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ABSTRACT: The use of synthetic tiiie series (artificially simulated time series with specific
and useful properties built into them) to increase the confidence in the statistical parameters of
limiied hydrometeorological time series is the subject matter of this paper. By constructing
fourteen synthetic time series, a sensitivity analysis is performed to assess the net effect of
nonstationarity, number of lags and small sample size on estimated spectral densities. Similarly,
the effects of the harmonic-removal procedure on the resulting residual series and the
confidence limits in cross spectral analysis are examined in the light of synthetic time series
analysis. These analyses clearly indicate the useful supplemental role of synthetic time series in
data analysis.

NATURE OF THE PROBLEM

Most of the modern environmental data processing systems use various advance
statistical techniques to analyze the available bank of data. Among many others, the basic
purposes of applying such methods is to provide statistical information which, in turn,
can be used in practice for:

1) designing sampling intervals (Gunnerson, 1966),

2) validating the interrelationships between the systems parameters (Rodriquez, 1967;
Rodriquez and Yevjevich, 1968),

3) interpreting the response of meteorological systems (Panofsky and Brier, 1968),

4) analyzing the atmospheric and terrestrial branches of the hydrologic cycle (Chow
and Kareliotis, 1970; Kareliotis and Chow, 1972; Roesner and Yevjevich, 1966;
Shahane, 1973).

While trying to extract such practical information with the help of these sophisticated
statistical tecluiques, these techniques are looked upon as black boxes. As a result, there
seems to be an increasing tendency to emrphasize the interpretation task of statistical
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parameters (provided by the black boxes) rather than the understanding of the basic

statistical assumptions of the black boxes. This seems to be grounds for a possible

confrontation between applied scientists and statisticians. A typical debate between these

two groups of disciplines centers oni the basic difference in the fundamental philosophy

and approach of looking at statistical methods. Applied scientists claim that they are

required to make decisions at a particular point in time bad on tile available set of data

and thus their effort is directed towards applying all tile possible statistical techniques

(conventional as well as advanced) to extract the maximuml decisive information from the

available data which may be limited or sufficient. In other words, their basic planning

philosophy seems to be that "something is better than absolute nothing." On the other

hand, statisticians examine the available data firt and then depending on the

characteristics of the data, sample size and the assumptions involved with different

statistical theories, they select the appropriate technique for analyzing the available data.

l owever, considering the fact that most of tile time the data collection step is completely

independent of the data analysis procedure, the collected data may not fulfill the basic

theoretical statistical assumptions. In such cases, a statistician may be unable to analyze

such data to provide any statistical inference confirming the llther philosophy that

"absolute nothing is better than something possibly incorrectly derived from a limited

data base." ReLently, the authors have gone through the above dilemmatic debate while

analyzing some hydrometeorological data of the United States and the main purpose of

this paper is to demonstrate a simple methodology to achieve a golden mean between the

above two extreme viewpoints.

RESEARCH PROCEDURE

In an attempt to explore the characteristic behavior of the hydrometeorological

components of the United States, the available five years monthly observations of

atmospheric moisture transport (period May 1958 to April 1963) were first used to

generate the atmospheric transport (V.Q), precipitable water (AW), precipitation (P),
runoff (R), evapotranspiration (E), and change in storage (AS) components of the

atmospheric and terrestrial branches of the subcontinental hydrologic cycle. Although

various hydrologic adjustments and comparisons strongly reflect the adequacy of our

adopted methodology (Shahane, 1973), the data provides only sixty discrete values for

the hydrometeorological time series. It is to be noted, however, that the available and

generated values constitute a unique set of data based on the largest number of

hydrometeorological observations so far. Therefore, the dilemmatic situation, similar to

that mentioned in the previous section, arIses when one wants to apply statistical

methods to analyze such a relatively short hydrometeorological data set, More

specificially, the dilemma relates to the following questions.

1) Is it feasible to apply sophisticated techniques like autocorrelation, spectral and

cross-spectral techniques to explore the internal characteristics of the limited

hydrometeorological data set?

From the previous discussion, we know that a statistician will probably answer the

above question by "No," and an applied scientist by "Yes." Thus, the second question

immediately follows:

2) Is it possible to devise a simple methodology to satisfy both professionals by

performing a sensitivity analysis of sonime kind?



