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SYNOPSIS

A first-order Marcov Chain Model was utilized to synthesize the daily
rainfall values observed at a point. Comparison was made between the
historical and the synthesized daily rainfall values and they fit

fairly well. These synthesized daily rainfall values will be used as

input to the watershed systems model to produce daily synthetic runoff.
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INTRODUCTION

A stochastic process is defined as a collection of random vari-
ables X(t)=[X;, teT] which is a function of time and whose variate X;
is running along in time t within a range T. The set T is called the
index set of the process. The stochastic process can be regarded as a
discrete or a continuous process, depending on T. If T takes only
discrete values, T=[0,1,2,...] the process is termed a discrete process.
If T takes continuous values T=[t: -w<t<+w] the process is termed a
continuous process. A value which X(t) takes is called a state of the
process. The set of values in which all the values of X(t) lie is
called the state space. (3).

Daily rainfall observed at a point is a continuously recorded
hydroleogic process. Analysis is performed by transforming the contin-
uous process into a discrete process with time interval at. A real
valued function defined on a sample space is called a random variable.
Description of daily rainfall values as a discrete random variable is
satisfactory when considering the recorded daily values, but it only
approximates the natural rainfall process (8).

Let Xy, Xy, X, ... be the successive observations of daily rain-
fall values at times t =0, 1, 2,...T. The possible values of X; are
0.00, 0.01, 0.02, ... The collection of Xy, X3, ... is referred to as
rainfall process. Rainfall amounts observed during different short
time intervals (hours, days) are not independent events. According to
Grace and Eagleson {6) "There is sufficient information available in
the Titerature to indicate that there is negligible dependence or serial
correlation in series of annual rainfall depths. However, when the

series of rainfall depths over shorter time intervals are analyzed,



it is normally found that there is definite dependence inherent in
the series.”

Pattison (8) analyzed the successive hours of rainfall data
observed at Boulder Creek, California, and showed the dependency of
one hours rainfall to successive hours by estimating the conditional

probabilities. Given, zero rainfall during hour, t

pr[Xt+1 = 0.00/X; = 0.00] = 0.962

p\r‘[Xt_‘_.| = 0.01/X; 0.00] = 0.017

When the rainfall during hour t is 0.01 the conditional proba-

bilities are

n

plr‘I:X,c_,_.| = O.OO/Xt 0.01] = 0.397

0.01] = 0.261

and  pr(X,,. = 0.01/X¢

t+1
He further states that the dependence is not confined only to
consecutive hours of rainfall observations.
Gabrial and Newman (7) showed this dependence by estimating the
conditional probabilities from successive days rainfall observation for

Tel-Aviv, Israel, for the month of January.

priWet day/previous day wet] = 0.674
priWet day/previous day dry] = 0.293
priDry day/previous day wet] = 0.326
and pr[Dry day/previous day dry] = 0.707

Wiser (10) has also shown daily dependencies for North Carolina

stations. He states that dependency is found to be a quite general
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phenomenon. The degree of dependence is less for months than for days,
is less for wet periods than for dry periods, and at some Tocations
tends to a condition in which information about the previous day only
is significant.

In order to check the dependence of one day rainfall to succes-
sive days rainfall, conditional probabilities were estimated from daily
rainfall records for the month of July, observed at Bithlo, Florida.

The estimated conditional probabilities are as follows:

prlWet day/previcus day wet] = 0.517
priWet day/previcus day dry] = 0.327
priDry day/previous day wet] = 0.483
and pr[Dry day/previous day dry] = 0.673

From the above calculated conditional probabilities estimates it
can be concluded that the hourly and the daily rainfall process pos-
sesses the properties similar to that of the Marcov process. The Marcov
process property states that the probability that a system will be in a
given state at a given time, t, may be deduced from a knowledge of its
state at any earlier time, to,and does not depend on the history of the
system before ty. A Marcov process with discrete parameter is called
a Marcov chain.

