

PERSPECTIVE ON THE ECOLOGICAL CAUSES AND EFFECTS
 OF THE VARIABLE ALGAL COMPOSITION OF SOUTHERN EVERGLADES PERIPHYTON

F. I. U. LIBRARY FEDERAL DOCUMENA

Joan A. Browder, Ph.D.
Principal Investigator
Associate Investigators: Sally Black, Peter Schroeder, Melvin Brown, Mark Newman, Dan Cottrell, David Black, Robert Pope and Peck Pope.

Rosenstiel School of Marine and Atmospheric Science University of Miarni 5600 Rickenbacker Causeway Miami, Florida 33149

```
Report T-643
```

Browder, Joan A., Principal Investigator. 1981. Perspective on the Ecological Causes and Effects of the Variable Algal Composition of Southern Everglades Periphyton. South Florida Research Center Report T-643. 110 pp .

PREFACE

This report is the first of four reports covering research performed by the Rosenstiel School of Marine and Atmospheric Science, University of Miami for the National Park Service under Contract CX-528081904. The primary research objectives are covered in Part I .

Part 1 is concerned with the taxonomic composition of the periphyton, factors affecting composition, and ramifications of compositional variation on aquatic animals that feed on periphyton. Part Il discusses biomass and primary production of periphyton and associated macrophytes. In Part III, details of the methodology used to quantify taxonomic composition are presented. Part IV presents details of the aspect of the study relating periphyton taxonomic composition to aquatic animals. Participants in each part of the study are included as authors for each part. Other parts are:

Part II: \quad| Biomass and Primary Production of Microphytes and |
| :--- |
| Macrophytes in Periphyton Habitats of the Southern |
| Everglades |

Part III: \quad| Methodology Development for Quantitative Analysis of |
| :--- |
| Taxonomic Composition of Everglades Periphyton |

Part IV: \quad| Comparisons of Laboratory Growth of Hyla squirella |
| :--- |
| Tadpoles Fed Three Different Types of Periphyton |

PART I

PERSPECTIVE ON THE ECOLOGICAL CAUSES AND EFFECTS OF THE VARIABLE ALGAL COMPOSITION OF SOUTHERN EVERGLADES PERIPHYTON

Joan Browder, Sally Black, Peter Schroeder, Melvin Brown, Mark Newman, Dan Cottrell, David Black, Robert Pope, and Peck Pope

PART I

Perspective on the Ecological Causes and Effects of the Variable Algal Composition of Southern Everglades Periphyton

TABLE OF CONTENTS

PACE
TABLE OF CONTENTS 1
LIST OF FIGURES i11
LIST OF TABLES iv
LIST OF APPENDIX TABLES vi
INTRODUCTION 1
METHODS 2
Periodic Sampling 2
Map Sampling 3
Rydrologic Parameters 3
Water Quality Analyses 4
Soil Analysis 5
Biomass Measurements 5
Volumetric Analysis 5
Statistical Analyses 6
Hotelling T^{2} 6
Correlation-Regression Analyses 6
Multiple Regression Analysis 7
Feeding and Grouth Experiment 7
RESULTS 8
Physical and Cheaical Characteristics of the Enviroment 8
Round-robin Diel Measuresent of Dissolved Oxygen and pH 9
Hydroperiods 9
Biomass of Periphyton and Macrophytes 10
Quarterly Percent Volumes of Major Taxa 11
Dominant Genera 11
Comparisoos of Station Pairs 11
Maps 12
Potential Relationships 12
Effects of Periphytoo Rations on Grovth 16

PAGE

DISCUSSION 16
SUMMARY 19
ACKNOWLEDGEENTS 21
LITERATURE CITED 22
APPENDIX A
Physical and chenical characteristics of the eavironment 62
APPENDIX B
Hydroperiod 79
APPENDIX C
Percents voluse of algal taxa 91
APPENDIX D
Comparison of taxonomic composition of station pairs 98
APPENDIX E
Maps of periphyton composition and biomsss (separate from report) 104
APPENDIX F
Multiple regression equations 105
1 Sampling stations I through X, Taylor Slougharea, Everglades National Park24
2 Sampling stations XIII through XVII, Dade County, East Everglades EPA-208 study area 25
3 Round-robin dissolved-oxygen diel at Everglades National Park, Taylor Slough stations 26
4 Round-robin dissolved-oxygen diel at DadeCounty-East Everglades 208 stations innortheast Shark Slough27
5 Round-robin pH diel at Everglades National Park, Taylor Slough station 28
6 Round-robin pH diel at Dade County EastEverglades 208 stations in northeastShark Slough29
7 Histograms of frequency distribution of levels of statistical significance of differences in taxonomic composition of ${ }_{2}$ station pairs, according to Hotelling T^{2} analysis 30
1 Matrix of predominant vegetation at stations 31
2 Quarterly ranges of values for physical and chemical parameters of the study sites 32
3 Measured and corrected water depths at study sites. 34
4 Calculated hydroperiod indices at study sites 35
5 Average quarterly values for the five biomass compartments each quarter 36
6 Quarterly ranges of biomass values used in statistical analyses 37
7 Percents volume of blue-green, green, and diatom taxa in stem periphyton 38
8 Annual average percents volume of blue-green, green, and diatom algae in periphyton at stations 40
9 Dominant genera, by station and location, winter 1978 (Quarter 1) 41
10 Second quarter percent representation of algal general making up the first 50% of algal composition by volume 43
11 Third quarter percent representation of algal genera making up the first 50% of algal composition by volume 44
12 Fourth quarter percent representation of algal genera making up the first 50% of algai composition by volume 45
13 Fifth quarter percent representation of algal genera making up the first 50% of algal composition by volume 46
14 Grouping of stations based on Hotelling T^{2} analyses of second quarter taxal percentages 47
15 Grouping of stations based on Hotelling T^{2} analysis of third quarter taxal percentages 48
16 Grouping of stations based on Hotelling T^{2} analysis of third quarter taxal percentages 49
17 Grouping of stations based on Hotelling T^{2} analysis of fourth quarter taxal percentages 50
18 Correlation coefficients for conductivity and some related water quality parameters 51
19 Correlation coefficients for time of day, some diurnally-varying water quality parameters, and percent soil organic matter 52
20 Correlation coefficients for percent soil organic matter with water depth, new depth, quarterly hydroperiod, and annual hydroperiod 53
21 Correlation coefficients for taxonomic composition parameters with environmental and biological parameters 54
22 Tally of statistically significant correlation for each algal taxa, covering all quarters and all environmental and biological parameters 59
23 Tally of statistically significant correlations for each quarter, covering all environmental and biolgoical parameters and all algal taxa 60
24 Tally of statistically significant correlations for each environmental or biological parameter, covering all quarters and algal taxa 61

LIST OF APPENDIX A TABLES

A-1	Initial and first quarter field measurenents of
physical and chemical parameters of the water at	
	sampling stations

A-3 Third quarter field measurements of physical and chemical parameters of the water at sampling stations66
A-4 Fourth quarter field measurements of physical and cheaical parameters of the water at sampling stations 67
A-5 Fifth quarter field measurements of physical and cheaical parameters of the water at sampling stations 68
A-6 Calcius in water at various sampling stations from various stations on various dates 69
A-7 Carbon analysis (ag/1) of water samples froa various stations on various dates. 70
A-8 Silica $\left(\mathrm{SiO}_{3}\right)$ analysis of water amples from various stations on Various dates. 72
A-9 Nitrogen and nitrogen compounds in water samples from various stations on various dates 73
A-10 Phosphorous in water samples from various stations on various dates 76
A-11 Results of sediaent analysis for saaple sites 78

B-8 Water level (cm MSL) every fifth day at
the U.S.G.S. recording station in Shark
Slough at $\mathrm{P}-33$ and corresponding estimated
water depth (cm) at study site XII from
September 30, 1977, through December 31,
197887
B-9 Water level (cm MSL) every fifth day at
the U.S.G.S. recording station in Shark
Slough at the south end of Canal 67 and
corresponding estimated water depth (cm)
at study site XIII from September 30 ,
1977, through March 31, 197988
B-10 Water level (cm MSL) every fifth day at
the U.S.G.S. recording station in Shark
Slough at the south end of Canal 67 and
corresponding estimated water depth (cm)
at study site XIV from September 30, 1977,
through March 31, 197989

LIST OF APPENDIX B TABLES

TABLE PAGE
1 Regression equations relating water depths $\left(\mathrm{S}_{4}, \mathrm{~S}_{6}-\mathrm{S}_{14}, \mathrm{~S}_{17}\right)$ at sampling sites to recorded water levels (relative to mean sea level) at the nearest U.S. Geological Survey contínuous recording stations ($M_{1}{ }^{-}$ M_{6})90

LIST OF APPENDIX C TABLES

TABLEPAGE1 Volumetric results from first quarter sampling: means and standard deviations 92
2 Volumetric results from second quarter sampling: means and standard deviations 93
3 Volumetric results from third quarter sampling: means and standard deviations 94
4 Volumetric results from fourth quarter sampling: means and standard deviations 95
5 Volumetric results from fifth quarter sampling: means and standard deviations 96
6 Volumetric results from map sampling (May 1979): means and standard deviations 97

LIST OF APPENDIX D FIGURES

1 Matrix of significance levels of differences in
taxal volume means betweeq station pairs, second
quarter, from Hotelling $-\mathrm{T}^{2}$ analysis 99

2 Matrix of significance levels of differences in
taxal volume means betweeq station pairs, third
quarter, from Hotelling-T analysis 100

3 Matrix of significance levels of differences in taxal volume means betweeq station pairs, fourth quarter, from Hotelling $-T^{2}$ analysis 101

4 Matrix of significance levels of differences in
taxal volume means between station pairs
(Stations XIV-XVII only), fifth quarter, from
Hotelling- T^{2} analysis 102
5 Matrix of significance levels of differences in taxal volume means between mapping sits pairs (May, 1979 sampling), from Hotelling- T^{2} analysis 103

LIST OF APPENDIX E MAPS ${ }^{1}$

1 Map of vegetation patterns in Taylor Slough, Everglades National Park, showing percent periphyton algal volume as diatoms and as blue-green algae and total periphyton biomass and organic periphyton biomass ($\mathrm{g} / \mathrm{m}^{2}$) at sites sampled in May, 1979. Vegetation patterns are from Rintz and Loope (1978)104

2 Map of vegetation patterns in Dade County-208-East Everglades Area, showing percent periphyton algal volume as diatoms and as blue-green algae and total periphyton biomass and organic periphyton biomass ($\mathrm{g} / \mathrm{m}^{2}$) at sites sampled in May, 1979. Vegetation patterns are from Hilsenbeck, Hofstetter and Alexander (1979) 104
${ }^{1}$ Not included under this cover.

LIST OF APPENDIX F TABLES

TABLE PAGE
1 Summary of multiple regression results 106

INTRODUCTION

One of the most conspicuous features of shallow-water ecosystems in south Florida is the assemblage of calcium-carbonate-encrusted microscopic algae that surrounds the submerged parts of higher plants and, in some circumstances, covers the bottom like a blanket. Algal assemblages of this nature are found in shallow-water ecosystems throughout the world and are most commonly referred to as periphyton (meaning "around plants") or aufwuchs (German for "attached organisms") (Ruttner, 1972). Locally the material is called the algal mat.

Although more than 200 species of algae have been identified in the periphyton of south Florida (Van Meter-Kasanof, 1973; Gleason and Spackman, 1974; Wood and Maynard, 1974), not all of these occur at each site. A few species dominate the biomass.

Variation in taxonomic composition is found from site to site and is thought to be due to variation in physical and chemical characteristics of the aquatic environment. Different types of algae vary in their food quality, which affects the type and biomass of animals they can support; therefore locational differences in taxonomic composition of periphyton may be reflected in differences in species compositions and standing stocks of aquatic animals that depend upon periphyton as a source of food.

The physical and chemical environment of aquatic habitats in south Florida often are changed by water management. When this occurs aquatic animals may be affected not only directly but also indirectly, through a change in their food supply, due to the influence of the altered environment on periphyton taxonomic composition.

A study was conducted of the periphyton in Everglades National Park and the East Everglades 208 study area of Dade County for the following purposes:
(1) to provide a quantitative description of the gross taxonomic composition of periphyton in various aquatic habitats;
(2) to determine whether statistically significant differences in taxonomic composition between sites can be documented;
(3) to relate variation in periphyton taxonomic composition to variation in environmental variables; and
(4) to evaluate the relative potential value of periphyton of various taxonomic compositions as a food source for algal-feeding aquatic animals.

The objective of the study was to provide information to help guide water management planning and policy in Everglades National Park and southwestern Dade County.

A quantitative method was developed to describe the relative representation of algal taxa in the periphyton. To determine seasonal and spatial differences in periphyton composition, samples were collected quarterly at 17 sites over the period of one year. Broader spatial coverage was provided with 40 additional samples collected at one point in time. Results from analyses of the 40 samples were plotted on two maps, one of the Dade County-East Everglades 208 area and the other of Taylor Slough in Everglades National Park. Data on physical and chemical characteristics of the water were collected at each station at the time of each periodic collection of periphyton. Hydroperiod characteristics for each site were estimated from U.S. Geological Survey data. Characteristics of the soil at each site were also determined. Biomasses of periphyton and macrophytic vegetation at the sites were determined. Statistical comparisons of algal representation between stations were made for each period and the mapping collections. Statistical relationships between algal representation and environmental and biological variables were explored. A periphyton feeding and growth study was conducted with one aquatic animal native to south Florida wetlands.

Periodic Sampling

Seventeen stations were selected. Twelve were in Everglades National Park (I-XII) and five were in the Dade County-East Everglades 208 study area (XIII-XVII). Ten of the park stations (I-X) and one of the county stations (XVI) were in Taylor Slough. Two park stations (XI and XII) and three county stations (XIII-XV) were in Shark Slough. One county station (XVII) was in the southeast coastal plain (Canal-111 area). The station locations are indicated in Figures 1 and 2 (the two park stations in Shark Slough cannot be shown in these figures). Table l shows the representation of higher plant communities at the stations. Fixed sampling sites were prepared by roping off a 16 -square-meter (4 x 4) area in each location.

Stations were visited quarterly for approximately one year to cover the full cycle of seasonally-varying environmental conditions. The sampling period in the park extended from February through November, 1978. In the East Everglades 208 area, sampling was conducted from July, 1978, through March, 1979.

Three periphyton samples were collected on the stems of macrophytes at each station on each sampling date for the volumetric analysis. (Initially, samples were also collected from the substrate so that a comparison of stem periphyton and benthic or "mat" periphyton could be made.) FAA, a fixative (Smith, 1950), was added to the samples immediately upon collection. Physical and chemical parameters of the water that were measured in the field included depth, temperature, dissolved oxygen, pH , conductivity, alkalinity and salinity. Water samples were collected for laboratory analysis of concentrations of inorganic nitrogen $\left(\mathrm{N}-\mathrm{NO}_{2}, \mathrm{~N}-\mathrm{NO}_{3}, \mathrm{~N}-\mathrm{NH}_{4}\right)$, total phosphorus, organic phosphorus, calcium and silica. Some missing values occur in the data
records. These were caused by absence of standing water at the site on the sampling day, equipment failure, equipment unavailability, or loss of samples by the laboratory. At some of the stations, water depths were measured several times in addition to the four quarterly collecting times. Soil samples were collected once at each site to determine their relative composition-by-weight of organic material, calcium carbonate $\left(\mathrm{CaCO}_{3}\right)$ and residuals (silica sand).

Map Sampling

To broaden spatial coverage, one concentrated sampling effort was made and the results were placed on maps. Over a two-week period in May, 1979, periphyton samples were collected at 40 representative sites in the study area and subjected to volumetric analysis. Two maps were drawn -- one of the Taylor Slough area of Everglades National Park and the other of the East Everglades 208 area of Dade County. The base map for the Taylor Slough area was the vegetation map by Rintz and Loope (1978). The base map for the East Everglades 208 area was the vegetation map by Hilsenbeck, Hofstetter and Alexander (1979). Major macrophyte communities, as defined on the original maps, were included on the periphyton maps. Contour lines of height above mean sea level were superimposed on the East Everglades map. The biomass (total and organic) and taxonomic composition (percents volume blue-green and diatoms) of periphyton were indicated on the map at each sampling location. The periphyton maps were drawn at a scale of 1 to 50,000 .

Hydrologic Parameters

Water depth was measured at each station each time it was visited. Water depths were measured at the same point (northwest corner stake) at each station each time. At least four water depth values, one for each season, were recorded for each station. More than four values were collected for stations visited more frequently than the quarterly sampling times. A continuous record of water depths at each sampling station during the study period was approximated by relating water depths at each station to water levels at the nearest U.S. Geological Survey continuously-recording station.

Based on the approximated continuous record, a new depth parameter was created in which values were standardized for day of the year and corrected for below-surface conditions by substituting negative values for zero values. In addition to "new depth," four hydroperiod indices were devised on the basis of the approximated record: "quarterly hydroperiod," representing the number of days (counting every fifth day) in the past 150 days when the water was above the estimated zero level at the station; "annual hydroperiod," representing the number of days (counting every fifth day) in the period from October, 1978, through December, 1979, when the water was above the estimated zero level at the station; "time since drought," the number of days (counting every fifth day) since water levels were below the estimated zero level at a station for at least 30 days (counting from December 31, 1978); and length of the last drought of 30 days or more (counting from December $31,1978)$. A minimum threshhold of 30 days was selected because this
was thought to be the approximate time it would take for surface moisture to entirely evaporate and actual dry conditions to prevail.

Water Quality Analyses
Listed below are the water quality measurements made in the field, and the method and/or the instruments used. All instruments and titration apparatus were calibrated in the laboratory before each field sampling session. The pH meter was also periodically checked in the field using a standard buffer solution. The dissolved oxygen meter was calibrated before each field measurement. In addition, duplicate dissolved oxygen samples were taken and fixed in the field. The samples were returned to the laboratory and titrated using the standard Winkler method (see APHA, 1976). These samples were used as a cross check for the dissolvedoxygen meter. Alkalinity was determined using both the phenolphthalein and methyl-orange end points. See APHA (1976) for a detailed description of this method.

Measurement	Instrument and/or Method
pH	Orion Portable Model 4D7A Specific Ion Meter and Orion combination pH electrode
Salinity	Yellow Springs Instruments Portable Model 33 Salinity/Conductivity/Temperature Meter
Conductivity	Same as above
Temperature	Same as above
Dissolved Oxygen	Yellow Springs Instruments Portable Model 57 Dissolved Oxygen Meter, Standard Winkler titrations
Alkalinity	Titration using both phenolphthalein and Methyl Orange indicators

A11 methods used for the water analysis are "Standard Methods" approved by Environmental Protection Agency and/or the American Public Health Association, American Water Works Association and Water Pollution Control Federation. Nitrate, nitrite, ammonia, silica and ortho phosphorus were determined using a Technicon Auto-Analyzer. The methods used are described in EPA (1979). Inorganic and organic carbon were determined using a Beckman Model-915 Total-Carbon Analyzer. The operation of this unit and the method of analysis is described in EPA (1979) and APHA (1976). Calcium was determined using a Perkin-Elmer Atomic absorption unit. This method is described in EPA (1979) and APHA (1976) .

