DRAFT

EMORANDUM

Date: March 1, 1972

TO: Director, Department of Engineering

FROM: N. N. Khanal

SUBJECT: Hydrologic Data for Phase II of the Economic Model Study

This memorandum will summarize the work done on analysis of the hydrologic variables for the second phase of the economic model study for the Kissimmee River Basin.

<u>Basin Yield:</u> - Basin yield was computed simply as the difference between the basin rainfall and the total loss from the basin (seepage, infiltration, evaporation and interception). In order to cover the whole drainage area of the Kissimmee River Basin fairly well by raingages, the following stations, listed in Table 1, were used. Ten years (1961-1970) of daily rainfall values from these stations were used in this study.

Station	Station Name
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.	Avon Park Bithlo Cornwell Fort Drum Lake Hart Isleworth Indian Lake Estates Kissimmee II Lake Alfred Lake Placid Mountain Lake Nittaw Okeechobee H.G. #6
14.	Orlando W.B.

Table 1. Rainfall Stations and Station Names

The daily rainfall values were summed-up to monthly values for each station. The simple average values from these fourteen stations were used as the basin rainfall values. The average monthly rainfall values are presented in Table 2.

Annual Monthly Defacilly Viller Country Discourses Discourses

lable	2. A	reraye	rionem	y Rall	Moi	nth of	the Ye	ss nime ear	e Rive	er basi	n tor	each
YEAR	Jan.	Feb.	Mar.	Apr.	May	ہ June	10NTH July	Aug.	Sep.	Oct.	Nov.	Dec.
1961	2.01	2.12	2.42	1.58	2.99	5.65	3.97	7.24	3.08	1.73	0.73	0.62
1962	.90	1.32	2.59	1.47	2.76	9.40	6.32	8.03	6.54	.87	2.81	.74
1963	1.81	5.68	1.98	.79	5.32	4.98	3.91	4.72	6.07	.89	5.38	2.71
1964	3.93	3.85	2.75	2.34	3.61	4.08	7.45	9.54	7.65	1.83	.62	1.58
1965	1.22	3.97	3.22	1.83	.98	7.64	9.22	6.36	5.77	4.65	.99	2.27
1966	4.96	5.38	1.51	2.14	5.23	8.48	6.45	8.30	7.02	2.57	.41	.98
1967	.83	4.00	.81	.23	1.58	9.19	8.70	7.97	5.04	1.02	.28	2.35
1968	.65	1.98	1.48	.56	6.55	14.76	7.43	5.33	5.25	5.04	2.21	.41
1969	2.39	1.85	6.40	2.28	3.10	5.58	6.10	8.45	7.32	7.27	2.31	4.05
1970	3.61	3.18	5.29	.52	3.45	5.44	7.60	5.08	3.97	2.70	.41	.95
Mean	2.32	3.34	2.84	1.37	3.55	7.52	6.71	7.10	5.77	2.85	1.61	1.67
Std. Dev.	1.50	1.52	1.84	.76	1.72	3.07	1.75	1.67	1.44	2.14	1.60	1.16

The 55-year yearly average for the State of Florida is 52.77" (1), 52.80" is the 30-year yearly average for Kissimmee Station (2) and the 10-year yearly average (1961-1970) for the whole Kissimmee River Basin is 46.64".

- (1) Tannehill, Iva Ray. 1956. Drought, Its Causes and Effects.
- (2) Butson, K. D. and R. M. Prine. April 1968. Weekly Rainfall Frequencies in Florida. Agr. Exp. Station, Univ. of Florida, Gainesville.

A plot of the 55-year monthly average for Florida and the 10-year monthly average for the whole Kissimmee River Basin is shown in Figure 1. It can be seen that the 10-year monthly average follows the same trend as the 55-year monthly average trend for Florida.

Weighted average values for each rainfall station covering up to S-65 was also used to compute the basin runoff. The percentage weights of each of the rainfall stations up to S-65 is presented below in Table 2A.

Table 2A. Percentage weights of each of the rainfall stations up to S-65

Station Name	Percentage Weight
Lake Alfred Lake Kissimmee Isleworth Orlando Bithlo Lake Hart Indian Lake Estates Mountain Lake	3.40 27.50 9.10 4.90 0.40 16.70 26.20 _11.80
	100.00

Basin Rainfall = .034* Lake Alfred + .275* Lake Kissimmee + .091* Isleworth +.490* Orlando +.004* Bithlo + .167* Lake Hart + .262* Indian Lake Estates + .118* Mountain Lake (1)

The basin rainfall up to S-65, estimated by use of equation (1) is presented in Table 2B.

