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ROLE OF SYNTHETIC TIME SERIES
IN HYDROMETEOROLOGICAL DATA ANALYSIS!
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ABSTRACT: ‘The use of synthetic tiihe series (artificially simulated time series with specific
and useful properties built into them) to increase the confidence in the statistical parameters of
limited hydrometeorological time series is the subject matter of this paper. By constructing
fourteen synthetic time series, a sensitivity analysis is performed to assess the net effect of
nonstationarity, number of lags and small sample size on estimated spectral densities. Similarly,
the effects of the harmonic-removal procedure on the resulting residual series and the
confidence limits in cross spectral analysis are examined in the light of synthetic time series
analysis. These analyses clearly indicate the useful supplemental role of synthetic time series in
data analysis.

NATURE OF THE PROBLEM

Most of the modern environmental data processing systuins use various sdvance
statistical techniques to analyze the available bank of data. Among many others, the basic
purposes of applying such methods is to provide statistical information which, in turn,
can be used in practice for: .

1) designing sampling intervals (Gunnerson, 1966),

2) validating the interrelationships between the systems parameters (Rodriquez, 1967;
Rodriquez and Yevjevich, 1968),

3) interpreting the response of meteorological systems (Panofsky and Brier, 1968),

4) analyzing the atmospheric and terrestrial branches of the hydrologic cycle (Chow
and Kareliotis, 1970; Kareliotis and Chow, 1972; Roesner and Yevjevich, 1966;
Shahane, 1973).

While trying to extract such practical information with the help of these sophisticated
statistical techniques, these techniques are looked upon as black boxes. As a result, there
seems to be an increasing tendency to emphasize the interpretation task of statistical
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parameters (provided by the black boxes) rather than the understanding of the basic
statistical assumptions of the black boxes. This scems to be grounds for a possible
confrontation between applied scientists and statisticians. A typical debate between these
two groups of disciplines centers on the basic difference in the fundamental philosophy
and approach of looking at statistical methods. Applied scientists claim that they are
required to make decisions at a particular point in time based on the availuble set of data
and thus their effort is directed towards applying all the possible statistical techniques
(conventional as well as advanced) to extract the maximum decisive information from the
available data which may be limited or sufficient. In other words, their basic planning
philosophy seems to be that “something is better than absolute nothing.” On the other
hand, statisticians examine the available data firt and then depending on the
characteristics of the data, sample size and the assumptions involved with different
statistical theories, they select the appropriate technique for analyzing the available data.
However, considering the fact that most of the time the data collectiun step is completely
independent of the data analysis procedure, the collected data may not fulfill the basic
theoretical statistical assumptions. In such cases, a statistician may be unable to analyze
such data to provide any statistical inference confirming the other philosophy that
“absolute nothing is better than somcthing possibly incorrectly derived from a limited
data base.”” Retently, the authors have gone through the above dilemmatic debate while
anulyzing some hydrometeorological data of the United States and the main purpose of
this paper is to demonstrate a simple me(hodo]ogy to achieve a golden mean between the
above two extrenie viewpoints,

RESEARCH PROCEDURE

In an attempt to explore the characteristic behavior of the hydrometeorological
components of the United States, the available five years monthly observations of
atmospheric moisture transport (period May 1958 to April 1963) were first used to
generate the atmospheric transport (V+Q), precipltable water (AW), precipitation (P),
runoff (R), evapotranspiration (E), and change in storage (AS) components of the
atmaspheric and terrestrial branches of the subcontinental hydrologic cycle. Although
various hydrologic adjustments and comparisons strongly reflect the adequacy of our
adopted methodology (Shahane, 1973), the data provides only sixty discrete values for
the hydrometeorological time series. It is to be noted, however, that the available and
generated values constitute a unique set of data based on the largest number of
hydrometeorological observations so far. Therefore, the dilemmatic situation, similar to
that mentioned in the previous section, arlses when one wants to apply statistical
methods to analyze such a relatively short hydrometeorological data set. More
specificially, the dilemma relates to the following questions.

1) Is it feasible to apply sophisticated techniques like autocorrelation, spectral and
cross-spectral techniques to explore the internal characteristics of the limited
hydrometeorological data set? :

From the previous discussion, we know that a statistician Wl" probably answer the
ubove question by “No,” and an applied scientist by “Yes.” Thus, the second question
immediately follows:

) Is it possible to devise a simple methodology to satlsfy both professionals by

performing a sensitivity analysis of some kind?