Since many of the measured parameters change diurnally due to direct or indirect effects of photosynthetic activity, time of day of field measurement (or collection) was part of the data recorded with all water quality measurements.

In addition to periodic sampling, a special "round-robin" of pH and dissolved-oxygen measurements was conducted at Taylor Slough stations on August 8, 1978, and at East Everglades Shark Slough stations on August 10. In the round-robin exercise, stations were visited and measurements taken consecutively throughout the day, from sunrise to sunset. Most stations were visited at least twice. Measurements for all stations of each area were plotted together on graphs.

Soil Analysis

The upper 2 cm of sediment underlying the algae mat was collected for analysis of the weight percent of organic matter and calcium carbonate in the soil. Samples were obtained after harvesting the overlying mat at each site.

Weight percents of both organic matter and calcium carbonate were found by a simple loss-on-ignition procedure suggested by Dean (1974). The procedure is simple and utilizes a minimal amount of sample handling.

Approximately three to five grams of oven-dried and ground sediment were placed into pre-weighed, pre-combusted crucibles. The sample-filled cruicibles were placed in the drying oven for 24 hours, and then weighed to the nearest 0.1 mg . After weighing, the crucibles were placed in a muffle furnace and burned at $550^{\circ} \mathrm{C}$ for four hours and re-weighed for weight loss. The sample was subjected to a second burning at $1000^{\circ} \mathrm{C}$ for four hours to obtain the weight percent of calcium carbonate as carbon dioxide. For the calcium carbonate analysis, a sample standard of reagent grade calcium carbonate (99.99\%) was used. Weight percent of calcium carbonate was obtained by multiplying the weight percent of carbon dioxide lost by ignition times 2.272.

Biomass Measurements

A one-square-meter sample was harvested at each station on each sampling date. The material was processed in such a way that separate estimates of the following categories of biomass was obtained: total periphyton, organic periphyton, live standing macrophytes, live submergent macrophytes, dead standing macrophytes, and dead prostrate macrophytes.

Volumetric Analysis

A quantitative method was developed to describe the relative contributions of the major algal taxonomic groups to the total algal volume of the periphyton. The method was based on estimation-of-volume-by-eye under the microscope, aided by a micrometer and standard equations for geometric shapes. The method is similar to that described in Standard Methods (APHA, 1955) and those utilized by several previous investigators (Gruendling, 1971; Moore, 1974a, b, c and d). Major taxa,
rather than species or genera, were considered to avoid statistical problems (Kutkuhn, 1958) and to simplify the technique, reducing the requirements for processing time and expertise. Major taxonomic groups commonly are referred to as gross ecological units in the literature (Round, 1965; Prescott, 1962; and others). Relative volumes of bluegreen algae, green algae and diatoms in periphyton at each station were determined for quarters one through three. In fourth and fifth quarter samples, relative volume of desmids was determined separately from that of other green algae, because they are ecologically distinct from them. Desmids are known to be favored by low pH-environments, whereas the types of other green algae of significance in the samples are noted for their occurrence in high-pH environments (Prescott, 1962). Volumetric analysis also was applied to the mapping samples.

For each station, 60 fields on 6 slides (2 from each sample) were subjected to the volumetric treatment. Total fields were examined. Blue-greens and diatoms were examined in $x 400$ fields. Desmids and other greens were examined in x100 fields. A conversion factor was used to standardize the field size. Measurements were performed under Tasco professional-model and Zeiss research-model binocular microscopes.

Percents volume of dominant genera were determined by pooling the samples for each station and determining the percentage contribution of the obviously-more-important genera to the total volume of their major algal group. Dominant genera were defined for this study as those genera making up the first 50% of algal volume.

Statistical Analyses

Hotelling-T ${ }^{2}$ Test
Hotelling-T ${ }^{2}$ means and standard deviations of percents volume of algal taxa were determined for each site on each sampling date, based on microscopic field averages for each slide. Hotelling- T^{2} analysis, a multivariate statistical technique (Morrison, 1976), was applied to the volumetric data to test the statistical significance of taxonomic differences between sites. The test was based on the two parameters, "percent volume blue-greens" and "percent volume diatoms." Groups were formed of stations that (1) were not significantly different at $p<0.1$ from each other and (2) were significantly different at at least p < 0.1 from all stations in other groups. These criteria could not always be strictly adhered to, and exceptions, where they occurred, are noted with the results.

Correlation-Regression Analysis
Simultaneous correlation-regression analyses were performed to explore potential relationships between taxonomic composition and conditions of the habitat, including environmental factors and several quantifiable biological factors. Potential relationships between the various environmental factors were also explored. Statistical parameters that were obtained were (A) those of simple linear regression analysis: (1) regression coefficient, (2) intercept, (3) standard error of
estimate, (4) T-test of regression coefficient (to determine if significantly different from zero), (5) coefficient of determination (an estimate of the fraction of the variation in the dependent variable that cna be explained by variation in the independent variable), and (6) Durbin-Watson statistic (a test for first order autocorrelation in the residuals); and (B) those of correlation analysis: (1) coefficient of correlation and (2) probability level of the correlation coefficient based on an F test. Percentage values (proportions) were arcsin transformed for the analyses (Snedecor and Cochran, 1967). Quarterly values were analyzed separately.

Parameters for the analyses were as follows:
Taxonomic composition parameters: percent blue-green algae (by volume), percent green algae, percent diatoms, and, for Quarter 4 only, percent desmids (separated from other green algae).

Chemical composition parameters: percent organic in periphyton (the converse of percent CaCO_{3} in periphyton).

Water quality parameters: pH , dissolved oxygen, temperature, alkalinity, salinity, silica, calcium, conductivity, inorganic nitrogen (nitrate, nitrite, and ammonia), and inorganic phosphorus.

Soil composition parameters: percent soil organic, percent soil CaCO_{3}, and percent soil residuals.

Hydrologic parameters: depth, new depth (corrected for zero values and for differences in sampling dates) quarterly hydroperiod (hydroperiod of preceding 150 days), annual hydroperiod (hydroperiod of the 455-day study period), length of last drought (of 30 days or more), and time since last drought (of 30 days or more).

Biological parameters: organic periphyton biomass, total periphyton biomass, combined organic periphyton and submergent macrophyte biomass, total macrophyte biomass, live macrophyte biomass, live standing macrophyte biomass, total dead macrophyte biomass, and dead prostrate macrophyte biomass.

Other parameters: time of day

Multiple Regression Analysis

Multiple regressions were developed using parameters selected on the basis of the results of the correlation analyses. A stepwise multiple linear regression program was used. All statistical analyses were performed on a Commodore-PET Computer using programs in BASIC specifically written or adapted for the PET.

Feeding and Growth Experiment
Three different periphyton rations, "high blue-green," "high green" and "high diatom," were tested for their effect on growth of tadpoles of

Hyla squire11a, the squirrel tree frog. A total of 360 tadpoles of approximately equal size, collected from the environment, were separated equally into eight aquaria (allowing two aquaria replicates for each ration) and fed the periphyton rations and a control ration (a tadpole feed from Carolina Biological Supply) for 10 days, after which they were harvested, dried and weighed, and their mean terminal weights compared with mean weights of two additional groups of 45 tadpoles each that had been dried and weighed at the beginning of the experiment. Analysis of variance was used for comparison of treatment pairs.

RESULTS

Physical and Chemical Characteristics of the Environment
Table 2 represents the range of environmental conditions for all measured stations each quarter. Both measured and derived parameters are given. A complete record of measurements is given in Appendix A.

The markedly different water quality characteristics of Taylor Slough and Shark Slough were reflected in our measurements. Alkalinity and conductivity were extremely high at Shark Slough stations that received effluent from Canal-67-extended (XII, XIII, XIV and XV). Salinities at the Shark Slough stations also were high relative to those measured in Taylor Slough and were comparable to those measured at the site near Canal-1ll (XVII). Salinities were essentially zero (or at least below the detectable level) at all Taylor Slough sites (I-X) for all but third-quarter sampling. Water quality characteristics of the site near Grossman's Hammock (XVI) indicated that the site was not influenced by artesian water from the flowing well. Organic carbon concentrations were from two to three times higher at Shark Slough sites than at all other sites. Concentrations of inorganic nitrogen were no higher in Shark Slough than in Taylor Slough. Consistently highest concentrations were found near Canal-31 (I) and Canal-111 (XVII). The extremely high value given as the upper end of the range of inorganic nitrogen for Quarter 4 occurred at Station IX and is an aberrant for which we have no explanation. Corresponding phosphorus values were not high enough to support contamination from the death of an animal at the site as a probable cause. Highest concentrations of inorganic phosphorus occurred at Taylor Slough stations IV, VI and X during thirdquarter sampling. Organic phosphorus concentrations were similarly high.

The sites could be separated into four fairly distinct groups on the basis of percent organic matter content. Stations having greater than 50% organic matter were VI, VIII, and XII. Those having between 25 and 49.9% organic matter were XIII, XIV, and XV. Station XVI had over 20% (but less than 24.9%) organic matter and was distinguished by having a high residual content (25%) compared to the other stations. The residual was thought to be quartz sand. The rest of the stations had less than 20% organic matter in their soils. Complete results of the soil analysis are given in Appendix A.

Round-robin Diel Measurement of Dissolved Oxygen and pH
Chemical water parameters such as dissolved oxygen and pH change diurnally due to the photosynthetic activity of algae and submerged macrophytes. Figures 3 through 6 display results of a round-robin experiment in which all the stations in one area were visited consecutively with a repeating schedule over the same day for measurement of dissolved oxygen and pH . Each curve gives a generalized picture of diel change in dissolved oxygen and pH at all of the stations of an area. Stations that do not appear to fit on the curve may be intrinsically different, particularly if they are well off the curve at two or more points. For instance, in Figure 3, which is a round-robin dissolved-oxygen diel curve of the Taylor Slough Park sites on August 8, 1978, the canal points (all I's in this case) are obviously not a part of the same curve as the periphyton stations. If only one point at a station falls below the curve it may be due to cloud cover. Figure 4 gives a generalized picture of diel change in dissolved oxygen at the Dade County-East Everglades 208 sites in northeast Shark Slough on August 10, 1978.

Figures 5 and 6 are round-robin diels of pH at the two sites on the above dates. The generalized diel pH curves indicate that the daily range in pH is not as great at the Shark Slough sites as at the Taylor Slough sites, although photosynthetic activity, as indicated by the dissolvedoxygen diels, is just as intense. This is a possible indication of the "buffering" effect of organic material, which was found in abundance in bottom sediments at the Shark Slough site.

Hydroperiod

Measured values for water depth and calculated values for "new depth" and the four hydroperiod indices are given in Tables 3 and 4 . If stations were ranked in order from wettest to driest according to each parameter, a slightly different order would result each time. Attempting to rank by depth or even new depth is confusing, because the order changes each quarter, probably because the amplitude of seasonal variation in water depths varies from one area to another, as can be noted in the Appendix B figures. Of the five indices, time-since-lastdrought provides the most clear-cut distinction between stations. According to this parameter, the ranking of stations, from wettest to driest, is: XIII, XII, VIII, IX and VI, IV and VII, X, I and II, III and XI, and V. Values for this index could not be estimated for Stations XIV, XV, XVI, and XVII. All hydroperiod indices are in terms of every fifth day and should be multiplied by five to determine actual number of days represented.

In the plots used to calculate the five parameters (Appendix B, Figures $B-1-10$), the left ordinate is water level (relative to mean sea level) at the U.S.G.S. continuous-recording station nearest to each sampling station. The right ordinate on each plot indicates the calculated corresponding water depth at the sampling station. The horizontal line across the plot indicates the zero depth line (elevation) at the
sampling station. Water levels for every fifth day from September 30, 1977, through December 31, 1978, are plotted for Stations I through XII. Plots are continued through March 31, 1979, for stations XIII and XIV.

The U.S.G.S. stations and corresponding sampling stations were as follows:

Taylor Slough at bridge (at S.R. 29)
Taylor Slough at Royal Palm
Taylor Slough at Madeira Ditch
Shark Slough at P-33
Shark Slough at south end of C-67
C-111

I, II, III, IV, V
VI, VII, VIII
IX, X
XI, XII
XIII, XIV
XVII

The regression equations used to relate sampling-station water depth tg U.S.G.S.-station water levels are given in Appendix B, Table 1. The R value given for each equation indicates the proportion of variation in our station water depths that can be explained by variation in U.S.G.S.station water levels. R^{2} 's for six stations exceeded 0.95. For an additional five, R^{2} 's ranged from 0.69 to 0.87 . Regression equations for stations I, II, II, and V are not given in Appendix Table B-1, because they were not used. The zero-depth lines calculated from regression equations for Stations, I, II, III and V were not realistic, according to actually measured depths of zero (or below). The lack of reliable projections from regression results at these stations was probably due to the fact that water levels were below ground level at the time of two quarterly measurements, which increased the potential for error. Zero depth lines for these stations were estimated on the Taylor Slough bridge plot on the basis of their estimated elevation relative to Station IV. Zero-depth lines for Stations I, II, III, IV and V are shown in Appendix Figure B-1. Water depths on the right ordinate are those calculated for Station IV.

Appendix Figures B-2-10 show the calculated water depths and zero depth lines at Stations VI through XIV. Hydroperiod indices for Station XVII were calculated without a plot.

Biomass of Periphyton and Macrophytes

The average quarterly values for the five biomass compartments each quarter are given in Table 5.

Ranges of the biomass values used in statistical analyses can be found in Table 6. The five biomass compartments distinguished were organic periphyton, live standing macrophytes, live submergent macrophytes, dead standing macrophytes, and dead prostrate macrophytes. In general, the total biomass of macrophytes exceeded the organic biomass of periphyton, although the sampling sites had been placed only where periphyton was conspicuously present. Average organic periphyton biomass exceeded live macrophyte biomass but was less than dead macrophyte biomass. Of the five compartments, dead standing macrophytes had the largest biomass in three out of four quarters. It was exceeded by organic periphyton biomass only in Quarter 4. The live
submergent macrophyte compartment consistently had the lowest biomass.

Quarterly Percent Volumes of Major Taxa

Listed in Table 7 are quarterly station means of relative taxal volumes. Standard deviations are given with the means in Appendix C. Blue-green algae were the predominant group. Diatoms were next in importance, based on representation by volume. Desmids consistently made a very minor contribution to algal volume. The other green algae were important only at a few stations.

An increase in the proportions of green algae and diatoms from first quarter, which was the dry season, to fourth quarter, which was the late part of the flooded period, was noted at those stations which had dried in the spring and been flooded continuously through summer, fall and early winter. The increase was not as great at stations which dried in mid-summer as well as in spring. The percentages of diatoms and green algae at locations that had been wet all year were much higher than at the other stations but declined from their spring and early summer levels or remained about the same over the one-year sampling period.

The overall average blue-green volumes for Stations I through XII, which were measured during all of the first four quarters (Stations XIII through XVII were not measured Quarter 1), were $90.26 \%, 83.89 \%, 85.33 \%$ and 84.54% for Quarters 1 through 4 respectively. The fourth quarter mean was significantly different ($p<0.1$) from first, second and third quarter means, which were not significantly different from each other. The fourth quarter mean had a much lower standard deviation than that of the other quarters, indicating that taxonomic composition had become more similar. The annual average volume percents of each taxa at each station are given in Table 8.

Dominant Genera

The dominant genera of algae in the quarterly periphyton samples are given for each station in Tables 9 through 13. In Tables 10 through 13, only those genera making up the first 50% of volume are shown. On the basis of volume, Scytonema clearly was the dominant genus, making up 50\% or more of volume at most stations. Schizothrix was more important than the tables indicate because it was second in volume at most of those stations where Scytonema made up 50% or more of volume. Spirogyra and Bulbochaete were the only green algae of major consequence in terms of volume. Cymbella was the most important diatom, followed (not in order) by Gomphorema, Mastigloea, Amphora, Navicula and Synedra. No attempt was made to identify algae to the species level due to the complexity of the systematics of everglades-periphyton algae, particularly the bluegreen algae.

Comparison of Station Pairs

Results of the Hotelling- T^{2} tests are summarized in Figure 7, in which the frequencies of statistical levels for pair comparisons are indicated in histograms. Results are shown in matrix form for each
station pair in Appendix D. Determined levels of significance ranged from $p<0.1$ to $p<0.001$. Significant differences at $p<0.001$ were noted in many station pairs. The Hotelling-T test demonstrated that the method of measurement developed by the study was sufficiently precise to allow differences between stations to be detected on a statistically-sound basis. The histograms show a seasonal progression of greater similarity between stations.

Groupings formed on the basis of Hotelling-T ${ }^{2}$ results are given in Tables 14 through 17. With a few exceptions, which are noted in the tables, distinct groups of stations could be delineated from the periodic samples on the basis of guidelines described in Methods. These groupings were not fixed but changed to some extent from one period to another. It was not possible to group the mapping samples.

Maps

The maps are Appendix E of this report. Very high percents volume of blue-green algae were found in most of the samples, which had been collected approximately one month following reflooding after a severe, though short, winter-spring drought. With one exception, stations with a substantial representation of green algae and diatoms were those falling within the 5.5 ft -MSL contour line in Shark Slough. The area within this contour line falls in the central, deepest portion of the slough. Although we have no records of water conditions at these locations to allow a conclusive determination, we think it likely that these stations did not dry or were dry only briefly during the winterspring drought.

Potential Relationships

The correlation coefficients between environmental parameters for which relationships might be expected on a theoretical basis are shown in Tables 18, 19 and 20. Statistically significant correlations (according to computed F-ratios) are indicated with superscripts denoting significance levels.

Correlation coefficients between conductivity and some related water quality parameters - alkalinity, salinity, and silica - are given in Table 18. Although both alkalinity and salinity were correlated with conductivity, they were not correlated with each other. Correlation of conductivity with salinity was stronger than with alkalinity. Conductivity was not correlated with alkalinity Quarter l. Alkalinity and silica were correlated Quarters 2, 3 and 4 but not Quarter 1.

Correlation coefficients for time of day and diurnally-varying water quality parameters are given in Table 19. Also given in Table 19 is the correlation coefficient between pH and percent soil organic matter. pH was negatively correlated with time-of-day Quarter 1. Both pH and dissolved oxygen were positively correlated with time-of-day Quarters 2 and 3. pH was not correlated with time of day Quarter 1. Dissolved oxygen was not measured Quarter 4. pH was positively correlated with percent soil organic matter Quarter 2 only.

A high degree of correlation between percent soil organic matter and depth and hydroperiod parameters is indicated by Table 20.

Correlation coefficients for each algal taxa with environmental and biological parameters are presented in Table 21. Tables 22, 23 and 24 summarize the significant correlations according to algal taxon, quarter, and environmental or biological parameter, respectively.

Of the algal taxa, diatoms had the greatest number of significant correlations and the highest proportion of correlations in the higher significance-level categories. Blue-green algae had a higher frequency of correlations than green algae. The frequency of desmid correlations was not comparable since data were available for Quarter 4 only.

Fewest significant correlations were found Quarter 1. The number of significant correlations increased over the sampling period, which progressed from dry season through the wet season and from spring through winter.