* A comparison of Table 2 and 2B shows that the mean monthly values from Table 2B are a bit lower than those from Table 2, which is expected. Table 2B will not be used to compute yield values, as the mean of the ten yearly values is much lower than the normal yearly mean.

EUGENE DIETZGEN CO. MADE IN U. S. A.

NO. 340-10 DIETZGEN GRAPH PAPER 10 X 10 PER INCH

YEAR	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
1961	1.50	2.40	1.90	1.20	2.40	4.75	3.30	3.70	1.90	.85	.50	1.25
1962	.55	1.05	1.45	.70	3.90	4.55	6.85	6.10	6.55	1.00	2.75	1.00
1963	1.60	6.75	1.55	1.05	5.40	3.70	2.75	3.60	3.75	1.35	4.90	2.45
1964	4.20	3.00	3.10	2.80	3.30	2.40	9.50	12.90	9.60	1.25	.60	1.35
1965	1.60	4.10	2.80	1.55	1.50	8.55	9.45	6.65	5.75	4.30	1.15	2.45
1966	5.35	6.65	1.50	1.95	5.10	8.90	5.10	7.65	6.70	1.65	.15	1.35
1967	.80	4.10	.60	.10	.60	8.50	10.50	8,35	5.15	.60	.10	2.70
1968	.30	2.00	1.15	.30	4.05	12.90	6.35	3.90	4.65	3.45	2.00	.35
1969	2.90	1.90	6.10	2.40	2.65	4.95	6.20	9.15	9.72	7.30	2.30	4.40
1970	2.40	3.00	5.00	.60	3.90	4.90	7.55	4.45	3.10	2.40	.50	1.25
MEAN	2.12	3.49	2.51	1.26	3.28	6.41	6.75	6.64	5.69	2.41	1.49	1.85

Table 2B. Weighted Average Monthly Rainfall Values up to S-65 for the Kissimmee River Basin

In order to derive the basin yield (runoff) from basin rainfall, the Corps of Engineers monthly rainfall-total loss curve was used.* The curve for each month of the year is presented in Figures 2, 3 and 4. Functional equations, both logarithmic and linear in form, were fitted to the curve. The equations for logarithmic and linear fittings are presented in Tables 3 and 4.

Table 3.	Monthly Total Loss	Equation Fitted to	Corps of Engineers Rainfall-
	Total Loss Curve.	(Logarithmic Form)	•

Month	Monthly Loss Y = a·xb
January	2.15 x R'fall.226
February	1.24 x R'fall.612
March	1.54 x R'fall.529
April	1.94 x R'fall.510
May	1.35 x R'fall.728
June	2.35 x R'fall. ⁴⁸⁷
July	2.54 x R'fall. ⁴²⁵
August	2.34 x R'fall. ⁴⁷⁶
September	2.35 x R'fall. ⁴¹⁷
October	1.96 x R'fall. ⁴⁶⁶
November	1.45 x R'fall. ⁵⁸⁸
December	1.20 x R'fall. ⁶⁹¹

*(see Pg. 6)

-5-

Table 4.	Monthly Total Loss	Equation Fitted	to Corps of Engineers	Rainfall-
	Total Loss Curve	Linear Form).		

Month	Monthly Loss $(Y = a+b x)$					
January	.927 + .429 x R'fall					
February	1.132 + .455 x R'fall					
March	1.220 + .504 x R'fall					
April	1.720 + .457 x R'fall					
May	1.530 + .530 x R'fall					
June	2.220 + .520 x R'fall					
July	2.600 + .470 x R'fall					
August	1.890 + .580 x R'fall					
September	2.460 + .370 x R'fall					
October	1.970 + .360 x R'fall					
November	1.110 + .470 x R'fall					
December	.740 + .530 x R'fall					

*(from page 5)

Desigm Memorandum, Part VI, Supp. 8, "General Studies and Reports, Rainfall Excess Evaluation."

The R square, δ , standard error and F test values for both fittings are presented in Table 5.

Table 5. Statistical Properties of the Logarithmic and Linear Equation Fitting for Corps of Engineers Rainfall - Total Loss Curve.

