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ABSTRACT

A modified application of Monte Carlo methods to solve the Thiessen
Coefficients was developed and also extended to compute the new coefficients
for the precipitation with missing record. A general principle is to choose the
boundary segments of the entire watershed which represents the planform of
the watershed by a polygon with as few sides as possible without changing the
basic shape of the boundaries. A new technique was demonstrated to determine
where a random point falls within an arbitrary shaped boundary. The convergence
of the computed weights based on the number of random trials and the relative
area ratio of the watershed boundaries to the enclosing rectangle was discussed.
If the number of random points falling outside the boundary of the watershed
differs greatly from that of the enclosing rectangle, then the three.
techniques of equal rectangles; unequal rectangles; and single rectangle

can be used to obtain the computed weights.






INTRODUCTION

The average depth of precipitation over a study area, either on storm,
monthly, seasonal, or annual basis, is required in many types of hydrgulic
problems. In general, Linsley, et.al (1958) indicated that there are three
common methods that are available to use. First, the simplest one is called
the arithmetic mean method, and this method gives good estimates in flat area
under the condition of gages that are uniformly distributed and the individual
gage catches do not vary widely from the mean. However, this method does
not take into account the stations outside, but near the boundaries of the
area. Second, the Thiessen Method (1911) attempts to allow for nonuniform
distribution of gages by providing a weighting factor for each gage. Horton
(1923) found that the results obtained by the Thiessen Method are usually
more accurate than those obtained by simple arithematical averaging. But,
Linsley et.al. (1958) said that the greatest limitation of the Thiessen
Method is its inflexibility, because a new Thiessen diagram is required every
time there is a change in the gage network. Third, the isohyetal method is
highly dependent upon the skill of the analyst to construct the isohyetal map.

If linear interpolation between stations is used, the results will be essentially
the same as those obtained with the Thiessen Method. Moreover, an improper
analysis may lead to serious error. This method also involved a degree of
subjectivity because a different user could draw different isohyetal lines

from which a different area rainfall can be obtained under the same rainfall

event. Thus, the Thiessen Method is less dependent upon the skill of the analyst
and can be easily performed by Monte Carlo techniques as reported by Diskin (1969).

A more detailed description of Monte Carlo application in the fields of science
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and engineering is summarized in books by Hammersley and Handscombe (1964)
and Shreider (1967). However, the Monte Carlo technique as reported by
Diskin have some limitations to use in practical applications. For example,
limitations of application to a watershed with arbitrary shaped form, perform
the convergence of computed weight, and to divide a subarea for a hypothetical
L shaped watershed, etc. are needed to be modified to that the Monte Carlo
application can be more widely adopted.

The purposes of this study are:

(1) to demonstrate a new technique used for determining the random

point position;

(2) to show a new concept for performing convergence of weights;

(3) to introduce a general rule for choosing the boundary:seglments

in the entire watershed;

(4) to devise a new technique for estimating a hypothetical L shaped

watershed; and

(5) to extend this Monte Carlo technique to estimate the new weighting

factors for some rainfall stations with missing data.

METHODOLOGY DESCRIPTION

The following five terms concerning the methodology of Monte Carlo
applications are described as follows:

A. New Technique to Determine a Random Point Position:

Diskin (1969) presented a method which can be used to check a random
point falling within the boundary. However, the watershed boundaries in
Figure 1 not only show that the boundary has an irregular shaped form, but
alsoc a shaded area exists within the boundary. The computer program as

developed by Diskin is used to find the area of Figure 1 and comparing the
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results with those obtained by the graphical procedure. The results are

43.9 and 36.4 in Diskin's program and graphical method, respectively. As

can be seen from this result, the deviation between these two methods is

about 20 percent. In other words, the Diskin method does not appear to be
suited to estimating areas in watershed with complicated boundaries. Therefore,
Shih and Hamrick (1973) developed a new technique to determine whether a

random point falls within an arbitrary shaped boundary.

This method is based on the concept that, given any completely bounded
region, a radial line constructed in any direction from a given point must
cross the boundary an odd number of times if the point is located within the
boundary or make an even number of intersections if it is located outside the
bounded entity (assuming zero to be an even number). This is true with any
degree of deformation of the boundary. It will also account for bounded,
excluded subregions completely surrounded within the region. In general, the
result for any stated point is ambiguous only in the case where the point is
co-incident with the boundary. Some arbitrary ruling must be made in these
cases.