Soil organic matter and two indices of hydroperiod, annual hydroperiod and time-since-last-drought, were the most-frequently-correlated parameters. The character of the correlations changed somewhat from quarter to quarter. The soil and hydrologic parameters accounted for most of the correlations in Quarter 2 and increased in importance Quarter 3. Water quality parameters correlated to their greatest extent in Quarter 1 and also were important Quarter 4. Correlations with biological parameters, particularly macrophyte biomass, were found primarily in Quarter 4.

The proportion of algal volume as diatoms was positively correlated with soil organic matter, hydrologic conditions, and nitrogen in the spring. Soil and hydrologic conditions correlated with diatoms during the summer and early fall. Biological parameters and water quality parameters such as conductivity were correlated with diatoms in the late fall and early winter, the periods of sustained high water.

Correlations between environmental parameters and percent algal volume as blue-green algae were at a maximum during Quarters 2 and 3.

Correlations of diatoms and green algae tended to be in the same direction, whereas correlations of blue-green algae were opposite to those of diatoms and green algae. An inverse relationship with bluegreen algae did not appear to be the case with desmids, but significant correlations were so spotty for this taxon that reliable comparisons were not possible.

The corrected depth parameter, new-depth, which was expected to be a better indication of relative "wetness" of the study sites than the actual measured depth, was not as well correlated with taxonomic composition as uncorrected depth. Three of the hydroperiod indices -quarterly hydroperiod, annual hydroperiod, and time-since-1ast-drought -- correlated more frequently with taxonomic composition than either depth parameter.

Although simple linear regressions were performed, results did not add to our understanding of relationships beyond what we had learned from correlation analysis because the independent variables had been measured with error, an unavoidable situation. Measurement error in the independent variable causes the estimated regression coefficient to be lower than its actual value. This lowers its t-statistic and makes the t-statistic less likely to be above the critical level indicating significance.

Several stepwise multiple regressions that were performed yielded statistically significant regression coefficients despite the shortcomings of the independent variables. Multiple regression results indicated that the two parameters, percent soil organic and time-of-day-of-measurement, could account for from 32% to 84% of the variability in pH measurements at the study sites during the four quarters. During quarters when the relationship with time-of-day was positive, that with percent soil organic was negative. Conversely, when the relationship of pH to time-of-day was negative that with percent soil organic was positive.

Stepwise multiple regressions were used to explore the relationship between algal composition and a combination of environmental parameters in data for each quarter. Proportion of volume as blue-green algae was selected as the dependent variable in these regressions.

Data sets for Quarters 1 and 2 had so many missing values, largely due to the fact that a number of stations were not flooded at these times (water quality measurements could not be made where there was no standing water) that multiple regression results should be interpreted cautiously. Sample sizes for Quarters 3 and 4 multiple regressions were much larger.

Variation in nitrogen alone explained 96.79% of the variation in proportion of volume as blue-green algae for the five stations included in the regression. Addition of a second paramter, fotal macrophyte biomass, improved the regression equation slightly ($\mathrm{R}^{2}=0.9741$), but the regression coefficient for this parameter was not significant at $p<$ 0.05 (not significantly different from zero), according to the t-test. The equation is:

$$
\mathrm{Y}=0.1182-0.00102 \mathrm{X}_{1}-0.0000054 \mathrm{X}_{2}
$$

where y is proportion volume as blue-green algae (transformed), X_{1} is inorganic nitrogen, and X_{2} is total macrophyte biomass.

In a multiple regression equation with Quarter 2 data, 92.7% of the variation in proportion of volume as blue-green algae could be explained by variation in the four parameters -- proportion soil organic matter, conductivity, depth, and time-since-drought -- loaded in that order. The sample size was so small ($n=7$), however, that the regression coefficient for conductivity was the only one that was statistically significant at $p<0.05$. Regression coefficients for proportion soil organic matter and water depth were significant at $p<0.1$. This
equation is:

$$
Y=0.0724-1.1139 X_{1}+0.0001304 X_{2}+0.001846 X_{3}-0.00003952 x_{4}
$$

where Y is proportion volume as blue-green algae (transformed), X_{1} is proportion soil organic (transformed), X_{2} is specific conductance, X_{3} is water depth, and X_{4} is time-since-last-drought.

In the analysis of Quarter 3 data, we started the multiple regression test with the three parameters -- percent soil organic, hydroperiod and conductivity -- variations in which were able to explain 61% of the variation in percent volume of blue-green algae ($\mathrm{p}<0.01$). Replacing conductivity with salinity raised the explained variance to 66.5% ($p<0.005$). The addition of nitrogen raised explained variance to 76% ($\mathrm{p}<0.01$), but the t-statistics suggested that the regression coefficients for all variables but percent soil organic were not significant in this relationship. (We had lost four data points by the inclusion of the nitrogen parameter.) Adding alkalinity to the regression equation, although it improved the explained variance slightly, did not yield a statistically significant relationship. Missing values in both the nitrogen and alkalinity data sets may have been partially responsible for the poorer statistics for these variables.

The strongest statistical relationship was one that included the following four parameters -- percent soil organic, salinity, quarterly hydroperiod, and depth -- loaded in that order. Combined variation in these parameters explained 70% of variance in the dependent variable ($p<0.01$), and t-statistics for all parameters except depth were statistically significant ($p<0.05$). Adding the depth parameter actually improved the t-statistic for quarterly hydroperiod without adversely affecting the t-statistics of the other parameters to any great extent (and without dropping any data points). Considering the multicollinearity in this regression, three out of the four independent variables (percent soil organic, quarterly hydroperiod and depth) being strongly correlated, it is remarkable that three out of the four regression coefficients were statistically significant, according to their t-statistics (Hu, 1973). This suggests the existence of independent effects of these three variables.

The equation for the best relationship was:

$$
Y=0.11932-0.51677 X_{1}-0.01954 X_{2}-0.00055 X_{3}+0.00046 X_{4}
$$

where Y is proportion volume as blue-green algae (transformed), X_{1} is percent soil organic (transformed), X_{2} is salinity, X_{3} is quarterly hydroperiod and X_{4} is water depth. Results of other multiple regressions are given in Appendix F.

A stepwise multiple regression analysis of Quarter 4 data resulted in an equation that explained 78.54% of the variation in blue-green algae by the variation in these parameters -- soil organic matter, total macrophyte biomass, and quarterly hydroperiod -- loaded in that order.

The first two parameters were highly significant ($\mathrm{p}<0.001$). The third was not significant ($p>0.1$). The equation is:

$$
Y=0.02978+0.7498 X_{1}-0.0004 x_{2}-0.00038 x_{3}
$$

where Y is proportion volume as blue-green algae (transformed), X_{1} is proportion soil organic matter (transformed), X_{2} is total macrophyte biomass, and X_{3} is quarterly hydroperiod.

In summary, stepwise multiple regression results indicated the following: (1) Inorganic nitrogen in the water was the major determinant of algal composition at flooded stations in the spring (Quarter 1). Total macrophyte biomass possibly also was a factor, perhaps due to a shading effect. (2) Conductivity played a major role in algal composition at flooded stations in the early summer (Quarter 2). Soil organic matter and water depth probably also were important, and time-since-last-drought may have had some effect. (3) Soil organic matter, water salinity, and quarterly hydroperiod were major factors affecting algal composition in late summer (Quarter 3). Water depth probably also played a role. (4) Soil organic matter and total macrophyte biomass were the major determinants of algal composition in late fall-early winter (Quarter 4).

Effects of Periphyton Rations on Growth

Comparisons of treatment pairs by analysis of variance indicated the following: (1) tadpoles fed a predominantly blue-green periphyton ration did not differ significantly in terminal dry weight from samples harvested at the beginning of the experiment, and therefore did not grow significantly on the ration (one tank even lost weight during the 10 day treatment period); (2) tadpoles fed the diatom-rich periphyton ration and the predominantly green periphyton ration grew significantly and had significantly greater terminal dry weights than those fed predominantly blue-green periphyton; (3) tadpoles fed the diatom-rich ration had significantly higher terminal dry weights than those fed the predominantly green ration; (4) tadpoles fed the Carolina commercial tadpole feed had significantly higher terminal dry weights than those on periphyton diets. Significance levels ranged from $p<0.005$ to $p<$ 0.00001).

DISCUSSION

Soil and hydrologic conditions appear to be the overriding factors influencing the taxonomic composition of everglades periphyton. Other factors were important only among a group of sites that were continuously flooded (the sample in Quarter 1 correlations) or among sites that had been flooded without interruption for several (probably at least six) months.

Not only are percent soil organic matter and hydroperiod suggested as the major factors controlling taxonomic composition of southern
everglades periphyton, but the relationship between these two factors, which is reflected in the correlation results, is very strong. Percent soil organic matter is a product of the long-term hydroperiod of an area, because flooding inhibits decomposition, which is primarily a microbial process limited by available oxygen and accelerated by exposure to air (Browder and Volk, 1978).

Where a recent change in hydroperiod has occurred, percent soil organic matter might be expected to temporarily reflect previous hydroperiod conditions. Such a situation was suggested when we compared percent soil organic matter and hydroperiod at some of our stations. Site XVII near Canal-111 had a relatively low soil organic content for prevailing water levels, suggesting that the flow of water across the southern levee of the canal may have increased the depth and period of flooding at that station. Site XV , the northernmost station on Canal-67extended, represented the opposite situation; soil organic content there was much higher than water levels would have led us to expect, suggesting a reduced hydroperiod. At Station XVI near Grossman's Hammock there was a greater content of organic matter in the soil than would have been expected on the basis of prevailing water conditions. This was an area where the hydroperiod is known to have been reduced. The high percent of silica sand in the soils at this site suggested that the organic layer may once have been much thicker there than it is now. When organic soils oxidize, the mineral fraction of the soil greatly increases.

The winter dry season of 1978 was mild and short. Several of our stations (VI, VIII, XII, XIII, XIV, XV and XVII) did not dry that spring and thus had not been dry for a year or longer. Those stations had a high percentage of diatoms and green algae throughout the year of the study. Their blue-green algal components actually increased from Quarter 1 to Quarter 4, although, at their maxima, were never as great as that at the other stations. In spite of the mildness of the dry season, some of the stations (I, II, III, V, VII, XI) were dry most of Quarter 2. These same stations dried again during a brief rainless period in mid-summer (Quarter 3). The components of diatoms and green algae in the periphyton at these stations were consistently low throughout the study. Stations that had dried during Quarter 1 but were flooded for the rest of the year had a high percentage of blue-green algae initially but had developed substantial percentages of diatoms and green algae by Quarter 4. These generalities were somewhat obscured by the lag between sampling in the park stations and in the East Everglades stations (we started and ended three-months later at the East Everglades stations). The last sampling quarter at the East Everglades stations was not entirely homologous with the first quarter at the park stations, because the 1979 dry season was much more severe than the 1978 dry season, and stations that would not have dried Quarter 1 dried Quarter 5.

Algal composition responded not only to water conditions but also to salinity and various nutrients. The importance of the salinity parameter to the fit of the multiple regression equation for blue-green algae in Quarter 3 suggested an inhibition of some blue-green algae
(perhaps the major dominant, Scytonema) by salinity. Stations in the vicinity of Canal-67-extended and Canal-111 experienced much higher salinities than the other stations, where no detectable levels were observed in any but third quarter sampling. Quarter-1 compositions were highly correlated ($p<0.01$) with nitrogen, the relationship being negative with blue-greens and positive with diatoms and greens, but this effect was not noted at any other time.

The importance of total macrophyte biomass as a factor affecting periphyton algal composition was evident in Quarter 4 data (and possibly also Quarter 1 data) but either this variable was not important, or its effect was masked by stronger effectors during other times of the year. We consider total macrophyte biomass to be an index of shading, although the effect of this variable possibly is manifested in some other way.

Despite complications, the observed progression suggested a seasonal succession keyed to hydroperiod in the periphyton of the study area, with blue-green algae leading the recolonization of reflooded habitat, followed by diatoms and green algae, which become increasingly important components of the periphyton assemblage as the time of flooding lengthens.

Our observations. regarding succession support the high correlation of our hydroperiod indices with algal composition in suggesting that hydroperiod is a major factor controlling algal composition in the periphyton of the study area.

The correlation with algal composition of the two parameters, percent soil organic and water depth, is partially due to the fact that these were acting as indicators of water conditions (relative "wetness" or hydroperiod) at the study sites. Additional independent effects of percent soil organic and water depth on algal composition in the southern everglades appear to exist and probably are due to their separate roles in controlling the amplitudes of diurnal fluctuations in pH , dissolved oxygen, and temperature. Blue-green algae are favored by extreme diurnal changes in these environmental characteristics (Padan, 1979).

The change in the relationship of pH to time-of-day from a negative correlation in the winter to a positive correlation in the summer indicates a change from a heterotrophic-dominated system in the winter to anautotrophic-dominated system in the summer. Metabolism results presented in Part II support this interpretation.

A buffering effect of percent soil organic matter on diurnal change in pH was suggested by the round-robin diel curves and by the multiple regression results in which pH was related positively to percent soil organic matter when it was related negatively to time-of-day and was related negatively to percent soil organic matter when related positively to time-of-day. This buffering effect may be the basis of the favorable habitat for diatoms and green algae created by a high percentage of soil organic matter in the bottom sediment.

According to these results, one might expect two effects of a change in the hydroperiod on taxonomic composition: an immediate effect and a delayed effect. The immediate effect would be a direct effect of change in hydroperiod. The second effect would be an indirect effect of hydroperiod due to the change in percent soil organic matter that would eventually result from the change in hydroperiod.

Our limited animal experiments suggest that a change in periphyton taxonomic composition could have an impact on the animals that depend on periphyton for food. Diatoms are a highly nutritious food for many aquatic organisms, and many blue-green algae species are inadequate as a diet for most aquatic organisms. A feeding and growth experiment with one aquatic organism of south Florida, the tadpole of the squirrel tree frog, Hyla squirella, demonstrated that periphyton communities of the study area that are rich in diatoms and, to a lesser degree, green algae, are a higher-quality source of food for this algal-feeding species than those periphyton communities in which blue-green algae predominate. One might expect to find more types of animals that are adapated to feeding on blue-green algae in the aquatic environments of the study area, where the biomasses of this potential food source are so great. Nevertheless periphyton composed almost entirely of blue-green algae (greater than approximately 90% by volume) probably contributes less useful food to the aquatic community than periphytons that contain greater proportion of diatoms and green algae.

Water management projects that decrease the hydroperiods of the seasonally flooded wetlands of the southern everglades appear to make them less supportive of aquatic animals by decreasing the quality of food at the base of the food chain. Managing water to increase the hydroperiod in the Taylor Slough area north and immediately south of S.R. 27 where the periphyton presently is made up almost entirely of blue-green algae, probably would improve their capacity to support aquatic animals.

SUMMARY

1. The relative importance (volume) of the major algal taxa in periphyton differs considerably from site to site in the southern Everglades. Composition can be quantified with a precision that allows statistically significant differences to be determined.
2. Blue-green algae make up 90% or more of algal volume in periphyton at many southern everglades locations. The predominant genus, making up 50% or more of volume at most sites, is Scytonema.
3. Diatoms are next in importance to blue-green algae, in terms of volume.
4. Desmids are a relatively minor component of southern everglades periphyton.
5. Other green algae are important at only a few locations.
6. A succession keyed to hydroperiod appears to occur. Blue-green algae become re-established in an area very quickly upon reflooding following drying. Several months of continuous flooding are required for diatoms and green algae to become fully re-established after an area has dried. Probably for this reason, hydroperiod is a very important factor in determining algal composition of periphyton.
7. Soil organic matter appears to affect algal composition of periphyton, possibly by reducing the diurnal variation in pH . (Large diurnal fluctuations in pH , dissolved oxygen and temperature favor blue-green algae, according to other studies.)
8. Changing the hydroperiod of an area has two effects on taxonomic composition of periphyton: a direct immediate effect and an indirect effect caused by the change in percent soil organic matter in bottom sediment, which is hydroperiod-related.
9. Salinity may inhibit some major blue-green algal species in southern everglades periphyton.
10. Feeding and growth experiments with one everglades organism indicated no growth in 10 days on periphyton with a high component of blue-green algae. Significant growth occurred on diatom-rich periphyton and green-rich periphyton, but growth was best on a commercial feed that was used in the experiments as a control.
11. Changing the water conditions in a wetlands changes the quality of food for aquatic organisms.

ACKNOWLEDGMENTS

Mr. David Swift of the South Florida Water Management District provided expert advice on the taxonomy of the algae. Mr. Robert Chen of the University of Miami Mathematics Department suggested the use of the Hotelling-T test for the statistical analysis of volumetric data on the major taxa of periphyton. We greatly appreciate their assistance.

LITERATURE CITED

American Public Health Association (APHA). 1955. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C.

American Public Health Association (APHA). 1976. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, D.C. p. 1193.

Browder, J.A., and B.G. Volk. 1978. Systems model of carbon transformations in soil subsidence. Ecological Modelling 5: 269292.

Environmental Protection Agency (EPA). 1979. Methods for chemical analysis of water and wastes. U.S. Environmental Protection Agency. Cincinnati, Ohio.

Dean, W.E., Jr. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition; comparison with other methods. J. Sed. Petrol. 44: 242-248.

Gleason, P.J., and W. Spackman, Jr. 1974. Calcareous periphyton and water chemistry in the Everglades. In: P.J. Gleason (ed.), Environments of South Florida: Present and Past. p. 146-181.

Gruending, G.K. 1971. Ecology of the epipelic algal communities in Marion Lake, British Columbia. J. Phycol. 7: 239-249.

Hilsenbeck, C.E., R.H. Hoffstetter, and T.R. Alexander. 1979. Description of the major plant communities in the East Everglades. Dept. Biology, University of Miami, Coral Gables, Florida. 34 p.

Hu, T.W. 1973. Econometrics. University Park Press, Baltimore. 172 p.

Kutkuhn, J.H. 1958. Notes on the precision of numerical and volumetric plankton estimates from small-sample concentrates. Limnol. Oceanogr. 3: 69-83.

Moore, J.W. 1974a. The benthic algae of southern Baffin Island. I. Epipelic communities in rivers. J. Phycol. 10: 50-57.

Moore, J.W. 1974b. Benthic algae of southern Baffin Island. II. The epipelic communities in temporary ponds. J. Phycol. 10.

Moore, J.W. 1974c. Benthic algae of southern Baffin Island. III. Epilithic and epiphytic communities. J. Phycol. 10: 456-462.

Moore, J.W. 1974d. The role of algae in the diet of Asellus aquaticus L. and Gammarus pulex L. J. Animal Ecol. 44: 719-729.

Morrison, D. 1976. Multivariate Statistical Analysis. McGraw-Hill. 415 p.

Padan, E. 1979. Impact of facultative anaerobic photoautotrophic metabolism on ecology of Cyanobacteria (blue-green algae). In: M. Alexander (Ed.), Advances in Microbial Ecology, Plenum Press, New York. 225 p .

Prescott, G.W. 1962. Algae of the Western Great Lakes Area. W.C. Brown Co., Dubuque, Iowa. 977 p.

Rintz, R.E., and L.L. Loope. 1978. Vegetation map of Taylor Slough, Everglades National Park, Florida. South Florida Research Center, U.S. National Park Service, Homestead, Florida. 1 sheet.

