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SYNOPSIS

A first-order Marcov Chain Model was utilized to synthesize the daily

rainfall values observed at a point. Comparison was made between the

historical and the synthesized daily rainfall values and they fit

fairly well. These synthesized daily rainfall values will be used as
input to the watershed systems model to produce daily synthetic runoff.
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INTRODUCTION

A stochastic process is defined as a collection of random vari-

ables X(t)=[Xt, tET] which is a function of time and whose variate Xt

is running along in time t within a range T. The set T is called the

index set of the process. The stochastic process can be regarded as a

discrete or a continuous process, depending on T. If T takes only

discrete values, T=[0,1,2,...] the process is termed a discrete process.

If T takes continuous values T=[t: -m<t<+-] the process is termed a

continuous process. A value which X(t) takes is called a state of the

process. The set of values in which all the values of X(t) lie is

called the state space. (3).

Daily rainfall observed at a point is a continuously recorded

hydrologic process. Analysis is performed by transforming the contin-

uous process into a discrete process with time interval At. A real

valued function defined on a sample space is called a random variable.

Description of daily rainfall values as a discrete random variable is

satisfactory when considering the recorded daily values, but it only

approximates the natural rainfall process (8).

Let XO , X1, X2 ... be the successive observations of daily rain-

fall values at times t = 0, 1, 2,...T. The possible values of Xt are

0.00, 0.01, 0.02, ... The collection of X1, X2 , ... is referred to as

rainfall process. Rainfall amounts observed during different short

time intervals (hours, days) are not independent events. According to

Grace and Eagleson (6) "There is sufficient information available in

the literature to indicate that there is negligible dependence or serial

correlation in series of annual rainfall depths. However, when the

series of rainfall depths over shorter time intervals are analyzed,



it is normally found that there is definite dependence inherent in

the series."

Pattison (8) analyzed the successive hours of rainfall data

observed at Boulder Creek, California, and showed the dependency of

one hours rainfall to successive hours by estimating the conditional

probabilities. Given, zero rainfall during hour, t

pr[Xt+1 = 0.00/X t = 0.00] 
= 0.962

pr[Xt+ 1 = 0.01/X t = 0.00] 
= 0.017

When the rainfall during hour t is 0.01 the conditional proba-

bilities are

pr[Xt+1 = 0.00/X t = 0.01] = 0.397

and pr[Xt+ 1 = 0.01/Xt = 0.01] = 0.261

He further states that the dependence is not confined only to

consecutive hours of rainfall observations.

Gabrial and Newman (7) showed this dependence by estimating the

conditional probabilities from successive days rainfall observation for

Tel-Aviv, Israel, for the month of January.

pr[Wet day/previous day wet] = 0.674

pr[Wet day/previous day dry] 
= 0.293

pr[Dry day/previous day wet] = 0.326

and pr[Dry day/previous day dry] = 0.707

Wiser (10) has also shown daily dependencies for North Carolina

stations. He states that dependency is found to be a quite general



phenomenon. The degree of dependence is less for months than for days,

is less for wet periods than for dry periods, and at some locations

tends to a condition in which information about the previous day only

is significant.

In order to check the dependence of one day rainfall to succes-

sive days rainfall, conditional probabilities were estimated from daily

rainfall records for the month of July, observed at Bithlo, Florida.

The estimated conditional probabilities are as follows:

pr[Wet day/previous day wet] = 0.517

pr[Wet day/previous day dry] = 0.327

pr[Dry day/previous day wet] = 0.483

and pr[Dry day/previous day dry] = 0.673

From the above calculated conditional probabilities estimates it

can be concluded that the hourly and the daily rainfall process pos-

sesses the properties similar to that of the Marcov process. The Marcov

process property states that the probability that a system will be in a

given state at a given time, t, may be deduced from a knowledge of its

state at any earlier time, to, and does not depend on the history of the

system before t0. A Marcov process with discrete parameter is called

a Marcov chain.

A Nth-order Marcov chain model for a discrete stochastic process

[Xt, t = 0, 1, 2,...] can be written mathematically as follows:

pr[Xt = xt/Xt-l = xt-1' ... , X1 = x1]

= pr[Xt = xt/Xt-1 = xt-1, ... , Xt-N = Xt-N] (1)

for all X1 , X2 , ..., Xt and t = N+l, N+2, ...