To provide answers in these directions, the available hydrometeorological time series
were first examined rougly in terms of the magnitude of the individyaj numbers and the
kind of periodicity associated with them. Based on these basic characteristics, some time
seties were artificially formed with different magnitudes for the SiXty numbers (but in the
observed range of the available hydromelcurologica! series) and with a known period built
into. them, Such time series are known as synthetic time series. Since, in the
hydromereurulogical study reported by Shahane (1973), it is assinned that the generating
process of the hydromeleomlogical components is the sum of g deterministic and 5
random part, for comparative evaluation of data processing techniques, synthetic time
series were also formed with known deterministic and random parts, Such time series are
showni in table | and 2. Table | includes eight synthetic time serjes with a periodic
deterministic part only. Basically these series have different magnitude levels but the same
12 month periodicity. Two series (No, § and 8) are geometric series; one with abnormat
range and the other with the range found in our hydrometeorologicul data. Other series in
table 1 were formed systematically with different Tanges except series No. 7 which was
formed with 3 12 month perijod having different within-year variances, Table 2 depicts six
synthetic time series with both deterministic and random Parts built into them. The
periodic deterministic part is shown in column 1. To this deterministic part, a random
part with different variances is added 10 form the remaining five synthetic time series as
given in columns 2,3,4,5and é. The random parts are generated from normal random
nuntber tables,

While ronstructing these synthetic time series, there can be an opposing argument that
for obtaining a comparable . and rational picture by synthetic time series, many
combinations of different numbers are required. However, the more realistic counter-
argument 1o the above point is that it is possible to include adequately al] the possible
basle periodic ang random characteristics of hydmmeteurological time series in a small
number of synthetic time series, It is indeed possible to form many other synthetic time
series with different broperties. However, they will have different basic propertles which
miy not be applicable 1o he hydmmeteorologlcul time series in question,

RESULTS AND DISCUSSION

Spectral density analysis is widely used gs 3 powerful data processing tool to detect the
nature of the deterministic part of 3 stationary time serjes. However, the basic
classification of stationary versus nonstationary seems to be inadequately agreed upon by
hydrologists ang Statisticians. Roesner and Yevijevich (1966) have mathematically
expressed stationarity as

E(X) =4 = constant (first order stationary)
EX{ Xpe )= F[(t4L) 1]
=g?+y3 ]
= constant (second order stationary)

ElXXpp, XerL,]
=g[(t+L,)-t, (t+L,)~t]
=g(L;, L)
= constant (third order stationary)
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Synthetic Time Series
t 2 3 4 5 6 ? 8

o 5 10 -1 1 -0
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0.0
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1.99
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3.00
114
4.66
5.82
728
9.03
11.28
H.02
125
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ive Synthetic Timie Series A
{with Their Determinisiic and’ Random Pasts) Used in Comparison of Frequency Responscs,