Months	R	δ	Std. Error	F(95%)	R Square	δ	Std. Error	F(95%)
Months January February March April May June July August Sectombor	Square .882 .983 .998 .988 .923 .987 .969 .972 .926	δ .248 .059 .015 .042 .162 .043 .060 .061	Error .031 .035 .010 .021 .073 .018 .023 .061	F(95%) 52.64 296.08 2634.01 584.53 97.24 693.58 314.88 209.30 749.26	Square .940 .930 .990 .960 .920 .990 .990 .990 .990	δ .300 .280 .090 .270 .490 .160 .110 .060 .280	Error .038 .054 .023 .035 .054 .015 .009 .010 .023	F(95%) 122.48 69.94 473.14 169.43 96.16 1060.75 2289.33 3271.13 252.62
October November December	.992 .992 .991	.032 .037 .047	.012 .037 .047	1302.33 699.80 463.43	.960 .960 .960	.240 .210 .200	.020 .040 .047	317.53 139.29 127.30

Both the equations were used to generate basin yield on a monthly basis. The monthly basin yield values generated by use of the logarithmic and linear equations are presented in Tables 6 and 7.

-6-

.0

-7-

Fig 3. Fot

-8-

-

-

.Fig4.

-9-

9 -

YEAR	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1961	0	13	0	0	0	15	0	104	0	0	0	0	132
1962	0	0	3	0	0	208	64	146	119	0	12	0	551
1963	0	183	0	0	65	0	0	0	92	0	126	27	493
1964	85	87	8	0	14	0	130	180	200	0	0	0	704
1965	0	92	30	0	0	112	229	61	75	54	0	13	666
1966	159	162	0	0	62	155	71	158	147	0	0	0	914
1967	0	94	0	0	0	193	198	143	36	0	0	15	679
1968	0	8	0	0	106	515	125	8	47	74	0	0	883
1969	0	3	195	0	2	12	53	168	164	198	0	76	871
1970	62	56	134	0	10	6	135	0	0	0	0	0	403
MEAN	30.6	69.8	37.0	0	25.9	121.6	100,5	96.8	88.0	32.6	13.8	13.1	
Std. Dev.	54.8	66.0	69.3	0	37.8	160.3	76.2	82.8	64.7	64.1	39.3	23.9	

Table 6. Monthly Yield Values for Kissimmee River Basin by Use of the Logarithmic Loss Equation Y = ax^b (D.A. 1,600 sq. miles, or 1,024,000 Acre Feet).

Table 7. Monthly Yield Values for Kissimmee River Basin by Use of the Linear Loss Equation Y = a+b·x

Dev. 59.7 64.4 59.5

YEAR	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.	Total
1961	84	2	0	0	0	43	0	97	0	0	0	0	226
1962	0	0	5	0	0	205	61	126	141	0	30	0	568
1963	9	172	0	0	79	16	0	7	116	0	145	43	587
1964	112	82	10	0	11	0	115	182	200	0	0	0	712
1965	0	88	32	0	0	125	191	66	100	85	0	25	712
1966	162	153	0	0	75	159	67	134	167	0	0	0	917
1967	0	89	0	0	0	188	167	124	61	0	0	29	658
1968	0	0	0	0	127	416	110	27	72	106	4	0	862
1969	37	0	166	0	0	40	51	140	183	227	8	59	911
1970	96	51	119	0	5	35	118	20	3	0	0	0	447
MEAN	50.0	63.7	33.2	0	29.7	122.7	88.0	91.3	105.1	41.8	18.7	15.6	
Std.													

The LP model is designed to accept the yield values on a seasonal basis. The year is divided into four seasons, or periods; season, or period 1, being the months of June, July, August and September. Period 2 is October and November. Period 3 is December and January. Period 4 is February, March, April and May. The yield into the Kissimmee River Basin for these four periods for each year is presented in Table 8.

0 46.3 125.8 63.4 60.1 69.5 76.4 45.3 22.1

lable	8. Seasonal field into	the Kissimme	e River Basin Fro	III LOYAPTUMITE FILLING
	June, July	October,	December	February, March
	August & September	November	January	April & May
YEAR	PERIOD 1	PERIOD 2	PERIOD 3	PERIOD 4
		Yield (10	000 Ac. Ft.)	
1007	110	0		10
1961	119	0	0	13
1962	537	12	0	3
1963	92	126	27	248
1964	510	0	85	109
1965	477	54	13	122
1966	531	0	159	224
1967	570	0	15	94
1968	695	74	0	114
1969	397	198	76	200
1970	141	0	62	200
MEAN	406.9	46.4	43.7	132.7
Std. Dev.	212.59	68.38	51.80	84.56

Table 9. Seasonal Yield into the Kissimmee River Basin from Linear Fitting Manch

YEAR	August & September PERIOD 1	November PERIOD 2 Yield (10	January PERIOD 3	April & May PERIOD 4
	an analysing agent and an			
1961	140	0	0	2
1962	533	30	0	5
1963	139	145	52	251
1964	495	0	112	103
1965	482	85	25	120
1966	527	0	162	228
1967	540	0	29	89
1968	625	110	0	127
1969	474	235	96	166
1970	176	0	96	175
MEAN	413.1	60.5	57.2	126.6
Std.	181 4	81.5	56.4	82.9

The difference in the mean yield values arrived at from both logarithmic and linear equations is very close, the difference being about 18,000 acre feet. Therefore, it can be concluded that either one of the seasonal yield values can be used in the L. P. Model.

