UNIVERSITY OF MIAMI

Sea Grant Program

(Estuarine and Coastal Studies)

Abundance of Young Sciaenid Fishes in Everglades National Park, Florida, in Relation to Season and other Variables

Thomas E. Jannke

Sea Grant Technical Bulletin Number 11

January 1971

Sea Grant Technical Bulletin \#11

Abundance of Young Sciaenid Fishes in Everglades National Park, Florida, in Relation to Season and other Variables

Thomas E. Jannke

University of Miami Sea Grant Program Miami, Florida 1971

The research presented in this bulletin was submitted as a thesis in partial fulfillment of the requirements for the degree of Master of Science.

This does not constitute publication.

Price: \$3.00

Information Services
Sea Grant Institutional Program
University of Miami
10 Rickenbacker Causeway
Miami, Florida 33149
1971

PREFACE

The Sea Grant Colleges Program was created in 1966 to stimulate research, instruction, and extension of knowledge of marine resources of the United States. In 1969 the Sea Grant Program was established at the University of Miami.

The outstanding success of the Land Grant Colleges Program, which in 100 years has brought the United States to its current superior position in agricultural production, was the basis for the Sea Grant concept. This concept has three objectives: to promote excellence in education and training, research, and information services in the University's disciplines that relate to the sea. The successful accomplishment of these objectives will result in material contributions to marine oriented industries and will, in addition, protect and preserve the environment for the enjoyment of all people.

With these objectives, this series of Sea Grant Technical Bulletins is intended to convey useful research information to the marine communities interested in resource development quickly, without the delay involved in formal publication.

While the responsibility for administration of the Sea Grant Program rests with the Department of Commerce, the responsibility for financing the program is shared equally by federal, industrial and University of Miami contributions. This study, Abundance of Young Sciaenid Fishes in Everglades National Park, Florida, in Relation to Season and other Variables, is published as a part of the Sea Grant Program. Graduate research support was provided through a National Defense Education Act Fellowship and Bureau of Commercial Fisheries contracts.

table of contents

Page
LIST OF TABLES v
LIST OF FIGURES vi
INTRODUCTION 1
TERMINOLOGY 4
PROCEDURES 5
Area of Collection 5
Sampling Gear 8
Sampling Procedure 8
Processing Procedure 9
Identification of Larval Sciaenids 10
Measurement Procedures 13
Types of Measurements 14
Analytical Procedures 21
Catch and Effort Selection 23
RESULTS AND DISCUSSION 24
Spawning Time of Adults and Seasonal Abundance of Larvae 24
Bairdiella chrysura 25
Cynoscion nebulosus 33
Sciaenops ocellata 39
Cynoscion arenarius 44
Leiostomus xanthurus 47
Menticirrhus americanus 51
Menticirrhus saxatilis 54
Pogonias cromis 54
Species Not Caught 60
Spawning Site 61
Length-Frequency 65
Vertical Distribution 66
Relationship of Catch to Salinity and Temperature 68
Salinity 69
Bairdiella chrysura 69
Cynoscion nebulosus 69
Sciaenops ocellata 70
Page
Temperature 70
Bairdiella chrysura 70
Cynoscion nebulosus 71
Sciaenops ocellata 72
Results from the 24 -Hour Sampling Trips 73
Effect of Moon Phase on Catch 76
Effect of Light on Catch 77
Effect of Current on Catch 82
SUMMARY AND CONCLUSIONS 84
APPENDIX 89
LITERATURE CITED 118

LIST OF TABLES

TABLE

1. Equations for the regressions of NL on SL 20
2. Monthly and yearly deviations of temperatures from their means during the years 1966-1967 at Everglades City, Florida 31
3. Water flow volumes at Shark River Station, 7.0 miles upstream from mouth of river, October 1964 to September, 1965 62
4. Samples combined for the length-frequency histograms 90
5. Salinity, temperature, moon phase, current velocity, and water-volume data for 1966 91
6. Salinity, temperature, moon phase, current velocity, and water-volume data for 1967 92
7. Catch statistics for Bairdiella chrysura, Cynoscion nebulosus, and Sciaenops ocellata during $1966 ~ 93$
8. Catch statistics for Bairdiella chrysura, Cynoscion nebulosus, and Sciaenops ocellata during 1967 94
9. Mean sizes and standard deviations of
Bairdiella chrysura, Cynoscion nebulosus, and Sciaenops ocellata caught during 1966 95
10. Mean sizes and standard deviations of
Bairdiella chrysura, Cynoscion nebulosus, and Sciaenops ocellata caught during 1967 96
ll. Data from 24 -hour sampling trips 97
11. Data from 24 -hour sampling trips 98
12. Data from 24 -hour sampling trips 99
13. Data from 24 -hour sampling trips 100

LIST OF FIGURES

FIGURE Page
l. Map of Whitewater Bay, Florida showing loca- tion of Little Shark River sampling station 6
2. Diagramatic larva (Thunnus albacares) indica- ting reference features for measurements of specimen lengths 16
3. Location of the division between dorsal and ventral sets of hypural bones 18
4. Catches of Bairdiella chrysura, temperatures, and salinities for Little Shark River, 1966- 1967 26
5. Length-frequency for Bairdiella chrysura 28
6. Catches of Cynoscion nebulosus, temperatures, and salinities for Little Shark River, 1966- 1967 34
7. Length-frequency for Cynoscion nebulosus 36
8. Catches of Sciaenops ocellata, temperatures, and salinities for Little Shark River, 1966- 1967 40
9. Length-frequency for Sciaenops ocellata 42
10. Seasonal abundance and size-range of Cynoscion arenarius 45
11. Seasonal abundance and size-range of Leiostomus xanthurus 48
12. Seasonal abundance and size-range of Menticirrhus americanus 52
13. Seasonal abundance and size-range of Menticirrhus saxatilis 55
14. Seasonal abundance and size-range of Pogonias cromis 57
15. Diel catch of Cynoscion nebulosus on the four major moon phases 74
16. Effect of moonlight and daylight on the vertical distribution of the catch 79
17. Bairdiella chrysura 101
18. Cynoscion arenarius 103
19. Cynoscion nebulosus 106
20. Leiostomus xanthurus 108
21. Menticirrhus americanus 110
22. Menticirrhus saxatilis 112
23. Pogonias cromis 114
24. Sciaenops ocellata 116

INTRODUCTION

Until recently the fish fauna of Everglades National Park has received little attention (see Clark, 1970, unpublished). The larval fish fauna has been almost completely neglected, even for those species which have been studied intensively. Stewart (1961, unpublished) tried to collect the young of the spotted seatrout, Cynoscion nebulosus, without success and Yokel (1966, unpublished) sought larval red drum, Sciaenops ocellata, capturing only 9 specimens. Roessler (1967, unpublished)caught 99 postlarval spotted seatrout. The present study has been conducted to identify a part of the larval fish fauna in the Park and to study changes of abundance in response to changes in season and variations in environmental conditions.

The larvae of relatively few fish have been identified (Berry, in press) so the present study has been limited to the larvae of one important family, the Sciaenidae. This group of fishes support the third largest fishery in the Gulf of Mexico (Gunter, 1967), and two species, Cynoscion nebulosus and Sciaenops ocellata, are among the most soughtafter sport fish in Everglades National Park (Rouse and Higman, 1967). Most adult sciaenids spawn outside the estuaries, but usually not far from them (Pearson, 1929; Hildebrand and Cable, 1934; Miles, 1950, unpublished, 1951,
unpublished). The young migrate into the estuaries and remain there for various periods of time. The estuaries are necessary for the survival of the young of most sciaenids (Pearson, 1929; Myers, 1960).

Although studies on some fishes have shown that mortality is highest during early life stages (Marr, 1956; Farris, 1960; Pearcy, 1962b), the ecology of larval fishes is, in general, poorly known. The ecological data available for larval sciaenids has been generated primarily in connection with taxonomic studies. Pearson (1929) and Hildebrand and Cable $(1930,1934)$ found that young sciaenids live in estuaries. Hildebrand and Cable also found that sciaenid larvae are more common near the bottom than at the surface; Pearson (1941) observed the same distribution. Miles (1950, unpublished) reported that young spotted seatrout, Cynoscion nebulosus, live in beds of the sea grass, Ruppia maritima. Arnold, Wheeler, and Baxter (1960) coilected larval sciaenids in a Texas lagoon, but they did not report their data by individual species so that temperature and salinity information they collected cannot be applied to any particular species.

The objectives of the present study were (1) to identify the larval sciaends which enter the estuaries of Everglades National Park, (2) to record their seasonal abundance, (3) to investigate the relation between catch and physical variables, of the three most abundant species,
and (4) to investigate the diel variation in catch of the spotted seatrout, Cynoscion nebulosus.

The terminology used in this paper follows Berry (in press):

Larva--from hatching to completion of formation of the adult complement of rays in all fins (as determined by their staining red in alizarin).

Juvenile--from the end of the larval to the commencement of the adult stage.

Adult--beginning with the attainment of sexual maturity.

PROCEDURES

The fish used in this study were collected by Roessler and associates during a postlarval pink shrimp sampling program. Collection methods are reported in detail by Roessler and Rehrer (in press) and are summarized below.

Area of Collection

Samples were taken at two sites in the Everglades National Park, one in Buttonwood Canal and the other near the mouth of the Little Shark River (Figure l). Each station is located in a tidal pass through which young fish move enroute to their nursery grounds within the estuary. For this study, however, only the samples from Little Shark River were used because there the catches were larger and the fish were younger.

The Little Shark River is a channel about 6.5 km long which connects Oyster Bay and the Gulf of Mexico. Tidal currents are mixed semi-daily (Marmer, 1954) and are greatly affected by wind (Tabb and Dubrow, 1962).

At the sampling station the Little Shark River is about 100 m wide and $3-5 \mathrm{~m}$ deep. The bottom is scoured by tidal currents; it has some sponge and algal growth. The banks are steep, and are composed mostly of peat deposits.

Figure 1.--Map of Whitewater Bay, Florida, showing location of Little Shark River sampling station

The primary sampling gear was one meter plankton nets with 471 mesh mylon netting. Each net was equipped with a flow meter attached to the middle of the frame by elastic cords. The cod end of the net was attached to a plastic ring tapped to receive a half gallon specimen jar. Two nets were fished, one near the surface and one about 0.5 m off the bottom. The bottom net was weighted with lead tied about 0.5 m from the frame (Roessler and Rehrer, in press).

Sampling Procedure

Samples were collected on flood tides which occurred between the end of nautical twilight in the evening and the beginning of nautical twilight in the morning (U.S. Naval Observatory, 1966, 1967), except during July 1967 when stations were sampled hourly for 24 hours on each moon phase.

At each station an anchor and buoy were fixed in the middle of the canal. At slack low water, temperature and salinity samples were taken from a boat tied to the buoy. Temperature was read to the nearest 0.10 Celsius. Salinity samples were taken at the surface in plastic bottles and returned to the laboratories where they were read with an optical refractometer. The readings were recorded to the nearest 0.1 parts per thousand (ppt) but they should not be considered more accurate than 0.5 ppt. A tide staff permanently fixed in position was read to give the depth of the canal.

Surface and bottom water velocity readings were made with mechanical flow meters before and after each plankton tow. The surface meter was held so that it was approximately 0.5 m below the surface. The bottom meter was weighted so that when the lead touched bottom the meter was approximately 0.5 m from the substrate. Both meters were equipped with vanes which held the meter into the current.

In sampling for shrimp the vessel was freed from the buoy and when both engines registered 1000 rpm the nets were lowered. The bottom net was released first to prevent crossing of the warps. When both nets were in the water a timer was started and the nets were towed for 10 minutes. In the middle of the tow a salinity sample was taken and the water temperature recorded. After returning to the buoy and anchoring, the nets were washed and the plankton was preserved in 10% formalin.

At the beginning of the experiments samples were taken at 45-60 minute intervals throughout the flood tide. Later, when it had been determined that [shrimp] catches were roughly proportional to the velocity, sampling was reduced to that period of the tide before the maximum tidal velocity (Roessler and Rehrer, in press).

For the samples used in this study, all tows were taken by the latter technique except that:

In July-August 1967 a series of 24 -hour stations were occupied. The sampling procedure was identical with the above methods except that samples were taken hourly for a full 24 hours regardless of tidal conditions (Roessler and Rehrer, in press).

During spring and summer, tows were made on all major moon phases (± 3 days), whereas during winter, tows were made only on new and full moon phases (± 3 days). This was done because shrimp are most abundant during the summer, and because "catches were generally highest on new moons and lowest on full moons so that by using the combined new and full moon catches an average monthly immigration index was obtained" (Roessler and Rehrer, in press).

Processing Procedures

of the shrimp project separated postlarval pink shrimp and the fishes from the samples. I separated the sciaenids from the other fishes and put them in 40% isopropyl alcohol for storage.