To provide answers in these directions, the available hydrometeorological time series
were first examinied rougly in terms of the msagnitude of tile individual numbers and tilekind of periodicity associated witll tsem. Based on lhese basic characteristics, some timeseries were artificially formed with different magiltdes for thile sixty iu bers (but i tileobserved range of the available lydromete roilogical series) and with a known period builtinto thesl. Such time series are known as synthetic tinle series. Since, in the

hydrometeorological study reported by Shahaie (1973), it is assumed that the generatingprocess of the Iydronmeteorological components is the sum oit a deterministic and a
random part, for comparative evaluation of data processing techniques, synthetic time
series were also formed witll known deterministic and random parts. Such time series are
showi in table I and 2. Table I includes eight synthetic lime series with a periodicdeterministic part only. Basically these series have different magnitude levels but the same12 onnl periodicity. Two series (No, 5 and 8) are geometric series; one with abnormalrange and the other with the range found in otr hydrometeorological data. Other series intable I were formed systematically with different ranges except series No. 7 which was

formed with a 12 month period having different witlin-year variances. Table 2 depicts six
synthetic t

ime series with both deterministic and random parts built into them. The
periodic deterministic part is shown in column 1. To this deterministic part, a random
part with different variances is added to form the remaining five synthetic time series asgiven in cotlms 2, 3, 4, 5 and 6. The random parts are generated from normal randomnumber tables.

WlVile constructing tlese synthetic time series, there can be an opposing argument that
for obtaining a cimparable and rational picture by synthetic time series, manycombinations of differetlt numbers are required. However, the more realistic counter-argumient to ie above point is that it is possible to include adequately all the possiblebasic periodic antd rand characteristics of hydrometeorological time series in a smallnumber of synhetic tilne series. It is indeed possible to form many other synthetic time

series with different properties. However, they will have diflbrent basic properties whichmay not be applicable to the hydrometeorological tine series in question,

RESULTS AND DISCUSSION
Spectral density analysis is widely used as a powerful data processing tool to detect the

nature of the deterministic part of a stationary time series. Ilowever, the basicclassification of stationary versus nonstationary seems to be inadequately agreed upon by
hydrologists and statisticians. Roesner and Yevjevich (1966) have mathematicallyexpressed stationarity as

E(Xt) = i = constant (first order stationary)
E(Xt Xt+L)= f [(t+L)-t]

= constant 
(second order stationary)

EIXtXt+L Xt+Lz]

-= g(t+L)-t, (t+L ()-t]
=g(LI,L)

= constant (third order stationary)
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TA8I.E 2. Five Synlhtic Time Series
(with Their Determinislic nd Random Parts) 1m d in (omparison if I:tequency Responss.

I'eriodic Synthetic Time Seris wilh Normal Rndom Comnponent
DetcrminLsic Vuriansuce=0.9 arance=2.25 Vaiance=4.42 Varianec=3.16 Vaiance=l.8

I'arl Mean= Mean-0 Mean=O lean=0 Mean=O

1 2

5 5.3216
6 57419

7 7.2401
8 77316

9 9.5455
11 10.0369
II 11 0265
10 95931

9 80229
8 . 76794
7 7.1412
6 5.2259
5 3.7991
6 6,2447
7 8.6123
8 7.8094
9 9.7684

10 10.2665
II 9.6861
10 11,2900
9 9.1423
8 83149
7 71736
6 4,9584
5 5.9382
6 55058

7 57791
8 69280
9 9.1936

10 11 1735
I 109118
55 102597
9 10.0891
8 78.568
7 68757
6 44413
5 54202
6 6.0037
7 6.8947
8 89373
9 9.1281
10 9.5950
II 963711
10 9(1039
9 86311
5 66121
7 5.9790
6 62552
5 5,6887
6 52031
7 74809
8 812742
9 10.3795