A first-order Marcov chain model for (N=1) is written as:

pr[Xt = xt/Xt-1, ..... X1 = X11

= pr[Xt = xt/Xt-1 = Xt-1l

If Xt-1 = i and Xt = j, then

from state i to state j at the tth

various transitions that may occur

bility and is written as:

Pij = [Xt = xt/Xt- 1 = xt-l]

the system has made a transition

step. The probabilities of the

is called the transitional proba-

The transition probabilities are estimated from the equivalent

frequencies observed from the historic data. The frequency of occur-

ence is obtained from the transition of processes from each of the

states during time, t, to the same or other states in time, t+l. The

frequencies can be arranged in the form of Table 1 in which fij repres-

ents the frequency of occurence of transitions between (X = i) and

(X = j). The probability pij is estimated as:

Pij 
= 

fij/Fi

T

Fi = fij
j=1

for i = 1, 2, ...T

and j = 1, 2, ...T



Table 1. Transition Frequencies

State State J

I 1 2 3 ........ T zFi

1 fll f12 f13 ..... fT F1

2 f21 f22  f23 .'. f2T F2

T fTl fT2 fT3 ..... fTT FT

Various researchers have applied the Marcov chain models for

rainfall process analysis. Gabrial and Newman (7) were the first to

apply the Marcov chain model to determine the occurence or non-occur-

ence of rain on any day. They reported that the first-order Marcov

chain model fitted well to frequency deduced from the daily rainfall

observations. They were not concerned with synthesizing the rainfall

depth values. The first reported research on synthesizing continuous

sequences of hourly rainfall data was by Pattison (8). Pattison used

the first and the 6th-order Marcov chain models. The first-order model

was used for wet periods and the 6th-order model was used for dry per-

iods. Pattison states that a first-order Marcov chain model fails to

describe the transition between a sequence of wet hours and a sequence

of dry hours because the occurence of an hour of zero rainfall at the

end of wet hour sequence is considered by the process to be most likely



the start of a sequence of dry hours, and in reality it is not so.

The problem which Pattison had with the in-between sequence

while synthesizing the hourly rainfall values, does not arise with the

daily rainfall values. Daily rainfall value is a point value and there

is no in-between sequence. No reported research was available on syn-

thesizing daily rainfall values. Many long records of daily rainfall

values are available in comparison to hourly records, and these provide

valuable information concerning the characteristics of the observation

sites. The objective of this work is to set up a stochastic model for

daily rainfall data synthesis. The synthesized daily rainfall data

should duplicate the important statistical properties of the observed

daily rainfall data. The synthesized daily rainfall values will be

used as input to the watershed systems model being developed in-house.

Daily rainfall data from Bithlo, Florida, was used to estimate the

model parameters (transition probabilities).



Application of the Marcov Chain Model to Synthesize the Daily Rainfall
Values for Bithlo.

Application of the first-order Marcov Chain Model (Equation 2)

was made for the daily rainfall data synthesis for Bithlo. The synthesis

procedure is exemplified by the detailed calculation of the model param-

eter estimation and the steps involved in synthesizing the daily rainfall

depth values, for the month of July. Previously the conditional proba-

bility of the actual day being wet given the condition of the previous

day (wet or dry) for the month of July was estimated. No rainfall depth

assignments were made.

Ten years of daily rainfall values observed at Bithlo for the

month of July are presented in Table 2. It can be seen from the table

that the minimum observed daily rainfall value was 0.02 inch, and the

maximum was 3.52 inches. If 3.52 inches is taken as the upper limit for

the daily rainfall values, then X(t), t = 0.00, 0.01, 0.02, ..., 3.52

can still take 352 different values. The probability of getting 3.52

inches of the daily rainfall value is very low. In order to reduce the

daily rainfall process to take so many different values, daily rainfall

values were grouped into 14 intervals as shown in Table 3. This will

reduce the number of states which the model can take and at the same time

eases the computational scheme. These 14 states now constitute the

states of the first-order Marcov Chain Model, for the daily rainfall syn-

thesis procedure for Bithlo. The daily rainfall process in terms of the

Marcovian states are presented in Table 4. In terms of the first-order

model, the process can pass from any of the 14 states from the previous

day to any of the 14 states on the actual day. In other words, the size

of the transitional probability matrix will be 14 x 14.