Syntheiic Time Series with Nornial Random Component

Periodic
Deterministic Variance=0.9  Variance=2.25 Variance=4.42 Variance=3.16  Vasiance=1.8
Part Mean=0 Mean=0 Mean=0 Mean=0 Mean=0
1 2 k) 4 s )
5 5.3216 5.5085 5119 56027 5.6100
6 5.7419 56235 54729 5.5538 5.5490
7 7.2400 7.3795 7513 74498 74554
8 1.71316 1.575§ 7.4060 7.4949 7.4906
9 9.5455 9.8625 10.2070 1401220 O350
i 10.01369 10.05858 10.0819 16.0693 1.0702
1 11,0268 11.0420 110584 11.0498 110504
10 9.5931 9.3565 9.0991 9.2373 9.2278
£l 80229 7.4550 6.8370 7.1687 7.1460
8 76794 7.4930 7.2902 '7.3991 1.3916
7 7.1412 B.8045 9.5263 91389 9.1654
6 5.2259 4.7760 4.2864 4.5492 4.5312
5 37991 3.0695 2.2973 27118 26834
6 6.2447 6.3870 6.5418 64587 6.4644
7 860123 9.253% 10,5469 100030 10.0402
8 7.4094 7.6985 7.5779 76429 7.6382
9 47644 10,2150 n.2e10 10,4401 14580
to 12665 104209 10.5901 10.49496 10.5058
[N 9.6861 B.9225 B.091S B.5378 8.5(10
to 112900 120400 12.8560 124180 12,4440
9 9.142) 9.2250 9.3150 9.2667 9.2700
8 83149 84980 R6972 B.5691 8.5976
7 71736 7.2743% 7.3843 7.3255 7.3294
6 4.9584 4.3530 3.6942 70470 4.0236
5 59382 6.4835 7.0769 6.7584 6.7802
[ 50058 4.4280 3.7992 4.1367 41136
7 57791 5.0695 4.2973 47118 4.6834
8 69280 6.7970 6.6268 5.9509 §.9660
9 9.1936 7.7250 7.2150 7.4887 2.4700
14 11.1738 11.8555 12.5977 12,1993 12.2266
2 10.9118 10.8608 10.8047 10.8346 11.8326
1 f0.2597 10411 10.5754 104872 1.4932
9 10.0891 10.7220 11.4108 110354 11.0664
B 7.8568 77750 76829 7.7316 7.7282
7 6.8757 6.4035 6.7249 1.7671 6.7642
3 4.4413 ® 3.5358 2.5497 3.0788 3.0426
5 54202 5.6645 5.9303 5.7876 5.7974
[ 6.0037 6.0060) 6.0084 6.007t 60072
1 6.8947 6.8135 6.766% 6.8027 6.8002
& BH373 3.4820 10.6748 9.7566 9.7784
9 9.128) 9.2025 9.2835 9.2400 9.2430
10 9.5950 9.3595 9.1033 9.2408 9.8314
11 96311 8.8355 19697 R.4344 84026
10 9.0039 9.8425 9.7798 9.8133 9.8110
9 8.6301 84150 B.1810 B.3066 8.2980
8 66121 5.8055 493717 5.3488 5.3666
7 59760 5.5770 4.8496 51794 5.1568
3 6.2552 6.4035 6.5649 64782 6.4842
5 56487 6.0890 6,526 6.2908 6.3064
6 5203 4.7400 4.2360 4.5068 4.4840
7 7.4809 7.7605 8.0647 7.9014 49126
8 82742 BA23S B6069 8.5138 8.5202
9 1n.379s v 12.0660 15958 H.62H0
14 10.6225 113000 11.8207 11.5418 11.5606
1 L9822 10.9970 10,9958 119966 10.9964
10 114847 12,3475 12,3865 12,7825 12.4170
9 9.2020 9.3108 94475 1.3787 9.3834

8 9.3481 100315 10.9841 10,5268 10.5578
7 6.8093 6.6985 6.5779 6.6417 66382
6 6.60653 6.9570 7.3398 7.134) TA489




where

X = the value of the observeq variable at time ¢,
E(Xp = the expected value,
fand g = functions,

LL,L, =time lags,

u = population mean,

02

For hydrumeteorological data, for example, first order stationary implies that the
expected monthly value of January streamfow or precipitation js the same as the
expected value of any other month (say July) streanlow or precipitation, According (o
this statistical definition of Slationarity, most of e hydrometpomlogicul data with
seasonal variations are nonstationary, Although the purpose of checking for stationarity js
to make sure that the covariance structure of the data does not change substantially with
time due o artifically impused conditions, it seeins that hydraulic engineers have 5
different way of looking at stationarity in their hydrologic data, Many such efforts by
Chow (1970), Wastler (1969), first locked for the presence of trend by visug) comparison
or by a suitablg testing procedure. If trend was noy observed, then the data was presumed