The specific application here is to the two-dimensional case. The
boundary is defined by a series of linear segments between node points, such
that the accuracy of representation is suitable for the particular use at
hand. Rule 1 below gives the methodology for determining whether the randomly
generated point falls within the boundary or not. Rule 2 solves the ambiguity
that exists when the radial line penetrates the boundary at the node point.
Passing through a node point may possibly be scored as even number of

intersections (0 or 2) or an odd number of intersections (1) as illustrated.
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A computer program relying on these two rules and a detailed technique
of application introduced by Shih and Hamrick (1973) were used to estimate the
area of Figure 1 as given. The result is 36.8 which is very close to that
obtained by a normal graphical method. The deviation is almost negligible.

B. Convergence of Weights:

Diskin's paper indicated that the computations are organized on
cumulative sets of randomly generated points. Each set of computations contains
as assigned arbitrary large number of points. At the end of each set, the
weights of the stations are computed and compared to the weights obtained at
the end of the previous set. The computations are terminated when the differences
between each of the new values of the weights and the previous values are less
than an arbitrarily set small quantity. A later example will show this concept

of convergence is not quite applicable in some cases.

Because the Monte Carlo method relies on the laws of probability,
a large number of random walks should be taken if the result is to closely
approximate actual value. The common method used to estimate the sample
size and accuracy is the large sample normal approximation. Using the
Central Limit Theorem the binomial distribution can be approximated by a
normal distribution for a large N where N is the total number of trials. It
also shows that a sample error is proportional to 1/V/N. The convergence is
a statistical convergence, i.e., the probable error is proportional to 1//N.
For example, a watershed as shown in Figure 2 with eight rainfall stations was
used to discuss this concept of convergence of weights. The results of the
computed weights and relative area ratio formulated by Diskin's computation

are given in Table 1. As can be seen from Table 1, Diskin said the computations
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are terminated when the differences between set 8 and set 9 are less than

an arbitrarily small quantity such as 0.001. However, according to the
Central Limit Theorem the more sample sizes taken, the more accuracy of
estimation can be obtained. For instance, combining the number of sets
shown in Table 1 into a form with more number of random points such as

4000, 6000,..., 18000 random points gives a new relative area ratio and
computed weights as shown in Table 2. The results of Table 2 indicate that
the 4000 points will give a more reliable estimation because the statistical
error of 1/VN is 1.581% in 4000 points, and 2.236% in 2000 points. It is
obvious that 4000 points is better than 2000 points. 1In a similar case, the
statistical errors are 1.291%, 1%, and 0.745% in 6000 points, 10000 points,
and 18000 points respectively. In general, if 2% of the statistical error
is admitted, then a number of trails from 2000 to 4000 is recommended. It
should be noted that one must increase the random point by a factor of 4 in
order to halve the error. Therefore, the difference of the relative area
ratic between set 8 and set 9 in Table 1 is less than 0.001, from which a
convergence of weights was concluded by Diskin. The difference between two
consecutive sets within a tolerance is a case of chance only and not a case
of consistent phenomenon. In other words, if a different group of random
numbers is used, the different relative area ratio within a tolerance 0.001 may
be non existant between set 8 and set 9. Another example of watershed as
shown in Figure 3, will show that the Diskin's concept of convergence of
weights is not applicable. The results of Figure 3 indicate that 113 sets
were run and the differences between two coneecutive sets were never less than
the tolerance 0.00l1. The computing time was more than an hour in this test,
and a different number of random points were used to test the sensitivity of

convergence. The results of computed weights and relative area ratio difference
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between different random points admitted are shown in Table 3. As shown by

Table 3, the convergence is very slow after the random point is over 20000 points.
Therefore, a computing process with toc many sets or too many random points,

is not recommended in practical application because a longer computing time

is spent and little accuracy of estimation is improved. In general, 2000 to

6000 random points can give a quite good results. A detailed discussion of

the convergence concept in practical application will be explained in a

later section.

B. Selecting Boundary Segments:

Diskin (1969) defined the boundaries of the watershed by giving the
coordinates of successive points along the boundary (in 2 clockwise direction)
and considering the boundary between each pair of successive points to be a
straight linear segment. The actual boundaries could be approximated as
closely as desired by increasing the number of such points. But, the user
should note that the more segments chosen, the more computing time and user's
time is required in setting up the more segments. A later example will show
the effects of the many irregularities of natural boundaries such as lake
shorelines, and the watershed may be averaged by reducing the boundary planform
to a simplified polygon. The general principle of this procedure is to
represent the planform by a polygon with as few sides as possible without
changing the basic shape of the boundary. An example of this is the Upper
Kissimmee River Basin as shown in Figure 3 which has two different cases of
selecting boundary points, i.e., 103 segments and 10 segments. Comparision of
the computed weights, relative area ratio, and computing time differences between
2000 and 6000 random trials are given in Table 4. As can be seen from Table 4,

although the boundary segments are reduced from 103 segments to 10 segments,
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the results of computed weights and relative area ratio do not change
appreciable, but the computing time can be reduced about 60-70%.
D. Dividing a Large Irregular Shaped Watershed:

An expected accuracy of computation by this Monte Carlo method depends
upon not only the number of random points, but also the shape of the
watershed. The number of random points that affects the sample error has been
discussed in a previous section. However, the efficiency of this Monte Carlo
method affected by the shape formed by the watershed should also be discussed
because a large number of random points fall off the outside boundaries of
the watershed which differs greatly from that of the enclosing rectangle.
This difficulty can be overcome by following three techniques:

(1) Equal Rectangles: Diskin (1969) suggested that the watershed is

enclosed by a number of smaller rectangles of equal area that have
a common edge which cuts the watershed. In order for this method
to be used more widely, the following relatiomship should be
introduced. Let Al, cens Ay be the relative area rationfalling
within the boundaries of sub-watershed 1, ..., n. Then the new
relative area ratio, Rl, weus Rn’ of sub-watershed 1, ..., n

are equal to

Ry = Al/.; Ai 1)
. i=1.
. n .
R, = An/iilAi
The final computed weights, Wl, cees Wy of raingall stations 1,

..., m are equal to
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n
wl = .E RyEsy
. i=1 .
. n .
Wm = .Z RiEim
i=1
where Eij is the

subrectangle i; j includes the rainfall station from 1 to m
i includes the subrectangle from 1 to n.

total number of rainfall stations and n is the total number

subrectangles.

rainfall stations as shown in Figure 4 was divided into two

rectangles.

of the computed weights of 2000 random trials, 4000 trials,

6000 random trials are shown in Table 5.

Such as efgh and opik; i.e., n=2 and m=5.

For example, m is

(2)

computed weights of rainfall station j in

and

the

of

A hypothetical L shaped watershed with five

equal
The resul

and

In 2000 random trials,

the values of Rl, R2, wl, Wy, w3, W4 and W5 are calculated by

equations 1 and 2, i.e.

Ry = 0.545/(0.545 + 0.573)
R, = 0.573/(0.545 + 0.573)
Wy = 0.314 x 0.487477 + 0
Wy = 0.686 x 0.487477 + 0.
Wy = 0 x 0.487477 + 0.068
Wi = 0 X 0.487477 + 0.609
WS = 0 x 0.487477 + 0.236

These results compare quite favorably with graphical data.

= 0.487477

= 0.512522

x 0.512522 = 0.153

087 x 0.512522 = 0.379

x 0.512522 = 0.035
x 0.512522 = 0.312
x 0.512522 = 0.121

ts

3

However,

the procedure of selecting equal rectangles to include a similar weight in

each rectangle is relatively difficult and time consuming especially for a

watershed including more than two equal rectangles.

(4)
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(2) Unequal Rectangles: The technique of unequal rectangles is similar
to the equal rectangles method except that the watershed is enclosed
by a number of smaller unequal rectangles. Let Sl, cers Sn represent
the area of enclosing rectangles 1, ..., n; Aj,...A, and Rl’ eees Ry

are defined in the case of equal rectangles. The value of Ry is

n
R, = Alsll.z A8y
i=1.

(5)

o e .
L

_ AnSn/ 2 Aisi

i=1
The final computed weights, Wis oees Wm of rainfall stations, 1, ..., m, are
similar to equation 2, except that the Ri values are replaced by equation 5.
For example, the watershed as given in Figure 4 was divided into two unequal
rectangles, i.e., efgh and mnik. If a scale as shown in Figure 4 is used,
the values of Sy = 45.36 square miles and S, = 30.8125 square miles are obtained.
The values of Rl, RZ’ Wl’ Wz, W3, Wy, and W5 in 2000 random trials case are

calculated as follows:

- 0.495 x 45.36

Rq.= =

1° 97495 x 45.36 ¥ 0.565 x 30,8125 ~ 0-°23269
R.= 0565 x 30.8125 - 0.436730

2 0,495 x 45.36 + 0.565 x 30.8125
W= 0.274 x 0.52369 + 0 x 0.436730 = 0.154

Wo= 0.655 x 0.523269 + 0 x 0.436730 = 0.369

W,= 0.006 x 0.523269 + 0.074 x 0.436730 = 0.036

3
W4= 0.065 x 0.523269 + 0.665 x 0.436730 = 0.327
WS = 0 x 0.523269 + 0.271 x 0.436730 = 0.118

The values of equation 5 are also shown in Table 5. Comparing these results of
unequal two rectangleées with the graphical method gives a good agreement. The
random trials with 4000 and 6000 are performed in a similar way. The results

are also shown in Table 5. These unequal small rectangles are more convenient
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to use as desired by changing the area of each subrectangle. However,
additional time is needed in this method for dividing the entire watershed
to obtain the computed weight of each station. In practical applicatiom,
this method is only recommended in the case of a watershed such as new moon
shape which is really needed to divide into several subrectangles. The
reason for choosing unequal rectangles in a special shaped watershed will be
discussed in the following section of single rectangle.