Identification of Larval Sciaenids

Larval fishes are difficult to identify. Berry (in press) has discussed problems encountered in studying larval fishes and has evaluated the techniques most commonly used. The methods used to identify larvae in this study follow Berry's outline. He stressed the importance of knowing the faunal composition of an area before trying to identify the larvae, so a list and descriptions of sciaenids occurring in Florida, the Gulf of Mexico, and the Caribbean Sea were collected (see Meek and Hildebrand, 1925; Briggs, 1958; Lowe, 1966). Sciaenids are well-known taxonomically (Robins and Tabb, 1965) so there is little chance of undescribed species being caught. There are two undescribed species of Pareques living in Florida (Dr. R. V. Miller, personal communication), but since this genus is restricted to reefs (Myers, 1960) it probably does not occur in the brackish areas of the Park.

Irwin (personal communication) is reviewing the genus Menticirrhus on a world-wide basis and has found that the minkfish, M. focaliger, is not a valid species. Clinal changes in meristic characters of the northern kingfish,
M. saxatilis, caused Ginsburg (1952) to describe populations in the Gulf of Mexico as a new species.

For Atlantic and Gulf coast sciaenids most of the larvae have been described and the descriptions are accurate. Descriptions and drawings found in Kuntz (1914), Welsh and Breder (1924), Pearson (1929, 1941) and Hildebrand and Cable (1930 , 1934) were useful for identifying young sciaenids during this study. Other useful references, pertaining more to juveniles and adults, were Jordan and Eigenmann (1889), Jordan and Evermann (1898), Ginsburg (1930), Moffett (1957), Guest and Gunter (1958), Robins and Tabb (1965), and x-ray records from the files of the Bureau of Commercial Fisheries.

Specimens of nearby all sciaenids which occur in Florida's waters were cleared and stained by the trypsinalizarin red technique (Taylor, 1967) in case internal characters were necessary to identify fishes.

Preserved specimens were obtained from the Tropical Atlantic Biological Laboratory, of the Bureau of Commercial Fisheries, but the smallest fish available in those collections was about 6 mm . To facilitate identification of all the fish, a reference collection, consisting of a size-sequence of larvae and small juveniles, was compiled for each species in the samples (see Figures 17 through 24 for diagrams of selected specimens). This collection was made by identifying a fish which had its full complement
of rays and then identifying progressively smaller specimens by comparison with larger ones. Pigment pattern and general body shape were the most useful characters when meristic ones could not be considered dependable.

The genus Menticirrhus presented the only serious taxonomic problem: meristic counts do not clearly separate the three species found in Florida. X-ray studies (for technique see Bonham and Bayliff, 1953; Sutherland, 1958) and clearing and staining revealed no internal differences for these three species. Normally, young northern kingfish, Menticirrhus saxatilis, can be distinguished from the other two species because they usually have one more anal fin ray and because their pigmentation is distinctive (Hildebrand and Cable, 1934). Pigmentation can be quite variable within a species and during ontogeny, however, which caused some difficulty. I am certain that those individuals identified as M. saxatilis have been correctly identified.

Southern kingfish M. americanus and Gulf kingfish, M. littoralis, can be separated easily only after chest scales have formed and the pectoral fin ray formation is complete. The few individuals, large enough so that these characters were useful, were \underline{M}. americanus. For smaller individuals pigment pattern and body shape were the only useful characters. For fishes as small as 6 mm SL, diagrams, descriptions, or preserved specimens were available. There are differences in fin and belly pigmentation (see Hildebrand
and Cable, 1934) between these two species at 9 mm SL. My 9 mm fish had the color pattern of \underline{M}. americanus and it was maintained in fish as small as 4 mm . The caudal fin of one specimen resembled that of M . littoralis (Figure 21).

Identifications of fishes smaller than 4 mm SL must be considered tentative. Hildebrand and Cable (1934) have described \underline{M}. americanus as small as 1.7 mm and Welsh and Breder (1924) have described \mathbb{M}. saxatilis from hatching to 2.8 mm . By using a size-series, I concluded that no fishes below 4 mm SL were M . saxatilis. The larvae looked like M. americanus described by Hildebrand and Cable, but since those authors did not have complete size-series of both M. americanus and \underline{M}. littoralis, their work cannot be considered definitive.

Young \underline{M}. americanus enter estuaries readily whereas young \underline{M}. littoralis rarely do, the latter being restricted almost completely to the shallows on the seaward side of the beach (Hildebrand and Cable, 1934; Gunter, 1945; Joseph and Yerger, 1956; Springer and Woodburn, 1960; Bearden, 1963; McFarland, 1963). The fish in these samples were caught entering an estuary, which suggests that they are M. americanus.

Measurement Procedures

Larval fish are easily damaged and bent out of shape during collecting and preserving. Fish with only slightly
arched backs, or with lateral bends, were measured and counted, but more seriously damaged fish were just counted. Laterally bent fish were flattened before measuring by holding them tightly against the bottom of the viewing vessel with a pair of flexible forceps. Fish which were too badly damaged to be identified were neither measured nor counted.

Measurements were made with an ocular micrometer and the lengths were recorded to the nearest half-millimeter.

Types of Measurements

Larval fish lack hypural bones at hatching, but develop them as they grow. For the sciaenids studied, the bones may have formed when a fish was as small as 2.5 mm or as large as 4.5 mm ; they formed most commonly when the fish was between 3.0 and 3.5 mm SL. Consequently, two types of measurement, notochord length and standard length, were employed. They are defined following Berry (in press):

Standard length--from the snout tip, through the horizontal body axis, to the end of median bones at the caudal base (the hypural bones) (SL).
Notochord length--from the snout tip to the tip of the notochord prior to its dorsal flexion and afterwards to a perpendicular of the horizontal body axis through the tip of the upturned notochord (NL).

These two measurements are superior to total length or fork length because of frequent damage to fins of larval fishes and because of allometric growth of the caudal fin.

The SL measurement is not precise until horizontal alignment of the median hypural bones is completed, but it can be approximated once the hypural elements begin to form (Figure 2). If the hypural bones were not properly alligned, the standard length was measured to the division between upper and lower sets of bones (Figure 2). This division was sometimes difficult to find; if a notch existed between the dorsal and ventral sets of hypural bones, this was used, but if no notch was present and the hypural bones were sufficiently developed to distinguish individual ones, the measurement was taken to the point where the small, most dorsal bone of the ventral series and the large, most ventral bone of the dorsal series met (Figure 3). In no case was the division located simply by counting elements of one series, because opaque tissue could easily obscure one or more of them.

Since the two measurements are not the same (notochord length is larger) and since the mean length of the fish in each sample was to be calculated, it was necessary to adjust notochord length to standard length. The method chosen was a regression analysis, because the resulting equations could be used to adjust the NL measurements mathematically. This technique is artificial, but it is more realistic than assuming that the two measurements are equivalent or measuring all fish below a predetermined size to NL and all fish above that size to SL.

Figure 2.--Diagramatic larva (Thunnus albacares) indicating reference features for measurements of specimen lengths.
(A) Early larval stage with notochord straight and caudal bones not formed. (B) Mid-larval stage with caudal elements forming and notochord flexing. (C) Late larval stage with caudal elements formed and notochord completely flexed (Figure 1 from Berry and Richards, in press).

Figure 3.--Location of the division between dorsal and ventral sets of hypural bones (arrow). Drawn from a 3.0 mm specimen of Bairdiella

Fifty fish ranging in size from 2.55 mm to 8.65 mm SL were chosen from each of three samples: silver perch, Bairdiella chrysura, collected during June 1966 and February 1967, and spotted seatrout, Cynoscion nebulosus, collected during June, 1966. Both NL and SL measurements were made on each fish, and regression equations were calculated for the three subsamples (Table l).

TABLE 1

EQUATIONS FOR THE REGRESSIONS OF NL ON SL
(CN6 = Cynoscion nebulosus caught on
June 5, 1966; BC2 = Bairdiella chrysura caught on February 27,

1967; and BC6 $=\frac{B}{2}$. chrysura
caught on June 21, 1966)

Symbol
Regression Equation
CN6
BC2
BC6

$$
\begin{aligned}
& \mathrm{NL}=0.5727+0.9196 \mathrm{SL} \\
& \mathrm{NL}=0.7294+0.8888 \mathrm{SL} \\
& \mathrm{NL}=0.4054+0.9316 \mathrm{SL}
\end{aligned}
$$

The analysis of covariance showed (1) that one regression line is not suitable for all the data, (2) that not all slopes are equal, and (3) that the adjusted means are not all equal.

Test for suitability of one line $F=53.92^{*}$
Test for equality of slopes $F=4.73 *$
Test for equality of adjusted means $\mathrm{F}=98.0$ 2 * A comparison of the slopes and intercepts of the two regression equations for Bairdiella chrysura showed that there were significant seasonal differences in the NL:SL ratio.

t (Slope)	$=2.93^{* *}$
t (Intercept)	$=10.25 * *$

Therefore, fish which had been measured to notochord length were not used in the analysis dealing with mean size. Because knowledge about Cynoscion nebulosus was limited, a correction factor was not applied to the newly-hatched young of this species either.

Analytical Procedures

Because there was a shortage of bottles during the study, the samples collected during one night of ten had to be combined into a single jar. As a result the catch data for each night had to be combined in a similar manner and the salinities and temperatures had to be averaged for each night, thus limiting the study to comparisons among sampling trips. The only exception to this was the data used

[^0]to study diel movements of larvae into the estuary, when the integrity of individual samples was maintained.

The data from nighttime, flood-tide samples were summarized for each species in three ways: (1) a sizefrequency summary; (2) a summation of catch for each trip (or night); and (3) a mean size calculation. For the sizefrequency calculation, if two samples were taken less than 12 days apart, they were combined and henceforth considered as collected on the first sampling date. All subsequent pairs of samples collected less than 12 days apart, were treated similarly (Table 4). Fish measured using the notochord length were kept separate from those measured by standard length. No damaged fish were used in this summary. The total catch is the number of fish caught during a single night, including damaged ones. Mean size was calculated after deleting all fish measured to notochord length and damaged fishes. For each trip a mean size and ± 2 S.D. were calculated and each fish was tested to see if its length was within two standard deviation units of the mean. Fish outside this range were discarded and a new mean and standard deviation were calculated. This process was repeated until all specimens used in the calculation were within ± 2 S.D. of the mean. This was done because it prevents one or a few unusually large or small specimens from dominating a calculation.

Some parameters were not measured for every sample. When this occurred, the fish caught were eliminated from the total catch summary and from the mean size calculation. Also, when either a surface or bottom tow was missing from a paired-sample, the other half of the pair was removed too. Occasionally, however, the other sample had been combined with its analogues from other tows in order to conserve bottles. There was no way to remove this half of the pair from the data without eliminating an entire night's samples. Since this did not occur when catches were at or near their peaks, the data were used and no compensation was made for the missing sample.

During the 24 -hour study the velocity of the current was measured, and a designation of flood, ebb or slack tide was given, depending upon the direction of current flow. Sometimes currents noted as slack were accompanied by a current velocity (Tables ll-14). When graphing the current velocity for the 24 -hour study (Figure 15), all such "slack" currents were placed on the graph so that they yielded the smoothest curve.

Catch and Effort Selection
Roessler and Rehrer (in press) have discussed their selection of catch $/ \mathrm{m}^{3}$ for a measure of effort. Because of the small numbers of fish caught, catch/ $1000 \mathrm{~m}^{3}$ was chosen as an effort measure for this study.

RESULTS AND DISCUSSION

Spawning Time of Adults and Seasonal Abundance of Larvae

During this study three types of data were collected which indicate spawning time: the length-frequency distribution, the percentage of larvae measured to notochord length, and the number of larvae caught. A length-frequency distribution with many size-classes indicates that young as well as older fish are being caught. A series of this type of length-frequency distributions indicates that spawning is replacing those fish which move through the pass, or which grow so large that they are able to avoid the net. The presence of larvae with minimal development of their hypural bones indicates very recent spawning. Since spawning may vary in intensity during the reproductive period, the number of larvae caught indicates relative amounts of spawning.

In the fall, small silver perch, Bairdiella chrysura, sand seatrout, Cynoscion arenarius, spotted seatrout C. nebulosus, and southern kingfish, Menticirrhus americanus disappeared from the catches (Figures 5, 7, 10, and 12). This absence of small fish and that at the beginning of the spawning seasons (Figures $5,10,12$, and 14) suggest that the spawning adults move offshore and onshore in response
to seasonal temperature changes. The absence of large fish during the fall suggests that those individuals which were caught were slow growers or stunted ones. This is probably not the case, however, because with the possible exception of the southern kingfish, Menticirrhus americanus (Figure 12), none of the fish caught at this time showed an increase in length. Yokel (in press) found that even the slowest growing pink shrimp showed some increase in size, which suggests that the fish are new recruits rather than stunted ones.

Bairdiella chrysura

In 1966 catches were low from January until April (Figure 4), although only three samples were taken from January 5 to February 20. During early January the percentage of recently-hatched larvae was high, but it declined during late January and February (Figure 5), indicating that the concurrent decline in catch is due to low spawning activity. During 1967 catches rose slowly in January and sharply in February to a peak on February 27. The percentage of recently-hatched larvae reached its peak on January 29 and then declined over the month of February despite the increasing catch. This shows that the spawning peak probably came in late January or early February.

During both years catches remained low during March, but increased later in Spring. In 1966 there were three

Figure 4.--Catches of Bairdiella chrysura, temperatures, and salinities for Little Shark River, 1966-1967.