iA Table 2. Daily Precipitation from Bithlo
for the Month of July

DAYS

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

YEARS
1 2

.64

.22 _3
.91

1.98
3.40
1.82

.37 .03
1.00

.07 -.30

.08 .31

.33 .72
1.02 .20
.26

.33
.05
.98
.38
.56

.76

.02

.02

.10

.60
1.70
1.00
1.50
,53
.48
.31
.45

.62

.58
_56

.20

1.44
.70

1.00

.30

.70

.26

1.22
.05
.47

-- 49
1.42
.17

49
.25
.11
.42

.06

.52

.37

.72

.48

6 7

.20

.32
1.44 .36

.92
3.58
1.22
.13

.65
.36 .20

.72
.22 .26

.36
S.23
2.22

.73
.40

1.00
.60

1 90 22

.50

.352

8
.44

2.45

.90

.36

1.05

.85

2.82

.40
1.05
L 28

9

.65

.70
2 04

.15

1.67

1.22
.54

1.48

10

.24

.57

.89

.42

.28

.31
2.85

3.52
.32

.22

.24 .07 1 .84
.09

-8-
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--



TABLE 3 Interval Grouping of Daily Rainfall

Daily Rainfall State Daily Rainfall Interval
(Inches)

0.00

0.01-0.10

0.11-0.20

0.21-0.30

0.31-0.40

0.41-0.50

0.51-0.75

0.76-1 .00

1.01-1.50

1.51-2.00

2.01-2.50

2.51-3.00

3.01-3.50

3.51-4.00



Table 4. Daily Rainfall Conversion to Daily Rainfall State

1
2
3
4
5
6
-7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

30
31

2

7

5

2
2

5
9
4

2
8
5
7

8

2

2

2

3 4

4

7

9
2
6

6
9
3

5

2

6rnavc

- I

WEARS
9 10

7

10

1

4

7
8

9
8

10
13
10
2
9
4
5

7
3

5

7
10
9
9
7

5
6

i
7

3

5

8
14
9
3

7
3
7
4
5
4
11

7

4

4

8

8

5

9

12

5
9
9

2

5
12

14
5

4

3

7

9
7

2

8
2

-1U-
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Monte-Carlo simulation technique; i.e., random sampling, was used

to generate the daily synthetic rainfall data. The procedure was pro-

grammed for IBM 1130. A flow chart is listed in the appendix.

1) For the synthesis of the rainfall process for day, t+l, determine the

state of the previous day, t. It can be assumed that the state of

the previous day, t, is dry.

2) State of day, t+l, is selected at random by using the estimated

probabilities that determine the transitions from a dry state to

either a dry or wet state in day, t+l.

3) If the state of day, t+l, is determined to be dry, the synthesis

moves on to the next day.

4) If the state of day, t+l, is determined to be wet then the magni-

tude of X(t+l) is selected using the transition probability.

Process is terminated for day, t+l.

5) If the state of day, t, is found to be wet [X(t)=2,3...14] the

state of day, t+l, is selected at random using estimates of the

probabilities. After the selection of X(t+l), the procedure moves

on to the next day.

6) The state of the rainfall system for each day has to be transformed

into a rainfall amount in inches. Mid-point values of the rainfall

intervals listed in Table 3 were used as the rainfall amounts for

each state.

7) Different probability estimates of daily rainfall were used for

different months to take into account the seasonal variability.

8) Repeat steps 1 through 7 for as many years of synthesized daily

rainfall values as desired.

-14-



RESULTS AND DISCUSSION

Twenty years of daily rainfall values were synthesized for Bithlo

by use of the first-order Marcov chain model. Monthly historic values

and the synthesized values are presented in Tables 7 and 8. In order to

check the adequacy of the first-order Marcov chain model to represent the

daily rainfall process for Bithlo, the Kolmogorov Smirnov two-sample test

was used for the month of July. This test is used to test whether the

two samples, i.e., the samples from the historic and synthesized data,

have been drawn from the same population. If they are drawn from the

same population, then their cumulative frequency distributions should

show only random deviations from the distribution of the population.

To apply the test, cumulative frequencies were derived from the

historic and the synthesized states. An a value of 0.01 level of sig-

nificance was used for the test. The computed cumulative frequencies

from the historic and synthesized states are presented in Table 9.

They are also plotted in Figure 1. The largest absolute difference

between the two distributions is the test statistic, D.

D = Max/Sh(X) - Ss(X)/

where Sh(X) and Ss(X) are the cumulative frequency distributions for

the historic states and the synthesized states.



Table 7. 20 years of synthesized daily rainfall values summed together for months.