I II0 8225
11 1O9822
10 11.4847
9 9.2120
8 93481
7 685093
6 6.6053

.511085
5.6235
7 3795
7.5755

9.8625
100585
11.1420
9.3565

7.4550
749311

8.8045
4.7760
3011695

9.2535

7.6985
101o2130
1514219

89225

1250400
9.2250
8.4980
7.2745
4.350
64835
44280

5.11695
67970
7.72510

11.8555
10.86115
10.4111

10.7220
7.7750
6.8035

3.5355
5.6645
6.0060
6.8135
94820
9.2025

9.3595
8.8355

9.8425
8,4150
58055
5 .5770
64035
60890
4 7411(1
7.7605

11.19110
11.3100
10.9970
123475
9.31951

66985
6.9570

4 5

5.7119 566027
5.4729 555753
7.3513 7 4498
7.4060 7.4949

10.2070 Iultl220
10.0819 1.11693
11.0588 11.0498
9.0991 9.2373
6.8370 7.1687

7.2902 73991
9.5263 91389
4 2864 4 5492
2.2973 2.7118
6.5418 64587
l0 5469 1011111130
7.5779 76429

10.7010 101.4,11
10 5901 10.4996
8.0915 8.5375

12.8560 12,4180
9.3150 9.2667
8.6972 . 8.5691
7.3843 7.3255
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3.7992 4.1367
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where

Xt = the value of tile observed variable at time t,
E(XI) =the expected value,
f and g = finctions,

L, L 
,L z  =timelags,

11 = population lean,
02 = Population-variance of Xt.For hlydronmeteorological 

data, for example, first order stationary mplies that the
expected montly value of January streamlnlow or precipitation is tile same as tile
expected value of any other nonith (say Jully) strleanflow or precipitalion. According to
his statistical definition of stationarity, miost of thlie lhydrometcoroogical data with

to logical data withars easonal are iationt are nonstationary. Although tihe purpose of checking for stationarity is

to make sure that the covariance structure of tile dleta does not change substantially with
tine due to artirically inmposed conditions it seemns that hydraulic engineers have adifferent way of looking at stationarity in their hydrologic data. Muy such efforts by
Chiw (1970) Wastler (1969), first looked for the presence of trend by visual clmparison
or by a suitable testing procedure. If trend was not observed, then the data was presumedto be first order stationary If trend was detected, thie original tise series was made
"stationry (first order) by renseviig tihe obserived trend. Thie trarsforoled tine serieswas tlrii subjected to spectral analysis which assilses stationarity. However the
statistical theory of spectral analysis requires the time series to be second order statioaryalso. lii engineering alrlicaltiots, where statisica results are interpreted in light of

thii
/
)ical pheioires o , if the assumption of second order stationarity is artificiallysatisfied by sotie further transfornlation of tie data, the physical irnterpretation of the

resulting statistical parameters becorles weak (although tile statistical aialysis is more
valid fromi thile statistician's point of view). In other words, the dilemma is that if tile
sarple ecord satisfies the secoid order stationarity condition, then and then only, cas
tile spectal density technique be applied, whereas from die hydrologic viewpoint, if aneffort is nade to satisfy tie above statistical cotndition, physical interpretation is lost. To

get around this dileilma in an engineering way, the effects of violation of the statistical
assumptions on derisive paraneters were studied. During such an effort, the net effect of
lonstionarialy, number of lags ald small sanple sire on the estimated tpectral densities(variances at different frequencies) Was attenmpted and spectral densities for tile synthetic

time series for different lag numbers (i.e., m=6, 12, 18, 24 and 30) were computed.Some of these values are given in tile figures I and 2. It call be seen from these figures
that tihe shape of the spectrum plot for a nonstationlry series is indeed different than the
conventional one (a high spike at tile significant frequency) and it seems that the usualtlhunlb rule if requiring the maxinum Ilumtber of lags in the spectral analysis to be less
tha one teth of the sample record (i.e., m = 6) is applicable to the hydrometeorologicaltinre series which are similar to tile given synthetic time series. Furilherore, since the
shape of the variance.spectruinm plot for the synthetic time series is similar to tiheIydmho°etreorOlgical time series as reported by Shahane (1973) it appears thatIhevariations ill tile statistical parameters are due to the ierent characteristics tIleobserved and generated hydrometerological t ie s nheries a nt charteristics of tile

asui tii oustie 
Series and not due to the violation of

tihe basic st:atistical assumptions underlying the spectral density analysis. Precisely, this is
tihe type of answer needed for tihe second question ilentiorned in the previous sectirm.