Storage Computations:

A list of the lakes which are within the Kissimmee River Basin is presented below. They are:

Lake Kissimmee Lake Hatchineha Cypress Lake Lake Tohopekaliga East Lake Tohopekaliga Lake Hart Lake Mary Jane Lake Myrtle Lake Alligator Lake Gentry Lake Marian Lake Jackson Lake Tiger Lake Rosalie Lake Marion Lake Weohvakapka

The U. S. G. S. publishes the daily stages for these lakes. Ten years (1961 - 1970) of end-of-month stages were used for the storage computation. Lagendre Polynomial equations for storage, as a function of stage, were fitted for each of the lakes listed above. The equations developed for each of the lakes are presented in Table 10 below.

Lakes	Functional Equation			
Kissimmee	Stor = 725.24 - 6078.5 x Stage + 19038.0 x Stage ² - 26472 x Stage ³ + 13855.0 x Stage ⁴ .			
Hatchineha	Stor = -674.0 + 5799.2 x Stage - 18633.0 x Stage ² - 26495.0 x Stage ³ - 14059 x Stage ⁴ .			
Cypress	Stor = 1266.0 - 10945.0 x Stage + 35439.0 x Stage ² - 50903.0 x Stage ³ + 27417 x Stage ⁴ .			
Tohopekaliga	Stor = -699.22 + 5240.4 x Stage - 14702.0 x Stage ² + 18258.0 x Stage ³ - 8437.2 x Stage ⁴ .			

Table 10. Lagendre Polynomial Equation Fitted for Each Storage as a Function of Stage.

East Tohopekaliga	Stor = 266.67 + 1817.55 x Stage - 4660.0 x Stage ² + 5293.5 x Stage ³ - 2230 x Stage ⁴ .
Hart	Stor = 4.79 + 39.76 x Stage - 121.48 x Stage ² + 160.97 x Stage ³ - 77.20 x Stage ⁴ .
Mary Jane	Stor = 51.81 - 373.95 x Stage + 1011.9 x Stage ² - 1218.3 x Stage ³ + 551.66 x Stage ⁴ .
Myrtle	Stor = 21.84 - 152.10 x Stage + 397.80 x Stage ² - 463.81 x Stage ³ + 203.85 x Stage ⁴ .
Alligator	Stor = $5.94 - 51.50 \times \text{Stage} + 167.26 \times \text{Stage}^2$ - 242.7 x Stage ³ + 134.10 x Stage ⁴ .
Gentry	Stor = -90.13 + 532.02 x Stage - 1144.5 x Stage ² + 1048.8 x Stage ³ - 335.33 x Stage ⁴ .
Tiger	Stor = $39.54 - 318.4 \times \text{Stage} + 957.0 \times \text{Stage}^2$ - $1278.2 \times \text{Stage}^3 + 645.2 \text{Stage}^4$.
Rosalie	Stor = $-2.4 + 10.3 \times \text{Stage} - 7.3 \times \text{Stage}^2$ - 24.1 x Stage ³ + 39.26 x Stage ⁴ .
Marion	Stor = -293.91 x 1708.8 x Stage - 3716.0 x Stage ² +3577.6 x Stage ³ - 1283.3 x Stage ⁴ .
Weohyakapka	Stor = 324.15 - 2191.0 x Stage + 5531.8 x Stage ² - 6195.0 x Stage ³ + 2606.0 x Stage ⁴ .
Marian	Stor = 383.37 - 2763.2 x Stage + 7452.0 x Stage ² - 8918.0 x Stage ³ + 4002.7 x Stage ⁴ .
Jackson	Stor = -412.72 + 2095.7 x Stage - 8080.7 x Stage ² + 9692.5 x Stage ³ - 4344.5 x Stage ⁴ .
Istokpoga	Stor = -623560.0 + 89302 x Stage - 5297.1 x Stage ² + 166.54 x Stage ³ - 2.93 x Stage ⁴ + .03 x Stage ⁵ - 0001.0 x Stage ⁶ .

Where

Stage = original stage/100.0 in feet
Stor = computed storage
Actual Stor = computed storage x 100,000 Ac. Ft.