Catch/1000 m ${ }^{3}$ Temperature Salinity

Figure 5.--Length-frequency for Bairdiella chrysura.
Open boxes represent fish measured to SL and shaded ones represent those measured to NL. When all fish caught are in one size category, all measurements are to SL. No fish longer than 4.0 mm were measured to NL. Samples collected less than 12 days apart were combined as indicated in Table 4. Combined samples are plotted according to the first sampling date.
separate peaks, in April, May, and June (Figure 4). The number of recently-hatched larvae was low during each of these three peaks, but the distribution of sizes indicates moderate spawning. In 1967 catches during April and May were lower than during 1966, but recently-hatched larvae dominated the catches (Figure 5), which suggests significant spawning, but not as intensive as in 1966.

During summer of both years, catches were low (Figure 4), and although the percentages of recentlyhatched larvae were high in some samples (Figure 5), one must conclude that only limited spawning occurred. Spawning declined further at the end of August, but minor amounts continued throughout the fall. In December catches rose again temporarily, showing that a new spawning season had begun.

The year 1967 is probably the more representative one because then the observations coincided with those of Tabb and Manning (1961), and Roessler (1967, unpublished). The former reported catching running ripe adults in Conchie Channel, Everglades National Park, on February 28. Roessler sampled juveniles 25 mm and longer; seventy-five per cent of the 2,076 silver perch he caught were taken from March through May. Stewart (1961, unpublished) reported catching "very young" silver perch on June 18, 1960, but he gave no size data.

If the time of heaviest spawning was delayed by two months in 1966, air (Table 2) and water temperature

TABLE 2
MONTHLY AND YEARLY DEVIATIONS OF TEMPERATURES FROM THEIR MEANS DURING THE YEARS 1965-1967 AT EVERGLADES CITY, FLORIDA ${ }^{a}$

Month	$\begin{aligned} & 1965 \\ & (\mathrm{OF}) \end{aligned}$	$\begin{aligned} & 1966 \\ & (\mathrm{OF}) \end{aligned}$	$\begin{aligned} & 1967 \\ & (\mathrm{OF}) \end{aligned}$
January	-0.5	-3.1	0.7
February	1.4	-1.2	-3.4
March	1.5	-2.4	0.8
April	1.0	-1.9	-2.1
May	-1.8	0.1	-1.8
June	-1.5	-2.1	-3.2
July	-1.5	-0.1	-0.8
August	-0.4	-1.4	-2.6
September	-0.2	-0.6	-2.1
October	-1.4	1.5	-3.3
November	0.6	-3.3	-3.2
December	-1.2	-4.5	-1.5
Year	-0.3	-1.6	-2.0

$a_{U . S . ~ D e p a r t m e n t ~ o f ~ C o m m e r c e, ~ 1965-1967 . ~}^{\text {C }}$
records (Figure 4) provide no indication why this happened. Tabb and Manning (1961) have reported that spot, Leiostomus xanthurus, come to the Park only during cold winters, so the capture of this species only during 1966 suggests that that year had a severe winter which delayed the spawning of Bairdiella chrysura. Spotted seatrout, Cynoscion nebulosus and sand seatrout \underline{C}. arenarius also spawned later during 1966 than during 1967.

Other possible explanations for the apparent lack of spawning by Bairdiella chrysura during the winter of 1966 are (1) the winter peak occurred during December 1965; (2) the winter peak came in between sampling dates during January and February; (3) the larval mortalities were high during 1966; and (4) the adults spawned in another area.

The data from the present study indicate that the spawning season for silver perch is longer and the peak of spawning is earlier in the year at Everglades National Park than in other parts of its range. Springer and Woodburn (1960) reported that silver perch spawn for only one month at Tampa Bay, Florida, because they caught $13.0-15.9 \mathrm{~mm}$ fish during May only. They believe that the $16.0-18.9 \mathrm{~mm}$ juveniles they caught through August were either stunted or had been recruited from other areas. These are the only authors who have suggested a short spawning season. At Beaufort, North Carolina, Hildebrand and Cable (1930) reported that the spawning season begins in April and ends in
mid-July. Kuntz (1914), Welsh and Breder (1924), Hildebrand and Schroeder (1928), and Pearson (1941) have reported slightly shorter seasons in other mid-Atlantic states. Williams and Deubler (1968b) reported catching larval silver perch as late as October. In northern Florida, Reid (1954), Kilby (1955), and Joseph and Yerger (1956) reported data which suggests spawning occurs from May to September. The reproductive season in Texas and Louisiana is similar to that in northern Florida (Gunter, 1938 and 1945; Simmons, 195la; Miller, 1965).

Cynoscion nebulosus

Spotted seatrout were collected in every month of the year, but most commonly from early April through October. The spawning season began in late winter or early spring, as shown by high percentages of recently-spawned larvae in April 1966 and March 1967 catches (Figures 6 and 7). The small catches and the consistently high percentage of very young larvae indicate low intensity spawning during early spring. In late April 1967 catches rose sharply and remained at or near this high level until early May. Although there was no comparable increase in catch during these months in 1966, the significant percentage of recently-hatched larvae shows that spotted seatrout were spawning at this time. In 1966 the peak catch occurred in early June. During summer, catches were variable for both years. The presence of very young fish in nearly all samples is

Figure 6.--Catches of Cynoscion nebulosus, temperatures, and salinities for Little Shark River, 1966-1967.

Catch/1000 m ${ }^{3}$

Temperature

Salinity

Figure 7.--Length-frequency for Cynoscion nebulosus
Open boxes represent fish measured to SL and shaded ones represent those measured to NL. When all fish caught are in one size category, all measurements are to SL. No fish longer than 3.5 mm were measured to NL. Samples collected less than 12 days apart were combined as indicated in Table 4. Combined samples are plotted according to the first sampling date.

evidence that low to moderate spawning continued throughout the summer. After September, catches fell to very low levels, but the fishes caught ranged in size from $3-5 \mathrm{~mm}$. These fish were probably newly-hatched larvae. They indicate that spawning occurs year-round, although it is much reduced during late fall and winter.

The results of this study fit the trends shown by work in other areas and agree with other studies in Everglades National Park. In the mid-Atlantic states, the spotted seatrout is primarily a spring and summer spawner (Welsh and Breder, 1924; Williams and Deubler, 1968b), but at the Indian River in Florida, the spawning season is extended from mid-April until October (Tabb, 1961). Throughout the Gulf of Mexico north of Everglades National Park, the spawning period extends from late March or early April until October (Pearson, 1929; Gunter, 1945; Miles, 1950, unpublished, and 1951, unpublished; Moody, 1950; Simmons, 195la; Reid, 1954; Joseph and Yerger, 1956; Klima and Tabb, 1959; Springer and Woodburn, 1960; Moffett, 1961). Gunter (1945) and Miles (195l, unpublished) caught ripe females during November in Texas. In Everglades National Park the most important part of the reproductive period coincides with that in the rest of the Gulf and on the east coast of Florida, but reproduction in the Park continues year-round. Stewart (1961, unpublished) has shown that spotted seatrout living in the Park are ripe throughout the
year. The present study has shown that this species does spawn throughout the year there. Stewart (1961, unpublished) and Roessler (1967, unpublished) have shown that intense spawning begins in March. Stewart believed that it continued through June and that the peak was in May. The data from the present study do not contradict this, but they show that the time of the peak is variable. The late summer spawning peak predicted by Stewart (1961, unpublished) and Higman (1967) did not materialize in either year, perhaps because of high water temperatures.

Sciaenops ocellata

Red drum spawn from mid-September until mid-February (Figures 8 and 9), but there is considerable variation in the time when spawning begins and ends. During 1966 sizeable catches were made in late September, whereas in 1967 sizeable catches were not made until mid-October. During 1967 there was more spawning later in the year and it may have continued into the next year as it did during the 1965 spawning season. The peak of spawning appears to be in October.

Red drum spawn in late summer and early fall in the mid-Atlantic states (Mansuetti, 1960; Williams and Deubler, 1968b). Yokel (1966, unpublished) has concluded that spawning may start in July or earlier. In Florida red drum spawn in fall (Welsh and Breder, 1924; Kilby, 1955; Springer

Figure 8.--Catches of Sciaenops ocellata, temperatures, and salinities for Little Shark River, 1966-1967.

Figure 9.--Length-frequency for Sciaenops ocellata.
All fish caught were measured to SL. Samples collected less than 12 days apart were combined as indicated in Table 4. Combined samples are plotted according to the first sampling date.

and Woodburn, 1960; Yokel, 1966, unpublished; Roessler, 1967, unpublished), and the peak probably occurs in October (Yokel, 1966, unpublished). Yokel has also shown that there is possibly a late-winter to spring spawn on the east coast of Florida. Pearson (1929) said that spawning occurs primarily during October in Texas. Gunter (1945) and Miles (1950, unpublished and 1951, unpublished) agree.

The data from the present study show that spawning near Everglades National Park coincides with spawning of other Gulf populations, rather than with that of Atlantic populations, except that near the Park it continues later than in northern parts of the Gulf. There is no evidence of any spring or summer spawning in the Park.

Cynoscion arenarius

The spawning season for the sand seatrout is long (Figure 10). In 1967 it began in mid-February, but in 1966 it did not begin until April. Since the spawning of other sciaenids was delayed in 1966, the spawning of the sand seatrout probably begins in mid-February normally. Spawning probably stopped in mid or late October during both years.

Spawning begins earlier in the Park than it does in the northern Gulf of Mexico. Gunter (1938 and 1945), Simmons (1951a), Hildebrand (1954), Reid (1954), Kilby (1955), Copeland (1965) and Miller (1965) found that spawning occurs between March or April and September. At Tampa Bay, Florida,

Figure 10.--Seasonal abundance and size-range of Cynoscion

arenarius.

Open boxes indicate fish measured to SL and shaded boxes indicate those measured to NL.

Springer and Woodburn (1960) caught a ripening female in February, but these authors did not collect any larvae at this time.

Figure 10 indicates that there may have been spring and fall peaks in spawning, with a lull during the summer months. The first peak was observed during May and June. This was the period when most of the recently-hatched larvae were caught, when the smallest fish were caught, and when the catches were most consistent. Reports in the literature agree with a spring spawning peak (Simmons 195la; Copeland, 1965). During July and August spawning appeared to diminish or even stop. Simmons (1951b) and Stewart (1961, unpublished) have alluded to a similar decline in spawning for the spotted seatrout. When the temperature began to decline in the fall, catches increased. This second peak may have been caused by an increase in spawning, by an exodus of larvae and small juveniles from the estuary, or by an artifact from the small sample size. In Texas, Copeland (1965) found that there was a second peak in the number of adult and juvenile sand seatrout leaving the estuary during late fall.

Leiostomus xanthurus

Spot were collected only twice, once in January and once in February of 1966 (Figure 11). The growth rate of larval spot is not known, but these fish were probably

Figure ll.--Seasonal abundance and size-range of Leiostomus xanthurus.

Open boxes indicate fish measured to SL.

spawned in December and January, respectively. Since this species occurs in Everglades National Park only when cold weather forces them to go there (Tabb and Manning, 1961 and 1962), these catches do not indicate the whole spawning season. Most investigators have shown that spot spawn from December until late March in Florida (Reid, 1954; Kilby, 1955; Joseph and Yerger, 1956; Townsend, 1956; Springer and Woodburn, 1960; Sykes and Finucane, 1965; Zilberberg, 1966; Kelly and Dragovich, 1968).

The large size of these fish poses the question of whether these juveniles were spawned nearby or were driven south by cold weather. Tabb and Manning (1961) found no evidence of spawning in Florida Bay, even though the fish were present during their spawning season. This suggests that the young may have been driven to the Park by cold weather. Tabb and Manning may have missed the spawning population, because spot spawn in deep water (Hildebrand and Schroeder, 1928; Pearson (1929); Roel ofs, 1951; Townsend, 1956; Dawson, 1958). A deep-water spawning site accounts for the large size of the fish caught, but it also means that the young are at sea longer, which allows more opportunity to encounter adverse weather. The fish would have to have been driven south twice, however, once at a time when temperatures were starting to rise, so spot probably spawned near the Park.

Menticirrhus americanus

During this sampling program young southern kingfish were collected during all seasons except early winter (Figure 12). Spawning starts in mid to late winter, but probably does not reach its peak until spring, when recently-hatched larvae were most common. During the summer of 1966, catches were low, but during this same season in 1967 the highest catches for the year were recorded. In 1966 the peak catch was delayed until September. The September 1966 catches included the largest individuals of this species which were caught, but smaller fish dominated the catches indicating recent spawning. Fish from 3.5 to 12.0 mm were caught for the duration of fall. For reasons discussed earlier these fish are believed to be recently spawned individuals, not slow-growing or stunted ones. The larger individuals may be leaving the estuary because Tabb and Manning (1961 and 1962), Roessler (1967, unpublished) and Clark (1970, unpublished) did not find any juvenile southern kingfish.

The data from this study, suggest almost year-long spawning, although this has not been reported in the literature. Most authors suggest that southern kingfish spawn from April or May until September on both the Atlantic coast (Hildebrand and Schroeder, 1928; Hildebrand and Cable, 1934; Pearson, 1941; Bearden, 1963; Williams and Deubler, 1968b) and the Gulf coast (Gunter, 1938; Reid, 1954; Joseph and Yerger, 1956; Springer and Woodburn, 1960), but there are

Figure 12.--Seasonal abundance and size-range of Menticirrhus americanus.