Round, F.E. 1965. The Biology of the Algae. St. Martin's Press, New York. 269 p.

Ruttner, F. 1972. Fundamentals of Limnology. (3rd Ed.). University of Toronto Press, Toronto. 295 p.

Smith, G.M. 1950. The Freshwater Algae of the United States (2nd Ed.). McGraw-Hill. 719 p.

Snedecor, G.W., and W.G. Cochran. 1967. Statistical Methods. Iowa State University Press, Ames, Iowa. 593 p.

Van Meter-Kasanof, N. 1973. Ecology of the microalgae of the Florida Everglades. Part I - Envrionment and some aspects of freshwater periphyton, 1959 to 1963. Nova Hedwigia 24: 619-664.

Wood, E.J.F., and N.G. Maynard. 1974. Ecology of the micro-algae of the Florida Everglades. In: P.J. Gleason (ed.), Environments of South Florida: Present and Past. 123-145.

Figure 1
Sampling stations I through X, Taylor Slough area, Everglades National Park

Figure 2
Sampling stations XIII through XVII, Dade County, East Everglades EPA-208 study area.

Figure 7
Histo grams of frequency distribution of levels of statistical significance of differences in taxonomif composition of station pairs, according to Hotelling-T ${ }^{2}$ analysis.

Table 2. Quarterly ranges of values for physical and chemical parameters of the study sites.

PARAMETER	QUARTER							
	1	2		3		4		
Measured								
Water depth (cm)	0-39.4	(12)	0-29.0	(17)	8-44.0		0-58.0	(17)
Water temperature (${ }^{\circ} \mathrm{C}$)	14-23	(8)	23.2-36	(12)	26-35.0	(15)	17-28.3	(14)
Dissolved oxygen (mg/1)	6.6-12.4	(8)	$2.1-15.2$	(12)	--		--	
Salinity (ppt)	0-. 80	(8	0-. 75	(12)	0-1.20	(17)	0	(14)
pH	6.4-7.8	(8	6.9-7.9	(12)	6.5-7.4	(15)	6.9-8.5	(14)
Alkalinity (mg/1 CaCO ${ }_{3}$)	161-198	(8)	130-240	(11)	100-230	(16)	120-240	(14)
Conductivity ($\mu \mathrm{mhos} / \mathrm{cm}$)	295-750	(8)	268-880	(12)	202-910	(17)	240-530	(14)
Calcium (mg/1)	-_		31.9-69.3	(5)	8.8-94.6	(17)	45.1-93.5	(7)
Silica (mg/l)	1.83-3.01	(6	.95-18.24	(11)	4.18-18.24	(16)	2.25-9.20	(14)
Inorganic nitrogen ($\mu \mathrm{g} / \mathrm{l}$)	11.48-53.22	(6	25.63-67.51	(9)	31.37-123.40	(13)	22.41-1365.65	(13)
Inorganic phosphorus ($\mu \mathrm{g} / 1$)	6.19-9.29	(6	7.74-38.72	(11)	5.58-12.39	(16)	3.10-15.49	(14)
Organic carbon (mg/1)	12-16	(7	6-42	(13)	11-32	(17)	6-32	(15)
Soil organic (percent by weight)	--		8.6-73.3	(17)	--		--	
Soil CaCO_{3} (percent by weight)	--		6.2-90.1	(17)	--		--	
Soil residuals (percent by weight)	--		0.5-69.3	(17)	--		--	
Devised								
Corrected depth (cm)	-11.4-39.4	(17)	11.6-42.0	(17)	8-60.2	(16)	-11.9-60.4	(17)
Wet days in previous quarter (No. x 5) ${ }^{a}$	0-30	(16)	1-30	(16)	3-30	(16)	10-30	(16)
$\begin{aligned} & \text { Wet days Oct. 77-Dec. } 78 \\ & \text { (No. x 5) } \end{aligned}$	11-91	(16)	--		--		--	

Table 2 continued.

Table 3. Depth and new depth (depth corrected for zero values and standardized for sampling date) (in centimeters) at each station each quarter.

	Quarter 1		Quarter 2		Quarter 3		Quarter 4	
	Depth	New Depth	Depth	New Depth	Depth	New Depth	Depth	New Depth
I	0.0	-3.2	0.0	-0.1	15.1	15.1	0.0	-2.1
II	0.0	-5.9	0.0	-4.3	11.5	11.5	0.0	-7.0
III	0.0	-4.0	0.0	0.0	15.8	15.8	0.0	-3.0
IV	12.9	12.9	17.0	17.0	29.9	29.9	15.0	15.0
V	0.0	-11.4	0.0	-7.4	8.0	8.0	0.0	-11.9
VI	39.4	39.4	42.0	42.0	44.0	44.0	36.5	36.5
VII	15.3	15.3	15.0	15.0	15.0	15.0	7.5	7.5
VIII	32.3	32.3	29.0	29.0	36.4	36.4	33.9	34.5
IX	20.4	20.4	21.5	21.5	25.5	25.5	26.3	26.6
X	11.1	11.1	14.0	14.0	20.5	20.5	22.6	23.1
XI	17.0	18.6	0.0	-11.6	22.0	27.5	24.0	25.1
XII	25.0	27.4	17.0	14.7	52.0	60.2	58.0	60.4
XIII	ND	19.9	15.0	14.4	24.0	24.0	22.0	24.6
XIV	ND	14.1	17.3	12.2	26.1	26.1	22.5	25.0
XV	ND	18.0	16.0	16.0	13.5	13.5	21.0	21.0
XVI	ND	0.0	0.0	0.0	33.0	ND	1.0	1.0
XVII	ND	20.3	24.0	21.7	26.0	24.0	15.0	19.9

Table 4. Hydroperiod indices ${ }^{\mathbf{a}}$ for each station.

	$\underset{1}{\text { Quarterly }}$		$\begin{gathered} \text { Hydro } \\ 3 \end{gathered}$	$\begin{gathered} \text { eriod } \\ 4 \end{gathered}$	Annual Hydroperiod	Time Since Last Drought ${ }^{\text {c }}$	Length of Last Drought ${ }^{\text {c }}$
I	7	1	10	22	32	217	100
II	6	0	7	20	25	217	165
III	7	1	11	22	33	212	95
IV	22	13	25	30	63	247	40
V	3	0	3	16	20	137	35
VI	30	28	28	30	88	602	65
VII	18	11	21	30	61	247	40
VIII	30	30	30	30	91	607	45
IX	30	30	30	30	91	602	50
X	30	22	28	30	83	237	40
XI	30	29	27	30	85	212	30
XII	30	30	30	30	91	957	30
XIII	30	30	30	30	91	1,312	ND
XIV	30	30	30	30	91	ND	ND
XV	ND						
XVI	0	0	5	10	11	ND	ND
XVII	30	30	30	30	91	ND	ND

${ }^{a}$ Index values should be multiplied by five to indicate actual number of days.
${ }^{\mathrm{b}}$ Hydroperiod is measured as the time when the water 1 evel was at or above ground surface.
${ }^{c}$ Droughts are defined as periods when the water was below ground surface for 30 days or longer.

Table 5. Average quarterly values ${ }^{\text {a }}$ for the five biomass.

	QUARTER				
	1	2	3	4	$\overline{\mathrm{X}}$
Organic periphyton	225	231	213	235	226
Live standing macrophytes	98	114	133	136	120
Live submergent macrophytes		12	8	11	10
Dead standing macrophytes	263	272	280	226	260
Dead prostrate macrophytes	196	49	64	67	94

Table 6. Quarterly ranges of biomass values ${ }^{a}$ at the study sites.

Stations I through XII,
A.
in stem periphyton.

	First Quarter			Second Quarter			Third Quarter			Fourth Quarter			
	Bluegreens	Greens	Diatoms	Bluegreens	Greens	Diatoms	Bluegreens	Greens	Diatoms	Bluegreens	Greens	Desmids	Diatoms
I	99.49	0.003	0.50	98.30	0.87	0.84	99.73	$\bigcirc .03$	0.23	93.15	0.00	0.06	6.79
II	88.13	1.33	0.0	92.660	0.00	7.40	94.60	2.51	2.87	85.43	3.99	1.49	9.09
III	99.14	0.19	0.24	96.97	2.98	0.05	99.46	0.52	0.01	93.51	. 75	1.80	3.93
IV	91.41	2.61	4.85	87.60	2.83	9.56	80.35	4.80	14.83	76.78	5.31	4.12	13.80
V	99.66	0.26	0.06	98.02	0.49	1.49	96.67	0.03	3.28	91.66	. 95	0.17	7.23
VI	88.31	3.18	8.49	68.39	2.84	28.78	72.46	14.07	13.45	81.68	9.50	1.47	7.35
VII	96.89	2.31	0.80	100.00	0.00	0.0	98.67	0.20	1.11	96.52	. 77	1.14	1.57
VIII	35.93	18.10	45.96	38.66	16.53	44.80	32.41	- 7.80	59.77	60.70	13.39	1.52	24.39
IX	96.96	3.06	9.96	75.07	1.79	22.81	89.96	1.10	8.92	86.03	. 98	2.51	10.48
X	98.53	0.56	0.90	97.86	0.000	2.79	93.35	1.91	4.72	93.27	2.60	0.34	3.80
XI	93.71	0.03	6.25	80.12	0.02	19.86	96.11	0.34	3.53	88.01	. 61	0.13	11.25
XII	96.90	0.0	3.10	73.10	7.13	19.76	70.22	8.32	21.45	67.74	2.12	1.16	28.97

Table 7 continued.
B. Stations XIII through XVII, Quarters 2, 3, 4, and 5.

	Second Quarter			Third Quarter			Fourth Quarter				Fifth Quarter			
	Bluegreens	Greens	Diatoms	B1uegreens	Greens	Diatoms	Bluegreens	Greens	Desmids	Diatoms	Bluegreens	Greens	Desmids	Diatoms
XIII	10.69	80.82	8.49	44.89	22.76	32.33	40.53	15.28	. 48	43.71	1.34	72.48	. 00	26.17
XIV	59.57	24.46	15.56	75.46	3.10	21.43	48.52	4.89	. 33	46.25	52.59	10.68	. 42	36.31
XV	75.75	1.80	22.46	78.83	7.47	13.68	64.04	1.98	. 09	33.89	57.72	3.34	1.25	37.69
XVI	94.68	0.07	5.25	93.55	0.24	6.20	73.90	. 00	. 83	25.27	81.00	. 00	. 05	18.96
XVII	39.36	6.95	53.69	49.24	4.20	46.55	33.62	8.56	2.16	55.67	36.53	. 12	. 80	62.55

Table 8. Annual average percents volume of blue-green, green, and diatom algae in periphyton at stations.

Station	Bluegreen	Green	Diatom
I	97.66		
II	90.19	.22	2.09
III	97.27	1.95	5.41
IV	84.03	1.71	1.05
V	96.50	4.16	10.76
IV	77.71	.43	3.01
VIII	98.02	7.39	14.51
IX	41.92	13.95	.87
X	87.00	1.73	43.73
XI	95.75	1.26	13.04
XII	89.48	.25	3.05
XIII	76.99	4.39	10.22
XIV	24.36	47.83	18.32
XV	59.13	10.78	27.67
XVI	69.08	3.64	29.88
XVII	85.78	.07	26.93

Table 9. Dominant genera, by station and location, winter 1978 (Quarter 1).

Taxa	$\begin{aligned} & \text { Alga1 } \\ & \text { Group } \end{aligned}$	I		PERCENT (\%)		III		IV		V	
				II							
		Stem	Ground								
Scytonema	B.G.	55.9	66.6	26.6	21.9	43.5	46.4	49.6	50.4	43.2	35.1
Schizothrix	B. G.	12.9	13.5	43.2	43.0	43.6	50.5	38.3	41.3	37.5	53.2
Stigonema	B.G.	27.3		5.6		7.1		2.2	0.3	12.7	
Microcoleus	B.G.	3.1	2.3		8.7	2.6	1.0		1.9	2.4	3.0
Johannesbaptistia	?		10.3								
Gloeocapsa	B.G.		5.3		10.0		0.7			1.9	3.1
Aphanothece	B.G.		10.6								
Diatoms		0.3		6.1	4.3			2.9	3.1		3.6
Desmids	G.					1.7					
Lyngbya	B. G.						0.9				
Spirogyra	G.F.							2.8			
Oedogonium	G.F.										
Unid sphere	B.G.										
Unid	G.										
Other	--	0.5	2.0	7.9	12.1	1.5	0.5	4.2	3.0	2.3	2.0

[^0]Table 9. Continued.

Taxa	Algal * Group	VI		PERCENT (\%)		VIII		IX		X	
		Stem	Ground								
Scytonema	B.G.	71.7	34.7	64.5	44.9	10.4	21.8	51.0	35.2	63.4	51.4
Schizothrix	B.G.	12.5	45.2	10.0	6.9	20.7	16.1	36.0	53.4	23.4	30.4
Stigonema	B.G.	2.8									12.8
Microcoleus	B.G.	1.3		20.4	14.2	0.9				3.1	
Johannesbaptistia	?									1.6	
Gloeocapsa	B.G.								0.9		
Aphanothece	B.G.										
Diatoms		9.6	3.0	1.0		44.0	18.5	7.4	7.0		1.7
Desmids	G.			1.1	0.8	3.1	35.9		1.3		
Lyngbya	B.G.										
Spirogyra	G.F.		2.8				4.7				
Oedogonium	G.F.							1.2			
Unid sphere	B.G.		2.0		1.9			1.3		3.3	
Unid	G.										1.0
Other	--	2.1	12.3	3.0	31.3	20.9	3.0	3.1	2.2	5.2	2.7
* Key to Algal Groups											

Table 10. Second quarter percent representation of algal genera making up the first 50% of algal composition by volume.

Genus	STATIONS																
	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	XIII	XIV	xV	XVI	XVII
Bluegreen																	
Scytonema	≥ 50	10	≥ 50	≥ 50	≥ 50	41		17	≥ 50	≥ 50	33						
Schizothrix								28				28	28				
Microcoleus														31			
Green																	
Spirogyra													≥ 50				
Diatom																	
Cymbella														14			36
Mastigloia								15									

Table 11. Third quarter percent representation of algal genera making up the first 50% of algal composition by volume.
I
STATIONS
๗ึ ฝ
ฝ
$\xrightarrow[N]{N}$

Genus	stations																
	I	II	III	Iv	v	vi	vir	viir	ix	x	xi	xII	xiif	xIV	xv	xvi	xviI
Bluegreen																	
Scytonema	250	250	250	250	250	49	250	17	250	250	250	250	28	250	250	250	23
Schizothrix						20							15				25
Green																	
Spirogyra									-				14				
Diatom																	
Cymbella						17											
Comphonema								27									
Amphora																	21

Table 12. Fourth quarter percent representation of algal genera making up the first 50% of algal
composition by volume.

Genus	Stations																
	I	II	III	Iv	v	VI	viI	VIII	IX	x	XI	XII	XIII	xIv	xv	xVI	XVII
Bluegreen																	
Scytonema	≥ 50	250	≥ 50	28	250	≥ 50	≥ 50	≥ 50	25	38	48	≥ 50					
Schizothrix								16					14				
Diatom																	
Cymbella													11				28
Mastigloia														29	15		22
Gomphonema								14									
Navicula													10				17

Table 13. Fifth quarter percent representation of algal genera making up the first 50% of algal

Table 14. Grouping of stations based on Hotelling T^{2} analysis of second quarter taxal percentages.

Station	BG	G	D	Macrophytes	Soil
VII	100.	0	0	tall sawgrass	10-19\% org
III	96.97	2.98	0.05	short sawgrass	10-19\% org
V	98.02	0.493	1.49	hairgrass	< 10% org
I	98.30	0.865	0.84	hairgrass	< 10% org
X	97.86	0	2.79	short sawgrass	< 10% org
XVI	94.68	0.073	5.25	spikerush	20-24\% org
II	92.60	0	7.40	hairgrass - short sawgrass	10-19\% org
IV	87.60	2.83	9.56	spikerush	10-19\% org
$X I^{\text {a }}$	80.12	0.02	19.86	spikerush	10-19\% org.
IX ${ }^{\text {a }}$	75.07	1.79	22.81	spikerush - beakrush	10-19\% org
XV ${ }_{\text {a }}$	75.75	1.80	22.46	spikerush - beakrush	25-49\% org
XII ${ }^{\text {a }}$	73.10	7.13	19.76	spikerush - sawgrass	> 50% org
XIV	59.97	24.46	15.56	spikerush - bladderwort	25-49\% org
VI	68.39	2.84	28.78	tall sawgrass	$>50 \%$ org
VIII	38.66	16.53	44.80	spikerush	> 50% org
XVII	39.36	6.95	53.69	short sawgrass - bladderwort	10-19\% org
XIII	10.69	80.82	8.49	spikerush - bladderwort	25-49\% org

$B G=$ bluegreens, $G=$ greens, $D=$ diatoms
a Stations IX, X, XI, and XII were significantly different from each other at the 99% level, but were not significantly different from Station XV at the 90\% level.
$B G=$ bluegreens, $G=$ greens,$D=$ diatoms.

Table 15.	Grouping of stations based on Hotelling T^{2} analysis of third quarter taxal percentages.						Date
Station	BG	G	D	Macrophytes	Soil	Water Depth (cm)	
I	99.73	0.03	0.23	hairgrass	< 10% org	15.1	8/26
III	99.46	0.52	0.01	short sawgrass	10-19\% org	15.8	8/26
VII	98.67	0.20	1.11	tall sawgrass	- 10-19\% org	15.0	8/26
V	96.67	0.03	3.28	hairgrass	< 10% org	8.0	8/27
XI	96.11	0.34	3.53	spikerush	10-19\% org	22.0	8/15
II	94.60	2.51	2.87	hairgrass - short sawgrass	10-19\% org	11.5	8/26
IX	89.96	1.10	8.92	spikerush - beakrush	10-19\% org	25.5	8/27
X	93.35	1.91	4.72	short sawgrass	< 10\% org	20.5	8/27
XVI	93.55	0.24	6.20	spikerush	20-24\% org	24.0	9/2
IV	80.35	4.80	14.83	spikerush	10-19\% org	29.9	8/26
VI	72.46	14.07	13.45	tall sawgrass	> 50\% org	44.0	8/26
XII	70.22	8.32	21.45	spikerush - sawgrass	> 50% org	52.0	8/15
XIV	75.46	3.10	21.43	spikerush - bladderwort	25-49\% org	26.1	9/2
XV	78.83	7.47	13.68	spikerush - beakrush	25-49\% org	13.5	9/2
VIII	32.41	7.80	59.77	spikerush	> 50\% org	36.4	8/26
XVII	49.24	4.20	46.55	short sawgrass - bladderwort	10-19\% org	26.0	9/3
XIII	44.89	22.76	32.33	spikerush - bladderwort	25-49\% org	24.0	9/2

-səระ
T^{2}
8u! $1[8 \neq \mathrm{H}$

Station	BG	G	D	Macrophytes	Percent Organic Soil	Water Depth (cm)	Date
VII ${ }^{\text {a }}$	96.52	1.91	1.57	tall sawgrass	10-19	7.5	11/18
III	93.51	2.56	3.93	short sawgrass	10-19	0	11/18
$\mathrm{X}^{\text {a }}$	93.27	2.93	3.80	short sawgrass	< 10	22.6	11/19
I	93.15	0.06	6.79	hairgrass	< 10	0	11/19
V_{b}	91.66	1.11	7.23	hairgrass	< 10	0	11/19
XI ${ }^{\text {b }}$	88.01	0.74	11.25	spikerush	10-19	24.0	11/13
IX	86.03	3.49	10.48	spikerush - beakrush	10-19	26.3	11/19
II	85.43	5.48	9.09	hairgrass - short sawgrass	10-19	0	11/18
VI	81.68	10.97	7.35	tall sawgrass	> 50	36.5	11/18
IV	76.78	9.42	13.80	spikerush	10-19	15.0	11/18
$X V I_{\text {d }}^{\text {b, }}$ d	73.90	0.83	25.27	spikerush	20-24	1.0	12/14
XII ${ }_{\text {d, }}^{\text {d }}$	67.74	3.29	28.97	spikerush - sawgrass	>50	58.0	11/13
XV' ${ }^{\text {, }}$	64.04	2.07	33.89	spikerush - beakrush	25-49	21.0	12/13
VIII	60.70	14.91	24.39	spikerush	> 50	33.9	11/19
XIV ${ }^{\text {c, }} \mathrm{d}$	48.52	5.23	46.25	spikerush - bladderwort	25-49	22.5	12/13
XIII	40.53	15.76	43.71	spikerush - bladderwort	25-49	22.0	12/13
XVII	33.62	10.71	55.67	short sawgrass - bladderwort	10-19	15.0	12/14

Table 17. Grouping of stations based on Hotelling T^{2} analysis of fifth quarter taxal percentages.