Total Basin Storage

Total basin storage for the entire Kissimmee Basin was estimated by combining the storage of each individual lake at different frequency levels. Stage frequency curves prepared by the District were utilized for the computation. Table 11. Lake Stages at Difference Frequency Levels

			Frequency %	of Time		
Lakes		5	10	25	50	90
Kissimmee	55.6	54.2	53.2	51.8	50.4	47.1
Hatchineha	56.4	55.0	53.9	52.4	53.3	48.7
Cypress	56.8	55.5	54.6	53.9	52.5	50.0
Tohopekaliga	58.0	56.4	55.8	54.8	53.4	50.8
East Tohopekaliga	60.8	59.8	58.8	57.4	55.9	53.8
Hart	63.8	62.0	61.1	60.1	59.2	57.9
Mary Jane	63.8	62.0	61.1	60.4	60.0	59.0
Myrtle	63.3	62.4	61.9	61.0	60.3	59.1
Alligator	66.0	65.3	65.0	64.3	63.3	61.4
Gentry	62.0	61.2	60.9	59.7	58.7	57.0
Marion	67.6	67.0	66.8	66.4	66.1	65.5
Marian	61.0	60.5	60.3	59.8	59.5	59.2
Jackson	104.0	103.9	103.7	103.2	103.0	102.2
Rosalie	55.9	54.9	54.8	54.3	53.2	52.0
Tiger*						
Weohyakapka	62.8	62.4	62.2	61.9	61.5	60.2
lstokpoga	41.8	40.8	40.0	39.0	38.4	37.0

*No stage record available for Lake Tiger; therefore, it was combined with

Kissimmee lake stages.

The stages listed in Table 11 were converted to storages by use of the polynomial equation and are presented in Table 12.

		Freque	ncy %		
1.	5	10	25	50	90
700	560	484	400	328	184
222	182	160	130	108	65
172	154	140	123	104	80
7	7	7	7	7	7
13	10	7	6	6	6
4	3	3	3	2	2
47	40	38	35	32	25
17	15	15	14	12	9
27	26	24	23	23	21
27	20	63	62	60	48
65	64	03	5		л
8	7	6	5	4	4
66	58	58	56	47	45
73	70	68	67	64	52
250	217	185	155	149	100
1 676	1.413	1,258	1,186	946	648
	1 700 222 172 7 13 4 47 17 27 65 8 66 73 250 1,676	1 5 700 560 222 182 172 154 7 7 13 10 4 3 47 40 17 15 27 26 65 64 8 7 66 58 73 70 250 217 1.676 1.413	Freque 1 5 10 700 560 484 222 182 160 172 154 140 7 7 7 13 10 7 4 3 3 47 40 38 17 15 15 27 26 24 65 64 63 8 7 6 66 58 58 73 70 68 250 217 185 1.676 1.413 1.258	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Frequency $\frac{\%}{1}$ 1510255070056048440032822218216013010817215414012310477777131076643332474038353217151514122726242323656463626087654665858564773706867642502171851551491.6761.4131.2581.186946

Table 12. Lake Storage at Different Frequency Levels

Individual storage - duration curves for Kissimmee, Hatchineha and Cypress combined, Lake Tohopekaliga, East Tohopekaliga, Istokpoga and Weohyakapka were drawn and are presented in Figure 6. The total storage-duration curve for the whole Kissimmee Basin was also drawn and is presented in Figure 7.

-16-

Top of regulation is the lake level where the maximum allowable storage occurs. In order to estimate the maximum allowable basin storage, top of regulation stage from each individual lake was converted to storage by use of the polynomial equation listed in Table 10. Top of regulation stage for each lake is listed in Table 13.

Table 13. Top of Regulation	Stages and Associated	Top of Regulation
lako	Top of Regulation (Stage)	(Storage) X 1000 Acre Ft.
Kiccimmen)		
Hatchineha)	52.5	440
) Cypress)		
Tohopekaliga	55.0	144
East Tohopekaliga	58.0	130
Hart	61.0	7
Mary Jane	61.0	7
Myrtle	63.0	4
Alligator	64.0	43
Gentry	62.0	17
Marion *		23
Marian *		60
Jackson *	,	4
Rosalie *		47
Weohyakapka		64
Istokpoga	40.0-39.5	185
		1,175

Table 13 Top of Regulation Stages and Associated Storages.

*Lakes Marion, Marian, Jackson and Rosalie have no control structures, so 50% frequency level was taken as the top of regulation stage for which top of regulation storage was computed.