Figure I. Effects of NuLtier of Ltgs on Spectral Densiliesof Synltlhelic Time Series No. 1 of Table 2.

To investigate the effects of trend rendmoval procedues on residul series (series formedby subtraciing the deterministic part from tile original seuies) spectral density has been
suggested by some investigators (0lltotra, 1969; Roesner and Yevjevich 1966). if
spectral values for the riesidual series are not significant for ite lags (for which significat
spectrud values are observed for tile originsal series) tlel it indicates te adequacy ofrefloving a fixed function of time frotm the original series ald the resulting residual series
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Figure 2. Standardization of Spectral Density Technique
by Synthetic Time Series Given in Table 2.

can be further analyzed as a stalionary process. Although such a method looks promising,
it seems to be invalid for our hydrometeorological time series because of the fact that the



spectral densities show artificial periodicity in the residual part. This is demonstrated by
the analysis of synthetic time series by Shahane (1973). If four harmonics are removed
from an original synthetic time series, then it is observed Ithat residual series become
random noise and spectral densities at various lags lie well below significant values.
Ilowever, spectral density analysis on these residual series of synthetic time series (i.e.,
after removing four harmonics from the original synthetic time series) indicate the
presence of periodicity. Since hydrologic residual series basically replesent a noise (which
is known to be a nonperiodic type), this type of ambiguous observatioil of periodicity
may be due to (1) inadequacy of spectral density technique for residual analysis because
of smnall sample size or (2) the introduction of artificial periodicity while removing four
harmonics (maybe more than required) from the original series.To investigate the validity
of either of these two points, again, synthetic time series are analyzed. Five synthetic
time series (with known delerministic and random parts) are subjected to a run test. The
number of runs of a particular time series can be instrumental inl assessing the trend,
periodic and randoml properties of the time series. Therefore, the run test was first
applied to the five original syntlletic lime series. Then it was applied to each of these
synthetic series after Iremoval of one harmonic. The results of each run test are given in
table 3. From this table, it is observed that systematic harmonic removal does not appear

TABILE 3. Effects of Htarmonics Removal
on Number of Runs for Synthetic Time Series.*

Number of Runs for Synthetic Time Series with 95%
Periodic and Normal Random Component Having Confidence

Different Variances of Random Part interal
Description Variance Variance Varianc Variance Variance forNo.

=4.42 =0.90 =3.16 =1.80 =2.25 of Runs

Five Original 17 14 16 16 16 22-39
Synthetic Series

Synthetic Series After 36 33 36 36 36 22-39
Remloval of First Harmnonics

Removal of Second Harmonics 38 33 36 38 36 22-39
Removal of Third ilarmonics 38 36 36 36 36 22-39
Removal of Fourth Harmonics 34 36 34 34 31 22-39

*Synthetic time series are No. 2, 3, 4, 5 and 6 of Table 2.

to introduce any kind of artificial periodicity in the residual series. Tllus, out of the two
possible reasons for observing periodicity in residual series (as mentioned above), the
inadequacy of the spectral density analysis seems to be more valid than the other. Such
inadequacy of spectral analysis seems to be related to the inadequate estimation of the
confidence level for the spectral density (which is computed from a forlnulation based on
large sample theory). From the above discussion, it can be summarized that the spectral
density analysis has previously been proposed also for checking the adequate removal of
tile periodic deterministic part from tile original series. Itowever, in our case with small
saple size, spectral density seems to be inadequate for such a purpose. This is another



result which is obtained nmerely by analyzing synthetic tine series and thus shows thesimple and important role of synthetic time series in the data analysis.Like any other statistical teclique, an important point of cross-spectral analysis is
related to tile estimation of 95% confidence limnit

s for sample coherences and phase
angles. Among these two parameters, significant values of coherence indicate qaitativelythe dependence structure 

i c qlbetween 
the hlydronleteorologica piaranmeters in questlion.