Station	BG	G	D	Macrophytes	Percent Organic Soil
XVI	81.00	0.04	18.96	spikerush	20-24
XV	57.72	4.59	37.69	spikerush - beakrush	25-49
XIV	52.59	11.10	36.31	spikerush - bladderwort	25-49
XVII	36.53	0.92	62.55	sawgrass - bladderwort	10-19
XIII	1.34	72.49	26.17	spikerush - bladderwort	25-49

Table 18. Correlation coefficients for conductivity and some related water-quality parameters.

ALK	SAL	SILICA

QUARTER 1

Cond	+0.21	(8)	$+.965^{\mathrm{b}}$	(8)	
Alk		-.005	(8)	+.555	(6)

QUARTER 2
Cond
$+.815^{\mathrm{C}} \quad(11)$
$+.759^{c}$
A1k
$+.408$
$+.695^{\text {d }}$

QUARTER 3
Cond
$+.633^{\mathrm{d}}$
(16) $\quad+.761^{b}$
(17)

A1k
$+.181$
$+.684^{c}$
(16)

QUARTER 4

Cond	$+.674^{\mathrm{d}}(14)$	ND	
A1k		ND	$+.597^{\mathrm{d}}$

a	$<.0001$
b	$<.001$
c	$<.01$
d	$<.05$
e	$<.1$
f	$<.11$

Note: Number of samples is given in parentheses

Table 19. Correlation coefficients for time of day, some diurnally-varying water-quality parameters, and percent soil organic matter (transformed).

DO	Time	Soil
	Organic	

QUARTER 1

pH	-474	(8)	$-.834^{\text {d }}$	(8)	+. 325	(8)
Do			+. 492	(8)		
Temp			$+.690^{\text {e }}$	(8)		

QUARTER 2

pH	$+.756^{\text {c }}$	(12)	$+.692^{\text {d }}$	(12)	$+.726^{\text {c }}$
D0			$+.660^{\text {d }}$	(12)	
Temp QUARTER 3	-		$+.801^{\text {c }}$	(12)	
pH	$+.624^{\text {d }}$	(13)	$+.548{ }^{\text {d }}$	(15)	+. 146
DO			$+.812^{\text {b }}$	(15)	
Temp			$+.520{ }^{\text {d }}$	(15)	

QUARTER 4

Table 20. Correlation coefficients for percent soil organic matter (transformed) with water depth, new depth ${ }^{\text {a }}$, quarterly hydroperiod, and annual hydroperiod.

Depth	New Depth	Hydro (qt)	Hydro (an)

QUARTER 1
Soil organic $+.828^{\mathrm{c}}(12)+.733^{\mathrm{c}}(17)+.479^{\mathrm{e}}(16)+.505^{\mathrm{d}}$
QUARTER 2
Soil organic $+.639^{c}(17)+.611^{c}(17)+.569^{d}$
QUARTER 3
Soil organic $+.776^{b}(17)+.772^{b}(16)+.489^{e}$
QUARTER 4
Soil organic $+.783^{\mathrm{b}} \quad(17)+.766^{\mathrm{b}} \quad(17) \quad+.310 \quad(16)$
a <.0001
b <.001
c $<.01$
d $<.05$
e <.1
$\mathrm{f} \quad<.11$
Note: Number of samples is given in parentheses
a New depth is water depth corrected for below surface conditions and standardized for sampling date.

Percent soil organic (trans)	-. 325	(17)	$-.450^{\text {e }}$	(17)	$-.594^{\text {d }}$	(17)	$-.438^{\text {e }}$	(17)
Percent soil CaCO_{3} (trans)	+. 169	(17)	+. 196	(17)	+. 390	(17)	+. 287	(17)
Percent soil residual (trans)	-. 061	(17)	+. 000 d	(17)	-. 141 e	(17)	-. 201	(17)
Depth	-. 488	(12)	-. $492{ }^{\text {d }}$	(17)	$=.475^{\text {e }}$	(17)	-. 302	(17)
Corrected depth	-. 259	(17)	-. $426{ }^{\text {e }}$	(17)	$-.446{ }^{\text {e }}$	(17)	-. 386	(17)
Quarterly hydroperiod	-. 376	(16)	-. $651{ }^{\text {c }}$	(16)	-. 5888	(16)	-. 302 d	(16)
Annual hydroperiod	-. 406	(16)	$-.600^{\text {d }}$	(16)	-. $595^{\text {d }}$	(16)	-. 495	(16)
Length of last drought	+. 057	(12)	+. 246 d	(12)	+. 243 d	(12)	+. 217	(12)
Time since last drought	-. 306	(12)	$-.667^{\text {d }}$	(12)	$-.611^{\text {d }}$	(12)	$-.726^{\text {c }}$	(12)
pH	-. 070	(8)	+. 362 d	(12)	+. 058	(15)	-. 197	(14)
Temperature	-. 321	(8)	$+.578{ }^{\text {d }}$	(12)	-. 084	(15)	+. 318	(14)
norganic nitrogen	-. $984{ }^{\text {c }}$	(6)	-. 055	(9)	-. 203	(13)	+. 236	(13)
Inorganic phosphorus	-. 506	(6)	+. 460	(11)	-. 078	(16)	-. 121	(14)
Silica	-. 560	(6)	-. 244	(11)	-. 327	(16)	-. 269	(14)
Calcium	ND		-. 661	(5)	+. 291	(17)	$+.707^{e}$	(7)
Salinity	+. 233	(8)	-. 117	(12)	$-.436{ }^{\text {e }}$	(17)	ND	
Alkalinity	-. 035	(8)	$-.529^{\text {e }}$	(11)	-. 210	(16)	-. 425	(14)
Conductivity	+. 190	(8)	-. 406	(12)	$-.496{ }^{\text {d }}$	(17)	-. $624^{\text {d }}$	(14)
Dissolved oxygen	+. 140	(8)	+. 321 e	(12)	+. 171	(15)		
Percent organic in periphyton (trans)	+. 239	(10)	$+.417^{\mathrm{e}}$	(17)	+. 307	(17)	-. 144	(17)
Total periphyton biomass	+. 363	(10)	+. 351	(17)	+. 383	(15)	$+.735^{\text {c }}$	(15)
Organic periphyton biomass	+. 349	(9)	$+.455^{\mathrm{e}}$	(17)	+. 420	(15)	$+.751^{\text {c }}$	(15)
Total macrophyte biomass	-. 029	(10)	+. 233	(17)	+. 018	(15)	. 337	(16)
Live macrophytic biomass	+. 022	(10)	-. 069	(17)	-. 260	(15)	+. 176	(16)
Dead macrophytic biomass	-. 038	(10)	+. 287	(17)	+. 129	(16)	+. 291	(17)
Live standing macrophyte biomass	+. 132	(10)	-. 015	(17)	-. 219	(15)	+. 166	(17)
Live submergent macrophyte biomass	ND		-. 278	(17)	$-.522^{\text {d }}$	(17)	+. 124	(15)
Dead standing macrophyte biomass	+. 098	(10)	+. 290	(17)	+. 113	(15)	+. 199	(17)
Dead prostrate macrophyte biomass	-. 140	(10)	-. 311	(17)	+. 125	(17)	+. 235	(15)
Organic periphyton and submergent macrophyte biomass	ND		$+.413^{\mathrm{e}}$	(17)	+. 379	(15)	$+.758^{\text {c }}$	(15)

[^1]

+.303
+.049
. .113
+.460
+.250
+.362
+.387
. .027
+.198
+.409
+.439
$+.96{ }^{c}$
+.668
+.674
O.
ざ
i
$i+$

Percent soil organic (trans)	$+.466^{\text {e }}$	(17)	$+.569^{\text {d }}$	(17)	$+.620{ }^{\text {d }}$	(17)	$+.489{ }^{\text {d }}$	(17)
Percent soil CaCO_{3} (trans)	-. $442{ }^{\text {e }}$	(17)	-. 386	(17)	$-.442{ }^{\text {e }}$	(17)	$-.417^{\text {e }}$	(17)
Percent soil residual (trans)	+.482 ${ }^{\text {d }}$	(17)	+. 211	(17)	+.212 ${ }_{\text {d }}$	(17)	+. 339	(17)
Depth	+.724 ${ }^{\text {c }}$	(12)	$+.655{ }^{\text {c }}$ d	(17)	+. 551 d	(17)	+. $331{ }_{\text {f }}$	(17)
Corrected depth	+. $511{ }^{\text {d }}$	(17)	+. $562{ }^{\text {d }}$	(17)	+. $511{ }^{\text {d }}$	(16)	$+.403{ }^{\text {f }}$	(17)
Quarterly hydroperiod	$+.484{ }^{\text {e }}$	(16)	+. $754{ }^{\text {c }}$	(16)	$+.659^{\text {c }}$	(16)	+.169 f	(16)
Annual hydroperiod	$+.509{ }^{\text {d }}$	(16)	$+.670^{\text {c }}$	(16)	$+.658^{\text {c }}$	(16)	+.413	(16)
Length of last drought	-. 202	(12)	-. 236	(12)	-. 375	(12)	-. 221 d	(12)
Time since last drought	$+.515{ }^{\text {e }}$	(12)	$+.689{ }^{\text {d }}$	(12)	$+.681{ }^{\text {d }}$	(12)	$+.706^{\text {d }}$	(12)
pH	+. 156	(8)	-. 343	(12)	+. 043	(15)	+. 391	(14)
Temperature	+. 241	(8)	-. 435	(12)	+. 021	(15)	-. 423	(14)
Inorganic nitrogen	$+.938{ }^{\text {c }}$	(6)	+. 164	(9)	+. 299	(13)	-. 215	(13)
Inorganic phosphorus	+. 602	(6)	-. 146	(11)	+. 103	(16)	+. 346	(14)
Silica	+. 471	(6)	+. 025	(11)	+. 354	(17)	+. 437	(14)
Calcium	ND		+. 068	(5)	-. 150	(17)	$-.727^{\text {e }}$	(7)
Salinity	-. 192	(8)	+. 428	(12)	$+.489{ }^{\text {d }}$	(17)	ND	
Alkalinity	-. 029	(8)	+. 292	(11)	+. 170	(16)	$+.457{ }^{\text {e }}$	(14)
Conductivity	-. 140	(8)	+. 298	(12)	$+.527^{\text {d }}$	(17)	+.631 ${ }^{\text {d }}$	(14)
Dissolved oxygen	-. 090	(8)	-. 370	(12)	-. 170	(15)	ND	
Percent organic in periphyton (trans)	-. 415	(10)	-. 298	(17)	-. 361	(17)	+.167 ${ }_{\text {b }}$	(17)
Total periphyton biomass	-. 277	(10)	-. 325	(17)	-. 424	(15)	$-.784{ }^{\text {b }}$	(15)
Organic periphyton biomass	-. 115	(9)	$-.424^{\text {e }}$	(17)	$-.493{ }^{\text {e }}$	(15)	-. $780{ }^{\text {b }}$	(15)
Total macrophyte biomass	+. 228	(10)	-. 142	(17)	-. 078	(15)	$-.469{ }^{\text {e }}$	(16)
Live macrophyte biomass	-. 042	(10)	+. 167	(17)	+. 243	(15)	-. 317	(16)
Dead macrophyte biomass	-. 233	(10)	-. 215	(17)	-. 215	(16)	$-.412{ }^{\text {e }}$	(17)
Live standing macrophyte biomass	-. 231	(10)	+. 189	(17)	+. 208	(15)	-. 295	(17)
Live submergent macrophyte biomass	ND		-. 021	(17)	+.414 ${ }^{\text {e }}$	(17)	-. 143	(15)
Dead standing macrophyte biomass	-. 443	(10)	-. 214	(17)	-. 168	(15)	-. 293	(17)
Dead prostrate macrophyte biomass	+. 145	(10)	$+.451{ }^{\text {e }}$	(17)	-. 242	(17)	-. 425 b	(15)
Organic periphyton and submergent macrophyte biomass	ND		$-.416^{\text {e }}$	(17)	-. 457	(15)	-. $789{ }^{\text {b }}$	(15)

macrophyte biomass

Table 21. Continued.
D. Correlation with percent desmids (transformed).
QUARTER 1

	QUARTER 1	QUARTER 2	QUARTER 3	QUARTER	4
Percent soil organic (trans)				+. 035	(17)
Percent soil CaCO_{3} (trans)				-. 029	(17)
Percent soil residual (trans)				-. 068	(17)
Depth				+. 115	(17)
Corrected depth				+. 137	(17)
Quarterly hydroperiod				+. 238	(16)
Annual hydroperiod				+. 155	(16)
Length of last drought				+. 060	(12)
Time since last drought				+. 314	(12)
pH				-. 372	(14)
Temperature				+. 342	(14)
Inorganic nitrogen				+. 370	(13)
Inorganic phosphorus				-. $697{ }^{\text {c }}$	(14)
Silica				-. $611{ }^{\text {d }}$	(14)
Calcium				-. 399	(7)
Salinity				ND	
Alkalinity				-. 406	(14)
Conductivity				-. 316	(14)
Dissolved oxygen				ND	
Percent organic in periphyton (trans)				-. 192	(17)
Total periphyton biomass				+. 093	(15)
Organic periphyton biomass				-. 133	(15)
Total macrophyte biomass				+. 118	(16)
Live macrophyte biomass				+. 347	(16)
Dead macrophyte biomass				-. 058	(17)
Live standing macrophyte biomass				+. 267	(17)
Live submergent macrophyte biomass				$+.708^{\text {c }}$	(15)
Dead standing macrophyte biomass				-. 072	(17)
Dead prostrate macrophyte biomass				+. 216	(15)
Organic periphyton and submergent macrophyte biomass				-. 080	(15)

Table 21. Continued.

| \quadE. correlation coefficients for annual average percents of taxonomic parameters with annual
 hydroperiod. | |
| :--- | :--- | :--- |
| Percent blue-green algae (trans) | $-.551^{d}$ (16) |
| Percent green algae (trans) | $+.552^{d}$ (16) |
| Percent diatoms (trans) | $+.608^{d}(16)$ |
| $a=p<.0001, b=p<.001, c=p<.01, d=p<.05, e=p<.1, f=p<.11$. | |

Table 22. $\begin{aligned} & \text { Tally of statistically significant }(p<.1) \text { correlations } \\ & \text { for each algal taxa, covering all quarters and all } \\ & \text { environmental and biological parameters. }\end{aligned}$.

| | Number in Significance Categories ${ }^{2}$ | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | $\mathrm{p}<.001$ | $\mathrm{p}<.01$ | $\mathrm{p}<.05$ | $\mathrm{p}<.1$ |
| Blue-green algae | 0 | 6 | 12 | 10 |
| Green algae | 0 | 3 | 14 | 9 |
| Diatoms | 3 | 7 | 15 | 15 |
| Desmids ${ }^{\mathrm{b}}$ | 0 | 2 | 1 | 0 |

a Categories are exclusive. For instance, category $p<.1$ covers .049 < p . 1 only.
b Desmid correlations for Quarter 4 only.

Table 23. Tally of statistically significant ($p<.1$) correlations for each quarter, covering all environmental and biological parameters and all algal taxa. ${ }^{\text {a }}$

Table 24. Tally of statistically significant (p < .1) correlations for each environmental or biological parameter, covering all quarters and algal taxa. ${ }^{\text {a }}$

	Number in Significance Categories ${ }^{\text {b }}$							
		< . 001		< . 01		< . 05	P	
Percent soil organic (trans)		0		1		5		4
Percent soil CaCO_{3} (trans)		0		0		0		3
Percent soil residual (trans)		0		0		1		0
Depth		0		2		3		2
Corrected depth		0		0		4		3
Quarterly hydroperiod		0		3		4		1
Annual hydroperiod		0		2		6		1
Length of last drought		0		0		0		0
Time since last drought		0		2		6		1
pH		0		0		0		0
Temperature		0		0		1		0
Inorganic nitrogen		0		3		0		0
Inorganic phosphorus		0		1		0		0
Silica		0		0		2		0
Calcium ${ }^{\text {c }}$		0		0		0		2
Salinity ${ }^{\text {c }}$		0		0		0		2
Alkalinity		0		0		1		2
Conductivity		0		0		5		2
Dissolved oxygen ${ }^{\text {c }}$		0		0		0		0
Percent organic in periphyton (trans)		0		0		0		1
Total periphyton biomass		1		1		0		1
Organic periphyton biomass		1		1		1		4
Total macrophyte biomass		0		0		0		1
Live macrophyte biomass		0		0		0		0
Dead macrophyte biomass		0		0		0		1
Live standing macrophyte biomass		0		0		0		0
Live submergent macrophyte biomass		0		1		1		1
Dead standing macrophyte biomass		0		0		0		0
Dead prostrate macrophyte biomass		0		0		0		1
Organic periphyton and submergent		1		1		1		2

a Information was developed for desmids for Quarter 4 only.
b Categories are exclusive. For example, category p < .l covers 0.049 < p . 1 only.

C Missing values could affect count of significant correlations.