Open boxes indicate fish measured to SL and shaded boxes indicate those measured to NL.

a few who disagree. At Fernandina Beach, Florida, Welsh and Breder (1924) suggest a double spawning season, one peak in spring and one in fall. Gunter (1945) concurs for the Texas coast. Welsh and Breder (1924) and Miller (1965) suggest a single spawning season from late fall to early winter for Gulf populations.

Menticirrhus saxatilis

Although the data for the northern kingfish are meager, they suggest fall and winter spawning (Figure 13)。 Springer and Woodburn (1960) caught their smallest specimens of this species in October and November, but because slightly larger young were more abundant in May and June, they concluded that northern kingfish spawn in spring at Tampa Bay, Florida.

In the northern Atlantic states, spawning of the northern kingfish occurs from May or June until August and may continue until September (Welsh and Breder, 1924; Bigelow and Schroeder 1953; Schaeffer, 1965). In the mid and south Atlantic states the spawning season is probably April through May (Hildebrand and Cable, 1934, Bearden, 1963).

Pogonias cromis

Black drum spawn in late fall and winter so only one complete spawning season was sampled (Figure 14). Larvae were caught from November 14, 1966 until March 14, 1967

Figure 13.--Seasonal abundance and size-range of Menticirrhus saxatilis. Open boxes indicate fish measured to SL.

Figure 14.--Seasonal abundance and size-range of Pogonias cromis.

Open boxes indicate fish measured to SL and shaded ones indicate those measured to NL.

during this season. The catches in the two half-seasons were not as extensive as for the 1966-1967 season, but these data suggest the same spawning time. Fish without hypural bones were not caught until February ll, 1967, just before spawning stopped. This may be the result of the small samples, it may indicate an increase in spawning, or it may indicate movement of spawning schools closer to the sampling site.

Published spawning data from Everglades National Park is limited, but it too indicates fall and winter spawning. Tabb and Manning (1961) found a running ripe male black drum on November 1l, Roessler (1967, unpublished) caught a 49 mm specimen in March, and Yokel (personal communication) caught a ripe male in January.

Data collected from the northern part of Florida suggest winter to early spring spawning (Reid, 1954; Kilby, 1955; Joseph and Yerger, 1956; Springer and Woodburn, 1960; Sykes and Finucane, 1965, quoting data from Springer and Woodburn, 1960). In Texas, Pearson (1929) and Simmons (195lb) suggested two spawning seasons, one from February to May, based on gonadal development and occurrence of larvae, and the other from late July until November, based on gonadal development alone. Breuer (1957) and Simmons (1957) have confirmed Pearson's first season, but not his second one. No evidence of summer to fall spawning was found during the present study.

Species Not Caught

The following sciaenids have been reported from southwestern Florida (Briggs, 1958), but were not captured during this sampling program: Bairdiella batabana, Equetus lanceolatus, Menticirrhus littoralis, Micropogon undulatus, and Stellifer lanceolatus. Their life histories largely excluded them from the brackish water parts of Everglades National Park. Bairdiella batabana occurs in Everglades National Park, but it is rare where the salinity is below 27 parts per thousand (Robins and Tabb, 1965). Clark (1970, unpublished) has found one young specimen of B. batabana in Oyster Bay, Everglades National Park. Equetus lanceolatus is mainly a coral reef species (Welsh and Breder, 1924; Randall, 1968). When it does occur in the Park, its eastward movement is limited by high turbidities and low salinities (Tabb and Manning, 1962). Menticirrhus littoralis is primarily a surf dweller. Tabb and Manning (1962) have reported this species from a localized high salinity community east of East Cape Sable, Everglades National Park. Micropogon undulatus does not normally live or spawn in the Park, it occurs there only when driven south by cold weather (Tabb and Manning, 1961). Stellifer lanceolatus prefers open waters (Smith, 1907; Hildebrand and Cable, 1934; Gunter, 1938 and 1945; Joseph and Yerger, 1956; Anderson, 1968). Hildebrand and Cable (1934) and Reid (1955) have reported juvenile star drum in estuaries, and Tabb
(unpublished manuscript) has reported a single specimen from the mouth of the Chatham River, Everglades National Park.

Spawning Site

It is unlikely that larval sciaenids caught during this survey were spawned in the brackish water part of Everglades National Park. The almost complete absence of eggs and newly-hatched larvae in the samples indicates that spawning did not occur either at the estuarine end of the pass, or within the pass itself. Fish spawned further up the estuary are probably not swept out to sea. Pritchard (1952) has shown that in bar-built estuaries currents drop off rapidly on the estuarine sides of the pass, limiting their effect on animals living there. Furthermore, during winter and spring the net flow of water is into the Park's estuaries (Table 3), which would minimize seaward dispersal of planktonic larvae. Larval silver perch become demersal when they grow to 5 mm (Pearson, 194l), and larval red drum and spotted seatrout seek shelter in grass beds after they enter estuaries (Miles, 1950, unpublished), which will minimize the effect currents have on them. Pearcy (1962a) found that 30% of the water volume in the Mystic River estuary was removed seaward each day whereas only 3% of the larval flounders were dispersed seaward per tidal cycle, and most of the larvae lost were planktonic. Older larvae

TABLE 3
WATER FLOW VOLUMES AT SHARK RIVER STATION, 7.0 MILES UPSTREAM FROM MOUTH OF RIVER, OCTOBER 1964 TO SEPTEMBER 1965a

Month	Down Stream $(106 \mathrm{cu.ft)}$.	Up Stream $(106 \mathrm{cu.ft)}$.
October	115	99
November	116	99
December	109	104
January	102	109
February	97	109
March	94	112
April	94	116
May	93	116
June	104	115
July	118	100

aU. S. Dept. Interior, 1965.
were concentrated on the bottom where the net water flow carried them up the estuary.

The spawning site is probably close to the Park, however. Miles (1951, unpublished) reports that Baughman has observed what appeared to be schools of adult red drum, milling about $3 / 4-1$ mile offshore from the Texas coast. Since the smallest red drum caught during this survey are comparable in size to those caught by Pearson (1929) and Miles (1950, unpublished), spawning in south Florida probably occurs in a similar location. Furthermore, there is no evidence of strong, steady currents which could carry the larvae to the passes from distant offshore spawning grounds (Koczy, Rinkel, and Niskin, 1959; Rinkel and Dunlop, unpublished MS; Rehrer, Jones, and Roessler, 1967). Koczy et al., (1959) and Rinkel and Dunlop (unpublished MS) have reported that a wedge of water moves out of Florida Bay, up the west coast of Florida. This could carry the larvae up to the Little Shark River from spawning grounds reported off Flamingo and Cape Sable by Tabb and Manning (1961). The spawning of spotted seatrout in Florida Bay is not extensive or dependable, however, so additional spawning must have occurred west of Cape Sable. The currents and possible spawning grounds north and west of the Little Shark River have not been studied.

Of the eight species caught the only ones which spawn primarily within bays are Cynoscion nebulosus (Tabb,
1966) and Pogonias cromis (Breuer, 1957). Cynoscion arenarius (Copeland, 1965), Leiostomus xanthurus (Dawson, 1958), Menticirrhus americanus (Hildebrand and Cable, 1934), M. saxatilis (Hildebrand and Cable, 1934), and Sciaenops ocellata (Yokel, 1966) all appear to spawn outside the estuary. Bairdiella chrysura spawns both inside and outside of the estuaries (Hildebrand and Cable, 1934; Simmons, 1951a; Springer and Woodburn, 1960).

Stewart (1961, unpublished) and Tabb and Manning (1961) indicated that some spawning of Cynoscion nebulosus probably took place in the tidal inlets of Florida Bay, but the evidence suggested that the area was not a primary or dependable spawning ground. The most important area is in the bays and lagoons far above the maximum reach of the daily tides so long as salinity is high (Tabb, 1966). The present study indicates that considerable spawning by this species does take place outside the estuary. The spotted seatrout was the second most abundant species in the samples, trailing only silver perch.

Pearson (1929) believed that in Texas black drum spawn at the mouths of passes because that was where he found spent fish. He reported, however, that fishermen believed black drum spawn in bays. Breuer (1957) agrees with the latter theory. He caught ripe fish, spent fish, and sciaenid eggs which he believed to be black drum eggs from Laguna Madre, Texas. He also reported that Oso Bay
has been long recognized as a spawning site for this species.

The results from the present survey indicate that black drum spawn outside the estuarine part of Everglades National Park, but the amount of spawning there may be small since less than 100 specimens were caught, compared to more than 4,000 specimens of silver perch. Yokel (personal communication) caught a running ripe male off the mouth of Big Sable Creek, Everglades National Park.

Length-Frequency

The length-frequency diagrams (Figures 5, 7, and 9) show the sizes of silver perch, spotted seatrout, and red drum caught. Silver perch ranged in size from 2.0 mm NL to 23.5 mm SL, but more than 99 percent were between 2.0 and 6.5 mm . Spotted seatrout had a similar distribution, but larger fish made up a much higher percentage of the catch and the smallest size was 1.5 mm NL. Significant numbers of larvae without hypural bones were caught for both species. Red drum were much larger than either of the other two species; the mode for red drum was at least 6.5 mm SL in all but two samples, whereas it was well below 6.5 mm SL in nearly all samples of the other two species. Furthermore all red drum could be measured to standard length.

The slight increase in mean size of larval silver perch and red drum as the spawning seasons progress should not be interpreted as the growth-rate of the larvae, because young sciaenids grow more rapidly (Kuntz, 1914; Hildebrand and Cable, 1934; Miles, 1950, unpublished and 1951, unpublished; Mansueti, 1960; Roessler, 1967, unpublished). Furthermore, even though Roessler (1967, unpublished) caught juvenile silver perch, spotted seatrout, and red drum which were 20 mm SL and larger in Buttonwood Canal, it is doubtful that large numbers of these species live in the passes because ecological studies on young silver perch (Breuer, 1957; Springer and Woodburn, 1960), spotted seatrout (Miles, 1950, unpublished; Tabb, 1966), and red drum (Miles, 1950, unpublished; Schultz, 1961; Simmons and Breuer, 1962) have shown that most of the young seek shallow, quiet water rather than stay in the passes.

Vertical Distribution

For each of the three most abundant species, comparisons were made between the mean sizes of fishes caught near the surface and those caught near the bottom, and between the numbers of fish caught at both depths. Wilcoxon's t-test showed no significant difference at the 95% level of significance between the mean size of Bairdiella chrysura $(z=0.984)$, Cynoscion nebulosus $(z=0.927)$, and Sciaenops ocellata (Wilcoxon's $t=32$) caught in surface and bottom
nets. Also, there was no significant difference at the same level of significance between the catch/ $1000 \mathrm{~m}^{3}$ at the surface and at the bottom for \underline{B}. chrysura ($Z=0.306$) and C. nebulosus $(Z=0.691)$, but there was a significant difference between the surface and bottom catch/ $1000 \mathrm{~m}^{3}$ for S. ocellata (Wilcoxon's $t=24$).

Although larval silver perch and spotted seatrout are demersal after they enter the estuary (Pearson 1941; Miles, 1950, unpublished), they are pelagic while they move through the passes. Red drum on the other hand have assumed a demersal habitat by the time they start entering the estuary. Yokel (1966) caught 9 red drum $8-12 \mathrm{~mm}$ total length in surface flood tide tows taken at night. He caught no young red drum in mid-water or bottom tows, so he concluded that larval drum enter the estuaries on swifter surface currents. The data from the present study indicate that Yokel's small sample size led him to a false conclusion. Roessler (1967, unpublished) found significant differences between the salinities and temperatures of surface and bottom water in Buttonwood Canal. For salinity this difference was 0.07 ppt and for temperature it was $0.09^{\circ} \mathrm{C}$. Similar conditions probably exist in the Little Shark River, since it, too, is a shallow channel with a strong current. Although these differences are statistically different, they probably do not affect the distribution of the fish.

> Relationship of Catch to Salinity and Temperature

There is no apparent relationship between catch and the salinity or temperature at the time of capture for Bairdiella chrysura, Cynoscion nebulosus, or Scienops ocellata (Figures 4, 6, and 8). Williams and Deubler (1968a) came to the same conclusion for three species of flounders on the basis of data collected over 10 years. Roessler (1967, unpublished) found that season and rainfall influenced catches of juvenile fishes most and that temperature often interacted with season and rainfall to affect catches, but that salinity had no significant effect on catch, even in an interaction. Simmons (195lb) found that moderate changes in salinity had no effect on the catches of adult spotted seatrout, and that changes in temperature had little effect unless the new temperature crossed the limit of a preferred range. Both Simmons (1957) and Tabb (1966) report that the rate of salinity change is far more important than the amount of the change. Reid and Hoese (1958) found that drastic changes in salinity distribution within an estuary did not change the size-depth distribution of young fishes living in it. The apparent lack of correlation between catch and the salinity or temperature at the time of capture suggests that neither spawning nor the abundance of young depends upon vagaries of salinity and temperature as long as these variables remain within the range normally encountered.