(3) Single Rectangle: Based on the Central Limit theorem, the more
random points chosen, the greater the accuracy of the estimate
obtained. As previously discussed, a number of random points between
2000 and 6000 is recommended in a general shaped watershed. Thils is
true only if the relative area ratio of the watershed to the
enclosing rectangle is not less than a certain percent. For example,
the watershed shown in Figure 2 has about 68% as shown in Tables 1
and 2. The percentage implied that 68% of the total random point
will fall within the watershed. If a watershed with relative
area ratio is less than 0.3 and only 2000 random trials are
used, the random points falling within the watershed will be less
than 600 points. This may cause a bias estimation because the
sample error lﬁ/_, used in estimating the portion of the watershed
area may be over 4 percent. If the relative area ratio is only
0.1, the error may be over 10 percent. Therefore, a watershed
which has a lower relative area ratio, more random trials should
be taken. For example, a watershed as given in Figure 4, the
relative area ratio to the rectangle abed is about 0.4, and the
random trials with 2000, 4000, and 6000 are used in this study.

The results of computed weights and relative area ratio in those
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different number of trials are shown in Table 5. As can be

seen from Table 5, comparing this single rectangle, abed

technique with other techniques indicates that the single
rectangle is as accurate as other methods. But, it should be
realized that the single rectangle technique is relatively

easy to use. Another example is the Kissimmee River Basin,
Florida as shown in Figure 5, with 16 rainfall stations used to exemply
the technique of a single rectangle. It should be noted that the
coordinates chosen for enclosing the rectangle is an important
factor. The principle of choosing coordinates for the enclosing
rectangle can be performed as small as possible from which a more
relative area ratio of watershed can be obtained. As can be

seen from Figure 5, the x and y coordinates are chosen from the
enclosing rectangle performed as small as possible. The results
of these estimates with random trials of 2000, 4000, and 6000

are shown in Table 6. Comparing the single rectangle with the
graphical technique as shown in Table 6 indicates that the single
rectangle is applicable to a watershed with a long and narrow
shape.

As mentioned in the section of unequal rectangles, a new moon
shaped watershed from which the relative area ratio to the enclosing
single rectangle may be less than 0.1. In that case, a user
desiring to decrease the statistical error can be overcome by two
ways. First, the user can increase the random points to 10,000
or more from which a 1000 random trial may be falling within the new

moon shaped watershed. Second, dividing the new moon shaped watershed
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into two smaller subrectangles, and the relative subarea ratio
to enclosing subrectangles may be assumed equal to 0.5. Therefore,
the user should be able to justify in an economical way the
accuracy of computation for special shaped watershed by either
increasing the random points or dividing them into a set of smaller
rectangles.

E. New Thiessen Coefficients for Missing Data:

As Linsley et.al. (1958) indicated the greatest limitation of the
Thiessen method is its inflexibility, because a new Thiessen polygon is
required every time there is a change in the gage network. This modified
Monte Carlo method can be used to overcome this limitation. In general, there
are two cases of missing data. Case 1: The missing data of each rainfall
station are priorly known, and any missing period of record are assigned as a
new station set. The distance of a random point from all rain measuring
stations are calculated simultaneously in each station set, and the random
point is assigned to the nearest rain measuring station in each set. Case 2:
the missing data of each rainfall station is posteriorly known, i.e. how many
stations with missing data are unknown. In this case, if a station with a
missing record is found, then that station is omitted and a new gage network
is considered. Based on this new gage network, a computed weights is
performed by a repeating procedure. The detail description of these procedures
will be discussed in the section of computer program.

A watershed of the upper Kissimmee River Basin is used in this study
to test the applicability of this missing data case. The results of new
computed weights for the missing data of each station in these eight stations

are shown in Table 7. The results indicated that the modified Monte Carlo
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techniques are applicable to overcome the limitation of changing the gage

network.