Run
N.Jan FPh Mar Anr May- .june hly Aug Sept- Ocit Nov De

1 2.8 4.7 4.0 1.3 2.0 6.5 6.2 5.5
2 3.0 6.7 7.1 1.2 2.0 18.0 11.4 12.4 10.4 4.9 1.5 1

j 3 5.3 7.1 7.5 3.0 2.9 10.7 7.6 8.3 8.0 4.0 2.2 5
4 0.2 1.5 1.7 0.0 0.2 5.7 5.5 3.7 12.5 1.4 0.0 0
5 0.2 1.2 0.2 0.9 0.1 6.7 4.0 12.2 11.5 0.3 0.0 0
6 1.7 3.7 2.7 1.9 7.7 4.7 7.5 7.0 5.3 2.7 1.6 1
7 11.5 2.9 3.2 1.2 2.7 3.7 5.8 15.1 4.4 1.8 0.7 2
8 2.3 5.8 2.7 1.3 1.3 9.0 10.2 8.8 5.5 2.5 1.5 1
9 2.0 7 T.t 1.7 9.7 9.5 8.6 7.1 4.8 2.6 1.5 1
1TO 3.T 6 0 0.8 2.5 12.2 10.9 12.1 9.9 5.0 1.8 2

.T 1.8 4.0 2.4 1. 0 . 70 67 6.3 .51 27 0
12 T.5 i2. . - 1.2 7.5 5.2 6.3 4.3 5.1 2.0 1.6 1
13 1.5 2.7 2 781T " 5.2 7.4 6.3 T 3. 1.6 T 0.7 0

i 4 T 0 .2 T.5 1.2 0.2 f-4.5 4.7 3. .3 U
3.5 14.7 3.5 .6 1.6 9.7 7.3 7.3 4.2 3.0 0.7 2

16 3.8 65.5 . 7.7 6.7 10.1 8.3 14.9 3.3 11.5 2
IIU./2.5 2.2 4 /U.348 b 14 b

18 t.3 0- 0 1.5 76.6 9.7 0-2 1T.8 T48 375 0.7
19 2.0 5 i5.3 08 17.0 94 7.3 9.0 1.6 2.2 2
20

1-

-Tbj*8.

t r

SYear

2
3
4_

6
7

8
9

10

.0

.1

.1

.1

.1

.1

.7

.1

.9

.3

.8

.2
.2
.3

.9
.0

3.0 n 60 36 340 651 1201! 828 15 2- 42 1
4.42 76 7_n 10 77 15 9n 77 .24 n 2

2.16.0 2J 7 892 7.09 140.nn3 7 ?37 11
S3.62 74 09 4.0512.56 10.61l 4.63 4.10 .00 3
2.S 1.74 5.66 10.01 11.67 3A 15.02 1.70 A44
1.08 .00 .94 11.60 8.42 10.06 6.86 .00 .00 2
2.29 1.50 6.07116.98 9.62 8.91 2.80 9.25 2.56l



Table 9. Cumulative Frequency of the Historic and the Synthesized
Daily Rainfall States for the Month of July, for Bithlo,
Florida.

State Hist. Cum. Freq. Syn. Cum. Freq.

1 .611 .601

2 .649 .652
3 .675 .674
4 .724 .723
5 .783 .794
6 .814 .849
7 .882 .930

8 .908 .952
9 .963 .979

10 .979 .982
11 .985 .985

12 .991 .997

13 .994 1.000
14 1.000 1.000

D = /.882 - .930 / = .048

The tabulated value of Dcr at 0.01 level of significance (4) is

.094. As the calculated D value is lower than the tabulated Dcr value,

it can be said that the first-order Marcov model adequately represents

the daily rainfall process for Bithlo.

The storm length from the synthesized and the historic daily rain-

fall values were also subjected to Kolmogorov--Smirnov two-sample test.

The tabulated Dcr value at 0.01 level of significance is 0.163 (sample

size 100) and the maximum absolute computed value is .120. It can be

said that the storm lengths are also significant at 1% level.

X2 test was used to test the frequencies derived for the number

of wet days, from the historic and synthesized daily rainfall values.

Calculated X
2 values together with the table value for 0.01 level of

significance is presented in Table 8.



Table 10. X2 Test Statistics for the Frequencies of the Number of
Wet Days.

Month X2 Calc. X2 .99

January .3020 6.63
February .0080
March .0430
April .1560
May .3430
June .0250
July .0008
August .0770
September .0560
October .2430
November .1630
December .0140

All of the above tests, (Kolgomolov-Smirnov and X
2 ), indicate

that the first-order Marcov chain model is adequate for daily rainfall

synthesis procedure. However, Franz (5), states that the application

of statistical tests is hazardous because the assumption of random

sampling is often violated. He states further that personal judgment

based on experience and tempered by rough statistical calculations

should be given more weight than the so-called "precise and powerful"

normal theory tests.

Comparison of the monthly means, maximum and minimum values, and

the average number of wet days, have also been made from the historic

and synthetic data. These values are presented in Tables 11 and 12.