An account is given below of the salinity and temperature conditions in the Little Shark River when the three most common species were spawning, and of salinity and temperature ranges in the pass when their larvae were moving through.

Salinity

Bairdiella chrysura.--Because spawning of the silver perch was delayed in 1966, the salinity was markedly different each year when the larvae were most abundant (Figure 4). In 1966 larvae were abundant when the salinity was at its peak and during the early stages of the decline, whereas during 1967 the young were most abundant while the salinity was rising. For both years, catches were lowest when the salinity curve was in late stages of its decline and was at its minimum. The salinity range over which young silver perch were caught is 23.5 to 37.4 ppt.

Cynoscion nebulosus.--Catches of this species were highest when salinity was nearing its peak or just after it, and smaller during the summer and fall when salinity declined (Figure 6). Catches were lowest during the salinity minimum and the early stages of the spring increase. The salinity range over which young spotted seatrout were caught was 23.537.4 ppt.

Tabb (1966) reported that spotted seatrout spawn in southern Florida during the dry season when the salinity of
estuaries and lagoons is between 30 and 35 parts per thousand. Although spawning occurred during the summer of 1966 when the salinity was below 30 parts per thousand, the data for the year generally support this statement (Figure 6). The number of larvae without hypural bones was substantially lower for the summer of 1966 than for the summer of 1967 , when the salinity was between 30 and 35 parts per thousand. In 1967 the peak of spawning occurred when the salinity in the passes was well over 35 parts per thousand, however. Since the pass is probably not a spawning site, this may not be indicative of the conditions encountered by the spawning population.

Tabb also reports that survival was low if salinity was significantly below 36 ppt. This may be true for upper reaches of the lagoons and estuaries, but it is not true for the tidal passes because most fish were caught when the salinity was less than 36 ppt.

Sciaenops ocellata.--Young red drum enter estuaries during the yearly salinity minimum (Figure 8). The salinity range over which red drum were caught was 23.5-32.4 ppt. Temperature

Bairdiella chrysura.--In 1966 the spawning peak occurred after the water temperature had risen well above the winter minimum (Figure 4). In 1967 it occurred when the water temperature was near the winter minimum. The
catch peak on February 27 coincided with the lowest temperature of the survey period, but these fish had been spawned a week or two earlier (Figure 5). The possible delay in spawning as a result of low temperatures has been discussed in another section. As temperatures approached the summer maxima, catches declined to a minimal level. Although the catches were reduced, there was still some active spawning because larvae without hypural bones were caught in July 1966, and July and August 1967. Spawning did not increase when the water cooled in the fall. The temperature range over which young silver perch were caught was 16.4 to $31.8^{\circ} \mathrm{C}$.

Cynoscion nebulosus.--This species probably spawns all year long, but catch and length-frequency data (Figures 6 and 7) indicate that spawning was low until the water temperature had risen substantially in spring. The temperature necessary for large scale spawning appears to be $24^{\circ} \mathrm{C}$ (Figure 6). Simmons (195lb) has shown that after the water temperature had increased from $19.7^{\circ} \mathrm{C}$ to $28.3^{\circ} \mathrm{C}$ there was a 7-fold increase in catch of spotted seatrout. Furthermore he has shown that ripe adults moved into bays when the water temperature went above $23.3^{\circ} \mathrm{C}$, but they stopped if it fell below this temperature. Tabb (1958) has observed that spawning began in spring when the temperatures averaged 25.5° C. Stewart (1961, unpublished) doubted that there was a threshold below which there was no spawning. He is probably correct, but Figure 6 shows that the delay in the
spawning peak during 1966 correlated with a minimum water temperature of $24^{\circ} \mathrm{C}$ 。 During 1967 the peak in spawning occurred more than a month after the temperature rose above $24^{\circ} \mathrm{C}$. These data show that warm water is necessary to allow the spring spawning peak, but it is not the sole factor in determining when the peak occurs, nor is it necessary for all spawning.

Stewart (1961, unpublished) reported that a bimodal peak in percentage of ripe adults correlated with a water temperature range of $28^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$, and Simmons (1951b) has shown that seatrout become less active when the water temperature exceeds $30^{\circ} \mathrm{C}$. The results from the present study do not support Stewart's lower temperature limit because spawning was nearly complete in the spring when the water temperature reached $28^{\circ} \mathrm{C}$. Tabb (1958) has reported similar observations for other parts of Florida. Temperatures above $30^{\circ} \mathrm{C}$ did coincide with reduced summer spawning. Furthermore, the water temperature did not fall below $30^{\circ} \mathrm{C}$ until late September or early October and the fall spawning peak proposed by Stewart never materialized, which suggests that high temperatures prevented the second peak.

The temperature range over which young spotted seatrout were caught was $16.4-31.8^{\circ} \mathrm{C}$.

Sciaenops ocellata.--Red drum entered Everglades National Park when the temperature was falling and ceased to enter by the time the water temperature reached its winter
minimum (Figure 8). The maximum and minimum temperatures which young red drum encountered during their migration through Little Shark River were 18.3-31. $8^{\circ} \mathrm{C}$.

Results from the 24-Hour
Sampling Trips

During July 1967 the sampling station was occupied for a 24 hour period during each moon phase. The sampling methods were the same as those for the nighttime, flood-tide samples except that one sample was taken each hour, regardless of tide or light.

These samples were collected when postlarval shrimp are abundant, but not when young sciaenids are abundant. As a result the numbers of fish caught were usually too small for statistical analysis. Moreover, the catches and behavior of the fish may not be indicative of those at the peak of spawning. Nevertheless, these data give some insight into the behavior of larval fishes and suggest ways of organizing future sampling programs.

Bairdiella chrysura, Menticirrhus americanus, and Cynoscion nebulosus were caught during this series of samples, but only \underline{C}. nebulosus occurred in sufficient numbers to permit analysis. The catches of all three species are presented in Tables ll-14.

The pattern of catch of spotted seatrout larvae during four twenty-four hour periods is shown in Figure 15.

Figure 15.--Diel catch of Cynoscion nebulosus on the four major moon phases.

Catch declined in the morning with the beginning of nautical twilight and remained low until about 1100 hours when it rose irregularly. The catch reached its peak in early afternoon, declined thereafter, and remained low until after dark. Catches rose slowly at night until the tidal current changed direction, then fell sharply. After the new current had picked up speed, catches rose again. The catch was lowest during the times when light and current were undergoing their most profound changes and was highest when conditions had been somewhat constant for a while.

Effect of Moon Phase on Catch

The data from the twenty-four hour sampling trips show differences in catch/ $1000 \mathrm{~m}^{3}$ of spotted seatrout among moon phases (Figure 15), but are insufficient for statistical analysis, so evening flood-tide samples taken from June to October 1966 and May, July, and August 1967 were used instead. Samples taken in April and May 1966 and June and September 1967 were excluded from the calculation because each lacked data for one moon phase, and the missing data could not be generated mathematically, using the method of Yates (1933) (as quoted by Steel and Torrie, 1960). Friedman's randomized completeblock design (Steel and Torrie, 1960) indicated that there were no significant differences in catches among moon phases for evening flood tides at the 95% level of significance $\left(x^{2}=1.35\right)$. This suggests that there were no significant
differences among catches on different moon phases for any other time of day.

Williams and Deubler (1968a) found that catches of the flounder, Paralichthys dentatus, were significantly larger on the new moon than on the full moon, but that two closely related species, \underline{P}. lethostigma and P. albigutta did not show such a difference. These authors have stressed the importance of long term sampling when studying marine organisms, and collected data for 10 years during their study. Perhaps more data are necessary for the spotted seatrout before a difference is detectable, but the present data do not even indicate a trend in the catches (Tables 5-8).

Effect of Light on Catch
Daytime catches of ichthyoplankton are usually markedly smaller than nighttime ones, and this has been attributed to net avoidance (Bridger, 1956; Deubler, 1958; Isaacs, 1964). Isaacs (1964) noted similarity between daytime catches and the natural mortality rate of sardine larvae, and suggested that fish caught during the day are dead, dying, or weak; consequently they could not avoid the net. Pearcy (1962a), however, found no evidence that nighttime catches of larval winter flounder (Pseudopleuronectes americanus) were consistently higher than daytime ones or that nighttime catches contained larger larvae than daytime ones.

During this sampling program nighttime catches exceeded daytime ones (Figure 15), but because the Little Shark River is murky enough to severely limit vision, the difference in catch could reflect activity of the larvae rather than ability to avoid the net. Furthermore catches rose very slowly after nautical twilight had ended in the evening (Figure 15), whereas if the fish were active during the day, catches should have risen sharply when darkness fell. The length-frequency data were tested for a significant difference between size of fish caught during daylight and darkness. Twilight samples were omitted. A test for skewness (Snedecor and Cochran, 1967) showed that the nighttime catches were significantly skewed, but daytime ones were not. This may be attributed to the presence of large fish in nighttime samples and their absence in daytime ones, therefore, darkness is required before net avoidance ceases to be a problem.

Despite significant net avoidance, several larvae were caught during daylight and the catches had a pattern which was consistent for the new and full moon phases (Figure 15). The time of peak daytime catches was during the afternoon flood tides.

Light appeared to affect the vertical distribution of the larvae also. For daylight samples in which fish were caught, the bottom catches exceeded surface ones in 17 of 23 samples (Tables 12 and 14 ; Figure 16). Pearson (1941) and

Figure 16.--Effect of moonlight and daylight on the vertical distribution of the catch.

Hildebrand and Cable (1930 and 1934) found that young fish are more common in deeper water during daytime, but none of their data have been tested statistically. Pearcy (1962a) found that larval winter flounder were vertically distributed by numbers and by size, more fish and larger ones being on the bottom. Pearson (1929) reports that small juvenile sciaenids attempting to enter passes in Texas were swimming at or very near the surface. The young were trying to breast the pass on an ebb tide, hugging the sides of the channel for slower currents and the counter-wash from Gulf surf, so this behavior may be anomalous.

Moonlight also appeared to reduce surface catches. At night during the quarter moon phases the bottom catches exceeded those on the surface when the moon was shining, but the surface catches exceeded those on the bottom after the moon had set (Tables 12 and 14). For the new moon bottom catches exceeded surface ones in only 4 of 8 samples and the mean surface and bottom catches were about equal, whereas for the full moon bottom catches exceeded those at the surface for 6 of 8 samples and the mean bottom catch is much higher than that for the surface (Figure 16). The data do not indicate whether the smaller surface catch during moonlit nights is due to net avoidance or to fewer fishes at the surface.

Despite the apparent correlation between light and higher bottom catches, Wilcoxon's t-test has shown that there
is no significant difference between surface and bottom catch on the full moon, either for all full-moon, flood-tide samples during 1966 and 1967 or for all nighttime samples taken on July $22-23$, 1967. In both cases, however, the numbers of samples were small.

Effect of Current on Catch

On all moon phases, daylight and nighttime catch peaks were higher on flood tides than on their respective ebb tides (Figure 15). Total catches for flood tides were also larger than those for ebb tides. The larvae appear to have been consistently more active on flood tides than ebb tides, which means that the net transport of larvae is into the estuary even if more than one tidal cycle were required to move through the pass. This behavior would also enable the larvae entering the estuary in the summer and fall to counter the net outflow of water. Pearson (1929) has also reported that larvae and small juveniles are active during ebb tides.

Regardless of the direction the tidal current flowed, the catches reached their peak at or just after the peak velocity of the current, and were at their minimum during slack water (Figure 15). There is no apparent reason why catch peaks were delayed while the current increased in velocity, especially since the young are active on both ebb and flood tides.

The reason why catches dropped during slack tide is not known either. Bishai (1960) has shown that larval herring orient themselves into currents, but when the current stops, they swim at random or rest near the surface. His data do not indicate that fish larvae behave in such a manner as to make themselves unavailable to the sampling gear when there is no current.

Despite a recent increase in studies of the fishes of Everglades National Park the larval stages have been neglected. Furthermore, the ecology of larval fishes is poorly known; what ecological data is available on larval sciaenids has been collected primarily as supplementary data during taxonomic studies. The present study has filled in some gaps in the information for species of the family Sciaenidae, a commercially important group whose larvae generally depend upon estuaries as nursery grounds. The objectives were (l) to identify the larval sciaenids which enter Everglades National Park; (2) to record their seasonal abundance; (3) to investigate the relation between catch and physical variables of the three most abundant species; and (4) to investigate the diel variation in catch of spotted seatrout (Cynoscion nebulosus).

The fish used in this study were collected from January 1966 until December 1967 during a postlarval shrimp sampling program. The sampling site was in the Little Shark River, a tidal channel which connects one of the estuarine bays of Everglades National Park to the Gulf of Mexico. Samples were taken with 471 mesh nylon plankton nets with one meter mouth-diameters. Two nets were fished, one near the bottom and one near the surface. During spring
and summer, tows were made on all major moon phases and during winter, tows were made only on new and full moon phases. Samples were taken on flood tides, at 45-60 minute intervals, during darkness, and before the maximum tidal velocity, except during July 1967 when the station was sampled hourly for 24 hours. Temperature and salinity data were taken at the mid-time of each 10 minute tow. Surface and bottom current velocity were measured before and after the tow. Samples were preserved in 10% buffered formalin, sorted, stored in 3% buffered formalin, and then transferred to 40% isopropanol.