A NtM_oprder Marcov chain model for a discrete stochastic process

[Xt’ t=0,1, 2,...] can be written mathematically as follows:
priXy = xg/Xgo] = Xgoqs o0 0 Xy S xq]
= priXy = Xg/Xey = Xpols cees Xpon = Xpopyl (1)
for all X5 XZ’ vees Xt and t = N+1, N+2, ...
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A first-order Marcov chain model for (N=1) is written as:
pr[Xt = XpfXp1s - X T x]]
= priXy = xg/¥eop = Xl (2)

If Xg_1 = i and X; = Jj, then the system has made a transition
from state i to state j at the tth step. The probabilities of the
various transitions that may occur is called the transitional proba-

bility and is written as:
pij = Dy = xy/Xgg = x¢-1] (3)

The transition probabilities are estimated from the equivalent
frequencies observed from the historic data. The frequency of occur-
ence is obtained from the transition of processes from each of the
states during time, t, to the same or other states in time, t+1. The
frequencies can be arranged in the form of Table 1 in which fij repres-
ents the frequency of occurence of transitions between (X =1) and

(X = j). The probability ﬁij is estimated as:
ﬁij = fij/Fi (4)

.
Fo= 1 fij (5)
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Table 1. Transition Freguencies

State State J
I 1 2 3 i T IF
1 ﬁ1 ﬂz ﬁs . ﬁT ﬁ
2 o f22 fog -eenn fZT F2
T fT] fT2 fT3 ..... fTT FT

Various researchers have applied the Marcov chain models for
rainfall process analysis. Gabrial and Newman (7) were the first to
apply the Marcov chain model to determine the occurence or non-occur-
ence of rain on any day. They reported that the first-order Marcov
chain model fitted well to frequency deduced from the daily rainfall
observations. They were not concerned with synthesizing the rainfall
depth values. The first reported research on synthesizing continuous
sequences of hourly rainfall data was by Pattison (8). Pattison used
the first and the 6th-order Marcov chain models. The first-order model
was used for wet periods and the 6th-order model was used for dry per-
fods. Pattison states that a first-order Marcov chain model fails to
describe the transition between a sequence of wet hours and a sequence
of dry hours because the occurence of an hour of zero rainfall at the

end of wet hour sequence is considered by the process to be most Tikely
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the start of a sequence of dry hours, and in reality it is not so.

The problem which Pattison had with the in-between sequence
while synthesizing the hourly rainfall values, does not arise with the
daily rainfall values. Daily rainfall value is a point value and there
is no in-between sequence. No reported research was available on syn-
thesizing daily rainfall values. Many long records of daily rainfall
values are available in comparison to hourly records, and these provide
valuable information concerning the characteristics of the observation
sites. The objective of this work is to set up a stochastic model for
daily rainfall data synthesis. The synthesized daily rainfall data
should dupiicate the important statistical properties of the observed
daily rainfall data. The synthesized daily rainfall values will be
used as input to the watershed systems model being developed in-house.
Daily rainfall data from Bithlo, Florida, was used to estimate the

model parameters (transition probabilities).
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Application of the Marcov Chain Model to Synthesize the Daily Rainfall
Values for Bithlo.

Application of the first-order Marcov Chain Model (Equation 2)
was made for the daily rainfall data synthesis for Bithlo. The synthesis
procedure is exemplified by the detailed calculation of the model param-
eter estimation and the steps involved in synthesizing the daily rainfall
depth values, for the month of July. Previously the conditional proba-
bility of the actual day being wet given the condition of the previous
day (wet or dry) for the month of July was estimated. No rainfall depth
assignments were made.

Ten years of daily rainfall values observed at Bithlo for the
month of July are presented in Table 2. It can be seen from the table
that the minimum observed daily rainfall value was 0.02 inch, and the
maximum was 3.52 inches. If 3.52 inches is taken as the upper Timit for
the daily rainfall values, then X(t), t = 0.00, 0.01, 0.02, ..., 3.52
can still take 352 different values. The probability of getting 3.52
inches of the daily rainfall value is very low. In order to reduce the
daily rainfall process to take so many different values, daily rainfall
values were grouped into 14 intervals as shown in Table 3. This will
reduce the number of states which the model can take and at the same time
eases the computational scheme. These 14 states now constitute the
states of the first-order Marcov Chain Model, for the daily rainfall syn-
thesis procedure for Bithlo. The daily rainfall process in terms of the
Marcovian states are presented in Table 4. In terms of the first-order
model, the process can pass from any of the 14 states from the previous
day to any of the 14 states on the actual day. In other words, the size

of the transitional probability matrix will be 14 x 14.
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Table 2.