APPENDIX A

PHYSICAL AND CHEMICAL CHARACTERISTICS OF THE ENVIRONMENT

Appendix Table A－1．Initial and first quarter field measurements of physical and chemical parameters of the water at sampling stations．

Date	$\underset{\text { Station }}{\text { Sta }}$	$\begin{gathered} \text { Time } \\ \text { (hrs.) } \end{gathered}$	Water Depth （cm）	$\begin{aligned} & \text { D.0. } \\ & (\mathrm{mg} / \mathrm{l}) \end{aligned}$	Temp． （ ${ }^{\circ} \mathrm{C}$ ）	$\begin{gathered} \text { Salinity } \\ (0 / 00) \end{gathered}$	Conductivity （ $\mu \mathrm{mhos} / \mathrm{cm}$ ）	pH	```Alkalinity (Bicarbonate) mg/1 CaCO}```

> Taylor Slough，February 23－24，1978 ${ }^{\text {a }}$ in $\quad \underset{\sim}{\infty}$ $\stackrel{9}{-1}$

$\stackrel{\infty}{-}$ $\because \quad \because$

$$
\stackrel{n}{r} \quad \stackrel{n}{r} \quad \infty m a
$$

N
응
으 へૂ へิ సે స్లి응
은은

1100
1500
1045

1000
1415
1540
0730
1015

㠫 XI
XII
$1 / 26 / 78$
$1 / 26 / 78$
$1 / 26 / 78$
$1 / 26 / 78$
$1 / 26 / 78$
$1 / 26 / 78$
$1 / 27 / 78$
$1 / 27 / 78$
$1 / 27 / 78$
$1 / 27 / 78$
$1 / 27 / 78$
$2 / 15 / 78$
$2 / 15 / 78$

Table A-1 continued.

Date	$\underset{\text { Station }}{\text { Station }}$	$\begin{aligned} & \text { Time } \\ & \text { (hrs.) } \end{aligned}$	Water Depth (cm)	$\begin{gathered} \text { D. } 0 . \\ (\mathrm{mg} / 1) \end{gathered}$	$\underset{\left({ }^{\circ} \mathrm{C}\right)}{\text { Temp. }}$	$\begin{gathered} \text { Salinity } \\ (\% / 00) \end{gathered}$	Conductivity ($\mu \mathrm{mhos} / \mathrm{cm}$)	pH	$\begin{gathered} \text { Alkalinity }^{*} \\ (\text { Bicarbonate) } \\ \text { mg } / 1 \mathrm{CaCO}_{3} \end{gathered}$
2/24/78	V		0	no water					
2/23/78	VI	1545	39.4	8.8	21	0	320	6.8	198
2/23/78	VII	1700	15.3	9.2	20	0	319	6.4	192
2/23/78	VIII	1300	32.3	9.0	23	0	335	7.2	177
2/24/78	IX	1400	20.4	12.2	22	0	295	6.9	161
2/24/78	X	1520	11.1	12.4	23	0	310	7.0	159
	Taylor Slough, March 30 and April 1, 1978								
3/30/78	I			no water					
3/30/78	I-Canal	0920	-	7.5	23	0	385	7.8	210
3/30/78	II			no water					
3/30/78	III			no water					
3/30/78	IV			no water					
3/30/78	V			no water					
3/30/78	VI	1315	17.0	6.8	28	0	370	7.3	210
4/1/78	VII			no water					
4/1/78	VIII	1040	17.0	6.6	22.0	0	370	7.5	230
4/1/78	IX	1300	15.0	11.8	29.0	0	310	8.4	160
4/1/78	X	no water							

Appendix Table A-2. Second quarter field measurements of physical and chemical parameters of the water at stations.
samplin
Appendix Table A-3. Third quarter field measurements of physical and chemical parameters of the water at sampling stations.

Date	$\underset{\text { Station }}{\substack{\text { Stat } \\ \hline}}$	$\begin{aligned} & \text { Time } \\ & \text { (hrs.) } \end{aligned}$	Water Depth (cm)	$\begin{gathered} \text { D.o. } \\ (\mathrm{ppm}) \end{gathered}$	Temp. $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { Salinity } \\ (0 / o 0) \end{gathered}$	Conductivity ($\mu \mathrm{mhos} / \mathrm{cm}$)	pH	$\begin{gathered} \text { Alkalinity } \\ (\text { Bicarbonate) } \\ \mathrm{mg} / 1 \mathrm{CaCO}_{3} \\ \hline \end{gathered}$
	Shark Valley, August 15, 1978								
8/15/76	XI	0700	22.0	no data	no data	0	329	6.7	140
8/15/76	XII	1410	52.0	no data	no data	0.25	400	7.0	no data
Taylor Slough, August 26-27, 1978									
8/26/78	I	0910	15.1	3.8	27.0	0.25	351	6.8	190
8/26/78	I-canal	0840	--	2.1	26.0	0.25	362	6.7	190
8/26/78	II	1050	11.5	5.9	28.0	0.30	300	6.5	150
8/26/78	III	1135	15.8	8.5	30.0	0.25	311	6.6	160
8/26/78	IV	1230	29.9	9.5	30.0	0.10	338	7.0	170
8/27/78	V	1235	8.0	10.8	35.0	0.25	380	7.2*	160
8/26/78	VI	1430	44.0	11.7	34.0	0.10	400	7.1	150
8/26/78	VII	1542	15.0	13.6	35.0	0.10	300	7.1	140
8/27/78	VIII	1425	36.4	9.1	32.0	0.25	343	no data	170
8/27/78	IX	0900	25.5	4.7	29.0	0.10	238	6.5	110
8/27/78	X	1015	20.5	8.7	30.5	0.10	251	7.4	110
Canals 67 and 111 Area, September 2-3, 1978									
9/2/78	XIII	0900	24.0	3.4	29.5	0.50	780	6.7	190
9/2/78	XIV	1130	26.1	5.2	27.5	0.50	730	6.7	230
9/2/78	XV	1245	13.5	6.1	26.0	0.75	910	7.1	230
9/2/78	XVI	1500	33.0	8.7	28.5	0.50	202	7.0	100
9/3/78	XVII	1210	26.0	6.9	31.0	1.20	800	no data	120

[^2]at

4
$\stackrel{4}{む}$
N

$\stackrel{』}{ \pm}$

Appendix Table A-5. Fifth quarter field measurements of physical and chemical paramters of the water at sampling stations.
Canal 67, March 24, 1979

Date	Station No.	$\begin{aligned} & \text { Time } \\ & \text { (hrs) } \end{aligned}$	Water Depth (cm)	$\begin{gathered} \text { D. } 0 . \\ (\mathrm{ppm}) \end{gathered}$	Temp. (${ }^{\circ} \mathrm{C}$)	$\begin{gathered} \text { Salinity } \\ \text { /oo } \end{gathered}$	Conductivity	Alkalinity (Bicarbonate) $\mathrm{pH} \quad \mathrm{mg} / 1 \mathrm{CaCO}_{3}$	
3/24/79	XIII	0845	7.0	No data	23.0	No data	No data	7.0	220
3/24/79	XIV	1000	13.0	No data	25.0	No data	No data	7.3	260
3/24/79	xV	1130	18.0	No data	28.5	No data	No data	7.6	250