From Table 11 and Figure 2, it can be seen that the historic and

the synthesized means match fairly well, except for the month of Sep-

tember. The difference between the two means for this month is more

than 3.5 inches. In general the synthesized mean monthly values are

lower than the historic means.



Table 11. - Statistical Properties Comparison Between
Synthesized and Observed Rainfall

MEAN

-TIST.

SYNT.

H. MAX.
VALUE

S. MAX.
VALUE

J.MIN.

SYNT.MIN.

JAN. FEB.

2.37 4.28

2.08 4.17

5.16 5.90

5.03 7.10

0.70 2.25

0 2 12

JAN.

HIST. WET r. 4.0

7 .
Comma

FEB. MAR.

4.8 5.8

MAR.

4.24

3.44

13.23

7.50

1.08

0.02

APR.

2.3

MAY JUNE JULY

3.10 9.26 8.82

2.92 8.28 7.73

7.30 16.98 19.87

APR.

1.46

1.18

4.07

3.00

0.25
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f
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2.15

4.nn01np lO
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*.20 1 50
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Comparison of the historic and synthesized maximum and minimum

values are also presented in Table 11. For the months of March, July,

October and November, historical maximum values are higher than the

synthesized maximum values. For the months of February, May, June and

December, the synthesized maximum values are higher than the historic

values. It could be due to the fact that the synthesized values are

the mid-point values which are almost static. Maybe, rather than

assigning the mid-point values as such, if a random component is added

to it, then the assignment of rainfall depth values will be more flex-

ible and the differences between the historic and the synthesized

values will be minimized.

The historical and synthesized minimum values match fairly well

except for the months of March, June, July, August and September.

Comparison of the average number of wet days in a month is

presented in Table 12 and Figure 3. June, July, August and September

are the rainy months in Florida and for these months the match between

the historical and synthesized number of wet days matches fairly well.

For the rest of the months there are some discrepancies.



Concluding Remarks

Several models are under study by the Central and Southern Florida

Flood Control District in a continuing search for optimal management and

effective control of water resource systems. These models comprise the

a) Watershed systems model, b) Economic model, and c) Rainfall model

(Figure 4).

The rainfall model discussed in this paper was developed with the

intention of providing synthetic input data to the watershed systems

model. So far, the actual application of this model has not been made.
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APPENDIX

FLOW CHART FOR SYNTHESIS PROCEDURE

READ THE TRANSITIONAL
MATRIX, TRAN (I,J) AND
THE PRE-ASSIGNED DAILY
RAINFALL VALUES.

Call random number generator
STAT I, Scale it to the number
of states on day, t



Call Random Number Generator
for the cum. freq. to go from
State I on Day, t, to
State j on Day, t+l



REFERENCES

1. Chow, V. T. and S. Ramasheshan. 1965. Sequencial generation of
rainfall and runoff data. J. of Hydraulics Div., A.S.C.E. (Hy 4).

2. Crawford, N. H. and R. K. Linsley. 1966. Digital simulation in
hydrology. Stanford Watershed Model IV. Tech. Report #39, Dept.
of Civil Eng., Stanford Univ.

3. Chow, V. T. and D. D. Meredith. 1969. Water resources systems
analysis. Part III, Review of Stochastic Processes. Dept. of
Civil Eng., Univ. of Illinois, Urbana, Illinois.

4. Dixon, W. J. and F. J. Massey. 1957. Int. of statistical analysis.
McGraw-Hill Pub.

5. Franz, D. D. 1968. Hourly rainfall synthesis for a network of
stations. Unpublished Ph.D Thesis. Stanford Univ. Dept. of Civil
Eng.

6. Grace, R. A. and P. S. Eagelson. 1967. A model for generating
synthetic sequences of short time interval rainfall depths. Int.
Hydrologic Symp., Fort Collins, Colorado.

7. Gabrial, R. and J. Neuman. 1962. A Marcov chain model for daily
rainfall occurrence at Tel Aviv, Israel. J. Royal Meteorological
Society, V. 88.

8. Pattison, Allan. 1965. Synthesis of hourly rainfall data. Water
Res. Research. Vol. I, 4th Quarter.

9. Rosner, L. A. and V. M. Herdjevich. 1966. Math. models for time
series of monthly precipitation and monthly runoff. Hydrology
papers. Colorado State Univ. Fort Collins, Colorado.

10. Wiser, E. H. 1964. Persistence models in preciptiation analysis.
Unpub. Ph.D Thesis, N. C. State Univ., Raleigh, N. C.