Whereas sophisticated analysis (requiring lage sample size) on phase angles cat estiate
quantitatively the dependence between Ihydrologic com ponents , o ru saple size, it
seems better, statistically, to emphasize coherence conidence lilts rather thanevalaling tile significance values of phase angles. To estimate such a conlidece liit forcorlereace, there are two formulations available in tile ileratlre According to the

formrslation given by Goodman, the approxinate formula for lhe limiting coherence atprobability level p is
= I-pl(df.-l)

where d.f. = degrees of freedom

=2N -2

N = sample size

m = lang number (6 iu our case)
Froms the tablle provided by Panonfsk rdlnr'9
From the table provided by Paosky and Brier (1958), in our case with 20 degrees of
fieedo, aid 95% linlit of coherence is 0.38. Thlis mieans that the clarces are I in 20 that
a coelretce of 0.38 or less will be found by accident. If the colereice values of tie
residual series of a parlicular data set are higher than this value of 0.38 for most of thesigniilcant frequencies, then dependence between thoseversa. 

parameters is ascertained and viceAnother approach is proposed by Granger and Ilatanaka (1964). In this approach,instead of comlpuring degrees of freedor, the ratio N is computed ad from tire tablespirovided by tire above group, a 95% liniting coherence is estimated. In our case, with
N = 60 and m 6, rthe linmiting value of coherence with 95% level of conflidence is given
0.73, wheseas Goodiran's approach provided a value of 0.38. Therefore, a question now
arises as to "which of these two approaches is better and is to be selected?" It seems that
thie answer to this question may be again provided by the analysis of synthetic time series.
If ile looks at tile colherences of tile original and residual series of synthetic time series(given in tables 4 and 5), it is nolued that thre coerences for most of the combinations oflag 0 and I have values greater than 0.38. Considering tile fact that the residual series ofthe synthetic tirte series are normal va'iates, there is likely to be no dependence between
these residual series. Therefore, limiting coherence of 0.73 given by Granger and
Ilatanaka seels to be nmore realistic arld convineing tlhan Goodman' estrirlates Thus,
once again synthetic time series are used to select out tire alppropliae confidence limitsfor tie relatively limited hlydroireteorological time series.

CONCLUSIONS

Iased on the discussion presented in previous sections coupled with anm additional
detailed analysis reported by Slhallane (1973), the following conclusions can be drawn:



1) Althouge tile use of spectral analysis to investigate the effects of trend removalprocedure on residual series ist suggested by Malhotra (1969) Roesner andYevjcvic (1966), it is found to be hladequate for our hydromneeorological timeseries because spectral densily shows artificial periodicity in thie residual part of tiesie series. This can be clearly demionstrated by tie allalysis or syl oeiic tieSeries,

2) The results of the synthetic lime series analysis in investigating the comparative
reslponse io somie of the critical statistical poilts are encouragirlg. Use of suclh seriesespecially in spectral anid cross-spectral aialysis for selectillg tile proper number oflags, smootliing technique and confidence limits is benteficial

3) Sensitivity analysis performed on statistical variables of hydrometeorological 
and

synthetic time series reveals Ithat the proper nIllber of lags and I lannnilg-Ttkeyweighls are more ilmportanlt in crossslpectral analysis tlhan il spectral densityanalysis as given by Shahante (1973). This is due to ie unrealistic output of

TAB LE 4. Coherences andt Phase Angles of Originalfim Synthetic Time Series Given in Table I.
Pair o-Synuetic Coherenes and Phase Anges** ot Six Lags

Time Series 0

3 and2 0.949 0.878 0.055 0.013 0010 0.015 0.007
3 ad 5 .03 0.2 0110 0.03 0.12 0.06 0.07
Sa 0.909 0 11.846 0.66 0.026 0.023 0.040 0.0210.00 0.00 0.00 0.00 0.14 0.01 0.01Sa 0.0886 0.28 0.169 0.029 0.029 ,0152 0.026-0,05 -0.05 -0.03 -11.03 0.06 0.05 1.05and 8 9.812 0,633 0.049 1.018 0.019 0033 0.178-0.23 -0.2 0.t -0.27 0.14 -0.16 -0.16