To facilitate identification of the larvae, a list of juveniles and adults occurring in Everglades National Park and adjacent areas was compiled, descriptions and drawings of larval sciaenids were collected from the literature, juveniles of nearly all sciaenids which occur in Florida's waters were cleared and stained, preserved specimens of young juveniles were obtained, and a reference collection was compiled from the samples by comparing small specimens with larger, identified ones.

The data from nighttime, flood-tide samples were summarized for each species in three ways: (l) a sizefrequency summary; (2) a summation of catch for each trip; and (3) for the three most common species an adjusted mean size calculation. For the size-frequency summary, weekly data were combined to give approximately two week intervals

Catches during the diel study were of ten too small to draw definite conclusions, but they suggest possible relations between spotted seatrout and their environment, and suggest ways to organize future sampling programs. Data from the diel study suggested that catch of spotted seatrout varied with moon phase, but an analysis of all nighttime, flood-tide data showed no significant differences in catch among moon phases. Nighttime catches of Cynoscion nebulosus exceeded daytime ones and contained more large larvae. During daytime or moonlit hours, bottom catches usually exceeded surface ones, but the difference was not statistically significant. Daylight and nighttime flood-tide catches exceeded their respective ebbtide ones. Catch peaks occurred at or just after the peak tidal velocity and dropped sharply during slack water.

TABLE 4
SAMPLES COMBINED FOR THE LENGTH-FREQUENCY HISTOGRAMS

1966	
April 18-19 May 20-21 June 5 June 21 July 5 July 21 August 4 August 19 September 2 September 14-15 September 28-29 October 17	and April 27 and May 29 and June 14 and June 28 and July 12 and July 26 and August 10 and August 26 and September 10 and September 23 and October 7 and October 22
1967	
April 27 May 11 May 26 June 26 July 9 July 23 August 9 August 2l-22	and May 2 and May 20 and June 3 and July 2 and July 16 and July 30 and August 15 and August 30

TABLE 5
SALINITY, TEMPERATURE, MOON PHASE, CURRENT VELOCITY,
AND NATER-VOLUME DATA FOR 1966

SALINITY, TEMPERATURE, MOON PHASE, CURRENT VELOCITY,
AND WATER-VOLUME DATA FOR 1967

Date		Mean Salin (\%)	Mean Temp (C)	Moon Phase	```Mean Current Velocity (m/min)```		Volume	Filtered $\left(m^{3}\right)$	
			Surface		Bottom	Surface	Bottom		
12-13	Jan		32.0	20.8	New	38.6	28.3		
-29	Jan	31.2	20.9	Full	34.6	27.6		890.5	
12	Feb	30.6	21.3	New	40.7	27.6 31.3	$\begin{array}{r} 869.1 \\ 1.085 .9 \end{array}$	$\begin{array}{r} 993.0 \\ 1.277 .2 \end{array}$	
14	Feb	28.6	16.4	Full	41.3	32.7		$1,277.2$	
	Mar	33.4	26.1	New	40.8	31.4 31.4	$1,054.5$ $1,161.2$	$\begin{aligned} & 1,032.4 \\ & 1,119.7 \end{aligned}$	
12	Apr	35.6	25.9	New	33.1	29.1	1,035.7	1,135,4	
	Apr	35.7	27.5	Full	33.1	26.1	1,485.6	$\begin{aligned} & 1,130.4 \\ & 1,489.3 \end{aligned}$	
27 2	May	36.5	24.8	3rd Qtr	21.4	15.4	1,029.4	$\begin{aligned} & 1,489.3 \\ & 1,093.6 \end{aligned}$	
11	May	36.5	28.7	New	25.1	20.9	1,187.1	$1,135.2$	
	May	37.1	27.7	lst Qtr	33.1	28.4	1,697.8	$\begin{aligned} & 1,730.2 \\ & 1,720.5 \end{aligned}$	
26	May	36.4	27.3	Full	28.4	22.7			
3	June	36.7	28.7	3rd Qtr	25.8	20.6	1,481.0	$\begin{array}{r} 1,1,9 \\ 1,303.4 \end{array}$	
11	June	37.4	30.1	New	36.3	29.8	1,284.3	$\begin{aligned} & 1,150.4 \\ & 1,150.4 \end{aligned}$	
252	June	33.6	29.8	Full	30.1	28.1	1,258.6	$1,165.5$	
	July	31.1	30.4	3rd Qtr	29.1	20.2	1,911.5	$1,470.7$	
9	July	31.9	30.0	New	31.1	27.4			
16	July	34.3	31.5	lst Qtr	17.7	19.8	$1,653.3$ 858.0	$1,438.2$ 836.4	
23	July	35.2	30.3	Full	28.3	21.6	1,675.4	$1,503.5$	
309	July	35.0	30.7	3rd Qtr	20.3	15.7	$1,282.0$	$1,5075.0$	
	Aug	33.8	27.8	New	36.1	25.5	$2,104.2$	$1,765.7$	
215	Aug	32.3	30.3	lst Qtr	29.8	22.8	1,786.2		
21-22	Aug	34.8	29.1	Full	36.7	27.2	$\begin{aligned} & 1,180 \cdot 2 \\ & 2,420.9 \end{aligned}$	$\begin{aligned} & 1,330.1 \\ & 1,690.2 \end{aligned}$	
30	Aug	32.5	31.2	3rd Qtr	28.2	22.0	1,612.9	1,434.6	
21	Sept	34.0	30.4	New	36.9	31.8	1,455.3	1,443.5	
	Sept	32.1	29.9	Full	34.5	27.0	958.7	773.3	
$\begin{array}{r} 5-6 \\ 20-21 \\ 4-5 \end{array}$	Oct	32.2	26.2	New	46.9	34.7			
	Oct	24.6	25.0	Full	35.7	23.1	1,659.2	$\begin{aligned} & 1,215.0 \\ & 1.060 .0 \end{aligned}$	
	Nov	28.6	25.3	New	37.6	30.5	1,246.3	1,911.2	
19-20	Nov	28.1	22.2	Full	34.0	28.4	1,367.8	1,099.7	
2- 17	Dec	29.4 29.0	24.4	New	44.0	33.9	1,862.5	1,448.0	
	Dec	29.0	24.6	Full	38.8	29.2	1,280.8	1,093.2	

TABLE 7

Date		Catch					
		Bairdiella	chrysura	Cynoscion	nebulosus	Sciaenops	ocellata
		Surface	Bottom	Surface	Bottom	Surface	Bottom
$\begin{array}{r} 5-6 \\ 20-21 \\ 20-21 \\ 9 \\ 22-23 \end{array}$		8	30	$\begin{array}{ll}0 & 0 \\ 1 & 0 \\ 0 & 0\end{array}$		00000	00100
	Jan	31	31				
	Feb	5	17				
	Mar	34	0				
	Mar	0	0				
$\begin{array}{r} 3-4 \\ 18-19 \\ 27 \\ 4-5 \\ 20-21 \end{array}$	Apr	17		12	0	0	0
	Apr	236	82	45	156		
	Apr		30			0	0
	May	20		5	0	0	0
	May	102	115	41	77	0	0
29	May	4	0	35	0	0	0
29 5	June	21	26	406	129	0	
14	June	11	7	201	94		0
21	June	216	91	99	79	0	0
28	June	11	34	2	19	0	0
5	July	0	1	1	4	0	0
12	July	14	5	17	13	0	0
21	July	0	0	0	0	0	0
26	July	20	28	16	62	0	0
4	Aug	0	0	1	10	0	0
10	Aug	0	0	43	13	0	
19	Aug	0	0	2	1	0	0
26	Aug	4	5	7	18	0	0
2	Sept	43	40	87	38	0	0
10	Sept	3	1	6	2	0	0
14-15	Sept	0	0	7	9.	0	0
$\begin{array}{r} 15 \\ 23 \end{array}$	Sept	1	0	1	7	5	1
28-29	Sept	2	4	17	29	78	95
28-29	Oct	2	1	9	10	694	653
17	Oct	0	2	15	21	52	61
22	Oct	3	0	3	1	36	55
14-15	Nov	0	0	0	0	25	7
14-15	Nov	1	2	0	0	2	1
13-14	Dec	36	8	0	0	0	1
29-30	Dec	2	5	0	0	0	0

CATCH STATISTICS FOR BAIRDIELLA CHRYSURA, CYNOSCION NEBULOSUS,

TABLE 9
MEAN SIZES AND STANDARD DEVIATIONS OF BAIRDIELLA CHRYSURA, CYNOSCION
NEBULOSUS AND SCIAENOPS OCELLATA CAUGHT DURING 1966 OTM

TABLE 10
MEAN SIZES AND STANDARD DEVIATIONS UF BAIRDIELLA CHRYSURA, CYNOSCION

TABLE 11
DATA FROM 24 -HOUR SAMPLING TRIPS

Mid-time						Number of Fish Caught					
		Current Velocity		Volume Filtered		Bairdiella		Cynoscion		Menticirrhus	
of	Tide	(m/min)		$\left(m^{3}\right)$		chrysura		nebulosus		americanus	
Tow		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom	Surf ace	Bottom
0051	Flood	35.6	28.6	479.4	427.0	0	1	7	2	0	0
0200	Flood	32.0	31.8	427.9	358.1	0	0	3	7	1	0
0253	Flood	43.1	38.3	306.2	393.5	0	0	4	2	0	0
0351	Flood	13.9	12.6	439.8	259.6	1	0	13	0	0	0
0447 a	Slack ${ }^{\text {e }}$	7.9	5.2	443.2	401.9	0	1	1	1	0	0
0550b	Ebb	33.1	20.4	470.3	337.1	0	0	0	0	0	0
0653	Ebb	33.1	25.7	450.5	405.6	0	0	0	0	0	0
0752	Ebb	32.5	25.9	435.6	354.6	0	1	0	1	0	1
0851	Ebb	29.0	25.5	425.5	348.8	0	0	0	1	0	0
0951	Slacke	7.9	4.6	461.2	382.8	0	0	0	0	0	0
1052	Flood	28.5	25.5	445.5	398.6	0	0	0	3	0	0
1149	Flood	43.7	34.7	444.6	382.4	0	2	0	0	0	0
1250	Flood	51.1	39.3	401.5	342.3	0	1	0	3	0	0
1346	Flood	43.8	38.7	449.0	438.8	1	1	0	6	0	1
1443	Flood	25.1	27.9	417.8	374.8	0	0	0	1	0	0
1549	Ebb	12.9	7.1	479.8	405.4	0	1	3	1	0	0
1644	Ebb	36.5	29.4	437.1	359.2	0	0	0	1	0	0
1751	Ebb	39.8	27.0	497.8	431.5	0	0	0	1	0	0
	Ebb	47.4	36.7	446.8	379.5	0	0	0	0	0	0
1956 d	Ebb	53.1	42.7	457.1	386.1	0	1	2	1	0	0
2052	Ebb	56.9	46.4	446.1	345.1	0	0	1	1	0	0
2155	Ebb	55.1	48.2	491.7	409.2	1	0	2	6	0	0
2259	Ebb	37.3	29.3	461.9	370.4	0	0	0	6	0	0

cSun sets at 1853 .
aNautical twilight begins at 0420.
bSun rises at 0516.
TABLE 12
SdIUI SNITdWVS บ

Mid-time of	Tide	Current Velocity$(\mathrm{m} / \mathrm{min})$		Volume (m	tered	Bairdiella		Cynoscion		Menticirrhus	
Tow		Surface Bottom		Surface	Bottom	Surface	Bottom	Surface	Bottom	Surface	Bottom
$1339{ }^{\text {a }}$	Ebb	43.8	39.1	453.7	362.3						
1434	Ebb	39.5	31.9	432.2	362.3 345.8	0	0	0	0	0	0
1534	Ebb	27.5	22.0	460.2	406.4	0	0	0	0	0	0
1633	Ebb	7.3	7.8	435.4	375.7	0	0	0	0	0	0
1831b	Flood	27.4	24.6	430.6	372.3	0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
					358.8					0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$1931{ }^{\text {c }}$	Flood	31.8	27.9	435.0	401.7						0
2033	Flood	29.4	27.3	430.2	366.5	0	1	0	0	0	
2132	Flood	6.0	12.3	437.8	469.9	0	1	1	2	0	0
2232	Ebb	15.0	13.2	480.0	420.3	0	0	0	3	0	0
$0040^{\text {d }}$	Ebb	25.9	4.1	467.3	461.1	0	1	0	00	0	0
	Ebb		27.1	503.8	412.7	1		0 1		$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
0135	Ebb	20.9	27.4								
0232	Ebb	29.8	22.4	418.5	261.2 351.9	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 1 \\ & 0 \end{aligned}$	0	0	
0330	Ebb	15.0	4.3	442.6	377.2	0	0	0	0	0	0
$0534{ }^{\text {f }}$	Flood	9.4 26.6	10.9	389.2	342.4	0	0	0	0	0	0
0631	Flood	40.5	34.3	476.7489.6	424.4	0	00	0	01	0	0
$\begin{aligned} & 0734 \\ & 0831 \\ & 0931 \\ & 1048 \\ & 1153 \end{aligned}$	Flood Flood Slackg Ebb Ebb	$\begin{array}{r} 48.6 \\ 34.7 \\ 3.3 \\ 35.7 \\ 36.5 \end{array}$	$\begin{aligned} & 43.4 \\ & 31.6 \\ & 12.4 \\ & 27.4 \\ & 31.0 \end{aligned}$	$\begin{aligned} & 349.1 \\ & 449.3 \\ & 458.9 \\ & 491.4 \\ & 466.5 \end{aligned}$	$\begin{aligned} & 274.3 \\ & 400.2 \\ & 415.0 \\ & 412.4 \\ & 400.3 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$