Daily Precipitation from Bithlo
for the Month of July
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TABLE 3 Interval Grouping of Daily Rainfall

Daily Rainfall State Daily Rainfall Interval
(Inches)

1 0.00

2 0.01-0.10
3 0.11-0.20
N 0.21-0.30
5 0.31-0.40
6 ‘ 0.41-0.50
7 0.51-0.75
8 0.76-1.00
9 1.01-1.50
10 1.51-2.00
11 2.01-2.50
12 2.51-3.00
13 3.01-3.50
1h 3.51-4.00




Table 4.

Daily Rainfall Conversion to Daily Rainfall State
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Monte-Carlo simulation technique; i.e., random sampling, was used

to generate the daily synthetic rainfall data. The procedure was pro-

grammed for IBM 1130. A flow chart is listed in the appendix.

1)

2)

3)

4)

5)

6)

7)

8)

For the synthesis of the rainfall process for day, t+l, determine the
state of the previous day, t. It can be assumed that the state of
the previous day, t, is dry.

State of day, t+1, is selected at random by using the estimated
probabilities that determine the transitions from a dry state to
either a dry or wet state in day, t+1.

If the state of day, t+1, is determined to be dry, the synthesis
moves on to the next day.

If the state of day, t+1, is determined to be wet then the magni-
tude of X(t+1) is selected using the transition probability.
Process is terminated for day, t+1.

If the state of day, t, is found to be wet [X(t)=2,3...14] the
state of day, t+1, is selected at random using estimates of the
probabilities. After the selection of X(t+1), the procedure moves
on to the next day.

The state of the rainfall system for each day has to be transformed
into a rainfall amount in inches. Mid-point values of the rainfall
intervals Tisted in Table 3 were used as the rainfall amounts for
each state.

Different probability estimates of daily rainfall were used for
different months to take into account the seasonal variability.
Repeat steps 1 through 7 for as many years of synthesized daily

rainfall values as desired.
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RESULTS AND DISCUSSION

Twenty years of daily rainfall values were synthesized for Bithlo
by use of the first-order Marcov chain model. Monthly historic values
and the synthesized values are presented in Tables 7 and 8. In order to
check the adequacy of the first-order Marcov chain model to represent the
daily rainfall process for Bithlo, the Kolmogorov Smirnov two-sample test
was used for the month of July. This test is used to test whether the
two samples, i.e., the samples from the historic and synthesized data,
have been drawn from the same population. If they are drawn from the
same population, then their cumulative frequency distributions should
show only random deviations from the distribution of the population.

To apply the test, cumulative frequencies were derived from the
historic and the synthesized states. An a value of 0.01 level of sig-
nificance was used for the test. The computed cumulative frequencies
from the historic and synthesized states are presented in Table 9.

They are also plotted in Figure 1. The largest absolute difference

between the two distributions is the test statistic, D.
D = Max/Sp(X} - S¢(X)/

where Sp(X) and S¢(X) are the cumulative frequency distributions for

the historic states and the synthesized states.
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20 years of synthesized daily rainfall values summed together for months.

Table 7.