4 and 2 0.880 0.817 0.055 0.01 0013 0.023 0.0100.07 0.07 0.02 0.07 0.04 0.00 0.004 and 0 .869 0.00 0.072 0,035 0.1135 0.067 0.0340.04 0.04 0.03 0.03 -0.013 -0.04 -0.04
4 andl 0.01 0.769 0.37 0.003 01000 0.001 0.00111.19 0.18 0.11 0.18 0.115 5.75 5.86
2

ands 0.906 0.039 .055 0.014 0.011 0.019 0.008-0.03 -0.13 0.01 -0.04 -0.116 -0.04 -0.046and 2 9.907 0.619 0.037 0.009 0.017 0.014 0.13580.24 01.22 -0.12 0.43 -41.14 0.29 0.236 and 5 9.561 0.627 0.052 0.022 11.025 0.043 0.2500.240 0,210 -0.130 0.29 -0.13 0.201 0.180
6 and 4 9.300 0.620 0.055 0.025 0.1133 0056 0.3230.21 0.180 -0.18 0.25 -0.09 0.22 0.216 iid 1 9480 0.561 0.022 0,0012 0.001 0.001 0.0320.31 0.31 1.0 0.93 -5.29 5.71 5.87
* Upper Values Represent ('lherecues and**Lower Values Rlepresent Please Angles in iMonths



coherence values in the absence of the above two key factors (proper number of
lags and liamming-Tukey weights).

4) Using synthetic time series coupled with the run test, Spearman's T test, Cox and
Stuart tests, a conventional procedure of formulating a mathematical model can be
modified and illustrated for tile atmospheric divergence (V*Q) time series of a large
eastern region as shown by Shahane (1973).

5) As demonstrated in the previous sections, synthetic time series can be effectively
used in

a) detecting the erratic (or otherwise) behavior of the statislil parameters when
the basic data does not follow the basic assumptions underlying many advanced
and applied statistical techniques, and

b) increasing conlidence in the final estimates of statistical parameters (for
example, autocorrelation, spectral and cross-spectral parameters) of ntulsta.
tionary hydrometeorological time series.

TABLI- 5. Coherences of Residual Series of
It Synthetic Time Series~lihl in Ta.-ll 1

Pair of Coherences* and Phase Angles** for Six Lags
Synulthetic
Time Series 0 1 2 3 . 4 5 6

3 and 2 0.527 0.457 0.243 0.280 0.294 0.429 0.185
0.07 0.06 -0.04 0.05 0.09 0.06 0.05

3 and 5 0.542 0.506 0.370 0.462 0.386 0.554 0.257
0.03 0.03 0.000 0.020 0.0113 0.03 0.03

3 and 4 0.533 0.497 0.384 0.505 0.442 0.611 0.271
0.00 0.00 0.02 0.00 0.07 0.08 0.07

3 and 8 1.065 0.384 0.389 0.390 0.589 0.439 0.741
-0.03 -0.01 0.01 -0.07 0.00 0.00 0.00

4 and 2 0.495 0.415 0.221 0.277 0.301 0.446 0.190
0.07 0.07 -0.02 0.05 0.00 -0.05 -0.05

4 and 5 0.511 0,460 0.337 0.451 0.395 0.588 0.268
0.02 0.03 0.03 0.01 -0.04 -0.05 -0.04

4 and 1 0.002 0,002 0.000 0.000 0.000 0.004 0.005
2.13 3.27 -5.43 3.61 5.99 5.78 5.87

2and5 0.500 0.421 0.215 0.256 0.266 0.411 0.183
-0.04 -0.03 0.40 -0.03 0.00 0.00 0.00

6and2 0.960 0.311 0.229 0,217 0.404 0.325 0.517
0.09 0.07 -0.07 0.15 0.06 0.02 0.02

6 and 5 1.009 0.350 0.347 0.350 0:528 0.431 0.732
0.06 0.05 -0.02 0.10 0.03 0.03 0.03

6 and 4 0.989 0.343 0.356 0.380 0.603 0.472 0.766
0.04 0.02 -0.05 0.08 0.06 0.08 0.07

6 and 1 0.005 0.001 0.000 0.000 0.000 0.003 0.012
2.15 3.27 -5.29 4.12 -5.73 5.98 5.99

SUtipper Values Represent Coherences and
**Lower Values Represent Phase Angles in Months - T'- . .. S TI .
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