COMPUTER PROGRAM
As described in previous sections of new coefficients for missing data,
the case 2 is more common in practical application. Based on this case 2
problem, the following procedures are developed to compute the weights of
rainfall station:
(1) Enclose the watershed boundaries with a rectangle whose coordinates
are also recorded.
(2) Read the x and y coordinates of the boundary segments.
(3) Compute the weighting factor of each boundary node according to
Rule 2 introduced.
(4) Generate random points with uniform probability over the enclosing
rectangle.
(5) Draw an imaging line from the random point and parallel to the
X-axis.
(6) Count the number of intersections of this line with the boundary
in either the left or the right hand side of the random point.
(7) Test whether the random point is falling within the boundary according
to the Rule 1 indicated.
(8) If the above test fails, increase the counter of rejected points by
one, otherwise, increase the counter of accepted points by one.
(9) If the random point is accepted, then the random point is assigned
to the nearest station.
(10) Repeat the processes 5, 6, 7, 8, and 9 until a large number assigned

is reached.
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(11) Compute the relative area ratio of the watershed boundaries to the
enclosing rectangle by dividing the accepted points by total number
of random points.

(12) Calculate the computed weights of each station by dividing the
assigned points to each station by the total accepted points.

(13) Check whether the record is missing data or not.

(14) If the check is yes, the processes from 4 to 13 are repeated.

The above procedure is simulated to a flow chart figure as shown in
Appendix A. The flow chart was also converted to a computer program for
CDC 3100 computer with Fortran IV language. The computer program is available

from the authors.
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SUMMARY AND CONCLUSIONS

A modified application of Monte Carlo methods to solve the Thiessen

coefficients has been successfully developed. After applying this newly

developed technique to several practical problems, the following

conclusions were drawn:

(1)

(&)

(3)

(4)

(5)

A new technique used for determining the random point falling
within the watershed boundaries was demonstrated.

A new concept to perform the convergence of computed weights

was introduced. The convergence of computed weights depends
upon not only the number of random trials but also the relative
area ratio of the watershed boundaries to the enclosing rectangle.
i.e., if the watershed boundary has less relative area ratio, the
more number of random points should be runm.

A general principle to choose the boundary segments of the entire
watershed is to represent the planform of the watershed by a
polygon with as few sides as possible without changing the basic
shape of the watershed boundaries.

A large number of random points falling outside the boundary of
the watershed which differs greatly from that of the enclosing
rectangle can be overcome by three techniques - equal rectangles,
unequal rectangles, and single rectangle.

This modified Monte Carlo method has been extended to compute

the new weighing factors for the missing data case.



- 16 -

ACKNOWLEDGEMENTS

Authors would like to express our appreciation to Mr. William V.
Storch, Director of the Resource Planning Department, Central and Southern

Florida Flood Control District, for his supervision and guidance.



- 17 -

REFERENCES
Diskin, M. H., Thiessen coefficients by a Monte Carlo procedure.
Journal of Hydrology, Vol. 8 (3): 323-335, 1969.

Hammersley, J. M., and D. C. Handscombe, Monte Carlo methods, Methuen,
London, 1964,

Horton, R. E., Accuracy of areal rainfall estimates, Monthly Weather Review
Vol. 51 (7): 348-353, 1923.

Linsley, R. K. Jr. M.A. Kohler, and J. L. H. Paulhus, Hydrology for
Engineers, McGraw - Hill Book Co., Inc., New York, 1958

Shih, S. F. and R. L. Hamrick, A technique used to determine random point
position: I Theory. Submitted to Water Resources Bulletin, 1973.

Shreider, Y. A. (ed.), The Monte Carlo method, Second Impression,
pergamon, New York, 1967,

Thiessen, A. H., Precipitation averages for large areas. Monthly Weather
Review, Vol. 39: 1082-1084, 1911.