[^3]```
Appendix Table A-6. Calcium in water at various sampling stations on
 various dates.
```

| . |  | L67, Chekika, and CIII, July 8, 1978 |
| :---: | :---: | :---: |
|  |  | mg/1 |
| 7/8/78 | XIII | 69.3 |
| 7/8/78 | XIV | 69.3 |
| 7/8/78 | XV | 31.9 |
| 7/8/78 | XVI | 48.4 |
| 7/8/78 | XVII | 64.9 |
|  | , | Shark Slough, August 15, 1978 |
| 8/15/78 | XI | 57.2 |
| 8/15/78 | XII | 45.1 |
|  |  | Taylor Slough, August 26, 1978 |
| 8/26/78 | I | 77.0 |
|  | I-Canal | 78.1 |
|  | II | 63.8 |
|  | III | 8.8 |
|  | IV | 64.9 |
|  | V | 59.4 |
|  | VI | 57.2 |
|  | VII | 58.3 |
|  | VIII | 4.4 |
|  | IX | 44.0 |
|  | X | 37.4 |
|  |  | L67, Chekika, and CIII, September 2, 1978 |
| 9/2/78 | XIII | 53.9 |
|  | XIV | 94.6 |
|  | XV | 68.2 |
|  | XVI | 33.0 |
|  | XVII | 46.2 |
|  |  | Shark Slough, November 13, 1978 |
| 11/13/78 | XI | 90.2 |
|  | XII | 93.5 |
|  |  | L67, Chekika, and CIII, December 13, 1978 |
| 12/13/78 | XIII | 66.0 |
|  | XIV | 66.0 |
|  | XV | 66.0 |
|  | XVI | 60.5 |
|  | XVII | 45.1 |

Appendix Table A-7. Carbon analysis (mg/l) of water samples from various stations on various dates.


Table A-7 continued.

| Date | Sample | Total Carbon | Inorganic Carbon | Organic Carbon |
| :---: | :---: | :---: | :---: | :---: |
|  | XVI | 44 | 24 | 20 |
|  | XVII | 48 | 34 | 14 |
| 8/15/78 |  |  |  |  |
|  | XI | 51 | 24 | 27 |
|  | XII | 45 | 24 | 21 |
| 8/26/78 |  |  |  |  |
|  | I-Canal | 54 | 41 | 13 |
|  | I | 51 | 38 | 13 |
|  | II | 43 | 30 | 13 |
|  | III |  |  |  |
|  | IV | 47 | 32 | 15 |
|  | V | 41 | 29 | 12 |
|  | VI | 41 | 27 | 14 |
|  | VII | 38 | 27 | 11 |
|  | VİII |  |  |  |
|  | IX | 37 | 21 | 16 |
|  | X | 34 | 18 | 16 |
| 9/2/78 |  |  |  |  |
|  | XIII | 73 | 41 | 32 |
|  | XIV | 77 | 45 | 32 |
|  | XV | 76 | 45 | 31 |
|  | XVI | 34 | 18 | 16 |
|  | XVII | 41 | 23 | 18 |
| 11/13/78 |  |  |  |  |
|  | XI | 56 | 31 | 25 |
|  | XII | 62 | 32 | 30 |
| 11/18/78 |  |  |  |  |
|  | I-Canal | 52 | 45 | 7 |
|  | III | 44 | 34 | 10 |
|  | IV | 51 | 43 | 8 |
|  | VI | 43 | 36 | 7 |
|  | VII | 41 | 35 | 6 |
|  | VIII | 46 | 36 | 10 |
|  | IX | 40 | 27 | 13 |
|  | X | 39 | 26 | 13 |
| 12/13/78 |  |  |  |  |
|  | XIII | 78 | 46 | 32 |
|  | XIV | 79 | 47 | 32 |
|  | XV | 78 | 47 | 31 |
| 12/14/78 |  |  |  |  |
|  | XI | 52 | 28 | 24 |
|  | XII | 42 | 24 | 18 |

Appendix Table $\mathrm{A}-8$. Silica $\left(\mathrm{SiO}_{3}\right)$ analysis of water samples from various stations on various dates.

| Station | Date | $\begin{aligned} & \mathrm{SiO}_{3} \\ & \mathrm{mg} / 1 \end{aligned}$ | Date | $\mathrm{SiO}_{3}$ mg/1 | Date | $\begin{aligned} & \mathrm{SiO}_{3} \\ & \mathrm{mg} / 1 \end{aligned}$ | Date | $\begin{array}{r} \mathrm{SiO}_{3} \\ \mathrm{mg} / 1 \end{array}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I canal | 2/23/78 | 3.42 | 6/1/78 | 1.07 | 8/26/78 | 5.11 | 11/18/78 | 3.89 |
| I | 2/23/78 | N | 6/ 1/78 | N | 8/26/78 | 4.60 | 11/18/78 | N |
| II | 2/24/78 | N | 6/ 1/78 | N | 8/26/78 | 6.41 | 11/18/78 | N |
| III | 2/24/78 | N | 6/1/78 | N | 8/26/78 | 5.85 | 11/18/78 | 3.10 |
| IV | 2/24/78 | 3.01 | 6/ 1/78 | 1.14 | 8/26/78 | 5.42 | 11/18/78 | 3.45 |
| V | 2/23/78 | N | 6/ 2/78 | N | 8/27/78 | 5.31 | 11/19/78 | N |
| VI | 2/23/78 | 2.28 | 6/ 1/78 | 1.33 | 8/26/78 | 5.31 | 11/18/78 | 2.82 |
| VII | 2/23/78 | 2.43 | 6/ 1/78 | 0.95 | 8/26/78 | 5.42 | 11/18/78 | 2.91 |
| VIII | 2/23/78 | 2.89 | 6/ 2/78 | 0.95 | 8/27/78 | N | 11/19/78 | 3.54 |
| IX | 2/24/78 | 1.98 | 6/ 2/78 | 1.03 | 8/27/78 | 6.29 | 11/19/78 | 2.13 |
| X | 2/24/78 | 1.83 | 6/ 2/78 | 1.07 | 8/27/78 | 4.18 | 11/19/78 | 2.25 |
| XI |  |  | 5/16/78 | N | 8/15/78 | 9.17 | 11/13/78 | 9.20 |
| XII |  |  | 5/16/78 | N | 8/15/78 | 8.40 | 11/13/78 | 9.20 |
| XIII |  |  | 7/ 8/78 | 8.40 | 9/ 2/78 | 18.24 | 12/13/78 | 7.23 |
| XIV |  |  | 7/ 8/78 | 18.24 | 9/ 2/78 | 18.24 | 12/13/78 | 7.89 |
| XV |  |  | 7/ 8/78 | 10.58 | 9/ 2/78 | 13.98 | 12/13/78 | 7.63 |
| XVI |  |  | 7/ 9/78 | 6.72 | 9/ 2/78 | 5.75 | 12/14/78 | 3.17 |
| XVII |  |  | 7/9/78 | 3.97 | 9/3/78 | 5.61 | 12/14/78 | 2.34 |

$\mathrm{N}=$ missing data
Appendix Table A-9. Nitrogen and nitrogen compounds in water samples from various stations on various dates.

| Station | Date | $\begin{gathered} \mathrm{NH}_{4} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NH}_{4} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$ | $\begin{gathered} \mathrm{NO}_{2} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NO}_{2} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{NO}_{3} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NO}_{3} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\left(\mathrm{NH}_{4}+\mathrm{NO}_{2}+\mathrm{NO}_{3}\right) \\ \mu \mathrm{g} / 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I canal | 02/23/78 | 191.39 | 148.61 | 11.50 | 3.50 | 77.51 | 17.51 | 169.62 |
| I | 02/23/78 | N | N | N | N | N | N | N |
| II | 02/24/78 | N | N | N | ${ }^{-}$ | N | N | N |
| III | 02/24/78 | $N$ | N | N | N | N | N | N |
| IV | 02/24/78 | 18.76 | 14.57 | 6.90 | 2.10 | 12.40 | 2.80 | 19.47 |
| V | 02/23/78 | N | N | N | N | N | N | N |
| VI | 02/23/78 | 4.51 | 3.50 | 11.50 | 3.50 | 65.11 | 14.70 | 21.70 |
| VII | 02/23/78 | 5.77 | 4.48 | 9.20 | 2.80 | 18.60 | 4.20 | 11.48 |
| VIII | 02/23/78 | 63.14 | 49.02 | 6.90 | 2.10 | 9.30 | 2.10 | 53.22 |
| IX | 02/24/78 | 10.28 | 7.98 | 10.12 | 3.08 | 29.76 | 6.72 | 17.78 |
| X | 02/24/78 | 5.59 | 4.34 | 9.20 | 2.80 | 49.60 | 11.21 | 18.35 |
| I canal | 06/01/78 | 71.80 | 55.75 | 9.20 | 2.80 | 80.61 | 18.20 | 76.75 |
| I | 06/01/78 | N | N | N | N | N | N |  |
| II | 06/01/78 | N | N | N | N | N | N | $N$ |
| III | 06/01/78 | N | N | N | N | N | N | N |
| IV | 06/01/78 | 41.31 | 32.08 | 8.28 | 2.52 | 91.15 | 20.59 | 55.19 |
| V | 06/02/78 | N | N | N | N | N | N | N |
| VI | 06/01/78 | 41.84 | 32.49 | 6.90 | 2.10 | 18.60 | 4.20 | 38.79 |
| VII | 06/01/78 | 31.57 | 24.51 | 5.98 | 1.82 | 16.74 | 3.78 | 30.11 |
| VIII | 06/02/78 | 24.89 | 19.33 | 5.52 | 1.68 | 20.46 | 4.62 | 25.63 |
| IX | 06/02/78 | 72.88 | 56.59 | 4.60 | 1.40 | 7.44 | 1.68 | 59.67 |
| X | 06/02/78 | 50.87 | 39.50 | 9.20 | 2.80 | 12.40 | 2.80 | 45.10 |
| XI | 05/15/78 | N | N | N | N | N | N | N |
| XII | 05/15/78 | N | N | N | N | N | N | N |
| XIII | 07/08/78 | $N$ | $N$ | 9.66 | 2.94 | 21.08 | 4.76 | N |
| XIV | 07/08/78 | 79.01 | 61.35 | 10.58 | 3.22 | 13.02 | 2.94 | 67.51 |
| XV | 07/09/78 | N | N | 9.66 | 2.94 | 27.90 | 6.30 | N |
| XVI | 07/09/78 | 64.03 | 49.72 | 6.44 | 1.96 | 11.78 | 2.66 | 54.34 |
| XVII | 07/09/78 | 79.01 | 61.35 | 4.14 | 1.26 | 1.24 | 0.28 | 62.89 |

Table A-9 continued.

| Station | Date | $\begin{gathered} \mathrm{NH}_{4} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NH}_{4} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{NO}_{2} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NO}_{2} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{NO}_{3} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NO}_{3} \\ \mu \mathrm{~g} / \mathrm{I} \end{gathered}$ | $\begin{gathered} \mathrm{N}-\left(\mathrm{NH}_{4}+\mathrm{NO}_{2}+\mathrm{NO}_{3}\right) \\ \mu \mathrm{g} / 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| I canal | 08/26/78 | 226.20 | 175.64 | 3.22 | 0.98 | 114.71 | 25.91 | 202.53 |
| I | 08/26/78 | N | N | 2.30 | 0.70 | 31.00 | 7.00 | N |
| II | 08/26/78 | 44.01 | 34.18 | 4.14 | 1.26 | 14.88 | 3.36 | 38.80 |
| III | 08/26/78 | N | N | 4.14 | 1.26 | 21.70 | 4.90 | N |
| IV | 08/26/78 | 151.16 | 117.38 | 3.22 | 0.98 | 22.32 | 5.04 | 123.40 |
| V | 08/27/78 | 44.01 | 34.18 | 2.30 | 0.70 | 17.36 | 3.92 | 38.80 |
| VI | 08/26/78 | 60.97 | 47.34 | 2.30 | 0.70 | 72.55 | 16.39 | 64.43 |
| VII | 08/26/78 | 83.16 | 64.57 | 2.30 | 0.70 | 31.00 | 7.00 | 72.27 |
| VIII | 08/27/78 | 107.15 | 83.20 | N | N | N | N | N |
| IX | 08/27/78 | 82.08 | 63.73 | 4.60 | 1.40 | 21.08 | 4.76 | 69.89 |
| X | 08/27/78 | 47.62 | 36.98 | 6.44 | 1.96 | 24.80 | 5.60 | 44.54 |
| XI | 08/15/78 | N | N | 6.44 | 1.96 | 11.78 | 2.66 | N |
| XII | 08/15/78 | 54.12 | 42.02 | 6.44 | 1.96 | 18.60 | 4.20 | 48.18 |
| XIII | 09/02/78 | 33.37 | 25.91 | 8.74 | 2.66 | 1.24 | 8.50 | 37.07 |
| XIV | 09/02/78 | 26.70 | 20.73 | 9.66 | 2.94 | 7.44 | 11.35 | 35.02 |
| XV | 09/02/78 | 92.00 | 71.43 | 9.66 | 2.94 | 63.24 | 10.08 | 84.45 |
| XVI | 09/02/78 | 25.25 | 19.61 | 4.60 | 1.40 | 34.72 | 10.36 | 31.37 |
| XVII | 09/03/78 | 120.14 | 93.28 | 5.06 | 1.54 | 27.28 | 10.36 | 105.18 |
| I canal | 11/18/78 | 185.26 | 143.85 | 8.74 | 2.66 | 112.85 | 25.49 | 172.00 |
| I | 11/18/78 | N | N | N | N | N | N | N |
| II | 11/18/78 | 40.95 | 31.80 | N | N | N | N | N |
| III | 11/18/78 | 107.69 | 83.62 | 7.82 | 2.38 | 29.76 | 6.72 | 92.72 |
| IV | 11/18/78 | 120.68 | 93.70 | 7.82 | 2.38 | 9.30 | 2.10 | 98.18 |
| V | 11/19/78 | N | N | N | N | N | N | N |
| VI | 11/18/78 | 40.95 | 31.80 | 10.12 | 3.08 | 26.66 | 6.02 | 40.90 |
| VII | 11/18/78 | N | N | 7.82 | 2.38 | 22.94 | 5.18 | N |
| VIII | 11/19/78 | 43.11 | 33.48 | 7.82 | 2.38 | 2.48 | 0.56 | 36.42 |
| IX | 11/19/78 | 96.69 | 1,354.31 | 8.74 | 2.66 | 38.44 | 8.68 | 1,365.65 |

Table A-9 continued.

| Station | Date | $\begin{gathered} \mathrm{NH}_{4} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NH}_{4} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$ | $\begin{gathered} \mathrm{NO}_{2} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NO}_{2} \\ \mu \mathrm{~g} / \mathrm{l} \end{gathered}$ | $\begin{gathered} \mathrm{NO}_{3} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\mathrm{NO}_{3} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{N}-\left(\mathrm{NH}_{4}+\mathrm{NO}_{2}+\mathrm{NO}_{3}\right) \\ \mu \mathrm{g} / 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X | 11/19/78 | 44.01 | 34.18 | 6.44 | 1.96 | 24.80 | 5.60 | 41.74 |
| XI | 11/13/78 | 65.66 | 50.98 | 6.44 | 1.96 | 25.42 | 5.74 | 58.68 |
| XII | 11/13/78 | 33.37 | 25.91 | 6.44 | 1.96 | 25.42 | 8.82 | 36.69 |
| XIII | 12/13/78 | 19.12 | 14.85 | 6.44 | 1.96 | 39.06 | 5.60 | 22.41 |
| XIV | 12/13/78 | 25.25 | 19.61 | 7.82 | 2.38 | 2.48 | 0.56 | 22.55 |
| XV | 12/13/78 | 69.63 | 54.07 | 6.44 | 1.96 | 24.80 | 5.60 | 61.63 |
| XVI | 12/14/78 | 35.36 | 27.45 | 4.60 | 1.40 | 27.28 | 6.16 | 35.01 |
| XVII | 12/14/78 | 140.34 | 108.97 | 6.44 | 1.96 | 66.35 | 14.99 | 125.92 |

Appendix Table A-10. Phosphorus in water samples from various stations on various dates.

|  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Station | Date | I-PO <br> Lg | I-P <br>  |  | $\mu \mathrm{F} / 1$ |

Table A-10 continued.

| Station | Date | $\begin{gathered} \mathrm{I}-\mathrm{PO}_{4} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | I-P $\mu \mathrm{g} / 1$ | $\begin{gathered} 0-\mathrm{P} \\ \mu \mathrm{~g} / 1 \end{gathered}$ | $\begin{gathered} \mathrm{T}-\mathrm{P} \\ \mu \mathrm{~g} / 1 \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| XI. | 08/15/79 | 34.19 | 11.15 | 16.73 | 27.88 |
| XII | 08/15/79 | 27.54 | 8.98 | 15.18 | 24.16 |
| XIII | 09/02/78 | 27.54 | 8.98 | 15.18 | 24.16 |
| XIV | 09/02/78 | 27.54 | 8.98 | 16.11 | 25.09 |
| XV | 09/02/78 | 27.54 | 8.98 | 13.32 | 22.30 |
| XVI | 09/02/79 | 23.74 | 7.74 | 15.18 | 22.92 |
| XVII | 09/03/79 | 27.54 | 8.98 | 13.94 | 22.92 |
| I canal | 11/18/78 | 23.74 | 7.74 | 15.18 | 22.92 |
| I | 11/18/79 | N | N | N | N |
| II | ' $11 / 18 / 78$ | N | N | N | N |
| III | 11/18/78 | 19.94 | 6.50 | 11.46 | 17.96 |
| IV | 11/18/78 | 13.30 | 4.34 | 8.67 | 13.01 |
| V | 11/19/78 | N | N | N | N |
| VI | 11/18/78 | 13.30 | 4.34 | 8.05 | 12.39 |
| VII | 11/18/78 | 9.50 | 3.10 | 8.05 | 11.15 |
| VIII | 11/19/78 | 19.94 | 6.50 | 11.46 | 17.96 |
| IX | -11/19/78 | 13.30 | 4.34 | 8.67 | 13.01 |
| X | 11/19/78 | 19.94 | 6.50 | 12.08 | 18.58 |
| XI | 11/13/78 | 27.54 | 8.98 | 13.32 | 22.30 |
| XII | 11/13/78 | 23.74 | 7.74 | 15.18 | 22.92 |
| XIII | 12/13/78 | 19.94 | 6.50 | 12.08 | 18.58 |
| XIV | 12/13/78 | 23.74 | 7.74 | 14.56 | 22.30 |
| XV | 12/13/78 | 47.49 | 15.49 | 27.56 | 43.05 |
| XVI | 12/14/78 | 23.74 | 7.74 | 15.18 | 22.92 |
| XVII | 12/14/78 | 13.30 | 4.34 | 14.24 | 18.58 |

Appendix Table A-11. Results of sediment analysis for sample sites.

| Site | Organic Matter | $\begin{gathered} \% \\ \mathrm{CaCO}_{3} \end{gathered}$ | $\begin{gathered} \% \\ \text { Residual } \end{gathered}$ |
| :---: | :---: | :---: | :---: |
| I | n.s. | n.s. | n.s. |
| II | n.s. | n.s. | n.s. |
| III | 12.7 | 84.7 | 2.6 |
| IV | 13.9 | 84.0 | 2.1 |
| v | 9.7 | 88.7 | 1.6 |
| VI | 65.5 | 33.8 | 0.7 |
| VII | 11.7 | 86.7 | 1.6 |
| VIII | n.s. | n.s. | n.s. |
| IX | 14.3 | 84.0 | 1.7 |
| x | 9.7 | 88.5 | 1.8 |
| XI | 12.9 | 78.1 | 9.0 |
| XII | 73.3 | 26.1 | 0.6 |
| XIII | 32.3 | 67.2 | 0.5 |
| XIV | n.s. | n.s. | n.s. |
| XV | 41.5 | 49.6 | 8.9 |
| XVI | 24.5 | 6.2 | 69.3 |
| XVII | 15.9 | 77.0 | 7.1 |
| $\mathrm{CaCO}_{3}^{\mathrm{a}}$ | 0.0 | 99.35 | 0.65 |

APPENDIX B

HYDROPERIOD


Figure B-1 Water level (cm MSL) every fifth day at the U.S.G.S. recording station at Taylor Slough Bridge (left ordinate) and corresponding estimated water depth ( cm ) at study site IV, from September 30, 1977, through December 31, 1978. Estimated zero depths for study sites I, II, III, IV and V are indicated with labelled lines.


Figure B-2 Water level (cm MSL) every fifth day at the U.S.G.S. recording station at Royal Palm and corresponding estimated water depth (cm) at study site VI from September 30, 1977, through December 31, 1978. Estimated zero depth for study site VI is indicated by the horizontal line.


Figure B-3 Water level (cm MSL) every fifth day at the U.S.G.S. recording station at Royal Palm and corresponding estimated water depth (cm) at study site VII from September 30, 1977, through December 31, 1978.


Figure B-4 Water level (cm MSL) every fifth day at the U.S.G.S. recording station at Royal Palm and corresponding estimated water depth (cm) at study site VIII from September 30, 1977, through December 31, 1978.


Figure B-5 Water leve1 (cm MSL) every fifth day at the U.S.G.S. recording station at Madeira Ditch and corresponding estimated water depth (cm) at study site IX from September 30, 1977, through December 31, 1978.


Figure B-6 Water leve1 (cm MSL) every fifth day at the U.S.G.S. recording station at Madeira Ditch and corresponding estimated water depth (cm) at study site X from September 30, 1977, through December 31, 1978.


Figure B-7 Water level (cm MSL) every fifth day at the U.S.G.S. recording station in Shark Slough at P-33 and corresponding estimated water depth ( cm ) at study site XI from September 30, 1977, through December 31, 1978.


Figure B-8 Water level (cm MSL) every fifth day at the U.S.G.S. recording station in Shark Slough at P-33 and corresponding estimated water depth (cm) at study site XII from September 30, 1977, through December 31, 1978.


Figure B-9 Water level ( cm MSL) every fifth day at the U.S.G.S. recording station in Shark Slough at the south end of Canal 67 and corresponding estimated water depth (cm) at study site XIII from September 30, 1977, through March 31, 1979.


Figure B-10 Water level (cm MSL) every fifth day at the U.S.G.S. recording station in Shark Slough at the south end of Canal 67 and corresponding estimated water depth (cm) at study site XIV from September 30, 1977, through March 31, 1979.

Appendix Table $B-1$. Regression equations relating water depths at sampling sites ( $\mathrm{S}_{4}, \mathrm{~S}_{6}-\mathrm{S}_{14}, \mathrm{~S}_{17}$ ) to water levels (relative to mean se level) at ${ }^{4}$ U.S. Geological Survey continuous recording stations $\left(M_{1}-M_{6}\right)$.

| IV | $\mathrm{S}_{4}=-79.58+1.020 \mathrm{M}_{1}$ | $\mathrm{R}^{2}=0.9980$ |
| ---: | :--- | :--- | :--- |
| VI | $\mathrm{S}_{6}=-51.44+1.064 \mathrm{M}_{2}$ | $\mathrm{R}^{2}=0.968$ |
| VII | $\mathrm{S}_{7}=-69.34+0.9596 \mathrm{M}_{2}$ | $\mathrm{R}^{2}=0.961$ |
| VIII | $\mathrm{S}_{8}=-23.09+0.6346 \mathrm{M}_{2}$ | $\mathrm{R}^{2}=0.771$ |
| IX | $\mathrm{S}_{9}=-9.682+0.7070 \mathrm{M}_{3}$ | $\mathrm{R}^{2}=0.871$ |
| X | $\mathrm{S}_{10}=-36.27+1.165 \mathrm{M}_{3}$ | $\mathrm{R}^{2}=0.845$ |
| XI | $\mathrm{S}_{11}=-14.63+1.1767 \mathrm{M}_{4}$ | $\mathrm{R}^{2}=0.951$ |
| XII | $\mathrm{S}_{12}=-141.6+0.7897 \mathrm{M}_{4}$ | $\mathrm{R}^{2}=0.692$ |
| XIII | $\mathrm{S}_{13}=-109.2+0.5901 \mathrm{M}_{5}$ | $\mathrm{R}^{2}=0.692$ |
| XIV | $\mathrm{S}_{14}=-103.5+0.5707 \mathrm{M}_{5}$ | $\mathrm{R}^{2}=0.977$ |
| XV | relationships could not be determined |  |
| XVII | $\mathrm{S}_{17}=-14.82+0.4988 \mathrm{M}_{6}$ | $\mathrm{R}_{2}=0.9841$ |

${ }^{\mathrm{a}_{\mathrm{M}}}$ Taylor Slough at bridge
$M_{2}$ Taylor Slough at Royal Palm
$M_{3}$ Taylor Slough at Madeira Ditch
$M_{4}$ Shark Slough at P-33
$M_{5}$ Shark Slough at south end of C-67
$M_{6}$

APPENDIX C

PERCENTS VOLUME OF ALGAL TAXA

Appendix Table C-1. Volumetric results srom first quarter sampling: means and standard deviations.

| Station | Type | Percent <br> Bluegreens |  | Percent Greens |  | Percent <br> Diatoms |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD |
| I | Stem | 99.49 | 0.57 | 0.003 | 0.005 | 0.50 | 0.57 |
|  | Ground | 100.00 | 0 | 0 | 0 | 0 | 0 |
| II | Stem | 88.13 | 14.83 | 1.33 | 2.30 | 2.30 | 25.00 |
|  | Ground | 94.13 | 3.27 | 0.19 | 0.27 | 4.67 | 3.16 |
| III | Stem | 97.14 | 4.29 | 2.61 | 4.28 | 0.24 | 0.37 |
|  | Ground | 100.00 | 0 | 0 | 0 | 0 | 0 |
| IV | Stem | 91.41 | 6.33 | 3. 73 | 2.63 | 4.85 | 4.94 |
|  | Ground | 96.23 | 1.77 | 0.36 | 0.35 | 3.40 | 1.53 |
| V | Stem | 99.66 | 0.49 | 0.26 | 0.46 | 0.06 | 0.05 |
|  | Ground | 95.46 | 2.76 | 0 | 0 | 4.53 | 2.75 |
| VI | Stem | 88.31 | 1.47 | 318 | 5.46 | 8.49 | 4.09 |
|  | Ground . | 93.63 | 1.35 | 2. 60 | 1.73 | 3.76 | 2.02 |
| VII | Stem | 96.89 | 3.48 | 2.31 | 3.97 | 0.80 | 1.38 |
|  | Ground | 96.89 | 3.48 | 2.31 | 3.97 | 0.80 | 1.38 |
| VIII | Stem | 35.93 | 19.28 | 1810 | 8.79 | 45.96 | 18.20 |
|  | Ground | 49.10 | 24.81 | 26.96 | 34.15 | 23.93 | 11.83 |
| IX | Stem | 96.96 | 6.61 | 3.06 | 2.67 | 9.96 | 9.18 |
|  | Ground | 89.88 | 8.03 | 1.18 | 1.25 | 8.93 | 8.79 |
| X | Stem | 98.53 | 1.32 | 0.56 | 0.85 | 0.90 | 1.32 |
|  | Ground | 97.00 | 0.26 | 120 | 0.86 | 1.80 | 1.05 |
| XI | Stem | 93.71 | 3.09 | 0.03 | 0.04 | 6.25 | 3.04 |
| XII | Ground Stem Ground | 96.90 | 2.82 | 0 | 0 | 3.10 | 2.82 |

Appendix Table C-2. Volumetric results from second quarter sampling: means and standard deviations.

| Station | Percent Bluegreens |  | Percent Greens |  | Percent <br> Diatoms |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD |
| I | 98.30 | 1.87 | 0.865 | 1.80 | 0.84 | 0.98 |
| II | 92.60 | 8.24 | 0 | 0 | 7.40 | 8.24 |
| III | 96.97 | 4.49 | 2.98 | 4.51 | 0.05 | 1.12 |
| IV | 87.60 | 8.61 | 2.83 | 5.17 | 9.56 | 6.19 |
| V | 98.02 | 0.75 | 0.493 | 0.886 | 1.49 | 0.95 |
| VI ${ }^{\text {a }}$ | 68.39 | 16.61 | 2.84 | 0.106 | 28.78 | 16.50 |
|  | 100 | 0 | 0 | 0 | 0 | 0 |
| VIII ${ }^{\text {b }}$ | 38.66 | 12.63 | 16.53 | 8.24 | 44.80 | 5.52 |
| IX | 75.07 | 6.82 | 1.79 | 0.959 | 22.81 | 6.53 |
| X | 97.86 | 2.31 | 0 | 0 | 2.79 | 2.84 |
| XI | 80.12 | 7.05 | 0.020 | 0.0490 | 19.86 | 7.03 |
| XII ${ }_{\text {b }}$ | 73.10 | 4.10 | 7.13 | 2.98 | 19.76 | 4.22 |
| XIII ${ }^{\text {b }}$ | 10.69 | 3.83 | 80.82 | 5.70 | 8.49 | 2.08 |
| XIV ${ }_{\text {b }}$ | 59.97 | 16.53 | 24.46 | 9.47 | 15.56 | 8.06 |
| XV ${ }^{\text {b }}$ | 75.75 | 2.18 | 1.80 | 3.13 | 22.46 | 3.48 |
| XVI | 94.68 | 4.50 | 0.073 | 0.116 | 5.25 | 4.55 |
| XVII | 39.36 | 11.95 | 6.95 | 8.46 | 53.69 | 12.31 |
| $\overline{\mathrm{X}}$ | 75.71 | 25.71 | 8.80 | 19.71 | 15.51 | 15.69 |

$a_{\text {mean }}$ of two values
$b_{\text {mean }}$ of four values

Appendix Table C-3. Volumetric results from third quarter sampling: means and standard deviations.

| Station | Percent <br> Bluegreens |  | Percent$\qquad$ |  | Percent Diatoms |  | Algal Volumes |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD |
| I | 99.73 | . 32 | . 03 | . 05 | . 23 | . 25 | 98000.64 | 136420.30 |
| II | 94.60 | 10.90 | 2.51 | 5.62 | 2.87 | 4.37 | 52153.13 | 33891.87 |
| III | 99.46 | 1.27 | . 52 | 1.14 | . 01 | . 02 | 20613.23 | 5600.35 |
| IV | 80.35 | 5.78 | 4.80 | 3.16 | 14.83 | 3.94 | 28062.51 | 4879.61 |
| V | 96.67 | 2.29 | . 03 | . 08 | 3.28 | 2.14 | 15332.59 | 5266.44 |
| VI | 72.46 | 7.35 | 14.07 | 7.20 | 13.45 | 6.57 | 35510.93 | 12340.35 |
| VII | 98.67 | 2.54 | . 20 | . 34 | 1.11 | 2.39 | 18520.32 | 3199.56 |
| VIII | 32.41 | 14.17 | 7.80 | 11.00 | 59.77 | 14.95 | 10325.84 | 5351.94 |
| XI | 89.96 | 4.58 | 1.10 | . 70 | 8.92 | 4.37 | 25043.35 | 6206.77 |
| X | 93.35 | 4.76 | 1.91 | 1.69 | 4.72 | 4.10 | 20518.01 | 6927.19 |
| XI | 96.11 | 1.90 | . 34 | . 43 | 3.53 | 1.49 | 22491.79 | 4971.31 |
| XII | 70.22 | 7.85 | 8.32 | 5.75 | 21.45 | 6.21 | 18620.84 | 4064.32 |
| XIII | 44.89 | $12.29{ }^{\circ}$ | 22.76 | 7.15 | 32.33 | 5.94 | 21329.75 | 3029.07 |
| XIV | 75.46 | 11.59 | 3.10 | 1.67 | 21.43 | 11.07 | 11378.09 | 1405.55 |
| XV | 78.83 | 6.77 | 7.47 | 5.90 | 13.68 | 2.32 | 21776.36 | 3390.61 |
| XVI | 93.55 | 4.01 | . 24 | . 50 | 6.20 | 3.18 | 25810.99 | 5745.58 |
| XVII | 49.24 | 12.42 | 4.20 | 2.37 | 46.55 | 11.18 | 23614.02 | 9994.53 |

Appendix Table C-4. Volumetric results from fourth quarter sampling: means and standard deviations.

| Station | Percent <br> Bluegreens |  | Percent <br> Diatoms |  | Percent Greens |  | Percent Desmids |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD |
| I | 93.147 | 4.026 | 6.791 | 4.017 | . 000 | . 000 | . 061 | . 098 |
| II | 85.431 | 9.200 | 9.089 | 5.146 | 3.987 | 4.381 | 1.491 | . 679 |
| III | 93.511 | 2.093 | 3.930 | . 999 | . 754 | 1.735 | 1.804 | . 390 |
| IV | 76.776 | 11.689 | 13.798 | 8.227 | 5.308 | 4.055 | 4.115 | 2.456 |
| V | 91.655 | 5.418 | 7.229 | 4.685 | . 947 | 1.405 | . 167 | . 133 |
| VI | 81.675 | 5.576 | 7.353 | 3.175 | 9.499 | 6.606 | 1.471 | 1.032 |
| VII | 96.521 | 2.218 | 1.569 | . 865 | . 769 | 1.537 | 1.139 | 1.244 |
| VIII | 60.701 | 14.763 | 24.392 | 4.669 | 13.388 | 10.993 | 1.517 | 1.295 |
| IX | 86.032 | 8.070 | 10.475 | 6.760 | . 983 | . 876 | 2.509 | 2.507 |
| X | 93.267 | 4.667 | 3.800 | 3.191 | 2.595 | 2.348 | . 336 | . 337 |
| XI | 88.009 | 6.383 | 11.249 | 6.352 | . 611 | 1.180 | . 129 | . 234 |
| XII | 67.741 | 7.968 | 28.974 | 10.143 | 2.122 | 3.999 | 1.161 | . 842 |
| XIII | 40.534 | 20.767 | 43.707 | 14.670 | 15.275 | 8.799 | . 482 | . 612 |
| XIV | 48.524 | 17.600 | 46.254 | 16.255 | 4.891 | 3.295 | . 329 | . 506 |
| XV | 64.038 | 13.993 | 33.894 | 13.851 | 1.975 | 3.908 | . 091 | . 179 |
| XVI | 73.895 | 21.600 | 25.269 | 21.010 | . 000 | . 000 | . 834 | . 649 |
| XVII | 33.617 | 11.733 | 55.665 | 9.913 | 8.562 | 7.061 | 2.155 | 1.914 |

Appendix Table $C-5$. Volumetric results from fifth quarter sampling: means and standard deviations.

| Station | Percent Bluegreens |  | Percent Diatoms |  | Percent <br> Desmids |  | Percent Other Greens |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{x}}$ | SD |
| XIII | 1.34 | 2.79 | 26.17 | 22.95 | . 00 | . 00 | 72.48 | 22.11 |
| XIV | 52.59 | 17.15 | 36.31 | 17.85 | . 42 | . 73 | 10.68 | 9.84 |
| xV | 57.72 | 13.09 | 37.69 | 16.15 | 1.25 | 1.09 | 3.34 | 4.52 |
| XVI | 81.00 | 6.22 | 18.96 | 6.29 | . 05 | . 11 | . 00 | . 00 |
| XVII | 36.53 | 28.77 | 62.55 | 28.88 | . 80 | . 93 | . 12 | . 28 |

Appendix Table C-6. Volumetric results from map sampling (May, 1979): means and standard deviations.

| Station | Percent <br> Bluegreens |  | Percent <br> Diatoms |  | Percent Greens |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD | $\overline{\mathrm{X}}$ | SD |
| 1 | 98.6002 | 1.0185 | . 6328 | . 8667 | . 7669 | . 2104 |
| 2 | 96.3816 | 1.8867 | 3.3578 | 1.9619 | . 2605 | . 4135 |
| 3 | 99.9026 | . 1061 | . 0497 | . 0742 | . 0476 | . 0996 |
| 4 | 99.9608 | . 0314 | . 0391 | . 0314 | . 0000 | . 0000 |
| 5 | 99.6601 | . 7505 | . 3395 | . 7507 | . 0003 | . 0007 |
| 6 | 93.0121 | 9.5692 | 6.8246 | 9.6589 | . 1632 | . 2069 |
| 7 | 99.7602 | . 2872 | . 2397 | . 2872 | . 0000 | . 0000 |
| 8 | 93.9776 | 2.3798 | 5.2902 | 1.9353 | . 7321 | . 5699 |
| 9 | 94.3373 | 2.6473 | 5.2588 | 2.5409 | . 4038 | . 7133 |
| 10 | 74.2241 | 14.0087 | 24.6696 | 13.1479 | 1.1061 | 2.0543 |
| 11 | 99.2283 | . 7723 | . 7716 | . 7723 | . 0000 | . 0000 |
| 12 | 98.3174 | 1.2270 | 1.3430 | 1.0176 | . 3394 | . 5031 |
| 13 | 99.3970 | . 2596 | . 3470 | . 3408 | . 2558 | . 1818 |
| 14 | 98.0043 | 1.2505 | . 9591 | . 4462 | 1.0365 | . 9164 |
| 15 | 99.6780 | . 2877 | . 0165 | . 0143 | . 3054 | . 2827 |
| 16 | 94.2639 | 3.1868 | 5.4911 | 3.2299 | . 2449 | . 0612 |
| 17 | 85.4398 | 9.9764 | . 9818 | . 4880 | 13.5782 | 10.0253 |
| 18 | 16.1040 | 6.3481 | . 2830 | . 2208 | 83.6129 | 6.4549 |
| 19 | 98.8794 | . 8314 | . 7279 | . 7567 | . 3925 | . 3238 |
| 20 | 93.6976 | 3.7981 | 5.8152 | 3.9210 | . 4871 | . 4643 |
| 21 | 96.9623 | 2.2608 | 2.3833 | 2.4672 | . 6542 | . 6280 |
| 22 | 90.8620 | 5.2236 | 9.1123 | 5.2537 | . 0256 | . 0627 |
| 23 | 92.0679 | 2.7797 | 6.6187 | 2.5450 | 1.3133 | 1.5912 |
| 24 | 93.2949 | 1.7386 | 4.4645 | . 9687 | 2.2404 | 1.5327 |
| 25 | 75.3374 | 9.9362 | 10.8459 | 4.7400 | 13.8165 | 7.5831 |
| 26 | 96.9819 | 1.2390 | 1.9049 | . 6486 | 1.1130 | 1.0965 |
| 27 | 94.0912 | 3.0226 | 3.9899 | 1.3814 | 1.9187 | 2.8741 |
| 28 | 77.1108 | 17.9069 | 20.7507 | 17.0884 | 2.1383 | 1.1595 |
| 29 | 92.6324 | 5.7810 | 3.4090 | 3.2831 | 3.9584 | 5.6798 |
| 30 | 93.1363 | 2.8181 | 6.4840 | 2.4947 | . 3759 | . 3575 |
| 31 | 95.9555 | 2.2513 | 3.1660 | 1.9626 | . 8783 | . 4438 |
| 32 | 95.9484 | 3.0080 | 3.3328 | 3.1139 | . 7186 | . 9056 |
| 33 | 51.2186 | 22.1338 | 43.5117 | 19.1783 | 5.2695 | 4.3961 |
| 34 | 91.4137 | 3.2211 | 8.0733 | 3.3512 | . 5128 | . 4486 |
| 35 | 54.6890 | 23.4399 | 42.8133 | 20.6171 | 2.4976 | 4.3630 |
| 36 | 45.2736 | 16.4714 | 32.8213 | 11.0361 | 21.9049 | 9.0283 |
| 37 | 45.7889 | 15.8222 | 48.8553 | 14.8651 | 5.3556 | 2.6106 |
| 38 | 86.9772 | 8.0239 | 6.3008 | 3.6581 | 6.7218 | 7.4430 |
| 39 | 93.1285 | 2.3416 | 4.4207 | 1.7881 | 2.4507 | 3.6561 |
| 40 | 93.4215 | 3.7418 | 5.4236 | 3.5951 | 1.1547 | . 4028 |

APPENDIX D

COMPARISON OF TAXONOMIC COMPOSITION OF STATION PAIRS

| 1234567891011121314151617 |  |
| ---: | :--- |
| 1 | 0 |