TR . : i |
| Lt i | g od <f od o e oo |
d G~~~ — i o N NN O & ¢ | 29§ aonQw
3 B 58-S oSS NaBNa 6 S Y [y i1 *
i i i i i
T ] T T T T i _
‘ i i s; DY G NG My O DO |
I (NN OO@INI O O MO N NN £ | z | NG OAO_.O :
Z |g—cnoOo—Oo———orPper-PNo = Z |+ |~ N0 I ev
; i e £ : |
: i LD O < O DO L0
B |Qorg<mnowoonolom @m0 © - x 9Ty NON
S | Ol NN N N~ M- — . | D v~ [~ o
C i i
: Lt v QoW NANMNWYO !
o+ WO FHOWDUOM TN — =N NO— 00O um” .mw. W QNN O h
3 HO NN~ TAOWM M IO oI W Q| DM og )N Wi o o
% — || i — ~| = & b + = ~
i
T m : ; P NS — o —
D (ol NNO —~ O~ min (Moo MmO - G| f9egadgsicn
3 A A el b bl b -
< OO MNIN IO NNO S OMm N R N ] 3 | WU — oI QMO
— — - — — | — " — m =4 —rt = =
| ! | n O M P 1 L OV O O
3 NS OO ONOWINMS I~ M NS M A 3 O 0D L LI WO SHW
fla e e e e e e e N A
I3 W—NwtNBvw ooV E NOPO O P i I oo GarN N — 0o
= ~— — : = 5. =3 — —r—
i : H i = o
i : i o o S gNNS—ow
M 5071/777052022.37./}:/07 T Mu 5?94794”06,9
(IS R RS c e el s ee e =S I N Y [ 1
3 GO oLotma AN OO O -+ F ot o—w 1)
b —i— : — o — — D L — — r—i— ~—
, : i [ J T R Rt K N e '
Loy = - N aNSoeso
3 | OO NI IS SO O 10 OV (N RO IS D10 €0 0 - > E . e .
= At IR S I o =N [Ne (1o o
= NNNOCONN—ONNNDO NPV O -
2 P Howowugdsto o
g |MNoooaNm N oD NN O NI m o L P NDN NN O W
i W el el s e e e om. e .. PR o ] L . 4w e e i
L | ~—Moo———— O~~~ O s %. S A L T L
: 3) i ' ; 1
e . oM MO N QO | i
S|[OS NNNN NS DWW DR ND MO | 5 £ Sdmesddsoq | i
.................... . . ' R
I P N N S Kt S NN I R T M £ X 0o — oy | i
vy — i
- b I |
= | |
M oON M — T O W~ ! |
g NN NS00 O /NS N NI NI o % g —mNaTo—oaQN
W Ol S RO = N AN SHE BN 0 N e I L L BT R T
a
; o] T WDONMNMNWDMN—O
g DO NNNIOMO OO RO N—O N 2 d QYOINN— O~
Woel m o m s e e e| eiele e e SRS . ] L. LR B
N NN OO~ NN ——— O MO N — & O r= O r= O\ LD =
; D S ,
CD NSO ONONOAMTIN ONDODOO s i 7 |
S = —f—r—r——— =~ N o | i
&~ ym 0 oY O ! i |
— i
| |
| i

1

2

3
S R |

5

6

7




Table 9. Cumulative Frequency of the Historic and the Synthesized
Daily Rainfall States for the Month of July, for Bithlo,

Florida.

State Hist. Cum. Freq. Syn. Cum. Freq.
1 .611 .601
2 .649 .652
3 .675 .674
4 724 .723
5 .783 .794
6 .814 .849
7 .882 .930
8 .908 .952
9 .963 .979

10 .979 .982
1 .985 .985
12 .991 .997
13 .994 1.000
14 1.000 1.000

D=/.882 - .930 / = .048

The tabulated value of D, at 0.01 level of significance (4) is

064. As the calculated D value is lower than the tabulated D, value,

it can be said that the first-order Marcov model adequately represents
the daily rainfall process for Bithlo.

The storm length from the synthesized and the historic daily rain-
fall values were also subjected to Kolmogorov-Smirnov two-sample test.
The tabulated D, value at 0.01 level of significance is 0.163 (sample
size 100) and the maximum absolute computed value is .120. It can be
said that the storm lengths are also significant at 1% Tevel.

X2 test was used to test the frequencies derived for the number
of wet days, from the historic and synthesized daily rainfall values.
Calculated X2 values together with the table value for 0.01 level of

significance is presented in Table 8.
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Table 10. X2 Test Statistics for the Frequencies of the Number of

Wet Days.

Month X2 calc. X2 .99
January .3020 6.63
February .0080Q

March .0430

April .1560

May .3430

June .0250

July .0008

August .0770

September .0560

October .2430

November .1630

December .0140

A1] of the above tests, (Kolgomolov-Smirnov and X2), indicate
that the first-order Marcov chain model is adequate for daily rainfall
synthesis procedure. However, Franz (5), states that the application
of statistical tests is hazardous because the assumption of random
sampling is often violated. He states further that personal judgment
based on experience and tempered by rough statistical calculations
should be given more weight than the so-called "precise and powerful"
normal theory tests.

Comparison of the monthly means, maximum and minimum values, and
the average number of wet days, have also been made from the historic
and synthetic data. These values are presented in Tables 11 and 12.