€689°0 L2y el €sv'el  8LED 9ce” L1 202791 .981°§ £9€° €2 8%9°6 0i8°0 00081
168970 0ev €l 0LS'€L  OLlE'0 66¢" /1 9E1° 91 vov G 09e°€2 L1026 ¥08°0 00091
6%89°0 0gp el 0L58°€L #0ETO 182711 9.0°91 10§°G €9€°€¢ 08476 96L°0 ooovl
§¥89°0 gLb el €65°€L 86270 L0211 800791 208§ €887 €2 G086 08.°0 oooel
2¥89°0 ¥8E €L ¥89°€l 28270 9917 /1 9v6° 51 $08°§ 88¢€°€¢ 2986 8LL°0 00001
G€89°0 0S€°El  G9/°€L 99270 090" /1 8lg°Sl 824§ Gev e 0€6°6 84470 0008
0189°0 0ge'el  epL"EL  O¥e'0 088" 91 €48°GL €5¥°§ L0L°¢€e €26°6 161470 0009
§8/9°0 Gl €l GBL'EL 0¥2°0 GLL79L G65°G1 GEY'G Gel've 0%8°6 S¥8°0 000v
084970 0y el 02L°€l  02¢°0 09791 0LeGl 08€°§ 08L°1¢ 099°6 08870 0002
SIULOd
eauy 6 8 L 9 S ¥ € 4 L wopuey
19y "ON uoL3e3s 30 "ON
"I "BL4 UL uMoys paysasiem 404 seade dAlje|ad pue (judduad ul) sjyblem pagndwod A[paLilpoW 1T Slqel
£89°0 el 00°€l 8€°0 EIAN €L°91 FAA v el [ 98°0 6
£89°0 v el 60°€EL G€°0 667 L1 9591 vr's ve"€e 9€°6 98°0 8
£89°0 €V EL v el E'0 96 /1 87 9L 0§°S v el v’6 68°0 L
989°0 6G°€lL L€l 8¢°0 R VA 2€ 9l 6v°G 9e° €2 25'6 6L°0 9
£89°0 25°€lL 9y €l SE'0 65" /1 90'91 Lv's ve e 6976 8L°0 G
16970 9¢ €l €L €l ve'0 09" Lt G091 SL°G 85°¢¢ G6°6 eL 0 ¥
989°0 g€l 99°¢€l ¥e 0 ler /1 7 91 6%° 9 18722 60°0L 0470 €
6/9°0 Ly €l G8°¢€l 92'0 9L 91 266l 6v°G 177€2 ¢0°01 1870 I
8(9°0 v el ¢L'EL 20 19791 £2°G1 8€°g 81" %¢ 99" ¥ 88°0 L
vaUY 6 8 L 9 g ¥ € 4 L *ON
s "ON uotiels EEN
(6961 cuLysig)
. ‘1 'BL4 ul umoys paysdalem 403} sSe3de SALIE|B4 pue (jusduad ul) sjybiem pajnduo) T opqel



poyIsy

SLLTO 652°0 09L°0 L00"0 2s0°0 L6070 882°0 ¥€0°0 Ledlydedg
86850 ELLL'O €8€2°0 G091°0 8000°0 0€50°0 8880°0 ECLE'0  /[PEO°O el
9685°0 vLLL™O €8€2°0 909L°0 8000°0 LEG0'0 8880°0 €¢LE’0  LvE0'0 OlLL
6685°0 ZLLL'o 18€2°0 oL9tL-o 6000°0 1€G0°0  0680°0 l2LE"0  9¥ED"0 0ol
668570 SLLL'O 6L£2°0 oL9tL o 6000°0 8¢G0°0  §680°0 0Z1E°0  9%€0°0 06
€06S°0 9LLL 0 6/€2°0 609L°0 8000°0 6250°0  ¥680°0 2¢lE’0  Gven'o 08
£065°0 8LLL"0 €8€2°0 £09L°0 600070 £250°0  0680°0 ¥2le"0  2¥E0’0 0L
96850 2eLL o ¥8€¢°0 76510 6000°0 0¢50°0  /680°0 €EIE'0  €vE0°0 09
£685°0 9zZLL"0 9/€2°0 166170 600070 0¢50°0  9680°'0 9€LE’0  £¥E0°0 08 poyiau
86850 9clL 0 8LE2°0 609170 8000°0 0250°0 2680°0 0ClE’0  6VE0°0 0v 0l.4e)
0L6s 0 LgLrro L8€C0 6091°0 £000°0 8250°0  /680°0 8LIE'0  L¥E0 0 0¢ S3uoy
£065°0 0ZLL"0 98€2°0 684170 8000°0 €€90°0 S060°0 ZLIE"0  8¥E0°0 0z
£689°0 eeLL o oLvz'o 895170 0100°0 ¢250°0 648070 €91E°0  $2€0°0 oL
0€85°0 091170 009¢°0 olsL-o 0L00°0 0/50°0 0l6Z2°0 0862°0 09€0°0 L
eaJe 27018 31038 000¢
40 e e J4eH Y3J0H 11 paJsLy sutod o000
oLiey uLejunol ueLpul 9%e] ojyilg opue 4 -9|S] *SSLY e wopued
uotlels [lejuley 40 "ON
*squtod WOpURI JO SILQUNU JUSISIITP YITM POUTRIQO SEAI® SATJBTISX pu®B SqUfTem peqnduwoos ayq Jo uosTaedwop "TIT 9Tq®R]



Table IV. Compariéon of computed weights, relative areas and computing
time with different numbers of boundary segments.

