089 0.081 0.079 0.084
10 0.015 0.016 0.013 0.012
11 0.053 0.047 0.043 0.046
12 0.043 0.044 0.042 0.046

13 0.080 0.096 0.085 0.080
14 0.078 0.066 0.073 0.071

15 0.046 0.058 0.051 0.050
16 0.002 0.002 0.001 0.001

Ratio of 0.621 0.624 0.630
area
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Fig. 1. Area under an irregularly shaped form.
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APPENDIX A: Flowchart for the modified Monte Carlo technique of computation.

Compute the Number
of Intersection Along
Either Side of x Axis

Increase Counter
of Rejected

Points by One

yes

Compute The Relative Area Ratio
And Weights of Rainfall Station

Print the Results

Check
The Station for Missing

Data

no



APPENDIX B: COMPUTER PROGRAM FOR DETERMINING THE THIESSEN COEFFICIENTS
BY MONTE CARLO METHODS

PROGRAM MCMTC
C X IS THE X COORDINATE OF THE BOUNDARY
C Y IS THE Y COORDINATE OF THE BOUNDARY
C NN IS A WEIGHTING FACTOR FOR NODE POINT OF BOUNDARY
C IA AND IX ARE INITIAL ODD INTEGER FOR USING IN RANDU SUBROUTINE
C N IS THE NUMBER OF BOUNDARY POINTS CHOSEN
C M IS THE NUMBER OF RAIN MEASURING STATION
C NSET IS THE NUMBER OF RANDOM POINTS EXPECTED
C XMIN AND XMAX ARE THE MINIMUM AND MAXIMUM RANGE IN X AXIS
C YMTN AND YMAX ARE THE MINIMUM AND MAXIMUM RANGE IN Y AXIS
C AX IS THE X COORDINATE OF THE RAIN MEASURING STATION
C AY IS THE Y COORDINATE OF THE RAIN MEASURING STATION

REAL L(500)
DIMENSION X(400).Y(400),AX(500),AY(500),WF(500),NS(500)qYY(400)9
INN(400),TITLE(9)

C READ INPUT DATA
B3 READ(60.3) IWTITLE
3 FORMAT(IS9SX,9A8)

TA=5
IX=7

C CHECK WHETHER THE END OF STATION SET
IF(IW.E.0) GO TO 85
WRITE(619 5) TITLF

5 FORMAT(1H1.//5X,9A8//)
READ(60.8) N.M,NSETXMTN,XMAXYMTIYMAX

8 FORMAT(316921X,4F8.4)
WRITE(61,108) N,M,NSETXMIN,XMAXYMIN.YMAX

10 FORMAT(//I10X29HNUMBER OF BOUNDARY SEGMENTS =,I4/OX,29HNUMBER OF
IRAINFALL STATIONS =.T4/10X,25HNUMBER OF RANDOM POINTS =,16/10X16H
2X-AXIS MINIMUM =FB.4/10X,16HX-AXIS MAXIMUM =,FB.4/10X.16HY-AXIS M
3INIMUM = 9F8.4/10X l6HY-AXIS MAXIMUM =,F8.4//)
READ(60,9) (X(I),Y(I)T=1,N)

9 FORMAT(16F5.1)
READ(60 4) (AX(I),AY(I)TI=1M)

4 FORMAT(16FS.1)
C ADD A SMALL VALUE TO EACH NODE FOR OBTAING THE NN FACTOR

DO 106 I=1N
106 YY(I)=Y(I)+0.00001

C COMPUTE THE WEIGHTING FACTOR NN FOR EACH BOUNDARY NODE
DO 101 I=1,N
NN(I)=0
IF(Y(I).EQ.Y(I+1)) GO TO 102
IF(YY(I).LT.Y(I+1).AND.YY(I).GT.Y(I)) NN(I)=NN(I)+1
IF(I.FO.1) GO TO 103
IF(YY(I).LT.Y(I-1).AND.YY(I).GT.Y(I)) NN(I)=NN(I)+1
GO TO 101

103 IF(YY(1).LT.Y(N).AND.YY(I).GT.Y(I)) NN(I)=NN(I)+1



GO TO 101
102 NN(I)=1
101 CONTINUE

00 107 I=1,M
NS(I) = 0

107 CONTINUE
NA=O
NR=0
XMN=XHAX-XMIN
YMN=YMAX-YMIN
00 500 IK=1,NSET
IR=O
IL=n

C GENERATE THE RANDOM NUMBER
CALL RANDU(IXIYRANDM)
IX=IY
XT=XMIN + RANDM*XMN
CALL RANDU(IA,IBRANDN)
IA=IB
YT=YMIN + RANDN*YMN
X(N+1)=X(1)
Y(N+1)=Y(1)

C CALCULATE THE NUMBER OF INTERSECTION ALONG THE X AXIS IN EITHER SIDE
DO 300 K=1.N
IF(YT.EQ.Y(K).ANO.XT.EO.X(K)) GO TO 310
IF(YT.EQ.Y(K).AND.YT.EO.Y(K+I)) GO TO 10
IF(YT.EQ.Y(K)) GO TO 20
IF(Y(K).GT.YT.AND.YT.GT.Y(K+1)) GO TO 40
IF(YT.GT.Y(K).AND.Y(K+1).GT.YT) GO TO 40
GO TO 300

10 IF(X(K).LT.XT.AND.X(K+1).GT.XT) GO TO 310
IF(X(K).GT.XT.AND.X(K+1).LT.XT) GO TO 310
IF(XT-X(K)) 11,310,12

11 IR=IR+NN(K)
GO TO 300

12 IL=IL+NN(K)
GO TO 300

20 IF(X(K)-XT) 12.310,11
40 XX=X(K)+ (YT-Y(K))*(X(K+1)-X(K))/(Y(K+1)-Y(K))

IF(XX-XT) 429310.41
41 IR=IR+1

GO TO 300
42 IL=IL+1

300 CONTINUE
C CHECK WHETHER THE RANDOM POINT IS FALLING WITHIN THE BOUNDARY

IF((IR-IR/22).EO..OR.(IL-IL/2*2).EO.0) GO TO 302
310 NA=NA+1

C ASSIGN THE FALLING WHITHIN ROUNDARY POINT TO THE NEAREST STATION
L(I)=(XT-AX(1))**2 +(YT-AY(1))**2
SAVE=L(1)
ISUB =1



DO 91 I =2,M
L(I)=(XT-AX(I))**2 +(YT-AY(I))**2
IF(L(I)-SAVE)13,91 91

13 SAVE=L(I)
ISUB=I

91 CONTINUE
NS(ISUB) =NS(ISUB)+1
GO TO 500

302 NR=NR+I
500 CONTINUE

COMPUTE RELATIVE AREA RATIO AND WEIGHTING FACTOR OF EACH STATION
AF= NA/(FLOAT(NA+NR))

PRINT THF RESULTS
WRITE(61,7) AF

7 FORMAT(10X21HRELATIVE AREA RATIO =9F9.6//)
00 21 I=1,M
WF(I) =NS(I)/FLOAT(NA)

21 WRITE(61,6) I,WF(I)
6 FORMAT(1OX,35HCOMPUTED WEIGHT OF RAINFALL STATION+ 143H =,F9

GO TO 83
85 CALL EXIT

END

.6/)