Top of regulation storage, and 50 and 90 percent frequency storages were used as the maximum allowable, mean and minimum storages for the whole Kissimmee Basin. These storages are presented in Table 14. (See Figure 8).

Table 14. Maximum Allowable, Mean and Minimum Storages for the Kissimmee River Basin (1,000 acre feet).

Maximum	Mean	Minimum	
Storage	Storage	Storage	
1,175	945	650	

Flood Damage Computation

In order to arrive at the dollar figures from flood damage in the Kissimmee River Basin, the following lakes with the highest frequencies were supplied to the Planning Department. Based on the 1 ft. contour interval map of the River Basin and the current agricultural land use, flood damage in terms of dollars was estimated. The lakes, highest stages, and the damage in dollars are presented in Table 15.

	Stages and Damages (1000 Ac. Ft. and \$1000)			
53(140)	54(155)	55(170)	56(185)	57(200)
39(50)	40(100)	41(200)	42(425)	43(500)
55(0)	56(225)	57(575)	60(1,200)	
58(0)	60(350)	63(1,500)	65(2,500)	
62(0)	63(25)	65(100)		
64(0)	65(65)	68(450)	70(750)	
61(0)	62(25)	63(125)	65(350)	
	53(140) 39(50) 55(0) 58(0) 62(0) 64(0) 61(0)	Stages Stages<	Stages and Damages (1000 Ac. Ft. and \$100 53(140) 54(155) 55(170) 39(50) 40(100) 41(200) 55(0) 56(225) 57(575) 58(0) 60(350) 63(1,500) 62(0) 63(25) 65(100) 64(0) 65(65) 68(450) 61(0) 62(25) 63(125)	Stages and Damages (1000 Ac. Ft. and \$1000) 53(140) 54(155) 55(170) 56(185) 39(50) 40(100) 41(200) 42(425) 55(0) 56(225) 57(575) 60(1,200) 58(0) 60(350) 63(1,500) 65(2,500) 62(0) 63(25) 65(100) 64(0) 64(0) 65(65) 68(450) 70(750) 61(0) 62(25) 63(125) 65(350)

Table	15.	Lakes.	Stages	and	the	Damage	in	Dollars
		manao y	obuguo		0110	D'anna g C		0011010

() Damage in \$1,000.

1

EUGENE DIETZGEN CO. MADE IN U. S. A.

NO. 340-10 DIETZGEN GRAPH PAPER 10 x 10 per Inch

Lakes	Damage Equation
Istokpoga	Damage (\$) = $-4767500.0 + 122500.0 \times$ Stage R ² = $.949$, F = 56.71 , δ = 51.437 Std. error = 16266.0
Kissimmee	Damage $(\$) = -655.0 + 15 \times \text{Stage } R^2 = 1.00$, F = 9999.0
Tohopekaliga	\$ = -1235.0 + 8.78 x Storage R ² = 0.983, F = 122.3, δ = 81.26, Std. error = .794
East Tohopekaliga	\$ = -2878 + 21.17 x Storage R ² = .988, δ = 157.7, F = 166.94 Std. error = 1.638
Alligator	$s = -664.42 + 17.53 \times \text{Storage}$ R ² = 0.966, δ = 78.66, F = 57.65 Std. error = 2.309
Gentry	\$ = -144.57 + 8.44 x Storage R ² = .999, 6 = 993, F = 5489.4 Std. error = .1139
Hart & Mary Jane	\$304.22 + 38.40 x Storage R ² = 0.967, δ = 35.38, F = 58.91 Std. error = 5.004

Table 16. Damage $\$ = \oint (Stage/Storage)$ fitted to each of the lakes presented above.

Table 17. Mandatory Release - Discharge Through S-65

YEAR	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
1961 1962 1963 1964 1965 1966 1967 1968 1969 1970	97 9 13 67 42 42 9 11 60 136	71 6 12 154 60 90 7 10 18 76	67 5 31 143 90 219 8 10 151 109	55 30 84 55 144 10 8 122 80	41 1 24 66 21 90 31 8 77 10	30 1 24 47 18 67 23 80 35 12	30 1 29 27 59 72 14 195 2 25	26 27 27 92 114 88 168 2 10	30 6 26 101 77 109 108 118 60 6	25 20 96 80 100 54 36 310 15	18 19 32 15 45 27 11 15 89 3	13 17 40 14 29 9 11 12 115 8
MEAN Std	48.6	50.4	83.3	59.1	36.9	33.7	45.4	55.6	64.1	76.6	27.4	26.8
Dev.	42.6	48.8	72.6	48.6	30.9	24.6	57.1	56.5	44.2	87.8	24.6	32.5

340-10 DIETZGEN GRAPH 10 X 10 PER INCH ġ

PAPER

UGENE DIETZGEN CO. MADE IN U. S. A.