Number of boundary segments

103 segments 10 segments

Rainfall Thessien Random points Random points
stations Polygon 2000 6000 2000 6000
Lake Alfred 0.034 0.036 0.030 0.034 0.030
Kiss, I1 0.288 0.298 0.321 0.300 0.321
Isleworth 0.091 0.091 0.087 0.090 0.085
Orlando 0.052 0.057 0.054 0.059 0.055
Bithlo 0.001 0.001 0.001 0.001 0.001
Lake Hart 0.160 0.151 0.150 0.155 0.153
Ind. Lake ST.  0.259 0.250 0.248 0.258 0.252
Mountain Lake 0.115 0.116 0.109 0.103 0.102
Ratio of area 0.583 0.586 0.580 0.586

Computing = 146 247 91 147

time,sec.

* CDC 3100 Computer system with Fortran IV Language was used in
this comparison
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Table VI. Computed weights and relative area ratios of Fig. 5.

Rainfall Graphical nontefCarlg methgdt

; 0. of random points
station method 5000 7000 6000
1 0.029 0.036 0.034 0.030
2 0.102 0.107 0.105 0.107
3 0.002 6.0 - 0.0 0.001
4 0.058 0.054 0.057  0.057
5 0.166 0.179 0.188 0.190
6 0.113 0.117 0.118 0.114
7 0.053 0.044 0.042 0.044
8 0.071 0.054 0.069 0.068
9 0.089 0.081 0.079 0.084
10 0.015 0.016 0.013 0.012
11 0.053 0.047 0.043 0.046
12 0.043 0.044 0.042 0.046
13 0.080 0.096 0.085 0.080
14 0.078 0.066 0.073 0.071
15 0.046 0.058 0.051 0.050
16 0.002 0.002 0.001 0.001
Ratio of 0.621 0.624 0.630

area
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Fig. 2. Watershed used In Example, (After Diskin, 1969).
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Fig. 4. Hypothetical L Shaped Watershed, {After Diskin, 1969).
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APPENDTX A:

{ Read Boundary Points|
i

Compute the Weighting Factor
of each Boundary Point

Qead Station Locations Only
with Rainfall Record

I

Generate Random Point
With Uniform Probability

Flowchart for the modified Monte Carlo technique of computation.

~j Compute Distances of Random Poi
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Assign Point to 4learest
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t
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Generated has Reached The
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Compute The Relative Area Ratig
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Print the Results
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APPENDIX Bt COMPUTER PROGRAM FOR NETERMINING THE THIESSEN COEFFICIENTS
RY MONTE CARLO METHODS

PROGRAM MCMTC

C X IS THE X COORDINATE OF THE BOUNDARY
o Y IS THE Y COORDINATE OF THE ROUNDARY
C NN IS A WEIGHTING FACTOR FOR NODE POINT OF BOUNDARY
o TA AND IX ARE INITIAL ODD INTEGER FOR USING IN RANDU SUBROUTINE
C N IS THE NUMBER OF BOUNDARY POINTS CHOSEN
C M 1S THE NUMBER OF RAIN MEASURING STATION
c NSET IS THE NUMBER OF RANDOM POINTS EXPECTED
c XMIN AND XMAX ARE THE MINIMUM AND MAXIMUM RANGE IN X AXIS
C YMIN AND YMAX ARE THE MINIMUM AND MAXIMUM RANGE IN Y AXIS
C AX IS THE X COORODIMATE OF THE RAIN MEASURING STATION
C AY IS THE Y COORDINATE OF THE RAIN MEASURING STATION
REAL L(500)
DIMENSION X{400)sY(400)+AX(500)+AY(500) +WF(500)sNS(500)sYY(400)
INN(400) s TITLE(D)
c READ INPUT DATA