From Table 11 and Figure 2, it can be seen that the historic and
the synthesized means match fairly well, except for the month of Sep-
tember. The difference between the two means for this month is more
than 3.5 inches. In general the synthesized mean monthly values are

Tower than the historic means.
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Table 11. - Statistical Properties Comparison Between
Synthesized and Observed Rainfall
MEAN JAN.| FEB.| MAR. | APR. | MAY |JUNE |JULY | AUG.! SEPT.|OCT. |NOV. | DEC.
~ HIST. 172.37] 4.28| 4.24 | 1.46 |3.10 [9.26 | 8.82 | 9.08! 8.80|2.90 [1.75 [1.68 |
SYNT. || 2.08 4.17| 3.441.18 |2.92 |8.28 | 7.73 | 8.85] 5.37 | 2.46 |1.12 |1.60
___H. MAX.
VALUE 5.16/ 5.90(13.23 | 4.07 [7.30 (16.98 | 19.8714.00/15.02 | 9.25 |9.06 |3.92
S, MAX, T N
VALUE 5.03! 7.10] 7.50 | 3.00 [9.70 {18.00 | 11.40/15.10/14.90 | 5.00 |2.20 |5.10
_ H.MIN. | 0.70] 2.25| 1.08 | 0.25.|0.09./.3.40| 2.15, 3.42| 2.80|0.24 |0.25 |0.53 -
SYNT.MIN. | 0.20] 1.20! 0.0210.10 |0.10 | 4.50| 4.00! 2.20! 1.500.30 [0.00 (0.10
Tah'la 12. 4 f‘nmpamjson nf Avey,a_ge,,Numbpv‘ of _Wet Fay: iﬁ aM;m h 77777 7
JAN. | FEB.| MAR. | APR._.| MAY LJUNE |JULY>| AUG. | SEPT.| OCT.| NOV.| DEC.
_ HIST. WET| 4.0 4.8 | 5.8 |2.3 | 5.7 9.7 |12.1 | 10.4| 8.7| 4.1 [ 2.2 | 2.8
2.9 l4g 15.3 |1.7 | 4.3 9.2 [12.2 | 9.5, 8.0| 5.1 | 1.6 | 2.6 |

__SYNT. DRY




Comparison of the historic and synthesized maximum and minimum
values are also presented in Table 11. For the months of March, July,
October and November, historical maximum values are higher than the
synthesized maximum values. For the months of February, May, June and
December, the synthesized maximum values are higher than the historic
values. It could be due to the fact that the synthesized values are
the mid-point values which are almost static. Maybe, rather than
assigning the mid-point values as such, if a random component is added
to it, then the assignment of rainfall depth values will be more flex-
ible and the differences between the historic and the synthesized
values will be minimized.

The historical and synthesized minimum values match fairly well
except for the months of March, June, July, August and September.

Comparison of the average number of wet days in a month is
presented in Table 12 and Figure 3. June, July, August and September
are the rainy months in Florida and for these months the match between
the historical and synthesized number of wet days matches fairly well.

For the rest of the months there are some discrepancies.
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Concluding Remarks

Several models are under study by the Central and Southern Florida
Flood Control District in a continuing search for optimal management and
effective control of water resource systems. These models comprise the
a) Watershed systems model, b) Economic model, and ¢} Rainfall model
(Figure 4).

The rainfall model discussed in this paper was developed with the
intention of providing synthetic input data to the watershed systems

model. So far, the actual application of this model has not been made.
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MEAN MONTHLY RAINFALL IN INCHES
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AVERAGE NO. OF WET DAYS IN A MONTH
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APPENDIX
FLOW CHART FOR SYNTHESIS PROCEDURE

READ THE TRANSITIONAL
MATRIX, TRAN (I,d) AND
THE PRE-ASSIGNED DAILY
RAINFALL VALUES.

J}

INITIALIZE SPACE FOR AS
MANY YEARS OF MONTHLY TOTAL
DATA AS DESIRED

!

DoL=1, N

Where N = Number of Years
of a particular
months data desired.

!

Call random number generator
STAT I, Scale it to the number
of states on day, t

4

DOK=1, LM
Where LM = The number of days
in a particular month

-26~-



Call Random Number Generator
for the cum. freq. to go from
State I on Day, t, to

State j on Day, t+]

{

DO J = 1, Number of Transitional
States

!

~\\\\\If [State J - Trans(1J)] A//////,

=

RFALL (K,L) = RJ(J)
RTOT (L) = RTOT + RFALL (K,L)

}

Interchange J to I

_27_
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