[^1]$\mathrm{b}_{\text {Sun }}$ sets at 1852 .
${ }^{c}$ Nautical twilight ends at 1949.
dMoon sets at 0028 .
table 13
DATA FROM 24 -HOUR SAMPLING TRIPS

Mid-time						Number of Fish Caught					
	Tide	Current Velocity		Volume Filtered		Bairdiella		Cynoscion		Menticirrhus	
		(m/min)		$\left(\mathrm{m}^{3}\right)$		chrysura		nebulosus		americanus	
Tow		Surface	Bottom								
1442	Flood	6.0	9.5	421.4	413.8	0	0	0	0	0	0
1536	Ebb	21.3	8.9	431.9	375.2	0	0	0	0	0	0
1630	Ebb	34.9	21.0	435.4	328.1	0	0	0	0	0	0
1733	Ebb	33.3	27.7	453.5	366.5	0	0	1	0	0	0
1830°	Ebb	39.4 47.0	28.1 33.6	440.9 448.1	350.1	0	0	1	0	0	0
1932 b	Ebb	47.0	33.6	448.1	352.1	0	0	1			
$2031{ }^{\text {c }}$	Ebb	47.8	37.7	504.5	365.1	0	1	2	3	0	0
2132	Ebb	41.6	30.6	522.4	421.7	1	0	6	2	0	1
2231	Ebb	18.8	11.0	489.7	410.0	0	0	4	10	0	0
2331	Slackg	2.6	4.3	434.7	420.2	0	0	0	2	0	0
0032	Flood	26.7	21.1	426.5	388.6 379.7	1	0	1	8	0	0
0132	Flood	32.7	25.2	403.9	379.7	1	0	1	8		
0236	Flood	35.7	25.3	419.1	367.8	4	1	6	23	1	0
0331	Flood	18.1	14.9	425.9	367.4	0	1	5	13	0	0
0433 d	Ebb	1.9	2.8	395.0	375.9	0	2	0	9	0	0
0532e	Ebb	17.9	13.5	420.9	358.0	0	0	0	0	0	0
0633f	Ebb	28.5	13.1	445.9	401.1	0	1	0	1	0	0
0733	Ebb	22.9	19.4	425.6	383.1	0	1	0	1	0	0
0833	Ebb	28.0	21.0	428.6	369.1	0	0	0	0	0	0
0931	Ebb	16.6	9.9	403.3	364.7	0	0	0	0	0	0
1030	Flood	14.6	14.9	446.2	414.8	0	0	1	0	0	0
1132	Flood	30.3	35.6	427.7	383.7	0	0	0	0	0	0
1245	Flood	46.0	36.2	415.1	373.0	0	0	2	0	0	0
1334	Flood	46.1	35.7	406.9	368.1	0	0	2	2	0	0

[^2]TABLE 14
DATA FROM 24-HOUR SAMPLING TRIPS
July 30-31, 1967
Third Quarter

Mid-time of Tow	Tide					Number of Fish Caught					
		Current Velocity (m/min)		Volume Filtered$\left(\mathrm{m}^{3}\right)$		Bairdiella chrysura		Cynoscion nebulosus		Menticirrhus americanus	
		Surface	Bottom								
1308	Ebb	35.0	27.8	487.4	415.8	0					
$1408{ }^{\text {a }}$	Ebb	35.3	28.4	487.7	404.9	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0		0	0
1504	Ebb	28.9	24.7	485.0	396.2	0		0	0	0	0
1607	Ebb	15.4	10.1	487.7	417.8	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0
1707	Ebb	4.0	7.4	506.3	417.7	0	0	0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0
18076	Flood	13.0	9.8	523.3	414.6	0	0	0	0	0	0
$1903{ }^{\text {c }}$	Flood	28.6	22.1	461.2	368.1						
2002	Flood	30.0	23.0	459.7	400.3	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0
2105	Flood	24.0	19.4	427.8	274.7	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0
2202	Flood	7.0	4.7	394.5	401.0	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	2	0	0	0
2314	Slackg	1.8	2.1	433.9	414.5	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	3	0	0	0
0003 d	Ebb	15.7	7.8	411.1	364.5	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
0101	Ebb	25.7	15.8	516.3							
0204	Ebb	17.3	16.0	516.7	402.2	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0	0	0
0300	Ebb	17.4	10.8	502.7	408.1	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	2	0	0	0
$0400{ }^{\text {f }}$	Slackh	2.3	8.3	492.6	369.8	0	0	1	0	0	0
0502f	Flood	26.9	21.6	492.6 493.4	369.8 405.9	0	0	0	2	0	0
0602	Flood	30.9	23.3	472.4	413.0	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0	0	0
0710	Flood	34.7	27.4	453.6							
0801	Flood	32.0	23.4	433.8	352.9		0	0	0	0	0
0901	Flood	17.6	13.7	455.8	384.9	0	1	0	1	0	0
0959	Slack ${ }^{\text {g }}$	2.4	2.9	429.2	385.2	0	1	0	0	0	0
1101	Ebb	22.4	11.4	409.4	353.3	0	0	0	0	0	0
1203	Ebb	33.0	20.4	447.9	337.0	0	0	0	1	0	0

eNautical twilight hegins at 0432.

f Sun rises at 0527.
gPlotted as an ebbing current in Figure 15.
hplotted as a flooding current in Figure 15.
aMoon sets at 1305 .
bun sets at 1847.
${ }^{\mathrm{c}}$ Nautical twilight ends at 1941.
$\mathrm{d}_{\text {Moon }}$ rises at 0010.

Figure 17.--Bairdiella chrysura.
(A) 2.0 mm . (B) 5.0 mm . In Figures 17-24 stippled chromatophores represent deep-lying pigmentation or that covered by the pectoral fin, and solid black chromatophores represent surface pigmentation.

Figure 18.--Cynoscion arenarius.
(A) 2.0 mm . (B) 3.5 mm . (C) 6.5 mm . (D) 10.5 mm .

A

B

Figure 19.--Cynoscion nebulosus.
(A) 3.0 mm . (B) 5.0 mm .

A

Figure 20.--Leiostomus xanthurus.
A composite drawing based on two 11 mm specimens.

Figure 2l.--Menticirrhus americanus.
(A) 2.5 mm . (B) 6.0 mm . (C) 6.0 mm . Specimens B and C illustrate part of the difficulty in identifying species in this genus because they have different tail shapes, although they are the same size. Both specimens were identified as M. americanus, however, because Hildebrand and Cablē (1934) have shown that 5.8 mm specimens of M. americanus have blunt tails, but develop pointed ones by the time they reach 8.0 mm . Specimens B and C fall in the transition phase and a difference in developmental stage may account for the difference in tail shape. The pigment pattern of specimen C falls well within the range of variation found in M. americanus. There were very few specimens with well presērved caudal fins so the development of this fin could not be followed.

B

C

Figure 22.--Menticirrhus saxatilis.
(A) 5.0 mm . (B) 8.0 mm .

B

Figure 23.--Pogonias cromis. (A) 3.5 mm . (B) 5.5 mm .

A
owff no beasd entwstib gj hacgmen in (E)

B

Figure 24.--Sciaenops ocellata.
(A) 3.5 mm . (B) A composite drawing based on two 6.5 mm specimens.

A

LITERATURE CITED

Anderson, W. W.
1968. Fishes taken during shrimp trawling along the south Atlantic coast of the United States, 19311935. U.S. Dept. Fish Wildl., Spec. Sci. Rep.-Fish. No. 570, 60 pp.

Arnold, E. L., R. S. Wheeler, and K. N. Baxter
1960. Observations on fishes and other biota of East Lagoon, Galveston Island. U.S. Fish Wildl. Serv., Spec. Sci. Rep.--Fish. No. 344, 30 pp.

Bearden, C. M.
1963. A contribution to the biology of the king whitings, genus Menticirrhus, of South Carolina. Contrib. Bears Bluff Lab. 38, 27 pp.

Berry, F. H.
In press. Some important aspects of ichthyolarvalogical methodology. Proc. Estuarine Larval Fish Conf.
\qquad , and W. J. Richards
In press. Characters useful to the study of larval fishes. Proc. Estuarine Larval Fish Conf.

Bigelow, H. B. and W. C. Schroeder
1953. Fishes of the Gulf of Maine. Fish. Bull., U.S. Fish Wildl. Serv. 53 (74), 577 pp.

Bishai, H. M.
1960. The effects of water currents on the survival and distribution of fish larvae. J. Cons. Intern. Explor. Mer 25 (2): 134-146.

Bonham, K. and W. H. Bayliff
1953. Radiography of small fishes for meristic studies. Copeia 1953 (3): 150-151.

Breuer, J. P.
1957. An ecological survey of Baffin and Alazin Bays, Texas. Publ. Inst. Mar. Sci., Univ. Texas 4 (2): 134-155.

Bridger, J. P.
1956. On day and night variation in catches of fish larvae. J. Cons. Intern. Explor. Mer 22 (1): 42-57.

Briggs, J. C.
1958. A list of Florida fishes and their distribution. Bull. Florida St. Mus. $\underline{2}$ (8): 223-318.

Clark, S. H.
1970. Factors affecting the distribution of fishes in Whitewater Bay, Everglades National Park. Unpublished Doctoral Dissertation, Univ. Miami, 100 pp.

Copeland, B. J.
1965. Fauna of the Aransas Pass Inlet, Texas. I. Emigration as shown by tide trap collections. Publ. Inst. Mar. Sci., Univ. Texas 10: 9-21.

Dawson, C. E.
1958. A study of the biology and life history of the spot, Leiostomus xanthurus Lacepede, with special reference to South Carolina. Contrib. Bears Bluff Lab。28, 48 pp .

Deubler, E. C., Jr.
1958. A comparative study of the postlarvae of three flounders (Paralichthys) in North Carolina. Copeia 1958 (2): 112-116.

Farris, D. A.
1960. The effect of three different types of growth curves on estimates of larval fish survival. J. Cons. Intern. Explor. Mer 25: 294-306.

Ginsburg, I.
1930. Review of weakfishes, Cynoscion, of the Atlantic and Gulf coasts of the U.S. with a description of a new species. Bull. U.S. Bur. Fish. 45:
1952.

Eight new fishes from the Gulf coast of the United States with two new genera and notes on geographic distribution. J. Wash. Acad. Sci. 42 (3): 84-101.

Guest, W. C. and G. Gunter
1958. The seatrout or weakfishes (genus Cynoscion) of the Gulf of Mexico. Gulf States Mar. Fish. Comm., Tech. Summary No. $i, 40 \mathrm{pp}$.
Gunter, G.
1938. Seasonal variations in abundance of certain estuticular and marine fishes in Louisiana, with particular reference to life histories. Ecol. Monogr. 8: 313-346.

Gunter, G.
1945. Studies on marine fishes of Texas. Publ. Inst. Mar. Sci., Univ. Texas $\underline{1}$ (1): l-190.
1967. Some relations of estuaries to the fisheries of the Gulf of Mexico. Pp. 621-638 in Estuaries, G. H. Lauff (Ed.). Publ. 83, Amer. Assoc. Adv. Sci., 757 pp.

Higman, J. B.
1967. Relationships between catch rates of sport fish and environmental conditions in Everglades National Park, Florida. Proc. Gulf Carib. Fish. Inst., 19th Ann. Sess.: 129-140.

Hildebrand, H. H.
1954. A study of the fauna of the brown shrimp grounds in the western Gulf of Mexico. Publ. Inst. Mar. Sci., Univ. Texas 3 (2): 233-366.

Hildebrand, S. L. and L. E. Cable
1930. Development and life history of fourteen teleostean fishes at Beaufort, N.C. Bull. U.S. Bur. Fish. 46: 383-488.
and \qquad . kingfishes, drums, spot, croaker, and weakfishes or ssea trouts, family Sciaenidae, of the Atlantic coast of the United States. Bull. U.S. Bur. Fish. 48: 4l-117.
1928.' Fishes of Chesapeake Bay. Bull. U.S. Bur. Fish. 43: 1-366.

Isaacs, J. D.
1964. Night-caught and day-caught larvae of the California sardine. Science 144: 1132-1133.

Jordan, D. S. and C. H. Eigenmann
1889. A review of the Sciaenidae of America and Europe. Rep. U.S. Comm. Fish and Fish., 1886: 343-45l.
, and B. W. Evermann
1898. The tishes of north and middle America. Bull. U.S. Nat. Mus. 47 (2): 1241-2183.

Joseph E. W. and R. W. Yerger
1956. The fishes of Alligator Harbor, Florida with notes on their natural history. Florida State Stud., No. 22: 111-156.