= population-variance of Xy

statistica}l theory of spectral analysis requires the time serjes to be second order stationary
also, In engineering applications, where statistical results are interpreted iy light of
physical phenomenon, i the assumption of second order stationarity js artificially
satisfied by some further transformation of the data, the physical interpretation of the
resulling statistjcal parameters becomes weak (although the Statistical analysis js more
valid from the Statistician’s point of view). In other words, the dilemmg j5 that if the
stmple record satisfies the second order stationarity condition, then and then only, can
the spectral density technique be applied, whereas from the hydrologic viewpoint, if an
effort is made to satisfy the above Statistical condition, physical interpretation s lost. To
Bet around this dilemmg in un engineering way, the eflects of violation of the statistica]
assumptions on decisive'purnmeters were studied, During such an effort, the net effect of
honstationarity, numper of lags and smal] saniple size on the estimated spectrg) donsities
(variances gt different frequencies) was attempted and speciry) densities for the synthetic
time series for different lag numbers (ie, m=6, 12, 18, 24 angd 30) were computed.
Some of these values are given jp the figures 1 gng 2. 1t can be seen from thege figures
that the shape of the spectrum plot for nonstationary serigs js indeed different than the
conventional one (a high spike at the significant frequency) ang j seems that the usugl
thumb rule of Tequiring the naximun number of lags in the spectral analysis to pe less
than one tenth of the sample record (ie,m=6)js applicable to the hydromcteoro]ogical
time series whicl are similar to the given synthetic {ime series, Fnrlhermme, since the
shape of the variance-spectrum plot for the synthetic time serjes is similar to the
hydromeleorologicul time series a5 feported by Shahane (1973), it appears that qhe
variations in the statistical paramelers are due to (he inherent characteristics of the
observed and generated hydmmerem-ological time series and not due to the violation of
the basic statistical assumptions underlying (he spectral density analysis, Precisely, (hjs js
the type of answer needed for the second question mentioned in the Previous sectiog.
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Figure . Effects of Number of Lags on Spectryt Densities
of Synthetic Time Series No, ] of Table 2,

To investigate the effects of trend femoval procedures on residual serleg (series formed
by subtracting the deterministic part from the original series), spectrai density has been
suggested by some investigators (Malhotra, 1969; Roesner ang Yevievich, 1966). 1f
spectral values for the residual series are not significant for the Iags (for which significant
speciral values gre observed for tie original series) then jt indicates rhcvadequacy of
removing a fixed function of time from the original series and the resulting residual series
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can be further analyzed as a stationary process. Although such a method looks promising,
it seems to be invalid for our hydrometeorological time series becase of the fact that the
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spectral densities show artificial periodicity in the residual part. This is demonstrated by
the analysis of synthetic time series by Shahane (1973). If four harmonics are removed
from an original synthetic time series, then it is observed that residual series become
random noise and spectral densities at various lags lie well below significant values.
However, spectral density analysis on these residual series of synthetic time series (ie.,
after removing four harmonics from the original synthetic time series) indicate the

“ presence of periodicity. Since hydrologic residual series basically represent a noise (which

is known to be a nonperiodic type), this type of ambiguous observatih of periodicity
may be due to (1) inadequacy of spectral density technique for residual analysis because
of small sample size or (2) the introduction of artificial periodicity while removing four
harmonics (maybe more than required) from the original series. To investigate the validity
of either of these two points, again, synthetic time series arc analyzed. Five synthetic
time series (with known deterministic and random parts) are subjected to a run test. The
number of runs of u particular time series can be instrumental in assessing the trend,
periodic and random propertics of the time series. Therefore, the run test was first
applied to the five original synthetic time series. Then it was applicd to each of these
synthetic series after semoval of one harmonic. The results of each run test are given in
table 3. From this table, it is observed that systematic harmonic removal does not appear

TABLE 3. Effects of Harmonics Removal
on Nuimber of Runs for Synthetic Time Series.*

Number of Runs for Synthetic Time Series with 95%
Periodic and Normal Random Component Having Confidence

Different Variances of Random Part Interval

Deseription Variance Variance Variancd Variance Variance  for No.
=442 =090 =306 =1.80 =2.25 of Runs

Five Original 17 14 16 16 16 . 2239
Synthetic Series

Synthetic Series After 36 3 36 36 36 2239
Removal of First Harmonies *

Removal of Second Harmonics 38 33 36 38 36 22-39
Removal of Third Harmonics 38 36 36 36 . 36 22-39
Removal of Fourth Harmonics 34 36 34 34 31 2239

*Synthetic time series are No. 2, 3, 4, § and 6 of Table 2.

to introduce any kind of artificial periodicity in the residual series. Thus, out of the two
possible reusons for observing periodicity in residual series (as mentioned above), the
madequacy of the spectral density analysis seems to be more valid than the other. Such
inadequacy of spectral analysis seems to be related to the inadequate estimation of the
confidence level for the spectral density (which is computed from a formulation based on
large sample theory). From the above discussion, it can be summarized that the spectral
density analysis has previously been proposed also for checking the adequate removal of
the periodic. deterministic part from the original series. However, in our case with smiall
sample size, spectral density seems to be inadequate for such a purpose. This is another



result which is obtained merely by analyzing synthetic time series ang thus shows the
simple and important role of synthetic time series iy the data analysis,