R3 READ(60+3) IWsTITLE
3 FORMAT (I54+5X,49A8)
TA=S
I1X=7
C CHECK WHETHER THE FEND OF STATION SET
IF(IW.EQ.0) GO TO 85
WRITE(61.5) TITLF
S FORMAT (1H) +//5X+9AB//)
READ (A0 ¢8) NaMgNSET o XMINg XMAX s YMIMoYMAX
8 FORMAT(316+21Xs4FR,4)
WRITE(614108) NesMoNSETaXMINsXMAX s YMINGYMAX
108 FORMAT (//10X«29HNUMBER OF BOUNDARY SEGMENTS =4J4/10X+29HNUMBER OF
IRAINFALL STATIONS =+T74/10Xs25HNUMBER OF RANDOM POINTS =416/10X,s16H
2X=AXTIS MINIMUM =3F8,4/10Xs16HX=AXIS MAXIMUM =4FB8,4/10X+16HY~AXTS M
BINIMUM =4FB844/10X916HY=AXIS MAXIMUM =,FA.4//)
READ(H099) (X(T)sY(I)sI=14N)
9 FORMAT(16FS5.1)
READ(AOs4) (AX(T)9AY(I)sI=19M)
4 FORMAT(16F5.1)
c ADD A SMALL VALUE TO EACH NODE FOR OBTAING THE NN FACTOR
DO 106 I=1.N
106 YY(I)=Y(1)+0,00001
c COMPUTE THF WEIGHTING FACTOR NN FOR EACH BOUNDARY NODE
DO 101 I=1.N
NNI(T)=0
IF(Y(I).EQ.Y(I+1)) GO TO 102
TFAYY(T) oL TeY(T41) oANDYY (1) oGT oY (T)) NN{(IISNN(I)+1
IF(I.FQ.1) GO 7O 103
TFAYY (D) eLTaY(I=1) ANDYY(I)aGTaY(I)) NNCI)=NN(T) ¢l
60 To 101
103 TFAYYLI) oL TaY(NYJANDYY(T)GTY (D)) NN(I)=NN(I)+1



GO TO 101

102 NN(T)=]

101 CONTINUE
N0 107 I=1.M
NS(T) = 0

107 CONTINUE
NA=0
NR=0
XMN=XMAX~XMIN
YMN=YMAX~-YMIN
DO 500 IK=1sNSET
IR=0
iL=0

C GENERATE THE RANDOM NUMBER

CALL RANDU(IXsIY+RANDM)
IX=TY
XT=XMIN + RANDM#XMN
CALL RANDU(TA,IBsRANDN)

IA=1IB
YT=YMIN + RANDN#YMN
X{N+1)=X(1)

Y{(N+1)=Y (1}
c CALCULATE THE NUMBER OF INTERSECTION ALONG THE X AXIS IN EITHER SIDE
DO 300 K=1.N
IF(YTLEQ.Y(K) JANDXTLEQ.X(K)) GO TO 3190
IF(YT.EQ.Y(K) LAND.YTLEN.Y(K+1)) GO TO 10
IF(YT.LEQ.Y(K))Y GO TO 20
TF(Y(K) oGTYTLANDLYTLGTY(K+1)) GO TG 40
TF(YTOTAY(K)GAND Y (K1) GTYT) GO TO 40
GO TO 300
10 TFAX(K) sLT o XTLANDJX(K+1),GT.XT) GO TO 310
TF(X(K) oGTaXT o ANDLX(K+1) JLT.XT) GD TO 310
IF(XT=X(K)) 11+310,12
11 IR=IR+NN(K)
G0 7O 300
12 IL=TL+NN(K)
GO TO 300
20 IF(X(K)~=XT) 12431011
40 XX=X(K)s (YT=Y(K))®(X(K+1)=X(K))/ (Y (Kel}=Y(K))
IF (XX=XT) 424310441
41 IR=IR+1
60 TO 300
42 IL=IL+1
300 CONTINUE
c CHECK WHETHER THE RANDOM POINT IS FALLING WITHIN THE BOUNDARY
IF(UIR=IR/2%2) JEQ.0.0R, (1L =1L/2%2).EQ.0) GO TO 302
310 NA=NA+]
c ASSIGN THE FALLING WHITHIN ROUNDARY POINT TO THE NEAREST STATION
LI =(XT=AX(1) ) ##2 +(YT=AY(}))2#2
SAVE=L (1)
15U =1



DO 91 I =2.M
LID)=(XT-AX(I))#22 +(YT=AY(]))#&2
IF(L(I)=SAVE)13,91+91
13 SAVE=L (D)
ISuUB=1
91 CONTINUE
NS(ISUB) =NS({ISUR)+1
60 T0 500
302 NR=NR+1
500 CONTINUE
C COMPUTE RELATIVE ARFA RATIO AND WEIGHTING FACTOR OF EACH STATION
AF= NA/ (FLOAT (NA+NR))
C PRINT THE RESULTS
WRITE(6147) AF
7 FORMAT (10X+21HRELATIVE AREA RATIO =+F9.6//)
DO 21 I=1eM
WF (I} =NS(I)/FLOAT(NA)
21 WRITE(ALl+6) I.WF(I)
6 FORMAT (10X¢3SHCOMPUTED WEIGHT OF RAINFALL STATIONs I4s3H =sF9.,6/)
GO TO 83
85 CALL EXIT
END