```
Note: \(\rangle=.999\); \(\rangle=.99\); \& \(>=.95\);
 \(>=.90\); \(0<.90\)
```

FIGURE 1 Matrix of significance levels of difference in taxal volume means between station pairs, second quarter, from Hotelling- $\mathrm{T}^{2}$ analysis.



FIGURE 2 Matrix of significance levels of differences in taxal volume means between station pairs, third quarter, from Hotelling-T ${ }^{2}$ analysis.


```
Note: 慈 \(>=.999\); \(>=.99\); \% \(>=.95\);
 \# \(>=.94\); \(0<.90\)
```

```
FIGURE 3 Matrix of significance levels of differences in taxal
 volume means between station pairs, fourth quarter,
 from Hotelling-T \({ }^{2}\) analysis.
```


## $14 \quad 15 \quad 16 \quad 17$

| 3 笽 | 炎 | 䇣 |
| :---: | :---: | :---: |
| 14 | 0 | ＊ |
| 15 |  | 蕬 |
| 16 |  |  |

$$
\begin{aligned}
& \text { Note: 絗 }>=.999 \text { : } \\
& \text { * }>=.99 \text {; } \\
& \text { - }>=.95 \text {; } \\
& \text { \# }>=.901 \text {; } \\
& 0<.96
\end{aligned}
$$

FIGURE 4 Matrix of significance levels of differences in taxal volume means between station pairs（Stations XIV－ XVII only），fifth quarter，from Hotelling－T ${ }^{2}$ analysis．

## 2345678910111213141516171819202122232425262728293031323334353637383940



Matrix of significance levels of differences in taxal volume means between mapping site pairs (May, 1979 sampling), from Hotelling- $\mathrm{T}^{2}$ analysis.

## APPENDIX E

MAPS OF PERIPHYTON COMPOSITION AND BIOMASS

| MAP 1 | Map of vegetation patterns in Taylor Slough, Everglades National Park, showing percent periphyton algal volume as diatoms and as blue-green algae and total periphyton biomass and organic periphyton biomass ( $\mathrm{g} / \mathrm{m}^{2}$ ) at sites sampled in May, 1979. Vegetation patterns are from Rintz and Loope (1978). |
| :---: | :---: |
| MAP 2 | Map of vegetation patterns in Dade County-208-East Everglades Area, showing percent periphyton algal volume as diatoms and as blue-green algae and total periphyton biomass and organic periphyton biomass ( $\mathrm{g} / \mathrm{m}^{2}$ ) at sites sampled in May, 1979. Vegetation patterns are from Hilsenbeck, Hofstetter and Alexander (1979). |

Appendix E not included under this cover.

APPENDIX F

MULTIPLE REGRESSION EQUATIONS
Appendix Table F-1. Equations from stepwise multiple regressions.

| Quarter 1 | y | $=.1065-.2577 \mathrm{X}_{1}+.00002 \mathrm{x}_{2}-.00036 \mathrm{X}_{3}$ | $\mathrm{R}_{2}$ |  | . 5343 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{df}=4$ | (.9655) (.7707) (.2689) | R |  | . 2855 |
|  |  | y : proportion blue-green algae (trans) | $\mathrm{F}_{\text {rat }}$ |  | . 5327 |
|  |  | $\mathrm{X}_{1}$ : proportion soil organic (trans) | df |  | 3,4 |
|  |  | $\mathrm{X}_{2}$ :quarterly hydroperiod | n |  | 8 |
|  |  | $\mathrm{X}_{3}$ : specific conductance | DW |  | 2.389 |
| Quarter 1 |  | $=0.1182-0.00102 \mathrm{x}_{1}-0.0000054 \mathrm{X}_{2}$ | $\mathrm{R}_{2}$ | = | . 9870 |
|  | $\mathrm{df}=2$ | (8.675) (0.6904) | R | $=$ | . 9741 |
|  |  | $y: p r o p o r t i o n ~ b l u e-g r e e n ~ a l g a e ~(t r a n s) ~$ | $\mathrm{F}_{\text {rat }}$ |  | 37.63 |
|  |  | $\mathrm{X}_{1}$ :inorganic nitrogen in water | df |  | 2,2 |
|  |  | $\mathrm{X}_{2}$ : total macrophyte biomass | n |  | 5 |
|  |  |  | DW | = | 1.939 |
| Quarter 2 |  | $=.1108-.00105 x_{2}-.00105 x_{2}-.00000 x_{3}-.0501 x_{1}$ | $\mathrm{R}_{2}$ | = | . 6099 |
|  | $\mathrm{df}=6$ | (1.436) (.2274) (.1413) | R |  | . 3720 |
|  |  |  | $\mathrm{F}_{\text {rat }}$ |  | 1.382 |
|  |  |  | df | = | 3,7 |
|  |  |  | n | = | 11 |
|  |  |  | DW |  | 2.448 |

Appendix Table F-1. Continued.

Appendix Table F-1. Continued.

| Quarter 3 | y$\mathrm{df}=5$ | $\begin{array}{r} =.12021-\underset{\left(2033 x_{3}-.00038 x_{2}-.\right.}{(2.827) *} \begin{array}{r} (1.411) \\ \left(.899 X_{1}-.0004 x_{4}-\right. \\ (.8942) \end{array}(.6957) \end{array}$ | $\begin{array}{r} .0000 \\ \\ (.28 \end{array}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | y : proportion blue-green algae (trans) | $\mathrm{R}_{2}$ | = | . 8828 |
|  |  | $\mathrm{X}_{1}$ :proportion soil organic (trans) |  | = | . 7794 |
|  |  | $\mathrm{X}_{2}$ :hydro ( qt ) | ${ }^{\text {rat }}$ | = | 3.534 |
|  |  | $\mathrm{x}_{3}$ :salinity | df | = | 5,5 |
|  |  | $\mathrm{X}_{4}$ :alkalinity | n | = | 11 |
|  |  | $\mathrm{X}_{5}$ :nitrogen | DW | = | 2.705 |
| Quarter 3 | y | $=.11348-.02058 \mathrm{X}_{2}-.00041 \mathrm{X}_{4}-.15705 \mathrm{X}_{1}-.00001 \mathrm{X}_{3}$ | $\mathrm{R}_{2}$ | = | . 8699 |
|  | $\mathrm{df}=7$ | (3.207) ** (1.722) (1.230) (.1886) | R | = | . 7567 |
|  |  | y : proportion blue-green algae (trans) | $\mathrm{F}_{\text {rat }}$ | = | 5.44 *** |
|  |  | $\mathrm{X}_{1}$ :proportion soil organic (trans) | df | = | 4,7 |
|  |  | $\mathrm{x}_{2}$ :salinity | n | = | 12 |
|  |  | $\mathrm{X}_{3}$ :alkalinity | DW | = | 2.305 |
|  |  | $\mathrm{X}_{4}$ :quarterly hydroperiod |  |  |  |
| Quarter 3 | y$d f=12$ | $=.1195-.2793 \mathrm{x}_{1}-.00002 \mathrm{X}_{2}-.00028 \mathrm{X}_{3}$ | $\mathrm{R}_{2}$ | = | . 7822 |
|  |  | (1.926)* (2.007)* (1.014) | R | = | . 6118 |
|  |  | y : proportion blue-green algae | $\mathrm{F}_{\text {rat }}$ | $=$ | 6.305 *** |
|  |  | $\mathrm{X}_{1}$ : proportion soil organic |  | = | 3,12 |
|  |  | $\mathrm{X}_{2}$ :quarterly hydroperiod | n | = | 16 |
|  |  | $\mathrm{X}_{3}$ :specific conductance | DW | = | 2.348 |

Appendix Table F-1. Continued.

Appendix Table F-1. Continued.

| Qaarter 4 | $\begin{aligned} & y \\ & d f=4 \end{aligned}$ | $\begin{array}{r} =.0940-.2408 x_{1}-.00009 X_{3}+.00001 X_{4}-.00000 X_{2} \\ (1.278)(.8470)(.3674)(.0026) \end{array}$ | 82 8 | = | .8093 .6549 |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | y:proportion bluegreen algae (trans) | Frat | * | 1.900 |
|  |  | $\mathrm{X}_{1}$ : proportion soil organic (trans) | df | * | 4,4 |
|  |  | $\mathrm{X}_{2}$; time-since-drought | n | * | 9 |
|  |  | $\mathrm{X}_{3}$ : drought length | DW | \% | 2.304 |
|  |  | $\mathrm{X}_{4}$ :specific conductance |  |  |  |
| Quarter 4 | y | $=.1081-.00002603 \mathrm{X}_{1}-.3783 \mathrm{X}_{2}+.00001829 \mathrm{X}_{3}$ | $\mathrm{R}_{2}$ | = | . 8185 |
|  | $d ¢=9$ | (.999) (2.697)** (2.215)* | R | * | .670 |
|  |  | y: proportice blue-green algae (trans) | $F_{\text {rat }}$ | * | 5.816 |
|  |  | $\mathrm{X}_{1}$ : specific conductance | n | * | 13 |
|  |  | $\mathrm{X}_{2}$; proportion soil organic (trans) | df | - | 3,9 |
|  |  | $\mathrm{X}_{3}$ :total macrophyte bionass | DW | * | 2.182 |
| Quarter 4 | $y$ | $=.02978+.7498 x_{1}-.0004 \mathrm{x}_{2}-.00038 \mathrm{x}_{3}$ | $\mathrm{R}_{2}$ | - | . 8862 |
|  | df $=12$ | (5.511)**** (4.564)**** (0.9829) | R | * | . 7854 |
|  |  | $y$ : proportion blue-green algae (traas) | $F_{\text {rat }}$ | * | 13.419 |
|  |  | $\mathrm{X}_{1}$ :proportion soil organic (trans) | n | - | 15 |
|  |  | $\mathrm{X}_{2}$ : cotal macorophyte bicoass | df | - | 4,10 |
|  |  | $\mathrm{X}_{3}$ :quarterly hydroperiod | D/2 | - | 1.404 |

[^4]
[^0]:    Key to Algal Groups
    Blue-green
    Green filamentous
    Green B.G. G.

[^1]:    $a=p<.0001, b=p<.001, c=p<.01, d=p<.05, e=p<.1, f=p<.11$

[^2]:    questionnable reading due to meter malfunction.

[^3]:    Note: All-day water quality dates
    Taylor Slough (park sites): 8/8/79
    208 sites (C-67 sites): 8/10/79

[^4]:    Note: Numbers in parentheses are t-statistics. Asterisks indicate level of significance: *:p $<0.1, * *: p<0.05, * * *: p<0.01, * * * *: p<0.001$.