Like any other Statistical technique, an important point of Cross-spectral analysis i
related to the estimation of 959 contidence limits for sample coherences and phase
angles. Among these two parameters, significant values of coherence indicate qualitatively
the dependence structure between (he hydrometcorologicul Parameters in question,
Whereas sophisticated analysis (requiring large sample size) on phase angles can estimae
quantitatively the dependence between hydrologic components, for our sample size, i
seems  better, statistically, to emphasize coherence confidence limis rather than
evalualing the significance values of phase angles. To estimate such 4 confidence limit for
coherence, there are two formulations available in the literature. According to the
formulation given by Goodman, the approximaie formula for (e limiting colerence at
probability leve] pis

= |-pl/(d.r-1)
where d.f = degrees of freedom

=2N-m/2
m

N = sample size
m= lag number (6 in our case)

From the tyble brovided by Panofsky and Brier (1958), in our case with 20 degrees of
freedom, and 95% limit of coherence is 0,38, This means that the chances are 1 in 20 that
a colerence of 0,38 or less will be foungd by accident. If the coherence values of the
residual series of 5 particular data set gre higher than this value of 0.38 Tfor most of the
significant frequencies, then dependence between those parameters s ascertained angd vice
versa, .

Another approach s proposed by Granger angd Hatanaka (1964). mn this approach,
instead of contputing degrees of freedoxll, the ratio ,{—‘f is computed and from the tables
provided by the aboye group, a 95% limiting coherence s estimated. In oyr case, with
N=60and in = 6, the limiiting value of coherence witl 95% level of confidence js given
0.73, whereas Goodman’s approach provided a vajue of 0.38, Therefore, 3 question now
arises as to “which of these two “pproaches is better and is ¢o be selected?” I seems that
the answer ig 1his question may be again provided by the analysis of synthetjc time series,
If one fooks at the coherences of the original and residug] series of synthetje time serjes
(given in tables 4 and $), it is noted that the coherences for maost of the combinations of
tag 0 and 1 haye values greater than 0.38. Cunsiderlng the fact that the residual series of
the synthetic time series are normal viriates, there js likely to be no dependence between
these residual series, Therefore, limiting coherence of 0,73 given by Granger and
Hatanaka seems to be more realistic and convincing than Goodman’s estimates, Thus,
O1ce again synthelic time series are used to select out the appropriate confidence limitg
for the relatively limited hydrumetcorolugical time series.

CONCLUSIONS

Based on the discussion presented in previous sections coupled wigh an additional
detailed analysis reported by Shahane (1973), the following conclusions can be drawn:




1) Although the pge of spectral analysis to investigate the effects of trend removal
Procedure on residyg) series is suggested by Malhotra (1969), Roesner and
Yevjevich (1966), it is found to be inadequate for our hydromelcorolugical time
series becayse spectral density shows artificial periodicity in the residual part of the
time series. This can be clearly demonstrated by the analysis of syniheyjc time
series,

2) The results of the synthetic ime sevies analysis in invcsliguling the comparative
respunse 1o some of the critical statistica] points are encouraging. Use of syel, series
especially in spectra] gng cross-spectral analysis for selecting the Proper number of
lags, smoothing technique and confidence limits js beneficial, ’

3) Sensitivity analysis performed o Statistical variables of hydrome(emolngical and
synthetic time serjes reveals that (he Proper number of fags and qunming-’l”ukcy
weights are more important in cross-spectral analysis than in spectral density
analysis as piven by Shahane (1973). This is due to the unrealistic output of

TABLE 4. Coherences ang Phase Angles of Original
Bim Synthetic Time Serics Given in Table 1

Puir of Coherences* gng Phase Angles** for Six Lags .
Synthetie \\
Time Series 1] 1 2 3 4 5 6

/\ 3and 2 0.949 0.878 0.055 0.013 0.010 0.015 0.007
0.03 0.02 .00 0.03 0.12 0.06 0.07

3and 5 0.909 0.846 0.066 0.026 0.023 0.040 0.02¢
0.00 0.00 0.00 0.00 0.04 0.0] O'Ol,

3and4 0.886 0.828 0.069 0.029 0.029 0,052 0.026
-0.05 -0.05 ~0.03 -0.03 0.06 0.05 0.05

3and 8 9.812 0.633 0.049 0.018 0.019 0.033 0.178
-0.23 -0.2) 0.1t -0.27 0.14 ~0.16 -0.16