Mandatory Releases

Based on the discharge duration curve for S-65, 90% discharge-duration was taken as the mandatory discharge through the Kissimmee River Basin. Monthly mandatory discharge is presented in Table 18.

Table	18.	Mandatory	Discharge	Through	the	Kissimmee	River	Basin.
		1 101 1 1 1 1 1 1 1 1 1 1 1 1				second second company interested to the second	and the second se	and the second se

Month	M. Discharge x 1000 Acre Feet
January	27
February	10
March	15
April	34
May	22
June	22
July	25
August	24
September	17
October	15
November	20
December	20
TOTAL	251

Water Balance

In order to check the accuracy of the various hydrologic variables that were used in this study, a water balance for the Upper Kissimmee River Basin was made. The inflow to the basin was derived from the rainfall-runoff curve fitted to logarithmic and linear functional equations. The outflow from the

-26-

basin is the measured discharge through S-65. In the first water balance only 9 lakes (Tohopekaliga, East Tohopekaliga, Kissimmee, Hatchineha, Cypress, Alligator, Gentry, Hart and Mary Jane) were included. The difference between the monthly change in storage levels together with the difference between inflow and outflow is presented in Tables 19 and 20. For the water balance presented in Table 20 four more lakes (Marion, Marian, Rosalie and Weohyakapka) were included in order to minimize the difference between the change in storage levels and inflow and outflow. The lake stages were converted to lake storages by use of the polynomial equations. The maximum difference between the storage volume and inflow and outflow is 204,000 acre feet. Corps of Engineers Part II, Supp. 5, gives a figure of 7,100 acre ft/foot change of lake level for East Chain of Lakes; 38,000 for West Chain of Lakes, and 78,000 for Kissimmee, Hatchineha and Cypress. Together they total 125,000 acre feet. Therefore, the maximum error which occurred once in 10 years is 1 1/2 ft. of change in storage for all the lakes.

This error resulted by using the rainfall-runoff relationship used by the Corps of Engineers. Other errors are within the 1 foot change of lake level limit.

-27-

JAN. FEB.	pekaliga, JAN. FEB. -54 -31 -97 -53	FEB. -31 -53		MARCH -44 -67	APRIL -43 -55	- 59 - 41	JUNE - 32 - 7	JULY -13	AUG.	SEPT. -5 -30	0CT. -37 -25	-31 -31	DEC. -22 -13
	-7 -12 -07 -25 -41 -7 -12 -13 -25 -18 -9 -6 -5 -3 -1	-12 -13 -25 -41 -12 -13 -25 -18 -6 -5 -3 -1	-0/ -25 -41 -13 -25 -18 -5 -3 -1	-25 -18 -3 -1	- 18		25 94	-30 15 76	43 137	71	-25 -16 -20	0 - 7	-17 -17
1 -2 87 65 -39 3 7 173 -31 -30 3	-2 87 65 -39 7 173 -31 -30 3	87 65 -39 173 -31 -30 3	65 -39 -31 -30 3	- 39 - 30 3	m	5 -	8 -7	-3 -29	-2 -27	28 83	-17 -30	102 143	35 4
v 90 4,9 -123 -121 -4 3 69 -88 -111 -84 -6	90 49 -123 -121 -4 69 -88 -111 -84 -6	49 -123 -121 -4 -88 -111 -84 -6	-123 -121 -4 -111 -84 -6	-121 -4 -84 -6	- 19-	29	-51 -47	5 69	103 150	152 98	-56 -96	-15 -15	-13 -13
1 -41 -2 -35 -68 -4 3 -42 30 -60 -55 -2	-41 -2 -35 -68 -4 -42 30 -60 -55 -2	-2 -35 -68 -4 30 -60 -55 -2	-35 -68 -4 -60 -55 -2	-68 -4 -55 -2	77	5-	27 108	74 153	27 -13	-17 12	-8 -8	-7 -45	φ'n
1 67 127 -68 -138 -16 3 129 84 -219 -144	67 127 -68 -138 -16 129 84 -219 -144	127 -68 -138 -16 84 -219 -144	-68 -138 -16 -219 -144	-138 -16 -144	-16	8	1 112	25 -49	65 3	16 76	-16 -100	-30 -27	۲- 1-
1 -7 24 -19 -60 -7 3 -9 104 -8 -10 -3	-7 24 -19 -60 -7 -9 104 -8 -10 -3	24 -19 -60 -7 104 -8 -10 -3	-19 -60 -7 -8 -10 -3	-60 -7	<u>, .</u>		50 195	68 213	94 86	-9- 17-	-52 -54	-27 -11	-1 28
1 -18 -9 -23 -25 -1 3 -11 -3 -10 -8 6	-18 -9 -23 -25 -1 -11 -3 -10 -8 6	-9 -23 -25 -1 -3 -10 -8 6	-23 -25 -1 -10 -8 6	-25 -1	70	m 0	264 368	69 -48	-137 -148	-39 -62	27 69	46 2	-12
1 7 -30 21 -98 -5 3 -3 -16 -7 -122 -7	7 -30 21 -98 -9 -3 -16 -7 -122 -7	-30 21 -98 -9 -16 -7 -122 -7	21 -98 -9 -7 -122 -7	-98 -9 -122 -7	11	90	-37 -15	44 1	50 159	122 159	60 -147	43 -89	-23 -10
1 -48 -17 -31 -118 -3 3 -51 -8 -5 -80 -	-48 -17 -31 -118 -3 -51 -8 -5 -80 -3	-17 -31 -118 -3 -8 -5 -80	-31 -118 -3 -5 -80 -	-118 -80	Ϋ́́Υ Ι	4	ώ'n	14 74	22 -5	-9-	-16	-16 -3	-16 -8