Kelly, J. A., Jr. and A. Dragovich
1968. Occurrence of macrozooplankton in Tampa Bay, Florida and the adjacent Gulf of Mexico. Fish. Bull. U.S. Fish Wildl. Serv. 66 (2): 209-222.

Kilby, J. D.
1955. The fishes of two Gulf coastal marsh areas of Florida. Tulane Stud. Zool. $\underline{2}$ (8): 176-247.
Klima, E. F. and D. C. Tabb
1959. A contribution to the biology of the spotted weakfish, Cynoscion nebulosus (Cuvier), from northwest Florida, with a description of the fishery. Florida St. Bd. Conserv., Tech. Ser. No. 30, 25 pp .

Koczy, F. F., M.O. Rinkel, and S. J. Niskin
1959. The current patterns on the Tortugas shrimp grounds. Proc. Gulf Carib. Fish. Inst. 12th Ann. Sess.: 112-125.

Kuntz, A.
1914. The embryology and larval development of Bairdiella chrysura and Anchovia mitchilli. Bull. U.S. Bur. Fish. 33: 1-20.

Lowe, R. M.
1966. The sciaenid fishes of British Guiana. Bull. Mar. Sci. 16 (1): 20-57.
Mansueti, R. J.
1960. Restriction of very young red drum, Sciaenops ocellata, to shallow estuarine waters of Chesapeake Bay during late autumn. Chesapeake Sci.
$\underline{1}(3 / 4): 207-210$.

Marmer, H. A.
1954. Tides and sea level in the Gulf of Mexico. Pp. 101-118 in Gulf of Mexico, its origin, waters, and marine life. P. S. Galtsoff (Ed.) Fish. Bull. U.S. Fish Wildl. Serv. 55, 604 pp.
Marr, J. C.
1956. The "critical period" in the early life history of marine fish. J. Cons. Intern. Explor. Mer 21
$(2): 160-170$.

McFarland, W. N.
1963. Seasonal change in the number and biomass of fishes from the surf at Mustang Island, Texas. Publ. Inst. Mar. Sci., Univ. Texas 9: 91-105.

Meek, S. E. and S. F. Hildebrand
1925. The marine fishes of Panama. Pt. II. Field Mus. Nat. Hist. (Chicago), Zool. Ser. 15 (Pt. II): 610-693.

Miles, D. W.
1950. The life histories of the spotted seatrout, Cynoscion nebulosus, and the redfish, Sciaenops ocellatus. Texas Game and Fish Comm. Ann. Rep. 1949-1950 (2), 38 pp .
1951. The life history of the sea trout, Cynoscion nebulosus, and the redfish, Sciaenops ocellatus. Texas Game Fish Comm. Ann. Rep. 1950-1951, 11 pp.

Miller, J. M.
1965. A trawl survey of the shallow Gulf fishes near Port Aransas, Texas. Publ. Inst. Mar. Sci., Univ. Texas 10: 80-107.

Moffett, A. W.
1957. A key to some southern Florida fishes based on vertebral characters. Unpublished Master's Thesis, Univ. Miami, 108 pp.
1961. Movements and growth of spotted seatrout, Cynoscion nebulosus, in west Florida. Florida St. Bd. Conserv., Tech. Ser., No. 36, 35 pp.

Moody, W. D.
1950. A study of the natural history of the spotted trout, Cynoscion nebulosus, in the Cedar Key, Florida area. Quart. J. Florida Aced. Sci. 12 (3): 147-171.

Myers, G. S.
1960. Restriction of the croakers (Sciaenidae) and anchovies (Engraulidae) to continental waters. Copeia 1960 (1): 67-68.

Pearcy, W. G.
1962a. Ecology of an estuarine population of winter flounder, Pseudopleuronectes americans (Walbaum). II. Distribution and dynamics of larvae. Bull. Bingham Oceanogr. Coll. 18 (1): 16-38.

Pearcy, W. G.
1962b. Ecology of an estuarine population of winter flounder, Pseudopleuronectes americanus (Walbaum). III. Distribution, abundance, growth, and production of juveniles; Survival of larvae and juveniles. Bull. Bingham Oceanogr. Coll. 18 (1): 39-64.

Pearson, J. C.
1929. Natural history and conservation of the redfish and other commercial sciaenids on the Texas coast. Bull. U.S. Bur. Fish. 44: 129-214.
1941. The young of some marine fishes taken in lower Chesapeake Bay, Virginia, with special reference to the gray sea trout, Cynoscion regalis (Block). Fish. Bull. U.S. Fish Wildl. Serv. 50: 79-102.

Pritchard, D. W.
1952. A review of our present knowledge of the dynamics and flushing of estuaries. Tech. Rep. Chesapeake Bay Inst. 4, 45 pp.

Randall, J. E.
1968. Caribbean Reef Fishes. T. F. H. Publications, Inc., Jersey City, 318 pp.

Rehrer, R., A. C. Jones, and M. A. Roessler
1967. Bottom water drift on the Tortugas grounds. Bull. Mar. Sci. 17 (3): 562-575.

Reid, G. K., Jr.
1954. An ecological study of the Gulf of Mexico fishes in the vicinity of Cedar Key, Florida. Bull. Mar. Sci. Gulf and Carib. 4 (l): l-94.
Reid, G. K., Jr.
1955. A summer study of the biology and ecology of East Bay, Texas. Part II. The fish fauna of East Bay, the Gulf beach, and summary. Texas J. Sci. 7 (4): 430-453.

Reid, G. K., Jr. and H. D. Hoese
1958. Size distribution of fishes in a Texas estuary. Copeia 1958 (3): 225-231.

Rinkel, M. O. and D. M. Dunlop
1962. Current observations on the Tortugas shelf in the Gulf of Mexico. Unpublished manuscript.

Robins, C. R. and D. C. Jab
1965. Biology and taxonomic notes on the blue croaker, Bairdiella batabana. Bull. Mar. Sci. 15 (2): 495-511.

Roe of s, E. W.
1951. The edible finfishes of North Carolina. Pp. l09-139 in Survey of the marine fisheries of North Carolina. H. L. Taylor (Ed.), Univ. North Carolina Press, 555 pp.

Roessler, M. A.
1967. Observations on the seasonal occurrence and life histories of fishes in Buttonwood Canal, Everglades National Park, Florida. Unpublished Doctoral Dissertation, Univ. Miami, 155 pp.
\qquad , and R. Rehrer
In press. Studies on postlarval pink shrimp, Penaeus duorarum, in Everglades National Park, Florida.

Rouse, W. B. and J. Higman
1967. Studies on the fish stocks in Everglades National Park--IX, 1966-1967. Mimeo, 20 pp.

Schaefer, R. H.
1965. Age and growth of the northern kingfish in New York waters. N. Y. Fish Game J. 12(2): 191-216.

Schultz, R. L.
1961. Vegetation found in association with adult and juvenile game fish. Project Rep. Mar. Fish. Division, Texas Game Fish (1959-1960), 4 pp.

Simmons, E. G.
195la. The Cedar Bayou fish trap. Texas Game Fish Comm. Ann. Rep. 1950-1951, 28 pp.

1951b. Fish trap investigation. Texas Game Fish Comm. Ann. Rep. 1950-1951, 15 pp .
1957.

An ecological survey of the upper Lagena Madre of Texas. Publ. Inst. Mar. Sci., Univ. Texas 4 (2): 156-200.
1962. A study of redfish, Sciaenops ocellata Linnaeus, and black drum, Pogonias cromis Linnaeus. Publ. Inst. Mar. Sci., Univ. Texas 8: 184-211.

Smith, H. M.
1907. The fishes of North Carolina. North Carolina Geological and Economic Survey Rep. 2, 453 pp.

Snedecor, G. W. and W. G. Cochran
1967. Statistical methods. Iowa State Univ. Press, Ames, Iowa, 593 pp.

Springer, V. G. and K. D. Woodburn 1960. An ecological study of the fishes of the Tampa Bay area. Florida St. Bd. Conserv., Prof. Pap. Ser. No. l, 104 pp.

Steel, R. G. D. and J. H. Torrie
1960. Principles and procedures of statistics. McGrawHill Book Company, Inc. New York, 481 pp.
Stewart, K. W.
1961. Contributions to the biology of the spotted seatrout (Cynoscion nebulosus) in Everglades National Park, Florida. Unpublished Master's Thesis, Univ. Miami, 103 pp.
Sutherland, D. F.
1958. Use of diagnostic x-ray for determining vertebral numbers of fish. U.S. Fish Wildl. Serv., Spec. Sci. Rep--Fish. No. 244, 9 pp.
Sykes, J. E. and J. H. Finucane
1965. Occurrence in Tampa Bay, Florida, of immature species dominant in Gulf of Mexico commercial fisheries. Fish. Bull. U.S. Fish Wildl. Serv. 65 (2): 369-379.

Tabb, D. C.
1958. Differences in the estuarine ecology of Florida waters and their effect on populations of the spotted weakfish, Cynoscion nebulosus (Cuvier and Valenciennes). Trans. 23rd N. Amer. Wildl. Conf.: 392-401.
1961. A contribution to the biology of the spotted seatrout, Cynoscion nebulosus (Cuvier), of eastcentral Florida. Florida St. Bd. Conserv., Tech. Ser. No. 35, 23 pp.
1966. The estuary as a habitat for spotted seatrout, $\frac{C y n o s c i o n}{\text { Rep }}$ nebulosus. Amer. Fish. Soc., Spec. Rep. No.3: 59-67.

Tabb, D. C.
Unpublished manuscript on the freshwater requirements for coastal estuaries of Everglades National Park.
, and D. L. Dubrow
1962. Aspects of the hydrography of northern Florida Bay and adjacent estuaries. Pp. 14-38 in The ecology of northern Florida Bay and adjacent estuaries. D. C. Tabb, D. L. Dubrow, and R. B. Manning, Florida St. Bd. Conserv., Tech. Ser. No. 39, 81 pp .
, and R. B. Manning
A checklist of the flora and fauna of northern Florida Bay and the adjacent brackish waters of the Florida mainland collected during the period July 1957 through September 1960. Bull. Mar. Sci. 11 (4): 552-649.
1962. Aspects of the biology of northern Florida Bay. Pp. 39-79 in The ecology of northern Florida Bay and adjacent estuaries. D. C. Tabb, D. L. Dubrow, and R. B. Manning, Florida St. Bd. Conserv., Tech. Ser. No. 39, 81 pp.

Taylor, W. R.
1967. An enzyme method of clearing and staining small vertebrates. Proc. U.S. Nat. Mus. 122 (3596), 17 pp .

Townsend, B. C., Jr.
1967. A study of the spot, Leiostomus xanthurus Lacepede, in Alligator Harbor, Florida. Unpublished Master's Thesis, Florida State Univ., 43 pp.
U. S. Department of Commerce
1965. Annual summary of climatological data. Climatological Data, Florida 69 (13): 177-187.
1966.

Annual summary of climatological data. Climatological Data, Florida 70 (13): 157-166.
-1967.
Annual summary of climatological data. Climatological Data, Florida 71 (13): 163-172.
U.S. Department of the Interior
1965. Water resources data for Florida. Part I. Surface water records. Vol. l. Streams. U.S. Department of the Interior, Geological Survey, 549 pp.
U.S. Naval Observatory
1966. The Nautical Almanac. U.S. Government Printing Office, Washington, D.C., 276 pp.

- 1967
-

1967. The Nautical Almanac. U.S. Government Printing Office, Washington, D.C., 276 pp.

Welsh, W. W. and C. M. Breder, Jr.
1924. Contributions to the life histories of Sciaenidae of the eastern United States coast. Bull. U.S. Bur. Fish. 39: l4l-201.

Williams, A. B. and E. E. Deubler
1968a. A ten-year study of meroplankton in North Carolina estuaries: assessment of environmental factors and sampling success among bothid flounders and penaeid shrimps. Chesapeake Sci. $\underline{9}$ (1): 27-41.
and \qquad .
1968b'.
Studies on meroplanktonic crustaceans and ichthyoplankton of the Pamlico Sound complex. North Carolina Department of Conservation and Development, Spec. Sci. Rep. No. l3, 103 pp.

Yates, F.
1933. The analysis of replicated experiments when field results are incomplete. Empire J. Exp. Agr. 1: 129-142.

Yokel, B. J.
1966. A contribution to the biology and distribution of the red drum, Sciaenops ocellata. Unpublished. Master's Thesis, University of Miami, 160 pp.

Zilberberg, M. H.
1966. Seasonal occurrence of fishes in a coastal marsh of northwest Florida. Publ. Inst. Mar. Sci., Univ. Texas 11: 126-134.

[^0]: *Significant at 95 per cent level of significance. **Significant at the 99 per cent level of significance.

[^1]: ${ }^{\mathrm{e}}$ Nautical twilight begins at 0423.
 ${ }^{\mathrm{f}}$ Sun rises at 0519.
 gPlotted as an ebbing current in Figure 15.

[^2]: ${ }^{\text {e }}$ Sun rises at 0522.
 $\mathrm{f}_{\text {Moon }}$ sets at 0657 .
 glotted as a flooding current in Figure 15.
 aSun sets at 1851.
 bNautical twilight ends at 1946.
 cMoon rises at 1956 .
 $\mathrm{d}_{\text {Nautical }}$ twilight begins at 0427.