4and 2 0.880 0.817 0.055 0.015 0.013 0.023 0.010
0.07 0.07 0.02 0.07 0.04 0.00 0.00

4and 5 0.869 0.808 0.072 0.035 0.03s 0.067 0.034
0.04 0.04 0.03 0.03 -0.03 ~0.04 -0.04

4and 1 0.801 0.769 0.037 0.003 0.600 0.00t 0.001
19 0.18 0.11 018 0.08 5.75 5.86

2and s 0.906 0.839 0.055 0.014 0.011 0.019 0.008
-0.03 -0.03 0.01 -0.04 ~0.06 ~0.04 ~0.04

6and 2 9.907 0619 0.037 0.009 0.007 0.014 4158
0.24 0.22 ~0.12 043 -0.14 0.29 0.23

Gand 5 9.561 0.627 0.052 0.022 0.025 0.043 0.250

0.240 0.210  -0.13¢ 0.29 -0.13 0.20 0.180

6and 4 9.300 0.620 0.055 0.025 0.033 0.056 0.323
0.21 0.180 -o.18 0.25 -0.09 0.22 0.21

6and 1 9.480 0.561 0.022 0.002 0.001 0.001 0.032

0.31 0.31 0.08 0.93 ~5.28 571

* Upper ues Represent Coherences ang
**Lower Values Represent Plase Angles in Mcmhs.wmm




coherence values in the absence of the above two key factors (proper number of
lags and Hamming-Tukey weights).

4) Using synthetic time series coupled with the run test, Spearman’s T test, Cox and
Stuart tests, a conventional procedure of formulating a mathematical model can be
modified and Hlustrated for the atmospheric divergence (V+Q) time series of a large
eastern region as shown by Shahane (1973).

5) As demonstrated in the previous sections, synthetic time series can be effectively
used in

a) detecting the erratic (or otherwise) behavior of the statistical parameters when
the busic data does not follow the basic assumptions underlying many advanced
and applied statistical techniques, and

b) increasing confidence in the final estimates of statistical parameters (for
example, autocorrelation, spectral and cross-spectral parameters) of nonsta-
tionary hydrometeorological time series.

TABLE 5. Coherences of Residual Serics of . 1
@ Synthetic Time Seriesghl‘h in T‘-& e 1

Pair of Coherences® and Phase Angles** for Six Lags
Synthetic .

Time Series 0 1 2 I . 4 5 6

AN 3and 2 0.527 0457 0.243 0.280 0.294 0429 0.185
0.07 0.06 -0.04 0.05 0.0% 0.06 0.08

3and § 0.542 0.506 0.370 0.462 0.386 0.554 0.257
0.03 0.03 0000 0020 0403 0.03 0.03

3and 4 0.533 0497 0384 0.505 0442 0611 0.271
0.00 0.00 0.02 0.00 0.07 0.08 0.07

3and 8 1.065 0384 0389 0390 0.589 0439 0.741
-0.03  -0.01 0.01 -0.07 0.00 0.00 0.00

4and 2 0495 0415 0221 0277 0301 0446  0.190
0.07 0.07 -0.02 0.05 0.00 -0.05 ~0.05

4and 5 0.511 0460 0337 0451 0395 0588  0.268
0.02 0.03 0.03 0.01 -0.04 -0.05 -0.04

4and 1 0.002 0002 0000 0.000 0.000 0004 0.005
213 327 -5.43 3.61 5.99 5.78 5.87

2and § 0.500 0421 0.215 0.25  0.266 0411  0.183
-0.04 -0.03 0.40 -0.03 0.00 0.00 0.00

6and 2 0.960 0.311 0.229 0.217 0.404 0.325 0.517
-0.09 0.07 -0.07 0.15 0.06 0.02 0.02

6and S 1.009 0.350 0.347 0.350 0:528 0.431 0,732
0.06 0.05  -0.02 0.10 - 003  0.03 0.03

6and 4 0.989 0.343 0.356 0.380 0.603 0.472 0.766
.04 0.02 -0.05 0.08 0.06 0.08 0.07

Sand 1 0.005 0.001 0.000 0.000 " 0.000 0.003 0.012

215 .27 -5.29 4.12 -5.73 5.98 5.99

* Upper Values Represent Coherences and
**Lower Values Represent Phase Angles in Momhs" Synthetiedime-SeriosNorS-inTublod,

N
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