A - Calculated difference in monthly storage.
B - Difference; inflow to the basin, outflow from Structure 65.

-28-

Table 20. A Water Balance for the Kissimmee River Basin up to S-65. (Includes Lakes Tohopekaliga, East

	Toh Mar	opekaliga. ian, Rosal	, Kissimm	ee, Cypre Meohyakar	sss, Hat ika).	cchineha,	Alligat	cor, Gent	ry, Hart	, Mary Ja	ine, Mar	ion,
YEAR	JAN.	FEB.	MARCH	APRIL	MAY	JUNE	JULY	AUG.	SEPT.	OCT.	. VON	DEC.
1961 ^A B	-50	-31 -53	-45 -67	-69 -55	-64 -41	-32 -7	-7 -30	15 73	-30	-42 -25	-34 -18	-24 -13
1962 ^A B	-7 -9	-12 -6	-12	-26 -3	-23	40 94	14 76	57 137	80 175	-27 -20	04-	-20 -17
1963 ^A B	-1-	103 173	-31	-51 -30	7 32	21 -7	-4 -29	-6 -27	32 83	-24 -30	104 143	34 4
1964 ^A B	102 69	54 -88	-90	-88 -84	-49 -66	-57 -47	8 69	131	149 98	-67 -96	-22 -15	-13
1965 ^A B	-49 -42	30	-55 -60	-62 -55	-54 -21	45 108	96 153	31 -13	-17 12	-8	-21 -45	6-3
1966 ^Å B	78 129	149 84	-80 -219	-150 -144	-66	4 112	33 -49	74 3	10 76	-23 -100	-37 -27	-16
1967 ^A B	ထိုရာ	25 104	-25 -8	-71 -10	-31	15 195	78 213	116 86	-6	-61 -54	-33	28
1968 ^A B	-20 -11	-10 -3	-27 -10	-43 -8	-12 60	306 368	76 -48	-148 -148	-34 -62	26 69	43	-12
1969 ^A B	10 -3	-33 -16	36 -7	-108 -122	-100 -77	-35 -15	2 44	73 159	129 159	57 -147	36 -89	-22 -10
1970 ^A B	-53	-20 -8	-25 -5	-129 -80	-42 -4	- 9 -	54 41	25 -5	-2 -6	-16 -15	-19 -3	-17 -8
A	- Calcu	lated dif.	ference i	n monthly	/ storad	je.	2			a a sa		

B - Difference - inflow to the Basin, outflow from Structure 65.

Conclusion: The seasonal basin yield, mandatory discharge together with the minimum, mean and maximum storage for the whole Kissimmee Basin is estimated to be:

	Period I	Period II	Period III	Period IV
	(June, July, Aug., Sept.)	(Oct., Nov.)	(Dec., Jan.)	(Feb., Mar., April, May
Yield (1000 ac.ft.)	413.10	60.5	57.2	126.6
Mandatory Discharge (1000 ac. ft.)	88.0	35.0	47.0	91.0
Storage (1000 ac. ft.)	Maximum 1,175	Mean 945	Minimum 650	

-30-

EUGENE DIETZGEN CO. Made in U. S. A.

ND. 340-10 DIETZGEN GRAPH PAPER 10 X 10 PER INCH

Ą.

